Sample records for climate wizard tool

  1. Applied climate-change analysis: the climate wizard tool.

    Evan H Girvetz

    Full Text Available BACKGROUND: Although the message of "global climate change" is catalyzing international action, it is local and regional changes that directly affect people and ecosystems and are of immediate concern to scientists, managers, and policy makers. A major barrier preventing informed climate-change adaptation planning is the difficulty accessing, analyzing, and interpreting climate-change information. To address this problem, we developed a powerful, yet easy to use, web-based tool called Climate Wizard ( that provides non-climate specialists with simple analyses and innovative graphical depictions for conveying how climate has and is projected to change within specific geographic areas throughout the world. METHODOLOGY/PRINCIPAL FINDINGS: To demonstrate the Climate Wizard, we explored historic trends and future departures (anomalies in temperature and precipitation globally, and within specific latitudinal zones and countries. We found the greatest temperature increases during 1951-2002 occurred in northern hemisphere countries (especially during January-April, but the latitude of greatest temperature change varied throughout the year, sinusoidally ranging from approximately 50 degrees N during February-March to 10 degrees N during August-September. Precipitation decreases occurred most commonly in countries between 0-20 degrees N, and increases mostly occurred outside of this latitudinal region. Similarly, a quantile ensemble analysis based on projections from 16 General Circulation Models (GCMs for 2070-2099 identified the median projected change within countries, which showed both latitudinal and regional patterns in projected temperature and precipitation change. CONCLUSIONS/SIGNIFICANCE: The results of these analyses are consistent with those reported by the Intergovernmental Panel on Climate Change, but at the same time, they provide examples of how Climate Wizard can be used to explore regionally- and temporally

  2. HyCAW: Hydrological Climate change Adaptation Wizard

    Bagli, Stefano; Mazzoli, Paolo; Broccoli, Davide; Luzzi, Valerio


    Changes in temporal and total water availability due to hydrologic and climate change requires an efficient use of resources through the selection of the best adaptation options. HyCAW provides a novel service to users willing or needing to adapt to hydrological change, by turning available scientific information into a user friendly online wizard that lets to: • Evaluate the monthly reduction of water availability induced by climate change; • Select the best adaptation options and visualize the benefits in terms of water balance and cost reduction; • Quantify potential of water saving by improving of water use efficiency. The tool entails knowledge of the intra-annual distribution of available surface and groundwater flows at a site under present and future (climate change) scenarios. This information is extracted from long term scenario simulation by E-HYPE (European hydrological predictions for the environment) model from Swedish Meteorological and Hydrological Institute, to quantify the expected evolution in water availability (e.g. percent reduction of soil infiltration and aquifer recharge; relative seasonal shift of runoff from summer to winter in mountain areas; etc.). Users are requested to provide in input their actual water supply on a monthly basis, both from surface and groundwater sources. Appropriate decision trees and an embedded precompiled database of Water saving technology for different sectors (household, agriculture, industrial, tourisms) lead them to interactively identify good practices for water saving/recycling/harvesting that they may implement in their specific context. Thanks to this service, users are not required to have a detailed understanding neither of data nor of hydrological processes, but may benefit of scientific analysis directly for practical adaptation in a simple and user friendly way, effectively improving their adaptation capacity. The tool is being developed under a collaborative FP7 funded project called SWITCH

  3. Visualizing and communicating climate change using the ClimateWizard: decision support and education through web-based analysis and mapping

    Girvetz, E. H.; Zganjar, C.; Raber, G. T.; Maurer, E. P.; Duffy, P.


    Virtually all fields of study and parts of society—from ecological science and nature conservation, to global development, multinational corporations, and government bodies—need to know how climate change has and may impact specific locations of interest. Our ability to respond to climate change depends on having convenient tools that make past and projected climate trends available to planners, managers, scientists and the general public, at scales ranging from global to local scales. Web-mapping applications provide an effective platform for communicating climate change impacts in specific geographic areas of interest to the public. Here, we present one such application, the ClimateWizard, that allows users to analyze, visualize and explore climate change maps for specific geographic areas of interest throughout the world ( Built on Web 2.0 web-services (SOAP), Google Maps mash-up, and cloud computing technologies, the ClimateWizard analyzes large databases of climate information located on remote servers to create synthesized information and useful products tailored to geographic areas of interest (e.g. maps, graphs, tables, GIS layers). We demonstrate how the ClimateWizard can be used to assess projected changes to temperature and precipitation across all states in the contiguous United States and all countries of the world using statistically downscaled general circulation models from the CMIP3 dataset. We then go on to show how ClimateWizard can be used to analyze changes to other climate related variables, such as moisture stress and water production. Finally, we discuss how this tool can be adapted to develop a wide range of web-based tools that are targeted at informing specific audiences—from scientific research and natural resource management, to K-12 and higher education—about how climate change may affect different aspects of human and natural systems.

