WorldWideScience

Sample records for cloud microlensing source

  1. The MACHO Project HST Follow-Up: The Large Magellanic Cloud Microlensing Source Stars

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C.A.; /LLNL, Livermore /UC, Berkeley; Drake, A.J.; /Caltech; Cook, K.H.; /LLNL, Livermore /UC, Berkeley; Bennett, D.P.; /Caltech /Notre Dame U.; Popowski, P.; /Garching, Max Planck Inst.; Dalal, N.; /Toronto U.; Nikolaev, S.; /LLNL, Livermore; Alcock, C.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.; Axelrod, T.S.; /Arizona U.; Becker, A.C. /Washington U., Seattle; Freeman, K.C.; /Res. Sch. Astron. Astrophys., Weston Creek; Geha, M.; /Yale U.; Griest, K.; /UC, San Diego; Keller, S.C.; /LLNL, Livermore; Lehner, M.J.; /Harvard-Smithsonian Ctr. Astrophys. /Taipei, Inst. Astron. Astrophys.; Marshall, S.L.; /SLAC; Minniti, D.; /Rio de Janeiro, Pont. U. Catol. /Vatican Astron. Observ.; Pratt, M.R.; /Aradigm, Hayward; Quinn, P.J.; /Western Australia U.; Stubbs, C.W.; /UC, Berkeley /Harvard U.; Sutherland, W.; /Oxford U. /Oran, Sci. Tech. U. /Garching, Max Planck Inst. /McMaster U.

    2009-06-25

    We present Hubble Space Telescope (HST) WFPC2 photometry of 13 microlensed source stars from the 5.7 year Large Magellanic Cloud (LMC) survey conducted by the MACHO Project. The microlensing source stars are identified by deriving accurate centroids in the ground-based MACHO images using difference image analysis (DIA) and then transforming the DIA coordinates to the HST frame. None of these sources is coincident with a background galaxy, which rules out the possibility that the MACHO LMC microlensing sample is contaminated with misidentified supernovae or AGN in galaxies behind the LMC. This supports the conclusion that the MACHO LMC microlensing sample has only a small amount of contamination due to non-microlensing forms of variability. We compare the WFPC2 source star magnitudes with the lensed flux predictions derived from microlensing fits to the light curve data. In most cases the source star brightness is accurately predicted. Finally, we develop a statistic which constrains the location of the Large Magellanic Cloud (LMC) microlensing source stars with respect to the distributions of stars and dust in the LMC and compare this to the predictions of various models of LMC microlensing. This test excludes at {approx}> 90% confidence level models where more than 80% of the source stars lie behind the LMC. Exotic models that attempt to explain the excess LMC microlensing optical depth seen by MACHO with a population of background sources are disfavored or excluded by this test. Models in which most of the lenses reside in a halo or spheroid distribution associated with either the Milky Way or the LMC are consistent which these data, but LMC halo or spheroid models are favored by the combined MACHO and EROS microlensing results.

  2. Gravitational microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Aleksandr F [Russian Federation State Scientific Center ' A.I. Alikhanov Institute for Theoretical and Experimental Physics' , Moscow (Russian Federation); Sazhin, Mikhail V [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    1998-10-31

    The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)

  3. Gravitational microlensing

    International Nuclear Information System (INIS)

    Zakharov, Aleksandr F; Sazhin, Mikhail V

    1998-01-01

    The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)

  4. Discovery and Characterization of a Caustic Crossing Microlensing Event in the Small Magellanic Cloud

    International Nuclear Information System (INIS)

    Alcock, C.; Allsman, R.A.; Alves, D.; Axelrod, T.S.; Becker, A.C.; Bennett, D.P.; Cook, K.H.; Drake, A.J.; Freeman, K.C.; Griest, K.; King, L.J.; Lehner, M.J.; Marshall, S.L.

    1999-01-01

    We present photometric observations and analysis of the second microlensing event detected toward the Small Magellanic Cloud (SMC), MACHO Alert 98-SMC-1. This event was detected early enough to allow intensive observation of the light curve. These observations revealed 98-SMC-1 to be the first caustic crossing binary microlensing event toward the Magellanic Clouds to be discovered in progress. Frequent coverage of the evolving light curve allowed an accurate prediction for the date of the source crossing out of the lens caustic structure. The caustic crossing temporal width, along with the angular size of the source star, measures the proper motion of the lens with respect to the source and thus allows an estimate of the location of the lens. Lenses located in the Galactic halo would have a velocity projected to the SMC of v∼1500 kms -1 , while an SMC lens would typically have v∼60 kms -1 . The event light curve allows us to obtain a unique fit to the parameters of the binary lens and to estimate the proper motion of the lensing system. We have performed a joint fit to the MACHO/GMAN data presented here, including recent EROS data of this event from Afonso and collaborators. These joint data are sufficient to constrain the time t * for the lens to move an angle equal to the source angular radius: t * =0.116±0.010 days. We estimate a radius for the lensed source of R * =1.1±0.1 R circle-dot from its unblended color and magnitude. This yields a projected velocity of v=76±10 kms -1 . Only 0.12% of halo lenses would be expected to have a v value at least as small as this, while 38% of SMC lenses would be expected to have v as large as this. This implies that the lensing system is more likely to reside in the SMC than in the Galactic halo. Similar observations of future Magellanic Cloud microlensing events will help to determine the contribution of MACHOS to the Galaxy's dark halo. copyright copyright 1999. The American Astronomical Society

  5. AGAPEROS Searches for microlensing in the LMC with the Pixel Method; 2, Selection of possible microlensing events

    CERN Document Server

    Melchior, A.L.; Ansari, R; Aubourg, E.; Baillon, P.; Bareyre, P.; Bauer, F.; Beaulieu, J.-Ph.; Bouquet, A.; Brehin, S.; Cavalier, F.; Char, S.; Couchot, F.; Coutures, C.; Ferlet, R.; Fernandez, J.; Gaucherel, C.; Giraud-Heraud, Y.; Glicenstein, J.-F.; Goldman, B.; Gondolo, P.; Gros, M.; Guibert, J.; Hardin, D.; Kaplan, J.; de Kat, J.; Lachieze-Rey, M.; Laurent, B; Lesquoy, E; Magneville, Ch.; Mansoux, B.; Marquette, J.-B.; Maurice, E.; Milsztajn, A.; Moniez, M.; Moreau, O.; Moscoso, L.; Palanque-Delabrouille, N.; Perdereau. O.; Prevot, L.; Renault, C.; Queinnec, F.; Rich, J.; Spiro, M.; Vidal-Madjar, A.; Vigroux, L.; Zylberajch, S.; Magneville, Ch.

    1998-01-01

    We apply the pixel method of analysis (sometimes called ``pixel lensing'') to a small subset of the EROS-1 microlensing observations of the bar of the Large Magellanic Cloud (LMC). The pixel method is designed to find microlensing events of unresolved source stars and had heretofore been applied only to M31 where essentially all sources are unresolved. With our analysis optimised for the detection of long-duration microlensing events due to 0.01-1 Mo Machos, we detect no microlensing events and compute the corresponding detection efficiencies. We show that the pixel method should detect 10 to 20 times more microlensing events for M>0.05 Mo Machos compared to a classical analysis of the same data which latter monitors only resolved stars. In particular, we show that for a full halo of Machos in the mass range 0.1 -- 0.5 Mo, a pixel analysis of the three-year EROS-1 data set covering 0.39 deg^2 would yield 4 events.

  6. Matching microlensing events with X-ray sources

    Science.gov (United States)

    Sartore, N.; Treves, A.

    2012-03-01

    Aims: The detection of old neutron stars and stellar mass black holes in isolation is one of the most sought after goals of compact object astrophysics. Microlensing surveys may help in achieving this aim because the lensing mechanism is independent of the emission properties of the lens. Several black hole candidates have indeed been detected by means of microlensing observations have been reported in the literature. The identification of counterparts, especially in the X-rays, would be a strong argument in favor of the compact nature of these lenses. Methods: We perform a cross-correlation between the catalogs of microlensing events produced by the OGLE, MACHO, and MOA teams, and those of X-rays sources from the data acquired by the XMM-Newton and Chandra satellites. On the basis of our previous work, we select only microlensing events with durations longer than one hundred days, which should contain a large fraction of lenses as compact objects. Our matching criterion takes into account the positional coincidence on the sky. Results: We find a single match between a microlensing event, OGLE-2004-BLG-081 (tE ~ 103 days), and the X-ray source 2XMM J180540.5-273427. The angular separation is ~0.5 arcsec, i.e. well within the 90% error box of the X-ray source. The hardness ratios reported in the 2XMM catalog imply that it has a hard spectrum with a peak between 2 keV and 4.5 keV or it has a softer but highly absorbed spectrum. Moreover, the microlensing event is not fully constrained, and other authors propose a possible association of the source star with either a flaring cataclysmic variable or a RS Canum Venaticorum-like star. Conclusions: The very small angular separation (within uncertainties) is a strong indicator that 2XMM J180540.5-273427 is the X-ray counterpart of the OGLE event. However, the uncertainties in the nature of both the lensed system and the lens itself challenge the interpretation of 2XMM J180540.5-273427 as the first confirmed isolated black

  7. Blending in gravitational microlensing experiments : source confusion and related systematics

    NARCIS (Netherlands)

    Smith, Martin C.; Wozniak, Przemyslaw; Mao, Shude; Sumi, Takahiro

    2007-01-01

    Gravitational microlensing surveys target very dense stellar fields in the local group. As a consequence, the microlensed source stars are often blended with nearby unresolved stars. The presence of 'blending' is a cause of major uncertainty when determining the lensing properties of events towards

  8. PLANETESIMAL DISK MICROLENSING

    International Nuclear Information System (INIS)

    Heng, Kevin; Keeton, Charles R.

    2009-01-01

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  9. Difference Image Analysis of Galactic Microlensing. II. Microlensing Events

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C.; Allsman, R. A.; Alves, D.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Griest, K. (and others)

    1999-09-01

    The MACHO collaboration has been carrying out difference image analysis (DIA) since 1996 with the aim of increasing the sensitivity to the detection of gravitational microlensing. This is a preliminary report on the application of DIA to galactic bulge images in one field. We show how the DIA technique significantly increases the number of detected lensing events, by removing the positional dependence of traditional photometry schemes and lowering the microlensing event detection threshold. This technique, unlike PSF photometry, gives the unblended colors and positions of the microlensing source stars. We present a set of criteria for selecting microlensing events from objects discovered with this technique. The 16 pixel and classical microlensing events discovered with the DIA technique are presented. (c) (c) 1999. The American Astronomical Society.

  10. A Spectroscopic and Photometric Study of Gravitational Microlensing Events

    Science.gov (United States)

    Kane, Stephen R.

    2000-08-01

    Gravitational microlensing has generated a great deal of scientific interest over recent years. This has been largely due to the realization of its wide-reaching applications, such as the search for dark matter, the detection of planets, and the study of Galactic structure. A significant observational advance has been that most microlensing events can be identified in real-time while the source is still being lensed. More than 400 microlensing events have now been detected towards the Galactic bulge and Magellanic Clouds by the microlensing survey teams EROS, MACHO, OGLE, DUO, and MOA. The real-time detection of these events allows detailed follow-up observations with much denser sampling, both photometrically and spectroscopically. The research undertaken in this project on photometric studies of gravitational microlensing events has been performed as a member of the PLANET (Probing Lensing Anomalies NETwork) collaboration. This is a worldwide collaboration formed in the early part of 1995 to study microlensing anomalies - departures from an achromatic point source, point lens light curve - through rapidly-sampled, multi-band, photometry. PLANET has demonstrated that it can achieve 1% photometry under ideal circumstances, making PLANET observations sensitive to detection of Earth-mass planets which require characterization of 1%--2% deviations from a standard microlensing light curve. The photometric work in this project involved over 5 months using the 1.0 m telescope at Canopus Observatory in Australia, and 3 separate observing runs using the 0.9 m telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. Methods were developed to reduce the vast amount of photometric data using the image analysis software MIDAS and the photometry package DoPHOT. Modelling routines were then written to analyse a selection of the resulting light curves in order to detect any deviation from an achromatic point source - point lens light curve. The photometric

  11. Estimating Finite Source Effects in Microlensing Events due to Free-Floating Planets with the Euclid Survey

    Directory of Open Access Journals (Sweden)

    Lindita Hamolli

    2015-01-01

    Full Text Available In recent years free-floating planets (FFPs have drawn a great interest among astrophysicists. Gravitational microlensing is a unique and exclusive method for their investigation which may allow obtaining precious information about their mass and spatial distribution. The planned Euclid space-based observatory will be able to detect a substantial number of microlensing events caused by FFPs towards the Galactic bulge. Making use of a synthetic population algorithm, we investigate the possibility of detecting finite source effects in simulated microlensing events due to FFPs. We find a significant efficiency for finite source effect detection that turns out to be between 20% and 40% for a FFP power law mass function index in the range [0.9, 1.6]. For many of such events it will also be possible to measure the angular Einstein radius and therefore constrain the lens physical parameters. These kinds of observations will also offer a unique possibility to investigate the photosphere and atmosphere of Galactic bulge stars.

  12. Bright Single-Photon Sources Based on Anti-Reflection Coated Deterministic Quantum Dot Microlenses

    Directory of Open Access Journals (Sweden)

    Peter Schnauber

    2015-12-01

    Full Text Available We report on enhancing the photon-extraction efficiency (PEE of deterministic quantum dot (QD microlenses via anti-reflection (AR coating. The AR-coating deposited on top of the curved microlens surface is composed of a thin layer of Ta2O5, and is found to effectively reduce back-reflection of light at the semiconductor-vacuum interface. A statistical analysis of spectroscopic data reveals, that the AR-coating improves the light out-coupling of respective microlenses by a factor of 1.57 ± 0.71, in quantitative agreement with numerical calculations. Taking the enhancement factor into account, we predict improved out-coupling of light with a PEE of up to 50%. The quantum nature of emission from QDs integrated into AR-coated microlenses is demonstrated via photon auto-correlation measurements revealing strong suppression of two-photon emission events with g(2(0 = 0.05 ± 0.02. As such, these bright non-classical light sources are highly attractive with respect to applications in the field of quantum cryptography.

  13. The OGLE view of microlensing towards the Magellanic Clouds - I. A trickle of events in the OGLE-II LMC data

    Science.gov (United States)

    Wyrzykowski, Ł.; Kozłowski, S.; Skowron, J.; Belokurov, V.; Smith, M. C.; Udalski, A.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Szewczyk, O.; Żebruń, K.

    2009-08-01

    We present the results from the Optical Gravitational Lensing Experiment II (OGLE-II) survey (1996-2000) towards the Large Magellanic Cloud (LMC), which has the aim of detecting the microlensing phenomena caused by dark matter compact objects in the Galactic halo [massive compact halo objects (MACHOs)]. We use high-resolution Hubble Space Telescope images of the OGLE fields and derive the correction for the number of monitored stars in each field. This also yields blending distributions which we use in `catalogue-level' Monte Carlo simulations of the microlensing events in order to calculate the detection efficiency of the events. We detect two candidates for microlensing events in the All Stars Sample, which translates into an optical depth of 0.43 +/- 0.33 × 10-7. If both events were due to MACHO, the fraction of mass of compact dark matter objects in the Galactic halo would be 8 +/- 6 per cent. This optical depth, however, along with the characteristics of the events seems to be consistent with the self-lensing scenario, i.e. self-lensing alone is sufficient to explain the observed microlensing signal. Our results indicate the non-detection of MACHOs lensing towards the LMC with an upper limit on their abundance in the Galactic halo of 19 per cent for M = 0.4Msolar and 10 per cent for masses between 0.01 and 0.2Msolar. Based on observations obtained with the 1.3-m Warsaw Telescope at the Las Campanas Observatory of the Carnegie Institution of Washington. E-mail: wyrzykow@ast.cam.ac.uk ‡ Name pronunciation: Woocash Vizhikovsky.

  14. Limits on compact halo objects as dark matter from gravitational microlensing

    Directory of Open Access Journals (Sweden)

    Jetzer Philippe

    2014-04-01

    Full Text Available Microlensing started with the seminal paper by Paczyński in 1986 [1], first with observations towards the Large Magellanic Cloud and the galactic bulge. Since then many other targets have been observed and new applications have been found. In particular, it turned out to be a powerful method to detect planets in our galaxy and even in the nearby M31. Here, we will present some results obtained so far by microlensing without being, however, exhaustive.

  15. Microlensing and Its Degeneracy Breakers: Parallax, Finite Source, High-Resolution Imaging, and Astrometry

    Directory of Open Access Journals (Sweden)

    Chien-Hsiu Lee

    2017-07-01

    Full Text Available First proposed by Paczynski in 1986, microlensing has been instrumental in the search for compact dark matter as well as discovery and characterization of exoplanets. In this article, we provide a brief history of microlensing, especially on the discoveries of compact objects and exoplanets. We then review the basics of microlensing and how astrometry can help break the degeneracy, providing a more robust determination of the nature of the microlensing events. We also outline prospects that will be made by on-going and forth-coming experiments/observatories.

  16. THE MICROLENSING PROPERTIES OF A SAMPLE OF 87 LENSED QUASARS

    International Nuclear Information System (INIS)

    Mosquera, A. M.; Kochanek, C. S.

    2011-01-01

    Gravitational microlensing is a powerful tool for probing the physical properties of quasar accretion disks and properties of the lens galaxy such as its dark matter fraction and mean stellar mass. Unfortunately, the number of lensed quasars (∼90) exceeds our monitoring capabilities. Thus, estimating their microlensing properties is important for identifying good microlensing candidates as well as for the expectations of future surveys. In this work, we estimate the microlensing properties of a sample of 87 lensed quasars. While the median Einstein radius crossing timescale is 20.6 years, the median source crossing timescale is 7.3 months. Broadly speaking, this means that on ∼10 year timescales roughly half the lenses will be quiescent, with the source in a broad demagnified valley, and roughly half will be active with the source lying in the caustic ridges. We also found that the location of the lens system relative to the cosmic microwave background dipole has a modest effect on microlensing timescales, and in theory microlensing could be used to confirm the kinematic origin of the dipole. As a corollary of our study we analyzed the accretion rate parameters in a sub-sample of 32 lensed quasars. At fixed black hole mass, it is possible to sample a broad range of luminosities (i.e., Eddington factors) if it becomes feasible to monitor fainter lenses.

  17. Search for black matter through the detection of gravitational micro-lenses in differential photometry

    International Nuclear Information System (INIS)

    Le Guillou, L.

    2003-09-01

    The nature of dark matter is an open question. The search for gravitational microlensing effects is an interesting tool because this effect is strongly dependent on the mass of objects whether they are luminous or not, however this detection method is only sensitive to compact forms of dark matter (MACHOS - massive astronomical halo compact objects), and as a consequence no-baryonic matter like neutrinos or WIMPS (weakly interacting massive particles) can not be detected this way. In the first chapter the author reviews the plausible candidates to black matter. The use of the microlensing effect as a probe of the galactic halo is presented in the second chapter. The third chapter is dedicated to the series of experiments worldwide that focus on the detection of MACHOS. In the fourth chapter the author shows how the DIA (difference image analysis) method may be promising in the study of gravitational microlensing effects. The main part of this work has been the use of the DIA method to process five-year data set collected by the Eros experiment in the small Magellanic cloud (SMC). The data processing line and the results are presented in the fifth and sixth chapters. The results are consistent with previous results given by Eros and they confirm the disparity of the durations of micro-lenses detected in the large and small Magellanic clouds. (A.C.)

  18. Searching gravitational microlensing events in the galaxy spiral arms by EROS II

    International Nuclear Information System (INIS)

    Derue, Frederic

    1999-01-01

    The EROS II experiment is searching for microlensing events due to compact massive objects passing through the line-of-sight of luminous stars. These objects are candidates to explain the baryonic component of Dark Matter in our Galaxy. EROS II was dedicated to different lines-of-sight: Small and Large Magellanic Clouds, Galactic Centre and 4 directions towards the Spiral Arms of the Galaxy. This thesis presents the first search for microlensing towards these last lines-of-sight (about 9 million stars). Simple criteria based on the search for significant fluctuations allowed one to discover a low noise sample of 7 candidates to the microlensing effect, with an average timescale of 50 days. A detailed analysis of the light curve of one candidate allows us to give a confidence interval on its mass 2.7 x 10 -3 0 0 = 50 ± 3 days. To improve the knowledge of the distance of the target stars, we have combined observations of EROS II with bibliographic sources on associations of stars linked with the spiral arm features, and we have developed a program to find variable stars. Ten cepheids have thus been found. Distances obtained with different methods are in rough agreement with each other. The average optical depth measured towards the four directions is τ-bar = 0.45 0.11 +0.23 x 10 -6 . It is compatible with expectations from simple galactic models. The long duration of most events favours interpretation of lensing by objects belonging to the disk instead of the halo. It also seems that some events due to bulge lenses have influenced measurements towards the line-of-sight which is closest to the Galactic Centre. Observation continue towards spiral arms. More accurate measurements should be obtained with increase of statistics, allowing one to estimate the disk contribution to the optical depth towards the bulge and the Magellanic Clouds. (author)

  19. Difference Image Analysis of Galactic Microlensing. I. Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C.; Allsman, R. A.; Alves, D.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Griest, K. (and others)

    1999-08-20

    This is a preliminary report on the application of Difference Image Analysis (DIA) to Galactic bulge images. The aim of this analysis is to increase the sensitivity to the detection of gravitational microlensing. We discuss how the DIA technique simplifies the process of discovering microlensing events by detecting only objects that have variable flux. We illustrate how the DIA technique is not limited to detection of so-called ''pixel lensing'' events but can also be used to improve photometry for classical microlensing events by removing the effects of blending. We will present a method whereby DIA can be used to reveal the true unblended colors, positions, and light curves of microlensing events. We discuss the need for a technique to obtain the accurate microlensing timescales from blended sources and present a possible solution to this problem using the existing Hubble Space Telescope color-magnitude diagrams of the Galactic bulge and LMC. The use of such a solution with both classical and pixel microlensing searches is discussed. We show that one of the major causes of systematic noise in DIA is differential refraction. A technique for removing this systematic by effectively registering images to a common air mass is presented. Improvements to commonly used image differencing techniques are discussed. (c) 1999 The American Astronomical Society.

  20. Search for brown dwarfs by gravitational microlensing effect with the pixels method. Analysis of AGAPE and EROS collaborations data

    International Nuclear Information System (INIS)

    Melchior, Anne-Laure

    1995-01-01

    This work is involved in baryonic dark matter search in galactic halos. An important collect of observational data has been initiated to test the hypothesis that this dark mass is made of compact objects such as brown dwarfs or small mass stars. The gravitational microlensing effect allows to probe this distribution of this mass type along the line of sight of nearby galaxies such as the Large Magellanic Cloud. A new way to detect these microlensing events has been proposed by P. Baillon et al.: the pixel method. The aim is to detect the amplification of stars which are unresolved or too faint to be seen by classical analysis. First, we present this method and the simulations which allow to establish its feasibility. Then, we describe the pixel analysis of the 91-92 EROS data on the Large Magellanic Cloud. The selection of luminosity variations with a shape compatible with microlensing events allows us to study the sensitivity of this analysis. We see how these results allow us to validate the pixel method applied on a large volume of data. This also shows the possibility to find luminosity variations which escape classical analysis research. Strengthened by these results, we finally describe the analysis of the AGAPE 94 data on the Andromeda galaxy which uses the same pixel method. Being ten times farther away than the Large Magellanic Cloud, the Andromeda galaxy has very few resolved stars, making the pixel method the only way of looking for microlensing events. (author) [fr

  1. A Neptune-mass Free-floating Planet Candidate Discovered by Microlensing Surveys

    Science.gov (United States)

    Mróz, Przemek; Ryu, Y.-H.; Skowron, J.; Udalski, A.; Gould, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Pawlak, M.; Ulaczyk, K.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Jung, Y. K.; Han, C.; Hwang, K.-H.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration

    2018-03-01

    Current microlensing surveys are sensitive to free-floating planets down to Earth-mass objects. All published microlensing events attributed to unbound planets were identified based on their short timescale (below two days), but lacked an angular Einstein radius measurement (and hence lacked a significant constraint on the lens mass). Here, we present the discovery of a Neptune-mass free-floating planet candidate in the ultrashort (t E = 0.320 ± 0.003 days) microlensing event OGLE-2016-BLG-1540. The event exhibited strong finite-source effects, which allowed us to measure its angular Einstein radius of θ E = 9.2 ± 0.5 μas. There remains, however, a degeneracy between the lens mass and distance. The combination of the source proper motion and source-lens relative proper motion measurements favors a Neptune-mass lens located in the Galactic disk. However, we cannot rule out that the lens is a Saturn-mass object belonging to the bulge population. We exclude stellar companions up to ∼15 au.

  2. GERLUMPH DATA RELEASE 1: HIGH-RESOLUTION COSMOLOGICAL MICROLENSING MAGNIFICATION MAPS AND eResearch TOOLS

    International Nuclear Information System (INIS)

    Vernardos, G.; Fluke, C. J.; Croton, D.; Bate, N. F.

    2014-01-01

    As synoptic all-sky surveys begin to discover new multiply lensed quasars, the flow of data will enable statistical cosmological microlensing studies of sufficient size to constrain quasar accretion disk and supermassive black hole properties. In preparation for this new era, we are undertaking the GPU-Enabled, High Resolution cosmological MicroLensing parameter survey (GERLUMPH). We present here the GERLUMPH Data Release 1, which consists of 12,342 high resolution cosmological microlensing magnification maps and provides the first uniform coverage of the convergence, shear, and smooth matter fraction parameter space. We use these maps to perform a comprehensive numerical investigation of the mass-sheet degeneracy, finding excellent agreement with its predictions. We study the effect of smooth matter on microlensing induced magnification fluctuations. In particular, in the minima and saddle-point regions, fluctuations are enhanced only along the critical line, while in the maxima region they are always enhanced for high smooth matter fractions (≈0.9). We describe our approach to data management, including the use of an SQL database with a Web interface for data access and online analysis, obviating the need for individuals to download large volumes of data. In combination with existing observational databases and online applications, the GERLUMPH archive represents a fundamental component of a new microlensing eResearch cloud. Our maps and tools are publicly available at http://gerlumph.swin.edu.au/

  3. GERLUMPH DATA RELEASE 1: HIGH-RESOLUTION COSMOLOGICAL MICROLENSING MAGNIFICATION MAPS AND eResearch TOOLS

    Energy Technology Data Exchange (ETDEWEB)

    Vernardos, G.; Fluke, C. J.; Croton, D. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria, 3122 (Australia); Bate, N. F. [Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW, 2006 (Australia)

    2014-03-01

    As synoptic all-sky surveys begin to discover new multiply lensed quasars, the flow of data will enable statistical cosmological microlensing studies of sufficient size to constrain quasar accretion disk and supermassive black hole properties. In preparation for this new era, we are undertaking the GPU-Enabled, High Resolution cosmological MicroLensing parameter survey (GERLUMPH). We present here the GERLUMPH Data Release 1, which consists of 12,342 high resolution cosmological microlensing magnification maps and provides the first uniform coverage of the convergence, shear, and smooth matter fraction parameter space. We use these maps to perform a comprehensive numerical investigation of the mass-sheet degeneracy, finding excellent agreement with its predictions. We study the effect of smooth matter on microlensing induced magnification fluctuations. In particular, in the minima and saddle-point regions, fluctuations are enhanced only along the critical line, while in the maxima region they are always enhanced for high smooth matter fractions (≈0.9). We describe our approach to data management, including the use of an SQL database with a Web interface for data access and online analysis, obviating the need for individuals to download large volumes of data. In combination with existing observational databases and online applications, the GERLUMPH archive represents a fundamental component of a new microlensing eResearch cloud. Our maps and tools are publicly available at http://gerlumph.swin.edu.au/.

  4. GRAVITATIONAL MICROLENSING EVENTS AS A TARGET FOR THE SETI PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Rahvar, Sohrab, E-mail: rahvar@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11365–9161, Tehran (Iran, Islamic Republic of)

    2016-09-01

    The detection of signals from a possible extrasolar technological civilization is one of the most challenging efforts of science. In this work, we propose using natural telescopes made of single or binary gravitational lensing systems to magnify leakage of electromagnetic signals from a remote planet that harbors Extraterrestrial Intelligent (ETI) technology. Currently, gravitational microlensing surveys are monitoring a large area of the Galactic bulge to search for microlensing events, finding more than 2000 events per year. These lenses are capable of playing the role of natural telescopes, and, in some instances, they can magnify radio band signals from planets orbiting around the source stars in gravitational microlensing systems. Assuming that the frequency of electromagnetic waves used for telecommunication in ETIs is similar to ours, we propose follow-up observation of microlensing events with radio telescopes such as the Square Kilometre Array (SKA), the Low Frequency Demonstrators, and the Mileura Wide-Field Array. Amplifying signals from the leakage of broadcasting by an Earth-like civilization will allow us to detect them as far as the center of the Milky Way galaxy. Our analysis shows that in binary microlensing systems, the probability of amplification of signals from ETIs is more than that in single microlensing events. Finally, we propose the use of the target of opportunity mode for follow-up observations of binary microlensing events with SKA as a new observational program for searching ETIs. Using optimistic values for the factors of the Drake equation provides detection of about one event per year.

  5. Results from the EROS microlensing survey

    NARCIS (Netherlands)

    Beaulieu, JP; Lamers, HJGLM; Chu, YH; Suntzeff, NB; Hesser, JE; Bohlender, DA

    1999-01-01

    We present a status report of the original EROS and the on-going EROS-2 microlensing surveys, which were created to search for dark matter in the Galactic halo via microlensing effects on LMC/SMC stars. Microlensing surveys provide long-term systematic observations of millions of stars in both

  6. Polarimetry Microlensing of Close-in Planetary Systems

    International Nuclear Information System (INIS)

    Sajadian, Sedighe; Hundertmark, Markus

    2017-01-01

    A close-in giant planetary (CGP) system has a net polarization signal whose value varies depending on the orbital phase of the planet. This polarization signal is either caused by the stellar occultation or by reflected starlight from the surface of the orbiting planet. When the CGP system is located in the Galactic bulge, its polarization signal becomes too weak to be measured directly. One method for detecting and characterizing these weak polarization signatures due to distant CGP systems is gravitational microlensing. In this work, we focus on potential polarimetric observations of highly magnified microlensing events of CGP systems. When the lens is passing directly in front of the source star with its planetary companion, the polarimetric signature caused by the transiting planet is magnified. As a result, some distinct features in the polarimetry and light curves are produced. In the same way, microlensing amplifies the reflection-induced polarization signal. While the planet-induced perturbations are magnified whenever these polarimetric or photometric deviations vanish for a moment, the corresponding magnification factor of the polarization component(s) is related to the planet itself. Finding these exact times in the planet-induced perturbations helps us to characterize the planet. In order to evaluate the observability of such systems through polarimetric or photometric observations of high-magnification microlensing events, we simulate these events by considering confirmed CGP systems as their source stars and conclude that the efficiency for detecting the planet-induced signal with the state-of-the-art polarimetric instrument (FORS2/VLT) is less than 0.1%. Consequently, these planet-induced polarimetry perturbations can likely be detected under favorable conditions by the high-resolution and short-cadence polarimeters of the next generation.

  7. Polarimetry Microlensing of Close-in Planetary Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sajadian, Sedighe [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Hundertmark, Markus, E-mail: s.sajadian@cc.iut.ac.ir [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), D-69120 Heidelberg (Germany)

    2017-04-01

    A close-in giant planetary (CGP) system has a net polarization signal whose value varies depending on the orbital phase of the planet. This polarization signal is either caused by the stellar occultation or by reflected starlight from the surface of the orbiting planet. When the CGP system is located in the Galactic bulge, its polarization signal becomes too weak to be measured directly. One method for detecting and characterizing these weak polarization signatures due to distant CGP systems is gravitational microlensing. In this work, we focus on potential polarimetric observations of highly magnified microlensing events of CGP systems. When the lens is passing directly in front of the source star with its planetary companion, the polarimetric signature caused by the transiting planet is magnified. As a result, some distinct features in the polarimetry and light curves are produced. In the same way, microlensing amplifies the reflection-induced polarization signal. While the planet-induced perturbations are magnified whenever these polarimetric or photometric deviations vanish for a moment, the corresponding magnification factor of the polarization component(s) is related to the planet itself. Finding these exact times in the planet-induced perturbations helps us to characterize the planet. In order to evaluate the observability of such systems through polarimetric or photometric observations of high-magnification microlensing events, we simulate these events by considering confirmed CGP systems as their source stars and conclude that the efficiency for detecting the planet-induced signal with the state-of-the-art polarimetric instrument (FORS2/VLT) is less than 0.1%. Consequently, these planet-induced polarimetry perturbations can likely be detected under favorable conditions by the high-resolution and short-cadence polarimeters of the next generation.

  8. Fast, inexpensive, diffraction limited cylindrical microlenses

    International Nuclear Information System (INIS)

    Synder, J.J.; Reichert, P.

    1991-01-01

    We have developed a technique for fabricating fast, well corrected cylindrical microlenses. With this technique we have made a number of different microlenses with dimensions and focal lengths in the range of few hundred μm, and diffraction limited numerical apertures as high as 0.9. The microlenses are specifically designed for applications where they can increase the radiance or otherwise enhance the optical characteristics of laser diode light. The fabrication method we use is very versatile, and the microlenses produced this way would be very inexpensive in production quantities. 6 refs., 4 figs

  9. New Constraints on Quasar Broad Absorption and Emission Line Regions from Gravitational Microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Hutsemékers, Damien; Braibant, Lorraine; Sluse, Dominique [Institut d' Astrophysique et de Géophysique, Université de Liège, Liège (Belgium); Anguita, Timo [Departamento de Ciencias Fisicas, Universidad Andres Bello, Santiago (Chile); Goosmann, René, E-mail: hutsemekers@astro.ulg.ac.be [Observatoire Astronomique de Strasbourg, Université de Strasbourg, Strasbourg (France)

    2017-09-29

    Gravitational microlensing is a powerful tool allowing one to probe the structure of quasars on sub-parsec scale. We report recent results, focusing on the broad absorption and emission line regions. In particular microlensing reveals the intrinsic absorption hidden in the P Cygni-type line profiles observed in the broad absorption line quasar H1413+117, as well as the existence of an extended continuum source. In addition, polarization microlensing provides constraints on the scattering region. In the quasar Q2237+030, microlensing differently distorts the Hα and CIV broad emission line profiles, indicating that the low- and high-ionization broad emission lines must originate from regions with distinct kinematical properties. We also present simulations of the effect of microlensing on line profiles considering simple but representative models of the broad emission line region. Comparison of observations to simulations allows us to conclude that the Hα emitting region in Q2237+030 is best represented by a Keplerian disk.

  10. New Constraints on Quasar Broad Absorption and Emission Line Regions from Gravitational Microlensing

    Directory of Open Access Journals (Sweden)

    Damien Hutsemékers

    2017-09-01

    Full Text Available Gravitational microlensing is a powerful tool allowing one to probe the structure of quasars on sub-parsec scale. We report recent results, focusing on the broad absorption and emission line regions. In particular microlensing reveals the intrinsic absorption hidden in the P Cygni-type line profiles observed in the broad absorption line quasar H1413+117, as well as the existence of an extended continuum source. In addition, polarization microlensing provides constraints on the scattering region. In the quasar Q2237+030, microlensing differently distorts the Hα and CIV broad emission line profiles, indicating that the low- and high-ionization broad emission lines must originate from regions with distinct kinematical properties. We also present simulations of the effect of microlensing on line profiles considering simple but representative models of the broad emission line region. Comparison of observations to simulations allows us to conclude that the Hα emitting region in Q2237+030 is best represented by a Keplerian disk.

  11. Cloud Sourcing – Next Generation Outsourcing?

    OpenAIRE

    Muhic, Mirella; Johansson, Björn

    2014-01-01

    Although Cloud Sourcing has been around for some time it could be questioned what actually is known about it. This paper presents a literature review on the specific question if Cloud Sourcing could be seen as the next generation of outsourcing. The reason for doing this is that from an initial sourcing study we found that the sourcing decisions seems to go in the direction of outsourcing as a service which could be described as Cloud Sourcing. Whereas some are convinced that Cloud Sourcing r...

  12. Korea Microlensing Telescope Network Microlensing Events from 2015: Event-finding Algorithm, Vetting, and Photometry

    Science.gov (United States)

    Kim, D.-J.; Kim, H.-W.; Hwang, K.-H.; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Jung, Y. K.; Ryu, Y.-H.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; The KMTNet Collaboration

    2018-02-01

    We present microlensing events in the 2015 Korea Microlensing Telescope Network (KMTNet) data and our procedure for identifying these events. In particular, candidates were detected with a novel “completed-event” microlensing event-finder algorithm. The algorithm works by making linear fits to a ({t}0,{t}{eff},{u}0) grid of point-lens microlensing models. This approach is rendered computationally efficient by restricting u 0 to just two values (0 and 1), which we show is quite adequate. The implementation presented here is specifically tailored to the commission-year character of the 2015 data, but the algorithm is quite general and has already been applied to a completely different (non-KMTNet) data set. We outline expected improvements for 2016 and future KMTNet data. The light curves of the 660 “clear microlensing” and 182 “possible microlensing” events that were found in 2015 are presented along with our policy for their public release.

  13. WFIRST: Microlensing Analysis Data Challenge

    Science.gov (United States)

    Street, Rachel; WFIRST Microlensing Science Investigation Team

    2018-01-01

    WFIRST will produce thousands of high cadence, high photometric precision lightcurves of microlensing events, from which a wealth of planetary and stellar systems will be discovered. However, the analysis of such lightcurves has historically been very time consuming and expensive in both labor and computing facilities. This poses a potential bottleneck to deriving the full science potential of the WFIRST mission. To address this problem, the WFIRST Microlensing Science Investigation Team designing a series of data challenges to stimulate research to address outstanding problems of microlensing analysis. These range from the classification and modeling of triple lens events to methods to efficiently yet thoroughly search a high-dimensional parameter space for the best fitting models.

  14. Gravitational microlensing by low-mass objects in the globular cluster M22.

    Science.gov (United States)

    Sahu, K C; Casertano, S; Livio, M; Gilliland, R L; Panagia, N; Albrow, M D; Potter, M

    2001-06-28

    Gravitational microlensing offers a means of determining directly the masses of objects ranging from planets to stars, provided that the distances and motions of the lenses and sources can be determined. A globular cluster observed against the dense stellar field of the Galactic bulge presents ideal conditions for such observations because the probability of lensing is high and the distances and kinematics of the lenses and sources are well constrained. The abundance of low-mass objects in a globular cluster is of particular interest, because it may be representative of the very early stages of star formation in the Universe, and therefore indicative of the amount of dark baryonic matter in such clusters. Here we report a microlensing event associated with the globular cluster M22. We determine the mass of the lens to be 0.13(+0.03)(-0.02) solar masses. We have also detected six events that are unresolved in time. If these are also microlensing events, they imply that a non-negligible fraction of the cluster mass resides in the form of free-floating planetary-mass objects.

  15. Search for macroscopic dark matter in the halo of the milky way through microlensing. A feasibility study

    International Nuclear Information System (INIS)

    Moniez, M.

    1990-05-01

    The possibility of searching for non-visible massive compact objects in the galactic halo is discussed here. The discovery of such objects would solve the problem of the missing mass in the galaxies, and the experiments which investigate for weakly interacting particles assuming a diffuse cloud of dark matter would have to revise their limits. The non-discovery of these objects would exclude the last possibility left for baryonic dark matter, providing good evidence that the galactic halo has to be made of new particles. The description of the general-relativistic microlensing effect and its application to the search of massive compact objects are given here. A feasibility study shows that it is possible to monitor the luminosity of several million stars in the Large Magellanic Cloud with the required precision, in order to detect a possible microlensing phenomenon induced by heavy compact objects (10 -4 - 10 -1 solar mass units). A CCD-based experimental setup is described, which would make it possible to search for compact objects in the 10 -6 - 10 -4 solar mass unit domain

  16. Influence of chemical processing on the imaging properties of microlenses

    International Nuclear Information System (INIS)

    Vasiljevic, Darko; Muric, Branka; Pantelic, Dejan; Panic, Bratimir

    2009-01-01

    Microlenses are produced by irradiation of a layer of tot'hema and eosin sensitized gelatin (TESG) by using a laser beam (Nd:YAG 2nd harmonic; 532 nm). All the microlenses obtained are concave with a parabolic profile. After the production, the microlenses are chemically processed with various concentrations of alum. The following imaging properties of microlenses were calculated and analyzed: the root mean square (rms) wavefront aberration, the geometric encircled energy and the spot diagram. The microlenses with higher concentrations of alum in solution had a greater effective focal length and better image quality. The microlenses chemically processed with 10% alum solution had near-diffraction-limited performance.

  17. Astrometric Observation of MACHO Gravitational Microlensing

    Science.gov (United States)

    Boden, A. F.; Shao, M.; Van Buren, D.

    1997-01-01

    This paper discusses the prospects for astrometric observation of MACHO gravitational microlensing events. We derive the expected astrometric observables for a simple microlensing event assuming a dark MACHO, and demonstrate that accurate astrometry can determine the lens mass, distance, and proper motion in a very general fashion.

  18. Searching gravitational microlensing events in the galaxy spiral arms by EROS II; Recherche d'evenements de microlentille gravitationnelle dans les bras spiraux de la galaxie avec EROS II

    Energy Technology Data Exchange (ETDEWEB)

    Derue, Frederic [Paris-11 Univ., 91 Orsay (France)

    1999-04-15

    The EROS II experiment is searching for microlensing events due to compact massive objects passing through the line-of-sight of luminous stars. These objects are candidates to explain the baryonic component of Dark Matter in our Galaxy. EROS II was dedicated to different lines-of-sight: Small and Large Magellanic Clouds, Galactic Centre and 4 directions towards the Spiral Arms of the Galaxy. This thesis presents the first search for microlensing towards these last lines-of-sight (about 9 million stars). Simple criteria based on the search for significant fluctuations allowed one to discover a low noise sample of 7 candidates to the microlensing effect, with an average timescale of 50 days. A detailed analysis of the light curve of one candidate allows us to give a confidence interval on its mass 2.7 x 10{sup -3} < M/M{sub 0} < 0.84 at 95% CL. The amplification curve of another candidate shows a modulation which can be interpreted as a microlensing effect acting on a binary source, with an orbital period of P{sub 0} = 50 {+-} 3 days. To improve the knowledge of the distance of the target stars, we have combined observations of EROS II with bibliographic sources on associations of stars linked with the spiral arm features, and we have developed a program to find variable stars. Ten cepheids have thus been found. Distances obtained with different methods are in rough agreement with each other. The average optical depth measured towards the four directions is {tau}-bar = 0.45{sub 0.11}{sup +0.23} x 10{sup -6}. It is compatible with expectations from simple galactic models. The long duration of most events favours interpretation of lensing by objects belonging to the disk instead of the halo. It also seems that some events due to bulge lenses have influenced measurements towards the line-of-sight which is closest to the Galactic Centre. Observation continue towards spiral arms. More accurate measurements should be obtained with increase of statistics, allowing one to

  19. Search for black matter through the detection of gravitational micro-lenses in differential photometry; Recherche de matiere noire galactique par detection de microlentilles gravitationnelles en photometrie differentielle

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, L

    2003-09-01

    The nature of dark matter is an open question. The search for gravitational microlensing effects is an interesting tool because this effect is strongly dependent on the mass of objects whether they are luminous or not, however this detection method is only sensitive to compact forms of dark matter (MACHOS - massive astronomical halo compact objects), and as a consequence no-baryonic matter like neutrinos or WIMPS (weakly interacting massive particles) can not be detected this way. In the first chapter the author reviews the plausible candidates to black matter. The use of the microlensing effect as a probe of the galactic halo is presented in the second chapter. The third chapter is dedicated to the series of experiments worldwide that focus on the detection of MACHOS. In the fourth chapter the author shows how the DIA (difference image analysis) method may be promising in the study of gravitational microlensing effects. The main part of this work has been the use of the DIA method to process five-year data set collected by the Eros experiment in the small Magellanic cloud (SMC). The data processing line and the results are presented in the fifth and sixth chapters. The results are consistent with previous results given by Eros and they confirm the disparity of the durations of micro-lenses detected in the large and small Magellanic clouds. (A.C.)

  20. pyLIMA: An Open-source Package for Microlensing Modeling. I. Presentation of the Software and Analysis of Single-lens Models

    Science.gov (United States)

    Bachelet, E.; Norbury, M.; Bozza, V.; Street, R.

    2017-11-01

    Microlensing is a unique tool, capable of detecting the “cold” planets between ˜1 and 10 au from their host stars and even unbound “free-floating” planets. This regime has been poorly sampled to date owing to the limitations of alternative planet-finding methods, but a watershed in discoveries is anticipated in the near future thanks to the planned microlensing surveys of WFIRST-AFTA and Euclid's Extended Mission. Of the many challenges inherent in these missions, the modeling of microlensing events will be of primary importance, yet it is often time-consuming, complex, and perceived as a daunting barrier to participation in the field. The large scale of future survey data products will require thorough but efficient modeling software, but, unlike other areas of exoplanet research, microlensing currently lacks a publicly available, well-documented package to conduct this type of analysis. We present version 1.0 of the python Lightcurve Identification and Microlensing Analysis (pyLIMA). This software is written in Python and uses existing packages as much as possible to make it widely accessible. In this paper, we describe the overall architecture of the software and the core modules for modeling single-lens events. To verify the performance of this software, we use it to model both real data sets from events published in the literature and generated test data produced using pyLIMA's simulation module. The results demonstrate that pyLIMA is an efficient tool for microlensing modeling. We will expand pyLIMA to consider more complex phenomena in the following papers.

  1. Relativism in the Cloud: Cloud Sourcing in virtue of IS Development Outsourcing - A literature review

    Directory of Open Access Journals (Sweden)

    Björn Johansson

    2017-01-01

    Full Text Available Nowadays Cloud Computing and Cloud Sourcing is on the agenda in many organizations. Many Chief Information Officers (CIOs that urge for alternatives to traditional outsourcing are interested in how they can take advantage from Cloud Computing, by sourcing Information Technology (IT from the cloud. This paper provides an overview of the research direction of Cloud Sourcing in the IS field. A literature review based on selected papers from top Information Systems (IS journals and conferences were conducted. Findings from the review indicate that the attention of Cloud Sourcing in IS literature has mainly been directed towards security and risk as well as adoption issues, and that Cloud Sourcing is claimed to be the next generation of outsourcing. Unfortunately, this is where this strong claim ends without any further evidence, which indicate that there is a need for more research on Cloud Sourcing, especially in the direction of investigating relationships and implications when organizations start using Cloud Sourcing.

  2. PERIODIC SIGNALS IN BINARY MICROLENSING EVENTS

    International Nuclear Information System (INIS)

    Guo, Xinyi; Stefano, Rosanne Di; Esin, Ann; Taylor, Jeffrey

    2015-01-01

    Gravitational microlensing events are powerful tools for the study of stellar populations. In particular, they can be used to discover and study a variety of binary systems. A large number of binary lenses have already been found through microlensing surveys and a few of these systems show strong evidence of orbital motion on the timescale of the lensing event. We expect that more binary lenses of this kind will be detected in the future. For binaries whose orbital period is comparable to the event duration, the orbital motion can cause the lensing signal to deviate drastically from that of a static binary lens. The most striking property of such light curves is the presence of quasi-periodic features, which are produced as the source traverses the same regions in the rotating lens plane. These repeating features contain information about the orbital period of the lens. If this period can be extracted, then much can be learned about the lensing system even without performing time-consuming, detailed light-curve modeling. However, the relative transverse motion between the source and the lens significantly complicates the problem of period extraction. To resolve this difficulty, we present a modification of the standard Lomb–Scargle periodogram analysis. We test our method for four representative binary lens systems and demonstrate its efficiency in correctly extracting binary orbital periods

  3. Theory of dispersive microlenses

    Science.gov (United States)

    Herman, B.; Gal, George

    1993-01-01

    A dispersive microlens is a miniature optical element which simultaneously focuses and disperses light. Arrays of dispersive mircolenses have potential applications in multicolor focal planes. They have a 100 percent optical fill factor and can focus light down to detectors of diffraction spot size, freeing up areas on the focal plane for on-chip analog signal processing. Use of dispersive microlenses allows inband color separation within a pixel and perfect scene registration. A dual-color separation has the potential for temperature discrimination. We discuss the design of dispersive microlenses and present sample results for efficient designs.

  4. Faint-Source-Star Planetary Microlensing: The Discovery of the Cold Gas-Giant Planet OGLE-2014-BLG-0676Lb

    Science.gov (United States)

    Rattenbury, N. J.; Bennett, D. P.; Sumi, T.; Koshimoto, N.; Bond, I. A.; Udalski, A.; Shvartzvald, Y.; Maoz, D.; Jorgensen, U. G.; Barry, R.; hide

    2016-01-01

    We report the discovery of a planet OGLE-2014-BLG-0676Lb via gravitational microlensing. Observations for the lensing event were made by the following groups: Microlensing Observations in Astrophysics; Optical Gravitational Lensing Experiment; Wise Observatory; RoboNETLas Cumbres Observatory Global Telescope; Microlensing Network for the Detection of Small Terrestrial Exoplanets; and -FUN. All analyses of the light-curve data favoura lens system comprising a planetary mass orbiting a host star. The most-favoured binary lens model has a mass ratio between the two lens masses of (4.78 +/- 0.13) 10(exp -3). Subject to some important assumptions, a Bayesian probability density analysis suggests the lens system comprises a 3.09(+1.02/-1.12) MJ planet orbiting a 0.62(+0.20/-0.22) solar mass host star at a deprojected orbital separation of 4.40(+2.16/-1.46) au. The distance to the lens system is 2.22(+0.96/-0.83) kpc. Planet OGLE-2014-BLG-0676Lb provides additional data to the growing number of cool planets discover redusing gravitational microlensing against which planetary formation theories may be tested. Most of the light in the baseline of this event is expected to come from the lens and thus high-resolution imaging observations could confirm our planetary model interpretation.

  5. Spectroscopic Characterisation of Microlensing Events: Towards a New Interpretation of OGLE-2011-BLG-0417

    Science.gov (United States)

    Santerne, A.; Beaulieu, J.-P.; Rojas Ayala, B.; Boisse, I.; Schlawin, E.; Almenara, J.-M.; Batista, V.; Bennett, D.; Diaz, R. F.; Figueira, P.; hide

    2016-01-01

    The microlensing event OGLE-2011-BLG-0417 is an exceptionally bright lens binary that was predicted to present radial velocity variation at the level of several km s1. Pioneer radial velocity follow-up observations with the UVES spectrograph at the ESOVLT of this system clearly ruled out the large radial velocity variation, leaving a discrepancy between the observation and the prediction. In this paper, we further characterise the microlensing system by analysing its spectral energy distribution (SED) derived using the UVES spectrum and new observations with the ARCoIRIS (CTIO) near-infrared spectrograph and the Keck adaptive optics instrumentNIRC2 in the J, H, and Ks-bands. We determine the mass and distance of the stars independently from the microlensing modelling. We find that the SED is compatible with a giant star in the Galactic bulge and a foreground star with a mass of 0.94 +/- 0.09 M solar mass at a distance of 1.07 +/- 0.24 kpc. We find that this foreground star is likely the lens. Its parameters are not compatible with the onespreviously reported in the literature (0.52 +/- 0.04 M solar mass at 0.95 +/- 0.06 kpc), based on the microlensing light curve. A thoughtful reanalysis of the microlensing event is mandatory to fully understand the reason of this new discrepancy. More importantly, this paper demonstrates that spectroscopic follow-up observations of microlensing events are possible and provide independent constraints on the parameters of the lens and source stars, hence breaking some degeneracies in the analysis. UV-to-NIR low-resolution spectrographs like X-shooter (ESOVLT) could substantially contribute to this follow-up efforts, with magnitude limits above all microlensing events detected so far.

  6. Microlensing by multiple planets in high-magnification events

    NARCIS (Netherlands)

    Gaudi, BS; Sackett, PD

    1998-01-01

    Microlensing is increasingly gaining recognition as a powerful method for the detection and characterization of extrasolar planetary systems. Naively, one might expect that the probability of detecting the influence of more than one planet on any single microlensing light curve would be small.

  7. Space based microlensing planet searches

    Directory of Open Access Journals (Sweden)

    Tisserand Patrick

    2013-04-01

    Full Text Available The discovery of extra-solar planets is arguably the most exciting development in astrophysics during the past 15 years, rivalled only by the detection of dark energy. Two projects unite the communities of exoplanet scientists and cosmologists: the proposed ESA M class mission EUCLID and the large space mission WFIRST, top ranked by the Astronomy 2010 Decadal Survey report. The later states that: “Space-based microlensing is the optimal approach to providing a true statistical census of planetary systems in the Galaxy, over a range of likely semi-major axes”. They also add: “This census, combined with that made by the Kepler mission, will determine how common Earth-like planets are over a wide range of orbital parameters”. We will present a status report of the results obtained by microlensing on exoplanets and the new objectives of the next generation of ground based wide field imager networks. We will finally discuss the fantastic prospect offered by space based microlensing at the horizon 2020–2025.

  8. Application of tot’hema eosin sensitized gelatin film for adaptive microlenses

    Directory of Open Access Journals (Sweden)

    Murić Branka D.

    2017-01-01

    Full Text Available In this paper we showed that tot’hema eosin sensitized gelatin (TESG film can be used for adaptive microlenses fabriacation. The mechanical properties of a pure gelatin film were improved by adding tot’hema solution. We found that the elasticity of TESG film depend on the tot’hema concentration. By stretching the film, the microlenses were deformed uniaxially, and microlenses focal length can be tuned. The achieved microlenses focal lengths range from 0.05 to 0.2 mm.

  9. Open Source Cloud-Based Technologies for Bim

    Science.gov (United States)

    Logothetis, S.; Karachaliou, E.; Valari, E.; Stylianidis, E.

    2018-05-01

    This paper presents a Cloud-based open source system for storing and processing data from a 3D survey approach. More specifically, we provide an online service for viewing, storing and analysing BIM. Cloud technologies were used to develop a web interface as a BIM data centre, which can handle large BIM data using a server. The server can be accessed by many users through various electronic devices anytime and anywhere so they can view online 3D models using browsers. Nowadays, the Cloud computing is engaged progressively in facilitating BIM-based collaboration between the multiple stakeholders and disciplinary groups for complicated Architectural, Engineering and Construction (AEC) projects. Besides, the development of Open Source Software (OSS) has been rapidly growing and their use tends to be united. Although BIM and Cloud technologies are extensively known and used, there is a lack of integrated open source Cloud-based platforms able to support all stages of BIM processes. The present research aims to create an open source Cloud-based BIM system that is able to handle geospatial data. In this effort, only open source tools will be used; from the starting point of creating the 3D model with FreeCAD to its online presentation through BIMserver. Python plug-ins will be developed to link the two software which will be distributed and freely available to a large community of professional for their use. The research work will be completed by benchmarking four Cloud-based BIM systems: Autodesk BIM 360, BIMserver, Graphisoft BIMcloud and Onuma System, which present remarkable results.

  10. OPEN SOURCE CLOUD-BASED TECHNOLOGIES FOR BIM

    Directory of Open Access Journals (Sweden)

    S. Logothetis

    2018-05-01

    Full Text Available This paper presents a Cloud-based open source system for storing and processing data from a 3D survey approach. More specifically, we provide an online service for viewing, storing and analysing BIM. Cloud technologies were used to develop a web interface as a BIM data centre, which can handle large BIM data using a server. The server can be accessed by many users through various electronic devices anytime and anywhere so they can view online 3D models using browsers. Nowadays, the Cloud computing is engaged progressively in facilitating BIM-based collaboration between the multiple stakeholders and disciplinary groups for complicated Architectural, Engineering and Construction (AEC projects. Besides, the development of Open Source Software (OSS has been rapidly growing and their use tends to be united. Although BIM and Cloud technologies are extensively known and used, there is a lack of integrated open source Cloud-based platforms able to support all stages of BIM processes. The present research aims to create an open source Cloud-based BIM system that is able to handle geospatial data. In this effort, only open source tools will be used; from the starting point of creating the 3D model with FreeCAD to its online presentation through BIMserver. Python plug-ins will be developed to link the two software which will be distributed and freely available to a large community of professional for their use. The research work will be completed by benchmarking four Cloud-based BIM systems: Autodesk BIM 360, BIMserver, Graphisoft BIMcloud and Onuma System, which present remarkable results.

  11. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. I. Methodology

    International Nuclear Information System (INIS)

    Clanton, Christian; Gaudi, B. Scott

    2014-01-01

    Motivated by the order of magnitude difference in the frequency of giant planets orbiting M dwarfs inferred by microlensing and radial velocity (RV) surveys, we present a method for comparing the statistical constraints on exoplanet demographics inferred from these methods. We first derive the mapping from the observable parameters of a microlensing-detected planet to those of an analogous planet orbiting an RV-monitored star. Using this mapping, we predict the distribution of RV observables for the planet population inferred from microlensing surveys, taking care to adopt reasonable priors for, and properly marginalize over, the unknown physical parameters of microlensing-detected systems. Finally, we use simple estimates of the detection limits for a fiducial RV survey to predict the number and properties of analogs of the microlensing planet population such an RV survey should detect. We find that RV and microlensing surveys have some overlap, specifically for super-Jupiter mass planets (m p ≳ 1 M Jup ) with periods between ∼3-10 yr. However, the steeply falling planetary mass function inferred from microlensing implies that, in this region of overlap, RV surveys should infer a much smaller frequency than the overall giant planet frequency (m p ≳ 0.1 M Jup ) inferred by microlensing. Our analysis demonstrates that it is possible to statistically compare and synthesize data sets from multiple exoplanet detection techniques in order to infer exoplanet demographics over wider regions of parameter space than are accessible to individual methods. In a companion paper, we apply our methodology to several representative microlensing and RV surveys to derive the frequency of planets around M dwarfs with orbits of ≲ 30 yr.

  12. Free-floating planets from microlensing

    Science.gov (United States)

    Sumi, Takahiro

    2014-06-01

    Gravitational microlensing has an unique sensitivity to exoplanets at outside of the snow-line and even exoplanets unbound to any host stars because the technique does not rely on any light from the host but the gravity of the lens. MOA and OGLE collaborations reported the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice (1.8_{-0.8}^{+1.7}) as common as main-sequence stars, based on two years of gravitational microlensing survey observations toward the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. The such short-timescale unbound planetary candidates have been detected with the similar rate in on-going observations and these groups are working to update the analysis with larger statistics. Recently, there are also discoveries of free-floating planetary mass objects by the direct imaging in young star-forming regions and in the moving groups, but these objects are limited to massive objects of 3 to 15 Jupiter masses.They are more massive than the population found by microlensing. So they may be a different population with the different formation process, either similar with that of stars and brown dwarfs, or formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits. It is important to fill the gap of these mass ranges to fully understand these populations. The Wide Field Infrared Survey Telescope (WFIRST) is the highest ranked recommendation for a large space mission in the recent New Worlds, New Horizons (NWNH) in Astronomy and Astrophysics 2010 Decadal Survey. Exoplanet microlensing program is one of the primary science of WFIRST. WFIRST will find about 3000 bound planets and 2000 unbound planets by the high precision continuous survey 15 min

  13. Limits on the Mass and Abundance of Primordial Black Holes from Quasar Gravitational Microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Mediavilla, E. [Instituto de Astrofísica de Canarias, Vía Láctea S/N, La Laguna E-38200, Tenerife (Spain); Jiménez-Vicente, J.; Calderón-Infante, J. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada (Spain); Muñoz, J. A.; Vives-Arias, H. [Departamento de Astronomía y Astrofísica, Universidad de Valencia, E-46100 Burjassot, Valencia (Spain)

    2017-02-20

    The idea that dark matter can be made of intermediate-mass primordial black holes (PBHs) in the 10 M {sub ⊙} ≲ M ≲ 200 M {sub ⊙} range has recently been reconsidered, particularly in the light of the detection of gravitational waves by the LIGO experiment. The existence of even a small fraction of dark matter in black holes should nevertheless result in noticeable quasar gravitational microlensing. Quasar microlensing is sensitive to any type of compact objects in the lens galaxy, to their abundance, and to their mass. We have analyzed optical and X-ray microlensing data from 24 gravitationally lensed quasars to estimate the abundance of compact objects in a very wide range of masses. We conclude that the fraction of mass in black holes or any type of compact objects is negligible outside of the 0.05 M {sub ⊙} ≲ M ≲ 0.45 M {sub ⊙} mass range and that it amounts to 20% ± 5% of the total matter, in agreement with the expected masses and abundances of the stellar component. Consequently, the existence of a significant population of intermediate-mass PBHs appears to be inconsistent with current microlensing observations. Therefore, primordial massive black holes are a very unlikely source of the gravitational radiation detected by LIGO.

  14. Candidate gravitational microlensing events for future direct lens imaging

    International Nuclear Information System (INIS)

    Henderson, C. B.; Gould, A.; Gaudi, B. S.; Park, H.; Han, C.; Sumi, T.; Koshimoto, N.; Udalski, A.; Tsapras, Y.; Bozza, V.; Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Bennett, D. P.; Bond, I. A.; Ling, C. H.; Botzler, C. S.; Freeman, M.; Fukui, A.

    2014-01-01

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ ≳ 8 mas yr –1 . Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In ≲12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.

  15. Candidate gravitational microlensing events for future direct lens imaging

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. B.; Gould, A.; Gaudi, B. S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Park, H.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Sumi, T.; Koshimoto, N. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Tsapras, Y. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Bozza, V. [Department of Physics, University of Salerno, I-84084 Fisciano (Italy); Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Bond, I. A.; Ling, C. H. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland 0745 (New Zealand); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Fukui, A. [School of Chemical and Physical Sciences, Victoria University, Wellington 6140 (New Zealand); Collaboration: MOA Collaboration; OGLE Collaboration; μFUN Collaboration; RoboNet Collaboration; and others

    2014-10-10

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ ≳ 8 mas yr{sup –1}. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In ≲12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.

  16. Structure formation and microlensing with axion miniclusters

    Science.gov (United States)

    Fairbairn, Malcolm; Marsh, David J. E.; Quevillon, Jérémie; Rozier, Simon

    2018-04-01

    If the symmetry breaking responsible for axion dark matter production occurs during the radiation-dominated epoch in the early Universe, then this produces large amplitude perturbations that collapse into dense objects known as axion miniclusters. The characteristic minicluster mass, M0, is set by the mass inside the horizon when axion oscillations begin. For the QCD axion M0˜10-10 M⊙, however, for an axionlike particle, M0 can approach M⊙ or higher. Using the Press-Schechter formalism we compute the mass function of halos formed by hierarchical structure formation from these seeds. We compute the concentrations and collapse times of these halos and show that they can grow to be as massive as 1 06M0. Within the halos, miniclusters likely remain tightly bound, and we compute their gravitational microlensing signal taking the fraction of axion dark matter collapsed into miniclusters, fMC, as a free parameter. A large value of fMC severely weakens constraints on axion scenarios from direct detection experiments. We take into account the non-Gaussian distribution of sizes of miniclusters and determine how this affects the number of microlensing events. We develop the tools to consider microlensing by an extended mass function of nonpointlike objects, and we use microlensing data to place the first observational constraints on fMC. This opens a new window for the potential discovery of the axion.

  17. Astrometric vs. photometric microlensing

    NARCIS (Netherlands)

    Dominik, M; Brainerd, TG; Kochanek, CS

    2001-01-01

    I discuss the differences between the properties of astrometric and photometric microlensing and between the arising prospects for survey and follow-up experiments based on these two different signatures. In particular, the prospects for binary stars and extra-solar planets are considered.

  18. The nature of parallax microlensing events towards the Galactic bulge

    NARCIS (Netherlands)

    Smith, MC; Belokurov, [No Value; Evans, NW; Mao, SD; An, JH

    2005-01-01

    Perhaps as many as 30 parallax microlensing events are known, thanks to the efforts of the Massive Compact Halo Object (MACHO), Optical Gravitational Lensing Experiment (OGLE), Experience pour la Recherche d'Objets Sombres (EROS) and Microlensing Observations in Astrophysics (MOA) experiments

  19. Application of Compressive Sensing to Gravitational Microlensing Experiments

    Science.gov (United States)

    Korde-Patel, Asmita; Barry, Richard K.; Mohsenin, Tinoosh

    2016-01-01

    Compressive Sensing is an emerging technology for data compression and simultaneous data acquisition. This is an enabling technique for significant reduction in data bandwidth, and transmission power and hence, can greatly benefit spaceflight instruments. We apply this process to detect exoplanets via gravitational microlensing. We experiment with various impact parameters that describe microlensing curves to determine the effectiveness and uncertainty caused by Compressive Sensing. Finally, we describe implications for spaceflight missions.

  20. Microlensing Binaries Discovered through High-magnification Channel

    DEFF Research Database (Denmark)

    Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.

    2012-01-01

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturba......Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010...

  1. Microlensing of quasar ultraviolet iron emission

    Energy Technology Data Exchange (ETDEWEB)

    Guerras, E.; Mediavilla, E. [Instituto de Astrofísica de Canarias, Vía Láctea S/N, La Laguna 38200, Tenerife (Spain); Jimenez-Vicente, J. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, 18071 Granada (Spain); Kochanek, C. S. [Department of Astronomy and the Center for Cosmology and Astroparticle Physics, The Ohio State University, 4055 McPherson Lab, 140 West 18th Avenue, Columbus, OH 43221 (United States); Muñoz, J. A. [Departamento de Astronomía y Astrofísica, Universidad de Valencia, 46100 Burjassot, Valencia (Spain); Falco, E. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Motta, V.; Rojas, K. [Departamento de Física y Astronomía, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Valparaíso (Chile)

    2013-12-01

    We measure the differential microlensing of the UV Fe II and Fe III emission line blends between 14 quasar image pairs in 13 gravitational lenses. We find that the UV iron emission is strongly microlensed in four cases with amplitudes comparable to that of the continuum. Statistically modeling the magnifications, we infer a typical size of r{sub s}∼4√(M/M{sub ⊙}) light-days for the Fe line-emitting regions, which is comparable to the size of the region generating the UV continuum (∼3-7 light-days). This may indicate that a significant part of the UV Fe II and Fe III emission originates in the quasar accretion disk.

  2. Liquid Crystal Microlenses for Autostereoscopic Displays

    Directory of Open Access Journals (Sweden)

    José Francisco Algorri

    2016-01-01

    Full Text Available Three-dimensional vision has acquired great importance in the audiovisual industry in the past ten years. Despite this, the first generation of autostereoscopic displays failed to generate enough consumer excitement. Some reasons are little 3D content and performance issues. For this reason, an exponential increase in three-dimensional vision research has occurred in the last few years. In this review, a study of the historical impact of the most important technologies has been performed. This study is carried out in terms of research manuscripts per year. The results reveal that research on spatial multiplexing technique is increasing considerably and today is the most studied. For this reason, the state of the art of this technique is presented. The use of microlenses seems to be the most successful method to obtain autostereoscopic vision. When they are fabricated with liquid crystal materials, extended capabilities are produced. Among the numerous techniques for manufacturing liquid crystal microlenses, this review covers the most viable designs for its use in autostereoscopic displays. For this reason, some of the most important topologies and their relation with autostereoscopic displays are presented. Finally, the challenges in some recent applications, such as portable devices, and the future of three-dimensional displays based on liquid crystal microlenses are outlined.

  3. Aerosol-Cloud Interactions During Puijo Cloud Experiments - The effects of weather and local sources

    Science.gov (United States)

    Komppula, Mika; Portin, Harri; Leskinen, Ari; Romakkaniemi, Sami; Brus, David; Neitola, Kimmo; Hyvärinen, Antti-Pekka; Kortelainen, Aki; Hao, Liqing; Miettinen, Pasi; Jaatinen, Antti; Ahmad, Irshad; Lihavainen, Heikki; Laaksonen, Ari; Lehtinen, Kari E. J.

    2013-04-01

    The Puijo measurement station has provided continuous data on aerosol-cloud interactions since 2006. The station is located on top of the Puijo observation tower (306 m a.s.l, 224 m above the surrounding lake level) in Kuopio, Finland. The top of the tower is covered by cloud about 15 % of the time, offering perfect conditions for studying aerosol-cloud interactions. With a twin-inlet setup (total and interstitial inlets) we are able to separate the activated particles from the interstitial (non-activated) particles. The continuous twin-inlet measurements include aerosol size distribution, scattering and absorption. In addition cloud droplet number and size distribution are measured continuously with weather parameters. During the campaigns the twin-inlet system was additionally equipped with aerosol mass spectrometer (AMS) and Single Particle Soot Photometer (SP-2). This way we were able to define the differences in chemical composition of the activated and non-activated particles. Potential cloud condensation nuclei (CCN) in different supersaturations were measured with two CCN counters (CCNC). The other CCNC was operated with a Differential Mobility Analyzer (DMA) to obtain size selected CCN spectra. Other additional measurements included Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) for particle hygroscopicity. Additionally the valuable vertical wind profiles (updraft velocities) are available from Halo Doppler lidar during the 2011 campaign. Cloud properties (droplet number and effective radius) from MODIS instrument onboard Terra and Aqua satellites were retrieved and compared with the measured values. This work summarizes the two latest intensive campaigns, Puijo Cloud Experiments (PuCE) 2010 & 2011. We study especially the effect of the local sources on the cloud activation behaviour of the aerosol particles. The main local sources include a paper mill, a heating plant, traffic and residential areas. The sources can be categorized and identified

  4. Measuring the Microlensing Parallax from Various Space Observatories

    Science.gov (United States)

    Bachelet, E.; Hinse, T. C.; Street, R.

    2018-05-01

    A few observational methods allow the measurement of the mass and distance of the lens-star for a microlensing event. A first estimate can be obtained by measuring the microlensing parallax effect produced by either the motion of the Earth (annual parallax) or the contemporaneous observation of the lensing event from two (or more) observatories (space or terrestrial parallax) sufficiently separated from each other. Further developing ideas originally outlined by Gould as well as Mogavero & Beaulieu, we review the possibility of measuring systematically the microlensing parallax using a telescope based on the Moon surface and other space-based observing platforms, including the upcoming WFIRST space-telescope. We first generalize the Fisher matrix formulation and present results demonstrating the advantage for each observing scenario. We conclude by outlining the limitation of the Fisher matrix analysis when submitted to a practical data modeling process. By considering a lunar-based parallax observation, we find that parameter correlations introduce a significant loss in detection efficiency of the probed lunar parallax effect.

  5. Primordial black hole detection through diffractive microlensing

    Science.gov (United States)

    Naderi, T.; Mehrabi, A.; Rahvar, S.

    2018-05-01

    Recent observations of gravitational waves motivate investigations for the existence of primordial black holes (PBHs). We propose the observation of gravitational microlensing of distant quasars for the range of infrared to the submillimeter wavelengths by sublunar PBHs as lenses. The advantage of observations in the longer wavelengths, comparable to the Schwarzschild radius of the lens (i.e., Rsch≃λ ) is the detection of the wave optics features of the gravitational microlensing. The observation of diffraction pattern in the microlensing light curve of a quasar can break the degeneracy between the lens parameters and determine directly the lens mass as well as the distance of the lens from the observer. We estimate the wave optics optical-depth, also calculate the rate of ˜0.1 to ˜0.3 event per year per a quasar, assuming that hundred percent of dark matter is made of sublunar PBHs. Also, we propose a long-term survey of quasars with the cadence of almost one hour to few days to resolve the wave optics features of the light curves to discover PBHs and determine the fraction of dark matter made of sublunar PBHs as well as their mass function.

  6. Eucalyptus: an open-source cloud computing infrastructure

    International Nuclear Information System (INIS)

    Nurmi, Daniel; Wolski, Rich; Grzegorczyk, Chris; Obertelli, Graziano; Soman, Sunil; Youseff, Lamia; Zagorodnov, Dmitrii

    2009-01-01

    Utility computing, elastic computing, and cloud computing are all terms that refer to the concept of dynamically provisioning processing time and storage space from a ubiquitous 'cloud' of computational resources. Such systems allow users to acquire and release the resources on demand and provide ready access to data from processing elements, while relegating the physical location and exact parameters of the resources. Over the past few years, such systems have become increasingly popular, but nearly all current cloud computing offerings are either proprietary or depend upon software infrastructure that is invisible to the research community. In this work, we present Eucalyptus, an open-source software implementation of cloud computing that utilizes compute resources that are typically available to researchers, such as clusters and workstation farms. In order to foster community research exploration of cloud computing systems, the design of Eucalyptus emphasizes modularity, allowing researchers to experiment with their own security, scalability, scheduling, and interface implementations. In this paper, we outline the design of Eucalyptus, describe our own implementations of the modular system components, and provide results from experiments that measure performance and scalability of a Eucalyptus installation currently deployed for public use. The main contribution of our work is the presentation of the first research-oriented open-source cloud computing system focused on enabling methodical investigations into the programming, administration, and deployment of systems exploring this novel distributed computing model.

  7. AGAPEROS Searches for microlensing in the LMC with the Pixel Method; 1, Data treatment and pixel light curves production

    CERN Document Server

    Melchior, A.-L.; Ansari, R.; Aubourg, E.; Baillon, P.; Bareyre, P.; Bauer, F.; Beaulieu, J.-Ph.; Bouquet, A.; Brehin, S.; Cavalier, F.; Char, S.; Couchot, F.; Coutures, C.; Ferlet, R.; Fernandez, J.; Gaucherel, C.; Giraud-Heraud, Y.; Glicenstein, J.-F.; Goldman, B.; Gondolo, P.; Gros, M.; Guibert, J.; Gry, C.; Hardin, D.; Kaplan, J.; de Kat, J.; Lachieze-Rey, M.; Laurent, B.; Lesquoy, E.; Magneville, Ch.; Mansoux, B.; Marquette, J.-B.; Maurice, E.; Milsztajn, A.; Moniez, M.; Moreau, O.; Moscoso, L.; Palanque-Delabrouille, N.; Perdereau, O.; Prevot, L.; Renault, C.; Queinnec, F.; Rich, J.; Spiro, M.; Vigroux, L.; Zylberajch, S.; Vidal-Madjar, A.; Magneville, Ch.

    1999-01-01

    The presence and abundance of MAssive Compact Halo Objects (MACHOs) towards the Large Magellanic Cloud (LMC) can be studied with microlensing searches. The 10 events detected by the EROS and MACHO groups suggest that objects with 0.5 Mo could fill 50% of the dark halo. This preferred mass is quite surprising, and increasing the presently small statistics is a crucial issue. Additional microlensing of stars too dim to be resolved in crowded fields should be detectable using the Pixel Method. We present here an application of this method to the EROS 91-92 data (one tenth of the whole existing data set). We emphasize the data treatment required for monitoring pixel fluxes. Geometric and photometric alignments are performed on each image. Seeing correction and error estimates are discussed. 3.6" x 3.6" super-pixel light curves, thus produced, are very stable over the 120 days time-span. Fluctuations at a level of 1.8% of the flux in blue and 1.3% in red are measured on the pixel light curves. This level of stabil...

  8. WFIRST: The Exoplanet Microlensing Survey Tells Us Where We Can Find the Cool Planets

    Science.gov (United States)

    Bennett, David; Gaudi, B. Scott; WFIRST Microlensing Science Investigation Team

    2018-01-01

    The WFIRST Exoplanet microlensing survey will complete a demographic survey of all types of planets ranging from ~0.5 AU to planets that have become unbound from the stellar systems of their birth. WFIRST's sensitivity extends down below the mass of Mars (or 0.1 Earth masses,and it is sensitive to analogs of all the planets in the Solar System, except for Mercury. When combined with Kepler's statistical census of hot and warm planets in short period orbits, WFIRST's exoplanet microlensing survey will give us a complete picture the mass and separation distribution of all types of planets. The current plans for this survey are presented, and recent developments relating to the WFIRST exoplanet microlensing survey will be presented, including recent ground-based microlensing results that challenge current theories of planet formation. Opportunities for community involvement in the WFIRST exoplanet microlensing survey will be mentioned.

  9. WFIRST Microlensing Exoplanet Characterization with HST Follow up

    Science.gov (United States)

    Bhattacharya, Aparna; David Bennett, Jay Anderson, J.P. Beaulieu.

    2018-01-01

    More than 50 planets are discovered with the different ground based telescopes available for microlensing. But the analysis of ground based data fails to provide a complete solution. To fulfill that gap, space based telescopes, like Hubble space telescope and Spitzer are used. My research work focuses on extracting the planet mass, host star mass, their separation and their distance in physical units from HST Follow-up observations. I will present the challenges faced in developing this method.This is the primary method to be used for NASA's top priority project (according to 2010 decadal survey) Wide Field InfraRed Survey Telescope (WFIRST) Exoplanet microlensing space observatory, to be launched in 2025. The unique ability of microlensing is that with WFIRST it can detect sub-earth- mass planets beyond the reach of Kepler at separation 1 AU to infinity. This will provide us the necessary statistics to study the formation and evolution of planetary systems. This will also provide us with necessary initial conditions to model the formation of planets and the habitable zones around M dwarf stars.

  10. OGLE-III MICROLENSING EVENTS AND THE STRUCTURE OF THE GALACTIC BULGE

    Energy Technology Data Exchange (ETDEWEB)

    Wyrzykowski, Łukasz; Rynkiewicz, Alicja E.; Skowron, Jan; Kozłowski, Szymon; Udalski, Andrzej; Szymański, Michał K.; Kubiak, Marcin; Soszyński, Igor; Pietrzyński, Grzegorz; Poleski, Radosław; Pietrukowicz, Paweł; Pawlak, Michał, E-mail: lw@astrouw.edu.pl [Warsaw University Astronomical Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland)

    2015-01-01

    We present and study the largest and most comprehensive catalog of microlensing events ever constructed. The sample of standard microlensing events comprises 3718 unique events from 2001-2009 with 1409 events that had not been detected before in real-time by the Early Warning System of the Optical Gravitational Lensing Experiment. The search pipeline uses machine learning algorithms to help find rare phenomena among 150 million objects and to derive the detection efficiency. Applications of the catalog can be numerous, from analyzing individual events to large statistical studies of the Galactic mass, kinematics distributions, and planetary abundances. We derive maps of the mean Einstein ring crossing time of events spanning 31 deg{sup 2} toward the Galactic center and compare the observed distributions with the most recent models. We find good agreement within the observed region and we see the signature of the tilt of the bar in the microlensing data. However, the asymmetry of the mean timescales seems to rise more steeply than predicted, indicating either a somewhat different orientation of the bar or a larger bar width. The map of events with sources in the Galactic bulge shows a dependence of the mean timescale on the Galactic latitude, signaling an increasing contribution from disk lenses closer to the plane relative to the height of the disk. Our data present a perfect set for comparing and enhancing new models of the central parts of the Milky Way and creating a three-dimensional picture of the Galaxy.

  11. Microlensing observations rapid search for exoplanets: MORSE code for GPUs

    Science.gov (United States)

    McDougall, Alistair; Albrow, Michael D.

    2016-02-01

    The rapid analysis of ongoing gravitational microlensing events has been integral to the successful detection and characterization of cool planets orbiting low-mass stars in the Galaxy. In this paper, we present an implementation of search and fit techniques on graphical processing unit (GPU) hardware. The method allows for the rapid identification of candidate planetary microlensing events and their subsequent follow-up for detailed characterization.

  12. Eucalyptus: an open-source cloud computing infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Nurmi, Daniel; Wolski, Rich; Grzegorczyk, Chris; Obertelli, Graziano; Soman, Sunil; Youseff, Lamia; Zagorodnov, Dmitrii, E-mail: rich@cs.ucsb.ed [Computer Science Department, University of California, Santa Barbara, CA 93106 (United States) and Eucalyptus Systems Inc., 130 Castilian Dr., Goleta, CA 93117 (United States)

    2009-07-01

    Utility computing, elastic computing, and cloud computing are all terms that refer to the concept of dynamically provisioning processing time and storage space from a ubiquitous 'cloud' of computational resources. Such systems allow users to acquire and release the resources on demand and provide ready access to data from processing elements, while relegating the physical location and exact parameters of the resources. Over the past few years, such systems have become increasingly popular, but nearly all current cloud computing offerings are either proprietary or depend upon software infrastructure that is invisible to the research community. In this work, we present Eucalyptus, an open-source software implementation of cloud computing that utilizes compute resources that are typically available to researchers, such as clusters and workstation farms. In order to foster community research exploration of cloud computing systems, the design of Eucalyptus emphasizes modularity, allowing researchers to experiment with their own security, scalability, scheduling, and interface implementations. In this paper, we outline the design of Eucalyptus, describe our own implementations of the modular system components, and provide results from experiments that measure performance and scalability of a Eucalyptus installation currently deployed for public use. The main contribution of our work is the presentation of the first research-oriented open-source cloud computing system focused on enabling methodical investigations into the programming, administration, and deployment of systems exploring this novel distributed computing model.

  13. Measurement of the abundance of stellar mass compact objects in the galactic halo by detecting micro-lenses in the Large Magellanic Cloud; Mesure de l'abondance des astres sombres de masse stellaire dans le halo galactique par la recherche de phenomenes de microlentilles vers les nuages de magellan

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Th

    2000-05-09

    Many experimental and theoretical results lead to the conclusion that at least 80 percent of the mass of our Galaxy is dark. Part of this so-called dark matter could be in the form of stellar mass compact objects, called MACHOS; these could be detected using the gravitational microlensing effect. The first generation experiments EROS1 and MACHO have strongly constrained the galactic abundance of objects lighter than 0.01 solar mass to less than 10 percent of the total mass. In parallel, the observation by the MACHO group of massive candidates (half the Sun's mass), numerous enough to constitute 50 percent of galactic dark matter, was a further motivation for the EROS group to extend this search to stellar mass objects in a second phase, EROS2. The present work deals with the analysis of 25 million stellar light curves in the Large Magellanic Cloud, observed for three years in order to extract the rare microlensing candidates and to measure the galactic halo mass fraction in the form of compact objects. After recalling the motivations of this search and the theoretical context, I describe the EROS2 experiment. The observational strategy and the photometric reduction procedures needed to deal with the 1.2 To of data are then presented. A new method to detect micro-lenses is detailed, as well as a discussion of background light curves, poorly known. We do not find enough microlensing candidates to explain the galactic rotation curve; this confirms, and improve on previous EROS1 and EROS2 results. Combining all results from EROS allows to exclude that MACHOS with a mass between 10 e-7 and 10 solar mass are important constituents of the galactic halo. This statement agrees with recent results from the MACHO group, although our interpretations differ, namely on the topics of the location of the lenses, and of a possible contamination of the microlensing ample by background phenomena. (author)

  14. Probing the gravitational Faraday rotation using quasar X-ray microlensing.

    Science.gov (United States)

    Chen, Bin

    2015-11-17

    The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission.

  15. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. Detailed abundance analysis of OGLE-2008-BLG-209S

    OpenAIRE

    Bensby, T.; Johnson, J. A.; Cohen, J.; Feltzing, S.; Udalski, A.; Gould, A.; Huang, W.; Thompson, I.; Simmerer, J.; Adén, D.

    2009-01-01

    AIMS. Our aims are twofold. First we aim to evaluate the robustness and accuracy of stellar parameters and detailed elemental abundances that can be derived from high-resolution spectroscopic observations of microlensed dwarf and subgiant stars. We then aim to use microlensed dwarf and subgiant stars to investigate the abundance structure and chemical evolution of the Milky Way Bulge. [ABRIDGED] METHODS. We present a detailed elemental abundance analysis of OGLE-2008-BLG-209S, the source star...

  16. Simulations of the Fe K α Energy Spectra from Gravitationally Microlensed Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Krawczynski, H. [Physics Department and McDonnell Center for the Space Sciences, Washington University in St. Louis, 1 Brookings Drive, CB 1105, St. Louis, MO 63130 (United States); Chartas, G., E-mail: krawcz@wustl.edu [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States)

    2017-07-10

    The analysis of the Chandra X-ray observations of the gravitationally lensed quasar RX J1131−1231 revealed the detection of multiple and energy-variable spectral peaks. The spectral variability is thought to result from the microlensing of the Fe K α emission, selectively amplifying the emission from certain regions of the accretion disk with certain effective frequency shifts of the Fe K α line emission. In this paper, we combine detailed simulations of the emission of Fe K α photons from the accretion disk of a Kerr black hole with calculations of the effect of gravitational microlensing on the observed energy spectra. The simulations show that microlensing can indeed produce multiply peaked energy spectra. We explore the dependence of the spectral characteristics on black hole spin, accretion disk inclination, corona height, and microlensing amplification factor and show that the measurements can be used to constrain these parameters. We find that the range of observed spectral peak energies of QSO RX J1131−1231 can only be reproduced for black hole inclinations exceeding 70° and for lamppost corona heights of less than 30 gravitational radii above the black hole. We conclude by emphasizing the scientific potential of studies of the microlensed Fe K α quasar emission and the need for more detailed modeling that explores how the results change for more realistic accretion disk and corona geometries and microlensing magnification patterns. A full analysis should furthermore model the signal-to-noise ratio of the observations and the resulting detection biases.

  17. Designing Fresnel microlenses for focusing astigmatic multi-Gaussian beams by using fractional order Fourier transforms

    International Nuclear Information System (INIS)

    Patino, A; Durand, P-E; Fogret, E; Pellat-Finet, P

    2011-01-01

    According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.

  18. Discovery of a Jupiter/Saturn analog with gravitational microlensing.

    Science.gov (United States)

    Gaudi, B S; Bennett, D P; Udalski, A; Gould, A; Christie, G W; Maoz, D; Dong, S; McCormick, J; Szymanski, M K; Tristram, P J; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; Depoy, D L; Han, C; Kaspi, S; Lee, C-U; Mallia, F; Natusch, T; Pogge, R W; Park, B-G; Abe, F; Bond, I A; Botzler, C S; Fukui, A; Hearnshaw, J B; Itow, Y; Kamiya, K; Korpela, A V; Kilmartin, P M; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N J; Sako, T; Saito, To; Sato, S; Skuljan, L; Sullivan, D J; Sumi, T; Sweatman, W L; Yock, P C M; Albrow, M D; Allan, A; Beaulieu, J-P; Burgdorf, M J; Cook, K H; Coutures, C; Dominik, M; Dieters, S; Fouqué, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; Macintosh, B

    2008-02-15

    Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.

  19. Probing Extragalactic Planets Using Quasar Microlensing

    Science.gov (United States)

    Dai, Xinyu; Guerras, Eduardo

    2018-02-01

    Previously, planets have been detected only in the Milky Way galaxy. Here, we show that quasar microlensing provides a means to probe extragalactic planets in the lens galaxy, by studying the microlensing properties of emission close to the event horizon of the supermassive black hole of the background quasar, using the current generation telescopes. We show that a population of unbound planets between stars with masses ranging from Moon to Jupiter masses is needed to explain the frequent Fe Kα line energy shifts observed in the gravitationally lensed quasar RXJ 1131–1231 at a lens redshift of z = 0.295 or 3.8 billion lt-yr away. We constrain the planet mass-fraction to be larger than 0.0001 of the halo mass, which is equivalent to 2000 objects ranging from Moon to Jupiter mass per main-sequence star.

  20. Strong chromatic microlensing in HE0047–1756 and SDSS1155+6346

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, K.; Motta, V. [Instituto de Física y Astronomía, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Playa Ancha, Valparaíso 2360102 (Chile); Mediavilla, E. [Instituto de Astrofísica de Canarias, Avda. Vía Lactea s/n, La Laguna, E-38200 Tenerife (Spain); Falco, E. [Whipple Observatory, Smithsonian Institution, 670 Mt. Hopkins Road, PO Box 6369, Amado, AZ 85645 (United States); Jiménez-Vicente, J. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada (Spain); Muñoz, J. A., E-mail: karina.rojas@uv.cl, E-mail: veronica.motta@uv.cl, E-mail: emg@iac.es, E-mail: falco@cfa.harvard.edu, E-mail: jjimenez@ugr.es, E-mail: jmunoz@uv.es [Departamento de Astronomía y Astrofísica, Universidad de Valencia, Burjassot, E-46100 Valencia (Spain)

    2014-12-10

    We use spectra of the double-lensed quasars HE0047–1756 and SDSS1155+6346 to study their unresolved structure through the impact of microlensing. There is no significant evidence of microlensing in the emission line profiles except for the Lyα line of SDSS1155+6346, which shows strong differences in the shapes for images A and B. However, the continuum of the B image spectrum in SDSS1155+6346 is strongly contaminated by the lens galaxy, and these differences should be considered with caution. Using the flux ratios of the emission lines for image pairs as a baseline to remove macro-magnification and extinction, we have detected strong chromatic microlensing in the continuum measured by CASTLES (www.cfa.harvard.edu/castles/) in both lens systems, with amplitudes 0.09(λ16000) ≲ |Δm| ≲ 0.8(λ5439) for HE0047–1756, and 0.2(λ16000) ≲ |Δm| ≲ 0.8(λ5439) for SDSS1155+6346. Using magnification maps to simulate microlensing and modeling the accretion disk as a Gaussian source (I ∝ exp(–R {sup 2}/2r {sub s}{sup 2})) of size r {sub s} ∝ λ {sup p}, we find r {sub s} = 2.5{sub −1.4}{sup +3.0} √(M/0.3M{sub ⊙}) lt-day and p = 2.3 ± 0.8 at the rest frame for λ = 2045 for HE0047–1756 (log prior) and r {sub s} = 5.5{sub −3.3}{sup +8.2} √(M/0.3M{sub ⊙}) lt-day and p = 1.5 ± 0.6 at the rest frame of λ = 1398 for SDSS1155+6346 (log prior). Contrary to other studied lens systems, the chromaticity detected in HE0047–1756 and SDSS1155+6346 is large enough to fulfill the thin disk prediction. The inferred sizes, however, are very large compared to the predictions of this model, especially in the case of SDSS1155+6346.

  1. KMTNet: A Cold Exoplanet Census Through a Global Microlensing Survey

    Science.gov (United States)

    Henderson, Calen B.; Gaudi, B. Scott; Han, Cheongho; Nataf, David; Skowron, Jan; Penny, Matthew; Gould, Andrew

    2015-01-01

    The unique sensitivity of gravitational microlensing to low-mass planets near and beyond the snow line makes it an indispensable tool for understanding the distribution and formation mechanisms of exoplanets. The Korean Microlensing Telescope Network (KMTNet) consists of three 1.6m telescopes each with a 4 deg2 field of view and will be dedicated to monitoring the Galactic Bulge in order to detect exoplanets via gravitational microlensing. With its relatively large aperture, large field of view, high (~10-minute) cadence, and near-complete longitudinal coverage of the Galactic Bulge for 8 months a year, KMTNet is expected to increase the the annual detection rate of exoplanets via microlensing by a factor of ~5 over current surveys, pushing down to the mass of Earth for bound and unbound planets. I will summarize the predicted yields of KMTNet's survey based on detailed simulations, highlighting its sensitivity to low-mass planets and its expected haul of free-floating planets. I will also describe the prospects for characterization of the exoplanetary systems KMTNet will detect, focusing on the variety of techniques current and future high-resolution facilities such as VLT, GMT, and JWST can use to measure the flux from the host stars and ultimately derive planet masses.

  2. The chemical evolution of the Galactic Bulge seen through micro-lensing events

    Directory of Open Access Journals (Sweden)

    Lucatello S.

    2012-02-01

    Full Text Available Galactic bulges are central to understanding galaxy formation and evolution. Here we report on recent studies using micro-lensing events to obtain spectra of high resolution and moderately high signal-to-noise ratios of dwarf stars in the Galactic bulge. Normally this is not feasible for the faint turn-off stars in the Galactic bulge, but micro-lensing offers this possibility. Elemental abundance trends in the Galactic bulge as traced by dwarf stars are very similar to those seen for dwarf stars in the solar neighbourhood. We discuss the implications of the ages and metallicity distribution function derived for the micro-lensed dwarf stars in the Galactic bulge.

  3. MICROLENSING OF QUASAR BROAD EMISSION LINES: CONSTRAINTS ON BROAD LINE REGION SIZE

    Energy Technology Data Exchange (ETDEWEB)

    Guerras, E.; Mediavilla, E. [Instituto de Astrofisica de Canarias, Via Lactea S/N, La Laguna E-38200, Tenerife (Spain); Jimenez-Vicente, J. [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada (Spain); Kochanek, C. S. [Department of Astronomy and the Center for Cosmology and Astroparticle Physics, The Ohio State University, 4055 McPherson Lab, 140 West 18th Avenue, Columbus, OH 43221 (United States); Munoz, J. A. [Departamento de Astronomia y Astrofisica, Universidad de Valencia, E-46100 Burjassot, Valencia (Spain); Falco, E. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Motta, V. [Departamento de Fisica y Astronomia, Universidad de Valparaiso, Avda. Gran Bretana 1111, Valparaiso (Chile)

    2013-02-20

    We measure the differential microlensing of the broad emission lines between 18 quasar image pairs in 16 gravitational lenses. We find that the broad emission lines are in general weakly microlensed. The results show, at a modest level of confidence (1.8{sigma}), that high ionization lines such as C IV are more strongly microlensed than low ionization lines such as H{beta}, indicating that the high ionization line emission regions are more compact. If we statistically model the distribution of microlensing magnifications, we obtain estimates for the broad line region size of r{sub s} = 24{sup +22} {sub -15} and r{sub s} = 55{sup +150} {sub -35} lt-day (90% confidence) for the high and low ionization lines, respectively. When the samples are divided into higher and lower luminosity quasars, we find that the line emission regions of more luminous quasars are larger, with a slope consistent with the expected scaling from photoionization models. Our estimates also agree well with the results from local reveberation mapping studies.

  4. Integration of polystyrene microlenses with both convex and concave profiles in a polymer-based microfluidic system

    KAUST Repository

    Fan, Yiqiang

    2013-12-20

    This paper reports a new technique of fabricating polystyrene microlenses with both convex and concave profiles that are integrated in polymer-based microfluidic system. The polystyrene microlenses, or microlens array, are fabricated using the free-surface thermal compression molding method. The laser fabricated poly(methyl methacrylate) (PMMA) sheet is used as the mold for the thermal compression molding process. With different surface treatment methods of the PMMA mold, microlenses with either convex or concave profiles could be achieved during the thermal molding process. By integrating the microlenses in the microfluidic systems, observing the flow inside the microchannels is easier. This new technique is rapid, low cost, and it does not require cleanroom facilities. Microlenses with both convex and concave profiles can be easily fabricated and integrated in microfluidic system with this technique. © 2013 Springer-Verlag Berlin Heidelberg.

  5. RoboTAP: Target priorities for robotic microlensing observations

    Science.gov (United States)

    Hundertmark, M.; Street, R. A.; Tsapras, Y.; Bachelet, E.; Dominik, M.; Horne, K.; Bozza, V.; Bramich, D. M.; Cassan, A.; D'Ago, G.; Figuera Jaimes, R.; Kains, N.; Ranc, C.; Schmidt, R. W.; Snodgrass, C.; Wambsganss, J.; Steele, I. A.; Mao, S.; Ment, K.; Menzies, J.; Li, Z.; Cross, S.; Maoz, D.; Shvartzvald, Y.

    2018-01-01

    Context. The ability to automatically select scientifically-important transient events from an alert stream of many such events, and to conduct follow-up observations in response, will become increasingly important in astronomy. With wide-angle time domain surveys pushing to fainter limiting magnitudes, the capability to follow-up on transient alerts far exceeds our follow-up telescope resources, and effective target prioritization becomes essential. The RoboNet-II microlensing program is a pathfinder project, which has developed an automated target selection process (RoboTAP) for gravitational microlensing events, which are observed in real time using the Las Cumbres Observatory telescope network. Aims: Follow-up telescopes typically have a much smaller field of view compared to surveys, therefore the most promising microlensing events must be automatically selected at any given time from an annual sample exceeding 2000 events. The main challenge is to select between events with a high planet detection sensitivity, with the aim of detecting many planets and characterizing planetary anomalies. Methods: Our target selection algorithm is a hybrid system based on estimates of the planet detection zones around a microlens. It follows automatic anomaly alerts and respects the expected survey coverage of specific events. Results: We introduce the RoboTAP algorithm, whose purpose is to select and prioritize microlensing events with high sensitivity to planetary companions. In this work, we determine the planet sensitivity of the RoboNet follow-up program and provide a working example of how a broker can be designed for a real-life transient science program conducting follow-up observations in response to alerts; we explore the issues that will confront similar programs being developed for the Large Synoptic Survey Telescope (LSST) and other time domain surveys.

  6. Gravitational microlensing in Verlinde's emergent gravity

    NARCIS (Netherlands)

    Liu, Leihua; Prokopec, Tom

    2017-01-01

    We propose gravitational microlensing as a way of testing the emergent gravity theory recently proposed by Eric Verlinde [1]. We consider two limiting cases: the dark mass of maximally anisotropic pressures (Case I) and of isotropic pressures (Case II). Our analysis of perihelion advancement of a

  7. Fabrication and characterization of InP fresnel microlenses

    International Nuclear Information System (INIS)

    Diadiuk, V.; Walpole, J.N.; Liau, Z.L.

    1987-01-01

    Since diode lasers typically have a beam divergence of a few tens of degrees, collimating the laser outputs leads to greatly far-field patterns, which, in turn translates into more power in the main lobe of the combined output. Achieving this collimation in the case of a diode laser array, with its small device-to-device distance, requires an array of similarly spaced microlenses with very short focal length, small diameter and small F number. In this paper, the authors describe the fabrication and performance of a Fresnel microlens array etched directly in InP wafers; these microlenses have been used successfully to collimate the output of GainAsP/InP buried-heterostructure (BH) diode lasers

  8. Microlensing as a Possible Probe of Event-Horizon Structure in Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Tomozeiu, Mihai [Zurich U.; Mohammed, Irshad [Fermilab; Rabold, Manuel [Zurich U.; Saha, Prasenjit [Zurich U.; Wambsganss, Joachim [Heidelberg U.

    2016-04-06

    In quasars which are lensed by galaxies, the point-like images sometimes show sharp and uncorrelated brightness variations (microlensing). These brightness changes are associated with the innermost region of the quasar passing through a complicated pattern of caustics produced by the stars in the lensing galaxy. In this paper, we study whether the universal properties of optical caustics could enable extraction of shape information about the central engine of quasars. We present a toy model with a crescent-shaped source crossing a fold caustic. The silhouette of a black hole over an accretion disk tends to produce roughly crescent sources. When a crescent-shaped source crosses a fold caustic, the resulting light curve is noticeably different from the case of a circular luminosity profile or Gaussian source. With good enough monitoring data, the crescent parameters, apart from one degeneracy, can be recovered.

  9. Microlensing as a possible probe of event-horizon structure in quasars

    Science.gov (United States)

    Tomozeiu, Mihai; Mohammed, Irshad; Rabold, Manuel; Saha, Prasenjit; Wambsganss, Joachim

    2018-04-01

    In quasars which are lensed by galaxies, the point-like images sometimes show sharp and uncorrelated brightness variations (microlensing). These brightness changes are associated with the innermost region of the quasar passing through a complicated pattern of caustics produced by the stars in the lensing galaxy. In this paper, we study whether the universal properties of optical caustics could enable extraction of shape information about the central engine of quasars. We present a toy model with a crescent-shaped source crossing a fold caustic. The silhouette of a black hole over an accretion disc tends to produce roughly crescent sources. When a crescent-shaped source crosses a fold caustic, the resulting light curve is noticeably different from the case of a circular luminosity profile or Gaussian source. With good enough monitoring data, the crescent parameters, apart from one degeneracy, can be recovered.

  10. OGLE-2017-BLG-0482Lb: A Microlensing Super-Earth Orbiting a Low-mass Host Star

    Science.gov (United States)

    Han, C.; Hirao, Y.; Udalski, A.; Lee, C.-U.; Bozza, V.; Gould, A.; and; Abe, F.; Barry, R.; Bond, I. A.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Itow, Y.; Kawasaki, K.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Matsubara, Y.; Miyazaki, S.; Munakata, H.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Rattenbury, N.; Saito, T.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yonehara, A.; The MOA Collaboration; Mróz, P.; Poleski, R.; Kozłowski, S.; Soszyński, I.; Pietrukowicz, P.; Skowron, J.; Szymański, M. K.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; The OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Hwang, K.-H.; Jung, Y. K.; Kim, D.; Kim, W.-T.; Kim, H.-W.; Ryu, Y.-H.; Shin, I.-G.; Shvartzvald, Y.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, S.-L.; Kim, D.-J.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; The KMTNet Collaboration

    2018-05-01

    We report the discovery of a planetary system in which a super-Earth orbits a late M-dwarf host. The planetary system was found from the analysis of the microlensing event OGLE-2017-BLG-0482, wherein the planet signal appears as a short-term anomaly to the smooth lensing light curve produced by the host. Despite its weak signal and short duration, the planetary signal was firmly detected from the dense and continuous coverage by three microlensing surveys. We find a planet/host mass ratio of q ∼ 1.4 × 10‑4. We measure the microlens parallax {π }{{E}} from the long-term deviation in the observed lensing light curve, but the angular Einstein radius {θ }{{E}} cannot be measured because the source trajectory did not cross the planet-induced caustic. Using the measured event timescale and the microlens parallax, we find that the masses of the planet and the host are {M}{{p}}={9.0}-4.5+9.0 {M}\\oplus and {M}host}={0.20}-0.10+0.20 {M}ȯ , respectively, and the projected separation between them is {a}\\perp ={1.8}-0.7+0.6 au. The estimated distance to the lens is {D}{{L}}={5.8}-2.1+1.8 kpc. The discovery of the planetary system demonstrates that microlensing provides an important method to detect low-mass planets orbiting low-mass stars.

  11. A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251

    DEFF Research Database (Denmark)

    Kains, N.; Street, R.A.; Choi, J.-Y.

    2013-01-01

    Aims. We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic bulge. Methods. Based on detailed modelling of the observed light cu...

  12. Fabrication of Polydimethylsiloxane Microlenses Utilizing Hydrogel Shrinkage and a Single Molding Step

    Directory of Open Access Journals (Sweden)

    Bader Aldalali

    2014-05-01

    Full Text Available We report on polydimethlysiloxane (PDMS microlenses and microlens arrays on flat and curved substrates fabricated via a relatively simple process combining liquid-phase photopolymerization and a single molding step. The mold for the formation of the PDMS lenses is fabricated by photopolymerizing a polyacrylamide (PAAm pre-hydrogel. The shrinkage of PAAm after its polymerization forms concave lenses. The lenses are then transferred to PDMS by a single step molding to form PDMS microlens array on a flat substrate. The PAAm concave lenses are also transferred to PDMS and another flexible polymer, Solaris, to realize artificial compound eyes. The resultant microlenses and microlens arrays possess good uniformity and optical properties. The focal length of the lenses is inversely proportional to the shrinkage time. The microlens mold can also be rehydrated to change the focal length of the ultimate PDMS microlenses. The spherical aberration is 2.85 μm and the surface roughness is on the order of 204 nm. The microlenses can resolve 10.10 line pairs per mm (lp/mm and have an f-number range between f/2.9 and f/56.5. For the compound eye, the field of view is 113°.

  13. Microlensing planets in M 22: Free-floating or bound?

    Science.gov (United States)

    de la Fuente Marcos, R.; de la Fuente Marcos, C.

    2001-12-01

    We use detailed numerical simulations and theoretical estimates to show that, if confirmed, the unusually brief microlensing events observed by Sahu et al. (\\cite{Sahu01}) in the field of the globular cluster M 22 might be explained as a result of microlensing by a population of clustered MACHOs, a dark cluster or RAMBO, not associated with the globular cluster. If real, this dark cluster would be located between M 22 and the Galactic bulge and could include at least 106 substellar members with a typical size of 1-3 pc. Bound planets in wide or/and eccentric orbits are also able to reproduce the observed microlensing behaviour, but only if multiplanet systems (including large Kuiper-belt-like objects) are abundant, although, our calculations argue against the latter scenario as the ionization rate in M 22 is very high. Dynamically ejected or lone planets are, in principle, incompatible with the observational findings as they either escape their parent cluster in a relatively short time-scale after ejection or segregate toward the outskirts of the cluster. We discuss additional implications of the dark cluster scenario, including the existence of a population of RAMBOs toward the Galactic bulge.

  14. The POINT-AGAPE Survey: Comparing Automated Searches of Microlensing Events toward M31

    CERN Document Server

    Tsapras, Y; Weston, M J; Kerins, E; Baillon, P; Gould, A; Paulin-Henriksson, S

    2010-01-01

    Searching for microlensing in M31 using automated superpixel surveys raises a number of difficulties which are not present in more conventional techniques. Here we focus on the problem that the list of microlensing candidates is sensitive to the selection criteria or "cuts" imposed and some subjectivity is involved in this. Weakening the cuts will generate a longer list of microlensing candidates but with a greater fraction of spurious ones; strengthening the cuts will produce a shorter list but may exclude some genuine events. We illustrate this by comparing three analyses of the same data-set obtained from a 3-year observing run on the INT in La Palma. The results of two of these analyses have been already reported: Belokurov et al. (2005) obtained between 3 and 22 candidates, depending on the strength of their cuts, while Calchi Novati et al. (2005) obtained 6 candidates. The third analysis is presented here for the first time and reports 10 microlensing candidates, 7 of which are new. Only two of the cand...

  15. Microlensing and the physics of stellar atmospheres

    NARCIS (Netherlands)

    Sackett, PD; Menzies, JW; Sackett, PD

    2001-01-01

    The simple physics of microlensing provides a well understood tool with which to probe the atmospheres of distant stars in the Galaxy and Local Group with high magnification and resolution. Recent results in measuring stellar surface structure through broad band photometry and spectroscopy of high

  16. Transformation to cloud services sourcing : Required it governance capabilities

    NARCIS (Netherlands)

    Joha, A.; Janssen, M.F.W.H.A.

    2012-01-01

    The sourcing of cloud services is a relatively new type of service delivery model in which an organization gets access to IT services via a cloud service provider that is delivering services over the web to many users on a pay per use or period basis. Even though the importance of IT governance is

  17. Integration of polystyrene microlenses with both convex and concave profiles in a polymer-based microfluidic system

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Foulds, Ian G.

    2013-01-01

    This paper reports a new technique of fabricating polystyrene microlenses with both convex and concave profiles that are integrated in polymer-based microfluidic system. The polystyrene microlenses, or microlens array, are fabricated using the free

  18. The Hollywood Strategy for Microlensing Detection of Planets.

    Science.gov (United States)

    Gould, A.

    Follow the big stars! I review the theory of detection and parameter measurement of planetary systems by follow-up observations of ongoing microlensing events. Two parameters can generically be measured from the event itself: the planet/star mass ratio, $q$, and the planet/star separation in units of the Einstein ring. I emphasize the advantages of monitoring events with giant-star sources which are brighter (thus easier to monitor) and bigger (thus offering the prospect of measuring an additional parameter from finite-source effects: the proper motion $\\mu$). There is potentially a strong degeneracy between $q$ and $\\mu$. I present a simple analytic representation of this degeneracy. I then describe how it can be broken using accurate single-band photometry from observatories around the world, or optical/infrared photometry from a single site, or preferably both. Both types of observations are underway or will be soon. Monitoring of giant-star events seen toward the bulge is also the best way to determine the content and structure of the inner Galaxy.

  19. Spitzer Opens New Path to Break Classic Degeneracy for Jupiter-mass Microlensing Planet OGLE-2017-BLG-1140Lb

    Science.gov (United States)

    Calchi Novati, S.; Skowron, J.; Jung, Y. K.; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; Shvartzvald, Y.; Yee, J. C.; Zhu, W.; Spitzer Team; Udalski, A.; Szymański, M. K.; Mróz, P.; Poleski, R.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Hwang, K.-H.; Ryu, Y.-H.; Shin, I.-G.; Zang, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration

    2018-06-01

    We analyze the combined Spitzer and ground-based data for OGLE-2017-BLG-1140 and show that the event was generated by a Jupiter-class ({m}p≃ 1.6 {M}{{J}{{u}}{{p}}}) planet orbiting a mid-late M dwarf (M≃ 0.2 {M}ȯ ) that lies {D}LS}≃ 1.0 {kpc} in the foreground of the microlensed Galactic-bar source star. The planet–host projected separation is {a}\\perp ≃ 1.0 {au}, i.e., well beyond the snow line. By measuring the source proper motion {{\\boldsymbol{μ }}}s from ongoing long-term OGLE imaging and combining this with the lens-source relative proper motion {{\\boldsymbol{μ }}}rel} derived from the microlensing solution, we show that the lens proper motion {{\\boldsymbol{μ }}}l={{\\boldsymbol{μ }}}rel}+{{\\boldsymbol{μ }}}s is consistent with the lens lying in the Galactic disk, although a bulge lens is not ruled out. We show that while the Spitzer and ground-based data are comparably well fitted by planetary (i.e., binary-lens (2L1S)) and binary-source (1L2S) models, the combination of Spitzer and ground-based data decisively favors the planetary model. This is a new channel to resolve the 2L1S/1L2S degeneracy, which can be difficult to break in some cases.

  20. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  1. The Impact of Microlensing on the Standardisation of Strongly Lensed Type Ia Supernovae

    Science.gov (United States)

    Foxley-Marrable, Max; Collett, Thomas E.; Vernardos, Georgios; Goldstein, Daniel A.; Bacon, David

    2018-05-01

    We investigate the effect of microlensing on the standardisation of strongly lensed Type Ia supernovae (GLSNe Ia). We present predictions for the amount of scatter induced by microlensing across a range of plausible strong lens macromodels. We find that lensed images in regions of low convergence, shear and stellar density are standardisable, where the microlensing scatter is ≲ 0.15 magnitudes, comparable to the intrinsic dispersion of for a typical SN Ia. These standardisable configurations correspond to asymmetric lenses with an image located far outside the Einstein radius of the lens. Symmetric and small Einstein radius lenses (≲ 0.5 arcsec) are not standardisable. We apply our model to the recently discovered GLSN Ia iPTF16geu and find that the large discrepancy between the observed flux and the macromodel predictions from More et al. (2017) cannot be explained by microlensing alone. Using the mock GLSNe Ia catalogue of Goldstein et al. (2017), we predict that ˜ 22% of GLSNe Ia discovered by LSST will be standardisable, with a median Einstein radius of 0.9 arcseconds and a median time-delay of 41 days. By breaking the mass-sheet degeneracy the full LSST GLSNe Ia sample will be able to detect systematics in H0 at the 0.5% level.

  2. Statistical improvement in detection level of gravitational microlensing events from their light curves

    Science.gov (United States)

    Ibrahim, Ichsan; Malasan, Hakim L.; Kunjaya, Chatief; Timur Jaelani, Anton; Puannandra Putri, Gerhana; Djamal, Mitra

    2018-04-01

    In astronomy, the brightness of a source is typically expressed in terms of magnitude. Conventionally, the magnitude is defined by the logarithm of received flux. This relationship is known as the Pogson formula. For received flux with a small signal to noise ratio (S/N), however, the formula gives a large magnitude error. We investigate whether the use of Inverse Hyperbolic Sine function (hereafter referred to as the Asinh magnitude) in the modified formulae could allow for an alternative calculation of magnitudes for small S/N flux, and whether the new approach is better for representing the brightness of that region. We study the possibility of increasing the detection level of gravitational microlensing using 40 selected microlensing light curves from the 2013 and 2014 seasons and by using the Asinh magnitude. Photometric data of the selected events are obtained from the Optical Gravitational Lensing Experiment (OGLE). We found that utilization of the Asinh magnitude makes the events brighter compared to using the logarithmic magnitude, with an average of about 3.42 × 10‑2 magnitude and an average in the difference of error between the logarithmic and the Asinh magnitude of about 2.21 × 10‑2 magnitude. The microlensing events OB140847 and OB140885 are found to have the largest difference values among the selected events. Using a Gaussian fit to find the peak for OB140847 and OB140885, we conclude statistically that the Asinh magnitude gives better mean squared values of the regression and narrower residual histograms than the Pogson magnitude. Based on these results, we also attempt to propose a limit in magnitude value for which use of the Asinh magnitude is optimal with small S/N data.

  3. Research on OpenStack of open source cloud computing in colleges and universities’ computer room

    Science.gov (United States)

    Wang, Lei; Zhang, Dandan

    2017-06-01

    In recent years, the cloud computing technology has a rapid development, especially open source cloud computing. Open source cloud computing has attracted a large number of user groups by the advantages of open source and low cost, have now become a large-scale promotion and application. In this paper, firstly we briefly introduced the main functions and architecture of the open source cloud computing OpenStack tools, and then discussed deeply the core problems of computer labs in colleges and universities. Combining with this research, it is not that the specific application and deployment of university computer rooms with OpenStack tool. The experimental results show that the application of OpenStack tool can efficiently and conveniently deploy cloud of university computer room, and its performance is stable and the functional value is good.

  4. Heat sources for bright-rimmed molecular clouds: CO observations of NGC 7822

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Dickinson, D.F.; Lada, C.J.

    1978-01-01

    Observations of the 2.6 mm carbon monoxide line in the bright rim NGC 7822 reveal that the peak excitation and column density of the molecule lie in a ridge ahead of the ionization front. Several possibilities for the excitation of this ridge are discussed. Cosmic rays are shown to provide an excellent heat source for Bok globules, but they can account for only approx.20% of the required heating in NGC 7822. Direct shock or compressional heating of the gas could be adequate only if the pressure inside the cloud is much larger than the thermal pressure. If, in fact, this internal pressure is determined by the source of line broadening (e.g., magnetic fields or turbulence), then shock or compressional heating could be important, and pressure equilibrium may exist between the neutral cloud and the bright rim. Heating by warm grains or by the photoelectric effect is also considered, but such mechanisms are probably not important if the only source of radiation is external to the cloud. This is primarily a result of the low cloud density (approx.10 3 cm -3 ) inferred from our observations. The extent to which unknown embedded stars may provide the required gaseous heating cannot be estimated from our observations of NGC 7822.An interesting and new heat source is suggested which may have important applications to bright-rimmed clouds or to any other predominantly neutral clouds that may have undergone some recent compression. We suggest that the heat input to neutral gas due to the relaxation of internal magnetic fields will be greatly enhanced during cloud compression (with or without a shock). We show that the power input to the gas will increase more with increasing density than will the cooling rate. As a result, cloud compression can lead to an increase in the gas temperature for a period lasting several million years, which is the decay time of the compressed field. The observed ridge in NGC 7822 may be due to stimulated release of internal magnetic energy

  5. Predictions for microlensing planetary events from core accretion theory

    International Nuclear Information System (INIS)

    Zhu, Wei; Mao, Shude; Penny, Matthew; Gould, Andrew; Gendron, Rieul

    2014-01-01

    We conduct the first microlensing simulation in the context of a planet formation model. The planet population is taken from the Ida and Lin core accretion model for 0.3 M ☉ stars. With 6690 microlensing events, we find that for a simplified Korea Microlensing Telescopes Network (KMTNet), the fraction of planetary events is 2.9%, out of which 5.5% show multiple-planet signatures. The numbers of super-Earths, super-Neptunes, and super-Jupiters detected are expected to be almost equal. Our simulation shows that high-magnification events and massive planets are favored by planet detections, which is consistent with previous expectation. However, we notice that extremely high-magnification events are less sensitive to planets, which is possibly because the 10 minute sampling of KMTNet is not intensive enough to capture the subtle anomalies that occur near the peak. This suggests that while KMTNet observations can be systematically analyzed without reference to any follow-up data, follow-up observations will be essential in extracting the full science potential of very high magnification events. The uniformly high-cadence observations expected for KMTNet also result in ∼55% of all detected planets not being caustic crossing, and more low-mass planets even down to Mars mass being detected via planetary caustics. We also find that the distributions of orbital inclinations and planet mass ratios in multiple-planet events agree with the intrinsic distributions.

  6. Predictions for microlensing planetary events from core accretion theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei; Mao, Shude [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Penny, Matthew; Gould, Andrew [Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Gendron, Rieul, E-mail: weizhu@astronomy.ohio-state.edu [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom)

    2014-06-10

    We conduct the first microlensing simulation in the context of a planet formation model. The planet population is taken from the Ida and Lin core accretion model for 0.3 M {sub ☉} stars. With 6690 microlensing events, we find that for a simplified Korea Microlensing Telescopes Network (KMTNet), the fraction of planetary events is 2.9%, out of which 5.5% show multiple-planet signatures. The numbers of super-Earths, super-Neptunes, and super-Jupiters detected are expected to be almost equal. Our simulation shows that high-magnification events and massive planets are favored by planet detections, which is consistent with previous expectation. However, we notice that extremely high-magnification events are less sensitive to planets, which is possibly because the 10 minute sampling of KMTNet is not intensive enough to capture the subtle anomalies that occur near the peak. This suggests that while KMTNet observations can be systematically analyzed without reference to any follow-up data, follow-up observations will be essential in extracting the full science potential of very high magnification events. The uniformly high-cadence observations expected for KMTNet also result in ∼55% of all detected planets not being caustic crossing, and more low-mass planets even down to Mars mass being detected via planetary caustics. We also find that the distributions of orbital inclinations and planet mass ratios in multiple-planet events agree with the intrinsic distributions.

  7. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    International Nuclear Information System (INIS)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Gaudi, B. S.; Henderson, C. B.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Bos, M.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.

    2012-01-01

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of θ E ∼ 0.08 mas combined with the short timescale of t E ∼ 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of ∼0.84 M ☉ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  8. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Gould, A.; Gaudi, B. S.; Henderson, C. B. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis boulevard Arago, 75014 Paris (France); Street, R. [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Dr, Suite 102, Goleta, CA 93117 (United States); Dominik, M. [School of Physics and Astronomy, SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom); Allen, W. [Vintage Lane Observatory, Blenheim (New Zealand); Almeida, L. A. [Instituto Nacional de Pesquisas Espaciais/MCTI, Sao Jose dos Campos, Sao Paulo (Brazil); Bos, M. [Molehill Astronomical Observatory, North Shore (New Zealand); Christie, G. W. [Auckland Observatory, P.O. Box 24-180, Auckland (New Zealand); Depoy, D. L. [Department of Physics, Texas A and M University, College Station, TX (United States); Dong, S. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Drummond, J. [Possum Observatory, Patutahi (New Zealand); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute (Israel); Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-05-20

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of {theta}{sub E} {approx} 0.08 mas combined with the short timescale of t{sub E} {approx} 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of {approx}0.84 M{sub Sun} is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  9. Microlensing Binaries with Candidate Brown Dwarf Companions

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Gould, A.

    2012-01-01

    masses of the brown dwarf companions are 0.02 ± 0.01 M⊙ and 0.019 ± 0.002 M⊙ for MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149, respectively, and both companions are orbiting low-mass M dwarf host stars. More microlensing brown dwarfs are expected to be detected as the number of lensing events...

  10. SIZES AND TEMPERATURE PROFILES OF QUASAR ACCRETION DISKS FROM CHROMATIC MICROLENSING

    International Nuclear Information System (INIS)

    Blackburne, Jeffrey A.; Pooley, David; Rappaport, Saul; Schechter, Paul L.

    2011-01-01

    Microlensing perturbations to the flux ratios of gravitationally lensed quasar images can vary with wavelength because of the chromatic dependence of the accretion disk's apparent size. Multiwavelength observations of microlensed quasars can thus constrain the temperature profiles of their accretion disks, a fundamental test of an important astrophysical process which is not currently possible using any other method. We present single-epoch broadband flux ratios for 12 quadruply lensed quasars in 8 bands ranging from 0.36 to 2.2 μm, as well as Chandra 0.5-8 keV flux ratios for five of them. We combine the optical/IR and X-ray ratios, together with X-ray ratios from the literature, using a Bayesian approach to constrain the half-light radii of the quasars in each filter. Comparing the overall disk sizes and wavelength slopes to those predicted by the standard thin accretion disk model, we find that on average the disks are larger than predicted by nearly an order of magnitude, with sizes that grow with wavelength with an average slope of ∼0.2 rather than the slope of 4/3 predicted by the standard thin disk theory. Though the error bars on the slope are large for individual quasars, the large sample size lends weight to the overall result. Our results present severe difficulties for a standard thin accretion disk as the main source of UV/optical radiation from quasars.