  4. Clean Air Markets - Compliance Query Wizard

    U.S. Environmental Protection Agency — The Compliance Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at The Compliance module provides...

  5. Metadata Wizard: an easy-to-use tool for creating FGDC-CSDGM metadata for geospatial datasets in ESRI ArcGIS Desktop

    Ignizio, Drew A.; O'Donnell, Michael S.; Talbert, Colin B.


    Creating compliant metadata for scientific data products is mandated for all federal Geographic Information Systems professionals and is a best practice for members of the geospatial data community. However, the complexity of the The Federal Geographic Data Committee’s Content Standards for Digital Geospatial Metadata, the limited availability of easy-to-use tools, and recent changes in the ESRI software environment continue to make metadata creation a challenge. Staff at the U.S. Geological Survey Fort Collins Science Center have developed a Python toolbox for ESRI ArcDesktop to facilitate a semi-automated workflow to create and update metadata records in ESRI’s 10.x software. The U.S. Geological Survey Metadata Wizard tool automatically populates several metadata elements: the spatial reference, spatial extent, geospatial presentation format, vector feature count or raster column/row count, native system/processing environment, and the metadata creation date. Once the software auto-populates these elements, users can easily add attribute definitions and other relevant information in a simple Graphical User Interface. The tool, which offers a simple design free of esoteric metadata language, has the potential to save many government and non-government organizations a significant amount of time and costs by facilitating the development of The Federal Geographic Data Committee’s Content Standards for Digital Geospatial Metadata compliant metadata for ESRI software users. A working version of the tool is now available for ESRI ArcDesktop, version 10.0, 10.1, and 10.2 (downloadable at http:/

  6. On lie detection "wizards".

    Bond, Charles F; Uysal, Ahmet


    M. O'Sullivan and P. Ekman (2004) claim to have discovered 29 wizards of deception detection. The present commentary offers a statistical critique of the evidence for this claim. Analyses reveal that chance can explain results that the authors attribute to wizardry. Thus, by the usual statistical logic of psychological research, O'Sullivan and Ekman's claims about wizardry are gratuitous. Even so, there may be individuals whose wizardry remains to be uncovered. Thus, the commentary outlines forms of evidence that are (and are not) capable of diagnosing lie detection wizardry. PMID:17221309

  7. Development of a web wizard in the Vaadin open source framework

    Zirdum, Igor


    The thesis guides us through the necessary steps of developing a web wizard using the AJAX technologies. The preparation of a proposal in the web application eZK is the example on which the demonstration of wizard construction is performed. In the introductory part we shortly analise the current solution and the technologies used. Then we introduce the most important tools and technologies used in our project focusing on java based tools such as JBoss application server and Vaadin frame...


    Phillips, M.; Robinson, C.; Gupta, N.; Werth, D.


    This report describes the development of a software tool, entitled “WildFire Ignition Resistance Estimator Wizard” (WildFIRE Wizard, Version 2.10). This software was developed within the Wildfire Ignition Resistant Home Design (WIRHD) program, sponsored by the U. S. Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection & Disaster Management Division. WildFIRE Wizard is a tool that enables homeowners to take preventive actions that will reduce their home’s vulnerability to wildfire ignition sources (i.e., embers, radiant heat, and direct flame impingement) well in advance of a wildfire event. This report describes the development of the software, its operation, its technical basis and calculations, and steps taken to verify its performance.

  9. The Mind-Reading Wizards

    Peter J. Bentley


    Telepathy was once nothing more than a parlour trick played by illusionists to entertain us. Names would seemingly be pulled out of our heads, numbers would be correctly guessed, our hiding places revealed. It was all done through trickery – reading our body language, tone of voice, and movement of eyes. Magic doesn’t really exist, and neither did mind-reading. At least that used to be true, until the mind-reading wizards arrived. Now something resembling telepathy is becoming a reliable real...