  11. Studying the microlenses mass function from statistical analysis of the caustic concentration

    Energy Technology Data Exchange (ETDEWEB)

    Mediavilla, T; Ariza, O [Departamento de Estadistica e Investigacion Operativa, Universidad de Cadiz, Avda de Ramon Puyol, s/n 11202 Algeciras (Spain); Mediavilla, E [Instituto de Astrofisica de Canarias, Avda Via Lactea s/n, La Laguna (Spain); Munoz, J A, E-mail: teresa.mediavilla@ca.uca.es, E-mail: octavio.ariza@uca.es, E-mail: emg@iac.es [Departamento de Astrofisica y Astronomia, Universidad de Valencia, Burjassot, Valencia (Spain)

    2011-09-22

    The statistical distribution of caustic crossings by the images of a lensed quasar depends on the properties of the distribution of microlenses in the lens galaxy. We use a procedure based in Inverse Polygon Mapping to easily identify the critical and caustic curves generated by a distribution of stars in the lens galaxy. We analyze the statistical distributions of the number of caustic crossings by a pixel size source for several projected mass densities and different mass distributions. We compare the results of simulations with theoretical binomial distributions. Finally we apply this method to the study of the stellar mass distribution in the lens galaxy of QSO 2237+0305.

  12. Statistical searches for microlensing events in large, non-uniformly sampled time-domain surveys: A test using palomar transient factory data

    Energy Technology Data Exchange (ETDEWEB)

    Price-Whelan, Adrian M.; Agüeros, Marcel A. [Department of Astronomy, Columbia University, 550 W 120th Street, New York, NY 10027 (United States); Fournier, Amanda P. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Street, Rachel [Las Cumbres Observatory Global Telescope Network, Inc., 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Ofek, Eran O. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Covey, Kevin R. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Levitan, David; Sesar, Branimir [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Laher, Russ R.; Surace, Jason, E-mail: adrn@astro.columbia.edu [Spitzer Science Center, California Institute of Technology, Mail Stop 314-6, Pasadena, CA 91125 (United States)

    2014-01-20

    Many photometric time-domain surveys are driven by specific goals, such as searches for supernovae or transiting exoplanets, which set the cadence with which fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several sub-surveys are conducted in parallel, leading to non-uniform sampling over its ∼20,000 deg{sup 2} footprint. While the median 7.26 deg{sup 2} PTF field has been imaged ∼40 times in the R band, ∼2300 deg{sup 2} have been observed >100 times. We use PTF data to study the trade off between searching for microlensing events in a survey whose footprint is much larger than that of typical microlensing searches, but with far-from-optimal time sampling. To examine the probability that microlensing events can be recovered in these data, we test statistics used on uniformly sampled data to identify variables and transients. We find that the von Neumann ratio performs best for identifying simulated microlensing events in our data. We develop a selection method using this statistic and apply it to data from fields with >10 R-band observations, 1.1 × 10{sup 9} light curves, uncovering three candidate microlensing events. We lack simultaneous, multi-color photometry to confirm these as microlensing events. However, their number is consistent with predictions for the event rate in the PTF footprint over the survey's three years of operations, as estimated from near-field microlensing models. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large data sets, which will be useful to future time-domain surveys, such as that planned with the Large Synoptic Survey Telescope.

  13. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars

    OpenAIRE

    Bensby, T.; Johnson, J. A.; Cohen, J.; Feltzing, S.; Udalski, A.; Gould, A.; Huang, W.; Thompson, I.; Simmerer, J.; Adén, D.

    2009-01-01

    Aims. Our aims are twofold. First we aim to evaluate the robustness and accuracy of stellar parameters and detailed elemental abundances that can be derived from high-resolution spectroscopic observations of microlensed dwarf and subgiant stars. We then aim to use microlensed dwarf and subgiant stars to investigate the abundance structure and chemical evolution of the Milky Way Bulge. Contrary to the cool giant stars, with their extremely crowded spectra, the dwarf stars are hotter, their spe...

  14. The First Simultaneous Microlensing Observations by Two Space telescopes

    DEFF Research Database (Denmark)

    Shvartzvald, Y.; Li, Z.; Udalski, A.

    2016-01-01

    study the region of microlensing parameter space to which Swift is sensitive, finding that though Swift could not measure the microlens parallax with respect to ground-based observations for this event, it can be important for other events. Specifically, it is important for detecting nearby brown dwarfs...

  15. Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses

    Science.gov (United States)

    Kaganskiy, Arsenty; Fischbach, Sarah; Strittmatter, André; Rodt, Sven; Heindel, Tobias; Reitzenstein, Stephan

    2018-04-01

    We report on the realization of scalable single-photon sources (SPSs) based on single site-controlled quantum dots (SCQDs) and deterministically fabricated microlenses. The fabrication process comprises the buried-stressor growth technique complemented with low-temperature in-situ electron-beam lithography for the integration of SCQDs into microlens structures with high yield and high alignment accuracy. The microlens-approach leads to a broadband enhancement of the photon-extraction efficiency of up to (21 ± 2)% and a high suppression of multi-photon events with g (2)(τ = 0) SPSs which, can be applied in photonic quantum circuits and advanced quantum computation schemes.

  16. Fabrication of polymer-based reflowed microlenses on optical fibre ...

    Indian Academy of Sciences (India)

    Abstract. Thermal reflow of polymer to generate spherical profile has been used to fabricate microlenses in this paper. A simple model based on the volume conservation (before and after reflow) and geometrical consideration of lens profile, shows that the focal length of the microlens produced by reflow technique is a.

  17. One or more bound planets per Milky Way star from microlensing observations.

    Science.gov (United States)

    Cassan, A; Kubas, D; Beaulieu, J-P; Dominik, M; Horne, K; Greenhill, J; Wambsganss, J; Menzies, J; Williams, A; Jørgensen, U G; Udalski, A; Bennett, D P; Albrow, M D; Batista, V; Brillant, S; Caldwell, J A R; Cole, A; Coutures, Ch; Cook, K H; Dieters, S; Prester, D Dominis; Donatowicz, J; Fouqué, P; Hill, K; Kains, N; Kane, S; Marquette, J-B; Martin, R; Pollard, K R; Sahu, K C; Vinter, C; Warren, D; Watson, B; Zub, M; Sumi, T; Szymański, M K; Kubiak, M; Poleski, R; Soszynski, I; Ulaczyk, K; Pietrzyński, G; Wyrzykowski, L

    2012-01-11

    Most known extrasolar planets (exoplanets) have been discovered using the radial velocity or transit methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17-30% (refs 4, 5) of solar-like stars host a planet. Gravitational microlensing, on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing. These planets are at least as numerous as the stars in the Milky Way. Here we report a statistical analysis of microlensing data (gathered in 2002-07) that reveals the fraction of bound planets 0.5-10 AU (Sun-Earth distance) from their stars. We find that 17(+6)(-9)% of stars host Jupiter-mass planets (0.3-10 M(J), where M(J) = 318 M(⊕) and M(⊕) is Earth's mass). Cool Neptunes (10-30 M(⊕)) and super-Earths (5-10 M(⊕)) are even more common: their respective abundances per star are 52(+22)(-29)% and 62(+35)(-37)%. We conclude that stars are orbited by planets as a rule, rather than the exception.

  18. A ROBUST DETERMINATION OF THE SIZE OF QUASAR ACCRETION DISKS USING GRAVITATIONAL MICROLENSING

    International Nuclear Information System (INIS)

    Jiménez-Vicente, J.; Mediavilla, E.; Muñoz, J. A.; Kochanek, C. S.

    2012-01-01

    Using microlensing measurements for a sample of 27 image pairs of 19 lensed quasars we determine a maximum likelihood estimate for the accretion disk size of an average quasar of r s = 4.0 +2.4 –3.1 lt-day at rest frame (λ) = 1736 Å for microlenses with a mean mass of (M) = 0.3 M ☉ . This value, in good agreement with previous results from smaller samples, is roughly a factor of five greater than the predictions of the standard thin disk model. The individual size estimates for the 19 quasars in our sample are also in excellent agreement with the results of the joint maximum likelihood analysis.

  19. A Predicted Astrometric Microlensing Event by a Nearby White Dwarf

    Science.gov (United States)

    McGill, Peter; Smith, Leigh C.; Wyn Evans, N.; Belokurov, Vasily; Smart, R. L.

    2018-04-01

    We used the Tycho-Gaia Astrometric Solution catalogue, part of Gaia Data Release 1, to search for candidate astrometric microlensing events expected to occur within the remaining lifetime of the Gaia satellite. Our search yielded one promising candidate. We predict that the nearby DQ type white dwarf LAWD 37 (WD 1142-645) will lens a background star and will reach closest approach on November 11th 2019 (± 4 days) with impact parameter 380 ± 10 mas. This will produce an apparent maximum deviation of the source position of 2.8 ± 0.1 mas. In the most propitious circumstance, Gaia will be able to determine the mass of LAWD 37 to ˜3%. This mass determination will provide an independent check on atmospheric models of white dwarfs with helium rich atmospheres, as well as tests of white dwarf mass radius relationships and evolutionary theory.

  20. Light-focusing human micro-lenses generated from pluripotent stem cells model lens development and drug-induced cataract in vitro.

    Science.gov (United States)

    Murphy, Patricia; Kabir, Md Humayun; Srivastava, Tarini; Mason, Michele E; Dewi, Chitra U; Lim, Seakcheng; Yang, Andrian; Djordjevic, Djordje; Killingsworth, Murray C; Ho, Joshua W K; Harman, David G; O'Connor, Michael D

    2018-01-09

    Cataracts cause vision loss and blindness by impairing the ability of the ocular lens to focus light onto the retina. Various cataract risk factors have been identified, including drug treatments, age, smoking and diabetes. However, the molecular events responsible for these different forms of cataract are ill-defined, and the advent of modern cataract surgery in the 1960s virtually eliminated access to human lenses for research. Here, we demonstrate large-scale production of light-focusing human micro-lenses from spheroidal masses of human lens epithelial cells purified from differentiating pluripotent stem cells. The purified lens cells and micro-lenses display similar morphology, cellular arrangement, mRNA expression and protein expression to human lens cells and lenses. Exposing the micro-lenses to the emergent cystic fibrosis drug Vx-770 reduces micro-lens transparency and focusing ability. These human micro-lenses provide a powerful and large-scale platform for defining molecular disease mechanisms caused by cataract risk factors, for anti-cataract drug screening and for clinically relevant toxicity assays. © 2018. Published by The Company of Biologists Ltd.

  1. Low-cost, high-precision micro-lensed optical fiber providing deep-micrometer to deep-nanometer-level light focusing.

    Science.gov (United States)

    Wen, Sy-Bor; Sundaram, Vijay M; McBride, Daniel; Yang, Yu

    2016-04-15

    A new type of micro-lensed optical fiber through stacking appropriate high-refractive microspheres at designed locations with respect to the cleaved end of an optical fiber is numerically and experimentally demonstrated. This new type of micro-lensed optical fiber can be precisely constructed with low cost and high speed. Deep micrometer-scale and submicrometer-scale far-field light spots can be achieved when the optical fibers are multimode and single mode, respectively. By placing an appropriate teardrop dielectric nanoscale scatterer at the far-field spot of this new type of micro-lensed optical fiber, a deep-nanometer near-field spot can also be generated with high intensity and minimum joule heating, which is valuable in high-speed, high-resolution, and high-power nanoscale detection compared with traditional near-field optical fibers containing a significant portion of metallic material.

  2. Microlensing discovery of a population of very tight, very low mass binary brown dwarfs

    DEFF Research Database (Denmark)

    Choi, J.-Y.; Han, C.; Udalski, A.

    2013-01-01

    the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M ☉ and 0.034 M ☉, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known....... The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of ~0.02 M ☉. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries....

  3. Elemental abundances in the Galactic bulge from microlensed dwarf stars

    NARCIS (Netherlands)

    Bensby, T.; Feltzing, S.; Johnson, J.A.; Gould, A.; Sana, H.; Gal-Yam, A.; Asplund, M.; Lucatello, S.; Melendez, J.; Udalski, A.; Kubas, D.; James, G.; Adén, D.; Simmerer, J.

    2010-01-01

    We present elemental abundances of 13 microlensed dwarf and subgiant stars in the Galactic bulge, which constitute the largest sample to date. We show that these stars span the full range of metallicity from Fe/H= −0.8 to +0.4, and that they follow well-defined abundance trends, coincident with

  4. Finite Source Effects in Microlensing Events

    OpenAIRE

    Gould, Andrew; Gaucherel, Cedric

    1996-01-01

    The computation of the magnification of a finite source by an arbitrary gravitational lens can be reduced from a two-dimensional to a one-dimensional integral using a generalization of Stoke's theorem. For a large source lensed by a planetary-system whose planet lies at the position where one of the two images would be in the absence of a planet, the integral can be done analytically. If the planet lies at the position of the major (unperturbed) image, the excess flux is the same as it would ...

  5. Gravitational microlensing - Powerful combination of ray-shooting and parametric representation of caustics

    Science.gov (United States)

    Wambsganss, J.; Witt, H. J.; Schneider, P.

    1992-01-01

    We present a combination of two very different methods for numerically calculating the effects of gravitational microlensing: the backward-ray-tracing that results in two-dimensional magnification patterns, and the parametric representation of caustic lines; they are in a way complementary to each other. The combination of these methods is much more powerful than the sum of its parts. It allows to determine the total magnification and the number of microimages as a function of source position. The mean number of microimages is calculated analytically and compared to the numerical results. The peaks in the lightcurves, as obtained from one-dimensional tracks through the magnification pattern, can now be divided into two groups: those which correspond to a source crossing a caustic, and those which are due to sources passing outside cusps. We determine the frequencies of those two types of events as a function of the surface mass density, and the probability distributions of their magnitudes. We find that for low surface mass density as many as 40 percent of all events in a lightcurve are not due to caustic crossings, but rather due to passings outside cusps.

  6. Refractive microlenses produced by excimer laser machining of poly(methyl methacrylate)

    DEFF Research Database (Denmark)

    Jensen, Martin Frøhling; Krühne, Ulrich; H., L.

    2005-01-01

    A method has been developed whereby refractive microlenses can be produced in poly (methyl methacrylate) by excimer laser irradiation at λ = 248 nm. The lenses are formed by a combined photochemical and thermal process. The lenses are formed as depressions in the substrate material (negative foca...

  7. MOA-2008-BLG-379Lb: A massive planet from a high magnification event with a faint source

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, D.; Sumi, T.; Fukagawa, M.; Shibai, H. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A.; Ling, C. H. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Abe, F.; Furusawa, K.; Itow, Y.; Masuda, K.; Matsubara, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601 (Japan); Botzler, C. S.; Freeman, M.; Rattenbury, N. [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand); Fukui, A. [Okayama Astrophysical Observatory, National Astronomical Observatory, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232 (Japan); Muraki, Y. [Department of Physics, Konan University, Nishiokamoto 8-9-1, Kobe 658-8501 (Japan); Ohnishi, K. [Nagano National College of Technology, Nagano 381-8550 (Japan); Saito, To. [Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523 (Japan); Collaboration: MOA Collaboration; OGLE Collaboration; and others

    2014-01-10

    We report on the analysis of the high microlensing event MOA-2008-BLG-379, which has a strong microlensing anomaly at its peak due to a massive planet with a mass ratio of q = 6.9 × 10{sup –3}. Because the faint source star crosses the large resonant caustic, the planetary signal dominates the light curve. This is unusual for planetary microlensing events, and as a result, the planetary nature of this light curve was not immediately noticed. The planetary nature of the event was found when the Microlensing Observations in Astrophysics (MOA) Collaboration conducted a systematic study of binary microlensing events previously identified by the MOA alert system. We have conducted a Bayesian analysis based on a standard Galactic model to estimate the physical parameters of the lens system. This yields a host star mass of M{sub L}=3.3{sub −1.2}{sup +1.7} M{sub ⊙} orbited by a planet of mass m{sub P}=0.56{sub −0.27}{sup +0.24} M{sub Jup} at an orbital separation of a=3.3{sub −1.2}{sup +1.3} AU at a distance of D{sub L}=4.1{sub −1.9}{sup +1.7} kpc. The faint source magnitude of I {sub S} = 21.30 and relatively high lens-source relative proper motion of μ{sub rel} = 7.6 ± 1.6 mas yr{sup –1} imply that high angular resolution adaptive optics or Hubble Space Telescope observations are likely to be able to detect the source star, which would determine the masses and distance of the planet and its host star.

  8. TWO STARS TWO WAYS: CONFIRMING A MICROLENSING BINARY LENS SOLUTION WITH A SPECTROSCOPIC MEASUREMENT OF THE ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Jennifer C.; Johnson, John Asher; Eastman, Jason; Vanderburg, Andrew [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Skowron, Jan [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, Andrew [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Pineda, J. Sebastian [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Howard, Andrew, E-mail: jyee@cfa.harvard.edu, E-mail: jjohnson@cfa.harvard.edu, E-mail: jason.eastman@cfa.harvard.edu, E-mail: avanderburg@cfa.harvard.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822-1839 (United States)

    2016-04-20

    Light curves of microlensing events involving stellar binaries and planetary systems can provide information about the orbital elements of the system due to orbital modulations of the caustic structure. Accurately measuring the orbit in either the stellar or planetary case requires detailed modeling of subtle deviations in the light curve. At the same time, the natural, Cartesian parameterization of a microlensing binary is partially degenerate with the microlens parallax. Hence, it is desirable to perform independent tests of the predictions of microlens orbit models using radial velocity (RV) time series of the lens binary system. To this end, we present 3.5 years of RV monitoring of the binary lens system OGLE-2009-BLG-020 L, for which Skowron et al. constrained all internal parameters of the 200–700 day orbit. Our RV measurements reveal an orbit that is consistent with the predictions of the microlens light curve analysis, thereby providing the first confirmation of orbital elements inferred from microlensing events.

  9. Microlensing events by Proxima Centauri in 2014 and 2016: Opportunities for mass determination and possible planet detection

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Kailash C.; Bond, Howard E.; Anderson, Jay [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Dominik, Martin, E-mail: ksahu@stsci.edu, E-mail: jayander@stsci.edu, E-mail: heb11@psu.edu, E-mail: md35@st-andrews.ac.uk [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom)

    2014-02-20

    We have found that Proxima Centauri, the star closest to our Sun, will pass close to a pair of faint background stars in the next few years. Using Hubble Space Telescope (HST) images obtained in 2012 October, we determine that the passage close to a mag 20 star will occur in 2014 October (impact parameter 1.''6), and to a mag 19.5 star in 2016 February (impact parameter 0.''5). As Proxima passes in front of these stars, the relativistic deflection of light will cause shifts in the positions of the background stars of ∼0.5 and 1.5 mas, respectively, readily detectable by HST imaging, and possibly by Gaia and ground-based facilities such as the Very Large Telescope. Measurement of these astrometric shifts offers a unique and direct method to measure the mass of Proxima. Moreover, if Proxima has a planetary system, the planets may be detectable through their additional microlensing signals, although the probability of such detections is small. With astrometric accuracies of 0.03 mas (achievable with HST spatial scanning), centroid shifts caused by Jovian planets are detectable at separations of up to 2.''0 (corresponding to 2.6 AU at the distance of Proxima), and centroid shifts by Earth-mass planets are detectable within a small band of 8 mas (corresponding to 0.01 AU) around the source trajectories. Jovian planets within a band of about 28 mas (corresponding to 0.036 AU) around the source trajectories would produce a brightening of the source by >0.01 mag and could hence be detectable. Estimated timescales of the astrometric and photometric microlensing events due to a planet range from a few hours to a few days, and both methods would provide direct measurements of the planetary mass.

  10. Electron cloud instabilities in the Proton Storage Ring and Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    M. Blaskiewicz

    2003-01-01

    Full Text Available Electron cloud instabilities in the Los Alamos Proton Storage Ring and those foreseen for the Oak Ridge Spallation Neutron Source are examined theoretically, numerically, and experimentally.

  11. Electron Cloud Mitigation in the Spallation Neutron Source Ring

    International Nuclear Information System (INIS)

    Wei, J.; Blaskiewicz, Michael; Brodowski, J.; Cameron, P.; Davino, Daniele; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Ludewig, H.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Catalan-Lasheras, N.; Macek, R.J.; Furman, Miguel A.; Aleksandrov, A.; Cousineau, S.; Danilov, V.; Henderson, S.

    2008-01-01

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H - injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron-cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation

  12. Electron-cloud mitigation in the spallation neutron source ring

    International Nuclear Information System (INIS)

    Wei, J.; Blaskiewicz, M.; Brodowski, J.; Cameron, P.; Davino, D.; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Danilov, V.; Henderson, S.; Furman, M.; Pivi, M.; Macek, R.

    2003-01-01

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H- injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation

  13. OGLE-2016-BLG-0168 Binary Microlensing Event: Prediction and Confirmation of the Microlens Parallax Effect from Space-based Observations

    Energy Technology Data Exchange (ETDEWEB)

    Shin, I.-G.; Yee, J. C.; Jung, Y. K. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Udalski, A.; Skowron, J.; Mróz, P.; Soszyński, I.; Poleski, R.; Szymański, M. K.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M. [Warsaw University Observatory, Al. Ujazdowskie 4,00-478 Warszawa (Poland); Novati, S. Calchi [IPAC, Mail Code 100-22, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Han, C. [Department of Physics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Albrow, M. D. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch 8020 (New Zealand); Gould, A. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Chung, S.-J.; Hwang, K.-H.; Ryu, Y.-H. [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-Gu, Daejeon 34055 (Korea, Republic of); Collaboration: OGLE Collaboration; KMTNet Group; Spitzer Team; and others

    2017-11-01

    The microlens parallax is a crucial observable for conclusively identifying the nature of lens systems in microlensing events containing or composed of faint (even dark) astronomical objects such as planets, neutron stars, brown dwarfs, and black holes. With the commencement of a new era of microlensing in collaboration with space-based observations, the microlens parallax can be routinely measured. In addition, space-based observations can provide opportunities to verify the microlens parallax measured from ground-only observations and to find a unique solution to the lensing light-curve analysis. Furthermore, since most space-based observations cannot cover the full light curves of lensing events, it is also necessary to verify the reliability of the information extracted from fragmentary space-based light curves. We conduct a test based on the microlensing event OGLE-2016-BLG-0168, created by a binary lens system consisting of almost equal mass M-dwarf stars, to demonstrate that it is possible to verify the microlens parallax and to resolve degeneracies using the space-based light curve even though the observations are fragmentary. Since space-based observatories will frequently produce fragmentary light curves due to their short observing windows, the methodology of this test will be useful for next-generation microlensing experiments that combine space-based and ground-based collaboration.

  14. Development of 3D out-of-plane SU-8 microlenses using modified micromolding in capillaries (MIMIC) technology

    Science.gov (United States)

    Llobera, A.; Wilke, R.; Johnson, D. W.; Büttgenbach, S.

    2006-04-01

    This paper describes a modification of the standard MIMIC technology, solving its main drawbacks, to define arrays of spherical or ellipsoidal microlenses. Perfectly symmetrical meniscuses have been obtained by using a XP SU-8 NO-2 layer beneath the PDMS mold. Moreover, the photostructurable properties of this polymer allow obtaining self-alignment structures for adequate fiber optics positioning. Microchannels ended with these meniscuses have been filled with standard SU-8 to obtain 3D microlenses. Agreement between theory and experimental results allows confirming the validity of the proposed technology.

  15. Clarifying the dominant sources and mechanisms of cirrus cloud formation.

    Science.gov (United States)

    Cziczo, Daniel J; Froyd, Karl D; Hoose, Corinna; Jensen, Eric J; Diao, Minghui; Zondlo, Mark A; Smith, Jessica B; Twohy, Cynthia H; Murphy, Daniel M

    2013-06-14

    Formation of cirrus clouds depends on the availability of ice nuclei to begin condensation of atmospheric water vapor. Although it is known that only a small fraction of atmospheric aerosols are efficient ice nuclei, the critical ingredients that make those aerosols so effective have not been established. We have determined in situ the composition of the residual particles within cirrus crystals after the ice was sublimated. Our results demonstrate that mineral dust and metallic particles are the dominant source of residual particles, whereas sulfate and organic particles are underrepresented, and elemental carbon and biological materials are essentially absent. Further, composition analysis combined with relative humidity measurements suggests that heterogeneous freezing was the dominant formation mechanism of these clouds.

  16. Gaia16aye binary microlensing event is rising for the 5th time

    Science.gov (United States)

    Wyrzykowski, L.; Mroz, P.; Rybicki, K.; Altavilla, G.; Bakis, V.; Bendjoya, P.; Birenbaum, G.; Blagorodnova, N.; Blanco-Cuaresma, S.; Bonanos, A.; Bozza, V.; Britavskiy, N.; Burgaz, U.; Butterley, T.; Capuozzo, P.; Carrasco, J. M.; Chruslinska, M.; Damljanovic, G.; Dapergolas, T.; Dennefeld, M.; Dhillon, V. S.; Dominik, M.; Esenoglu, H.; Fossey, S.; Gomboc, A.; Hallokoun, N.; Hamanowicz, A.; Hardy, L. K.; Hudec, R.; Khamitov, I.; Klencki, J.; Kolaczkowski, Z.; Kolb, U.; Leonini, S.; Leto, G.; Lewis, F.; Liakos, A.; Littlefair, S. P.; Maoz, D.; Maund, J. R.; Mikolajczyk, P.; Palaversa, L.; Pawlak, M.; Penny, M.; Piascik, A.; Reig, P.; Rhodes, L.; Russell, D.; Sanchez, R. Z.; Shappee, B.; Shvartzvald, Y.; Sitek, M.; Sniegowska, M.; Sokolovsky, K.; Steele, I.; Street, R.; Tomasella, L.; Trascinelli, L.; Wiersema, K.; Wilson, R. W.; Zharkov, I.; Zola, S.; Zubareva, A.

    2017-05-01

    Gaia16aye, nicknamed Ayers Rock (19:40:01.13 +30:07:53.4, J2000) was detected in August 2016 and continue on-going, becoming the longest microlensing event found in the Galactic Disk (ATEL #9376, #9507).

  17. Accessing the dark exciton spin in deterministic quantum-dot microlenses

    Science.gov (United States)

    Heindel, Tobias; Thoma, Alexander; Schwartz, Ido; Schmidgall, Emma R.; Gantz, Liron; Cogan, Dan; Strauß, Max; Schnauber, Peter; Gschrey, Manuel; Schulze, Jan-Hindrik; Strittmatter, Andre; Rodt, Sven; Gershoni, David; Reitzenstein, Stephan

    2017-12-01

    The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates |↑ ⇑ ±↓ ⇓ ⟩. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.

  18. Discovery of a bright microlensing event with planetary features towards the Taurus region: a super-Earth planet

    Science.gov (United States)

    Nucita, A. A.; Licchelli, D.; De Paolis, F.; Ingrosso, G.; Strafella, F.; Katysheva, N.; Shugarov, S.

    2018-05-01

    The transient event labelled as TCP J05074264+2447555 recently discovered towards the Taurus region was quickly recognized to be an ongoing microlensing event on a source located at distance of only 700-800 pc from Earth. Here, we show that observations with high sampling rate close to the time of maximum magnification revealed features that imply the presence of a binary lens system with very low-mass ratio components. We present a complete description of the binary lens system, which host an Earth-like planet with most likely mass of 9.2 ± 6.6 M⊕. Furthermore, the source estimated location and detailed Monte Carlo simulations allowed us to classify the event as due to the closest lens system, being at a distance of ≃380 pc and mass ≃0.25 M⊙.

  19. Interpreting the Strongly Lensed Supernova iPTF16geu: Time Delay Predictions, Microlensing, and Lensing Rates

    Energy Technology Data Exchange (ETDEWEB)

    More, Anupreeta; Oguri, Masamune; More, Surhud [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, Chiba 277-8583 (Japan); Suyu, Sherry H. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Lee, Chien-Hsiu, E-mail: anupreeta.more@ipmu.jp [Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohoku Place, Hilo, HI 96720 (United States)

    2017-02-01

    We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the Hubble Space Telescope F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hr reported by Goobar et al. but places a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. However, the observed total magnification of iPTF16geu is larger than expected, given its redshift. This may be a further indication of ongoing microlensing in this system.

  20. Preparing for the WFIRST Microlensing Survey: Simulations, Requirements, Survey Strategies, and Precursor Observations

    Science.gov (United States)

    Gaudi, Bernard

    As one of the four primary investigations of the Wide Field Infrared Survey Telescope (WFIRST) mission, the microlensing survey will monitor several square degrees of the Galactic bulge for a total of roughly one year. Its primary science goal is to "Complete the statistical census of planetary systems in the Galaxy, from the outer habitable zone to free floating planets, including analogs of all of the planets in our Solar System with the mass of Mars or greater.'' WFIRST will therefore (a) measure the mass function of cold bound planets with masses greater than that of roughly twice the mass of the moon, including providing an estimate of the frequency of sub-Mars-mass embryos, (b) determine the frequency of free-floating planets with masses down to the Earth and below, (c) inform the frequency and habitability of potentially habitable worlds, and (d) revolutionize our understanding of the demographics of cold planets with its exquisite sensitivity to, and large expected yield of, planets in a broad and unexplored region of parameter space. In order for the microlensing survey to be successful, we must develop a plan to go from actual survey observations obtained by the WFIRST telescope and hardware to the final science products. This plan will involve many steps, the development of software, data reduction, and analysis tools at each step, and a list of requirements for each of these components. The overarching goal of this proposal is thus to develop a complete flowdown from the science goals of the microlensing survey to the mission design and hardware components. We have assembled a team of scientists with the breadth of expertise to achieve this primary goal. Our specific subgoals are as follows. Goal 1: We will refine the input Galactic models in order to provide improved microlensing event rates in the WFIRST fields. Goal 2: We will use the improved event rate estimates, along with improvements in our simulation methodology, to provide higher

  1. Fabrication of polymer microlenses on single mode optical fibers for light coupling

    Science.gov (United States)

    Zaboub, Monsef; Guessoum, Assia; Demagh, Nacer-Eddine; Guermat, Abdelhak

    2016-05-01

    In this paper, we present a technique for producing fibers optics micro-collimators composed of polydimethylsiloxane PDMS microlenses of different radii of curvature. The waist and working distance values obtained enable the optimization of optical coupling between optical fibers, fibers and optical sources, and fibers and detectors. The principal is based on the injection of polydimethylsiloxane (PDMS) into a conical micro-cavity chemically etched at the end of optical fibers. A spherical microlens is then formed that is self-centered with respect to the axis of the fiber. Typically, an optimal radius of curvature of 10.08 μm is obtained. This optimized micro-collimator is characterized by a working distance of 19.27 μm and a waist equal to 2.28 μm for an SMF 9/125 μm fiber. The simulation and experimental results reveal an optical coupling efficiency that can reach a value of 99.75%.

  2. Isotope cloud linked to failed neutrino source

    Science.gov (United States)

    Cartlidge, Edwin

    2018-02-01

    For 2 weeks in the fall of 2017, traces of the isotope ruthenium-106 wafted across Europe. The radioactive cloud was too thin to be dangerous, but it posed a mystery to scientists. Now, researchers at the French Institute of Radioprotection and Nuclear Security say the isotope may have been released from the Mayak nuclear facility in southern Russia. They argue the leak may have happened when technicians botched the fabrication of a cerium-144 source needed in the search for sterile neutrinos at the Gran Sasso National Laboratory in L'Aquila, Italy. The Russian government has vehemently denied that an accident took place, however.

  3. RED NOISE VERSUS PLANETARY INTERPRETATIONS IN THE MICROLENSING EVENT OGLE-2013-BLG-446

    Energy Technology Data Exchange (ETDEWEB)

    Bachelet, E.; Bramich, D. M.; AlSubai, K. [Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Greenhill, J. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, TAS 7001 (Australia); Street, R. A.; Tsapras, Y. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Gould, A.; Batista, V. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); D’Ago, G. [Dipartimento di Fisica “E.R. Caianiello,” Università di Salerno, Via Ponte Don Melillo, I-84084-Fisciano (Italy); Dominik, M.; Jaimes, R. Figuera; Horne, K.; Hundertmark, M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Kains, N. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Snodgrass, C. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Gttingen (Germany); Steele, I. A. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool CH41 1LD (United Kingdom); Albrow, M. D. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8020 (New Zealand); Beaulieu, J.-P. [UPMC-CNRS, UMR 7095, Institut dAstrophysique de Paris, 98bis boulevard Arago, F-75014 Paris (France); Bennett, D. P., E-mail: c.botzler@auckland.ac.nz, E-mail: p.yock@auckland.ac.nz, E-mail: bennett@nd.edu, E-mail: abe@stelab.nagoya-u.ac.jp, E-mail: furusawa@stelab.nagoya-u.ac.jp, E-mail: itow@stelab.nagoya-u.ac.jp [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Collaboration: RoboNet collaboration; PLANET collaboration; μFUN collaboration; MOA collaboration; MiNDSTEp collaboration; and others

    2015-10-20

    For all exoplanet candidates, the reliability of a claimed detection needs to be assessed through a careful study of systematic errors in the data to minimize the false positives rate. We present a method to investigate such systematics in microlensing data sets using the microlensing event OGLE-2013-BLG-0446 as a case study. The event was observed from multiple sites around the world and its high magnification (A{sub max} ∼ 3000) allowed us to investigate the effects of terrestrial and annual parallax. Real-time modeling of the event while it was still ongoing suggested the presence of an extremely low-mass companion (∼3M{sub ⨁}) to the lensing star, leading to substantial follow-up coverage of the light curve. We test and compare different models for the light curve and conclude that the data do not favor the planetary interpretation when systematic errors are taken into account.

  4. The First Circumbinary Planet Found by Microlensing: OGLE-2007-BLG-349L(AB)c

    Science.gov (United States)

    Bennett, D. P.; Rhie, S. H.; Udalski, A.; Gould, A.; Tsapras, Y.; Kubas, D.; Bond, I. A.; Greenhill, J.; Cassan, A.; Rattenbury, N. J.; hide

    2016-01-01

    We present the analysis of the first circumbinary planet microlensing event, OGLE-2007-BLG-349. This event has a strong planetary signal that is best fit with a mass ratio of q approx. = 3.4×10(exp -4), but there is an additional signal due to an additional lens mass, either another planet or another star. We find acceptable light-curve fits with two classes of models: two-planet models (with a single host star) and circumbinary planet models. The light curve also reveals a significant microlensing parallax effect, which constrains the mass of the lens system to be M(sub L) approx. = 0.7 Stellar Mass. Hubble Space Telescope (HST) images resolve the lens and source stars from their neighbors and indicate excess flux due to the star(s) in the lens system. This is consistent with the predicted flux from the circumbinary models, where the lens mass is shared between two stars, but there is not enough flux to be consistent with the two-planet, one-star models. So, only the circumbinary models are consistent with the HST data. They indicate a planet of mass m(sub c) = 80 +/- 13 Stellar Mass, orbiting a pair of M dwarfs with masses of M(sub A) = 0.41+/- 0.07 and M(sub B) = 0.30 +/- 0.07, which makes this the lowest-mass circumbinary planet system known. The ratio of the separation between the planet and the center of mass to the separation of the two stars is approx.40, so unlike most of the circumbinary planets found by Kepler, the planet does not orbit near the stability limit.

  5. Electron cloud development in the Proton Storage Ring and in the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pivi, M.T.F.; Furman, M.A.

    2002-01-01

    We have applied our simulation code ''POSINST'' to evaluate the contribution to the growth rate of the electron-cloud instability in proton storage rings. Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source(SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A key ingredient in our model is a detailed description of the secondary emitted-electron energy spectrum. A refined model for the secondary emission process including the so-called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code

  6. MASS MEASUREMENTS OF ISOLATED OBJECTS FROM SPACE-BASED MICROLENSING

    DEFF Research Database (Denmark)

    Zhu, Wei; Novati, S. Calchi; Gould, A.

    2016-01-01

    lies behind the same amount of dust as the Bulge red clump, we find the lens is a 45 ± 7 {M}{{J}} BD at 5.9 ± 1.0 kpc. The lens of of the second event, OGLE-2015-BLG-0763, is a 0.50 ± 0.04 {M}⊙ star at 6.9 ± 1.0 kpc. We show that the probability to definitively measure the mass of isolated microlenses...... is dramatically increased once simultaneous ground- and space-based observations are conducted....

  7. Search for near-infrared counterparts of IRAS embedded sources in the M17 SW giant molecular cloud

    International Nuclear Information System (INIS)

    Elmegreen, D.M.; Phillips, J.; Beck, K.; Thomas, H.; Howard, J.

    1988-01-01

    Wide-field near-infrared and blue band plates of the region containing the M17 giant molecular cloud complex have been blinked to locate bright near-infrared stars that may be embedded in the M17 SW giant molecular cloud. Twenty such stars coincided with the positions of IRAS point sources that appeared embedded based on color-color diagrams. Some of these stars may be the sources of the infrared luminosities. Of the 20 stars, seven were too faint to appear on the B band plate. The optical magnitudes and colors determined from the plate image diameters were measured for the other 13 coincident stars; they are most likely upper main-sequence or pre-main-sequence stars with extinctions of 7 mag. The IRAS luminosity-temperature diagram indicates that the embedded sources in M17 are more massive than those in the Orion cloud. 35 references

  8. About microlensing optical depth and rates for free-floating planets towards the Kepler's field of view

    International Nuclear Information System (INIS)

    Hafizi, M; Hamolli, L

    2012-01-01

    In this work we examine the possibility of observing microlensing events in the Kepler space observatory field of view, caused by brown dwarfs or free-floating planets. We calculate the optical depth towards the field of view of the Kepler satellite and the rate of these events based on latest results about mass distribution of astrophysical objects from brown dwarf down to Earth mass order. With the current data, the probability of such events is insignificant, due to the small number of stars observed by this instrument compared to other experiments devoted to the microlensing method. Nevertheless, this probability may increase significantly in the case of a higher presence of free-floating planets, whose number is poorly defined so far.

  9. Cloud Forecasting and 3-D Radiative Transfer Model Validation using Citizen-Sourced Imagery

    Science.gov (United States)

    Gasiewski, A. J.; Heymsfield, A.; Newman Frey, K.; Davis, R.; Rapp, J.; Bansemer, A.; Coon, T.; Folsom, R.; Pfeufer, N.; Kalloor, J.

    2017-12-01

    Cloud radiative feedback mechanisms are one of the largest sources of uncertainty in global climate models. Variations in local 3D cloud structure impact the interpretation of NASA CERES and MODIS data for top-of-atmosphere radiation studies over clouds. Much of this uncertainty results from lack of knowledge of cloud vertical and horizontal structure. Surface-based data on 3-D cloud structure from a multi-sensor array of low-latency ground-based cameras can be used to intercompare radiative transfer models based on MODIS and other satellite data with CERES data to improve the 3-D cloud parameterizations. Closely related, forecasting of solar insolation and associated cloud cover on time scales out to 1 hour and with spatial resolution of 100 meters is valuable for stabilizing power grids with high solar photovoltaic penetrations. Data for cloud-advection based solar insolation forecasting with requisite spatial resolution and latency needed to predict high ramp rate events obtained from a bottom-up perspective is strongly correlated with cloud-induced fluctuations. The development of grid management practices for improved integration of renewable solar energy thus also benefits from a multi-sensor camera array. The data needs for both 3D cloud radiation modelling and solar forecasting are being addressed using a network of low-cost upward-looking visible light CCD sky cameras positioned at 2 km spacing over an area of 30-60 km in size acquiring imagery on 30 second intervals. Such cameras can be manufactured in quantity and deployed by citizen volunteers at a marginal cost of 200-400 and operated unattended using existing communications infrastructure. A trial phase to understand the potential utility of up-looking multi-sensor visible imagery is underway within this NASA Citizen Science project. To develop the initial data sets necessary to optimally design a multi-sensor cloud camera array a team of 100 citizen scientists using self-owned PDA cameras is being

  10. PENGEMBANGAN MODEL APLIKASI ADMINISTRASI PELAYANAN KESEHATAN DI PUSKEMAS DENGAN CLOUD COMPUTING BERBASISKAN OPEN SOURCE

    OpenAIRE

    Honni

    2013-01-01

    Puskemas as community health centers becomes one of the main focuses of development on the agenda of the Government of Indonesia beside education. Therefore, we purpose to develop an affordable online system of health care administration based on open source using cloud computing approach. It can be used for collecting data of patients, diseases, and treatment of patients at Puskesmas. The methods used are literature study related to cloud computing, survey design and data collection infrastr...

  11. Pengembangan Model Aplikasi Administrasi Pelayanan Kesehatan di Puskemas dengan Cloud Computing Berbasiskan Open Source

    OpenAIRE

    Honni, Honni

    2013-01-01

    Puskemas as community health centers becomes one of the main focuses of development on the agenda of the Government of Indonesia beside education. Therefore, we purpose to develop an affordable online system of health care administration based on open source using cloud computing approach. It can be used for collecting data of patients, diseases, and treatment of patients at Puskesmas. The methods used are literature study related to cloud computing, survey design and data collection infrastr...

  12. The First Simultaneous Microlensing Observations by Two Space Telescopes: Spitzer and Swift Reveal a Brown Dwarf in Event OGLE-2015-BLG-1319

    Science.gov (United States)

    Shvartzvald, Y.; Li, Z.; Udalski, A.; Gould, A.; Sumi, T.; Street, R. A.; Calchi Novati, S.; Hundertmark, M.; Bozza, V.; Beichman, C.; hide

    2016-01-01

    Simultaneous observations of microlensing events from multiple locations allow for the breaking of degeneracies between the physical properties of the lensing system, specifically by exploring different regions of the lens plane and by directly measuring the "microlens parallax". We report the discovery of a 30-65M J brown dwarf orbiting a K dwarf in the microlensing event OGLE-2015-BLG-1319. The system is located at a distance of approximately 5 kpc toward the Galactic Bulge. The event was observed by several ground-based groups as well as by Spitzer and Swift, allowing a measurement of the physical properties. However, the event is still subject to an eight-fold degeneracy, in particular the well-known close-wide degeneracy, and thus the projected separation between the two lens components is either approximately 0.25 au or approximately 45 au. This is the first microlensing event observed by Swift, with the UVOT camera. We study the region of microlensing parameter space to which Swift is sensitive, finding that though Swift could not measure the microlens parallax with respect to ground-based observations for this event, it can be important for other events. Specifically, it is important for detecting nearby brown dwarfs and free-floating planets in high magnification events.

  13. Characterizing low-mass binaries from observation of long-timescale caustic-crossing gravitational microlensing events

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Choi, J.-Y

    2012-01-01

    solution by follow-up radial-velocity observation. For both events, the caustic-crossing parts of the light curves, which are critical for determining the physical lens parameters, were resolved by high-cadence survey observations and thus it is expected that the number of microlensing binaries...

  14. Discovery of a Gas Giant Planet in Microlensing Event Ogle-2014-BLG-1760

    Science.gov (United States)

    Bhattacharya, A.; Bennett, D. P.; Bond, I. A.; Sumi, T.; Udalski, A.; Street, R.; Tsapras, Y.; Abe, F.; Freeman, M.; Fukui, A.

    2016-01-01

    We present the analysis of the planetary microlensing event OGLE-2014-BLG-1760, which shows a strong light-curve signal due to the presence of a Jupiter mass ratio planet. One unusual feature of this event is that the source star is quite blue, with V-I = 1.48 +/- 0.08. This is marginally consistent with a source star in the Galactic bulge, but it could possibly indicate a young source star on the far side of the disk. Assuming a bulge source, we perform a Bayesian analysis assuming a standard Galactic model, and this indicates that the planetary system resides in or near the Galactic bulge at D(sub L) = 6.9 +/- 1.1 kpc. It also indicates a host-star mass of M(sub *) = 0.51(sup + 0.44/sub -0.28) M(sub theta), a planet mass of m(sub p ) = 0.56(sup +0.34/sub -0.26) M(sub J), and a projected star-planet separation of a(perpendicular) = 1.75(sup +0.33/sub -0.34) au. The lens-source relative proper motion is micro(sub rel) = 6.5 +/- 1.1mas per yr. The lens (and stellar host star) is estimated to be very faint compared to the source star, so it is most likely that it can be detected only when the lens and source stars start to separate. Due to the relatively high relative proper motion, the lens and source will be resolved to about approximately 46 mas in 6-8 yr after the peak magnification. So, by 2020-2022, we can hope to detect the lens star with deep, high-resolution images.

  15. The Galactic Distribution of Planets via Spitzer Microlensing Parallax

    Science.gov (United States)

    Gould, Andrew; Yee, Jennifer; Carey, Sean; Shvartzvald, Yossi

    2018-05-01

    We will measure the Galactic distribution of planets by obtaining 'microlens parallaxes' of about 200 events, including 3 planetary events, from the comparison of microlens lightcurves observed from Spitzer and Earth, which are separated by >1.5 AU in projection. The proposed observations are part of a campaign that we have conducted with Spitzer since 2014. The planets expected to be identified in this campaign when combined with previous work will yield a first statistically significant measurement of the frequency of planets in the Galactic bulge versus the Galactic disk. As we have demonstrated in three previous programs, the difference in these lightcurves yields both the 'microlens parallax' (ratio of the lens-source relative parallax) to the Einstein radius, and the direction of lens-source relative motion. For planetary events, this measurement directly yields the mass and distance of the planet. This proposal is significantly more sensitive to planets than previous work because it takes advantage of the KMTNet observing strategy that covers >85 sq.deg t >0.4/hr cadence, 24/7 from 3 southern observatories and a alert system KMTNet is implementing for 2019. This same observing program also provides a unique probe of dark objects. It will yield an improved measurement of the isolated-brown-dwarf mass function. Thirteen percent of the observations will specifically target binaries, which will probe systems with dark components (brown dwarfs, neutron stars, black holes) that are difficult or impossible to investigate by other methods. The observations and methods from this work are a test bed for WFIRST microlensing.

  16. Contrasting Cloud Composition Between Coupled and Decoupled Marine Boundary Layer Clouds

    Science.gov (United States)

    WANG, Z.; Mora, M.; Dadashazar, H.; MacDonald, A.; Crosbie, E.; Bates, K. H.; Coggon, M. M.; Craven, J. S.; Xian, P.; Campbell, J. R.; AzadiAghdam, M.; Woods, R. K.; Jonsson, H.; Flagan, R. C.; Seinfeld, J.; Sorooshian, A.

    2016-12-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (E-PEACE 2011, NiCE 2013, BOAS 2015). Decoupled clouds exhibited significantly lower overall mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and sub-cloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Non-refractory sub-micrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Total cloud water mass concentration in coupled clouds was dominated by sodium and chloride, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea salt constituents (e.g., Cl, Na, Mg, K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. These results suggest that an important variable is the extent to which clouds are coupled to the surface layer when interpreting microphysical data relevant to clouds and aerosol particles.

  17. Optimal survey strategies and predicted planet yields for the Korean microlensing telescope network

    International Nuclear Information System (INIS)

    Henderson, Calen B.; Gaudi, B. Scott; Skowron, Jan; Penny, Matthew T.; Gould, Andrew P.; Han, Cheongho; Nataf, David

    2014-01-01

    The Korean Microlensing Telescope Network (KMTNet) will consist of three 1.6 m telescopes each with a 4 deg 2 field of view (FoV) and will be dedicated to monitoring the Galactic Bulge to detect exoplanets via gravitational microlensing. KMTNet's combination of aperture size, FoV, cadence, and longitudinal coverage will provide a unique opportunity to probe exoplanet demographics in an unbiased way. Here we present simulations that optimize the observing strategy for and predict the planetary yields of KMTNet. We find preferences for four target fields located in the central Bulge and an exposure time of t exp = 120 s, leading to the detection of ∼2200 microlensing events per year. We estimate the planet detection rates for planets with mass and separation across the ranges 0.1 ≤ M p /M ⊕ ≤ 1000 and 0.4 ≤ a/AU ≤ 16, respectively. Normalizing these rates to the cool-planet mass function of Cassan et al., we predict KMTNet will be approximately uniformly sensitive to planets with mass 5 ≤ M p /M ⊕ ≤ 1000 and will detect ∼20 planets per year per dex in mass across that range. For lower-mass planets with mass 0.1 ≤ M p /M ⊕ < 5, we predict KMTNet will detect ∼10 planets per year. We also compute the yields KMTNet will obtain for free-floating planets (FFPs) and predict KMTNet will detect ∼1 Earth-mass FFP per year, assuming an underlying population of one such planet per star in the Galaxy. Lastly, we investigate the dependence of these detection rates on the number of observatories, the photometric precision limit, and optimistic assumptions regarding seeing, throughput, and flux measurement uncertainties.

  18. Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources

    Directory of Open Access Journals (Sweden)

    E. G. Chapman

    2009-02-01

    Full Text Available The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous-phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number to precipitation and an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs and produced clouds of comparable thickness to observations at approximately the proper times and places. The model overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest

  19. Predicting the 4th caustic crossing in Gaia16aye binary microlensing event

    Science.gov (United States)

    Mroz, P.; Wyrzykowski, L.; Rybicki, K.; Altavilla, G.; Bakis, V.; Bendjoya, P.; Birenbaum, G.; Blagorodnova, N.; Blanco-Cuaresma, S.; Bonanos, A.; Bozza, V.; Britavskiy, N.; Burgaz, U.; Butterley, T.; Capuozzo, P.; Carrasco, J. M.; Chruslinska, M.; Damljanovic, G.; Dennefeld, M.; Dhillon, V. S.; Dominik, M.; Esenoglu, H.; Fossey, S.; Gomboc, A.; Hallokoun, N.; Hamanowicz, A.; Hardy, L. K.; Hudec, R.; Khamitov, I.; Klencki, J.; Kolaczkowski, Z.; Kolb, U.; Leonini, S.; Leto, G.; Lewis, F.; Liakos, A.; Littlefair, S. P.; Maoz, D.; Maund, J. R.; Mikolajczyk, P.; Palaversa, L.; Pawlak, M.; Penny, M.; Piascik, A.; Reig, P.; Rhodes, L.; Russell, D.; Sanchez, R. Z.; Shappee, B.; Shvartzvald, Y.; Sitek, M.; Sniegowska, M.; Sokolovsky, K.; Steele, I.; Street, R.; Tomasella, L.; Trascinelli, L.; Wiersema, K.; Wilson, R. W.; Zharkov, I.; Zola, S.; Zubareva, A.

    2016-11-01

    Gaia16aye, nicknamed Ayers Rock (19:40:01.13 +30:07:53.4, J2000) is a spectacular binary microlensing event in the Northern Galactic Plane. The event has been observed by Gaia, ASAS-SN survey and a network of follow-up telescopes, coordinated by the Time Domain WP of the EC's OPTICON grant.

  20. Searching for habitable exoplanets by using combined microlensing and radial velocity facilities

    International Nuclear Information System (INIS)

    Joergensen, Uffe Graae

    2008-01-01

    The habitable planetary regime, where life as we know it from the Earth in principle can exist, has long been among the technically most difficult to search for the existence of exoplanets. It spans the inner and outer orbital range, where liquid water in principle can exist on a planetary surface (the habitable zone), and the planetary mass range from the lowest mass where an atmosphere is bound over biological timescales to the upper mass limit where a nebula gas-collapse transforms a solid planet into a gas planet. With a prober equipment, microlensing is sensitive to this regime for most stellar types, including solar-type stars, while the radial velocity technique complements the detection regime by being sensitive to such planets around the lowest mass stars. By combining microlensing with radial velocity measurements, it is possible to cover the complete habitable region from the ground. I outline here the theory that in principle will make it possible to perform an efficient survey throughout the habitable regime of the most common types of stars in our galaxy over the next few years, and describe how it can be done in practise for a relatively low cost

  1. Observations of X-ray sources in the Large Magellanic cloud by the OSO-7 satellite

    International Nuclear Information System (INIS)

    Markert, T.H.; Clark, G.W.

    1975-01-01

    Observations of the Large Magellanic Cloud with the 1-40 keV X-ray detectors on the OSO-7 satellite are reported. Results include the discovery of a previously unreported source LMC X-5, measurements of the spectral characteristics of four sources, and observations of their variability on time scales of months

  2. ELECTRON CLOUD AT COLLIMATOR AND INJECTION REGION OF THE SPALLATION NEUTRON SOURCE ACCUMULATOR RING

    International Nuclear Information System (INIS)

    WANG, L.; HSEUH, H.-C.; LEE, Y.Y.; RAPARIA, D.; WEI, J.; COUSINEAU, S.

    2005-01-01

    The beam loss along the Spallation Neutron Source's accumulator ring is mainly located at the collimator region and injection region. This paper studied the electron cloud build-up at these two regions with the three-dimension program CLOUDLAND

  3. A NEW APPLICATION OF THE ASTROMETRIC METHOD TO BREAK SEVERE DEGENERACIES IN BINARY MICROLENSING EVENTS

    International Nuclear Information System (INIS)

    Chung, Sun-Ju; Park, Byeong-Gon; Humphrey, Andrew; Ryu, Yoon-Hyun

    2009-01-01

    When a source star is microlensed by one stellar component of widely separated binary stellar components, after finishing the lensing event, the event induced by the other binary star can be additionally detected. In this paper, we investigate whether the close/wide degeneracies in binary lensing events can be resolved by detecting the additional centroid shift of the source images induced by the secondary binary star in wide binary lensing events. From this investigation, we find that if the source star passes close to the Einstein ring of the secondary companion, the degeneracy can be easily resolved by using future astrometric follow-up observations with high astrometric precision. We determine the probability of detecting the additional centroid shift in binary lensing events with high magnification. From this, we find that the degeneracy of binary lensing events with a separation of ∼<20.0 AU can be resolved with a significant efficiency. We also estimate the waiting time for the detection of the additional centroid shift in wide binary lensing events. We find that for typical Galactic lensing events with a separation of ∼<20.0 AU, the additional centroid shift can be detected within 100 days, and thus the degeneracy of those events can be sufficiently broken within a year.

  4. SPECTRAL LINE SURVEY TOWARD MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Yuri; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Shimonishi, Takashi [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramakiazaaoba 6-3, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Sakai, Nami [RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aikawa, Yuri [Center for Computational Sciences, The University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Kawamura, Akiko [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2016-02-20

    Spectral line survey observations of seven molecular clouds in the Large Magellanic Cloud (LMC) have been conducted in the 3 mm band with the Mopra 22 m telescope to reveal chemical compositions in low metallicity conditions. Spectral lines of fundamental species such as CS, SO, CCH, HCN, HCO{sup +}, and HNC are detected in addition to those of CO and {sup 13}CO, while CH{sub 3}OH is not detected in any source and N{sub 2}H{sup +} is marginally detected in two sources. The molecular-cloud scale (10 pc scale) chemical composition is found to be similar among the seven sources regardless of different star formation activities, and hence, it represents the chemical composition characteristic of the LMC without influences by star formation activities. In comparison with chemical compositions of Galactic sources, the characteristic features are (1) deficient N-bearing molecules, (2) abundant CCH, and (3) deficient CH{sub 3}OH. Feature (1) is due to a lower elemental abundance of nitrogen in the LMC, whereas features (2) and (3) seem to originate from extended photodissociation regions and warmer temperature in cloud peripheries due to a lower abundance of dust grains in the low metallicity condition. In spite of general resemblance of chemical abundances among the seven sources, the CS/HCO{sup +} and SO/HCO{sup +} ratios are found to be slightly higher in a quiescent molecular cloud. An origin of this trend is discussed in relation to possible depletion of sulfur along the molecular cloud formation.

  5. Gravitational Microlensing of Earth-mass Planets

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West

    It was only 17 years ago that the first planet outside of our own solar system was detected in the form of 51 Pegasi b. This planet is unlike anything in our own solar system. In fact, this planet was the first representative of a class of planets later known as “hot Jupiters”– gas giants......, i.e. it is much easier to detect high mass planets in close orbits. With these two methods it is hard to detect planets in an exo-solar system with a structure similar to our own solar system; specifically, it is hard to detect Earth-like planets in Earth-like orbits. It is presently unknown how...... common such planets are in our galaxy. There are a few other known methods for detecting exoplanets which have very different bias patterns. This thesis has been divided into two parts, treating two of these other methods. Part I is dedicated to the method of gravitational microlensing, a method...

  6. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  7. Alternative IT Sourcing Strategies: From the Campus to the Cloud. ECAR Key Findings

    Science.gov (United States)

    Goldstein, Philip J.

    2009-01-01

    This document presents the key findings from the 2009 ECAR (EDUCAUSE Center for Applied Research) study, "Alternative IT Sourcing Strategies: From the Campus to the Cloud," by Philip J. Goldstein. The study explores a multitude of strategies used by colleges and university information technology organizations to deliver the breadth of technologies…

  8. OGLE‐2008‐BLG‐510: first automated real‐time detection of a weak microlensing anomaly – brown dwarf or stellar binary?★

    DEFF Research Database (Denmark)

    Bozza, V.; Dominik, M.; Rattenbury, N. J.

    2012-01-01

    , efficient and sensitive, (2) rather common weak features intrinsically come with ambiguities that are not easily resolved from photometric light curves, (3) a modelling approach that finds all features of parameter space rather than just the ‘favourite model’ is required and (4) the data quality is most......The microlensing event OGLE‐2008‐BLG‐510 is characterized by an evident asymmetric shape of the peak, promptly detected by the Automated Robotic Terrestrial Exoplanet Microlensing Search (ARTEMiS) system in real time. The skewness of the light curve appears to be compatible both with binary...

  9. Quasar Microlensing at High Magnification and the Role of Dark Matter: Enhanced Fluctuations and Suppressed Saddle Points

    Science.gov (United States)

    Schechter, Paul L.; Wambsganss, Joachim

    2002-12-01

    Contrary to naive expectation, diluting the stellar component of the lensing galaxy in a highly magnified system with smoothly distributed ``dark'' matter increases rather than decreases the microlensing fluctuations caused by the remaining stars. For a bright pair of images straddling a critical curve, the saddle point (of the arrival time surface) is much more strongly affected than the associated minimum. With a mass ratio of smooth matter to microlensing matter of 4:1, a saddle point with a macromagnification of μ=9.5 will spend half of its time more than a magnitude fainter than predicted. The anomalous flux ratio observed for the close pair of images in MG 0414+0534 is a factor of 5 more likely than computed by Witt, Mao, & Schechter, if the smooth matter fraction is as high as 93%. The magnification probability histograms for macroimages exhibit a distinctly different structure that varies with the smooth matter content, providing a handle on the smooth matter fraction. Enhanced fluctuations can manifest themselves either in the temporal variations of a light curve or as flux ratio anomalies in a single epoch snapshot of a multiply imaged system. While the millilensing simulations of Metcalf & Madau also give larger anomalies for saddle points than for minima, the effect appears to be less dramatic for extended subhalos than for point masses. Moreover, microlensing is distinguishable from millilensing because it will produce noticeable changes in the magnification on a timescale of a decade or less.

  10. Microlensing of unresolved stars as a brown dwarf detection method

    CERN Document Server

    Bouquet, Alain; Melchior, Anne-Laure; Giraud-Heraud, Yannick; Baillon, Paul

    1993-01-01

    We describe a project of brown dwarf detection in the dark halo of a galaxy using the microlensing effect. We argue that monitoring pixels instead of stars could provide an enhancement in the number of detectable events. We estimate the detection efficiency with a Monte-Carlo simulation. We expect a ten-fold increase with respect to current experiments. To assess the feasibility of this method we have determined the photometric precision of a pixel by comparing several pictures of a same field in the LMC. To be published in the Proceeding of the workshop 'The dark side of the universe...', Roma, Juin 1993,

  11. Rates for parallax-shifted microlensing events from ground-based observations of the galactic bulge

    International Nuclear Information System (INIS)

    Buchalter, A.; Kamionkowski, M.

    1997-01-01

    The parallax effect in ground-based microlensing (ML) observations consists of a distortion to the standard ML light curve arising from the Earth's orbital motion. This can be used to partially remove the degeneracy among the system parameters in the event timescale, t 0 . In most cases, the resolution in current ML surveys is not accurate enough to observe this effect, but parallax could conceivably be detected with frequent follow-up observations of ML events in progress, providing the photometric errors are small enough. We calculate the expected fraction of ML events where the shape distortions will be observable by such follow-up observations, adopting Galactic models for the lens and source distributions that are consistent with observed microlensing timescale distributions. We study the dependence of the rates for parallax-shifted events on the frequency of follow-up observations and on the precision of the photometry. For example, we find that for hourly observations with typical photometric errors of 0.01 mag, 6% of events where the lens is in the bulge, and 31% of events where the lens is in the disk (or ∼10% of events overall), will give rise to a measurable parallax shift at the 95% confidence level. These fractions may be increased by improved photometric accuracy and increased sampling frequency. While long-duration events are favored, the surveys would be effective in picking out such distortions in events with timescales as low as t 0 ∼20 days. We study the dependence of these fractions on the assumed disk mass function and find that a higher parallax incidence is favored by mass functions with higher mean masses. Parallax measurements yield the reduced transverse speed, v, which gives both the relative transverse speed and lens mass as a function of distance. We give examples of the accuracies with which v may be measured in typical parallax events. (Abstract Truncated)

  12. Near-infrared sources in the molecular cloud G35.2-0.74

    International Nuclear Information System (INIS)

    Tapia, M.; Roth, M.; Persi, P.; Ferrari-Toniolo, M.

    1985-01-01

    Near-infrared (1-4 μm) observations of the molecular cloud G35.2-0.74 reveal the presence of four infrared sources in the vicinity of two previously reported centres of recent star formation. The northern part of G35.2-0.74 contains three point sources which are interpreted as highly obscured stars. Irs 1 coincides with H 2 O and OH maser sources and seems to be a very young early-type star. The southern part of G35.2-0.74 shows a diffuse 2.2-μm source with a flux distribution in the short-wavelength region compatible with free-free emission and a large excess at lambda > or approx. 3 μm attributed to warm dust mixed with the gas. These data are consistent with a fully developed HII region. (author)

  13. Cloud computing geospatial application for water resources based on free and open source software and open standards - a prototype

    Science.gov (United States)

    Delipetrev, Blagoj

    2016-04-01

    Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state

  14. Top-down and Bottom-up aerosol-cloud-closure: towards understanding sources of unvertainty in deriving cloud radiative flux

    Science.gov (United States)

    Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.

    2017-12-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after

  15. AGAPE a search for dark matter towards M31 by microlensing effects on unresolved stars

    CERN Document Server

    Ansari, R; Baillon, Paul; Bouquet, A; Coupinot, G; Coutures, C; Ghesquière, C; Gondolo, P; Hecquet, J; Kaplan, J; Le Du, Y; Melchior, A L; Moniez, M; Picat, J P; Soucail, G

    1996-01-01

    M31 is a very tempting target for a microlensing search of compact objects in galactic haloes. It is the nearest large galaxy, it probably has its own dark halo, and its tilted position with respect to the line of sight provides an unmistakable signature of microlensing. However most stars of M31 are not resolved and one has to use the ``pixel method'': monitor the pixels of the image rather than the stars. AGAPE is the implementation of this idea. Data have been collected and treated during two autumns of observation at the 2 metre telescope of Pic du Midi. The process of geometric and photometric alignment, which must be performed before constructing pixel light curves, is described. Seeing variations are minimised by working with large super-pixels (2.1 ") compared with the average seeing. A high level of stability of pixel fluxes, crucial to the approach, is reached. Fluctuations of super-pixels do not exceed 1.7 times the photon noise which is 0.1\\% of the intensity for the brightest ones. With such stab...

  16. Fabrication of high performance microlenses for an integrated capillary channel electrochromatograph with fluorescence detection

    International Nuclear Information System (INIS)

    Wendt, J. R.; Warren, M. E.; Sweatt, W. C.; Bailey, C. G.; Matzke, C. M.; Arnold, D. W.; Allerman, A. A.; Carter, T. R.; Asbill, R. E.; Samora, S.

    1999-01-01

    We describe the microfabrication of an extremely compact optical system as a key element in an integrated capillary channel electrochromatograph with fluorescence detection. The optical system consists of a vertical cavity surface-emitting laser (VCSEL), two high performance microlenses, and a commercial photodetector. The microlenses are multilevel diffractive optics patterned by electron beam lithography and etched by reactive ion etching in fused silica. The design uses substrate-mode propagation within the fused silica substrate. Two generations of optical subsystems are described. The first generation design has a 6 mm optical length and is integrated directly onto the capillary channel-containing substrate. The second generation design separates the optical system onto its own substrate module and the optical path length is further compressed to 3.5 mm. The first generation design has been tested using direct fluorescence detection with a 750 nm VCSEL pumping a 10 -4 M solution of CY-7 dye. The observed signal-to-noise ratio of better than 100:1 demonstrates that the background signal from scattered pump light is low despite the compact size of the optical system and is adequate for system sensitivity requirements. (c) 1999 American Vacuum Society

  17. Pengembangan Model Aplikasi Administrasi Pelayanan Kesehatan di Puskemas dengan Cloud Computing Berbasiskan Open Source

    Directory of Open Access Journals (Sweden)

    Honni Honni

    2013-12-01

    Full Text Available Puskemas as community health centers becomes one of the main focuses of development on the agenda of the Government of Indonesia beside education. Therefore, we purpose to develop an affordable online system of health care administration based on open source using cloud computing approach. It can be used for collecting data of patients, diseases, and treatment of patients at Puskesmas. The methods used are literature study related to cloud computing, survey design and data collection infrastructure of information technology thatcan be applied to online health services, analysis of survey data on actual conditions in some centers and other health care centers in Jakarta, then making model of online health services such as physician consulting, prescribing and disease diagnosis. The result is a web-based application system of health care administration of Puskesmas, which utilizes cloud computing technology and development architectures that are both modular and dynamic. The application model combines the benefits of open-source applications with a flexible design system. It also supports mobile devices to improve the quality of patient care. Web-based network structure allows both online and inter-section between institutions which can be accessed anytime, anywhere, through mobile devices.Development application model is also adapted to the function of the business processes and administrative processes that exist in Puskesmas throughout Indonesia. Each model is also expected to be integrated to optimize efficiency and has been adapted to the service system of Dinas Kesehatan and Health Ministery.

  18. Top-down and bottom-up aerosol-cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    Science.gov (United States)

    Sanchez, Kevin J.; Roberts, Gregory C.; Calmer, Radiance; Nicoll, Keri; Hashimshoni, Eyal; Rosenfeld, Daniel; Ovadnevaite, Jurgita; Preissler, Jana; Ceburnis, Darius; O'Dowd, Colin; Russell, Lynn M.

    2017-08-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs)1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1-D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 and 60 W m-2. After accounting for entrainment

  19. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-01-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation

  20. Top-down and bottom-up aerosol–cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    Directory of Open Access Journals (Sweden)

    K. J. Sanchez

    2017-08-01

    Full Text Available Top-down and bottom-up aerosol–cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding European collaborative project, with the goal of understanding key processes affecting aerosol–cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN concentration were used to initiate a 1-D microphysical aerosol–cloud parcel model (ACPM. UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF by between 25 and 60 W m−2. After

  1. Cloud based, Open Source Software Application for Mitigating Herbicide Drift

    Science.gov (United States)

    Saraswat, D.; Scott, B.

    2014-12-01

    The spread of herbicide resistant weeds has resulted in the need for clearly marked fields. In response to this need, the University of Arkansas Cooperative Extension Service launched a program named Flag the Technology in 2011. This program uses color-coded flags as a visual alert of the herbicide trait technology within a farm field. The flag based program also serves to help avoid herbicide misapplication and prevent herbicide drift damage between fields with differing crop technologies. This program has been endorsed by Southern Weed Science Society of America and is attracting interest from across the USA, Canada, and Australia. However, flags have risk of misplacement or disappearance due to mischief or severe windstorms/thunderstorms, respectively. This presentation will discuss the design and development of a cloud-based, free application utilizing open-source technologies, called Flag the Technology Cloud (FTTCloud), for allowing agricultural stakeholders to color code their farm fields for indicating herbicide resistant technologies. The developed software utilizes modern web development practices, widely used design technologies, and basic geographic information system (GIS) based interactive interfaces for representing, color-coding, searching, and visualizing fields. This program has also been made compatible for a wider usability on different size devices- smartphones, tablets, desktops and laptops.

  2. A basic radiation-education method using a handy-type cloud chamber and natural radiation sources

    International Nuclear Information System (INIS)

    Kushita, K. N.

    2010-10-01

    Nuclear human resources development becomes increasingly important due to the world trend of expanding nuclear energy utilization in this century. At the Nuclear Human Resource Development Center of the Japan Atomic Energy Agency, many kinds of nuclear and radiation education have been conducted consistently and continuously through its half-century history though having several organizational changes. High level education is required for the specialists of nuclear technology including nuclear power plants operators and engineers, while basic knowledge on nuclear energy and, specially, on radiations and radioisotopes should be given to school students and public. Besides lectures on radiation and radioisotopes, some basic experiments are useful to understand what are radiations and radioisotopes. One of such basic experiments is the cloud chamber experiment. It is a great fun and excitement even for small children as one can actually see the radiation tracks by his/her naked eyes at hand. While there are many types of cloud chambers, we have developed a new-type cloud chamber to use for the radiation education and training s. Using the new-type cloud chamber, we have further developed a new method of this experiment so that the participants can more deeply understand the phenomena and the nature of radiation and radioisotopes. In this method, using a radiation source of natural uranium ore and gaseous radiation source containing Rn-220 obtained from thorium-containing material, they not only observe the radiation tracks but also measure the length and count the number of the tracks. Then they can calculate the energy of the radiation (alpha ray) and can estimate the half-life of the radioisotope (Rn-220). This method can be applied for high-school and general university students as well as for the public as a useful and effective method in the radiation education. (Author)

  3. A basic radiation-education method using a handy-type cloud chamber and natural radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Kushita, K. N., E-mail: Kushita.kouhei@iaea.go.j [Japan Atomic Energy Agency, Nuclear Human Resource Development Center, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 309-1195 (Japan)

    2010-10-15

    Nuclear human resources development becomes increasingly important due to the world trend of expanding nuclear energy utilization in this century. At the Nuclear Human Resource Development Center of the Japan Atomic Energy Agency, many kinds of nuclear and radiation education have been conducted consistently and continuously through its half-century history though having several organizational changes. High level education is required for the specialists of nuclear technology including nuclear power plants operators and engineers, while basic knowledge on nuclear energy and, specially, on radiations and radioisotopes should be given to school students and public. Besides lectures on radiation and radioisotopes, some basic experiments are useful to understand what are radiations and radioisotopes. One of such basic experiments is the cloud chamber experiment. It is a great fun and excitement even for small children as one can actually see the radiation tracks by his/her naked eyes at hand. While there are many types of cloud chambers, we have developed a new-type cloud chamber to use for the radiation education and training s. Using the new-type cloud chamber, we have further developed a new method of this experiment so that the participants can more deeply understand the phenomena and the nature of radiation and radioisotopes. In this method, using a radiation source of natural uranium ore and gaseous radiation source containing Rn-220 obtained from thorium-containing material, they not only observe the radiation tracks but also measure the length and count the number of the tracks. Then they can calculate the energy of the radiation (alpha ray) and can estimate the half-life of the radioisotope (Rn-220). This method can be applied for high-school and general university students as well as for the public as a useful and effective method in the radiation education. (Author)

  4. MICROLENSING BINARIES DISCOVERED THROUGH HIGH-MAGNIFICATION CHANNEL

    Energy Technology Data Exchange (ETDEWEB)

    Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Gould, A.; Gaudi, B. S. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis Boulevard Arago, 75014 Paris (France); Dominik, M. [School of Physics and Astronomy, SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom); Allen, W. [Vintage Lane Observatory, Blenheim (New Zealand); Bos, M. [Molehill Astronomical Observatory, North Shore (New Zealand); Christie, G. W. [Auckland Observatory, P.O. Box 24-180, Auckland (New Zealand); Depoy, D. L. [Department of Physics, Texas A and M University, College Station, TX (United States); Dong, S. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Drummond, J. [Possum Observatory, Patutahi (New Zealand); Gal-Yam, A. [Benoziyo Center for Astrophysics, the Weizmann Institute (Israel); Hung, L.-W. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Janczak, J. [Department of Physics, Ohio State University, 191 W. Woodruff, Columbus, OH 43210 (United States); Kaspi, S. [School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978 (Israel); Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-02-20

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturbations, which are confined near the peak of the light curves, can be easily distinguished from the central perturbations caused by planets. However, the degeneracy between close and wide binary solutions cannot be resolved with a 3{sigma} confidence level for three events, implying that the degeneracy would be an important obstacle in studying binary distributions. The dependence of the degeneracy on the lensing parameters is consistent with a theoretical prediction that the degeneracy becomes severe as the binary separation and the mass ratio deviate from the values of resonant caustics. The measured mass ratio of the event OGLE-2008-BLG-510/MOA-2008-BLG-369 is q {approx} 0.1, making the companion of the lens a strong brown dwarf candidate.

  5. Cloud Computing Governance Lifecycle

    Directory of Open Access Journals (Sweden)

    Soňa Karkošková

    2016-06-01

    Full Text Available Externally provisioned cloud services enable flexible and on-demand sourcing of IT resources. Cloud computing introduces new challenges such as need of business process redefinition, establishment of specialized governance and management, organizational structures and relationships with external providers and managing new types of risk arising from dependency on external providers. There is a general consensus that cloud computing in addition to challenges brings many benefits but it is unclear how to achieve them. Cloud computing governance helps to create business value through obtain benefits from use of cloud computing services while optimizing investment and risk. Challenge, which organizations are facing in relation to governing of cloud services, is how to design and implement cloud computing governance to gain expected benefits. This paper aims to provide guidance on implementation activities of proposed Cloud computing governance lifecycle from cloud consumer perspective. Proposed model is based on SOA Governance Framework and consists of lifecycle for implementation and continuous improvement of cloud computing governance model.

  6. Relative effectiveness of structures as protection from gamma radiation from cloud and fallout sources as a function of source energy

    International Nuclear Information System (INIS)

    Fingerlos, J.P.

    1984-01-01

    In the event of a release of radioactive material, it is necessary to know the doses the public could receive in order to make decisions that minimize the public's risk. In order to determine what doses the public might receive if they try to evacuate or seek shelter, it is necessary to know how much protection structures such as homes and vehicles provide. This information is well known only for a few gamma ray spectra, such as that from weapon fallout. The research reported here transfers the knowledge gained from the previous weapon-fallout shielding work to realistic protection factors for possible accidental releases whatever the released spectrum might be. Point kernel models were developed for both the fallout and cloud sources. That development included a method of accurately combining buildup factors in multi-region problems over wide ranges of energy and photon mean free path. A generalized method for calculating the effect of ground roughness on the attentuation factor for fallout sources was also developed. The results were reported for the 1-hr weapon fallout, and TMI-2 cloud and fallout spectra, as well as for discrete energies from 15 KeV to 15 MeV. The structures given as examples include small wood frame and large brick houses

  7. Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey

    Science.gov (United States)

    Henderson, Calen B.; Poleski, Radoslaw; Penny, Matthew; Street, Rachel A.; Bennett, David P.; Hogg, David W.; Gaudi, B. Scott; Zhu, W.; Barclay, T.; Barentsen, G.; hide

    2016-01-01

    K2's Campaign 9 (K2C9) will conduct a approximately 3.7 sq. deg survey toward the Galactic bulge from 2016 April 22 through July 2 that will leverage the spatial separation between K2 and the Earth to facilitate measurement of the microlens parallax Pi(sub E) for approximately greater than 170 microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this article we provide an overview of the K2C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of K2C9, and the array of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in K2C9, which constitutes an important pathfinding mission and community exercise in anticipation of WFIRST.

  8. Structure shielding from cloud and fallout gamma ray sources for assessing the consequences of reactor accidents

    International Nuclear Information System (INIS)

    Burson, Z.G.; Profio, A.E.

    1975-12-01

    Radiation shielding provided by transportation vehicles and structures typical of where people live and work were estimated for cloud and fallout gamma-ray sources resulting from a hypothetical reactor accident. Dose reduction factors are recommended for a variety of situations for realistically assessing the consequences of reactor accidents

  9. Fluorescent sensing with Fresnel microlenses for optofluidic systems

    Science.gov (United States)

    Siudzińska, Anna; Miszczuk, Andrzej; Marczak, Jacek; Komorowska, Katarzyna

    2017-05-01

    The concept of fluorescent sensing in a microchannel equipped with focusing light Fresnel lenses has been demonstrated. The concept employs a line or array of Fresnel lenses generating a line or array of focused light spots within a microfluidic channel, to increase the sensitivity of fluorescent signal detection in the system. We have presented efficient methods of master mold fabrication based on the lithography method and focused ion beam milling. The flexible microchannel was fabricated by an imprint process with new thiolene-epoxy resin with a good ability to replicate even submicron-size features. For final imprinted lenses, the measured background to peak signal level shows more than nine times the increase in brightness at the center of the focal spot for the green part of the spectrum (532 nm). The effectiveness of the microlenses in fluorescent-marked Escherichia coli bacteria was confirmed in a basic fluoroscope experiment, showing the increase of the sensitivity of the detection by the order of magnitude.

  10. Context-aware distributed cloud computing using CloudScheduler

    Science.gov (United States)

    Seuster, R.; Leavett-Brown, CR; Casteels, K.; Driemel, C.; Paterson, M.; Ring, D.; Sobie, RJ; Taylor, RP; Weldon, J.

    2017-10-01

    The distributed cloud using the CloudScheduler VM provisioning service is one of the longest running systems for HEP workloads. It has run millions of jobs for ATLAS and Belle II over the past few years using private and commercial clouds around the world. Our goal is to scale the distributed cloud to the 10,000-core level, with the ability to run any type of application (low I/O, high I/O and high memory) on any cloud. To achieve this goal, we have been implementing changes that utilize context-aware computing designs that are currently employed in the mobile communication industry. Context-awareness makes use of real-time and archived data to respond to user or system requirements. In our distributed cloud, we have many opportunistic clouds with no local HEP services, software or storage repositories. A context-aware design significantly improves the reliability and performance of our system by locating the nearest location of the required services. We describe how we are collecting and managing contextual information from our workload management systems, the clouds, the virtual machines and our services. This information is used not only to monitor the system but also to carry out automated corrective actions. We are incrementally adding new alerting and response services to our distributed cloud. This will enable us to scale the number of clouds and virtual machines. Further, a context-aware design will enable us to run analysis or high I/O application on opportunistic clouds. We envisage an open-source HTTP data federation (for example, the DynaFed system at CERN) as a service that would provide us access to existing storage elements used by the HEP experiments.

  11. Speeding up low-mass planetary microlensing simulations and modeling: The caustic region of influence

    International Nuclear Information System (INIS)

    Penny, Matthew T.

    2014-01-01

    Extensive simulations of planetary microlensing are necessary both before and after a survey is conducted: before to design and optimize the survey and after to understand its detection efficiency. The major bottleneck in such computations is the computation of light curves. However, for low-mass planets, most of these computations are wasteful, as most light curves do not contain detectable planetary signatures. In this paper, I develop a parameterization of the binary microlens that is conducive to avoiding light curve computations. I empirically find analytic expressions describing the limits of the parameter space that contain the vast majority of low-mass planet detections. Through a large-scale simulation, I measure the (in)completeness of the parameterization and the speed-up it is possible to achieve. For Earth-mass planets in a wide range of orbits, it is possible to speed up simulations by a factor of ∼30-125 (depending on the survey's annual duty-cycle) at the cost of missing ∼1% of detections (which is actually a smaller loss than for the arbitrary parameter limits typically applied in microlensing simulations). The benefits of the parameterization probably outweigh the costs for planets below 100 M ⊕ . For planets at the sensitivity limit of AFTA-WFIRST, simulation speed-ups of a factor ∼1000 or more are possible.

  12. Cloud Computing Governance Lifecycle

    OpenAIRE

    Soňa Karkošková; George Feuerlicht

    2016-01-01

    Externally provisioned cloud services enable flexible and on-demand sourcing of IT resources. Cloud computing introduces new challenges such as need of business process redefinition, establishment of specialized governance and management, organizational structures and relationships with external providers and managing new types of risk arising from dependency on external providers. There is a general consensus that cloud computing in addition to challenges brings many benefits but it is uncle...

  13. Gravitational microlensing in Verlinde's emergent gravity

    Directory of Open Access Journals (Sweden)

    Lei-Hua Liu

    2017-06-01

    Full Text Available We propose gravitational microlensing as a way of testing the emergent gravity theory recently proposed by Eric Verlinde [1]. We consider two limiting cases: the dark mass of maximally anisotropic pressures (Case I and of isotropic pressures (Case II. Our analysis of perihelion advancement of a planet shows that only Case I yields a viable theory. In this case the metric outside a star of mass M⁎ can be modeled by that of a point-like global monopole whose mass is M⁎ and a deficit angle Δ=(2GH0M⁎/(3c3, where H0 is the Hubble rate and G the Newton constant. This deficit angle can be used to test the theory since light exhibits additional bending around stars given by, αD≈−πΔ/2. This angle is independent on the distance from the star and it affects equally light and massive particles. The effect is too small to be measurable today, but should be within reach of the next generation of high resolution telescopes. Finally we note that the advancement of periastron of a planet orbiting around a star or black hole, which equals πΔ per period, can be also used to test the theory.

  14. Cloud4Psi: cloud computing for 3D protein structure similarity searching.

    Science.gov (United States)

    Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur

    2014-10-01

    Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. © The Author 2014. Published by Oxford University Press.

  15. My private cloud overview : a trust, privacy and security infrastructure for the cloud

    NARCIS (Netherlands)

    Chadwick, D.W.; Lievens, S.F.; Hartog, den J.I.; Pashalidis, A.; Alhadeff, J.

    2011-01-01

    Based on the assumption that cloud providers can be trusted (to a certain extent) we define a trust, security and privacy preserving infrastructure that relies on trusted cloud providers to operate properly. Working in tandem with legal agreements, our open source software supports: trust and

  16. Delivering Unidata Technology via the Cloud

    Science.gov (United States)

    Fisher, Ward; Oxelson Ganter, Jennifer

    2016-04-01

    Over the last two years, Docker has emerged as the clear leader in open-source containerization. Containerization technology provides a means by which software can be pre-configured and packaged into a single unit, i.e. a container. This container can then be easily deployed either on local or remote systems. Containerization is particularly advantageous when moving software into the cloud, as it simplifies the process. Unidata is adopting containerization as part of our commitment to migrate our technologies to the cloud. We are using a two-pronged approach in this endeavor. In addition to migrating our data-portal services to a cloud environment, we are also exploring new and novel ways to use cloud-specific technology to serve our community. This effort has resulted in several new cloud/Docker-specific projects at Unidata: "CloudStream," "CloudIDV," and "CloudControl." CloudStream is a docker-based technology stack for bringing legacy desktop software to new computing environments, without the need to invest significant engineering/development resources. CloudStream helps make it easier to run existing software in a cloud environment via a technology called "Application Streaming." CloudIDV is a CloudStream-based implementation of the Unidata Integrated Data Viewer (IDV). CloudIDV serves as a practical example of application streaming, and demonstrates how traditional software can be easily accessed and controlled via a web browser. Finally, CloudControl is a web-based dashboard which provides administrative controls for running docker-based technologies in the cloud, as well as providing user management. In this work we will give an overview of these three open-source technologies and the value they offer to our community.

  17. Radiative Transfer in a Translucent Cloud Illuminated by an Extended Background Source

    Science.gov (United States)

    Biganzoli, Davide; Potenza, Marco A. C.; Robberto, Massimo

    2017-05-01

    We discuss the radiative transfer theory for translucent clouds illuminated by an extended background source. First, we derive a rigorous solution based on the assumption that multiple scatterings produce an isotropic flux. Then we derive a more manageable analytic approximation showing that it nicely matches the results of the rigorous approach. To validate our model, we compare our predictions with accurate laboratory measurements for various types of well-characterized grains, including purely dielectric and strongly absorbing materials representative of astronomical icy and metallic grains, respectively, finding excellent agreement without the need to add free parameters. We use our model to explore the behavior of an astrophysical cloud illuminated by a diffuse source with dust grains having parameters typical of the classic ISM grains of Draine & Lee and protoplanetary disks, with an application to the dark silhouette disk 114-426 in Orion Nebula. We find that the scattering term modifies the transmitted radiation, both in terms of intensity (extinction) and shape (reddening) of the spectral distribution. In particular, for small optical thickness, our results show that scattering makes reddening almost negligible at visible wavelengths. Once the optical thickness increases enough and the probability of scattering events becomes close to or larger than 1, reddening becomes present but is appreciably modified with respect to the standard expression for line-of-sight absorption. Moreover, variations of the grain refractive index, in particular the amount of absorption, also play an important role in changing the shape of the spectral transmission curve, with dielectric grains showing the minimum amount of reddening.

  18. Radiative Transfer in a Translucent Cloud Illuminated by an Extended Background Source

    Energy Technology Data Exchange (ETDEWEB)

    Biganzoli, Davide [Università degli Studi dell’Insubria Dept. of Science and High Technology Via Valleggio, 11, I-22100 Como (Italy); Potenza, Marco A. C. [Universitá degli Studi di Milano Dept. of Physics Via Celoria 16, I-20133 Milano (Italy); Robberto, Massimo, E-mail: robberto@stsci.edu [Space Telescope Science Institute Baltimore, MD 21218 (United States)

    2017-05-01

    We discuss the radiative transfer theory for translucent clouds illuminated by an extended background source. First, we derive a rigorous solution based on the assumption that multiple scatterings produce an isotropic flux. Then we derive a more manageable analytic approximation showing that it nicely matches the results of the rigorous approach. To validate our model, we compare our predictions with accurate laboratory measurements for various types of well-characterized grains, including purely dielectric and strongly absorbing materials representative of astronomical icy and metallic grains, respectively, finding excellent agreement without the need to add free parameters. We use our model to explore the behavior of an astrophysical cloud illuminated by a diffuse source with dust grains having parameters typical of the classic ISM grains of Draine and Lee and protoplanetary disks, with an application to the dark silhouette disk 114–426 in Orion Nebula. We find that the scattering term modifies the transmitted radiation, both in terms of intensity (extinction) and shape (reddening) of the spectral distribution. In particular, for small optical thickness, our results show that scattering makes reddening almost negligible at visible wavelengths. Once the optical thickness increases enough and the probability of scattering events becomes close to or larger than 1, reddening becomes present but is appreciably modified with respect to the standard expression for line-of-sight absorption. Moreover, variations of the grain refractive index, in particular the amount of absorption, also play an important role in changing the shape of the spectral transmission curve, with dielectric grains showing the minimum amount of reddening.

  19. Observational Evidence for the Effect of Amplification Bias in Gravitational Microlensing Experiments

    Science.gov (United States)

    Han, Cheongho; Jeong, Youngjin; Kim, Ho-Il

    1998-11-01

    Recently Alard, Mao, & Guibert and Alard proposed to detect the shift of a star's image centroid, δx, as a method to identify the lensed source among blended stars. Goldberg & Woźniak actually applied this method to the OGLE-1 database and found that seven of 15 events showed significant centroid shifts of δx >~ 0.2". The amount of centroid shift has been estimated theoretically by Goldberg; however, he treated the problem in general and did not apply it to a particular survey or field and therefore based his estimate on simple toy model luminosity functions (i.e., power laws). In this paper, we construct the expected distribution of δx for Galactic bulge events based on the precise stellar luminosity function observed by Holtzman et al. using the Hubble Space Telescope. Their luminosity function is complete up to MI ~ 9.0 (MV ~ 12), which corresponds to faint M-type stars. In our analysis we find that regular blending cannot produce a large fraction of events with measurable centroid shifts. By contrast, a significant fraction of events would have measurable centroid shifts if they are affected by amplification-bias blending. Therefore, the measurements of large centroid shifts for an important fraction of microlensing events of Goldberg & Woźniak confirm the prediction of Han & Alard that a large fraction of Galactic bulge events are affected by amplification-bias blending.

  20. Point source atom interferometry with a cloud of finite size

    Energy Technology Data Exchange (ETDEWEB)

    Hoth, Gregory W., E-mail: gregory.hoth@nist.gov; Pelle, Bruno; Riedl, Stefan; Kitching, John; Donley, Elizabeth A. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2016-08-15

    We demonstrate a two axis gyroscope by the use of light pulse atom interferometry with an expanding cloud of atoms in the regime where the cloud has expanded by 1.1–5 times its initial size during the interrogation. Rotations are measured by analyzing spatial fringe patterns in the atom population obtained by imaging the final cloud. The fringes arise from a correlation between an atom's initial velocity and its final position. This correlation is naturally created by the expansion of the cloud, but it also depends on the initial atomic distribution. We show that the frequency and contrast of these spatial fringes depend on the details of the initial distribution and develop an analytical model to explain this dependence. We also discuss several challenges that must be overcome to realize a high-performance gyroscope with this technique.

  1. OGLE-2013-BLG-0102LA,B: MICROLENSING BINARY WITH COMPONENTS AT STAR/BROWN DWARF AND BROWN DWARF/PLANET BOUNDARIES

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. K.; Han, C. [Department of Physics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Udalski, A.; Skowron, J.; Kozłowski, S.; Poleski, R.; Wyrzykowski, Ł.; Szymański, M. K.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Pietrukowicz, P.; Mróz, P.; Kubiak, M. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Abe, F. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Bond, I. A. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Botzler, C. S., E-mail: cheongho@astroph.chungbuk.ac.kr [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Collaboration: OGLE Collaboration; MOA Collaboration; μFUN Collaboration; and others

    2015-01-10

    We present an analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification A {sub max} ∼ 1.5. It is found that the event was produced by a binary lens with a mass ratio between the components of q = 0.13 and the anomaly was caused by the passage of the source trajectory over a caustic located away from the barycenter of the binary. Based on the analysis of the effects on the light curve due to the finite size of the source and the parallactic motion of the Earth, we determine the physical parameters of the lens system. The measured masses of the lens components are M {sub 1} = 0.096 ± 0.013 M {sub ☉} and M {sub 2} = 0.012 ± 0.002 M {sub ☉}, which correspond to near the hydrogen-burning and deuterium-burning mass limits, respectively. The distance to the lens is 3.04 ± 0.31 kpc and the projected separation between the lens components is 0.80 ± 0.08 AU.

  2. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    Directory of Open Access Journals (Sweden)

    H.-H. Lee

    2016-07-01

    Full Text Available The source-oriented Weather Research and Forecasting chemistry model (SOWC was modified to include warm cloud processes and was applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-D chemical variable (X, Z, Y, size bins, source types, species through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and long-wave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol–radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into cloud condensation nuclei (CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3–5 W m−2 and surface temperature by as much as 0.25 K in the daytime.

  3. IRAS associations with dark clouds of opacity class 6

    International Nuclear Information System (INIS)

    Parker, N.D.

    1988-01-01

    Accurate positions of the opacity class 6 clouds from the Lynds Catalog of Dark Nebulae have been measured on blue and red prints from the Polomar Observatory Sky Survey (POSS) plates. These revised positions and the dimensions of ellipses fitted to the clouds are listed. The IRAS point source catalog has been searched for sources lying within the boundaries of the 147 clouds in the sample. The distribution and properties of these IRAS sources are discussed briefly. (author)

  4. HERschel key program heritage: A far-infrared source catalog for the Magellanic Clouds

    International Nuclear Information System (INIS)

    Seale, Jonathan P.; Meixner, Margaret; Sewiło, Marta; Babler, Brian; Engelbracht, Charles W.; Misselt, Karl; Montiel, Edward; Gordon, Karl; Roman-Duval, Julia; Hony, Sacha; Okumura, Koryo; Panuzzo, Pasquale; Sauvage, Marc; Boyer, Martha L.; Chen, C.-H. Rosie; Indebetouw, Remy; Matsuura, Mikako; Oliveira, Joana M.; Loon, Jacco Th. van; Srinivasan, Sundar

    2014-01-01

    Observations from the HERschel Inventory of the Agents of Galaxy Evolution (HERITAGE) have been used to identify dusty populations of sources in the Large and Small Magellanic Clouds (LMC and SMC). We conducted the study using the HERITAGE catalogs of point sources available from the Herschel Science Center from both the Photodetector Array Camera and Spectrometer (PACS; 100 and 160 μm) and Spectral and Photometric Imaging Receiver (SPIRE; 250, 350, and 500 μm) cameras. These catalogs are matched to each other to create a Herschel band-merged catalog and then further matched to archival Spitzer IRAC and MIPS catalogs from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and SAGE-SMC surveys to create single mid- to far-infrared (far-IR) point source catalogs that span the wavelength range from 3.6 to 500 μm. There are 35,322 unique sources in the LMC and 7503 in the SMC. To be bright in the FIR, a source must be very dusty, and so the sources in the HERITAGE catalogs represent the dustiest populations of sources. The brightest HERITAGE sources are dominated by young stellar objects (YSOs), and the dimmest by background galaxies. We identify the sources most likely to be background galaxies by first considering their morphology (distant galaxies are point-like at the resolution of Herschel) and then comparing the flux distribution to that of the Herschel Astrophysical Terahertz Large Area Survey (ATLAS) survey of galaxies. We find a total of 9745 background galaxy candidates in the LMC HERITAGE images and 5111 in the SMC images, in agreement with the number predicted by extrapolating from the ATLAS flux distribution. The majority of the Magellanic Cloud-residing sources are either very young, embedded forming stars or dusty clumps of the interstellar medium. Using the presence of 24 μm emission as a tracer of star formation, we identify 3518 YSO candidates in the LMC and 663 in the SMC. There are far fewer far-IR bright YSOs in the SMC than the LMC

  5. HERschel key program heritage: A far-infrared source catalog for the Magellanic Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Seale, Jonathan P.; Meixner, Margaret; Sewiło, Marta [The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Babler, Brian [Department of Astronomy, 475 North Charter St., University of Wisconsin, Madison, WI 53706 (United States); Engelbracht, Charles W.; Misselt, Karl; Montiel, Edward [Steward Observatory, University of Arizona, 933 North Cherry Ave., Tucson, AZ 85721 (United States); Gordon, Karl; Roman-Duval, Julia [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hony, Sacha; Okumura, Koryo; Panuzzo, Pasquale; Sauvage, Marc [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Boyer, Martha L. [Observational Cosmology Laboratory, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Chen, C.-H. Rosie [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Indebetouw, Remy [National Radio Astronomy Observatory, 520 Edgemont Road Charlottesville, VA 22903 (United States); Matsuura, Mikako [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Oliveira, Joana M.; Loon, Jacco Th. van [School of Physical and Geographical Sciences, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Srinivasan, Sundar [UPMC-CNRS UMR7095, Institute d' Astrophysique de Paris, F-75014 Paris (France); and others

    2014-12-01

    Observations from the HERschel Inventory of the Agents of Galaxy Evolution (HERITAGE) have been used to identify dusty populations of sources in the Large and Small Magellanic Clouds (LMC and SMC). We conducted the study using the HERITAGE catalogs of point sources available from the Herschel Science Center from both the Photodetector Array Camera and Spectrometer (PACS; 100 and 160 μm) and Spectral and Photometric Imaging Receiver (SPIRE; 250, 350, and 500 μm) cameras. These catalogs are matched to each other to create a Herschel band-merged catalog and then further matched to archival Spitzer IRAC and MIPS catalogs from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and SAGE-SMC surveys to create single mid- to far-infrared (far-IR) point source catalogs that span the wavelength range from 3.6 to 500 μm. There are 35,322 unique sources in the LMC and 7503 in the SMC. To be bright in the FIR, a source must be very dusty, and so the sources in the HERITAGE catalogs represent the dustiest populations of sources. The brightest HERITAGE sources are dominated by young stellar objects (YSOs), and the dimmest by background galaxies. We identify the sources most likely to be background galaxies by first considering their morphology (distant galaxies are point-like at the resolution of Herschel) and then comparing the flux distribution to that of the Herschel Astrophysical Terahertz Large Area Survey (ATLAS) survey of galaxies. We find a total of 9745 background galaxy candidates in the LMC HERITAGE images and 5111 in the SMC images, in agreement with the number predicted by extrapolating from the ATLAS flux distribution. The majority of the Magellanic Cloud-residing sources are either very young, embedded forming stars or dusty clumps of the interstellar medium. Using the presence of 24 μm emission as a tracer of star formation, we identify 3518 YSO candidates in the LMC and 663 in the SMC. There are far fewer far-IR bright YSOs in the SMC than the LMC

  6. STORMSeq: An Open-Source, User-Friendly Pipeline for Processing Personal Genomics Data in the Cloud

    OpenAIRE

    Karczewski, Konrad J.; Fernald, Guy Haskin; Martin, Alicia R.; Snyder, Michael; Tatonetti, Nicholas P.; Dudley, Joel T.

    2014-01-01

    The increasing public availability of personal complete genome sequencing data has ushered in an era of democratized genomics. However, read mapping and variant calling software is constantly improving and individuals with personal genomic data may prefer to customize and update their variant calls. Here, we describe STORMSeq (Scalable Tools for Open-Source Read Mapping), a graphical interface cloud computing solution that does not require a parallel computing environment or extensive technic...

  7. Chemical constituents in clouds and rainwater in the Puerto Rican rainforest: potential sources and seasonal drivers

    Science.gov (United States)

    A. Gioda; O.L. Mayol-Bracero; F. N. Scatena; K. C. Weathers; V. L. Mateus; W. H. McDowell

    2013-01-01

    Cloud- and rain-water samples collected between 1984 and 2007 in the Luquillo Experimental Forest, Puerto Rico, were analyzed in order to understand the main processes and sources that control their chemistry. Three sites were used: El Verde Field Station (380 m asl), Bisley (361 m asl), and East Peak (1051 m asl). Bulk rainwater samples were collected from all sites,...

  8. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  9. Cloud Computing dan Dampaknya Terhadap Bisnis

    OpenAIRE

    James Tandy; Siswono Siswono

    2013-01-01

    The purpose of this paper is to provide an overview of cloud computing and its development as well as the advantages and disadvantages of cloud computing implementation at some companies. Some literature studies from journals, textbooks and internet sources are discussed. Based on these searches it is known that the cloud computing as a technology that utilizes internet services uses a central server to the virtual nature of data and application maintenance purposes. The existence of Cloud Co...

  10. Analysis of Light Gathering Abilities of Dynamically Solidified Micro-lenses, and Their Implementation to Improve Sensitivity of Fluorescent PCR Micro-detectors.

    Science.gov (United States)

    Wu, Jian; Guo, Wei; Wang, Chunyan; Yu, Kuanxin; Chen, Tao; Li, Yinghui

    2015-06-01

    Fluorescent polymerase chain reaction (PCR) is becoming the preferred method of quantitative analysis due to its high specificity and sensitivity. We propose to use a new kind of micro-lens, dynamically solidified with optic glue, to improve the sensitivity of fluorescent PCR micro-detector. We developed light ray track equations for these lenses and used them to calculate relative light intensity distribution curve for stimulation lenses and illumination point probability distribution curve for detection lenses. We manufactured dynamically solidified micro-lenses using optic glue NOA61, and measured their light gathering ability. Lenses with radius/thickness (R/H) ratio of 4 reached light focusing ratio of 3.85 (stimulation lens) and photon collection efficiency of 0.86 (detection lens). We then used dynamically solidified lenses in PCR fluorescence micro-detector and analyzed their effect on the detector sensitivity. We showed that the use of dynamically solidified micro-lenses with R/H = 4 resulted in over 4.4-fold increased sensitivity of the detector.

  11. X.509 Authentication/Authorization in FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunwoo [Fermilab; Timm, Steven [Fermilab

    2014-11-11

    We present a summary of how X.509 authentication and authorization are used with OpenNebula in FermiCloud. We also describe a history of why the X.509 authentication was needed in FermiCloud, and review X.509 authorization options, both internal and external to OpenNebula. We show how these options can be and have been used to successfully run scientific workflows on federated clouds, which include OpenNebula on FermiCloud and Amazon Web Services as well as other community clouds. We also outline federation options being used by other commercial and open-source clouds and cloud research projects.

  12. Electron Cloud induced instabilities in the Fermilab Main Injector(MI) for the High Intensity Neutrino Source (HINS) project

    International Nuclear Information System (INIS)

    Sonnad, Kiran G.; Furman, Miguel A.; Vay, Jean-Luc; Venturini, Marco; Celata, Christine; Grote, David

    2006-01-01

    The electrostatic particle-in-cell codeWARP is currently being expanded in order to study electron cloud effects on the dynamics of the beam in storage rings. Results for the Fermilab main injector (MI) show the existence of a threshold in the electron density beyond which there is rapid emittance growth. The Fermilab MI is being considered for an upgrade as part of the high intensity neutrino source (HINS) effort, which will result in a significant increasing of the bunch intensity relative to its present value, placing it in a regime where electron-cloud effects are expected to become important. Various results from the simulations using WARP are discussed here

  13. The Challenge of Private Cloud for the Digital Business

    Directory of Open Access Journals (Sweden)

    Eugen Petac

    2016-01-01

    Full Text Available For various organizations, a Private Cloud represents a stepping stone to a fully public model,while others consider it to be the ideal solution. Organizations such as the governmentalinstitutions that have stringent data security needs might choose the Private Cloud model. Itsqualities such as availability, security, compliance may convince other organizations to look at aprivate cloud model as well. In this paper we propose an integrated solution within the privatecloud area, based on open source software. In section 2 we provide brief characterizations of theexisting types of Clouds, focusing then on Private Cloud. In section 3 we address the security issuesin Private Cloud. In section 4 we present and analyze different open source software solutionswithin Private Cloud. Section 5 encompasses some conclusions regarding the benefits anddownsides of this technology, along with some detail information on how to set up an organizationthat runs in a Private Cloud.

  14. Cloud sourcing and innovation: slow train coming? A composite research study

    OpenAIRE

    Leslie P. Willcocks; Will Venters; Edgar A. Whitley

    2013-01-01

    Purpose – Although cloud computing has been heralded as driving the innovation agenda, there is growing evidence that cloud computing is actually a “slow train coming”. The purpose of this paper is to seek to understand the factors that drive and inhibit the adoption of cloud computing, particularly in relation to its use for innovative practices. Design/methodology/approach – The paper draws on a composite research base including two detailed surveys and interviews with 56 participants in th...

  15. Imprints of the quasar structure in time-delay light curves: Microlensing-aided reverberation mapping

    Science.gov (United States)

    Sluse, D.; Tewes, M.

    2014-11-01

    The advent of large area photometric surveys has raised a great deal of interest in the possibility of using broadband photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei. We describe here a new method that uses time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single-band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images that is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques that use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.

  16. Cloud a particle beam facility to investigate the influence of cosmic rays on clouds

    CERN Document Server

    Kirkby, Jasper

    2001-01-01

    Palaeoclimatic data provide extensive evidence for solar forcing of the climate during the Holocene and the last ice age, but the underlying mechanism remains a mystery. However recent observations suggest that cosmic rays may play a key role. Satellite data have revealed a surprising correlation between cosmic ray intensity and the fraction of the Earth covered by low clouds \\cite{svensmark97,marsh}. Since the cosmic ray intensity is modulated by the solar wind, this may be an important clue to the long-sought mechanism for solar-climate variability. In order to test whether cosmic rays and clouds are causally linked and, if so, to understand the microphysical mechanisms, a novel experiment known as CLOUD\\footnotemark\\ has been proposed \\cite{cloud_proposal}--\\cite{cloud_addendum_2}. CLOUD proposes to investigate ion-aerosol-cloud microphysics under controlled laboratory conditions using a beam from a particle accelerator, which provides a precisely adjustable and measurable artificial source of cosmic rays....

  17. On the accuracy of mass measurement for microlensing black holes as seen by Gaia and OGLE

    Science.gov (United States)

    Rybicki, Krzysztof A.; Wyrzykowski, Łukasz; Klencki, Jakub; de Bruijne, Jos; Belczyński, Krzysztof; Chruślińska, Martyna

    2018-05-01

    We investigate the impact of combining Gaia astrometry from space with precise, high cadence OGLE photometry from the ground. For the archival event OGLE3-ULENS-PAR-02, which is likely a black hole, we simulate a realistic astrometric time series of Gaia measurements and combine it with the real photometric data collected by the OGLE project. We predict that at the end of the nominal 5 yr of the Gaia mission, for the events brighter than G ≈ 15.5 mag at the baseline, caused by objects heavier than 10 M⊙, it will be possible to unambiguously derive masses of the lenses, with accuracy between a few and 15 per cent. We find that fainter events (G < 17.5) can still have their lens masses determined, provided that they are heavier than 30 M⊙. We estimate that the rate of astrometric microlensing events caused by the stellar-origin black holes is ≈ 4 × 10- 7 yr- 1, which implies, that after 5 yr of Gaia operation and ≈5 × 106 bright sources in Gaia, it will be possible to identify few such events in the Gaia final catalogues.

  18. OGLE-2017-BLG-0373Lb: A Jovian Mass-Ratio Planet Exposes A New Accidental Microlensing Degeneracy

    Science.gov (United States)

    Skowron, J.; Ryu, Y.-H.; Hwang, K.-H.; Udalski, A.; Mrǎłz, P.; Kozłowski, S.; Soszyński, I.; Pietrukowicz, P.; Szymański, P. K.; Poleski, R.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Jung, Y. K.; Shin, I.-G.; Shvartzvald, Y.; Yee, J. C.; Zang, W.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.

    2018-03-01

    We report the discovery of microlensing planet OGLE-2017-BLG-0373Lb. We show that while the planet-host system has an unambiguous microlens topology, there are two geometries within this topology that fit the data equally well, which leads to a factor 2.5 difference in planet-host mass ratio, i.e., q=1.5×10-3 vs. q=0.6×10-3. We show that this is an "accidental degeneracy" in the sense that it is due to a gap in the data. We dub it "the caustic-chirality degeneracy". We trace the mathematical origins of this degeneracy, which should enable similar degenerate solutions to be easily located in the future. A Bayesian estimate, based on a Galactic model, yields a host mass M=0.25+0.30-0.15 M⊙ at a distance DL=5.9+1.3-1.95 kpc. The lens-source relative proper motion is relatively fast, μ=9 mas/yr, which implies that the host mass and distance can be determined by high-resolution imaging after about 10 years. The same observations could in principle resolve the discrete degeneracy in q, but this will be more challenging.

  19. Guidelines for Building a Private Cloud Infrastructure

    DEFF Research Database (Denmark)

    Ali Babar, Muhammad; Pantić, Zoran

    on open source software. One of the key objectives of this project was to create relevant material for providing a reference guide on the use of open source software for designing and implementing a private cloud. The primary focus on this document is to provide a brief background on different theoretical......, and a view on the different aspects of cloud computing in this document. Defining the cloud computing; analysis of the economical, security, legality, privacy, confidentiality aspects. There is also a short discussion about the potential impact on the employee’s future roles, and the challenges of migrating...... to a private cloud. The management of the instances and the related subjects are out of the scope of this document. This document is accompanied by three supplemental books that contain material from our experiences of scaling out in the virtual environment and cloud implementation in a physical environment...

  20. Cloud Interaction and Safety Features of Mobile Devices

    Directory of Open Access Journals (Sweden)

    Mirsat Yeşiltepe

    2018-02-01

    Full Text Available In this paper, two current popular mobile operating system, still in relation to the conceptof cloud began to supplant the internet almost Word today, the differences, the concept of cloudsecurity mechanisms they use for themselves and are dealt with in this environment. One ofcomparing mobile operation system is representing open source and the other for close source one.The other issue discussed in this article is how the mobile environment interacts with the cloud thanthe cloud communication with the computers.

  1. Cloud Computing for Maintenance Performance Improvement

    OpenAIRE

    Kour, Ravdeep; Karim, Ramin; Parida, Aditya

    2013-01-01

    Cloud Computing is an emerging research area. It can be utilised for acquiring an effective and efficient information logistics. This paper uses cloud-based technology for the establishment of information logistics for railway system which requires information based on data from different data sources (e.g. railway maintenance, railway operation, and railway business data). In order to improve the performance of the maintenance process relevant data from various sources need to be acquired, f...

  2. Application of the monazite radiation source to the petri dish-type cloud chamber and the influence of several factors on occurrence of tracks

    International Nuclear Information System (INIS)

    Hayakawa, Issei; Sago, Yutaka; Mori, Chizuo

    2012-01-01

    Monazite radiation source (2.5 mmΦ) proved to be useful as a radiation source of cloud chamber without the dispersion of powder or its adhesion because of a sintered body. After the track appeared within one minute after having put the petri dish on the dry ice, the number increased rapidly followed by the tendency to decrease gradually after that. The tracks can be observed for about 20 minutes after cooled with dry ice. The size of dry ice should be chosen to enter the inside of the bottom edge of the petri dish. The same number of tracks as using conventional mantle radiation source was obtained by utilizing 3 pieces of monazite sintered body separated mutually by about 7.5 mm. Hence the petri dish-type cloud chamber with the monazite sintered body as radiation source revealed to make the observation of track easy and prompt. (author)

  3. PROCESSING UAV AND LIDAR POINT CLOUDS IN GRASS GIS

    Directory of Open Access Journals (Sweden)

    V. Petras

    2016-06-01

    Full Text Available Today’s methods of acquiring Earth surface data, namely lidar and unmanned aerial vehicle (UAV imagery, non-selectively collect or generate large amounts of points. Point clouds from different sources vary in their properties such as number of returns, density, or quality. We present a set of tools with applications for different types of points clouds obtained by a lidar scanner, structure from motion technique (SfM, and a low-cost 3D scanner. To take advantage of the vertical structure of multiple return lidar point clouds, we demonstrate tools to process them using 3D raster techniques which allow, for example, the development of custom vegetation classification methods. Dense point clouds obtained from UAV imagery, often containing redundant points, can be decimated using various techniques before further processing. We implemented and compared several decimation techniques in regard to their performance and the final digital surface model (DSM. Finally, we will describe the processing of a point cloud from a low-cost 3D scanner, namely Microsoft Kinect, and its application for interaction with physical models. All the presented tools are open source and integrated in GRASS GIS, a multi-purpose open source GIS with remote sensing capabilities. The tools integrate with other open source projects, specifically Point Data Abstraction Library (PDAL, Point Cloud Library (PCL, and OpenKinect libfreenect2 library to benefit from the open source point cloud ecosystem. The implementation in GRASS GIS ensures long term maintenance and reproducibility by the scientific community but also by the original authors themselves.

  4. Cloud and Radiation Studies during SAFARI 2000

    Science.gov (United States)

    Platnick, Steven; King, M. D.; Hobbs, P. V.; Osborne, S.; Piketh, S.; Bruintjes, R.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Though the emphasis of the Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign was largely on emission sources and transport, the assemblage of aircraft (including the high altitude NASA ER-2 remote sensing platform and the University of Washington CV-580, UK MRF C130, and South African Weather Bureau JRA in situ aircrafts) provided a unique opportunity for cloud studies. Therefore, as part of the SAFARI initiative, investigations were undertaken to assess regional aerosol-cloud interactions and cloud remote sensing algorithms. In particular, the latter part of the experiment concentrated on marine boundary layer stratocumulus clouds off the southwest coast of Africa. Associated with cold water upwelling along the Benguela current, the Namibian stratocumulus regime has received limited attention but appears to be unique for several reasons. During the dry season, outflow of continental fires and industrial pollution over this area can be extreme. From below, upwelling provides a rich nutrient source for phytoplankton (a source of atmospheric sulphur through DMS production as well as from decay processes). The impact of these natural and anthropogenic sources on the microphysical and optical properties of the stratocumulus is unknown. Continental and Indian Ocean cloud systems of opportunity were also studied during the campaign. Aircraft flights were coordinated with NASA Terra Satellite overpasses for synergy with the Moderate Resolution Imaging Spectroradiometer (MODIS) and other Terra instruments. An operational MODIS algorithm for the retrieval of cloud optical and physical properties (including optical thickness, effective particle radius, and water path) has been developed. Pixel-level MODIS retrievals (11 km spatial resolution at nadir) and gridded statistics of clouds in th SAFARI region will be presented. In addition, the MODIS Airborne Simulator flown on the ER-2 provided high spatial resolution retrievals (50 m at nadir

  5. Using MODIS Cloud Regimes to Sort Diagnostic Signals of Aerosol-Cloud-Precipitation Interactions.

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2017-05-27

    Coincident multi-year measurements of aerosol, cloud, precipitation and radiation at near-global scales are analyzed to diagnose their apparent relationships as suggestive of interactions previously proposed based on theoretical, observational, and model constructs. Specifically, we examine whether differences in aerosol loading in separate observations go along with consistently different precipitation, cloud properties, and cloud radiative effects. Our analysis uses a cloud regime (CR) framework to dissect and sort the results. The CRs come from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are defined as distinct groups of cloud systems with similar co-variations of cloud top pressure and cloud optical thickness. Aerosol optical depth used as proxy for aerosol loading comes from two sources, MODIS observations, and the MERRA-2 re-analysis, and its variability is defined with respect to local seasonal climatologies. The choice of aerosol dataset impacts our results substantially. We also find that the responses of the marine and continental component of a CR are frequently quite disparate. Overall, CRs dominated by warm clouds tend to exhibit less ambiguous signals, but also have more uncertainty with regard to precipitation changes. Finally, we find weak, but occasionally systematic co-variations of select meteorological indicators and aerosol, which serves as a sober reminder that ascribing changes in cloud and cloud-affected variables solely to aerosol variations is precarious.

  6. Point cloud data management (extended abstract)

    NARCIS (Netherlands)

    Van Oosterom, P.J.M.; Ravada, S.; Horhammer, M.; Martinez Rubi, O.; Ivanova, M.; Kodde, M.; Tijssen, T.P.M.

    2014-01-01

    Point cloud data are important sources for 3D geo-information. The point cloud data sets are growing in popularity and in size. Modern Big Data acquisition and processing technologies, such as laser scanning from airborne, mobile, or static platforms, dense image matching from photos, multi-beam

  7. Constraint on Additional Planets in Planetary Systems Discovered Through the Channel of High-magnification Gravitational Microlensing Events

    Science.gov (United States)

    Shin, I.-G.; Han, C.; Choi, J.-Y.; Hwang, K.-H.; Jung, Y.-K.; Park, H.

    2015-04-01

    High-magnification gravitational microlensing events provide an important channel of detecting planetary systems with multiple giants located at their birth places. In order to investigate the potential existence of additional planets, we reanalyze the light curves of the eight high-magnification microlensing events, for each of which a single planet was previously detected. The analyzed events include OGLE-2005-BLG-071, OGLE-2005-BLG-169, MOA-2007-BLG-400, MOA-2008-BLG-310, MOA-2009-BLG-319, MOA-2009-BLG-387, MOA-2010-BLG-477, and MOA-2011-BLG-293. We find that including an additional planet improves fits with {Δ }{{χ }2}\\lt 80 for seven out of eight analyzed events. For MOA-2009-BLG-319, the improvement is relatively big with {Δ }{{χ }2}∼ 143. From inspection of the fits, we find that the improvement of the fits is attributed to systematics in data. Although no clear evidence of additional planets is found, it is still possible to constrain the existence of additional planets in the parameter space. For this purpose, we construct exclusion diagrams showing the confidence levels excluding the existence of an additional planet as a function of its separation and mass ratio. We also present the exclusion ranges of additional planets with 90% confidence level for Jupiter-, Saturn-, and Uranus-mass planets.

  8. CloudDOE: a user-friendly tool for deploying Hadoop clouds and analyzing high-throughput sequencing data with MapReduce.

    Science.gov (United States)

    Chung, Wei-Chun; Chen, Chien-Chih; Ho, Jan-Ming; Lin, Chung-Yen; Hsu, Wen-Lian; Wang, Yu-Chun; Lee, D T; Lai, Feipei; Huang, Chih-Wei; Chang, Yu-Jung

    2014-01-01

    source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark. CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/.

  9. CloudDOE: a user-friendly tool for deploying Hadoop clouds and analyzing high-throughput sequencing data with MapReduce.

    Directory of Open Access Journals (Sweden)

    Wei-Chun Chung

    to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark.CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/.

  10. Application of Compressive Sensing to Gravitational Microlensing Data and Implications for Miniaturized Space Observatories

    Science.gov (United States)

    Korde-Patel, Asmita (Inventor); Barry, Richard K.; Mohsenin, Tinoosh

    2016-01-01

    Compressive Sensing is a technique for simultaneous acquisition and compression of data that is sparse or can be made sparse in some domain. It is currently under intense development and has been profitably employed for industrial and medical applications. We here describe the use of this technique for the processing of astronomical data. We outline the procedure as applied to exoplanet gravitational microlensing and analyze measurement results and uncertainty values. We describe implications for on-spacecraft data processing for space observatories. Our findings suggest that application of these techniques may yield significant, enabling benefits especially for power and volume-limited space applications such as miniaturized or micro-constellation satellites.

  11. Cloud Computing dan Dampaknya Terhadap Bisnis

    Directory of Open Access Journals (Sweden)

    James Tandy

    2013-12-01

    Full Text Available The purpose of this paper is to provide an overview of cloud computing and its development as well as the advantages and disadvantages of cloud computing implementation at some companies. Some literature studies from journals, textbooks and internet sources are discussed. Based on these searches it is known that the cloud computing as a technology that utilizes internet services uses a central server to the virtual nature of data and application maintenance purposes. The existence of Cloud Computing itself causes a change in the way thetechnology information system works at an company. Security and data storage systems have become important factors for the company.Cloud Computing technology provides a great advantage for most enterprises.

  12. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...... archiving. The Soft Clouding Project is part of LARM - a major infrastructure combining research in and access to sound and radio archives in Denmark. In 2012 the LARM infrastructure will consist of more than 1 million hours of radio, combined with metadata who describes the content. The idea is to analyse...... the concept of ‘infrastructure’ and ‘interface’ on a creative play with the fundamentals of LARM (and any sound archive situation combining many kinds and layers of data and sources). This paper will present and discuss the Soft clouding project from the perspective of the three practices and competencies...

  13. Interstellar clouds toward 3C 154 and 3C 353

    International Nuclear Information System (INIS)

    Federman, S.R.; Evans, N.J. II; Willson, R.F.; Falgarone, E.; Combes, F.; Texas Univ., Austin; Tufts Univ., Medford, MA; Meudon, Observatoire, France)

    1987-01-01

    Molecular observations of the interstellar clouds toward the radio sources 3C 154 and 3C 353 were obtained in order to elucidate the physical conditions within the clouds. Maps of (C-12)O emission in the J = 1-0 and J = 2-1 lines were compared with observations of the (C-13)O, CH, and OH molecules. The peak emission in the (C-12)O transitions does not occur in the direction of the continuum sources, and thus, an incomplete picture arises when only one line of sight in the two clouds is analyzed. The cloud toward 3C 154 appears to have a low extinction, but a relatively high CO abundance, suggesting that it is similar to high-latitude clouds and CO-rich diffuse clouds. The cloud toward 3C 353 is considerably denser than that toward 3C 154 and may be more like a dark cloud. 32 references

  14. Extending an open source enterprise service bus for cloud data access support

    OpenAIRE

    Gómez Sáez, Santiago

    2013-01-01

    In the last years Cloud computing has become popular among IT organizations aiming to reduce its operational costs. Applications can be designed to be run on the Cloud, and utilize its technologies, or can be partially or totally migrated to the Cloud. The application's architecture contains three layers: presentation, business logic, and data layer. The presentation layer provides a user friendly interface, and acts as intermediary between the user and the application logic. The business log...

  15. Erratum to "Solar Sources and Geospace Consequences of Interplanetary Magnetic Clouds Observed During Solar Cycle 23-Paper 1" [J. Atmos. Sol.-Terr. Phys. 70(2-4) (2008) 245-253

    Science.gov (United States)

    Gopalswamy, N.; Akiyama, S.; Yashiro, S.; Michalek, G.; Lepping, R. P.

    2009-01-01

    One of the figures (Fig. 4) in "Solar sources and geospace consequences of interplanetary magnetic Clouds observed during solar cycle 23 -- Paper 1" by Gopalswamy et al. (2008, JASTP, Vol. 70, Issues 2-4, February 2008, pp. 245-253) is incorrect because of a software error in t he routine that was used to make the plot. The source positions of various magnetic cloud (MC) types are therefore not plotted correctly.

  16. Cloud Detours: A Non-intrusive Approach for Automatic Software Adaptation to the Cloud

    OpenAIRE

    Maia , Paulo; Vasconcelos , Michel; Mendonça , Nabor ,

    2015-01-01

    Part 1: Research Track; International audience; A major challenge facing cloud migration is the need to change a legacy (on-premise) application’s source code so that it can better benefit from the inherit cloud computing characteristics, such as resource elasticity and high scalability. When performed manually, those changes are error-prone and may require a great effort from application developers. This paper presents a novel approach to support organizations in automatically adapting their...

  17. Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence

    Science.gov (United States)

    Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.; Wyant, Matthew C.; Khairoutdinov, Marat

    2017-07-01

    Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called "ultraparameterization" (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (˜14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers. Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.

  18. Consolidation of cloud computing in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224309; The ATLAS collaboration; Cordeiro, Cristovao; Hover, John; Kouba, Tomas; Love, Peter; Mcnab, Andrew; Schovancova, Jaroslava; Sobie, Randall; Giordano, Domenico

    2017-01-01

    Throughout the first half of LHC Run 2, ATLAS cloud computing has undergone a period of consolidation, characterized by building upon previously established systems, with the aim of reducing operational effort, improving robustness, and reaching higher scale. This paper describes the current state of ATLAS cloud computing. Cloud activities are converging on a common contextualization approach for virtual machines, and cloud resources are sharing monitoring and service discovery components. We describe the integration of Vacuum resources, streamlined usage of the Simulation at Point 1 cloud for offline processing, extreme scaling on Amazon compute resources, and procurement of commercial cloud capacity in Europe. Finally, building on the previously established monitoring infrastructure, we have deployed a real-time monitoring and alerting platform which coalesces data from multiple sources, provides flexible visualization via customizable dashboards, and issues alerts and carries out corrective actions in resp...

  19. Consolidation of Cloud Computing in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224309; The ATLAS collaboration; Cordeiro, Cristovao; Di Girolamo, Alessandro; Hover, John; Kouba, Tomas; Love, Peter; Mcnab, Andrew; Schovancova, Jaroslava; Sobie, Randall

    2016-01-01

    Throughout the first year of LHC Run 2, ATLAS Cloud Computing has undergone a period of consolidation, characterized by building upon previously established systems, with the aim of reducing operational effort, improving robustness, and reaching higher scale. This paper describes the current state of ATLAS Cloud Computing. Cloud activities are converging on a common contextualization approach for virtual machines, and cloud resources are sharing monitoring and service discovery components. We describe the integration of Vac resources, streamlined usage of the High Level Trigger cloud for simulation and reconstruction, extreme scaling on Amazon EC2, and procurement of commercial cloud capacity in Europe. Building on the previously established monitoring infrastructure, we have deployed a real-time monitoring and alerting platform which coalesces data from multiple sources, provides flexible visualization via customizable dashboards, and issues alerts and carries out corrective actions in response to problems. ...

  20. STORMSeq: an open-source, user-friendly pipeline for processing personal genomics data in the cloud.

    Science.gov (United States)

    Karczewski, Konrad J; Fernald, Guy Haskin; Martin, Alicia R; Snyder, Michael; Tatonetti, Nicholas P; Dudley, Joel T

    2014-01-01

    The increasing public availability of personal complete genome sequencing data has ushered in an era of democratized genomics. However, read mapping and variant calling software is constantly improving and individuals with personal genomic data may prefer to customize and update their variant calls. Here, we describe STORMSeq (Scalable Tools for Open-Source Read Mapping), a graphical interface cloud computing solution that does not require a parallel computing environment or extensive technical experience. This customizable and modular system performs read mapping, read cleaning, and variant calling and annotation. At present, STORMSeq costs approximately $2 and 5-10 hours to process a full exome sequence and $30 and 3-8 days to process a whole genome sequence. We provide this open-access and open-source resource as a user-friendly interface in Amazon EC2.

  1. Star formation in the Monoceros OB1 dark cloud

    International Nuclear Information System (INIS)

    Margulis, M.S.

    1987-01-01

    A survey of the Monoceros OB1 dark cloud was made for molecular outflows and young stellar objects. In all, nine molecular outflows and thirty far-infrared sources were identified in a portion of the cloud composed of about 3 x 10 4 M of material. Statistical arguments suggest that 90% of the far-infrared sources actually are young stellar objects embedded in the cloud. If the star formation rate in the Mon OB1 cloud is roughly constant with time, then molecular outflows in the cloud should be able to support it against collapse due to gravity. This suggests that the birthrate of outflows in the solar neighborhood is very high. In fact, regardless of considerations of cloud support, the large number of outflows identified in the Mon OB1 cloud and the propensity of the youngest stellar objects in the cloud to be associated with outflows suggest that outflows have a high birthrate in the solar neighborhood and are part of a common stage in early stellar evolution. The young stellar objects identified in the cloud can be fit into a spectral classification system. Also, the outflow phase in early stellar evolution tends to occur at about the time that young stellar objects lose a large fraction of their circumstellar envelopes

  2. GPU-accelerated micromagnetic simulations using cloud computing

    Energy Technology Data Exchange (ETDEWEB)

    Jermain, C.L., E-mail: clj72@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Rowlands, G.E.; Buhrman, R.A. [Cornell University, Ithaca, NY 14853 (United States); Ralph, D.C. [Cornell University, Ithaca, NY 14853 (United States); Kavli Institute at Cornell, Ithaca, NY 14853 (United States)

    2016-03-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics. - Highlights: • The benefits of cloud computing for GPU-accelerated micromagnetics are examined. • We present the MuCloud software for running simulations on cloud computing. • Simulation run times are measured to benchmark cloud computing performance. • Comparison benchmarks are analyzed between CPU and GPU based solvers.

  3. GPU-accelerated micromagnetic simulations using cloud computing

    International Nuclear Information System (INIS)

    Jermain, C.L.; Rowlands, G.E.; Buhrman, R.A.; Ralph, D.C.

    2016-01-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics. - Highlights: • The benefits of cloud computing for GPU-accelerated micromagnetics are examined. • We present the MuCloud software for running simulations on cloud computing. • Simulation run times are measured to benchmark cloud computing performance. • Comparison benchmarks are analyzed between CPU and GPU based solvers.

  4. Impact of cloud microphysics on cloud-radiation interactions in the CSU general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, L.D.; Randall, D.A.

    1995-04-01

    Our ability to study and quantify the impact of cloud-radiation interactions in studying global scale climate variations strongly relies upon the ability of general circulation models (GCMs) to simulate the coupling between the spatial and temporal variations of the model-generated cloudiness and atmospheric moisture budget components. In particular, the ability of GCMs to reproduce the geographical distribution of the sources and sinks of the planetary radiation balance depends upon their representation of the formation and dissipation of cloudiness in conjunction with cloud microphysics processes, and the fractional amount and optical characteristics of cloudiness in conjunction with the mass of condensate stored in the atmosphere. A cloud microphysics package which encompasses five prognostic variables for the mass of water vapor, cloud water, cloud ice, rain, and snow has been implemented in the Colorado State University General Circulation Model (CSU GCM) to simulate large-scale condensation processes. Convection interacts with the large-scale environment through the detrainment of cloud water and cloud ice at the top of cumulus towers. The cloud infrared emissivity and cloud optical depth of the model-generated cloudiness are interactive and depend upon the mass of cloud water and cloud ice suspended in the atmosphere. The global atmospheric moisture budget and planetary radiation budget of the CSU GCM obtained from a perpetual January simulation are discussed. Geographical distributions of the atmospheric moisture species are presented. Global maps of the top-of-atmosphere outgoing longwave radiation and planetary albedo are compared against Earth Radiation Budget Experiment (ERBE) satellite data.

  5. Special features of electron sources with CNT field emitter and micro grid

    International Nuclear Information System (INIS)

    Knapp, Wolfram; Schleussner, Detlef

    2005-01-01

    A micro-sized electron source plays an important role for new vacuum triode applications. For these applications, an electron source with CNT field emitter and micro grid for 1 mA was developed and investigated. The miniaturisation of the electron source was achieved by the use of a carbon nanotube (CNT) field emitter and a micro grid, with a distance of only a few micrometers. Because of the threshold field strength for field emission of CNTs being in the range 1-5 V/μm, the grid voltage can be lower than 100 V. In our contribution, we discuss the influence of the micro grid on electron source properties, especially anode-current hysteresis, anode-field penetration through the micro grid and micro-lensing effect

  6. Surface smoothening of the inherent roughness of micro-lenses fabricated with 2-photon lithography

    Science.gov (United States)

    Schift, Helmut; Kirchner, Robert; Chidambaram, Nachiappan; Altana, Mirco

    2018-01-01

    Two-photon polymerization by direct laser writing enables to write refractive micro-optical elements with sub-μm precision. The trajectories and layering during the direct writing process often result in roughness in the range of the writing increment, which has adverse effects for optical applications. Instead of increasing overlap between adjacent voxels, roughness in the range of 100 nm can be smoothed out by post-processing. For this a method known as TASTE was developed, which allows polishing of surfaces without changing the structural details or the overall shape. It works particularly well with thermoplastic polymers and enables sub-10 nm roughness. The optical quality was confirmed for an array with several 100 microlenses.

  7. Transport of infrared radiation in cuboidal clouds

    Science.gov (United States)

    Harshvardhan, MR.; Weinman, J. A.; Davies, R.

    1981-01-01

    The transport of infrared radiation in a single cuboidal cloud is modeled using a variable azimuth two-stream approximation. Computations are made at 10 microns for a Deirmendjian (1969) C-1 water cloud where the single scattering albedo is equal to 0.638 and the asymmetry parameter is 0.865. The results indicate that the emittance of the top face of the model cloud is always less than that for a plane parallel cloud of the same optical depth. The hemispheric flux escaping from the cloud top possesses a gradient from the center to the edges which are warmer when the cloud is over warmer ground. Cooling rate calculations in the 8-13.6 micron region demonstrate that there is cooling out of the sides of the cloud at all levels even when there is heating of the core from the ground below. The radiances exiting from model cuboidal clouds are computed by path integration over the source function obtained with the two-stream approximation. Results indicate that the brightness temperature measured from finite clouds will overestimate the cloud-top temperature.

  8. Consolidation of cloud computing in ATLAS

    Science.gov (United States)

    Taylor, Ryan P.; Domingues Cordeiro, Cristovao Jose; Giordano, Domenico; Hover, John; Kouba, Tomas; Love, Peter; McNab, Andrew; Schovancova, Jaroslava; Sobie, Randall; ATLAS Collaboration

    2017-10-01

    Throughout the first half of LHC Run 2, ATLAS cloud computing has undergone a period of consolidation, characterized by building upon previously established systems, with the aim of reducing operational effort, improving robustness, and reaching higher scale. This paper describes the current state of ATLAS cloud computing. Cloud activities are converging on a common contextualization approach for virtual machines, and cloud resources are sharing monitoring and service discovery components. We describe the integration of Vacuum resources, streamlined usage of the Simulation at Point 1 cloud for offline processing, extreme scaling on Amazon compute resources, and procurement of commercial cloud capacity in Europe. Finally, building on the previously established monitoring infrastructure, we have deployed a real-time monitoring and alerting platform which coalesces data from multiple sources, provides flexible visualization via customizable dashboards, and issues alerts and carries out corrective actions in response to problems.

  9. A closer look at the quadruply lensed quasar PSOJ0147: spectroscopic redshifts and microlensing effect

    Science.gov (United States)

    Lee, Chien-Hsiu

    2018-04-01

    I present a timely spectroscopic follow-up of the newly discovered, quadruply lensed quasar PSOJ0147 from the Pan-STARRS 1 survey. The newly acquired optical spectra with GMOS onboard the Gemini North Telescope allow us to pin down the redshifts of both the foreground lensing galaxy and the background lensed quasar to be z = 0.572 and 2.341, providing a firm basis for cosmography with future high-cadence photometric monitoring. I also inspect difference spectra from two of the quasar images, revealing the microlensing effect. Long-term spectroscopic follow-ups will shed lights on the structure of the active galactic nucleus and its environment.

  10. STORMSeq: an open-source, user-friendly pipeline for processing personal genomics data in the cloud.

    Directory of Open Access Journals (Sweden)

    Konrad J Karczewski

    Full Text Available The increasing public availability of personal complete genome sequencing data has ushered in an era of democratized genomics. However, read mapping and variant calling software is constantly improving and individuals with personal genomic data may prefer to customize and update their variant calls. Here, we describe STORMSeq (Scalable Tools for Open-Source Read Mapping, a graphical interface cloud computing solution that does not require a parallel computing environment or extensive technical experience. This customizable and modular system performs read mapping, read cleaning, and variant calling and annotation. At present, STORMSeq costs approximately $2 and 5-10 hours to process a full exome sequence and $30 and 3-8 days to process a whole genome sequence. We provide this open-access and open-source resource as a user-friendly interface in Amazon EC2.

  11. The Role of Standards in Cloud-Computing Interoperability

    Science.gov (United States)

    2012-10-01

    services are not shared outside the organization. CloudStack, Eucalyptus, HP, Microsoft, OpenStack , Ubuntu, and VMWare provide tools for building...center requirements • Developing usage models for cloud ven- dors • Independent IT consortium OpenStack http://www.openstack.org • Open-source...software for running private clouds • Currently consists of three core software projects: OpenStack Compute (Nova), OpenStack Object Storage (Swift

  12. NEAR-INFRARED POLARIZATION SOURCE CATALOG OF THE NORTHEASTERN REGIONS OF THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaeyeong; Pak, Soojong [School of Space Research, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Jeong, Woong-Seob; Park, Won-Kee [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Tamura, Motohide, E-mail: jaeyeong@khu.ac.kr, E-mail: jeongws@kasi.re.kr [The University of Tokyo/National Astronomical Observatory of Japan/Astrobiology Center, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-01-15

    We present a near-infrared band-merged photometric and polarimetric catalog for the 39′ × 69′ fields in the northeastern part of the Large Magellanic Cloud (LMC), which were observed using SIRPOL, an imaging polarimeter of the InfraRed Survey Facility. This catalog lists 1858 sources brighter than 14 mag in the H band with a polarization signal-to-noise ratio greater than three in the J, H, or K{sub s} bands. Based on the relationship between the extinction and the polarization degree, we argue that the polarization mostly arises from dichroic extinctions caused by local interstellar dust in the LMC. This catalog allows us to map polarization structures to examine the global geometry of the local magnetic field, and to show a statistical analysis of the polarization of each field to understand its polarization properties. In the selected fields with coherent polarization position angles, we estimate magnetic field strengths in the range of 3−25 μG using the Chandrasekhar–Fermi method. This implies the presence of large-scale magnetic fields on a scale of around 100 parsecs. When comparing mid- and far-infrared dust emission maps, we confirmed that the polarization patterns are well aligned with molecular clouds around the star-forming regions.

  13. Taming the beast : Free and open-source massive point cloud web visualization

    NARCIS (Netherlands)

    Martinez-Rubi, O.; Verhoeven, S.; Van Meersbergen, M.; Schûtz, M.; Van Oosterom, P.; Gonçalves, R.; Tijssen, T.

    2015-01-01

    Powered by WebGL, some renderers have recently become available for the visualization of point cloud data over the web, for example Plasio or Potree. We have extended Potree to be able to visualize massive point clouds and we have successfully used it with the second national Lidar survey of the

  14. A study of the stellar population in the Lynds 1641 dark cloud. I. The IRAS catalog sources

    International Nuclear Information System (INIS)

    Strom, K.M.; Newton, G.; Strom, S.E.; Seaman, R.L.; Carrasco, L.

    1989-01-01

    The character of the sources identified in the IRAS Point Source Catalog and located within the boundaries of the nearest giant molecular cloud, Lynds 1641 is discussed. New optical and near-infrared photometry are combined to provide spectral energy distributions (SEDs) for these objects divided into three classes: class I objects with flat or rising spectra, class II objects with spectra intermediate in slope between a flat and blackbody spectrum, and class III objects with spectra similar to those of blackbodies. It is found that L1641 contains a much larger percentage of class I sources than does the nearby Taurus-Auriga star-forming complex. Spectral energy distributions for the IRAS-selected sample are examined and compared with SEDs for young stellar objects (YSOs) located in Taurus-Auriga. The IRAS-selected sources having optical counterparts in the H-R diagram are identified and discussed along with the distribution of masses and ages for these YSOs. 86 refs

  15. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    Science.gov (United States)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation

  16. PATMOS-x Cloud Climate Record Trend Sensitivity to Reanalysis Products

    Directory of Open Access Journals (Sweden)

    Michael J. Foster

    2016-05-01

    Full Text Available Continuous satellite-derived cloud records now extend over three decades, and are increasingly used for climate applications. Certain applications, such as trend detection, require a clear understanding of uncertainty as it relates to establishing statistical significance. The use of reanalysis products as sources of ancillary data could be construed as one such source of uncertainty, as there has been discussion regarding the suitability of reanalysis products for trend detection. Here we use three reanalysis products: Climate Forecast System Reanalysis (CFSR, Modern Era Retrospective Analysis for Research and Applications (MERRA and European Center for Medium range Weather Forecasting (ECMWF ERA-Interim (ERA-I as sources of ancillary data for the Pathfinder Atmospheres Extended/Advanced Very High Resolution Radiometer (PATMOS-x/AVHRR Satellite Cloud Climate Data Record (CDR, and perform inter-comparisons to determine how sensitive the climatology is to choice of ancillary data source. We find differences among reanalysis fields required for PATMOS-x processing, which translate to small but not insignificant differences in retrievals of cloud fraction, cloud top height and cloud optical depth. The retrieval variability due to choice of reanalysis product is on the order of one third the size of the retrieval uncertainty, making it a potentially significant factor in trend detection. Cloud fraction trends were impacted the most by choice of reanalysis while cloud optical depth trends were impacted the least. Metrics used to determine the skill of the reanalysis products for use as ancillary data found no clear best choice for use in PATMOS-x. We conclude use of reanalysis products as ancillary data in the PATMOS-x/AVHRR Cloud CDR do not preclude its use for trend detection, but for that application uncertainty in reanalysis fields should be better represented in the PATMOS-x retrieval uncertainty.

  17. Cloud Infrastructure & Applications - CloudIA

    Science.gov (United States)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  18. CloudLM: a Cloud-based Language Model for Machine Translation

    Directory of Open Access Journals (Sweden)

    Ferrández-Tordera Jorge

    2016-04-01

    Full Text Available Language models (LMs are an essential element in statistical approaches to natural language processing for tasks such as speech recognition and machine translation (MT. The advent of big data leads to the availability of massive amounts of data to build LMs, and in fact, for the most prominent languages, using current techniques and hardware, it is not feasible to train LMs with all the data available nowadays. At the same time, it has been shown that the more data is used for a LM the better the performance, e.g. for MT, without any indication yet of reaching a plateau. This paper presents CloudLM, an open-source cloud-based LM intended for MT, which allows to query distributed LMs. CloudLM relies on Apache Solr and provides the functionality of state-of-the-art language modelling (it builds upon KenLM, while allowing to query massive LMs (as the use of local memory is drastically reduced, at the expense of slower decoding speed.

  19. The 100 strongest radio point sources in the field of the Large Magellanic Cloud at 1.4 GHz

    Directory of Open Access Journals (Sweden)

    Payne J.L.

    2009-01-01

    Full Text Available We present the 100 strongest 1.4 GHz point sources from a new mosaic image in the direction of the Large Magellanic Cloud (LMC. The observations making up the mosaic were made using Australia Telescope Compact Array (ATCA over a ten year period and were combined with Parkes single dish data at 1.4 GHz to complete the image for short spacing. An initial list of co-identifications within 1000 at 0.843, 4.8 and 8.6 GHz consisted of 2682 sources. Elimination of extended objects and artifact noise allowed the creation of a refined list containing 1988 point sources. Most of these are presumed to be background objects seen through the LMC; a small portion may represent compact H ii regions, young SNRs and radio planetary nebulae. For the 1988 point sources we find a preliminary average spectral index (α of -0.53 and present a 1.4 GHz image showing source location in the direction of the LMC.

  20. The 100 Strongest Radio Point Sources in the Field of the Large Magellanic Cloud at 1.4 GHz

    Directory of Open Access Journals (Sweden)

    Payne, J. L.

    2009-06-01

    Full Text Available We present the 100 strongest 1.4~GHz point sources from a new mosaicimage in the direction of the Large Magellanic Cloud (LMC. The observationsmaking up the mosaic were made using Australia Telescope Compact Array (ATCAover a ten year period and were combined with Parkes single dish data at 1.4 GHz to complete the image for short spacing. An initial list of co-identifications within 10arcsec at 0.843, 4.8 and 8.6 GHz consisted of 2682 sources. Elimination of extended objects and artifact noise allowed the creation of a refined list containing 1988 point sources. Most of these are presumed to be background objects seen through the LMC; a small portion may represent compact HII regions, young SNRs and radio planetary nebulae. For the 1988 point sources we find a preliminary average spectral index ($alpha$ of -0.53 and present a 1.4 GHz image showing source locationin the direction of the LMC.

  1. Laboratory simulations of cumulus cloud flows explain the entrainment anomaly

    Science.gov (United States)

    Narasimha, Roddam; Diwan, Sourabh S.; Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.

    2010-11-01

    In the present laboratory experiments, cumulus cloud flows are simulated by starting plumes and jets subjected to off-source heat addition in amounts that are dynamically similar to latent heat release due to condensation in real clouds. The setup permits incorporation of features like atmospheric inversion layers and the active control of off-source heat addition. Herein we report, for the first time, simulation of five different cumulus cloud types (and many shapes), including three genera and three species (WMO Atlas 1987), which show striking resemblance to real clouds. It is known that the rate of entrainment in cumulus cloud flows is much less than that in classical plumes - the main reason for the failure of early entrainment models. Some of the previous studies on steady-state jets and plumes (done in a similar setup) have attributed this anomaly to the disruption of the large-scale turbulent structures upon the addition of off-source heat. We present estimates of entrainment coefficients from these measurements which show a qualitatively consistent variation with height. We propose that this explains the observed entrainment anomaly in cumulus clouds; further experiments are planned to address this question in the context of starting jets and plumes.

  2. Towards Efficient Scientific Data Management Using Cloud Storage

    Science.gov (United States)

    He, Qiming

    2013-01-01

    A software prototype allows users to backup and restore data to/from both public and private cloud storage such as Amazon's S3 and NASA's Nebula. Unlike other off-the-shelf tools, this software ensures user data security in the cloud (through encryption), and minimizes users operating costs by using space- and bandwidth-efficient compression and incremental backup. Parallel data processing utilities have also been developed by using massively scalable cloud computing in conjunction with cloud storage. One of the innovations in this software is using modified open source components to work with a private cloud like NASA Nebula. Another innovation is porting the complex backup to- cloud software to embedded Linux, running on the home networking devices, in order to benefit more users.

  3. The sensitivities of in cloud and cloud top phase distributions to primary ice formation in ICON-LEM

    Science.gov (United States)

    Beydoun, H.; Karrer, M.; Tonttila, J.; Hoose, C.

    2017-12-01

    Mixed phase clouds remain a leading source of uncertainty in our attempt to quantify cloud-climate and aerosol-cloud climate interactions. Nevertheless, recent advances in parametrizing the primary ice formation process, high resolution cloud modelling, and retrievals of cloud phase distributions from satellite data offer an excellent opportunity to conduct closure studies on the sensitivity of the cloud phase to microphysical and dynamical processes. Particularly, the reliability of satellite data to resolve the phase at the top of the cloud provides a promising benchmark to compare model output to. We run large eddy simulations with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) to place bounds on the sensitivity of in cloud and cloud top phase to the primary ice formation process. State of the art primary ice formation parametrizations in the form of the cumulative ice active site density ns are implemented in idealized deep convective cloud simulations. We exploit the ability of ICON-LEM to switch between a two moment microphysics scheme and the newly developed Predicted Particle Properties (P3) scheme by running our simulations in both configurations for comparison. To quantify the sensitivity of cloud phase to primary ice formation, cloud ice content is evaluated against order of magnitude changes in ns at variable convective strengths. Furthermore, we assess differences between in cloud and cloud top phase distributions as well as the potential impact of updraft velocity on the suppression of the Wegener-Bergeron-Findeisen process. The study aims to evaluate our practical understanding of primary ice formation in the context of predicting the structure and evolution of mixed phase clouds.

  4. IRAS observations of dust heating and energy balance in the Rho Ophiuchi dark cloud

    Science.gov (United States)

    Greene, Thomas P.; Young, Erick T.

    1989-01-01

    The equilibrium process dust emission in the Rho Ophiuchi dark cloud is studied. The luminosity of the cloud is found to closely match the luminosity of the clouds's known embedded and external radiation sources. There is no evidence for a large population of undetected low-luminosity sources within the cloud and unknown external heating is also only a minor source of energy. Most of the cloud's luminosity is emitted in the mid-to-far-IR. Dust temperature maps indicate that the dust is not hot enough to heat the gas to observed temperatures. A simple cloud model with a radiation field composed of flux HD 147889, S1, and Sco OB2 associations predicts the observed IRAS 60 to 100 micron in-band flux ratios for a mean cloud density n(H2) = 1400. Flattened 12 and 25 micron observations show much extended emission in these bands, suggesting stochastic heating of very small grains or large molecules.

  5. Self-Similar Spin Images for Point Cloud Matching

    Science.gov (United States)

    Pulido, Daniel

    The rapid growth of Light Detection And Ranging (Lidar) technologies that collect, process, and disseminate 3D point clouds have allowed for increasingly accurate spatial modeling and analysis of the real world. Lidar sensors can generate massive 3D point clouds of a collection area that provide highly detailed spatial and radiometric information. However, a Lidar collection can be expensive and time consuming. Simultaneously, the growth of crowdsourced Web 2.0 data (e.g., Flickr, OpenStreetMap) have provided researchers with a wealth of freely available data sources that cover a variety of geographic areas. Crowdsourced data can be of varying quality and density. In addition, since it is typically not collected as part of a dedicated experiment but rather volunteered, when and where the data is collected is arbitrary. The integration of these two sources of geoinformation can provide researchers the ability to generate products and derive intelligence that mitigate their respective disadvantages and combine their advantages. Therefore, this research will address the problem of fusing two point clouds from potentially different sources. Specifically, we will consider two problems: scale matching and feature matching. Scale matching consists of computing feature metrics of each point cloud and analyzing their distributions to determine scale differences. Feature matching consists of defining local descriptors that are invariant to common dataset distortions (e.g., rotation and translation). Additionally, after matching the point clouds they can be registered and processed further (e.g., change detection). The objective of this research is to develop novel methods to fuse and enhance two point clouds from potentially disparate sources (e.g., Lidar and crowdsourced Web 2.0 datasets). The scope of this research is to investigate both scale and feature matching between two point clouds. The specific focus of this research will be in developing a novel local descriptor

  6. HPC CLOUD APPLIED TO LATTICE OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; Nishimura, Hiroshi; James, Susan; Song, Kai; Muriki, Krishna; Qin, Yong

    2011-03-18

    As Cloud services gain in popularity for enterprise use, vendors are now turning their focus towards providing cloud services suitable for scientific computing. Recently, Amazon Elastic Compute Cloud (EC2) introduced the new Cluster Compute Instances (CCI), a new instance type specifically designed for High Performance Computing (HPC) applications. At Berkeley Lab, the physicists at the Advanced Light Source (ALS) have been running Lattice Optimization on a local cluster, but the queue wait time and the flexibility to request compute resources when needed are not ideal for rapid development work. To explore alternatives, for the first time we investigate running the Lattice Optimization application on Amazon's new CCI to demonstrate the feasibility and trade-offs of using public cloud services for science.

  7. HPC Cloud Applied To Lattice Optimization

    International Nuclear Information System (INIS)

    Sun, Changchun; Nishimura, Hiroshi; James, Susan; Song, Kai; Muriki, Krishna; Qin, Yong

    2011-01-01

    As Cloud services gain in popularity for enterprise use, vendors are now turning their focus towards providing cloud services suitable for scientific computing. Recently, Amazon Elastic Compute Cloud (EC2) introduced the new Cluster Compute Instances (CCI), a new instance type specifically designed for High Performance Computing (HPC) applications. At Berkeley Lab, the physicists at the Advanced Light Source (ALS) have been running Lattice Optimization on a local cluster, but the queue wait time and the flexibility to request compute resources when needed are not ideal for rapid development work. To explore alternatives, for the first time we investigate running the Lattice Optimization application on Amazon's new CCI to demonstrate the feasibility and trade-offs of using public cloud services for science.

  8. GATECloud.net: a platform for large-scale, open-source text processing on the cloud.

    Science.gov (United States)

    Tablan, Valentin; Roberts, Ian; Cunningham, Hamish; Bontcheva, Kalina

    2013-01-28

    Cloud computing is increasingly being regarded as a key enabler of the 'democratization of science', because on-demand, highly scalable cloud computing facilities enable researchers anywhere to carry out data-intensive experiments. In the context of natural language processing (NLP), algorithms tend to be complex, which makes their parallelization and deployment on cloud platforms a non-trivial task. This study presents a new, unique, cloud-based platform for large-scale NLP research--GATECloud. net. It enables researchers to carry out data-intensive NLP experiments by harnessing the vast, on-demand compute power of the Amazon cloud. Important infrastructural issues are dealt with by the platform, completely transparently for the researcher: load balancing, efficient data upload and storage, deployment on the virtual machines, security and fault tolerance. We also include a cost-benefit analysis and usage evaluation.

  9. Limb darkening of a K giant in the galactic bulge : Planet photometry of MACHO 97-BLG-28

    NARCIS (Netherlands)

    Albrow, MD; Beaulieu, JP; Caldwell, JAR; Dominik, M; Greenhill, J; Hill, K; Kane, S; Martin, R; Menzies, J; Pel, JW; Pollard, K; Sackett, PD; Sahu, KC; Vermaak, P; Watson, R; Williams, A; Sahu, MS

    1999-01-01

    We present the PLANET photometric data set(10) for the binary-lens microlensing event MACHO 97-BLG-28, consisting of 696 I- and V-band measurements, and analyze it to determine the radial surface brightness profile of the Galactic bulge source star. The microlensed source, demonstrated to be a K

  10. Formation of Massive Molecular Cloud Cores by Cloud-cloud Collision

    OpenAIRE

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-01-01

    Recent observations of molecular clouds around rich massive star clusters including NGC3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by the cloud-cloud collision. We find that the massive mol...

  11. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  12. The use of marine cloud water samples as a diagnostic tool for aqueous chemistry, cloud microphysical processes and dynamics

    Science.gov (United States)

    Crosbie, E.; Ziemba, L. D.; Moore, R.; Shook, M.; Jordan, C.; Thornhill, K. L., II; Winstead, E.; Shingler, T.; Brown, M.; MacDonald, A. B.; Dadashazar, H.; Sorooshian, A.; Weiss-Penzias, P. S.; Anderson, B.

    2017-12-01

    Clouds play several roles in the Earth's climate system. In addition to their clear significance to the hydrological cycle, they strongly modulate the shortwave and longwave radiative balance of the atmosphere, with subsequent feedback on the atmospheric circulation. Furthermore, clouds act as a conduit for the fate and emergence of important trace chemical species and are the predominant removal mechanism for atmospheric aerosols. Marine boundary layer clouds cover large swaths of the global oceans. Because of their global significance, they have attracted significant attention into understanding how changes in aerosols are translated into changes in cloud macro- and microphysical properties. The circular nature of the influence of clouds-on-aerosols and aerosols-on-clouds has been used to explain the chaotic patterns often seen in marine clouds, however, this feedback also presents a substantial hurdle in resolving the uncertain role of anthropogenic aerosols on climate. Here we discuss ways in which the chemical constituents found in cloud water can offer insight into the physical and chemical processes inherent in marine clouds, through the use of aircraft measurements. We focus on observational data from cloud water samples collected during flights conducted over the remote North Atlantic and along coastal California across multiple campaigns. We explore topics related to aqueous processing, wet scavenging and source apportionment.

  13. Distributed Pseudo-Random Number Generation and Its Application to Cloud Database

    OpenAIRE

    Chen, Jiageng; Miyaji, Atsuko; Su, Chunhua

    2014-01-01

    Cloud database is now a rapidly growing trend in cloud computing market recently. It enables the clients run their computation on out-sourcing databases or access to some distributed database service on the cloud. At the same time, the security and privacy concerns is major challenge for cloud database to continue growing. To enhance the security and privacy of the cloud database technology, the pseudo-random number generation (PRNG) plays an important roles in data encryptions and privacy-pr...

  14. Three-dimensional cloud characterization from paired whole-sky imaging cameras

    International Nuclear Information System (INIS)

    Allmen, M.; Kegelmeyer, W.P. Jr.

    1994-01-01

    Three-dimensional (3-D) cloud characterization permits the derivation of important cloud geometry properties such as fractional cloudiness, mean cloud and clear length, aspect ratio, and the morphology of cloud cover. These properties are needed as input to the hierarchical diagnosis (HD) and instantaneous radiative transfer (IRF) models, to validate sub-models for cloud occurrence and formation, and to Central Site radiative flux calculations. A full 3-D characterization will eventually require the integration of disparate Cloud and Radiation Testbed (CART) data sources: whole-sky imagers (WSIs), radar, satellites, ceilometers, volume-imaging lidar, and other sensors. In this paper, we demonstrate how an initial 3-D cloud property, cloud base height, can be determined from fusing paired times series of images from two whole-sky imagers

  15. Genes2WordCloud: a quick way to identify biological themes from gene lists and free text.

    Science.gov (United States)

    Baroukh, Caroline; Jenkins, Sherry L; Dannenfelser, Ruth; Ma'ayan, Avi

    2011-10-13

    Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications.

  16. Star Formation In Nearby Clouds (SFiNCs): X-Ray and Infrared Source Catalogs and Membership

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Konstantin V.; Broos, Patrick S.; Feigelson, Eric D.; Richert, Alexander J. W.; Ota, Yosuke [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Kuhn, Michael A. [Instituto de Fisica y Astronomia, Universidad de Valparaiso, Gran Bretana 1111, Playa Ancha, Valparaiso (Chile); Millennium Institute of Astrophysics, MAS (Chile); Bate, Matthew R. [Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, Devon EX4 4SB (United Kingdom); Garmire, Gordon P. [Huntingdon Institute for X-Ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2017-04-01

    The Star Formation in Nearby Clouds (SFiNCs) project is aimed at providing a detailed study of the young stellar populations and of star cluster formation in the nearby 22 star-forming regions (SFRs) for comparison with our earlier MYStIX survey of richer, more distant clusters. As a foundation for the SFiNCs science studies, here, homogeneous data analyses of the Chandra X-ray and Spitzer mid-infrared archival SFiNCs data are described, and the resulting catalogs of over 15,300 X-ray and over 1,630,000 mid-infrared point sources are presented. On the basis of their X-ray/infrared properties and spatial distributions, nearly 8500 point sources have been identified as probable young stellar members of the SFiNCs regions. Compared to the existing X-ray/mid-infrared publications, the SFiNCs member list increases the census of YSO members by 6%–200% for individual SFRs and by 40% for the merged sample of all 22 SFiNCs SFRs.

  17. Towards Process Support for Migrating Applications to Cloud Computing

    DEFF Research Database (Denmark)

    Chauhan, Muhammad Aufeef; Babar, Muhammad Ali

    2012-01-01

    Cloud computing is an active area of research for industry and academia. There are a large number of organizations providing cloud computing infrastructure and services. In order to utilize these infrastructure resources and services, existing applications need to be migrated to clouds. However...... for supporting migration to cloud computing based on our experiences from migrating an Open Source System (OSS), Hackystat, to two different cloud computing platforms. We explained the process by performing a comparative analysis of our efforts to migrate Hackystate to Amazon Web Services and Google App Engine....... We also report the potential challenges, suitable solutions, and lesson learned to support the presented process framework. We expect that the reported experiences can serve guidelines for those who intend to migrate software applications to cloud computing....

  18. Revisiting the Microlensing Event OGLE 2012-BLG-0026: A Solar Mass Star with Two Cold Giant Planets

    Science.gov (United States)

    Beaulieu, J.-P.; Bennett, D. P.; Batista, V.; Fukui, A.; Marquette, J.-B.; Brillant, S.; Cole, A. A.; Rogers, L. A.; Sumi, T.; Abe, F.

    2016-01-01

    Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 +/- 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B and C telescope in New Zealand and CTIO 1.3 m H-band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of an approximately 4-9 Gyr lens star of M(sub lens) = 1.06 +/- 0.05 solar mass at a distance of D(sub lens) = 4.0 +/- 0.3 kpc, orbited by two giant planets of 0.145 +/- 0.008 M(sub Jup) and 0.86 +/- 0.06 M(sub Jup), with projected separations of 4.0 +/- 0.5 au and 4.8 +/- 0.7 au, respectively. Because the lens is brighter than the source star by 16 +/- 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8-10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.

  19. REANALYSES OF ANOMALOUS GRAVITATIONAL MICROLENSING EVENTS IN THE OGLE-III EARLY WARNING SYSTEM DATABASE WITH COMBINED DATA

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J.; Park, H.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Gould, A.; Poleski, R. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Udalski, A.; Szymański, M. K.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Wyrzykowski, Ł. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Abe, F.; Fukunaga, D.; Itow, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, 464-8601 (Japan); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Bond, I. A. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Fukui, A. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Koshimoto, N. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Collaboration: (The OGLE Collaboration); (The MOA Collaboration); (The PLANET Collaboration); (The μFUN Collaboration); (The RoboNet Collaboration); and others

    2015-05-01

    We reanalyze microlensing events in the published list of anomalous events that were observed from the Optical Gravitational Lensing Experiment (OGLE) lensing survey conducted during the 2004–2008 period. In order to check the existence of possible degenerate solutions and extract extra information, we conduct analyses based on combined data from other survey and follow-up observation and consider higher-order effects. Among the analyzed events, we present analyses of eight events for which either new solutions are identified or additional information is obtained. We find that the previous binary-source interpretations of five events are better interpreted by binary-lens models. These events include OGLE-2006-BLG-238, OGLE-2007-BLG-159, OGLE-2007-BLG-491, OGLE-2008-BLG-143, and OGLE-2008-BLG-210. With additional data covering caustic crossings, we detect finite-source effects for six events including OGLE-2006-BLG-215, OGLE-2006-BLG-238, OGLE-2006-BLG-450, OGLE-2008-BLG-143, OGLE-2008-BLG-210, and OGLE-2008-BLG-513. Among them, we are able to measure the Einstein radii of three events for which multi-band data are available. These events are OGLE-2006-BLG-238, OGLE-2008-BLG-210, and OGLE-2008-BLG-513. For OGLE-2008-BLG-143, we detect higher-order effects induced by the changes of the observer’s position caused by the orbital motion of the Earth around the Sun. In addition, we present degenerate solutions resulting from the known close/wide or ecliptic degeneracy. Finally, we note that the masses of the binary companions of the lenses of OGLE-2006-BLG-450 and OGLE-2008-BLG-210 are in the brown-dwarf regime.

  20. REANALYSES OF ANOMALOUS GRAVITATIONAL MICROLENSING EVENTS IN THE OGLE-III EARLY WARNING SYSTEM DATABASE WITH COMBINED DATA

    International Nuclear Information System (INIS)

    Jeong, J.; Park, H.; Han, C.; Gould, A.; Poleski, R.; Udalski, A.; Szymański, M. K.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Wyrzykowski, Ł.; Abe, F.; Fukunaga, D.; Itow, Y.; Bennett, D. P.; Bond, I. A.; Botzler, C. S.; Freeman, M.; Fukui, A.; Koshimoto, N.

    2015-01-01

    We reanalyze microlensing events in the published list of anomalous events that were observed from the Optical Gravitational Lensing Experiment (OGLE) lensing survey conducted during the 2004–2008 period. In order to check the existence of possible degenerate solutions and extract extra information, we conduct analyses based on combined data from other survey and follow-up observation and consider higher-order effects. Among the analyzed events, we present analyses of eight events for which either new solutions are identified or additional information is obtained. We find that the previous binary-source interpretations of five events are better interpreted by binary-lens models. These events include OGLE-2006-BLG-238, OGLE-2007-BLG-159, OGLE-2007-BLG-491, OGLE-2008-BLG-143, and OGLE-2008-BLG-210. With additional data covering caustic crossings, we detect finite-source effects for six events including OGLE-2006-BLG-215, OGLE-2006-BLG-238, OGLE-2006-BLG-450, OGLE-2008-BLG-143, OGLE-2008-BLG-210, and OGLE-2008-BLG-513. Among them, we are able to measure the Einstein radii of three events for which multi-band data are available. These events are OGLE-2006-BLG-238, OGLE-2008-BLG-210, and OGLE-2008-BLG-513. For OGLE-2008-BLG-143, we detect higher-order effects induced by the changes of the observer’s position caused by the orbital motion of the Earth around the Sun. In addition, we present degenerate solutions resulting from the known close/wide or ecliptic degeneracy. Finally, we note that the masses of the binary companions of the lenses of OGLE-2006-BLG-450 and OGLE-2008-BLG-210 are in the brown-dwarf regime

  1. REVISITING THE MICROLENSING EVENT OGLE 2012-BLG-0026: A SOLAR MASS STAR WITH TWO COLD GIANT PLANETS

    International Nuclear Information System (INIS)

    Beaulieu, J.-P.; Batista, V.; Marquette, J.-B.

    2016-01-01

    Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 ± 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B and C telescope in New Zealand and CTIO 1.3 m H -band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of a ∼4–9 Gyr lens star of M lens = 1.06 ± 0.05 M ⊙ at a distance of D lens = 4.0 ± 0.3 kpc, orbited by two giant planets of 0.145 ± 0.008 M Jup and 0.86 ± 0.06 M Jup , with projected separations of 4.0 ± 0.5 au and 4.8 ± 0.7 au, respectively. Because the lens is brighter than the source star by 16 ± 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8–10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.

  2. GAMMA-CLOUD: a computer code for calculating gamma-exposure due to a radioactive cloud released from a point source

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, O [Chugoku Electric Power Co. Inc., Hiroshima (Japan); Sawaguchi, Y; Kaneko, M

    1979-03-01

    A computer code, designated GAMMA-CLOUD, has been developed by specialists of electric power companies to meet requests from the companies to have a unified means of calculating annual external doses from routine releases of radioactive gaseous effluents from nuclear power plants, based on the Japan Atomic Energy Commission's guides for environmental dose evaluation. GAMMA-CLOUD is written in FORTRAN language and its required capacity is less than 100 kilobytes. The average ..gamma..-exposure at an observation point can be calculated within a few minutes with comparable precision to other existing codes.

  3. Recent Findings Related to Giant Cloud Condensation Nuclei in the Marine Boundary Layer and Impacts on Clouds and Precipitation

    Science.gov (United States)

    Sorooshian, Armin; Dadashazar, Hossein; Wang, Zhen; Crosbie, Ewan; Brunke, Michael; Zeng, Xubin; Jonsson, Haflidi; Woods, Roy; Flagan, Richard; Seinfeld, John

    2017-04-01

    This presentation reports on findings from multiple airborne field campaigns off the California coast to understand the sources, nature, and impacts of giant cloud condensation nuclei (GCCN). Aside from sea spray emissions, measurements have revealed that ocean-going ships can be a source of GCCN due to wake and stack emissions off the California coast. Observed particle number concentrations behind 10 ships exceeded those in "control" areas, exhibiting number concentration enhancement ratios (ERs) for minimum threshold diameters of 2, 10, and 20 μm as high as 2.7, 5.5, and 7.5, respectively. The data provide insights into how ER is related to a variety of factors (downwind distance, altitude, ship characteristics such as gross tonnage, length, and beam). The data also provide insight into the extent to which a size distribution parameter and a cloud water chemical measurement can capture the effect of sea salt on marine stratocumulus cloud properties. The two GCCN proxy variables, near-surface particle number concentration for diameter > 5 µm and cloud water chloride concentration, are significantly correlated with each other, and both exhibit expected relationships with other parameters that typically coincide with sea salt emissions. Factors influencing the relationship between these two GCCN proxy measurements will be discussed. When comparing twelve pairs of high and low chloride cloud cases (at fixed liquid water path and cloud drop number concentration), the average drop spectra for high chloride cases exhibit enhanced drop number at diameters exceeding 20 µm, especially above 30 µm. In addition, high chloride cases coincide with enhanced mean columnar R and negative values of precipitation susceptibility. The difference in drop effective radius (re) between high and low chloride conditions decreases with height in cloud, suggesting that some GCCN-produced rain drops precipitate before reaching cloud tops. The sign of cloud responses (i.e., re, R) to

  4. Genes2WordCloud: a quick way to identify biological themes from gene lists and free text

    Directory of Open Access Journals (Sweden)

    Ma'ayan Avi

    2011-10-01

    Full Text Available Abstract Background Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Results Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Methods Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Conclusions Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications.

  5. Architecture-driven Migration of Legacy Systems to Cloud-enabled Software

    DEFF Research Database (Denmark)

    Ahmad, Aakash; Babar, Muhammad Ali

    2014-01-01

    of legacy systems to cloud computing. The framework leverages the software reengineering concepts that aim to recover the architecture from legacy source code. Then the framework exploits the software evolution concepts to support architecture-driven migration of legacy systems to cloud-based architectures....... The Legacy-to-Cloud Migration Horseshoe comprises of four processes: (i) architecture migration planning, (ii) architecture recovery and consistency, (iii) architecture transformation and (iv) architecture-based development of cloud-enabled software. We aim to discover, document and apply the migration...

  6. Cloud regimes as phase transitions

    Science.gov (United States)

    Stechmann, Samuel; Hottovy, Scott

    2017-11-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes - open versus closed cells - fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells (POCs) as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. Similar viewpoints of deep convection and self-organized criticality will also be discussed. With these new conceptual viewpoints, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions. The research of S.N.S. is partially supported by a Sloan Research Fellowship, ONR Young Investigator Award N00014-12-1-0744, and ONR MURI Grant N00014-12-1-0912.

  7. Radiation-hydrodynamics of HII regions and molecular clouds

    International Nuclear Information System (INIS)

    Sandford, M.T. II; Whitaker, R.W.; Klein, R.I.

    1981-01-01

    Two-dimensional calculations of ionization-shock fronts surrounding neutral cloud clumps reveal that a radiation-driven implosion of the clump can occur. The implosion of a cloud clump results in the formation of density enhancements that may eventually form low mass stars. The smaller globules produced may become Herbig-Haro objects, or maser sources

  8. Laboratory study of orographic cloud-like flow

    Science.gov (United States)

    Singh, Kanwar Nain; Sreenivas, K. R.

    2013-11-01

    Clouds are one of the major sources of uncertainty in climate prediction, listed in ``the most urgent scientific problems requiring attention'' IPCC. Also, convective clouds are of utmost importance to study the dynamics of tropical meteorology and therefore, play a key role in understanding monsoons. The present work is to study the dynamics of orographic clouds. Parameterization of these clouds will help in forecasting the precipitation accurately. Also, one could validate laboratory results from our study by actually measuring cloud development along a sloping terrain. In this context a planar buoyant turbulent wall jet is considered as an appropriate low order fluid-dynamical model for studying the turbulence and entrainment in orographic-clouds. Flow is volumetrically heated to mimic the latent heat release due to condensation in an actual cloud. This is the first step in studying the entrainment dynamics of the evolving orographic cloud. We are going to present some results on the cloud development using techniques that allows us to construct a 3-dimensional flow field at each instance and its development over the time. By combining velocity field from PIV and flow volume from PLIF at successive instances, we estimate the entrainment coefficient. Since the life-cycle of a cloud is determined by the entrainment of ambient air, these results could be extremely helpful in understanding the dynamics of the clouds. Detailed results will be presented at the conference.

  9. Cloud-Top Entrainment in Stratocumulus Clouds

    Science.gov (United States)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  10. Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount

    Directory of Open Access Journals (Sweden)

    B. H. Kahn

    2008-03-01

    Full Text Available The precision of the two-layer cloud height fields derived from the Atmospheric Infrared Sounder (AIRS is explored and quantified for a five-day set of observations. Coincident profiles of vertical cloud structure by CloudSat, a 94 GHz profiling radar, and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO, are compared to AIRS for a wide range of cloud types. Bias and variability in cloud height differences are shown to have dependence on cloud type, height, and amount, as well as whether CloudSat or CALIPSO is used as the comparison standard. The CloudSat-AIRS biases and variability range from −4.3 to 0.5±1.2–3.6 km for all cloud types. Likewise, the CALIPSO-AIRS biases range from 0.6–3.0±1.2–3.6 km (−5.8 to −0.2±0.5–2.7 km for clouds ≥7 km (<7 km. The upper layer of AIRS has the greatest sensitivity to Altocumulus, Altostratus, Cirrus, Cumulonimbus, and Nimbostratus, whereas the lower layer has the greatest sensitivity to Cumulus and Stratocumulus. Although the bias and variability generally decrease with increasing cloud amount, the ability of AIRS to constrain cloud occurrence, height, and amount is demonstrated across all cloud types for many geophysical conditions. In particular, skill is demonstrated for thin Cirrus, as well as some Cumulus and Stratocumulus, cloud types infrared sounders typically struggle to quantify. Furthermore, some improvements in the AIRS Version 5 operational retrieval algorithm are demonstrated. However, limitations in AIRS cloud retrievals are also revealed, including the existence of spurious Cirrus near the tropopause and low cloud layers within Cumulonimbus and Nimbostratus clouds. Likely causes of spurious clouds are identified and the potential for further improvement is discussed.

  11. A comparison of shock-cloud and wind-cloud interactions: effect of increased cloud density contrast on cloud evolution

    Science.gov (United States)

    Goldsmith, K. J. A.; Pittard, J. M.

    2018-05-01

    The similarities, or otherwise, of a shock or wind interacting with a cloud of density contrast χ = 10 were explored in a previous paper. Here, we investigate such interactions with clouds of higher density contrast. We compare the adiabatic hydrodynamic interaction of a Mach 10 shock with a spherical cloud of χ = 103 with that of a cloud embedded in a wind with identical parameters to the post-shock flow. We find that initially there are only minor morphological differences between the shock-cloud and wind-cloud interactions, compared to when χ = 10. However, once the transmitted shock exits the cloud, the development of a turbulent wake and fragmentation of the cloud differs between the two simulations. On increasing the wind Mach number, we note the development of a thin, smooth tail of cloud material, which is then disrupted by the fragmentation of the cloud core and subsequent `mass-loading' of the flow. We find that the normalized cloud mixing time (tmix) is shorter at higher χ. However, a strong Mach number dependence on tmix and the normalized cloud drag time, t_{drag}^' }, is not observed. Mach-number-dependent values of tmix and t_{drag}^' } from comparable shock-cloud interactions converge towards the Mach-number-independent time-scales of the wind-cloud simulations. We find that high χ clouds can be accelerated up to 80-90 per cent of the wind velocity and travel large distances before being significantly mixed. However, complete mixing is not achieved in our simulations and at late times the flow remains perturbed.

  12. Cloud Computing, Tieto Cloud Server Model

    OpenAIRE

    Suikkanen, Saara

    2013-01-01

    The purpose of this study is to find out what is cloud computing. To be able to make wise decisions when moving to cloud or considering it, companies need to understand what cloud is consists of. Which model suits best to they company, what should be taken into account before moving to cloud, what is the cloud broker role and also SWOT analysis of cloud? To be able to answer customer requirements and business demands, IT companies should develop and produce new service models. IT house T...

  13. Model for Semantically Rich Point Cloud Data

    Science.gov (United States)

    Poux, F.; Neuville, R.; Hallot, P.; Billen, R.

    2017-10-01

    This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.

  14. MODEL FOR SEMANTICALLY RICH POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    F. Poux

    2017-10-01

    Full Text Available This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.

  15. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    Science.gov (United States)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2008-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al ., 2001]." Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 19991. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005

  16. The MACHO Project: Preliminary Results from 4 years of SMC observations.

    Science.gov (United States)

    Vandehei, T.; Griest, K.; Lehner, M.; Alcock, C.; Alves, D.; Cook, K.; Marshall, S.; Minniti, D.; Allsman, R.; Axelrod, T.; Freeman, K.; Peterson, B.; Rodgers, A.; Pratt, M.; Becker, A.; Stubbs, C.; Tomaney, A.; Bennett, D.; Quinn, P.; Sutherland, W.; Welch, D.

    1997-12-01

    The MACHO project is a search for dark matter in the form of massive compact halo objects(MACHOs). The project has photometrically monitored tens of millions of stars in the Large Magellanic Cloud (LMC), Small Magellanic Cloud (SMC), and Galactic bulge in search of rare gravitational microlensing events caused by these otherwise invisible objects. Microlensing toward the LMC has allowed powerful statements to be made about the dark population in the halo of our Galaxy, indicating that the MACHO halo fraction could be as high as f=0.5 with a most probable MACHO mass being ~ 0.5Msun. However, to date the LMC has been the only line of sight out of our Galaxy's halo. Clearly, another line of sight would provide a consistency check on these results, as well as another contraint on models of the halo, in particular on halo flattening. The SMC affords us this second line of sight. Here we give a status report on our upcoming 4 year results toward the SMC. We present the results of a preliminary analysis on over 2.2 million stars from 3 square degrees and discuss the implications for the dark matter in the halo of our Galaxy. A detailed analysis of the microlensing candidates toward the SMC, with blending and parallax fits, will be shown. This work is dedicated to the memory of Alex Rodgers.

  17. Do the Herschel cold clouds in the Galactic halo embody its dark matter?

    International Nuclear Information System (INIS)

    Nieuwenhuizen, Theo M; Heusden, Erik F G van; Liska, Matthew T P

    2012-01-01

    Recent Herschel/SPIRE (Spectral and Photometric Imaging Receiver) maps of the Small and Large Magellanic Clouds (SMC, LMC) exhibit, in each, thousands of clouds. Observed at 250 μm, they must be cold, T ∼ 15 K, hence the name ‘Herschel cold clouds’ (HCCs). From the observed rotational velocity profile of the Galaxy and the assumption of spherical symmetry, its mass density is modeled in a form close to that of an isothermal sphere. If the HCCs constitute a certain fraction of it, their angular size distribution has a specified shape. A fit to the data deduced from the SMC/LMC maps supports this and yields 1.7 pc for their average radius. There are so many HCCs that they will make up all the missing Halo mass density if there is spherical symmetry and their average mass is of the order of 10 000M ⊙ . This compares with the Jeans mass of about 40 000M ⊙ and puts forward that the HCCs are, in fact, Jeans clusters, constituting all the Galactic dark matter and many of its missing baryons, a conclusion deduced before from a different field of the sky (Nieuwenhuizen et al 2011 J. Cosmol. 15 6017-29). A preliminary analysis of the intensities yields that the Jeans clusters themselves may consist of some billion MACHOs of a few dozen Earth masses. With a size of dozens of solar radii, they would mostly not lens, but cause occultation of stars in the LMC, SMC and toward the Galactic center, and may thus have been overlooked in microlensing.

  18. Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing.

    Science.gov (United States)

    Trudgian, David C; Mirzaei, Hamid

    2012-12-07

    We have extended the functionality of the Central Proteomics Facilities Pipeline (CPFP) to allow use of remote cloud and high performance computing (HPC) resources for shotgun proteomics data processing. CPFP has been modified to include modular local and remote scheduling for data processing jobs. The pipeline can now be run on a single PC or server, a local cluster, a remote HPC cluster, and/or the Amazon Web Services (AWS) cloud. We provide public images that allow easy deployment of CPFP in its entirety in the AWS cloud. This significantly reduces the effort necessary to use the software, and allows proteomics laboratories to pay for compute time ad hoc, rather than obtaining and maintaining expensive local server clusters. Alternatively the Amazon cloud can be used to increase the throughput of a local installation of CPFP as necessary. We demonstrate that cloud CPFP allows users to process data at higher speed than local installations but with similar cost and lower staff requirements. In addition to the computational improvements, the web interface to CPFP is simplified, and other functionalities are enhanced. The software is under active development at two leading institutions and continues to be released under an open-source license at http://cpfp.sourceforge.net.

  19. +Cloud: An Agent-Based Cloud Computing Platform

    OpenAIRE

    González, Roberto; Hernández de la Iglesia, Daniel; de la Prieta Pintado, Fernando; Gil González, Ana Belén

    2017-01-01

    Cloud computing is revolutionizing the services provided through the Internet, and is continually adapting itself in order to maintain the quality of its services. This study presents the platform +Cloud, which proposes a cloud environment for storing information and files by following the cloud paradigm. This study also presents Warehouse 3.0, a cloud-based application that has been developed to validate the services provided by +Cloud.

  20. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS

    International Nuclear Information System (INIS)

    Wei, J.; Macek, R.J.

    2002-01-01

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures

  1. IP Telephony Applicability in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Francisco Palacios

    2018-02-01

    Full Text Available This paper carries out a research related to the applicability of VoIP over Cloud Computing to guarantee service stability and elasticity of the organizations. In this paper, Elastix is used as an open source software that allows the management and control of a Private Branch Exchange (PBX; and for developing, it is used the services given Amazon Web Services due to their leadership and experience in cloud computing providing security, scalability, backup service and feasibility for the users.

  2. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu, E-mail: keiser@dtm.ciw.edu [Department of Terrestrial Magnetism, Carnegie Institution, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States)

    2013-06-10

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  3. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  4. Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds

    Science.gov (United States)

    Muhlbauer, A.; Hashino, T.; Xue, L.; Teller, A.; Lohmann, U.; Rasmussen, R. M.; Geresdi, I.; Pan, Z.

    2010-09-01

    Anthropogenic aerosols serve as a source of both cloud condensation nuclei (CCN) and ice nuclei (IN) and affect microphysical properties of clouds. Increasing aerosol number concentrations is hypothesized to retard the cloud droplet coalescence and the riming in mixed-phase clouds, thereby decreasing orographic precipitation. This study presents results from a model intercomparison of 2-D simulations of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. The sensitivity of orographic precipitation to changes in the aerosol number concentrations is analysed and compared for various dynamical and thermodynamical situations. Furthermore, the sensitivities of microphysical processes such as coalescence, aggregation, riming and diffusional growth to changes in the aerosol number concentrations are evaluated and compared. The participating numerical models are the model from the Consortium for Small-Scale Modeling (COSMO) with bulk microphysics, the Weather Research and Forecasting (WRF) model with bin microphysics and the University of Wisconsin modeling system (UWNMS) with a spectral ice habit prediction microphysics scheme. All models are operated on a cloud-resolving scale with 2 km horizontal grid spacing. The results of the model intercomparison suggest that the sensitivity of orographic precipitation to aerosol modifications varies greatly from case to case and from model to model. Neither a precipitation decrease nor a precipitation increase is found robustly in all simulations. Qualitative robust results can only be found for a subset of the simulations but even then quantitative agreement is scarce. Estimates of the aerosol effect on orographic precipitation are found to range from -19% to 0% depending on the simulated case and the model. Similarly, riming is shown to decrease in some cases and models whereas it increases in others, which implies that a decrease in riming with increasing aerosol load is not a robust result

  5. Route Assessment for Unmanned Aerial Vehicle Based on Cloud Model

    Directory of Open Access Journals (Sweden)

    Xixia Sun

    2014-01-01

    Full Text Available An integrated route assessment approach based on cloud model is proposed in this paper, where various sources of uncertainties are well kept and modeled by cloud theory. Firstly, a systemic criteria framework incorporating models for scoring subcriteria is developed. Then, the cloud model is introduced to represent linguistic variables, and survivability probability histogram of each route is converted into normal clouds by cloud transformation, enabling both randomness and fuzziness in the assessment environment to be managed simultaneously. Finally, a new way to measure the similarity between two normal clouds satisfying reflexivity, symmetry, transitivity, and overlapping is proposed. Experimental results demonstrate that the proposed route assessment approach outperforms fuzzy logic based assessment approach with regard to feasibility, reliability, and consistency with human thinking.

  6. Infrared reflection nebulae in Orion Molecular Cloud

    International Nuclear Information System (INIS)

    Pendleton, Y.; Werner, M.W.; Capps, R.; Lester, D.; Hawaii Univ., Honolulu; Texas Univ., Austin)

    1986-01-01

    New observations of Orion Molecular Cloud 2 have been made from 1 to 100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry, and spectrophotometry has shown that the extended emission regions associated with two of the previously known near-infrared sources, IRS 1 and IRS 4, are infrared reflection nebulae, and that the compact sources IRS 1 and IRS 4 are the main luminosity sources in the cloud. The constraints from the far-infrared observations and an analysis of the scattered light from the IRS 1 nebula show that OMC-2/IRS 1 can be characterized by L of 500 solar luminosities or less and T of roughly 1000 K. The near-infrared albedo of the grains in the IRS 1 nebula is greater than 0.08. 27 references

  7. Studies of relativistic effects with radioastron space mission

    Directory of Open Access Journals (Sweden)

    Zakharov A.F.

    2007-01-01

    Full Text Available In the review we discuss possible studies of GR phenomena such as gravitational microlensing and shadow analysis with the forthcoming RadioAstron space mission. It is well-known that gravitational lensing is a powerful tool in the investigation of the distribution of matter, including that of dark matter (DM. Typical angular distances between images and typical time scales depend on the gravitational lens masses. For the microlensing, angular distances between images or typical astrometric shifts are about 10-5 – 10-6 as1. Such an angular resolution will be reached with the space-ground VLBI interferometer, Radioastron. The basic targets for microlensing searches should be bright point-like radio sources at cosmological distances. In this case, an analysis of their variability and a reliable determination of microlensing could lead to an estimation of their cosmological mass density. Moreover, one could not exclude the possibility that non-baryonic dark matter could also form microlenses if the corresponding optical depth were high enough. It is known that in gravitationally lensed systems, the probability (the optical depth to observe microlensing is relatively high; therefore, for example, such gravitationally lensed objects, like CLASS gravitational lens B1600+434, appear the most suitable to detect astrometric microlensing, since features of photometric microlensing have been detected in these objects. However, to directly resolve these images and to directly detect the apparent motion of the knots, the Radioastron sensitivity would have to be improved, since the estimated flux density is below the sensitivity threshold, alternatively, they may be observed by increasing the integration time, assuming that a radio source has a typical core - jet structure and microlensing phenomena are caused by the superluminal apparent motions of knots. In the case of a confirmation (or a disproval of claims about microlensing in grav­itational lens

  8. Cloud Processed CCN Suppress Stratus Cloud Drizzle

    Science.gov (United States)

    Hudson, J. G.; Noble, S. R., Jr.

    2017-12-01

    Conversion of sulfur dioxide to sulfate within cloud droplets increases the sizes and decreases the critical supersaturation, Sc, of cloud residual particles that had nucleated the droplets. Since other particles remain at the same sizes and Sc a size and Sc gap is often observed. Hudson et al. (2015) showed higher cloud droplet concentrations (Nc) in stratus clouds associated with bimodal high-resolution CCN spectra from the DRI CCN spectrometer compared to clouds associated with unimodal CCN spectra (not cloud processed). Here we show that CCN spectral shape (bimodal or unimodal) affects all aspects of stratus cloud microphysics and drizzle. Panel A shows mean differential cloud droplet spectra that have been divided according to traditional slopes, k, of the 131 measured CCN spectra in the Marine Stratus/Stratocumulus Experiment (MASE) off the Central California coast. K is generally high within the supersaturation, S, range of stratus clouds (< 0.5%). Because cloud processing decreases Sc of some particles, it reduces k. Panel A shows higher concentrations of small cloud droplets apparently grown on lower k CCN than clouds grown on higher k CCN. At small droplet sizes the concentrations follow the k order of the legend, black, red, green, blue (lowest to highest k). Above 13 µm diameter the lines cross and the hierarchy reverses so that blue (highest k) has the highest concentrations followed by green, red and black (lowest k). This reversed hierarchy continues into the drizzle size range (panel B) where the most drizzle drops, Nd, are in clouds grown on the least cloud-processed CCN (blue), while clouds grown on the most processed CCN (black) have the lowest Nd. Suppression of stratus cloud drizzle by cloud processing is an additional 2nd indirect aerosol effect (IAE) that along with the enhancement of 1st IAE by higher Nc (panel A) are above and beyond original IAE. However, further similar analysis is needed in other cloud regimes to determine if MASE was

  9. CHARACTERIZING THE POPULATION OF BRIGHT INFRARED SOURCES IN THE SMALL MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, K. E. [Institute for Scientific Research, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); Sloan, G. C. [Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853-6801 (United States); Wood, P. R. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek ACT 2611 (Australia); Jones, O. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Egan, M. P., E-mail: kathleen.kraemer@bc.edu, E-mail: sloan@astro.cornell.edu, E-mail: wood@mso.anu.edu.au, E-mail: michael.p.egan@nga.mil [National Geospatial Intelligence Agency, 7500 GEOINT Drive, Springfield, VA 22150 (United States)

    2017-01-10

    We have used the Infrared Spectrograph (IRS) on the Spitzer Space Telescope to observe stars in the Small Magellanic Cloud (SMC) selected from the Point Source Catalog of the Midcourse Space Experiment (MSX). We concentrate on the dust properties of the oxygen-rich evolved stars. The dust composition has smaller contributions from alumina compared to the Galaxy. This difference may arise from the lower metallicity in the SMC, but it could be a selection effect, as the SMC sample includes more stars that are brighter and thus more massive. The distribution of the SMC stars along the silicate sequence looks more like the Galactic sample of red supergiants than asymptotic giant branch stars (AGBs). While many of the SMC stars are definitively on the AGB, several also show evidence of hot bottom burning. Three of the supergiants show PAH emission at 11.3 μ m. Two other sources show mixed chemistry, with both carbon-rich and oxygen-rich spectral features. One, MSX SMC 134, may be the first confirmed silicate/carbon star in the SMC. The other, MSX SMC 049, is a candidate post-AGB star. MSX SMC 145, previously considered a candidate OH/IR star, is actually an AGB star with a background galaxy at z  = 0.16 along the same line of sight. We consider the overall characteristics of all the MSX sources, the most infrared-bright objects in the SMC, in light of the higher sensitivity and resolution of Spitzer , and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the upcoming James Webb Space Telescope ( JWST ). Color–color diagrams generated from the IRS spectra and the mid-infrared filters on JWST show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different classes of YSOs.

  10. CHARACTERIZING THE POPULATION OF BRIGHT INFRARED SOURCES IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Kraemer, K. E.; Sloan, G. C.; Wood, P. R.; Jones, O. C.; Egan, M. P.

    2017-01-01

    We have used the Infrared Spectrograph (IRS) on the Spitzer Space Telescope to observe stars in the Small Magellanic Cloud (SMC) selected from the Point Source Catalog of the Midcourse Space Experiment (MSX). We concentrate on the dust properties of the oxygen-rich evolved stars. The dust composition has smaller contributions from alumina compared to the Galaxy. This difference may arise from the lower metallicity in the SMC, but it could be a selection effect, as the SMC sample includes more stars that are brighter and thus more massive. The distribution of the SMC stars along the silicate sequence looks more like the Galactic sample of red supergiants than asymptotic giant branch stars (AGBs). While many of the SMC stars are definitively on the AGB, several also show evidence of hot bottom burning. Three of the supergiants show PAH emission at 11.3 μ m. Two other sources show mixed chemistry, with both carbon-rich and oxygen-rich spectral features. One, MSX SMC 134, may be the first confirmed silicate/carbon star in the SMC. The other, MSX SMC 049, is a candidate post-AGB star. MSX SMC 145, previously considered a candidate OH/IR star, is actually an AGB star with a background galaxy at z  = 0.16 along the same line of sight. We consider the overall characteristics of all the MSX sources, the most infrared-bright objects in the SMC, in light of the higher sensitivity and resolution of Spitzer , and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the upcoming James Webb Space Telescope ( JWST ). Color–color diagrams generated from the IRS spectra and the mid-infrared filters on JWST show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different classes of YSOs.

  11. Characterizing Sorghum Panicles using 3D Point Clouds

    Science.gov (United States)

    Lonesome, M.; Popescu, S. C.; Horne, D. W.; Pugh, N. A.; Rooney, W.

    2017-12-01

    To address demands of population growth and impacts of global climate change, plant breeders must increase crop yield through genetic improvement. However, plant phenotyping, the characterization of a plant's physical attributes, remains a primary bottleneck in modern crop improvement programs. 3D point clouds generated from terrestrial laser scanning (TLS) and unmanned aerial systems (UAS) based structure from motion (SfM) are a promising data source to increase the efficiency of screening plant material in breeding programs. This study develops and evaluates methods for characterizing sorghum (Sorghum bicolor) panicles (heads) in field plots from both TLS and UAS-based SfM point clouds. The TLS point cloud over experimental sorghum field at Texas A&M farm in Burleston County TX were collected using a FARO Focus X330 3D laser scanner. SfM point cloud was generated from UAS imagery captured using a Phantom 3 Professional UAS at 10m altitude and 85% image overlap. The panicle detection method applies point cloud reflectance, height and point density attributes characteristic of sorghum panicles to detect them and estimate their dimensions (panicle length and width) through image classification and clustering procedures. We compare the derived panicle counts and panicle sizes with field-based and manually digitized measurements in selected plots and study the strengths and limitations of each data source for sorghum panicle characterization.

  12. Newly detected molecules in dense interstellar clouds

    Science.gov (United States)

    Irvine, William M.; Avery, L. W.; Friberg, P.; Matthews, H. E.; Ziurys, L. M.

    Several new interstellar molecules have been identified including C2S, C3S, C5H, C6H and (probably) HC2CHO in the cold, dark cloud TMC-1; and the discovery of the first interstellar phosphorus-containing molecule, PN, in the Orion "plateau" source. Further results include the observations of 13C3H2 and C3HD, and the first detection of HCOOH (formic acid) in a cold cloud.

  13. Magnetogasdynamics of double radio sources

    International Nuclear Information System (INIS)

    Nepveu, M.

    1979-01-01

    The magnetogasdynamical behaviour of plasmoids moving through an ambient gas is investigated numerically with a two-dimensional code, based on the SHASTA scheme. The astrophysical importance of this study lies in the observed extended extragalactic radio sources. It is assumed that plasma clouds with cylinder symmetry are ejected from the nucleus of a galaxy. Their large-scale evolution in the intergalactic medium (IGM) is followed. The gas dynamics of an ejected cloud, the magnetogasdynamics of ejected clouds, the Christiansen-Pacholczyk-Scott picture for radio galaxies and the shear layers in double radio sources are studied. (Auth.)

  14. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    Science.gov (United States)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  15. OGLE-2017-BLG-0173Lb: Low-mass-ratio Planet in a “Hollywood” Microlensing Event

    Science.gov (United States)

    Hwang, K.-H.; Udalski, A.; Shvartzvald, Y.; Ryu, Y.-H.; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Jung, Y. K.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration; Skowron, J.; Mróz, P.; Poleski, R.; Kozłowski, S.; Soszyński, I.; Pietrukowicz, P.; Szymański, M. K.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Bryden, G.; Beichman, C.; Calchi Novati, S.; Gaudi, B. S.; Henderson, C. B.; Jacklin, S.; Penny, M. T.; UKIRT Microlensing Team

    2018-01-01

    We present microlensing planet OGLE-2017-BLG-0173Lb, with planet–host mass ratio of either q≃ 2.5× {10}-5 or q≃ 6.5× {10}-5, the lowest or among the lowest ever detected. The planetary perturbation is strongly detected, Δχ 2 ∼ 10000, because it arises from a bright (therefore, large) source passing over and enveloping the planetary caustic: a so-called “Hollywood” event. The factor ∼2.5 offset in q arises because of a previously unrecognized discrete degeneracy between Hollywood events in which the caustic is fully enveloped and those in which only one flank is enveloped, which we dub “Cannae” and “von Schlieffen,” respectively. This degeneracy is “accidental” in that it arises from gaps in the data. Nevertheless, the fact that it appears in a Δχ 2 = 10000 planetary anomaly is striking. We present a simple formalism to estimate the sensitivity of other Hollywood events to planets and show that they can lead to detections close to, but perhaps not quite reaching, the Earth/Sun mass ratio of 3× {10}-6. This formalism also enables an analytic understanding of the factor ∼2.5 offset in q between the Cannae and von Schlieffen solutions. The Bayesian estimates for the host mass, system distance, and planet–host projected separation are M={0.39}-0.24+0.40 {M}ȯ , {D}L={4.8}-1.8+1.5 {kpc}, and {a}\\perp =3.8+/- 1.6 {au}, respectively. The two estimates of the planet mass are {m}p={3.3}-2.1+3.8 {M}\\oplus and {m}p={8}-6+11 {M}\\oplus . The measured lens-source relative proper motion μ =6 {mas} {{yr}}-1 will permit imaging of the lens in about 15 years or at first light on adaptive-optics imagers on next-generation telescopes. These will allow one to measure the host mass but probably will not be able to resolve the planet–host mass-ratio degeneracy.

  16. Cloudweaver: Adaptive and Data-Driven Workload Manager for Generic Clouds

    Science.gov (United States)

    Li, Rui; Chen, Lei; Li, Wen-Syan

    Cloud computing denotes the latest trend in application development for parallel computing on massive data volumes. It relies on clouds of servers to handle tasks that used to be managed by an individual server. With cloud computing, software vendors can provide business intelligence and data analytic services for internet scale data sets. Many open source projects, such as Hadoop, offer various software components that are essential for building a cloud infrastructure. Current Hadoop (and many others) requires users to configure cloud infrastructures via programs and APIs and such configuration is fixed during the runtime. In this chapter, we propose a workload manager (WLM), called CloudWeaver, which provides automated configuration of a cloud infrastructure for runtime execution. The workload management is data-driven and can adapt to dynamic nature of operator throughput during different execution phases. CloudWeaver works for a single job and a workload consisting of multiple jobs running concurrently, which aims at maximum throughput using a minimum set of processors.

  17. Electron-cloud measurements and simulations for the APS

    International Nuclear Information System (INIS)

    Furman, M.A.; Pivi, M.; Harkay, K.C.; Rosenberg, R.A.

    2001-01-01

    We compare experimental results with simulations of the electron cloud effect induced by a positron beam at the APS synchrotron light source at ANL, where the electron cloud effect has been observed and measured with dedicated probes. We find good agreement between simulations and measurements for reasonable values of certain secondary electron yield (SEY) parameters, most of which were extracted from recent bench measurements at SLAC

  18. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  19. Improved prediction and tracking of volcanic ash clouds

    Science.gov (United States)

    Mastin, Larry G.; Webley, Peter

    2009-01-01

    During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.

  20. Scalability of Parallel Scientific Applications on the Cloud

    Directory of Open Access Journals (Sweden)

    Satish Narayana Srirama

    2011-01-01

    Full Text Available Cloud computing, with its promise of virtually infinite resources, seems to suit well in solving resource greedy scientific computing problems. To study the effects of moving parallel scientific applications onto the cloud, we deployed several benchmark applications like matrix–vector operations and NAS parallel benchmarks, and DOUG (Domain decomposition On Unstructured Grids on the cloud. DOUG is an open source software package for parallel iterative solution of very large sparse systems of linear equations. The detailed analysis of DOUG on the cloud showed that parallel applications benefit a lot and scale reasonable on the cloud. We could also observe the limitations of the cloud and its comparison with cluster in terms of performance. However, for efficiently running the scientific applications on the cloud infrastructure, the applications must be reduced to frameworks that can successfully exploit the cloud resources, like the MapReduce framework. Several iterative and embarrassingly parallel algorithms are reduced to the MapReduce model and their performance is measured and analyzed. The analysis showed that Hadoop MapReduce has significant problems with iterative methods, while it suits well for embarrassingly parallel algorithms. Scientific computing often uses iterative methods to solve large problems. Thus, for scientific computing on the cloud, this paper raises the necessity for better frameworks or optimizations for MapReduce.

  1. The effects of clouds on the detection of light signals from near-ground nuclear bursts at satellite

    International Nuclear Information System (INIS)

    Zhang Zhongshan; Zhang Enshan; Zhao Wenli; Gao Chunxia

    2002-01-01

    The effects of clouds on the detection of light signals from near-ground nuclear bursts are analysed quantitatively. The results indicate: the degree of the effect increasing with the growth of clouds optical thickness and satellite look angle; clouds lead really harmful effect in detectable signal intensity and precision of optical location, but degree of the effect is not great too. The enhancement of the photon optical paths by multiple scattering within the cloud will cause both a delay and a time-broadening of an impulsive light signal, and get 'lower and fat'; upward optical transmission of light through clouds is essentially the same as if there were no cloud present at all, when a point source is above the geometrical mid-plane of the cloud. And if the point source is below the mid-plane, then upward optical transmission of light through clods will be related closely to the distance of the source below the mid-plane. Given also some charts which evaluate conveniently degree of the effect due to clouds for the purpose of reference and use of a person of the same trade or occupation are given also

  2. Model of the electron acceleration in the clouds of radio galaxies

    International Nuclear Information System (INIS)

    Fedorenko, V.N.

    1980-01-01

    The mechanism of electron turbulent acceleration in the clouds of radio galaxies is studied. It is suggested that clouds of radio galaxies are continuously filled by relativistic matter. A self-consistent turbulent acceleration regime in the clouds of radio galaxies is shown to be realized. The synchrotron energetic losses of the ultra-relativistic electrons are compensated by the turbulent acceleration due to Langmuir and Alfven waves. The source of Langmuir waves turbulence is the relativistic matter emanating from the galaxy nuclei and relaxating within the ''hot spots'' of the clouds

  3. Clean Energy Use for Cloud Computing Federation Workloads

    Directory of Open Access Journals (Sweden)

    Yahav Biran

    2017-08-01

    Full Text Available Cloud providers seek to maximize their market share. Traditionally, they deploy datacenters with sufficient capacity to accommodate their entire computing demand while maintaining geographical affinity to its customers. Achieving these goals by a single cloud provider is increasingly unrealistic from a cost of ownership perspective. Moreover, the carbon emissions from underutilized datacenters place an increasing demand on electricity and is a growing factor in the cost of cloud provider datacenters. Cloud-based systems may be classified into two categories: serving systems and analytical systems. We studied two primary workload types, on-demand video streaming as a serving system and MapReduce jobs as an analytical systems and suggested two unique energy mix usage for processing that workloads. The recognition that on-demand video streaming now constitutes the bulk portion of traffic to Internet consumers provides a path to mitigate rising energy demand. On-demand video is usually served through Content Delivery Networks (CDN, often scheduled in backend and edge datacenters. This publication describes a CDN deployment solution that utilizes green energy to supply on-demand streaming workload. A cross-cloud provider collaboration will allow cloud providers to both operate near their customers and reduce operational costs, primarily by lowering the datacenter deployments per provider ratio. Our approach optimizes cross-datacenters deployment. Specifically, we model an optimized CDN-edge instance allocation system that maximizes, under a set of realistic constraints, green energy utilization. The architecture of this cross-cloud coordinator service is based on Ubernetes, an open source container cluster manager that is a federation of Kubernetes clusters. It is shown how, under reasonable constraints, it can reduce the projected datacenter’s carbon emissions growth by 22% from the currently reported consumption. We also suggest operating

  4. Increasing data quality by predicting cloud-movement with Allsky-Cams

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Jan; Buss, Jens; Noethe, Maximilian [TU Dortmund (Germany); Collaboration: FACT-Collaboration

    2016-07-01

    Clouds and related atmospheric phenomena have a big influence on the quality of astronomical observations. Especially in case of ground-based gamma telescopes such as FACT, bad atmospheric conditions impair the reconstruction of air-shower events. The First G-APD Cherenkov Telescope aims for automatic long-term monitoring. Therefore, it benefits greatly from an advanced scheduling algorithm which takes into account the current weather conditions. While there is no way to reduce the occurrence of clouds in the direction of a desired object, it is possible to increase the duty cycle by switching to an uncovered source. Hence, a quantitative rating of the sky cloudiness is needed to differentiate between covered and uncovered areas. This talk presents a method to calculate the current sky cloudiness by searching stars in 180 allsky camera images. This method can be applied to arbitrary areas, e.g., the whole sky or a few degrees around any certain source. Results and various visualisations are presented, such as the distribution of the parameters for different weather conditions. Moreover, their developement over time is shown for multiple sources in a partly clouded night. And a first approach for predicting the cloud's movement by using subsequent images and additional data such as wind profiles is discussed.

  5. LingoBee--Crowd-Sourced Mobile Language Learning in the Cloud

    Science.gov (United States)

    Petersen, Sobah Abbas; Procter-Legg, Emma; Cacchione, Annamaria

    2013-01-01

    This paper describes three case studies, where language learners were invited to use "LingoBee" as a means of supporting their language learning. LingoBee is a mobile app that provides user-generated language content in a cloud-based shared repository. Assuming that today's students are mobile savvy and "Digital Natives" able…

  6. The impact of parametrized convection on cloud feedback

    Science.gov (United States)

    Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming

    2015-01-01

    We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud

  7. An Examination of the Nature of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.

    2014-01-01

    We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.

  8. Microsecond-scale electric field pulses in cloud lightning discharges

    Science.gov (United States)

    Villanueva, Y.; Rakov, V. A.; Uman, M. A.; Brook, M.

    1994-01-01

    From wideband electric field records acquired using a 12-bit digitizing system with a 500-ns sampling interval, microsecond-scale pulses in different stages of cloud flashes in Florida and New Mexico are analyzed. Pulse occurrence statistics and waveshape characteristics are presented. The larger pulses tend to occur early in the flash, confirming the results of Bils et al. (1988) and in contrast with the three-stage representation of cloud-discharge electric fields suggested by Kitagawa and Brook (1960). Possible explanations for the discrepancy are discussed. The tendency for the larger pulses to occur early in the cloud flash suggests that they are related to the initial in-cloud channel formation processes and contradicts the common view found in the atmospheric radio-noise literature that the main sources of VLF/LF electromagnetic radiation in cloud flashes are the K processes which occur in the final, or J type, part of the cloud discharge.

  9. Accurate Mass Measurements for Planetary Microlensing Events Using High Angular Resolution Observations

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Beaulieu

    2018-04-01

    Full Text Available The microlensing technique is a unique method to hunt for cold planets over a range of mass and separation, orbiting all varieties of host stars in the disk of our galaxy. It provides precise mass-ratio and projected separations in units of the Einstein ring radius. In order to obtain the physical parameters (mass, distance, orbital separation of the system, it is necessary to combine the result of light curve modeling with lens mass-distance relations and/or perform a Bayesian analysis with a galactic model. A first mass-distance relation could be obtained from a constraint on the Einstein ring radius if the crossing time of the source over the caustic is measured. It could then be supplemented by secondary constraints such as parallax measurements, ideally by using coinciding ground and space-born observations. These are still subject to degeneracies, like the orbital motion of the lens. A third mass-distance relation can be obtained thanks to constraints on the lens luminosity using high angular resolution observations with 8 m class telescopes or the Hubble Space Telescope. The latter route, although quite inexpensive in telescope time is very effective. If we have to rely heavily on Bayesian analysis and limited constraints on mass-distance relations, the physical parameters are determined to 30–40% typically. In a handful of cases, ground-space parallax is a powerful route to get stronger constraint on masses. High angular resolution observations will be able to constrain the luminosity of the lenses in the majority of the cases, and in favorable circumstances it is possible to derive physical parameters to 10% or better. Moreover, these constraints will be obtained in most of the planets to be discovered by the Euclid and WFIRST satellites. We describe here the state-of-the-art approaches to measure lens masses and distances with an emphasis on high angular resolution observations. We will discuss the challenges, recent results and

  10. Clouds and the Near-Earth Environment: Possible Links

    Directory of Open Access Journals (Sweden)

    Condurache-Bota Simona

    2015-12-01

    Full Text Available Climate variability is a hot topic not only for scientists and policy-makers, but also for each and every one of us. The anthropogenic activities are considered to be responsible for most climate change, however there are large uncertainties about the magnitude of effects of solar variability and other extraterrestrial influences, such as galactic cosmic rays on terrestrial climate. Clouds play an important role due to feedbacks of the radiation budget: variation of cloud cover/composition affects climate, which, in turn, affects cloud cover via atmospheric dynamics and sea temperature variations. Cloud formation and evolution are still under scientific scrutiny, since their microphysics is still not understood. Besides atmospheric dynamics and other internal climatic parameters, extraterrestrial sources of cloud cover variation are considered. One of these is the solar wind, whose effect on cloud cover might be modulated by the global atmospheric electrical circuit. Clouds height and composition, their seasonal variation and latitudinal distribution should be considered when trying to identify possible mechanisms by which solar energy is transferred to clouds. The influence of the solar wind on cloud formation can be assessed also through the ap index - the geomagnetic storm index, which can be readily connected with interplanetary magnetic field, IMF structure. This paper proposes to assess the possible relationship between both cloud cover and solar wind proxies, as the ap index, function of cloud height and composition and also through seasonal studies. The data covers almost three solar cycles (1984-2009. Mechanisms are looked for by investigating observed trends or correlation at local/seasonal scale

  11. DAФNE Operation with Electron-Cloud-Clearing Electrodes

    CERN Document Server

    Alesini, D; Gallo, A; Guiducci, S; Milardi, C; Stella, A; Zobov, Mikhail; De Santis, S; Demma, Theo; Raimondi, P

    2013-01-01

    The effects of an electron cloud (e-cloud) on beam dynamics are one of the major factors limiting performances of high intensity positron, proton, and ion storage rings. In the electron-positron collider DAΦNE, namely, a horizontal beam instability due to the electron-cloud effect has been identified as one of the main limitations on the maximum stored positron beam current and as a source of beam quality deterioration. During the last machine shutdown in order to mitigate such instability, special electrodes have been inserted in all dipole and wiggler magnets of the positron ring. It has been the first installation all over the world of this type since long metallic electrodes have been installed in all arcs of the collider positron ring and are currently used during the machine operation in collision. This has allowed a number of unprecedented measurements (e-cloud instabilities growth rate, transverse beam size variation, tune shifts along the bunch train) where the e-cloud contribution is clearly eviden...

  12. OGLE-2017-BLG-0329L: A Microlensing Binary Characterized with Dramatically Enhanced Precision Using Data from Space-based Observations

    Science.gov (United States)

    Han, C.; Calchi Novati, S.; Udalski, A.; Lee, C.-U.; Gould, A.; Bozza, V.; Mróz, P.; Pietrukowicz, P.; Skowron, J.; Szymański, M. K.; Poleski, R.; Soszyński, I.; Kozłowski, S.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; The OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Hwang, K.-H.; Jung, Y. K.; Ryu, Y.-H.; Shin, I.-G.; Shvartzvald, Y.; Yee, J. C.; Zang, W.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; Kim, W.-T.; The KMTNet Collaboration; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; The Spitzer Team; Dominik, M.; Helling, C.; Hundertmark, M.; Jørgensen, U. G.; Longa-Peña, P.; Lowry, S.; Sajadian, S.; Burgdorf, M. J.; Campbell-White, J.; Ciceri, S.; Evans, D. F.; Haikala, L. K.; Hinse, T. C.; Rahvar, S.; Rabus, M.; Snodgrass, C.; The MiNDSTEp Collaboration

    2018-06-01

    Mass measurements of gravitational microlenses require one to determine the microlens parallax π E, but precise π E measurement, in many cases, is hampered due to the subtlety of the microlens-parallax signal combined with the difficulty of distinguishing the signal from those induced by other higher-order effects. In this work, we present the analysis of the binary-lens event OGLE-2017-BLG-0329, for which π E is measured with a dramatically improved precision using additional data from space-based Spitzer observations. We find that while the parallax model based on the ground-based data cannot be distinguished from a zero-π E model at the 2σ level, the addition of the Spitzer data enables us to identify two classes of solutions, each composed of a pair of solutions according to the well-known ecliptic degeneracy. It is found that the space-based data reduce the measurement uncertainties of the north and east components of the microlens-parallax vector {{\\boldsymbol{π }}}{{E}} by factors ∼18 and ∼4, respectively. With the measured microlens parallax combined with the angular Einstein radius measured from the resolved caustic crossings, we find that the lens is composed of a binary with component masses of either (M 1, M 2) ∼ (1.1, 0.8) M ⊙ or ∼(0.4, 0.3) M ⊙ according to the two solution classes. The first solution is significantly favored but the second cannot be securely ruled out based on the microlensing data alone. However, the degeneracy can be resolved from adaptive optics observations taken ∼10 years after the event.

  13. THE SECOND SURVEY OF THE MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD BY NANTEN. II. STAR FORMATION

    International Nuclear Information System (INIS)

    Kawamura, Akiko; Mizuno, Yoji; Minamidani, Tetsuhiro; Mizuno, Norikazu; Onishi, Toshikazu; Fukui, Yasuo; Fillipovic, Miroslav D.; Staveley-Smith, Lister; Kim, Sungeun; Mizuno, Akira

    2009-01-01

    We studied star formation activities in the molecular clouds in the Large Magellanic Cloud. We have utilized the second catalog of 272 molecular clouds obtained by NANTEN to compare the cloud distribution with signatures of massive star formation including stellar clusters, and optical and radio H II regions. We find that the molecular clouds are classified into three types according to the activities of massive star formation: Type I shows no signature of massive star formation; Type II is associated with relatively small H II region(s); and Type III with both H II region(s) and young stellar cluster(s). The radio continuum sources were used to confirm that Type I giant molecular clouds (GMCs) do not host optically hidden H II regions. These signatures of massive star formation show a good spatial correlation with the molecular clouds in the sense that they are located within ∼100 pc of the molecular clouds. Among possible ideas to explain the GMC types, we favor that the types indicate an evolutionary sequence; i.e., the youngest phase is Type I, followed by Type II, and the last phase is Type III, where the most active star formation takes place leading to cloud dispersal. The number of the three types of GMCs should be proportional to the timescale of each evolutionary stage if a steady state of massive star and cluster formation is a good approximation. By adopting the timescale of the youngest stellar clusters, 10 Myr, we roughly estimate the timescales of Types I, II, and III to be 6 Myr, 13 Myr, and 7 Myr, respectively, corresponding to a lifetime of 20-30 Myr for the GMCs with a mass above the completeness limit, 5 x 10 4 M sun .

  14. Multi-wavelength study of two possible cloud-cloud collision regions: IRAS 02459+6029 and IRAS 22528+5936

    International Nuclear Information System (INIS)

    Li Nan; Wang Junjie

    2012-01-01

    Based on observations of 12 CO (J=2–1), we select targets from archived Infrared Astronomical Satellite (IRAS) data of IRAS 02459+6029 and IRAS 22528+5936 as samples of cloud-cloud collision, according to the criteria given by Vallee. Then we use the Midcourse Space Experiment (MSX) A band (8.28 μm) images and the NRAO VLA Sky Survey (NVSS) (1.4 GHz) continuum images to investigate the association between molecular clouds traced by the CO contour maps. The distribution of dust and ionized hydrogen shows an obvious association with the CO contour maps toward IRAS 02459+6029. However, in the possible collision region of IRAS 22528+5936, NVSS continuum radiation is not detected and the MSX sources are merely associated with the central star. The velocity fields of the two regions indicate the direction of the pressure and interaction. In addition, we have identified candidates of young stellar objects (YSOs) by using data from the Two Micron All Sky Survey (2MASS) in JHK bands expressed in a color-color diagram. The distribution of YSOs shows that the possible collision region is denser than other regions. All the evidence suggests that IRAS 02459+6029 could be an example of cloud-cloud collision, and that IRAS 22528+5936 could be two separate non-colliding clouds. (research papers)

  15. Mobile Computing and Cloud maturity - Introducing Machine Learning for ERP Configuration Automation

    Directory of Open Access Journals (Sweden)

    Elena Geanina ULARU

    2013-01-01

    Full Text Available Nowadays the smart phone market is clearly growing due to the new type of functionalities that mobile devices have and the role that they play in everyday life. Their utility and benefits rely on the applications that can be installed on the device (the so-called mobile apps. Cloud computing is a way to enhance the world of mobile application by providing disk space and freeing the user of the local storage needs, this way providing cheaper storage, wider acces-sibility and greater speed for business. In this paper we introduce various aspects of mobile computing and we stress the importance of obtaining cloud maturity by using machine learning for automating configurations of software applications deployed on cloud nodes using the open source application ERP5 and SlapOS, an open source operating system for Decentralized Cloud Computing.

  16. Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds

    Science.gov (United States)

    Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.

    2017-12-01

    Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.

  17. A cosmic ray-climate link and cloud observations

    Directory of Open Access Journals (Sweden)

    Dunne Eimear M.

    2012-11-01

    Full Text Available Despite over 35 years of constant satellite-based measurements of cloud, reliable evidence of a long-hypothesized link between changes in solar activity and Earth’s cloud cover remains elusive. This work examines evidence of a cosmic ray cloud link from a range of sources, including satellite-based cloud measurements and long-term ground-based climatological measurements. The satellite-based studies can be divided into two categories: (1 monthly to decadal timescale analysis and (2 daily timescale epoch-superpositional (composite analysis. The latter analyses frequently focus on sudden high-magnitude reductions in the cosmic ray flux known as Forbush decrease events. At present, two long-term independent global satellite cloud datasets are available (ISCCP and MODIS. Although the differences between them are considerable, neither shows evidence of a solar-cloud link at either long or short timescales. Furthermore, reports of observed correlations between solar activity and cloud over the 1983–1995 period are attributed to the chance agreement between solar changes and artificially induced cloud trends. It is possible that the satellite cloud datasets and analysis methods may simply be too insensitive to detect a small solar signal. Evidence from ground-based studies suggests that some weak but statistically significant cosmic ray-cloud relationships may exist at regional scales, involving mechanisms related to the global electric circuit. However, a poor understanding of these mechanisms and their effects on cloud makes the net impacts of such links uncertain. Regardless of this, it is clear that there is no robust evidence of a widespread link between the cosmic ray flux and clouds.

  18. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  19. AN INTERACTIVE WEB-BASED ANALYSIS FRAMEWORK FOR REMOTE SENSING CLOUD COMPUTING

    Directory of Open Access Journals (Sweden)

    X. Z. Wang

    2015-07-01

    Full Text Available Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users’ private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook

  20. An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing

    Science.gov (United States)

    Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.

    2015-07-01

    Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write

  1. Deuterium fractionation in dense interstellar clouds

    International Nuclear Information System (INIS)

    Millar, T.J.; Bennett, A.; Herbst, E.

    1989-01-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized. 60 refs

  2. Deuterium fractionation in dense interstellar clouds

    Science.gov (United States)

    Millar, T. J.; Bennett, A.; Herbst, Eric

    1989-05-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized.

  3. Simulating electron clouds in heavy-ion accelerators

    International Nuclear Information System (INIS)

    Cohen, R.H.; Friedman, A.; Covo, M. Kireeff; Lund, S.M.; Molvik, A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J.-L.; Stoltz, P.; Veitzer, S.

    2005-01-01

    Contaminating clouds of electrons are a concern for most accelerators of positively charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly magnetized, weakly magnetized, and unmagnetized. The approach to such self-consistency is described, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyroperiod in the magnets. Tests and applications are presented: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the high-current experiment [L. R. Prost, P. A. Seidl, F. M. Bieniosek, C. M. Celata, A. Faltens, D. Baca, E. Henestroza, J. W. Kwan, M. Leitner, W. L. Waldron, R. Cohen, A. Friedman, D. Grote, S. M. Lund, A. W. Molvik, and E. Morse, 'High current transport experiment for heavy ion inertial fusion', Physical Review Special Topics, Accelerators and Beams 8, 020101 (2005)], at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam on an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-time-step mover to accurately calculate the instability

  4. flexCloud: Deployment of the FLEXPART Atmospheric Transport Model as a Cloud SaaS Environment

    Science.gov (United States)

    Morton, Don; Arnold, Dèlia

    2014-05-01

    FLEXPART (FLEXible PARTicle dispersion model) is a Lagrangian transport and dispersion model used by a growing international community. We have used it to simulate and forecast the atmospheric transport of wildfire smoke, volcanic ash and radionuclides. Additionally, FLEXPART may be run in backwards mode to provide information for the determination of emission sources such as nuclear emissions and greenhouse gases. This open source software is distributed in source code form, and has several compiler and library dependencies that users need to address. Although well-documented, getting it compiled, set up, running, and post-processed is often tedious, making it difficult for the inexperienced user. Our interest is in moving scientific modeling and simulation activities from site-specific clusters and supercomputers to a cloud model as a service paradigm. Choosing FLEXPART for our prototyping, our vision is to construct customised IaaS images containing fully-compiled and configured FLEXPART codes, including pre-processing, execution and postprocessing components. In addition, with the inclusion of a small web server in the image, we introduce a web-accessible graphical user interface that drives the system. A further initiative being pursued is the deployment of multiple, simultaneous FLEXPART ensembles in the cloud. A single front-end web interface is used to define the ensemble members, and separate cloud instances are launched, on-demand, to run the individual models and to conglomerate the outputs into a unified display. The outcome of this work is a Software as a Service (Saas) deployment whereby the details of the underlying modeling systems are hidden, allowing modelers to perform their science activities without the burden of considering implementation details.

  5. Electron cloud sizes in gas-filled detectors

    International Nuclear Information System (INIS)

    Boggende, A.J.F. den; Schrijver, C.J.

    1984-01-01

    Electron cloud sizes have been calculated for gas mixtures containing Ar, Xe, CO 2 , CH 4 , and N 2 for drifts through a constant electric field. The transport coefficients w and D/μ are in good agreement with experimental data of various sources for pure gases. Results of measurements, also performed in this work, for Ar+CO 2 , Ar+CH 4 , and Ar+Xe+CO 2 mixtures are in fair agreement with the calculated cloud sizes. For a large number of useful gas mixtures calculated electron cloud sizes are presented and discussed, most of which are given for the first time. A suggestion is made for an optimal gas mixture for an X-ray position sensitive proportional counter for medium and low energies. (orig.)

  6. A cloud climatology of the Southern Great Plains ARM CART

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, S.M.; Krueger, S.K.; Mace, G.G.

    2000-05-15

    Cloud amount statistics from three different sources were processed and compared. Surface observations from a National Centers for Environmental Prediction dataset were used. The data (Edited Cloud Report; ECR) consist of synoptic weather reports that have been edited to facilitate cloud analysis. Two stations near the Southern Great Plains (SGP) Cloud and Radiation Test Bed (CART) in north-central Oklahoma (Oklahoma City, Oklahoma and Wichita, Kansas) were selected. The ECR data span a 10-yr period from December 1981 to November 1991. The International Satellite Cloud Climatology Project (ISCCP) provided cloud amounts over the SGP CART for an 8-yr period (1983--91). Cloud amounts were also obtained from Micro Pulse Lidar (MPL) and Belfort Ceilometer (BLC) cloud-base height measurements made at the SGP CART over a 1-yr period. The annual and diurnal cycles of cloud amount as a function of cloud height and type were analyzed. The three datasets closely agree for total cloud amount. Good agreement was found in the ECR and MPL-BLC monthly low cloud amounts. With the exception of summer and midday in other seasons, the ISCCP low cloud amount estimates are generally 5%--10% less than the others. The ECR high cloud amount estimates are typically 10%--15% greater than those obtained from either the ISCCP or MPL-BLC datasets. The observed diurnal variations of altocumulus support the authors' model results of radiatively induced circulations.

  7. The role of aerosols in cloud drop parameterizations and its applications in global climate models

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, C.C.; Penner, J.E. [Lawrence Livermore National Lab., CA (United States)

    1996-04-01

    The characteristics of the cloud drop size distribution near cloud base are initially determined by aerosols that serve as cloud condensation nuclei and the updraft velocity. We have developed parameterizations relating cloud drop number concentration to aerosol number and sulfate mass concentrations and used them in a coupled global aerosol/general circulation model (GCM) to estimate the indirect aerosol forcing. The global aerosol model made use of our detailed emissions inventories for the amount of particulate matter from biomass burning sources and from fossil fuel sources as well as emissions inventories of the gas-phase anthropogenic SO{sub 2}. This work is aimed at validating the coupled model with the Atmospheric Radiation Measurement (ARM) Program measurements and assessing the possible magnitude of the aerosol-induced cloud effects on climate.

  8. Formation of giant molecular clouds in global spiral structures: the role of orbital dynamics and cloud-cloud collisions

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes

  9. Evaluation of Passive Multilayer Cloud Detection Using Preliminary CloudSat and CALIPSO Cloud Profiles

    Science.gov (United States)

    Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.

    2006-12-01

    During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.

  10. An accessibility solution of cloud computing by solar energy

    Directory of Open Access Journals (Sweden)

    Zuzana Priščáková

    2013-01-01

    Full Text Available Cloud computing is a modern innovative technology of solution of a problem with data storage, data processing, company infrastructure building and so on. Many companies worry over the changes by the implementation of this solution because these changes could have a negative impact on the company, or, in the case of establishment of new companies, this worry results from an unfamiliar environment. Data accessibility, integrity and security belong among basic problems of cloud computing. The aim of this paper is to offer and scientifically confirm a proposal of an accessibility solution of cloud by implementing of solar energy as a primary source. Problems with accessibility rise from power failures when data may be stolen or lost. Since cloud is often started from a server, the server dependence on power is strong. Modern conditions offer us a new, more innovative solution regarding the ecological as well as an economical company solution. The Sun as a steady source of energy offers us a possibility to produce necessary energy by a solar technique – solar panels. The connection of a solar panel as a primary source of energy for a server would remove its power dependence as well as possible failures. The power dependence would stay as a secondary source. Such an ecological solution would influence the economical side of company because the energy consumption would be lower. Besides a proposal of an accessibility solution, this paper involves a physical and mathematical solution to a calculation of solar energy showered on the Earth, a calculation of the panel size by cosines method and a simulation of these calculations in MATLAB conditions.

  11. ICES IN THE QUIESCENT IC 5146 DENSE CLOUD

    International Nuclear Information System (INIS)

    Chiar, J. E.; Pendleton, Y. J.; Allamandola, L. J.; Ennico, K.; Greene, T. P.; Roellig, T. L.; Sandford, S. A.; Boogert, A. C. A.; Geballe, T. R.; Mason, R. E.; Keane, J. V.; Lada, C. J.; Tielens, A. G. G. M.; Werner, M. W.; Whittet, D. C. B.; Decin, L.; Eriksson, K.

    2011-01-01

    This paper presents spectra in the 2 to 20 μm range of quiescent cloud material located in the IC 5146 cloud complex. The spectra were obtained with NASA's Infrared Telescope Facility SpeX instrument and the Spitzer Space Telescope's Infrared Spectrometer. We use these spectra to investigate dust and ice absorption features in pristine regions of the cloud that are unaltered by embedded stars. We find that the H 2 O-ice threshold extinction is 4.03 ± 0.05 mag. Once foreground extinction is taken into account, however, the threshold drops to 3.2 mag, equivalent to that found for the Taurus dark cloud, generally assumed to be the touchstone quiescent cloud against which all other dense cloud and embedded young stellar object observations are compared. Substructure in the trough of the silicate band for two sources is attributed to CH 3 OH and NH 3 in the ices, present at the ∼2% and ∼5% levels, respectively, relative to H 2 O-ice. The correlation of the silicate feature with the E(J - K) color excess is found to follow a much shallower slope relative to lines of sight that probe diffuse clouds, supporting the previous results by Chiar et al.

  12. Making and Breaking Clouds

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Molecular clouds which youre likely familiar with from stunning popular astronomy imagery lead complicated, tumultuous lives. A recent study has now found that these features must be rapidly built and destroyed.Star-Forming CollapseA Hubble view of a molecular cloud, roughly two light-years long, that has broken off of the Carina Nebula. [NASA/ESA, N. Smith (University of California, Berkeley)/The Hubble Heritage Team (STScI/AURA)]Molecular gas can be found throughout our galaxy in the form of eminently photogenic clouds (as featured throughout this post). Dense, cold molecular gas makes up more than 20% of the Milky Ways total gas mass, and gravitational instabilities within these clouds lead them to collapse under their own weight, resulting in the formation of our galaxys stars.How does this collapse occur? The simplest explanation is that the clouds simply collapse in free fall, with no source of support to counter their contraction. But if all the molecular gas we observe collapsed on free-fall timescales, star formation in our galaxy would churn a rate thats at least an order of magnitude higher than the observed 12 solar masses per year in the Milky Way.Destruction by FeedbackAstronomers have theorized that there may be some mechanism that supports these clouds against gravity, slowing their collapse. But both theoretical studies and observations of the clouds have ruled out most of these potential mechanisms, and mounting evidence supports the original interpretation that molecular clouds are simply gravitationally collapsing.A sub-mm image from ESOs APEX telescope of part of the Taurus molecular cloud, roughly ten light-years long, superimposed on a visible-light image of the region. [ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey 2. Acknowledgment: Davide De Martin]If this is indeed the case, then one explanation for our low observed star formation rate could be that molecular clouds are rapidly destroyed by feedback from the very stars

  13. Cloud Computing Fundamentals

    Science.gov (United States)

    Furht, Borko

    In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.

  14. Laboratory Studies of Anomalous Entrainment in Cumulus Cloud Flows

    Science.gov (United States)

    Diwan, Sourabh S.; Narasimha, Roddam; Bhat, G. S.; Sreenivas, K. R.

    2011-12-01

    Entrainment in cumulus clouds has been a subject of investigation for the last sixty years, and continues to be a central issue in current research. The development of a laboratory facility that can simulate cumulus cloud evolution enables us to shed light on the problem. The apparatus for the purpose is based on a physical model of cloud flow as a plume with off-source diabatic heating that is dynamically similar to the effect of latent-heat release in natural clouds. We present a critical review of the experimental data so far obtained in such facilities on the variation of the entrainment coefficient in steady diabatic jets and plumes. Although there are some unexplained differences among different data sets, the dominant trend of the results compares favourably with recent numerical simulations on steady-state deep convection, and helps explain certain puzzles in the fluid dynamics of clouds.

  15. Laboratory Studies of Anomalous Entrainment in Cumulus Cloud Flows

    International Nuclear Information System (INIS)

    Diwan, Sourabh S; Narasimha, Roddam; Sreenivas, K R; Bhat, G S

    2011-01-01

    Entrainment in cumulus clouds has been a subject of investigation for the last sixty years, and continues to be a central issue in current research. The development of a laboratory facility that can simulate cumulus cloud evolution enables us to shed light on the problem. The apparatus for the purpose is based on a physical model of cloud flow as a plume with off-source diabatic heating that is dynamically similar to the effect of latent-heat release in natural clouds. We present a critical review of the experimental data so far obtained in such facilities on the variation of the entrainment coefficient in steady diabatic jets and plumes. Although there are some unexplained differences among different data sets, the dominant trend of the results compares favourably with recent numerical simulations on steady-state deep convection, and helps explain certain puzzles in the fluid dynamics of clouds.

  16. Menu-driven cloud computing and resource sharing for R and Bioconductor.

    Science.gov (United States)

    Bolouri, Hamid; Dulepet, Rajiv; Angerman, Michael

    2011-08-15

    We report CRdata.org, a cloud-based, free, open-source web server for running analyses and sharing data and R scripts with others. In addition to using the free, public service, CRdata users can launch their own private Amazon Elastic Computing Cloud (EC2) nodes and store private data and scripts on Amazon's Simple Storage Service (S3) with user-controlled access rights. All CRdata services are provided via point-and-click menus. CRdata is open-source and free under the permissive MIT License (opensource.org/licenses/mit-license.php). The source code is in Ruby (ruby-lang.org/en/) and available at: github.com/seerdata/crdata. hbolouri@fhcrc.org.

  17. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    Science.gov (United States)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  18. Aerosol microphysical and radiative effects on continental cloud ensembles

    Science.gov (United States)

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; Pan, Bowen; Hu, Jiaxi; Liu, Yangang; Dong, Xiquan; Jiang, Jonathan H.; Yung, Yuk L.; Zhang, Renyi

    2018-02-01

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type.

  19. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean

    Directory of Open Access Journals (Sweden)

    C. H. Twohy

    2013-03-01

    Full Text Available The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI, and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics, including their significance, from eight flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number that influence droplet concentration. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution. Cloud droplets were smaller in regions of enhanced particles near shore. However, physically thinner clouds, and not just higher droplet number concentrations from pollution, both contributed to the smaller droplets. Satellite measurements were used to show that cloud albedo was highest 500–1000 km offshore, and actually slightly lower closer to shore due to the generally thinner clouds and lower

  20. An Efficient and Energy-Aware Cloud Consolidation Algorithm for Multimedia Big Data Applications

    Directory of Open Access Journals (Sweden)

    JongBeom Lim

    2017-09-01

    Full Text Available It is well known that cloud computing has many potential advantages over traditional distributed systems. Many enterprises can build their own private cloud with open source infrastructure as a service (IaaS frameworks. Since enterprise applications and data are migrating to private cloud, the performance of cloud computing environments is of utmost importance for both cloud providers and users. To improve the performance, previous studies on cloud consolidation have been focused on live migration of virtual machines based on resource utilization. However, the approaches are not suitable for multimedia big data applications. In this paper, we reveal the performance bottleneck of multimedia big data applications in cloud computing environments and propose a cloud consolidation algorithm that considers application types. We show that our consolidation algorithm outperforms previous approaches.

  1. Clustering, randomness, and regularity in cloud fields: 2. Cumulus cloud fields

    Science.gov (United States)

    Zhu, T.; Lee, J.; Weger, R. C.; Welch, R. M.

    1992-12-01

    During the last decade a major controversy has been brewing concerning the proper characterization of cumulus convection. The prevailing view has been that cumulus clouds form in clusters, in which cloud spacing is closer than that found for the overall cloud field and which maintains its identity over many cloud lifetimes. This "mutual protection hypothesis" of Randall and Huffman (1980) has been challenged by the "inhibition hypothesis" of Ramirez et al. (1990) which strongly suggests that the spatial distribution of cumuli must tend toward a regular distribution. A dilemma has resulted because observations have been reported to support both hypotheses. The present work reports a detailed analysis of cumulus cloud field spatial distributions based upon Landsat, Advanced Very High Resolution Radiometer, and Skylab data. Both nearest-neighbor and point-to-cloud cumulative distribution function statistics are investigated. The results show unequivocally that when both large and small clouds are included in the cloud field distribution, the cloud field always has a strong clustering signal. The strength of clustering is largest at cloud diameters of about 200-300 m, diminishing with increasing cloud diameter. In many cases, clusters of small clouds are found which are not closely associated with large clouds. As the small clouds are eliminated from consideration, the cloud field typically tends towards regularity. Thus it would appear that the "inhibition hypothesis" of Ramirez and Bras (1990) has been verified for the large clouds. However, these results are based upon the analysis of point processes. A more exact analysis also is made which takes into account the cloud size distributions. Since distinct clouds are by definition nonoverlapping, cloud size effects place a restriction upon the possible locations of clouds in the cloud field. The net effect of this analysis is that the large clouds appear to be randomly distributed, with only weak tendencies towards

  2. !CHAOS: A cloud of controls

    Science.gov (United States)

    Angius, S.; Bisegni, C.; Ciuffetti, P.; Di Pirro, G.; Foggetta, L. G.; Galletti, F.; Gargana, R.; Gioscio, E.; Maselli, D.; Mazzitelli, G.; Michelotti, A.; Orrù, R.; Pistoni, M.; Spagnoli, F.; Spigone, D.; Stecchi, A.; Tonto, T.; Tota, M. A.; Catani, L.; Di Giulio, C.; Salina, G.; Buzzi, P.; Checcucci, B.; Lubrano, P.; Piccini, M.; Fattibene, E.; Michelotto, M.; Cavallaro, S. R.; Diana, B. F.; Enrico, F.; Pulvirenti, S.

    2016-01-01

    The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of aaabstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.

  3. !CHAOS: A cloud of controls

    International Nuclear Information System (INIS)

    Angius, S.; Bisegni, C.; Ciuffetti, P.

    2016-01-01

    The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of abstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.

  4. Small Galactic H II regions. II. The molecular clouds and star formation

    International Nuclear Information System (INIS)

    Hunter, D.A.; Thronson, H.A. Jr.; Wilton, C.

    1990-01-01

    CO maps of molecular clouds associated with 11 small Galactic H II regions are presented and compared with IR images obtained by IRAS. The molecular masses of the clouds are computed and compared with the masses of the stellar content. The mapped clouds have masses of 1000-60,000 solar and are typical of the more numerous, smaller Galactic molecular clouds. All of the clouds have recently made massive OB stars, and many have complex spatial and kinematic structures. The coincidence of IRAS sources and CO peaks suggests that many of the clouds have sites of star formation other than the optically visible H II region. Star-formation efficiencies are uncertain, with values for the clouds ranging from 0.02 to 0.6 with an average value of 0.2. There is no trend of the upper stellar mass limit with Galactic radius and with molecular cloud mass. 53 refs

  5. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2011-09-01

    Full Text Available Black carbon in carbonaceous combustion aerosol warms the climate by absorbing solar radiation, meaning reductions in black carbon emissions are often perceived as an attractive global warming mitigation option. However, carbonaceous combustion aerosol can also act as cloud condensation nuclei (CCN so they also cool the climate by increasing cloud albedo. The net radiative effect of carbonaceous combustion aerosol is uncertain because their contribution to CCN has not been evaluated on the global scale. By combining extensive observations of CCN concentrations with the GLOMAP global aerosol model, we find that the model is biased low (normalised mean bias = −77 % unless carbonaceous combustion aerosol act as CCN. We show that carbonaceous combustion aerosol accounts for more than half (52–64 % of global CCN with the range due to uncertainty in the emitted size distribution of carbonaceous combustion particles. The model predicts that wildfire and pollution (fossil fuel and biofuel carbonaceous combustion aerosol causes a global mean cloud albedo aerosol indirect effect of −0.34 W m−2, with stronger cooling if we assume smaller particle emission size. We calculate that carbonaceous combustion aerosol from pollution sources cause a global mean aerosol indirect effect of −0.23 W m−2. The small size of carbonaceous combustion particles from fossil fuel sources means that whilst pollution sources account for only one-third of the emitted mass they cause two-thirds of the cloud albedo aerosol indirect effect that is due to carbonaceous combustion aerosol. This cooling effect must be accounted for, along with other cloud effects not studied here, to ensure that black carbon emissions controls that reduce the high number concentrations of fossil fuel particles have the desired net effect on climate.

  6. Ten Years of Cloud Optical and Microphysical Retrievals from MODIS

    Science.gov (United States)

    Platnick, Steven; King, Michael D.; Wind, Galina; Hubanks, Paul; Arnold, G. Thomas; Amarasinghe, Nandana

    2010-01-01

    The MODIS cloud optical properties algorithm (MOD06/MYD06 for Terra and Aqua MODIS, respectively) has undergone extensive improvements and enhancements since the launch of Terra. These changes have included: improvements in the cloud thermodynamic phase algorithm; substantial changes in the ice cloud light scattering look up tables (LUTs); a clear-sky restoral algorithm for flagging heavy aerosol and sunglint; greatly improved spectral surface albedo maps, including the spectral albedo of snow by ecosystem; inclusion of pixel-level uncertainty estimates for cloud optical thickness, effective radius, and water path derived for three error sources that includes the sensitivity of the retrievals to solar and viewing geometries. To improve overall retrieval quality, we have also implemented cloud edge removal and partly cloudy detection (using MOD35 cloud mask 250m tests), added a supplementary cloud optical thickness and effective radius algorithm over snow and sea ice surfaces and over the ocean, which enables comparison with the "standard" 2.1 11m effective radius retrieval, and added a multi-layer cloud detection algorithm. We will discuss the status of the MOD06 algorithm and show examples of pixellevel (Level-2) cloud retrievals for selected data granules, as well as gridded (Level-3) statistics, notably monthly means and histograms (lD and 2D, with the latter giving correlations between cloud optical thickness and effective radius, and other cloud product pairs).

  7. Comparison of Laser and Stereo Optical, SAR and InSAR Point Clouds from Air- and Space-Borne Sources in the Retrieval of Forest Inventory Attributes

    Directory of Open Access Journals (Sweden)

    Xiaowei Yu

    2015-11-01

    Full Text Available It is anticipated that many of the future forest mapping applications will be based on three-dimensional (3D point clouds. A comparison study was conducted to verify the explanatory power and information contents of several 3D remote sensing data sources on the retrieval of above ground biomass (AGB, stem volume (VOL, basal area (G, basal-area weighted mean diameter (Dg and Lorey’s mean height (Hg at the plot level, utilizing the following data: synthetic aperture radar (SAR Interferometry, SAR radargrammetry, satellite-imagery having stereo viewing capability, airborne laser scanning (ALS with various densities (0.8–6 pulses/m2 and aerial stereo imagery. Laser scanning is generally known as the primary source providing a 3D point cloud. However, photogrammetric, radargrammetric and interferometric techniques can be used to produce 3D point clouds from space- and air-borne stereo images. Such an image-based point cloud could be utilized in a similar manner as ALS providing that accurate digital terrain model is available. In this study, the performance of these data sources for providing point cloud data was evaluated with 91 sample plots that were established in Evo, southern Finland within a boreal forest zone and surveyed in 2014 for this comparison. The prediction models were built using random forests technique with features derived from each data sources as independent variables and field measurements of forest attributes as response variable. The relative root mean square errors (RMSEs varied in the ranges of 4.6% (0.97 m–13.4% (2.83 m for Hg, 11.7% (3.0 cm–20.6% (5.3 cm for Dg, 14.8% (4.0 m2/ha–25.8% (6.9 m2/ha for G, 15.9% (43.0 m3/ha–31.2% (84.2 m3/ha for VOL and 14.3% (19.2 Mg/ha–27.5% (37.0 Mg/ha for AGB, respectively, depending on the data used. Results indicate that ALS data achieved the most accurate estimates for all forest inventory attributes. For image-based 3D data, high-altitude aerial images and WorldView-2

  8. Temporal evolution of stable water isotopologues in cloud droplets in a hill cap cloud in central Europe (HCCT-2010

    Directory of Open Access Journals (Sweden)

    J. K. Spiegel

    2012-12-01

    humidity and temperature at the moisture source region or both. This study illustrates the sensitivity of stable isotope composition of cloud water to changes in large scale air mass properties and regional recycling of moisture.

  9. Temporal evolution of stable water isotopologues in cloud droplets in a hill cap cloud in central Europe (HCCT-2010)

    Science.gov (United States)

    Spiegel, J.K.; Aemisegger, F.; Scholl, M.; Wienhold, F.G.; Collett, J.L.; Lee, T.; van Pinxteren, D.; Mertes, S.; Tilgner, A.; Herrmann, H.; Werner, Roland A.; Buchmann, N.; Eugster, W.

    2012-01-01

    In this work, we present the first study resolving the temporal evolution of δ2H and δ18O values in cloud droplets during 13 different cloud events. The cloud events were probed on a 937 m high mountain chain in Germany in the framework of the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010) in September and October 2010. The δ values of cloud droplets ranged from −77‰ to −15‰ (δ2H) and from −12.1‰ to −3.9‰ (δ18O) over the whole campaign. The cloud water line of the measured δ values was δ2H=7.8×δ18O+13×10−3, which is of similar slope, but with higher deuterium excess than other Central European Meteoric Water Lines. Decreasing δ values in the course of the campaign agree with seasonal trends observed in rain in central Europe. The deuterium excess was higher in clouds developing after recent precipitation revealing episodes of regional moisture recycling. The variations in δ values during one cloud event could either result from changes in meteorological conditions during condensation or from variations in the δ values of the water vapor feeding the cloud. To test which of both aspects dominated during the investigated cloud events, we modeled the variation in δ values in cloud water using a closed box model. We could show that the variation in δ values of two cloud events was mainly due to changes in local temperature conditions. For the other eleven cloud events, the variation was most likely caused by changes in the isotopic composition of the advected and entrained vapor. Frontal passages during two of the latter cloud events led to the strongest temporal changes in both δ2H (≈ 6‰ per hour) and δ18O (≈ 0.6‰ per hour). Moreover, a detailed trajectory analysis for the two longest cloud events revealed that variations in the entrained vapor were most likely related to rain out or changes in relative humidity and temperature at the moisture source region or both. This study illustrates the sensitivity of stable isotope

  10. Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2006-01-01

    Full Text Available A parameterization for cloud processing is presented that calculates activation of aerosol particles to cloud drops, cloud drop size, and pH-dependent aqueous phase sulfur chemistry. The parameterization is implemented in the global aerosol-climate model ECHAM5-HAM. The cloud processing parameterization uses updraft speed, temperature, and aerosol size and chemical parameters simulated by ECHAM5-HAM to estimate the maximum supersaturation at the cloud base, and subsequently the cloud drop number concentration (CDNC due to activation. In-cloud sulfate production occurs through oxidation of dissolved SO2 by ozone and hydrogen peroxide. The model simulates realistic distributions for annually averaged CDNC although it is underestimated especially in remote marine regions. On average, CDNC is dominated by cloud droplets growing on particles from the accumulation mode, with smaller contributions from the Aitken and coarse modes. The simulations indicate that in-cloud sulfate production is a potentially important source of accumulation mode sized cloud condensation nuclei, due to chemical growth of activated Aitken particles and to enhanced coalescence of processed particles. The strength of this source depends on the distribution of produced sulfate over the activated modes. This distribution is affected by uncertainties in many parameters that play a direct role in particle activation, such as the updraft velocity, the aerosol chemical composition and the organic solubility, and the simulated CDNC is found to be relatively sensitive to these uncertainties.

  11. Feasibility and demonstration of a cloud-based RIID analysis system

    Science.gov (United States)

    Wright, Michael C.; Hertz, Kristin L.; Johnson, William C.; Sword, Eric D.; Younkin, James R.; Sadler, Lorraine E.

    2015-06-01

    A significant limitation in the operational utility of handheld and backpack radioisotope identifiers (RIIDs) is the inability of their onboard algorithms to accurately and reliably identify the isotopic sources of the measured gamma-ray energy spectrum. A possible solution is to move the spectral analysis computations to an external device, the cloud, where significantly greater capabilities are available. The implementation and demonstration of a prototype cloud-based RIID analysis system have shown this type of system to be feasible with currently available communication and computational technology. A system study has shown that the potential user community could derive significant benefits from an appropriately implemented cloud-based analysis system and has identified the design and operational characteristics required by the users and stakeholders for such a system. A general description of the hardware and software necessary to implement reliable cloud-based analysis, the value of the cloud expressed by the user community, and the aspects of the cloud implemented in the demonstrations are discussed.

  12. OH radiation from the interstellar cloud medium

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Q-Rieu,; Winnberg, A [Max-Planck-Institut fuer Radioastronomie, Bonn (F.R. Germany); Guibert, J [Observatoire de Paris, Section de Meudon, 92 (France); Lepine, J R.D. [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia et Astrofisica; Johansson, L E.B. [Rymdobservatoriet, Onsala (Sweden); Goss, W M [Commonwealth Scientific and Industrial Research Organization, Epping (Australia). Div. of Radiophysics

    1976-02-01

    We have detected OH in the direction of about 50% of the continuum sources investigated. The OH abundance is one order of magnitude less than usually found in dust clouds. Most of the OH features have HI counterparts. This suggests that the OH radiation arises from the HI interstellar cold clouds. Our observations allowed in some cases the determination of the excitation temperatures in all four lines. A pumping model involving far-infrared radiation and collisions with neutral and charged particles has been proposed. It explains the observed excitation temperatures.

  13. Approximate analytical method to evaluate diffraction crosstalk in free-space optical interconnects systems that use circular microlenses with finite uniform apertures

    Science.gov (United States)

    Al-Ababneh, Nedal

    2014-07-01

    We propose an accurate analytical model to calculate the optical crosstalk of a first-order free space optical interconnects system that uses microlenses with circular apertures. The proposed model is derived by evaluating the resulted finite integral in terms of an infinite series of Bessel functions. Compared to the model that uses complex Gaussian functions to expand the aperture function, it is shown that the proposed model is superior in estimating the crosstalk and provides more accurate results. Moreover, it is shown that the proposed model gives results close to that of the numerical model with superior computational efficiency.

  14. Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Winker, David; L'Ecuyer, Tristan; Mace, Gerald G.; Painemal, David; Sun-Mack, Sunny; Chen, Yan; Miller, Walter F.

    2017-08-01

    Two kinds of cloud products obtained from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) are compared and analyzed in this study: Clouds and the Earth's Radiant Energy System (CERES)-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar products such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, low-level (40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found. For example, CCCM shortwave (SW) and longwave (LW) CREs are larger than FXLHR-LIDAR along the west coasts of Africa and America because the GEOPROF-LIDAR algorithm misses shallow marine boundary layer clouds. In addition, FLXHR-LIDAR SW CREs are larger than the CCCM counterpart over tropical oceans away from the west coasts of America. Over midlatitude storm-track regions, CCCM SW and LW CREs are larger than the FLXHR-LIDAR counterpart.

  15. Updating the MACHO fraction of the Milky Way dark halo with improved mass models

    Science.gov (United States)

    Calcino, Josh; García-Bellido, Juan; Davis, Tamara M.

    2018-05-01

    Recent interest in primordial black holes as a possible dark matter candidate has motivated the reanalysis of previous methods for constraining massive astrophysical compact objects in the Milky Way halo and beyond. In order to derive these constraints, a model for the dark matter distribution around the Milky Way must be used. Previous microlensing searches have assumed a semi-isothermal density sphere for this task. We show this model is no longer consistent with data from the Milky Way rotation curve, and test two replacement models, namely NFW and power-law. The power-law model is the most flexible as it can break spherical symmetry, and best fits the data. Thus, we recommend the power-law model as a replacement, although it still lacks the flexibility to fully encapsulate all possible shapes of the Milky Way halo. We then use the power-law model to rederive some previous microlensing constraints in the literature, while propagating the primary halo-shape uncertainties through to our final constraints. Our analysis reveals that the microlensing constraints towards the Large Magellanic Cloud weaken somewhat for MACHO masses around 10 M⊙ when this uncertainty is taken into account, but the constraints tighten at lower masses. Exploring some of the simplifying assumptions of previous constraints we also study the effect of wide mass distributions of compact halo objects, as well as the effect of spatial clustering on microlensing constraints. We find that both effects induce a shift in the constraints towards smaller masses, and can effectively remove the microlensing constraints from M ˜ 1 - 10M⊙ for certain MACHO populations.

  16. Turning Video Resource Management into Cloud Computing

    Directory of Open Access Journals (Sweden)

    Weili Kou

    2016-07-01

    Full Text Available Big data makes cloud computing more and more popular in various fields. Video resources are very useful and important to education, security monitoring, and so on. However, issues of their huge volumes, complex data types, inefficient processing performance, weak security, and long times for loading pose challenges in video resource management. The Hadoop Distributed File System (HDFS is an open-source framework, which can provide cloud-based platforms and presents an opportunity for solving these problems. This paper presents video resource management architecture based on HDFS to provide a uniform framework and a five-layer model for standardizing the current various algorithms and applications. The architecture, basic model, and key algorithms are designed for turning video resources into a cloud computing environment. The design was tested by establishing a simulation system prototype.

  17. Relation of Cloud Occurrence Frequency, Overlap, and Effective Thickness Derived from CALIPSO and CloudSat Merged Cloud Vertical Profiles

    Science.gov (United States)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2009-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.

  18. Three-dimensional transfer of solar radiation in clouds

    International Nuclear Information System (INIS)

    Davies, R.

    1976-01-01

    The results of a theoretical study of the effects of cloud geometry on the transfer of incident solar radiation is presented. These results indicate that a three-dimensional description of cloud geometry is a necessary prerequisite to the accurate determination of the emerging radiation field. Models which make the plane parallel assumption are therefore frequently inadequate. Both a Monte Carlo method and an analytic method were used to model the three-dimensional transfer of radiation. At the expense of considerable computation time the Monte Carlo model provides accurate values of the fluxes and intensities (averages over π/30 steradians) emerging from clouds which can be described as a set of connected cuboidal cells, each cell being homogeneous with respect to extinction coefficient, single scatter albedo and phase function. The analytic model, based on an extension of Eddington's approximation to three dimensions and to anisotropic scattering, is efficient to use, but is restricted to clouds made up of a single cuboidal cell and is more accurate for large clouds than small ones. By an iterated approach, involving integration of the source function along line of sight, the analytic model provides both fluxes and intensities of the emerging radiation at any specified point on the cloud's surface. These models were both applied to a systematic study of the transfer of solar radiation in isolated cuboidal clouds of arbitraty dimensions, the results of which illustrate the importance of considering the total cloud geometry in any attempt at realistic modelling. A study of the transfer of radiation in stratiform clouds with turretted top surfaces also indicated that even for these clouds the plane parallel assumption was often not tenable

  19. Properties of molecular clouds containing Herbig-Haro objects

    International Nuclear Information System (INIS)

    Loren, R.B.; Evans, N.J. II; Knapp, G.R.

    1979-01-01

    We have studied the physical conditions in the molecular clouds associated with a large number of Herbig-Haro and related objects. Formaldehyde emission at 2 mm was detected in the direction of approx.15 out of 30 objects observed. Using the 2 mm H 2 CO emission and observations of 2 cm H 2 CO absorption, along the the 2.6 mm CO line, we calculate core densities of these molecular clouds. Dense cores are found near but not necessarily coincident with the HH objects. Known embedded infrared sources are more likely to be at the position of greatest density than are the HH objects themselves. The densities determined for the cloud cores are intermediate between the densities of cold, dark clouds such as L134 N and the hot clouds associated with H II regions. Thus, a continuous spectrum of densities is observed in molecular clouds. The temperature and density of the clouds in this study are not well correlated. The cores associated with HH 29 IR and T Tau are very dense (6 x 10 4 and 9 x 10 4 cm -3 ), yet have temperatures typical of cold dark clouds.The strong inverse correlation between X (H 2 CO) and density found by Wootten et al. is also found in the clouds associated with HH objects. This correlation also holds within a single cloud, indicating that the correlation is not due to differences in cloud age and evolution toward gas-phase chemical equilibrium. The decrease of X (H 2 CO) with density is more rapid than predicted by steady state ion-molecule chemistry and may be the result of increased depletion of molecules onto grain surfaces at higher density

  20. Laboratory simulations show diabatic heating drives cumulus-cloud evolution and entrainment

    Science.gov (United States)

    Narasimha, Roddam; Diwan, Sourabh Suhas; Duvvuri, Subrahmanyam; Sreenivas, K. R.; Bhat, G. S.

    2011-01-01

    Clouds are the largest source of uncertainty in climate science, and remain a weak link in modeling tropical circulation. A major challenge is to establish connections between particulate microphysics and macroscale turbulent dynamics in cumulus clouds. Here we address the issue from the latter standpoint. First we show how to create bench-scale flows that reproduce a variety of cumulus-cloud forms (including two genera and three species), and track complete cloud life cycles—e.g., from a “cauliflower” congestus to a dissipating fractus. The flow model used is a transient plume with volumetric diabatic heating scaled dynamically to simulate latent-heat release from phase changes in clouds. Laser-based diagnostics of steady plumes reveal Riehl–Malkus type protected cores. They also show that, unlike the constancy implied by early self-similar plume models, the diabatic heating raises the Taylor entrainment coefficient just above cloud base, depressing it at higher levels. This behavior is consistent with cloud-dilution rates found in recent numerical simulations of steady deep convection, and with aircraft-based observations of homogeneous mixing in clouds. In-cloud diabatic heating thus emerges as the key driver in cloud development, and could well provide a major link between microphysics and cloud-scale dynamics. PMID:21918112

  1. Radiation transport in dense interstellar dust clouds. II. Infrared emission from molecular clouds associated with H II regions

    International Nuclear Information System (INIS)

    Leung, C.M.

    1976-01-01

    Theoretical models are constructed to study the distribution of grain temperature (T/sub d/) and infrared emission from molecular clouds associated with H II regions (with embedded O: B stars). The effects of the following parameters on the temperature structure and the emergent spectrum are studied: grain type (graphite, silicate, and core-mantle grains), optical depth, density inhomogeneity, cloud size, anisotropic scattering, radiation field anisotropy, and characteristics of central heat source. T/sub d/ varies from approximately-greater-than100 K to approximately-less-than20 K throughout the major portion of a cloud, and dielectric grains attain lower temperatures. Due to an inward increase in T/sub d/, the radiation field is strongly forward-peaking, thereby producing a pronounced limb-darkening in the surface brightness. Important features of the computed emission spectra from typical models are compared with available observations, and the importance of beam dilution is emphasized. Theoretical surface brightnesses at selected infrared wavelengths are also presented. The outward radiation pressure on the dust grains is found to exceed the self-gravitational force of the gas over a large portion of a cloud, thus possibly causing the gas in the inner region to expand. Assumptions commonly used in the analysis of infrared observations are examined. Finally, observational methods of deriving the temperature structure (from color and brightness temperatures in the far-infrared), density distribution (from surface brightness at lambdaapproximately-greater-than1 mm), and optical depth (from multiaperture photometry) for the dust component in simple sources are discussed

  2. Retrieval of macrophysical cloud parameters from MIPAS: algorithm description

    Directory of Open Access Journals (Sweden)

    J. Hurley

    2011-04-01

    Full Text Available The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard ENVISAT has the potential to be particularly useful for studying high, thin clouds, which have been difficult to observe in the past. This paper details the development, implementation and testing of an optimal-estimation-type retrieval for three macrophysical cloud parameters (cloud top height, cloud top temperature and cloud extinction coefficient from infrared spectra measured by MIPAS. A preliminary estimation of a parameterisation of the optical and geometrical filling of the measurement field-of-view by cloud is employed as the first step of the retrieval process to improve the choice of a priori for the macrophysical parameters themselves.

    Preliminary application to single-scattering simulations indicates that the retrieval error stemming from uncertainties introduced by noise and by a priori variances in the retrieval process itself is small – although it should be noted that these retrieval errors do not include the significant errors stemming from the assumption of homogeneity and the non-scattering nature of the forward model. Such errors are preliminarily and qualitatively assessed here, and are likely to be the dominant error sources. The retrieval converges for 99% of input cases, although sometimes fails to converge for vetically-thin (<1 km clouds. The retrieval algorithm is applied to MIPAS data; the results of which are qualitatively compared with CALIPSO cloud top heights and PARASOL cloud opacities. From comparison with CALIPSO cloud products, it must be noted that the cloud detection method used in this algorithm appears to potentially misdetect stratospheric aerosol layers as cloud.

    This algorithm has been adopted by the European Space Agency's "MIPclouds" project.

  3. Data-Proximate Analysis and Visualization in the Cloud using Cloudstream, an Open-Source Application Streaming Technology Stack

    Science.gov (United States)

    Fisher, W. I.

    2017-12-01

    The rise in cloud computing, coupled with the growth of "Big Data", has lead to a migration away from local scientific data storage. The increasing size of remote scientific data sets increase, however, makes it difficult for scientists to subject them to large-scale analysis and visualization. These large datasets can take an inordinate amount of time to download; subsetting is a potential solution, but subsetting services are not yet ubiquitous. Data providers may also pay steep prices, as many cloud providers meter data based on how much data leaves their cloud service. The solution to this problem is a deceptively simple one; move data analysis and visualization tools to the cloud, so that scientists may perform data-proximate analysis and visualization. This results in increased transfer speeds, while egress costs are lowered or completely eliminated. Moving standard desktop analysis and visualization tools to the cloud is enabled via a technique called "Application Streaming". This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations. When coupled with containerization technology such as Docker, we are able to easily deploy legacy analysis and visualization software to the cloud whilst retaining access via a desktop, netbook, a smartphone, or the next generation of hardware, whatever it may be. Unidata has created a Docker-based solution for easily adapting legacy software for Application Streaming. This technology stack, dubbed Cloudstream, allows desktop software to run in the cloud with little-to-no effort. The docker container is configured by editing text files, and the legacy software does not need to be modified in any way. This work will discuss the underlying technologies used by Cloudstream, and outline how to use Cloudstream to run and access an existing desktop application to the cloud.

  4. Discovery of a protostar in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Gatley, I.; Becklin, E.E.; Hyland, A.R.; Jones, T.J.

    1981-01-01

    A near infrared search of the H II region/molecular cloud complex N 159 in the Large Magellanic Cloud has revealed a very red (H-K = 2.1, K-L' = 2.7) compact object. The location, brightness, colour and 2.1 to 2.4 μm spectrum of this source suggest that it is very young, and similar to the galactic infrared 'protostars'. This is the first identification of an infrared protostar in an external galaxy. Its discovery provides direct evidence of current star formation in the Large Magellanic Cloud, and suggests that regions of star formation in external galaxies will appear similar to those in the Milky Way. (author)

  5. The Application of the Technology of 3D Satellite Cloud Imaging in Virtual Reality Simulation

    Directory of Open Access Journals (Sweden)

    Xiao-fang Xie

    2007-05-01

    Full Text Available Using satellite cloud images to simulate clouds is one of the new visual simulation technologies in Virtual Reality (VR. Taking the original data of satellite cloud images as the source, this paper depicts specifically the technology of 3D satellite cloud imaging through the transforming of coordinates and projection, creating a DEM (Digital Elevation Model of cloud imaging and 3D simulation. A Mercator projection was introduced to create a cloud image DEM, while solutions for geodetic problems were introduced to calculate distances, and the outer-trajectory science of rockets was introduced to obtain the elevation of clouds. For demonstration, we report on a computer program to simulate the 3D satellite cloud images.

  6. AceCloud: Molecular Dynamics Simulations in the Cloud.

    Science.gov (United States)

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  7. VMware private cloud computing with vCloud director

    CERN Document Server

    Gallagher, Simon

    2013-01-01

    It's All About Delivering Service with vCloud Director Empowered by virtualization, companies are not just moving into the cloud, they're moving into private clouds for greater security, flexibility, and cost savings. However, this move involves more than just infrastructure. It also represents a different business model and a new way to provide services. In this detailed book, VMware vExpert Simon Gallagher makes sense of private cloud computing for IT administrators. From basic cloud theory and strategies for adoption to practical implementation, he covers all the issues. You'll lea

  8. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic

    Science.gov (United States)

    Kravitz, Ben; Wang, Hailong; Rasch, Philip J.; Morrison, Hugh; Solomon, Amy B.

    2014-01-01

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol–cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. PMID:25404677

  9. Dynamic pricing based on a cloud computing framework to support the integration of renewable energy sources

    Directory of Open Access Journals (Sweden)

    Rajeev Thankappan Nair

    2014-12-01

    Full Text Available Integration of renewable energy sources into the electric grid in the domestic sector results in bidirectional energy flow from the supply side of the consumer to the grid. Traditional pricing methods are difficult to implement in such a situation of bidirectional energy flow and they face operational challenges on the application of price-based demand side management programme because of the intermittent characteristics of renewable energy sources. In this study, a dynamic pricing method using real-time data based on a cloud computing framework is proposed to address the aforementioned issues. The case study indicates that the dynamic pricing captures the variation of energy flow in the household. The dynamic renewable factor introduced in the model supports consumer oriented pricing. A new method is presented in this study to determine the appropriate level of photovoltaic (PV penetration in the distribution system based on voltage stability aspect. The load flow study result for the electric grid in Kerala, India, indicates that the overvoltage caused by various PV penetration levels up to 33% is within the voltage limits defined for distribution feeders. The result justifies the selected level of penetration.

  10. Characteristics of old neutron stars in dense interstellar clouds

    International Nuclear Information System (INIS)

    Boehringer, H.; Morfill, G.E.; Zimmermann, H.U.

    1987-01-01

    The forms observable radiation will assume as old neutron stars pass through interstellar clouds and accrete material are examined theoretically. The radiation, mainly X-rays and gamma rays, will be partially absorbed by the surrounding dust and gas, which in turn produces far-IR radiation from warm dust and line radiation from the gas. Adiabatic compression of the accretion flow and the accretion shock are expected to produce cosmic rays, while gamma rays will be emitted by interaction of the energetic particles with the cloud material. The calculations indicate that the stars will then be identified as X-ray sources, some of which may be unidentified sources in the COS-B database. 37 references

  11. Broadening of cloud droplet spectra through turbulent entrainment and eddy hopping

    Science.gov (United States)

    Abade, Gustavo; Grabowski, Wojciech; Pawlowska, Hanna

    2017-11-01

    This work discusses the effect of cloud turbulence and turbulent entrainment on the evolution of the cloud droplet-size spectrum. We simulate an ensemble of idealized turbulent cloud parcels that are subject to entrainment events, modeled as a random Poisson process. Entrainment events, subsequent turbulent mixing inside the parcel, supersaturation fluctuations, and the resulting stochastic droplet growth by condensation are simulated using a Monte Carlo scheme. Quantities characterizing the turbulence intensity, entrainment rate and the mean fraction of environmental air entrained in an event are specified as external parameters. Cloud microphysics is described by applying Lagrangian particles, the so-called superdroplets. They are either unactivated cloud condensation nuclei (CCN) or cloud droplets that form from activated CCN. The model accounts for the transport of environmental CCN into the cloud by the entraining eddies at the cloud edge. Turbulent mixing of the entrained dry air with cloudy air is described using a linear model. We show that turbulence plays an important role in aiding entrained CCN to activate, providing a source of small cloud droplets and thus broadening the droplet size distribution. Further simulation results will be reported at the meeting.

  12. Web 2.0 OLAP: From Data Cubes to Tag Clouds

    Science.gov (United States)

    Aouiche, Kamel; Lemire, Daniel; Godin, Robert

    Increasingly, business projects are ephemeral. New Business Intelligence tools must support ad-lib data sources and quick perusal. Meanwhile, tag clouds are a popular community-driven visualization technique. Hence, we investigate tag-cloud views with support for OLAP operations such as roll-ups, slices, dices, clustering, and drill-downs. As a case study, we implemented an application where users can upload data and immediately navigate through its ad hoc dimensions. To support social networking, views can be easily shared and embedded in other Web sites. Algorithmically, our tag-cloud views are approximate range top-k queries over spontaneous data cubes. We present experimental evidence that iceberg cuboids provide adequate online approximations. We benchmark several browser-oblivious tag-cloud layout optimizations.

  13. Beyond the Wobbles: Teaching Students About Detecting Planets with the Transit and Gravitational Microlensing Methods

    Science.gov (United States)

    Prather, Edward E.; Wallace, Colin Scott; Chambers, Timothy G.; Brissenden, Gina; Traub, Wesley A.; Greene, W. M.; Biferno, Anya A.; Rodriguez, Joshua

    2015-01-01

    Members of the Center for Astronomy Education (CAE) at the University of Arizona's Steward Observatory in collaboration with JPL scientists, visualization experts, and education and public outreach professionals with the Exoplanet Exploration Program (ExEP) have recently completed classroom field-testing of a new suite of educational materials to help learners better understand how extrasolar planets are detected using the transit and gravitational microlensing techniques. This collaboration has created a set of evidence-based Think-Pair-Share questions, Lecture-Tutorials, animations, presentation slides, and instrucotrs guide that can be used together or separately to actively engage learners in reasoning about the data and scientific representations associated with these exciting new extrasolar planet detection methods. In this talk we present several of the conceptually challenging collaborative learning tasks that students encounter with this new suite of educational materials and some of the assessment questions we are using to assess the efficacy of their use in general education, college-level astronomy courses.

  14. Constraining Aerosol-Cloud-Precipitation Interactions of Orographic Mixed-Phase Clouds with Trajectory Budgets

    Science.gov (United States)

    Glassmeier, F.; Lohmann, U.

    2016-12-01

    Orographic precipitation is prone to strong aerosol-cloud-precipitation interactions because the time for precipitation development is limited to the ascending section of mountain flow. At the same time, cloud microphysical development is constraint by the strong dynamical forcing of the orography. In this contribution, we discuss how changes in the amount and composition of droplet- and ice-forming aerosols influence precipitation in idealized simulations of stratiform orographic mixed-phase clouds. We find that aerosol perturbations trigger compensating responses of different precipitation formation pathways. The effect of aerosols is thus buffered. We explain this buffering by the requirement to fulfill aerosol-independent dynamical constraints. For our simulations, we use the regional atmospheric model COSMO-ART-M7 in a 2D setup with a bell-shaped mountain. The model is coupled to a 2-moment warm and cold cloud microphysics scheme. Activation and freezing rates are parameterized based on prescribed aerosol fields that are varied in number, size and composition. Our analysis is based on the budget of droplet water along trajectories of cloud parcels. The budget equates condensation as source term with precipitation formation from autoconversion, accretion, riming and the Wegener-Bergeron-Findeisen process as sink terms. Condensation, and consequently precipitation formation, is determined by dynamics and largely independent of the aerosol conditions. An aerosol-induced change in the number of droplets or crystals perturbs the droplet budget by affecting precipitation formation processes. We observe that this perturbation triggers adjustments in liquid and ice water content that re-equilibrate the budget. As an example, an increase in crystal number triggers a stronger glaciation of the cloud and redistributes precipitation formation from collision-coalescence to riming and from riming to vapor deposition. We theoretically confirm the dominant effect of water

  15. Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds

    Science.gov (United States)

    Christensen, M. W.; Suzuki, K.; Zambri, B.; Stephens, G. L.

    2014-10-01

    Aerosol influences on clouds are a major source of uncertainty to our understanding of forced climate change. Increased aerosol can enhance solar reflection from clouds countering greenhouse gas warming. Recently, this indirect effect has been extended from water droplet clouds to other types including mixed-phase clouds. Aerosol effects on mixed-phase clouds are important because of their fundamental role on sea ice loss and polar climate change, but very little is known about aerosol effects on these clouds. Here we provide the first analysis of the effects of aerosol emitted from ship stacks into mixed-phase clouds. Satellite observations of solar reflection in numerous ship tracks reveal that cloud albedo increases 5 times more in liquid clouds when polluted and persist 2 h longer than in mixed-phase clouds. These results suggest that seeding mixed-phase clouds via shipping aerosol is unlikely to provide any significant counterbalancing solar radiative cooling effects in warming polar regions.

  16. Cloud Computing for Mission Design and Operations

    Science.gov (United States)

    Arrieta, Juan; Attiyah, Amy; Beswick, Robert; Gerasimantos, Dimitrios

    2012-01-01

    The space mission design and operations community already recognizes the value of cloud computing and virtualization. However, natural and valid concerns, like security, privacy, up-time, and vendor lock-in, have prevented a more widespread and expedited adoption into official workflows. In the interest of alleviating these concerns, we propose a series of guidelines for internally deploying a resource-oriented hub of data and algorithms. These guidelines provide a roadmap for implementing an architecture inspired in the cloud computing model: associative, elastic, semantical, interconnected, and adaptive. The architecture can be summarized as exposing data and algorithms as resource-oriented Web services, coordinated via messaging, and running on virtual machines; it is simple, and based on widely adopted standards, protocols, and tools. The architecture may help reduce common sources of complexity intrinsic to data-driven, collaborative interactions and, most importantly, it may provide the means for teams and agencies to evaluate the cloud computing model in their specific context, with minimal infrastructure changes, and before committing to a specific cloud services provider.

  17. Measurement of spherical compound refractive X-ray lens at ANKA synchrotron radiation source

    International Nuclear Information System (INIS)

    Dudchik, Yu.I.; Simon, R.; Baumbach, T.

    2007-01-01

    Parameters of compound refractive X-ray lens were measured at ANKA synchrotron radiation source. The lens consists of 224 spherical concave epoxy microlenses formed inside glass capillary. The curvature radius of individual microlens is equal to 100 microns. Measured were: X-ray focal spot, lens focal length and gain in intensity. The energy of X-ray beam was equal to 12 keV and 14 keV. It is shown that when X-ray lens is used, the gain in intensity of the X-ray beam in some cases may exceed value of 100. Tested lens is suitable to focus X-rays into, at least, 2-microns in size spot. (authors)

  18. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    Science.gov (United States)

    Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce

    2011-01-01

    Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases

  19. Creating cloud-free Landsat ETM+ data sets in tropical landscapes: cloud and cloud-shadow removal

    Science.gov (United States)

    Sebastián Martinuzzi; William A. Gould; Olga M. Ramos Gonzalez

    2007-01-01

    Clouds and cloud shadows are common features of visible and infrared remotelysensed images collected from many parts of the world, particularly in humid and tropical regions. We have developed a simple and semiautomated method to mask clouds and shadows in Landsat ETM+ imagery, and have developed a recent cloud-free composite of multitemporal images for Puerto Rico and...

  20. Creating a Rackspace and NASA Nebula compatible cloud using the OpenStack project (Invited)

    Science.gov (United States)

    Clark, R.

    2010-12-01

    NASA and Rackspace have both provided technology to the OpenStack that allows anyone to create a private Infrastructure as a Service (IaaS) cloud using open source software and commodity hardware. OpenStack is designed and developed completely in the open and with an open governance process. NASA donated Nova, which powers the compute portion of NASA Nebula Cloud Computing Platform, and Rackspace donated Swift, which powers Rackspace Cloud Files. The project is now in continuous development by NASA, Rackspace, and hundreds of other participants. When you create a private cloud using Openstack, you will have the ability to easily interact with your private cloud, a government cloud, and an ecosystem of public cloud providers, using the same API.

  1. Theory and measurement of the electron cloud effect

    CERN Document Server

    Harkay, K C

    1999-01-01

    Photoelectrons produced through the interaction of synchrotron radiation and the vacuum chamber walls can be accelerated by a charged particle beam, acquiring sufficient energy to produce secondary electrons (SEs) in collisions with the walls. If the secondary-electron yield (SEY) coefficient of the wall material is greater than one, a runaway condition can develop. In addition to the SEY, the degree of amplification depends on the beam intensity and temporal distribution. As the electron cloud builds up along a train of stored bunches, a transverse perturbation of the head bunch can be communicated to trailing bunches in a wakefield-like interaction with the cloud. The electron cloud effect is especially of concern for the high-intensity PEP-II (SLAC) and KEK B-factories and at the Large Hadron Collider (LHC) at CERN. An initiative was undertaken at the Advanced Photon Source (APS) storage ring to characterize the electron cloud in order to provide realistic limits on critical input parameters in the models ...

  2. A scalable and multi-purpose point cloud server (PCS) for easier and faster point cloud data management and processing

    Science.gov (United States)

    Cura, Rémi; Perret, Julien; Paparoditis, Nicolas

    2017-05-01

    In addition to more traditional geographical data such as images (rasters) and vectors, point cloud data are becoming increasingly available. Such data are appreciated for their precision and true three-Dimensional (3D) nature. However, managing point clouds can be difficult due to scaling problems and specificities of this data type. Several methods exist but are usually fairly specialised and solve only one aspect of the management problem. In this work, we propose a comprehensive and efficient point cloud management system based on a database server that works on groups of points (patches) rather than individual points. This system is specifically designed to cover the basic needs of point cloud users: fast loading, compressed storage, powerful patch and point filtering, easy data access and exporting, and integrated processing. Moreover, the proposed system fully integrates metadata (like sensor position) and can conjointly use point clouds with other geospatial data, such as images, vectors, topology and other point clouds. Point cloud (parallel) processing can be done in-base with fast prototyping capabilities. Lastly, the system is built on open source technologies; therefore it can be easily extended and customised. We test the proposed system with several billion points obtained from Lidar (aerial and terrestrial) and stereo-vision. We demonstrate loading speeds in the ˜50 million pts/h per process range, transparent-for-user and greater than 2 to 4:1 compression ratio, patch filtering in the 0.1 to 1 s range, and output in the 0.1 million pts/s per process range, along with classical processing methods, such as object detection.

  3. The Relationships Between Insoluble Precipitation Residues, Clouds, and Precipitation Over California's Southern Sierra Nevada During Winter Storms

    Science.gov (United States)

    Creamean, Jessie M.; White, Allen B.; Minnis, Patrick; Palikonda, Rabindra; Spangenberg, Douglas A.; Prather, Kimberly A.

    2016-01-01

    Ice formation in orographic mixed-phase clouds can enhance precipitation and depends on the type of aerosols that serve as ice nucleating particles (INP). The resulting precipitation from these clouds is a viable source of water, especially for regions such as the California Sierra Nevada. Thus, a better understanding of the sources of INP that impact orographic clouds is important for assessing water availability in California. This study presents a multi-site, multi-year analysis of single particle insoluble residues in precipitation samples that likely influenced cloud ice and precipitation formation above Yosemite National Park. Dust and biological particles represented the dominant fraction of the residues (64% on average). Cloud glaciation, determined using GOES satellite observations, not only depended on high cloud tops (greater than 6.2 km) and low temperatures (less than -26 C), but also on the composition of the dust and biological residues. The greatest prevalence of ice-phase clouds occurred in conjunction with biologically-rich residues and mineral dust rich in calcium, followed by iron and aluminosilicates. Dust and biological particles are known to be efficient INP, thus these residues are what likely influenced ice formation in clouds above the sites and subsequent precipitation quantities reaching the surface during events with similar meteorology. The goal of this study is to use precipitation chemistry information to gain a better understanding of the potential sources of INP in the south-central Sierra Nevada, where cloud-aerosol-precipitation interactions are under-studied and where mixed-phase orographic clouds represent a key element in the generation of precipitation and thus the water supply in California.

  4. Zen of cloud learning cloud computing by examples on Microsoft Azure

    CERN Document Server

    Bai, Haishi

    2014-01-01

    Zen of Cloud: Learning Cloud Computing by Examples on Microsoft Azure provides comprehensive coverage of the essential theories behind cloud computing and the Windows Azure cloud platform. Sharing the author's insights gained while working at Microsoft's headquarters, it presents nearly 70 end-to-end examples with step-by-step guidance on implementing typical cloud-based scenarios.The book is organized into four sections: cloud service fundamentals, cloud solutions, devices and cloud, and system integration and project management. Each chapter contains detailed exercises that provide readers w

  5. Radiative Importance of Aerosol-Cloud Interaction

    Science.gov (United States)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  6. COMPARATIVE STUDY OF CLOUD COMPUTING AND MOBILE CLOUD COMPUTING

    OpenAIRE

    Nidhi Rajak*, Diwakar Shukla

    2018-01-01

    Present era is of Information and Communication Technology (ICT) and there are number of researches are going on Cloud Computing and Mobile Cloud Computing such security issues, data management, load balancing and so on. Cloud computing provides the services to the end user over Internet and the primary objectives of this computing are resource sharing and pooling among the end users. Mobile Cloud Computing is a combination of Cloud Computing and Mobile Computing. Here, data is stored in...

  7. Verifying Air Force Weather Passive Satellite Derived Cloud Analysis Products

    Science.gov (United States)

    Nobis, T. E.

    2017-12-01

    Air Force Weather (AFW) has developed an hourly World-Wide Merged Cloud Analysis (WWMCA) using imager data from 16 geostationary and polar-orbiting satellites. The analysis product contains information on cloud fraction, height, type and various optical properties including optical depth and integrated water path. All of these products are derived using a suite of algorithms which rely exclusively on passively sensed data from short, mid and long wave imager data. The system integrates satellites with a wide-range of capabilities, from the relatively simple two-channel OLS imager to the 16 channel ABI/AHI to create a seamless global analysis in real time. Over the last couple of years, AFW has started utilizing independent verification data from active sensed cloud measurements to better understand the performance limitations of the WWMCA. Sources utilized include space based lidars (CALIPSO, CATS) and radar (CloudSat) as well as ground based lidars from the Department of Energy ARM sites and several European cloud radars. This work will present findings from our efforts to compare active and passive sensed cloud information including comparison techniques/limitations as well as performance of the passive derived cloud information against the active.

  8. Review of Cloud Computing and existing Frameworks for Cloud adoption

    OpenAIRE

    Chang, Victor; Walters, Robert John; Wills, Gary

    2014-01-01

    This paper presents a selected review for Cloud Computing and explains the benefits and risks of adopting Cloud Computing in a business environment. Although all the risks identified may be associated with two major Cloud adoption challenges, a framework is required to support organisations as they begin to use Cloud and minimise risks of Cloud adoption. Eleven Cloud Computing frameworks are investigated and a comparison of their strengths and limitations is made; the result of the comparison...

  9. A Multi-Year Data Set of Cloud Properties Derived for CERES from Aqua, Terra, and TRMM

    Science.gov (United States)

    Minnis, Patrick; Sunny Sun-Mack; Trepte, Quinz Z.; Yan Chen; Brown, Richard R.; Gibson, Sharon C.; Heck, Michael L.; Dong, Xiquan; Xi, Baike

    2007-01-01

    The Clouds and Earth's Radiant Energy System (CERES) Project is producing a suite of cloud properties from high-resolution imagers on several satellites and matching them precisely with broadband radiance data to study the influence of clouds and radiation on climate. The cloud properties generally compare well with independent validation sources. Distinct differences are found between the CERES cloud properties and those derived with other algorithms from the same imager data. CERES products will be updated beginning in late 2006.

  10. Securing Cloud Hypervisors: A Survey of the Threats, Vulnerabilities, and Countermeasures

    Directory of Open Access Journals (Sweden)

    John Patrick Barrowclough

    2018-01-01

    Full Text Available The exponential rise of the cloud computing paradigm has led to the cybersecurity concerns, taking into account the fact that the resources are shared and mediated by a ‘hypervisor’ that may be attacked and user data can be compromised or hacked. In order to better define these threats to which a cloud hypervisor is exposed, we conducted an in-depth analysis and highlighted the security concerns of the cloud. We basically focused on the two particular issues, i.e., (a data breaches and (b weak authentication. For in-depth analysis, we have successfully demonstrated a fully functional private cloud infrastructure running on CloudStack for the software management and orchestrated a valid hack. We analyzed the popular open-source hypervisors, followed by an extensive study of the vulnerability reports associated with them. Based on our findings, we propose the characterization and countermeasures of hypervisor’s vulnerabilities. These investigations can be used to understand the potential attack paths on cloud computing and Cloud-of-Things (CoT applications and identify the vulnerabilities that enabled them.

  11. A NEW NONPLANETARY INTERPRETATION OF THE MICROLENSING EVENT OGLE-2013-BLG-0723

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cheongho; Jung, Youn Kil [Department of Physics, Institute for Astrophysics, Chungbuk National University, 371-763 Cheongju (Korea, Republic of); Bennett, David P. [Code 667, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Udalski, Andrzej [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland)

    2016-07-01

    Recently, the discovery of a Venus-mass planet orbiting a brown-dwarf host in a binary system was reported from the analysis of the microlensing event OGLE-2013-BLG-0723. We reanalyze the event considering the possibility of other interpretations. From this, we find a new solution where the lens is composed of two bodies, in contrast to the three-body solution of the previous analysis. The new solution better explains the observed light curve than the previous solution with Δ χ {sup 2} ∼ 202, suggesting that the new solution is a correct model for the event. From the estimation of the physical parameters based on the new interpretation, we find that the lens system is composed of two low-mass stars with ∼0.2 M {sub ⊙} and ∼0.1 M {sub ⊙} and located at a distance of ∼3 kpc. The fact that the physical parameters correspond to those of the most common lens population located at a distance with a large lensing probability further supports the likelihood of the new interpretation. Considering that two dramatically different solutions can approximately explain the observed light curve, the event suggests the need for carefully testing all possible lens-system geometries.

  12. Cloud CCN feedback

    International Nuclear Information System (INIS)

    Hudson, J.G.

    1992-01-01

    Cloud microphysics affects cloud albedo precipitation efficiency and the extent of cloud feedback in response to global warming. Compared to other cloud parameters, microphysics is unique in its large range of variability and the fact that much of the variability is anthropogenic. Probably the most important determinant of cloud microphysics is the spectra of cloud condensation nuclei (CCN) which display considerable variability and have a large anthropogenic component. When analyzed in combination three field observation projects display the interrelationship between CCN and cloud microphysics. CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. Cloud microphysical measurements were obtained with the National Center for Atmospheric Research Lockheed Electra. Since CCN and cloud microphysics each affect the other a positive feedback mechanism can result

  13. Aerosol-cloud interactions in Arctic mixed-phase stratocumulus

    Science.gov (United States)

    Solomon, A.

    2017-12-01

    Reliable climate projections require realistic simulations of Arctic cloud feedbacks. Of particular importance is accurately simulating Arctic mixed-phase stratocumuli (AMPS), which are ubiquitous and play an important role in regional climate due to their impact on the surface energy budget and atmospheric boundary layer structure through cloud-driven turbulence, radiative forcing, and precipitation. AMPS are challenging to model due to uncertainties in ice microphysical processes that determine phase partitioning between ice and radiatively important cloud liquid water. Since temperatures in AMPS are too warm for homogenous ice nucleation, ice must form through heterogeneous nucleation. In this presentation we discuss a relatively unexplored source of ice production-recycling of ice nuclei in regions of ice subsaturation. AMPS frequently have ice-subsaturated air near the cloud-driven mixed-layer base where falling ice crystals can sublimate, leaving behind IN. This study provides an idealized framework to understand feedbacks between dynamics and microphysics that maintain phase-partitioning in AMPS. In addition, the results of this study provide insight into the mechanisms and feedbacks that may maintain cloud ice in AMPS even when entrainment of IN at the mixed-layer boundaries is weak.

  14. Manifestation of Aerosol Indirect Effects in Arctic Clouds

    Science.gov (United States)

    Lubin, D.; Vogelmann, A. M.

    2009-12-01

    The first aerosol indirect effect has traditionally been conceived as an enhancement of shortwave cloud reflectance in response to decreased effective droplet size at fixed liquid water path, as cloud nucleating aerosol becomes entrained in the cloud. The high Arctic, with its pervasive low-level stratiform cloud cover and frequent episodes of anthropogenic aerosol (Artic "haze"), has in recent years served as a natural laboratory for research on actual manifestations of aerosol indirect effects. This paper will review the surprising set of developments: (1) the detection of the indirect effect as a source of surface warming, rather than cooling, throughout early spring, (2) a transition to a cooling effect in late spring, corresponding to the beginning of the sea ice melt season, and (3) detection of an indirect effect during summer, outside of the "Arctic haze" season. This paper will also discuss measurements of spectral shortwave irradiance (350-2200 nm) made at Barrow, Alaska, during the U.S. Department of Energy's Indirect and Semi-Direct Aerosol Campaign (ISDAC), which reveal complications in our conception of the indirect effect related to the ice phase in Arctic stratiform clouds.

  15. On the Nature of Bright Infrared Sources in the Small Magellanic Cloud: Interpreting MSX through the Lens of Spitzer

    Science.gov (United States)

    Kraemer, Kathleen E.; Sloan, G. C.

    2015-01-01

    We compare infrared observations of the Small Magellanic Cloud (SMC) by the Midcourse Space Experiment (MSX) and the Spitzer Space Telescope to better understand what components of a metal-poor galaxy dominate radiative processes in the infrared. The SMC, at a distance of ~60 kpc and with a metallicity of ~0.1-0.2 solar, can serve as a nearby proxy for metal-poor galaxies at high redshift. The MSX Point Source Catalog contains 243 objects in the SMC that were detected at 8.3 microns, the most sensitive MSX band. Multi-epoch, multi-band mapping with Spitzer, supplemented with observations from the Two-Micron All-Sky Survey (2MASS) and the Wide-field Infrared Survey Explorer (WISE), provides variability information, and, together with spectra from Spitzer for ~15% of the sample, enables us to determine what these luminous sources are. How many remain simple point sources? What fraction break up into multiple stars? Which are star forming regions, with both bright diffuse emission and point sources? How do evolved stars and stellar remnants contribute at these wavelengths? What role do young stellar objects and HII regions play? Answering these questions sets the stage for understanding what we will see with the James Webb Space Telescope (JWST).

  16. IMPLEMENTATION OF CLOUD COMPUTING AS A COMPONENT OF THE UNIVERSITY IT INFRASTRUCTURE

    Directory of Open Access Journals (Sweden)

    Vasyl P. Oleksyuk

    2014-05-01

    Full Text Available The article investigated the concept of IT infrastructure of higher educational institution. The article described models of deploying of cloud technologies in IT infrastructure. The hybrid model is most recent for higher educational institution. The unified authentication is an important component of IT infrastructure. The author suggests the public (Google Apps, Office 365 and private (Cloudstack, Eucalyptus, OpenStack cloud platforms to deploying in IT infrastructure of higher educational institution. Open source platform for organizing enterprise clouds were analyzed by the author. The article describes the experience of the deployment enterprise cloud in IT infrastructure of Department of Physics and Mathematics of Ternopil V. Hnatyuk National Pedagogical University.

  17. Dynamic Extension of a Virtualized Cluster by using Cloud Resources

    International Nuclear Information System (INIS)

    Oberst, Oliver; Hauth, Thomas; Kernert, David; Riedel, Stephan; Quast, Günter

    2012-01-01

    The specific requirements concerning the software environment within the HEP community constrain the choice of resource providers for the outsourcing of computing infrastructure. The use of virtualization in HPC clusters and in the context of cloud resources is therefore a subject of recent developments in scientific computing. The dynamic virtualization of worker nodes in common batch systems provided by ViBatch serves each user with a dynamically virtualized subset of worker nodes on a local cluster. Now it can be transparently extended by the use of common open source cloud interfaces like OpenNebula or Eucalyptus, launching a subset of the virtual worker nodes within the cloud. This paper demonstrates how a dynamically virtualized computing cluster is combined with cloud resources by attaching remotely started virtual worker nodes to the local batch system.

  18. Cloud Governance

    DEFF Research Database (Denmark)

    Berthing, Hans Henrik

    Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing.......Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing....

  19. Cloud-Coffee: implementation of a parallel consistency-based multiple alignment algorithm in the T-Coffee package and its benchmarking on the Amazon Elastic-Cloud.

    Science.gov (United States)

    Di Tommaso, Paolo; Orobitg, Miquel; Guirado, Fernando; Cores, Fernado; Espinosa, Toni; Notredame, Cedric

    2010-08-01

    We present the first parallel implementation of the T-Coffee consistency-based multiple aligner. We benchmark it on the Amazon Elastic Cloud (EC2) and show that the parallelization procedure is reasonably effective. We also conclude that for a web server with moderate usage (10K hits/month) the cloud provides a cost-effective alternative to in-house deployment. T-Coffee is a freeware open source package available from http://www.tcoffee.org/homepage.html

  20. OPTICAL AND NEAR-INFRARED SHOCKS IN THE L988 CLOUD COMPLEX

    International Nuclear Information System (INIS)

    Walawender, J.; Reipurth, B.; Bally, J.

    2013-01-01

    We have searched the Lynds 988 dark cloud complex for optical (Hα and [S II]) and near-IR (H 2 2.12 μm) shocks from protostellar outflows. We find 20 new Herbig-Haro objects and 6 new H 2 shocks (MHO objects), 3 of which are cross detections. Using the morphology in the optical and near-IR, we connect several of these shocks into at least five distinct outflow systems and identify their source protostars from catalogs of infrared sources. Two outflows in the cloud, from IRAS 21014+5001 and IRAS 21007+4951, are in excess of 1 pc in length. The IRAS 21007+4951 outflow has carved a large cavity in the cloud through which background stars can be seen. Also, we have found an optical shock which is the counterflow to the previously discovered ''northwest outflow'' from LkHα 324SE

  1. Global cloud database from VIRS and MODIS for CERES

    Science.gov (United States)

    Minnis, Patrick; Young, David F.; Wielicki, Bruce A.; Sun-Mack, Sunny; Trepte, Qing Z.; Chen, Yan; Heck, Patrick W.; Dong, Xiquan

    2003-04-01

    The NASA CERES Project has developed a combined radiation and cloud property dataset using the CERES scanners and matched spectral data from high-resolution imagers, the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. The diurnal cycle can be well-characterized over most of the globe using the combinations of TRMM, Aqua, and Terra data. The cloud properties are derived from the imagers using state-of-the-art methods and include cloud fraction, height, optical depth, phase, effective particle size, emissivity, and ice or liquid water path. These cloud products are convolved into the matching CERES fields of view to provide simultaneous cloud and radiation data at an unprecedented accuracy. Results are available for at least 3 years of VIRS data and 1 year of Terra MODIS data. The various cloud products are compared with similar quantities from climatological sources and instantaneous active remote sensors. The cloud amounts are very similar to those from surface observer climatologies and are 6-7% less than those from a satellite-based climatology. Optical depths are 2-3 times smaller than those from the satellite climatology, but are within 5% of those from the surface remote sensing. Cloud droplet sizes and liquid water paths are within 10% of the surface results on average for stratus clouds. The VIRS and MODIS retrievals are very consistent with differences that usually can be explained by sampling, calibration, or resolution differences. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.

  2. Comparisons of Satellite-Deduced Overlapping Cloud Properties and CALIPSO CloudSat Data

    Science.gov (United States)

    Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny

    2010-01-01

    Introduction to the overlapped cloud properties derived from polar-orbiting (MODIS) and geostationary (GOES-12, -13, Meteosat-8, -9, etc.) meteorological satellites, which are produced at the NASA Langley Research Center (LaRC) cloud research & development team (NASA lead scientist: Dr. Patrick Minnis). Comparison of the LaRC CERES MODIS Edition-3 overlapped cloud properties to the CALIPSO and the CloudSat active sensing data. High clouds and overlapped clouds occur frequently as deduced by CALIPSO (44 & 25%), CloudSat (25 & 4%), and MODIS (37 & 6%). Large fractions of optically-thin cirrus and overlapped clouds are deduced from CALIPSO, but much smaller fractions are from CloudSat and MODIS. For overlapped clouds, the averaged upper-layer CTHs are about 12.8 (CALIPSO), 10.9 (CloudSat) and 10 km (MODIS), and the averaged lower-layer CTHs are about 3.6 (CALIPSO), 3.2 (CloudSat) and 3.9 km (MODIS). Based on comparisons of upper and lower-layer cloud properties as deduced from the MODIS, CALIPSO and CloudSat data, more enhanced passive satellite methods for retrieving thin cirrus and overlapped cloud properties are needed and are under development.

  3. Securing the Cloud Cloud Computer Security Techniques and Tactics

    CERN Document Server

    Winkler, Vic (JR)

    2011-01-01

    As companies turn to cloud computing technology to streamline and save money, security is a fundamental concern. Loss of certain control and lack of trust make this transition difficult unless you know how to handle it. Securing the Cloud discusses making the move to the cloud while securing your peice of it! The cloud offers felxibility, adaptability, scalability, and in the case of security-resilience. This book details the strengths and weaknesses of securing your company's information with different cloud approaches. Attacks can focus on your infrastructure, communications network, data, o

  4. The First Six Months of the LLNL-CfPA-MSSSO Search for Baryonic Dark Matter in the Galaxy's Halo via its Gravitational Microlensing Signature

    Science.gov (United States)

    Cook, K.; Alcock, C.; Allsman, R.; Axelrod, T.; Bennett, D.; Marshall, S.; Stubbs, C.; Griest, K.; Perlmutter, S.; Sutherland, W.; Freeman, K.; Peterson, B.; Quinn, P.; Rodgers, A.

    1992-12-01

    This collaboration, dubbed the MACHO Project (an acronym for MAssive Compact Halo Objects), has refurbished the 1.27-m, Great Melbourne Telescope at Mt. Stromlo and equipped it with a corrected {1°} FOV. The prime focus corrector yields a red and blue beam for simultaneous imaging in two passbands, 4500{ Angstroms}--6100{ Angstroms} and 6100{ Angstroms}--7900{ Angstroms}. Each beam is imaged by a 2x2 array of 2048x2048 pixel CCDs which are simultaneously read out from two amplifiers on each CCD. A 32 Megapixel dual-color image of 0.5 square degree is clocked directly into computer memory in less than 70 seconds. We are using this system to monitor more than 10(7) stars in the Magellanic Clouds for gravitational microlensing events and will soon monitor an additional 10(7) stars in the bulge of our galaxy. Image data goes directly into a reduction pipeline where photometry for stars in an image is determined and stored in a database. An early version of this pipeline has used a simple aperture photometry code and results from this will be presented. A more sophisticated PSF fitting photometry code is currently being installed in the pipeline and results should also be available at the meeting. The PSF fitting code has also been used to produce ~ 10(7) photometric measurements outside of the pipeline. This poster will present details of the instrumentation, data pipeline, observing conditions (weather and seeing), reductions and analyses for the first six months of dual-color observing. Eventually, we expect to be able to determine whether MACHOs are a significant component of the galactic halo in the mass range of \\(10^{-6} M_{\\sun} < M \\ {lower .5exhbox {\\: \\buildrel < \\over \\sim ;}} \\ 100 M_{\\sun}\\).

  5. A computational- And storage-cloud for integration of biodiversity collections

    Science.gov (United States)

    Matsunaga, A.; Thompson, A.; Figueiredo, R. J.; Germain-Aubrey, C.C; Collins, M.; Beeman, R.S; Macfadden, B.J.; Riccardi, G.; Soltis, P.S; Page, L. M.; Fortes, J.A.B

    2013-01-01

    A core mission of the Integrated Digitized Biocollections (iDigBio) project is the building and deployment of a cloud computing environment customized to support the digitization workflow and integration of data from all U.S. nonfederal biocollections. iDigBio chose to use cloud computing technologies to deliver a cyberinfrastructure that is flexible, agile, resilient, and scalable to meet the needs of the biodiversity community. In this context, this paper describes the integration of open source cloud middleware, applications, and third party services using standard formats, protocols, and services. In addition, this paper demonstrates the value of the digitized information from collections in a broader scenario involving multiple disciplines.

  6. Bubbles, jets, and clouds in active galactic nuclei

    International Nuclear Information System (INIS)

    Smith, M.D.; Smarr, L.; Norman, M.L.; Wilson, J.R.

    1983-01-01

    The Blandford and Reese 1974 fluid twin-exhaust model for jet formation is thoroughly investigated. We perform detailed analytic calculations of all aspects of the cavity-nozzle structures for the nonrelativistic case: the preshock flow, the central shock, cavity flow, and the nozzle. Our analytic results are in excellent agreement with recent sophisticated numerical calculations. We find that for a given central confining gas cloud, only a finite range of jet powers is possible. The sound speed ratio between cavity and cloud must be less than 30. Central masses of approx.10 9 M/sub sun/ within 1 pc are necessary for high-powered (10 46 ergs s -1 ) extragalactic jets. For a fixed confining cloud sound speed C 0 , there are three regimes determined by the central engine's luminosity. For low luminosity, a stream of bubbles emerges; for a middle range of luminosities, a jet forms; for too high a luminosity, large clouds are emitted. In the jet regime we find that L/sub j/approx.C 0 5 . The critical dependence of jet power on confining cloud sound speed enables a schematic picture for active galactic nuclei to be proposed. Seyfert galaxies and quasars are placed in the bubble regime. Variable compact radio sources reach the cloud regime. Evolutionary paths are suggested and may provide an indirect test for this picture

  7. Cloud management and security

    CERN Document Server

    Abbadi, Imad M

    2014-01-01

    Written by an expert with over 15 years' experience in the field, this book establishes the foundations of Cloud computing, building an in-depth and diverse understanding of the technologies behind Cloud computing. In this book, the author begins with an introduction to Cloud computing, presenting fundamental concepts such as analyzing Cloud definitions, Cloud evolution, Cloud services, Cloud deployment types and highlighting the main challenges. Following on from the introduction, the book is divided into three parts: Cloud management, Cloud security, and practical examples. Part one presents the main components constituting the Cloud and federated Cloud infrastructure(e.g., interactions and deployment), discusses management platforms (resources and services), identifies and analyzes the main properties of the Cloud infrastructure, and presents Cloud automated management services: virtual and application resource management services. Part two analyzes the problem of establishing trustworthy Cloud, discuss...

  8. Cloud computing patterns fundamentals to design, build, and manage cloud applications

    CERN Document Server

    Fehling, Christoph; Retter, Ralph; Schupeck, Walter; Arbitter, Peter

    2014-01-01

    The current work provides CIOs, software architects, project managers, developers, and cloud strategy initiatives with a set of architectural patterns that offer nuggets of advice on how to achieve common cloud computing-related goals. The cloud computing patterns capture knowledge and experience in an abstract format that is independent of concrete vendor products. Readers are provided with a toolbox to structure cloud computing strategies and design cloud application architectures. By using this book cloud-native applications can be implemented and best suited cloud vendors and tooling for i

  9. Military clouds: utilization of cloud computing systems at the battlefield

    Science.gov (United States)

    Süleyman, Sarıkürk; Volkan, Karaca; İbrahim, Kocaman; Ahmet, Şirzai

    2012-05-01

    Cloud computing is known as a novel information technology (IT) concept, which involves facilitated and rapid access to networks, servers, data saving media, applications and services via Internet with minimum hardware requirements. Use of information systems and technologies at the battlefield is not new. Information superiority is a force multiplier and is crucial to mission success. Recent advances in information systems and technologies provide new means to decision makers and users in order to gain information superiority. These developments in information technologies lead to a new term, which is known as network centric capability. Similar to network centric capable systems, cloud computing systems are operational today. In the near future extensive use of military clouds at the battlefield is predicted. Integrating cloud computing logic to network centric applications will increase the flexibility, cost-effectiveness, efficiency and accessibility of network-centric capabilities. In this paper, cloud computing and network centric capability concepts are defined. Some commercial cloud computing products and applications are mentioned. Network centric capable applications are covered. Cloud computing supported battlefield applications are analyzed. The effects of cloud computing systems on network centric capability and on the information domain in future warfare are discussed. Battlefield opportunities and novelties which might be introduced to network centric capability by cloud computing systems are researched. The role of military clouds in future warfare is proposed in this paper. It was concluded that military clouds will be indispensible components of the future battlefield. Military clouds have the potential of improving network centric capabilities, increasing situational awareness at the battlefield and facilitating the settlement of information superiority.

  10. Clustering, randomness, and regularity in cloud fields. 4: Stratocumulus cloud fields

    Science.gov (United States)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-01-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (more than 900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  11. Clustering, randomness, and regularity in cloud fields. 4. Stratocumulus cloud fields

    Science.gov (United States)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-07-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (>900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  12. Cloud blueprints for integrating and managing cloud federations

    NARCIS (Netherlands)

    Papazoglou, M.; Heisel, M.

    2012-01-01

    Contemporary cloud technologies face insurmountable obstacles. They follow a pull-based, producer-centric trajectory to development where cloud consumers have to ‘squeeze and bolt’ applications onto cloud APIs. They also introduce a monolithic SaaS/PaaS/IaaS stack where a one-size-fits-all mentality

  13. Galaxy CloudMan: delivering cloud compute clusters.

    Science.gov (United States)

    Afgan, Enis; Baker, Dannon; Coraor, Nate; Chapman, Brad; Nekrutenko, Anton; Taylor, James

    2010-12-21

    Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is "cloud computing", which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate "as is" use by experimental biologists. We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon's EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge.

  14. Cloud blueprint : A model-driven approach to configuring federated clouds

    NARCIS (Netherlands)

    Papazoglou, M.; Abello, A.; Bellatreche, L.; Benatallah, B.

    2012-01-01

    Current cloud solutions are fraught with problems. They introduce a monolithic cloud stack that imposes vendor lock-in and donot permit developers to mix and match services freely from diverse cloud service tiers and configure them dynamically to address application needs. Cloud blueprinting is a

  15. Thin Cloud Detection Method by Linear Combination Model of Cloud Image

    Science.gov (United States)

    Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.

    2018-04-01

    The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.

  16. Feasibility and demonstration of a cloud-based RIID analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Michael C., E-mail: wrightmc@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hertz, Kristin L.; Johnson, William C. [Sandia National Laboratories, Livermore, CA 94551 (United States); Sword, Eric D.; Younkin, James R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Sadler, Lorraine E. [Sandia National Laboratories, Livermore, CA 94551 (United States)

    2015-06-01

    A significant limitation in the operational utility of handheld and backpack radioisotope identifiers (RIIDs) is the inability of their onboard algorithms to accurately and reliably identify the isotopic sources of the measured gamma-ray energy spectrum. A possible solution is to move the spectral analysis computations to an external device, the cloud, where significantly greater capabilities are available. The implementation and demonstration of a prototype cloud-based RIID analysis system have shown this type of system to be feasible with currently available communication and computational technology. A system study has shown that the potential user community could derive significant benefits from an appropriately implemented cloud-based analysis system and has identified the design and operational characteristics required by the users and stakeholders for such a system. A general description of the hardware and software necessary to implement reliable cloud-based analysis, the value of the cloud expressed by the user community, and the aspects of the cloud implemented in the demonstrations are discussed. - Highlights: • A prototype cloud-based RIID analysis system was implemented and demonstrated. • A cloud-based system was shown to be feasible with currently available technology. • A system study identified the operational characteristics required by the users. • The system study showed that the user community could derive significant benefit. • An architecture was defined for field testing by users in relevant environments.

  17. Feasibility and demonstration of a cloud-based RIID analysis system

    International Nuclear Information System (INIS)

    Wright, Michael C.; Hertz, Kristin L.; Johnson, William C.; Sword, Eric D.; Younkin, James R.; Sadler, Lorraine E.

    2015-01-01

    A significant limitation in the operational utility of handheld and backpack radioisotope identifiers (RIIDs) is the inability of their onboard algorithms to accurately and reliably identify the isotopic sources of the measured gamma-ray energy spectrum. A possible solution is to move the spectral analysis computations to an external device, the cloud, where significantly greater capabilities are available. The implementation and demonstration of a prototype cloud-based RIID analysis system have shown this type of system to be feasible with currently available communication and computational technology. A system study has shown that the potential user community could derive significant benefits from an appropriately implemented cloud-based analysis system and has identified the design and operational characteristics required by the users and stakeholders for such a system. A general description of the hardware and software necessary to implement reliable cloud-based analysis, the value of the cloud expressed by the user community, and the aspects of the cloud implemented in the demonstrations are discussed. - Highlights: • A prototype cloud-based RIID analysis system was implemented and demonstrated. • A cloud-based system was shown to be feasible with currently available technology. • A system study identified the operational characteristics required by the users. • The system study showed that the user community could derive significant benefit. • An architecture was defined for field testing by users in relevant environments

  18. Detection of planets in extremely weak central perturbation microlensing events via next-generation ground-based surveys

    International Nuclear Information System (INIS)

    Chung, Sun-Ju; Lee, Chung-Uk; Koo, Jae-Rim

    2014-01-01

    Even though the recently discovered high-magnification event MOA-2010-BLG-311 had complete coverage over its peak, confident planet detection did not happen due to extremely weak central perturbations (EWCPs, fractional deviations of ≲ 2%). For confident detection of planets in EWCP events, it is necessary to have both high cadence monitoring and high photometric accuracy better than those of current follow-up observation systems. The next-generation ground-based observation project, Korea Microlensing Telescope Network (KMTNet), satisfies these conditions. We estimate the probability of occurrence of EWCP events with fractional deviations of ≤2% in high-magnification events and the efficiency of detecting planets in the EWCP events using the KMTNet. From this study, we find that the EWCP events occur with a frequency of >50% in the case of ≲ 100 M E planets with separations of 0.2 AU ≲ d ≲ 20 AU. We find that for main-sequence and sub-giant source stars, ≳ 1 M E planets in EWCP events with deviations ≤2% can be detected with frequency >50% in a certain range that changes with the planet mass. However, it is difficult to detect planets in EWCP events of bright stars like giant stars because it is easy for KMTNet to be saturated around the peak of the events because of its constant exposure time. EWCP events are caused by close, intermediate, and wide planetary systems with low-mass planets and close and wide planetary systems with massive planets. Therefore, we expect that a much greater variety of planetary systems than those already detected, which are mostly intermediate planetary systems, regardless of the planet mass, will be significantly detected in the near future.

  19. Radio continuum interferometry of dark clouds: A search for newly formed HII regions

    International Nuclear Information System (INIS)

    Gilmore, W.S.

    1978-01-01

    A search for compact HII regions embedded in dark clouds has been carried out in an effort to study local massive star formation. Approximately 20% of the total area of opaque dark cloud material in the sky with Av greater than or equal to 6 mag was surveyed with the NRAO three-element interferometer at 2695 MHz, and at least 5% more was surveyed with the NRAO 300-foot telescope at 4750 MHz. The regions surveyed include the dark cloud complexes in Perseus, Taurus, Orion, and Ophiuchus, as well as several smaller cloud complexes and individual clouds. No hidden compact HII regions embedded inside dark clouds were detected with certainty in the radio continuum. However, eleven HII regions with associated visible emission and eighteen other possible HII regions were detected. Five infrared sources thought to have the luminosities of early B stars were not detected in the radio continuum. These five sources showed high correlation with the presence of CO self-absorption, CO emission over a wide range of velocities, and type I OH masers, but an absence of coincident visible nebulosity and detectable radio continuum emission. Therefore, it is suggested that they represent an earlier evolutionary stage than those HII region detected in the radio continuum. This first evolutionary state marks the presence of ''pre-emergent'' (with respect to the molecular cloud) cocoon stars. HII regions in the second evolutionary state are marked by the presence of detectable radio continuum emission, i.e., they are stronger than 10 mJy at 2695 MHz. They have associated visible nebulosity, are relatively large, and appear to be located at the edges of molecular clouds. These are designated as ''emergent edge'' HII regions. The fact that many young HII regions are edge HII regions implies that massive stars are born near the edges of clouds, a phenomenon previously suggested by several other investigators

  20. Essentials of cloud computing

    CERN Document Server

    Chandrasekaran, K

    2014-01-01

    ForewordPrefaceComputing ParadigmsLearning ObjectivesPreambleHigh-Performance ComputingParallel ComputingDistributed ComputingCluster ComputingGrid ComputingCloud ComputingBiocomputingMobile ComputingQuantum ComputingOptical ComputingNanocomputingNetwork ComputingSummaryReview PointsReview QuestionsFurther ReadingCloud Computing FundamentalsLearning ObjectivesPreambleMotivation for Cloud ComputingThe Need for Cloud ComputingDefining Cloud ComputingNIST Definition of Cloud ComputingCloud Computing Is a ServiceCloud Computing Is a Platform5-4-3 Principles of Cloud computingFive Essential Charact

  1. Far-infrared observations of M17: The interaction of an H II region with a molecular cloud

    International Nuclear Information System (INIS)

    Gatley, I.; Becklin, E.E.; Sellgren, K.; Werner, M.W.

    1979-01-01

    The central 15' of the M17 H II region--molecular cloud complex has been mapped with 1' resolution simultaneously at 30, 50, and 100 μm. The data suggest that the bulk of the luminosity radiated in the far-infrared is supplied by the exciting stars of the H II region; the far-infrared radiation is thermal emission from dust grains located chiefly outside the ionized gas. Large-scale systematic gradients in both the temperature and the column density of the dust are seen across the source. The appearance of the source in the far-infrared reflects the markedly nonuniform distribution of matter around the exciting stars; the H II region is bounded by the molecular cloud to the southwest. The core of the molecular cloud is heated primarily by infrared radiation from dust within and adjacent to the H II region; no evidence is seen for substantial luminosity sources embedded within the molecular cloud

  2. Using satellites and global models to investigate aerosol-cloud interactions

    Science.gov (United States)

    Gryspeerdt, E.; Quaas, J.; Goren, T.; Sourdeval, O.; Mülmenstädt, J.

    2017-12-01

    Aerosols are known to impact liquid cloud properties, through both microphysical and radiative processes. Increasing the number concentration of aerosol particles can increase the cloud droplet number concentration (CDNC). Through impacts on precipitation processes, this increase in CDNC may also be able to impact the cloud fraction (CF) and the cloud liquid water path (LWP). Several studies have looked into the effect of aerosols on the CDNC, but as the albedo of a cloudy scene depends much more strongly on LWP and CF, an aerosol influence on these properties could generate a significant radiative forcing. While the impact of aerosols on cloud properties can be seen in case studies involving shiptracks and volcanoes, producing a global estimate of these effects remains challenging due to the confounding effect of local meteorology. For example, relative humidity significantly impacts the aerosol optical depth (AOD), a common satellite proxy for CCN, as well as being a strong control on cloud properties. This can generate relationships between AOD and cloud properties, even when there is no impact of aerosol-cloud interactions. In this work, we look at how aerosol-cloud interactions can be distinguished from the effect of local meteorology in satellite studies. With a combination global climate models and multiple sources of satellite data, we show that the choice of appropriate mediating variables and case studies can be used to develop constraints on the aerosol impact on CF and LWP. This will lead to improved representations of clouds in global climate models and help to reduce the uncertainty in the global impact of anthropogenic aerosols on cloud properties.

  3. Web Solutions Inspire Cloud Computing Software

    Science.gov (United States)

    2013-01-01

    An effort at Ames Research Center to standardize NASA websites unexpectedly led to a breakthrough in open source cloud computing technology. With the help of Rackspace Inc. of San Antonio, Texas, the resulting product, OpenStack, has spurred the growth of an entire industry that is already employing hundreds of people and generating hundreds of millions in revenue.

  4. OPTICAL AND NEAR-INFRARED SHOCKS IN THE L988 CLOUD COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Walawender, J. [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Reipurth, B. [Institute for Astronomy, University of Hawaii at Manoa, Hilo, HI 96720 (United States); Bally, J., E-mail: joshw@naoj.org [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States)

    2013-09-15

    We have searched the Lynds 988 dark cloud complex for optical (H{alpha} and [S II]) and near-IR (H{sub 2} 2.12 {mu}m) shocks from protostellar outflows. We find 20 new Herbig-Haro objects and 6 new H{sub 2} shocks (MHO objects), 3 of which are cross detections. Using the morphology in the optical and near-IR, we connect several of these shocks into at least five distinct outflow systems and identify their source protostars from catalogs of infrared sources. Two outflows in the cloud, from IRAS 21014+5001 and IRAS 21007+4951, are in excess of 1 pc in length. The IRAS 21007+4951 outflow has carved a large cavity in the cloud through which background stars can be seen. Also, we have found an optical shock which is the counterflow to the previously discovered ''northwest outflow'' from LkH{alpha} 324SE.

  5. Electron cloud effects in SIS-18 and SIS-100

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor; Boine-Frankenheim, Oliver [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF) (Germany); Gesellschaft fuer Schwerionenforschung (GSI) GmbH, Darmstadt (Germany); Weiland, Thomas [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF) (Germany)

    2011-07-01

    Electron cloud build-up and associated instabilities are studied in simulations under conditions relevant to SIS-18 and to the projected SIS-100 heavy ion synchrotrons. In both rings coasting beams are foreseen during slow extraction of the beam. Trapped electrons could lead to a reduction of the extraction efficiency. We present the results of electron cloud studies for bunched and for coasting beams. In these two regimes the main production mechanisms are significantly different. For coasting beams the most important mechanism is residual gas ionization, for bunched beam the main source of electrons is secondary emission. In the case of coasting beams electrons are generated in the vicinity of the beam center and a two-stream instability may occur for the projected intensities.Electron clouds due to bunched beams are of concern in SIS-100 because no special coating of the stainless steel beam pipe is presently foreseen. Finally we also discuss experimental studies of electron cloud generation in SIS-18.

  6. CLOUD PARAMETERIZATIONS, CLOUD PHYSICS, AND THEIR CONNECTIONS: AN OVERVIEW

    International Nuclear Information System (INIS)

    LIU, Y.; DAUM, P.H.; CHAI, S.K.; LIU, F.

    2002-01-01

    This paper consists of three parts. The first part is concerned with the parameterization of cloud microphysics in climate models. We demonstrate the crucial importance of spectral dispersion of the cloud droplet size distribution in determining radiative properties of clouds (e.g., effective radius), and underline the necessity of specifying spectral dispersion in the parameterization of cloud microphysics. It is argued that the inclusion of spectral dispersion makes the issue of cloud parameterization essentially equivalent to that of the droplet size distribution function, bringing cloud parameterization to the forefront of cloud physics. The second part is concerned with theoretical investigations into the spectral shape of droplet size distributions in cloud physics. After briefly reviewing the mainstream theories (including entrainment and mixing theories, and stochastic theories), we discuss their deficiencies and the need for a paradigm shift from reductionist approaches to systems approaches. A systems theory that has recently been formulated by utilizing ideas from statistical physics and information theory is discussed, along with the major results derived from it. It is shown that the systems formalism not only easily explains many puzzles that have been frustrating the mainstream theories, but also reveals such new phenomena as scale-dependence of cloud droplet size distributions. The third part is concerned with the potential applications of the systems theory to the specification of spectral dispersion in terms of predictable variables and scale-dependence under different fluctuating environments

  7. Slow Cooling in Low Metallicity Clouds: An Origin of Globular Cluster Bimodality?

    Science.gov (United States)

    Fernandez, Ricardo; Bryan, Greg L.

    2018-05-01

    We explore the relative role of small-scale fragmentation and global collapse in low-metallicity clouds, pointing out that in such clouds the cooling time may be longer than the dynamical time, allowing the cloud to collapse globally before it can fragment. This, we suggest, may help to explain the formation of the low-metallicity globular cluster population, since such dense stellar systems need a large amount of gas to be collected in a small region (without significant feedback during the collapse). To explore this further, we carry out numerical simulations of low-metallicity Bonner-Ebert stable gas clouds, demonstrating that there exists a critical metallicity (between 0.001 and 0.01 Z⊙) below which the cloud collapses globally without fragmentation. We also run simulations including a background radiative heating source, showing that this can also produce clouds that do not fragment, and that the critical metallicity - which can exceed the no-radiation case - increases with the heating rate.

  8. Secure cloud computing

    CERN Document Server

    Jajodia, Sushil; Samarati, Pierangela; Singhal, Anoop; Swarup, Vipin; Wang, Cliff

    2014-01-01

    This book presents a range of cloud computing security challenges and promising solution paths. The first two chapters focus on practical considerations of cloud computing. In Chapter 1, Chandramouli, Iorga, and Chokani describe the evolution of cloud computing and the current state of practice, followed by the challenges of cryptographic key management in the cloud. In Chapter 2, Chen and Sion present a dollar cost model of cloud computing and explore the economic viability of cloud computing with and without security mechanisms involving cryptographic mechanisms. The next two chapters addres

  9. Comparison of Cloud Properties from CALIPSO-CloudSat and Geostationary Satellite Data

    Science.gov (United States)

    Nguyen, L.; Minnis, P.; Chang, F.; Winker, D.; Sun-Mack, S.; Spangenberg, D.; Austin, R.

    2007-01-01

    Cloud properties are being derived in near-real time from geostationary satellite imager data for a variety of weather and climate applications and research. Assessment of the uncertainties in each of the derived cloud parameters is essential for confident use of the products. Determination of cloud amount, cloud top height, and cloud layering is especially important for using these real -time products for applications such as aircraft icing condition diagnosis and numerical weather prediction model assimilation. Furthermore, the distribution of clouds as a function of altitude has become a central component of efforts to evaluate climate model cloud simulations. Validation of those parameters has been difficult except over limited areas where ground-based active sensors, such as cloud radars or lidars, have been available on a regular basis. Retrievals of cloud properties are sensitive to the surface background, time of day, and the clouds themselves. Thus, it is essential to assess the geostationary satellite retrievals over a variety of locations. The availability of cloud radar data from CloudSat and lidar data from CALIPSO make it possible to perform those assessments over each geostationary domain at 0130 and 1330 LT. In this paper, CloudSat and CALIPSO data are matched with contemporaneous Geostationary Operational Environmental Satellite (GOES), Multi-functional Transport Satellite (MTSAT), and Meteosat-8 data. Unlike comparisons with cloud products derived from A-Train imagers, this study considers comparisons of nadir active sensor data with off-nadir retrievals. These matched data are used to determine the uncertainties in cloud-top heights and cloud amounts derived from the geostationary satellite data using the Clouds and the Earth s Radiant Energy System (CERES) cloud retrieval algorithms. The CERES multi-layer cloud detection method is also evaluated to determine its accuracy and limitations in the off-nadir mode. The results will be useful for

  10. The Integration of CloudStack and OCCI/OpenNebula with DIRAC

    International Nuclear Information System (INIS)

    Méndez Muñoz, Víctor; Merino Arévalo, Gonzalo; Fernández Albor, Víctor; Saborido Silva, Juan José; Graciani Diaz, Ricardo; Casajús Ramo, Adriàn; Fernández Pena, Tomás

    2012-01-01

    The increasing availability of Cloud resources is arising as a realistic alternative to the Grid as a paradigm for enabling scientific communities to access large distributed computing resources. The DIRAC framework for distributed computing is an easy way to efficiently access to resources from both systems. This paper explains the integration of DIRAC with two open-source Cloud Managers: OpenNebula (taking advantage of the OCCI standard) and CloudStack. These are computing tools to manage the complexity and heterogeneity of distributed data center infrastructures, allowing to create virtual clusters on demand, including public, private and hybrid clouds. This approach has required to develop an extension to the previous DIRAC Virtual Machine engine, which was developed for Amazon EC2, allowing the connection with these new cloud managers. In the OpenNebula case, the development has been based on the CernVM Virtual Software Appliance with appropriate contextualization, while in the case of CloudStack, the infrastructure has been kept more general, which permits other Virtual Machine sources and operating systems being used. In both cases, CernVM File System has been used to facilitate software distribution to the computing nodes. With the resulting infrastructure, the cloud resources are transparent to the users through a friendly interface, like the DIRAC Web Portal. The main purpose of this integration is to get a system that can manage cloud and grid resources at the same time. This particular feature pushes DIRAC to a new conceptual denomination as interware, integrating different middleware. Users from different communities do not need to care about the installation of the standard software that is available at the nodes, nor the operating system of the host machine which is transparent to the user. This paper presents an analysis of the overhead of the virtual layer, doing some tests to compare the proposed approach with the existing Grid solution. License

  11. Buildings and Terrain of Urban Area Point Cloud Segmentation based on PCL

    International Nuclear Information System (INIS)

    Liu, Ying; Zhong, Ruofei

    2014-01-01

    One current problem with laser radar point data classification is building and urban terrain segmentation, this paper proposes a point cloud segmentation method base on PCL libraries. PCL is a large cross-platform open source C++ programming library, which implements a large number of point cloud related efficient data structures and generic algorithms involving point cloud retrieval, filtering, segmentation, registration, feature extraction and curved surface reconstruction, visualization, etc. Due to laser radar point cloud characteristics with large amount of data, unsymmetrical distribution, this paper proposes using the data structure of kd-tree to organize data; then using Voxel Grid filter for point cloud resampling, namely to reduce the amount of point cloud data, and at the same time keep the point cloud shape characteristic; use PCL Segmentation Module, we use a Euclidean Cluster Extraction class with Europe clustering for buildings and ground three-dimensional point cloud segmentation. The experimental results show that this method avoids the multiple copy system existing data needs, saves the program storage space through the call of PCL library method and class, shortens the program compiled time and improves the running speed of the program

  12. Long Carbon Chains in the Warm Carbon-chain-chemistry Source L1527: First Detection of C7H in Molecular Clouds

    Science.gov (United States)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2017-09-01

    Long carbon-chain molecules were searched for toward the low-mass star-forming region L1527, which is a prototypical source of warm carbon-chain chemistry (WCCC), using the 100 m Green Bank Telescope. Long carbon-chain molecules, C7H (2Π1/2), C6H (2Π3/2 and 2Π1/2), CH3C4H, and C6H2 (cumulene carbene, CCCCCCH2), and cyclic species of C3H and C3H2O were detected. In particular, C7H was detected for the first time in molecular clouds. The column density of C7H is determined to be 6 × 1010 cm-2. The column densities of the carbon-chain molecules including CH3C4H and C6H in L1527 relative to those in the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) tend to be systematically lower for long carbon-chain lengths. However, the column densities of C7H and C6H2 do not follow this trend and are found to be relatively abundant in L1527. This result implies that these long carbon-chain molecules are remnants of the cold starless phase. The results—that both the remnants and WCCC products are observed toward L1527—are consistent with the suggestion that the protostar can also be born in the parent core at a relatively early stage in the chemical evolution.

  13. Role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors. 68 references

  14. CLOUD COMPUTING SECURITY

    Directory of Open Access Journals (Sweden)

    Ştefan IOVAN

    2016-05-01

    Full Text Available Cloud computing reprentes the software applications offered as a service online, but also the software and hardware components from the data center.In the case of wide offerd services for any type of client, we are dealing with a public cloud. In the other case, in wich a cloud is exclusively available for an organization and is not available to the open public, this is consider a private cloud [1]. There is also a third type, called hibrid in which case an user or an organization might use both services available in the public and private cloud. One of the main challenges of cloud computing are to build the trust and ofer information privacy in every aspect of service offerd by cloud computingle. The variety of existing standards, just like the lack of clarity in sustenability certificationis not a real help in building trust. Also appear some questions marks regarding the efficiency of traditionsecurity means that are applied in the cloud domain. Beside the economic and technology advantages offered by cloud, also are some advantages in security area if the information is migrated to cloud. Shared resources available in cloud includes the survey, use of the "best practices" and technology for advance security level, above all the solutions offered by the majority of medium and small businesses, big companies and even some guvermental organizations [2].

  15. Explicit prediction of ice clouds in general circulation models

    Science.gov (United States)

    Kohler, Martin

    1999-11-01

    Although clouds play extremely important roles in the radiation budget and hydrological cycle of the Earth, there are large quantitative uncertainties in our understanding of their generation, maintenance and decay mechanisms, representing major obstacles in the development of reliable prognostic cloud water schemes for General Circulation Models (GCMs). Recognizing their relative neglect in the past, both observationally and theoretically, this work places special focus on ice clouds. A recent version of the UCLA - University of Utah Cloud Resolving Model (CRM) that includes interactive radiation is used to perform idealized experiments to study ice cloud maintenance and decay mechanisms under various conditions in term of: (1) background static stability, (2) background relative humidity, (3) rate of cloud ice addition over a fixed initial time-period and (4) radiation: daytime, nighttime and no-radiation. Radiation is found to have major effects on the life-time of layer-clouds. Optically thick ice clouds decay significantly slower than expected from pure microphysical crystal fall-out (taucld = 0.9--1.4 h as opposed to no-motion taumicro = 0.5--0.7 h). This is explained by the upward turbulent fluxes of water induced by IR destabilization, which partially balance the downward transport of water by snowfall. Solar radiation further slows the ice-water decay by destruction of the inversion above cloud-top and the resulting upward transport of water. Optically thin ice clouds, on the other hand, may exhibit even longer life-times (>1 day) in the presence of radiational cooling. The resulting saturation mixing ratio reduction provides for a constant cloud ice source. These CRM results are used to develop a prognostic cloud water scheme for the UCLA-GCM. The framework is based on the bulk water phase model of Ose (1993). The model predicts cloud liquid water and cloud ice separately, and which is extended to split the ice phase into suspended cloud ice (predicted

  16. Enabling Large-Scale Biomedical Analysis in the Cloud

    Directory of Open Access Journals (Sweden)

    Ying-Chih Lin

    2013-01-01

    Full Text Available Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable.

  17. Aerosol-Induced Changes of Convective Cloud Anvils Produce Strong Climate Warming

    Science.gov (United States)

    Koren, I.; Remer, L. A.; Altaratz, O.; Martins, J. V.; Davidi, A.

    2010-01-01

    The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm(exp-2) . Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvi1 clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (r), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds; increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  18. Aerosol-induced changes of convective cloud anvils produce strong climate warming

    Directory of Open Access Journals (Sweden)

    I. Koren

    2010-05-01

    Full Text Available The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm−2. Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing.

    We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvil clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming at top-of-atmosphere.

    Furthermore we introduce the cloud optical depth (τ, cloud height (Z forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene.

    Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds, increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  19. Advancing global marine biogeography research with open-source GIS software and cloud-computing

    Science.gov (United States)

    Fujioka, Ei; Vanden Berghe, Edward; Donnelly, Ben; Castillo, Julio; Cleary, Jesse; Holmes, Chris; McKnight, Sean; Halpin, patrick

    2012-01-01

    Across many scientific domains, the ability to aggregate disparate datasets enables more meaningful global analyses. Within marine biology, the Census of Marine Life served as the catalyst for such a global data aggregation effort. Under the Census framework, the Ocean Biogeographic Information System was established to coordinate an unprecedented aggregation of global marine biogeography data. The OBIS data system now contains 31.3 million observations, freely accessible through a geospatial portal. The challenges of storing, querying, disseminating, and mapping a global data collection of this complexity and magnitude are significant. In the face of declining performance and expanding feature requests, a redevelopment of the OBIS data system was undertaken. Following an Open Source philosophy, the OBIS technology stack was rebuilt using PostgreSQL, PostGIS, GeoServer and OpenLayers. This approach has markedly improved the performance and online user experience while maintaining a standards-compliant and interoperable framework. Due to the distributed nature of the project and increasing needs for storage, scalability and deployment flexibility, the entire hardware and software stack was built on a Cloud Computing environment. The flexibility of the platform, combined with the power of the application stack, enabled rapid re-development of the OBIS infrastructure, and ensured complete standards-compliance.

  20. Formation of massive, dense cores by cloud-cloud collisions

    Science.gov (United States)

    Takahira, Ken; Shima, Kazuhiro; Habe, Asao; Tasker, Elizabeth J.

    2018-05-01

    We performed sub-parsec (˜ 0.014 pc) scale simulations of cloud-cloud collisions of two idealized turbulent molecular clouds (MCs) with different masses in the range of (0.76-2.67) × 104 M_{⊙} and with collision speeds of 5-30 km s-1. Those parameters are larger than in Takahira, Tasker, and Habe (2014, ApJ, 792, 63), in which study the colliding system showed a partial gaseous arc morphology that supports the NANTEN observations of objects indicated to be colliding MCs using numerical simulations. Gas clumps with density greater than 10-20 g cm-3 were identified as pre-stellar cores and tracked through the simulation to investigate the effects of the mass of colliding clouds and the collision speeds on the resulting core population. Our results demonstrate that the smaller cloud property is more important for the results of cloud-cloud collisions. The mass function of formed cores can be approximated by a power-law relation with an index γ = -1.6 in slower cloud-cloud collisions (v ˜ 5 km s-1), and is in good agreement with observation of MCs. A faster relative speed increases the number of cores formed in the early stage of collisions and shortens the gas accretion phase of cores in the shocked region, leading to the suppression of core growth. The bending point appears in the high-mass part of the core mass function and the bending point mass decreases with increase in collision speed for the same combination of colliding clouds. The higher-mass part of the core mass function than the bending point mass can be approximated by a power law with γ = -2-3 that is similar to the power index of the massive part of the observed stellar initial mass function. We discuss implications of our results for the massive-star formation in our Galaxy.

  1. A State-of-the-Art Experimental Laboratory for Cloud and Cloud-Aerosol Interaction Research

    Science.gov (United States)

    Fremaux, Charles M.; Bushnell, Dennis M.

    2011-01-01

    The state of the art for predicting climate changes due to increasing greenhouse gasses in the atmosphere with high accuracy is problematic. Confidence intervals on current long-term predictions (on the order of 100 years) are so large that the ability to make informed decisions with regard to optimum strategies for mitigating both the causes of climate change and its effects is in doubt. There is ample evidence in the literature that large sources of uncertainty in current climate models are various aerosol effects. One approach to furthering discovery as well as modeling, and verification and validation (V&V) for cloud-aerosol interactions is use of a large "cloud chamber" in a complimentary role to in-situ and remote sensing measurement approaches. Reproducing all of the complex interactions is not feasible, but it is suggested that the physics of certain key processes can be established in a laboratory setting so that relevant fluid-dynamic and cloud-aerosol phenomena can be experimentally simulated and studied in a controlled environment. This report presents a high-level argument for significantly improved laboratory capability, and is meant to serve as a starting point for stimulating discussion within the climate science and other interested communities.

  2. MAGNETIZED GAS IN THE SMITH HIGH VELOCITY CLOUD

    International Nuclear Information System (INIS)

    Hill, Alex S.; McClure-Griffiths, Naomi M.; Mao, S. A.; Benjamin, Robert A.; Lockman, Felix J.

    2013-01-01

    We report the first detection of magnetic fields associated with the Smith High Velocity Cloud. We use a catalog of Faraday rotation measures toward extragalactic radio sources behind the Smith Cloud, new H I observations from the Robert C. Byrd Green Bank Telescope, and a spectroscopic map of Hα from the Wisconsin H-Alpha Mapper Northern Sky Survey. There are enhancements in rotation measure (RM) of ≈100 rad m –2 which are generally well correlated with decelerated Hα emission. We estimate a lower limit on the line-of-sight component of the field of ≈8 μG along a decelerated filament; this is a lower limit due to our assumptions about the geometry. No RM excess is evident in sightlines dominated by H I or Hα at the velocity of the Smith Cloud. The smooth Hα morphology of the emission at the Smith Cloud velocity suggests photoionization by the Galactic ionizing radiation field as the dominant ionization mechanism, while the filamentary morphology and high (≈1 Rayleigh) Hα intensity of the lower-velocity magnetized ionized gas suggests an ionization process associated with shocks due to interaction with the Galactic interstellar medium. The presence of the magnetic field may contribute to the survival of high velocity clouds like the Smith Cloud as they move from the Galactic halo to the disk. We expect these data to provide a test for magnetohydrodynamic simulations of infalling gas

  3. Cloud Collaboration: Cloud-Based Instruction for Business Writing Class

    Science.gov (United States)

    Lin, Charlie; Yu, Wei-Chieh Wayne; Wang, Jenny

    2014-01-01

    Cloud computing technologies, such as Google Docs, Adobe Creative Cloud, Dropbox, and Microsoft Windows Live, have become increasingly appreciated to the next generation digital learning tools. Cloud computing technologies encourage students' active engagement, collaboration, and participation in their learning, facilitate group work, and support…

  4. Detecting Distributed SQL Injection Attacks in a Eucalyptus Cloud Environment

    Science.gov (United States)

    Kebert, Alan; Barnejee, Bikramjit; Solano, Juan; Solano, Wanda

    2013-01-01

    The cloud computing environment offers malicious users the ability to spawn multiple instances of cloud nodes that are similar to virtual machines, except that they can have separate external IP addresses. In this paper we demonstrate how this ability can be exploited by an attacker to distribute his/her attack, in particular SQL injection attacks, in such a way that an intrusion detection system (IDS) could fail to identify this attack. To demonstrate this, we set up a small private cloud, established a vulnerable website in one instance, and placed an IDS within the cloud to monitor the network traffic. We found that an attacker could quite easily defeat the IDS by periodically altering its IP address. To detect such an attacker, we propose to use multi-agent plan recognition, where the multiple source IPs are considered as different agents who are mounting a collaborative attack. We show that such a formulation of this problem yields a more sophisticated approach to detecting SQL injection attacks within a cloud computing environment.

  5. Cloud-In-Cell modeling of shocked particle-laden flows at a ``SPARSE'' cost

    Science.gov (United States)

    Taverniers, Soren; Jacobs, Gustaaf; Sen, Oishik; Udaykumar, H. S.

    2017-11-01

    A common tool for enabling process-scale simulations of shocked particle-laden flows is Eulerian-Lagrangian Particle-Source-In-Cell (PSIC) modeling where each particle is traced in its Lagrangian frame and treated as a mathematical point. Its dynamics are governed by Stokes drag corrected for high Reynolds and Mach numbers. The computational burden is often reduced further through a ``Cloud-In-Cell'' (CIC) approach which amalgamates groups of physical particles into computational ``macro-particles''. CIC does not account for subgrid particle fluctuations, leading to erroneous predictions of cloud dynamics. A Subgrid Particle-Averaged Reynolds-Stress Equivalent (SPARSE) model is proposed that incorporates subgrid interphase velocity and temperature perturbations. A bivariate Gaussian source distribution, whose covariance captures the cloud's deformation to first order, accounts for the particles' momentum and energy influence on the carrier gas. SPARSE is validated by conducting tests on the interaction of a particle cloud with the accelerated flow behind a shock. The cloud's average dynamics and its deformation over time predicted with SPARSE converge to their counterparts computed with reference PSIC models as the number of Gaussians is increased from 1 to 16. This work was supported by AFOSR Grant No. FA9550-16-1-0008.

  6. Clouds and aerosols in Puerto Rico - a new evaluation

    Science.gov (United States)

    Allan, J. D.; Baumgardner, D.; Raga, G. B.; Mayol-Bracero, O. L.; Morales-García, F.; García-García, F.; Montero-Martínez, G.; Borrmann, S.; Schneider, J.; Mertes, S.; Walter, S.; Gysel, M.; Dusek, U.; Frank, G. P.; Krämer, M.

    2008-03-01

    The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and behaviour of clouds and their influence on climate. In an attempt to better understand warm cloud formation in a tropical marine environment, a period of intensive measurements took place in December 2004 in Puerto Rico, using some of the latest developments in online instrumentation such as aerosol mass spectrometers, cloud condensation nuclei counters and a hygroscopicity tandem differential mobility analyser. Simultaneous online measurements of aerosol size distributions, composition, hygroscopicity and optical properties were made near the lighthouse of Cape San Juan in the north-eastern corner of the island and at the top of East Peak mountain (1040 m a.s.l.), the two sites separated by 17 km. Additional measurements of the cloud droplet residual and interstitial aerosol properties were made at the mountain site, accompanied by measurements of cloud droplet size distributions, liquid water content and the chemical composition of cloud and rain water samples. Both aerosol composition and cloud properties were found to be sensitive to wind sector. Air from the east-northeast (ENE) was mostly free of anthropogenic influences, the submicron fraction being mainly composed of non-sea salt sulphate, while that from the east-southeast (ESE) was found to be moderately influenced by populated islands upwind, adding smaller (residual particles and concentrations of cloudwater nitrate, sulphate and insoluble material increased during polluted conditions. Previous studies in Puerto Rico had reported the presence of a significant non-anthropogenic organic fraction in the aerosols measured and concluded that this was a factor controlling the in situ cloud properties. However, this was not observed in our case. In contrast to the 1.00±0.14 μg m-3 of organic carbon measured in 1992 and 1995, the organic matter measured in the current study of 0

  7. Hybrid cloud and cluster computing paradigms for life science applications.

    Science.gov (United States)

    Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey

    2010-12-21

    Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.

  8. Comparison Between CCCM and CloudSat Radar-Lidar (RL) Cloud and Radiation Products

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny

    2015-01-01

    To enhance cloud properties, LaRC and CIRA developed each combination algorithm for obtained properties from passive, active and imager in A-satellite constellation. When comparing global cloud fraction each other, LaRC-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) products larger low-level cloud fraction over tropic ocean, while CIRA-produced Radar-Lidar (RL) shows larger mid-level cloud fraction for high latitude region. The reason for different low-level cloud fraction is due to different filtering method of lidar-detected cloud layers. Meanwhile difference in mid-level clouds is occurred due to different priority of cloud boundaries from lidar and radar.

  9. Dynamic VM Provisioning for TORQUE in a Cloud Environment

    Science.gov (United States)

    Zhang, S.; Boland, L.; Coddington, P.; Sevior, M.

    2014-06-01

    Cloud computing, also known as an Infrastructure-as-a-Service (IaaS), is attracting more interest from the commercial and educational sectors as a way to provide cost-effective computational infrastructure. It is an ideal platform for researchers who must share common resources but need to be able to scale up to massive computational requirements for specific periods of time. This paper presents the tools and techniques developed to allow the open source TORQUE distributed resource manager and Maui cluster scheduler to dynamically integrate OpenStack cloud resources into existing high throughput computing clusters.

  10. Dynamic VM provisioning for TORQUE in a cloud environment

    International Nuclear Information System (INIS)

    Zhang, S; Coddington, P; Boland, L; Sevior, M

    2014-01-01

    Cloud computing, also known as an Infrastructure-as-a-Service (IaaS), is attracting more interest from the commercial and educational sectors as a way to provide cost-effective computational infrastructure. It is an ideal platform for researchers who must share common resources but need to be able to scale up to massive computational requirements for specific periods of time. This paper presents the tools and techniques developed to allow the open source TORQUE distributed resource manager and Maui cluster scheduler to dynamically integrate OpenStack cloud resources into existing high throughput computing clusters.

  11. Continuous growth of cloud droplets in cumulus cloud

    International Nuclear Information System (INIS)

    Gotoh, Toshiyuki; Suehiro, Tamotsu; Saito, Izumi

    2016-01-01

    A new method to seamlessly simulate the continuous growth of droplets advected by turbulent flow inside a cumulus cloud was developed from first principle. A cubic box ascending with a mean updraft inside a cumulus cloud was introduced and the updraft velocity was self-consistently determined in such a way that the mean turbulent velocity within the box vanished. All the degrees of freedom of the cloud droplets and turbulence fields were numerically integrated. The box ascended quickly inside the cumulus cloud due to the updraft and the mean radius of the droplets grew from 10 to 24 μ m for about 10 min. The turbulent flow tended to slow down the time evolutions of the updraft velocity, the box altitude and the mean cloud droplet radius. The size distribution of the cloud droplets in the updraft case was narrower than in the absence of the updraft. It was also found that the wavenumeber spectra of the variances of the temperature and water vapor mixing ratio were nearly constant in the low wavenumber range. The future development of the new method was argued. (paper)

  12. Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water

    Science.gov (United States)

    Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; Boone, Eric; Chu, Rosalie K.; Dukett, James E.; Gunsch, Matthew J.; Zhang, Wuliang; Tolic, Nikola; Laskin, Alexander; Pratt, Kerri A.

    2017-12-01

    Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds. Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on

  13. The Spitzer survey of interstellar clouds in the gould belt. VI. The Auriga-California molecular cloud observed with IRAC and MIPS

    International Nuclear Information System (INIS)

    Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Harvey, Paul M.; Gutermuth, Robert A.; Huard, Tracy L.; Miller, Jennifer F.; Tothill, Nicholas F. H.; Nutter, David; Bourke, Tyler L.; DiFrancesco, James; Jørgensen, Jes K.; Allen, Lori E.; Chapman, Nicholas L.; Dunham, Michael M.; Merín, Bruno; Terebey, Susan; Peterson, Dawn E.

    2014-01-01

    We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70, and 160 μm observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 deg 2 with IRAC and 10.47 deg 2 with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors, and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkHα 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the relative fraction of YSOs in earlier (Class I and F) and later (Class II) classes compared to other clouds. We perform simple SED modeling of the YSOs with disks to compare the mid-IR properties to disks in other clouds and identify 14 classical transition disk candidates. Although the AMC is similar in mass, size, and distance to the OMC, it is forming about 15-20 times fewer stars.

  14. The Spitzer survey of interstellar clouds in the gould belt. VI. The Auriga-California molecular cloud observed with IRAC and MIPS

    Energy Technology Data Exchange (ETDEWEB)

    Broekhoven-Fiene, Hannah; Matthews, Brenda C. [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Harvey, Paul M. [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Huard, Tracy L.; Miller, Jennifer F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Tothill, Nicholas F. H. [School of Computing, Engineering and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Nutter, David [School of Physics and Astronomy, Cardiff University, Queen' s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); DiFrancesco, James [National Research Council Herzberg Astronomy and Astrophysics, Victoria, BC, V9E 2E7 (Canada); Jørgensen, Jes K. [Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-DK-2100 Copenhagen Ø. (Denmark); Allen, Lori E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Chapman, Nicholas L. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Merín, Bruno [Herschel Science Centre, ESAC-ESA, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Terebey, Susan [Department of Physics and Astronomy PS315, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Peterson, Dawn E. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); and others

    2014-05-01

    We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70, and 160 μm observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 deg{sup 2} with IRAC and 10.47 deg{sup 2} with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors, and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkHα 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the relative fraction of YSOs in earlier (Class I and F) and later (Class II) classes compared to other clouds. We perform simple SED modeling of the YSOs with disks to compare the mid-IR properties to disks in other clouds and identify 14 classical transition disk candidates. Although the AMC is similar in mass, size, and distance to the OMC, it is forming about 15-20 times fewer stars.

  15. Hidden in the Clouds: New Ideas in Cloud Computing

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Abstract: Cloud computing has become a hot topic. But 'cloud' is no newer in 2013 than MapReduce was in 2005: We've been doing both for years. So why is cloud more relevant today than it ever has been? In this presentation, we will introduce the (current) central thesis of cloud computing, and explore how and why (or even whether) the concept has evolved. While we will cover a little light background, our primary focus will be on the consequences, corollaries and techniques introduced by some of the leading cloud developers and organizations. We each have a different deployment model, different applications and workloads, and many of us are still learning to efficiently exploit the platform services offered by a modern implementation. The discussion will offer the opportunity to share these experiences and help us all to realize the benefits of cloud computing to the fullest degree. Please bring questions and opinions, and be ready to share both!   Bio: S...

  16. Cloud Computing

    CERN Document Server

    Antonopoulos, Nick

    2010-01-01

    Cloud computing has recently emerged as a subject of substantial industrial and academic interest, though its meaning and scope is hotly debated. For some researchers, clouds are a natural evolution towards the full commercialisation of grid systems, while others dismiss the term as a mere re-branding of existing pay-per-use technologies. From either perspective, 'cloud' is now the label of choice for accountable pay-per-use access to third party applications and computational resources on a massive scale. Clouds support patterns of less predictable resource use for applications and services a

  17. The CLOUD experiment

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The Cosmics Leaving Outdoor Droplets (CLOUD) experiment as shown by Jasper Kirkby (spokesperson). Kirkby shows a sketch to illustrate the possible link between galactic cosmic rays and cloud formations. The CLOUD experiment uses beams from the PS accelerator at CERN to simulate the effect of cosmic rays on cloud formations in the Earth's atmosphere. It is thought that cosmic ray intensity is linked to the amount of low cloud cover due to the formation of aerosols, which induce condensation.

  18. Low cost, scalable proteomics data analysis using Amazon's cloud computing services and open source search algorithms.

    Science.gov (United States)

    Halligan, Brian D; Geiger, Joey F; Vallejos, Andrew K; Greene, Andrew S; Twigger, Simon N

    2009-06-01

    One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step-by-step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center Web site ( http://proteomics.mcw.edu/vipdac ).

  19. Dimethylamine and ammonia measurements with ion chromatography during the CLOUD4 campaign

    CERN Document Server

    Praplan, A P; Dommen, J; Baltensperger, U

    2012-01-01

    The CLOUD project investigates the influence of galactic cosmic rays on the nucleation of new particles in an environmental chamber at CERN. Dimethylamine (DMA) was injected intentionally into the CLOUD chamber to reach atmospherically relevant levels away from sources (up to 100 pptv) in order to study its effect on nucleation with sulphuric acid and water at 278 K. Quantification of DMA and also background ammonia (NH 3 ) was performed with ion chromatography (IC). The IC method used together with the sampling line developed for CLOUD in order to measure NH 3 and DMA at low pptv levels is described; the overall sampling efficiency of the method is discussed; and, finally, mixing ratios of NH 3 and DMA measured during CLOUD4 are reported.

  20. Clouds of Venus

    Energy Technology Data Exchange (ETDEWEB)

    Knollenberg, R G [Particle Measuring Systems, Inc., 1855 South 57th Court, Boulder, Colorado 80301, U.S.A.; Hansen, J [National Aeronautics and Space Administration, New York (USA). Goddard Inst. for Space Studies; Ragent, B [National Aeronautics and Space Administration, Moffett Field, Calif. (USA). Ames Research Center; Martonchik, J [Jet Propulsion Lab., Pasadena, Calif. (USA); Tomasko, M [Arizona Univ., Tucson (USA)

    1977-05-01

    The current state of knowledge of the Venusian clouds is reviewed. The visible clouds of Venus are shown to be quite similar to low level terrestrial hazes of strong anthropogenic influence. Possible nucleation and particle growth mechanisms are presented. The Pioneer Venus experiments that emphasize cloud measurements are described and their expected findings are discussed in detail. The results of these experiments should define the cloud particle composition, microphysics, thermal and radiative heat budget, rough dynamical features and horizontal and vertical variations in these and other parameters. This information should be sufficient to initialize cloud models which can be used to explain the cloud formation, decay, and particle life cycle.

  1. ASTER cloud coverage reassessment using MODIS cloud mask products

    Science.gov (United States)

    Tonooka, Hideyuki; Omagari, Kunjuro; Yamamoto, Hirokazu; Tachikawa, Tetsushi; Fujita, Masaru; Paitaer, Zaoreguli

    2010-10-01

    In the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Project, two kinds of algorithms are used for cloud assessment in Level-1 processing. The first algorithm based on the LANDSAT-5 TM Automatic Cloud Cover Assessment (ACCA) algorithm is used for a part of daytime scenes observed with only VNIR bands and all nighttime scenes, and the second algorithm based on the LANDSAT-7 ETM+ ACCA algorithm is used for most of daytime scenes observed with all spectral bands. However, the first algorithm does not work well for lack of some spectral bands sensitive to cloud detection, and the two algorithms have been less accurate over snow/ice covered areas since April 2008 when the SWIR subsystem developed troubles. In addition, they perform less well for some combinations of surface type and sun elevation angle. We, therefore, have developed the ASTER cloud coverage reassessment system using MODIS cloud mask (MOD35) products, and have reassessed cloud coverage for all ASTER archived scenes (>1.7 million scenes). All of the new cloud coverage data are included in Image Management System (IMS) databases of the ASTER Ground Data System (GDS) and NASA's Land Process Data Active Archive Center (LP DAAC) and used for ASTER product search by users, and cloud mask images are distributed to users through Internet. Daily upcoming scenes (about 400 scenes per day) are reassessed and inserted into the IMS databases in 5 to 7 days after each scene observation date. Some validation studies for the new cloud coverage data and some mission-related analyses using those data are also demonstrated in the present paper.

  2. Enabling Research Network Connectivity to Clouds with Virtual Router Technology

    Science.gov (United States)

    Seuster, R.; Casteels, K.; Leavett-Brown, CR; Paterson, M.; Sobie, RJ

    2017-10-01

    The use of opportunistic cloud resources by HEP experiments has significantly increased over the past few years. Clouds that are owned or managed by the HEP community are connected to the LHCONE network or the research network with global access to HEP computing resources. Private clouds, such as those supported by non-HEP research funds are generally connected to the international research network; however, commercial clouds are either not connected to the research network or only connect to research sites within their national boundaries. Since research network connectivity is a requirement for HEP applications, we need to find a solution that provides a high-speed connection. We are studying a solution with a virtual router that will address the use case when a commercial cloud has research network connectivity in a limited region. In this situation, we host a virtual router in our HEP site and require that all traffic from the commercial site transit through the virtual router. Although this may increase the network path and also the load on the HEP site, it is a workable solution that would enable the use of the remote cloud for low I/O applications. We are exploring some simple open-source solutions. In this paper, we present the results of our studies and how it will benefit our use of private and public clouds for HEP computing.

  3. Moving HammerCloud to CERN's private cloud

    CERN Document Server

    Barrand, Quentin

    2013-01-01

    HammerCloud is a testing framework for the Worldwide LHC Computing Grid. Currently deployed on about 20 hand-managed machines, it was desirable to move it to the Agile Infrastructure, CERN's OpenStack-based private cloud.

  4. Gravity, turbulence and the scaling ``laws'' in molecular clouds

    Science.gov (United States)

    Ballesteros-Paredes, Javier

    The so-called Larson (1981) scaling laws found empirically in molecular clouds have been generally interpreted as evidence that the clouds are turbulent and fractal. In the present contribution we discussed how recent observations and models of cloud formation suggest that: (a) these relations are the result of strong observational biases due to the cloud definition itself: since the filling factor of the dense structures is small, by thresholding the column density the computed mean density between clouds is nearly constant, and nearly the same as the threshold (Ballesteros-Paredes et al. 2012). (b) When accounting for column density variations, the velocity dispersion-size relation does not appears anymore. Instead, dense cores populate the upper-left corner of the δ v-R diagram (Ballesteros-Paredes et al. 2011a). (c) Instead of a δ v-R relation, a more appropriate relation seems to be δ v 2 / R = 2 GMΣ, which suggest that clouds are in collapse, rather than supported by turbulence (Ballesteros-Paredes et al. 2011a). (d) These results, along with the shapes of the star formation histories (Hartmann, Ballesteros-Paredes & Heitsch 2012), line profiles of collapsing clouds in numerical simulations (Heitsch, Ballesteros-Paredes & Hartmann 2009), core-to-core velocity dispersions (Heitsch, Ballesteros-Paredes & Hartmann 2009), time-evolution of the column density PDFs (Ballesteros-Paredes et al. 2011b), etc., strongly suggest that the actual source of the non-thermal motions is gravitational collapse of the clouds, so that the turbulent, chaotic component of the motions is only a by-product of the collapse, with no significant ``support" role for the clouds. This result calls into question if the scale-free nature of the motions has a turbulent, origin (Ballesteros-Paredes et al. 2011a; Ballesteros-Paredes et al. 2011b, Ballesteros-Paredes et al. 2012).

  5. Comparison of Magnetic Properties in a Magnetic Cloud and Its Solar Source on 2013 April 11-14

    Science.gov (United States)

    Vemareddy, P.; Möstl, C.; Amerstorfer, T.; Mishra, W.; Farrugia, C.; Leitner, M.

    2016-09-01

    In the context of the Sun-Earth connection of coronal mass ejections and magnetic flux ropes (MFRs), we studied the solar active region (AR) and the magnetic properties of magnetic cloud (MC) event during 2013 April 14-15. We use in situ observations from the Advanced Composition Explorer and source AR measurements from the Solar Dynamics Observatory. The MCs magnetic structure is reconstructed from the Grad-Shafranov method, which reveals a northern component of the axial field with left handed helicity. The MC invariant axis is highly inclined to the ecliptic plane pointing northward and is rotated by 117° with respect to the source region PIL. The net axial flux and current in the MC are comparatively higher than from the source region. Linear force-free alpha distribution (10-7-10-6 m-1) at the sigmoid leg matches the range of twist number in the MC of 1-2 au MFR. The MFR is nonlinear force-free with decreasing twist from the axis (9 turns/au) toward the edge. Therefore, a Gold-Hoyle (GH) configuration, assuming a constant twist, is more consistent with the MC structure than the Lundquist configuration of increasing twist from the axis to boundary. As an indication of that, the GH configuration yields a better fitting to the global trend of in situ magnetic field components, in terms of rms, than the Lundquist model. These cylindrical configurations improved the MC fitting results when the effect of self-similar expansion of MFR was considered. For such twisting behavior, this study suggests an alternative fitting procedure to better characterize the MC magnetic structure and its source region links.

  6. In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf

    OpenAIRE

    Grosvenor, D. P.; Choularton, T. W.; Lachlan-Cope, T.; Gallagher, M. W.; Crosier, J.; Bower, K. N.; Ladkin, R. S.; Dorsey, J. R.

    2012-01-01

    In-situ aircraft observations of ice crystal concentrations in Antarctic clouds are presented for the first time. Orographic, layer and wave clouds around the Antarctic Peninsula and Larsen Ice shelf regions were penetrated by the British Antarctic Survey's Twin Otter aircraft, which was equipped with modern cloud physics probes. The clouds studied were mostly in the free troposphere and hence ice crystals blown from the surface are unlikely to have been a major source for the ice phas...

  7. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  8. Propuesta de mejoramiento de la herramienta ossim siem (Open Source), para obtener los niveles óptimos de gestión en la administración de la seguridad, en una red implementada en cloud computing

    OpenAIRE

    Balarezo Chávez, Alexis Fernando; Poveda Pilatasig, Diego Xavier

    2015-01-01

    The investigation is about the OSSIM system optimization, this system is implemented on the Cloud Computing, in the enterprise world has increased this technology and this is the reason because seeks to integrate a monitor system that provide reliability in the network and your connected assets. In the environment exist some systems for assemble a Cloud Computing, in this work has used CITRIX XenServer platform because it’s an Open Source system. Considering that two of characteristics of ...

  9. A multi-satellite analysis of the direct radiative effects of absorbing aerosols above clouds

    Science.gov (United States)

    Chang, Y. Y.; Christopher, S. A.

    2015-12-01

    Radiative effects of absorbing aerosols above liquid water clouds in the southeast Atlantic as a function of fire sources are investigated using A-Train data coupled with the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (Suomi NPP). Both the VIIRS Active Fire product and the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Anomalies product (MYD14) are used to identify the biomass burning fire origin in southern Africa. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) are used to assess the aerosol type, aerosol altitude, and cloud altitude. We use back trajectory information, wind data, and the Fire Locating and Modeling of Burning Emissions (FLAMBE) product to infer the transportation of aerosols from the fire source to the CALIOP swath in the southeast Atlantic during austral winter.

  10. Cloud ERP and Cloud Accounting Software in Romania

    Directory of Open Access Journals (Sweden)

    Gianina MIHAI

    2015-05-01

    Full Text Available Nowadays, Cloud Computing becomes a more and more fashionable concept in the IT environment. There is no unanimous opinion on the definition of this concept, as it covers several versions of the newly emerged stage in the IT. But in fact, Cloud Computing should not suggest anything else than simplicity. Thus, in short, simple terms, Cloud Computing can be defined as a solution to use external IT resources (servers, storage media, applications and services, via Internet. Cloud computing is nothing more than the promise of an easy accessible technology. If the promise will eventually turn into something certain yet remains to be seen. In our opinion it is too early to make an assertion. In this article, our purpose is to find out what is the Romanian offer of ERP and Accounting software applications in Cloud and / or as services in SaaS version. Thus, we conducted an extensive study whose results we’ll present in the following.

  11. Response of Cloud Condensation Nuclei (> 50 nm) to changes in ion-nucleation

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Enghoff, Martin B.; Pedersen, Jens Olaf Pepke

    2012-01-01

    In experiments where ultraviolet light produces aerosols from trace amounts of ozone, sulphur dioxide, and water vapour, the number of additional small particles produced by ionization by gamma sources all grow up to diameters larger than 50 nm, appropriate for cloud condensation nuclei. This res......In experiments where ultraviolet light produces aerosols from trace amounts of ozone, sulphur dioxide, and water vapour, the number of additional small particles produced by ionization by gamma sources all grow up to diameters larger than 50 nm, appropriate for cloud condensation nuclei...... finding points to a process not included in current theoretical models, possibly an ion-induced formation of sulphuric acid in small clusters....

  12. Security prospects through cloud computing by adopting multiple clouds

    DEFF Research Database (Denmark)

    Jensen, Meiko; Schwenk, Jörg; Bohli, Jens Matthias

    2011-01-01

    Clouds impose new security challenges, which are amongst the biggest obstacles when considering the usage of cloud services. This triggered a lot of research activities in this direction, resulting in a quantity of proposals targeting the various security threats. Besides the security issues coming...... with the cloud paradigm, it can also provide a new set of unique features which open the path towards novel security approaches, techniques and architectures. This paper initiates this discussion by contributing a concept which achieves security merits by making use of multiple distinct clouds at the same time....

  13. Radiative properties of clouds

    International Nuclear Information System (INIS)

    Twomey, S.

    1993-01-01

    The climatic effects of condensation nuclei in the formation of cloud droplets and the subsequent role of the cloud droplets as contributors to the planetary short-wave albedo is emphasized. Microphysical properties of clouds, which can be greatly modified by the degree of mixing with cloud-free air from outside, are discussed. The effect of clouds on visible radiation is assessed through multiple scattering of the radiation. Cloudwater or ice absorbs more with increasing wavelength in the near-infrared region, with water vapor providing the stronger absorption over narrower wavelength bands. Cloud thermal infrared absorption can be solely related to liquid water content at least for shallow clouds and clouds in the early development state. Three-dimensional general circulation models have been used to study the climatic effect of clouds. It was found for such studies (which did not consider variations in cloud albedo) that the cooling effects due to the increase in planetary short-wave albedo from clouds were offset by heating effects due to thermal infrared absorption by the cloud. Two permanent direct effects of increased pollution are discussed in this chapter: (a) an increase of absorption in the visible and near infrared because of increased amounts of elemental carbon, which gives rise to a warming effect climatically, and (b) an increased optical thickness of clouds due to increasing cloud droplet number concentration caused by increasing cloud condensation nuclei number concentration, which gives rise to a cooling effect climatically. An increase in cloud albedo from 0.7 to 0.87 produces an appreciable climatic perturbation of cooling up to 2.5 K at the ground, using a hemispheric general circulation model. Effects of pollution on cloud thermal infrared absorption are negligible

  14. Cloud computing: vývoj a současný stav

    Directory of Open Access Journals (Sweden)

    Václav Sova Martinovský

    2018-06-01

    Full Text Available This article introduces the area of cloud computing with emphasis on businesses and organizations. It includes research of published papers on topic of cloud computing based on metaanalysis and SLR. Summary of relevant advantages both from the user and provider perspective was assembled as well as a list of barriers to even broader adoption of the cloud computing technology. Three databases (EBSCO, ProQuest and Web of Science were used as a source of data for the literature review phase. An analysis of the number of articles dealing with the cloud computing top has been carried out to date. The annual number of publications is compared to the size of the cloud computing market. Frequency analysis at a keyword level was performed in the 25,000-records dataset gathered from the WoS database. This analysis was conducted over the entire monitored period, and only for 2017, to capture the latest trends. There were identified the most frequently used key words in publications about cloud computing: virtualization, security, big data, mobile cloud computing and internet of things. For each of these keywords, a brief summary is given based on the literature search, with an emphasis on the outlook for the future and market position.

  15. CLOUD STORAGE SERVICES

    OpenAIRE

    Yan, Cheng

    2017-01-01

    Cloud computing is a hot topic in recent research and applications. Because it is widely used in various fields. Up to now, Google, Microsoft, IBM, Amazon and other famous co partnership have proposed their cloud computing application. Look upon cloud computing as one of the most important strategy in the future. Cloud storage is the lower layer of cloud computing system which supports the service of the other layers above it. At the same time, it is an effective way to store and manage heavy...

  16. CloudSat observations of cloud-type distribution over the Indian summer monsoon region

    Directory of Open Access Journals (Sweden)

    K. V. Subrahmanyam

    2013-07-01

    Full Text Available The three-dimensional distribution of various cloud types over the Indian summer monsoon (ISM region using five years (2006–2010 of CloudSat observations during June-July-August-September months is discussed for the first time. As the radiative properties, latent heat released and microphysical properties of clouds differ largely depending on the cloud type, it becomes important to know what types of clouds occur over which region. In this regard, the present analysis establishes the three-dimensional distribution of frequency of occurrence of stratus (St, stratocumulus (Sc, nimbostratus (Ns, cumulus (Cu, altocumulus (Ac, altostratus (As, cirrus (Ci and deep convective (DC clouds over the ISM region. The results show that the various cloud types preferentially occur over some regions of the ISM, which are consistent during all the years of observations. It is found that the DC clouds frequently occur over northeast of Bay of Bengal (BoB, Ci clouds over a wide region of south BoB–Indian peninsula–equatorial Indian Ocean, and Sc clouds over the north Arabian Sea. Ac clouds preferentially occur over land, and a large amount of As clouds are found over BoB. The occurrence of both St and Ns clouds over the study region is much lower than all other cloud types.The interannual variability of all these clouds including their vertical distribution is discussed. It is envisaged that the present study opens up possibilities to quantify the feedback of individual cloud type in the maintenance of the ISM through radiative forcing and latent heat release.

  17. A SEARCH FOR DUST EMISSION IN THE LEO INTERGALACTIC CLOUD

    International Nuclear Information System (INIS)

    Bot, Caroline; Helou, George; Puget, Jeremie; Latter, William B.; Schneider, Stephen; Terzian, Yervant

    2009-01-01

    We present a search for infrared dust emission associated with the Leo cloud, a large intergalactic cloud in the M96 group. Mid-infrared and far-infrared images were obtained with the InfraRed Array Camera and the Multiband Imaging Photometer for Spitzer on the Spitzer Space Telescope. Our analysis of these maps is done at each wavelength relative to the H I spatial distribution. We observe a probable detection at 8 μm and a marginal detection at 24 μm associated with the highest H I column densities in the cloud. At 70 and 160 μm, upper limits on the dust emission are deduced. The level of the detection is low so that the possibility of a fortuitous cirrus clump or of an overdensity of extragalactic sources along the line of sight cannot be excluded. If this detection is confirmed, the quantities of dust inferred imply a dust-to-gas ratio in the intergalactic cloud up to a few times solar but no less than 1/20 solar. A confirmed detection would therefore exclude the possibility that the intergalactic cloud has a primordial origin. Instead, this large intergalactic cloud could therefore have been formed through interactions between galaxies in the group.

  18. Remote Sensing of Cloud Top Heights Using the Research Scanning Polarimeter

    Science.gov (United States)

    Sinclair, Kenneth; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John; Wasilewski, Andrzej

    2015-01-01

    Clouds cover roughly two thirds of the globe and act as an important regulator of Earth's radiation budget. Of these, multilayered clouds occur about half of the time and are predominantly two-layered. Changes in cloud top height (CTH) have been predicted by models to have a globally averaged positive feedback, however observational changes in CTH have shown uncertain results. Additional CTH observations are necessary to better and quantify the effect. Improved CTH observations will also allow for improved sub-grid parameterizations in large-scale models and accurate CTH information is important when studying variations in freezing point and cloud microphysics. NASA's airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. RSP scans along the aircraft track and obtains measurements at 152 viewing angles at any aircraft location. The approach presented here aggregates measurements from multiple scans to a single location at cloud altitude using a correlation function designed to identify the location-distinct features in each scan. During NASAs SEAC4RS air campaign, the RSP was mounted on the ER-2 aircraft along with the Cloud Physics Lidar (CPL), which made simultaneous measurements of CTH. The RSPs unique method of determining CTH is presented. The capabilities of using single and combinations of channels within the approach are investigated. A detailed comparison of RSP retrieved CTHs with those of CPL reveal the accuracy of the approach. Results indicate a strong ability for the RSP to accurately identify cloud heights. Interestingly, the analysis reveals an ability for the approach to identify multiple cloud layers in a single scene and estimate the CTH of each layer. Capabilities and limitations of identifying single and multiple cloud layers heights are explored. Special focus is given to sources of error in the method including optically thin clouds, physically thick clouds, multi

  19. First Mass Measurement of a 'Domestic' Microlens

    Science.gov (United States)

    Dong, Subo; Carey, Sean; Gould, Andrew; Zhu, Wei

    2017-11-01

    We propose to combine Spitzer, Gaia, and ground-based measurements to determine the mass, distance, and transverse velocity of the 'domestic' microlensing event J0507+2447. This is only the second 'domestic' event (microlensed source distance less than about 1 kpc) ever discovered, but this number is already 10 times higher than the number that are expected. Hence, determining the nature of these lenses would resolve a major puzzle. The low expected rate is what caused Einstein to delay publication of his microlensing idea by 24 years. By very good fortune, Spitzer's narrow 38 day window of observations overlaps magnified portions of the event. To determine the mass requires to measure both the 'microlens parallax' (courtesy of Spitzer) and the 'angular Einstein radius' (which can be derived from Gaia astrometry). Thus, this is a truly rare opportunity to probe the nature of 'domestic' microlenses.

  20. VMware vCloud security

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    VMware vCloud Security provides the reader with in depth knowledge and practical exercises sufficient to implement a secured private cloud using VMware vCloud Director and vCloud Networking and Security.This book is primarily for technical professionals with system administration and security administration skills with significant VMware vCloud experience who want to learn about advanced concepts of vCloud security and compliance.