  10. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard

    The highly automated PHENIX AutoBuild wizard is described. The procedure can be applied equally well to phases derived from isomorphous/anomalous and molecular-replacement methods. The PHENIX AutoBuild wizard is a highly automated tool for iterative model building, structure refinement and density modification using RESOLVE model building, RESOLVE statistical density modification and phenix.refine structure refinement. Recent advances in the AutoBuild wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model-completion algorithms and automated solvent-molecule picking. Model-completion algorithms in the AutoBuild wizard include loop building, crossovers between chains in different models of a structure and side-chain optimization. The AutoBuild wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 to 3.2 Å, resulting in a mean R factor of 0.24 and a mean free R factor of 0.29. The R factor of the final model is dependent on the quality of the starting electron density and is relatively independent of resolution

  11. Metadata Access Tool for Climate and Health

    Trtanji, J.


    The need for health information resources to support climate change adaptation and mitigation decisions is growing, both in the United States and around the world, as the manifestations of climate change become more evident and widespread. In many instances, these information resources are not specific to a changing climate, but have either been developed or are highly relevant for addressing health issues related to existing climate variability and weather extremes. To help address the need for more integrated data, the Interagency Cross-Cutting Group on Climate Change and Human Health, a working group of the U.S. Global Change Research Program, has developed the Metadata Access Tool for Climate and Health (MATCH). MATCH is a gateway to relevant information that can be used to solve problems at the nexus of climate science and public health by facilitating research, enabling scientific collaborations in a One Health approach, and promoting data stewardship that will enhance the quality and application of climate and health research. MATCH is a searchable clearinghouse of publicly available Federal metadata including monitoring and surveillance data sets, early warning systems, and tools for characterizing the health impacts of global climate change. Examples of relevant databases include the Centers for Disease Control and Prevention's Environmental Public Health Tracking System and NOAA's National Climate Data Center's national and state temperature and precipitation data. This presentation will introduce the audience to this new web-based geoportal and demonstrate its features and potential applications.

  12. The Fable of the Allegory: The Wizard of Oz in Economics: Comment

    Dighe, Ranjit S.


    Although recent research strongly suggests that L. Frank Baum did not write "The Wonderful Wizard of Oz" as a monetary or political allegory, the Populist-parable interpretation of his book remains a tremendous teaching tool in economics classes. The author offers some background on the rise and fall of the Populist interpretation, in recognition…

  13. The Fable of the Allegory: The Wizard of Oz in Economics.

    Hansen, Bradley A.


    Declares L. Frank Baum's "The Wonderful Wizard of Oz" is a popular teaching tool in economics. Indicates some argue it was written as an allegory of Populist demands for a bimetallic monetary system. Counters that Baum was not sympathetic to Populist views and did not write the story as a monetary allegory. (JEH)

  14. Enhancement of Local Climate Analysis Tool

    Horsfall, F. M.; Timofeyeva, M. M.; Dutton, J.


    The National Oceanographic and Atmospheric Administration (NOAA) National Weather Service (NWS) will enhance its Local Climate Analysis Tool (LCAT) to incorporate specific capabilities to meet the needs of various users including energy, health, and other communities. LCAT is an online interactive tool that provides quick and easy access to climate data and allows users to conduct analyses at the local level such as time series analysis, trend analysis, compositing, correlation and regression techniques, with others to be incorporated as needed. LCAT uses principles of Artificial Intelligence in connecting human and computer perceptions on application of data and scientific techniques in multiprocessing simultaneous users' tasks. Future development includes expanding the type of data currently imported by LCAT (historical data at stations and climate divisions) to gridded reanalysis and General Circulation Model (GCM) data, which are available on global grids and thus will allow for climate studies to be conducted at international locations. We will describe ongoing activities to incorporate NOAA Climate Forecast System (CFS) reanalysis data (CFSR), NOAA model output data, including output from the National Multi Model Ensemble Prediction System (NMME) and longer term projection models, and plans to integrate LCAT into the Earth System Grid Federation (ESGF) and its protocols for accessing model output and observational data to ensure there is no redundancy in development of tools that facilitate scientific advancements and use of climate model information in applications. Validation and inter-comparison of forecast models will be included as part of the enhancement to LCAT. To ensure sustained development, we will investigate options for open sourcing LCAT development, in particular, through the University Corporation for Atmospheric Research (UCAR).

  15. Iterative model-building, structure refinement, and density modification with the PHENIX AutoBuild Wizard

    Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.


    The PHENIX AutoBuild Wizard is a highly automated tool for iterative model-building, structure refinement and density modification using RESOLVE or TEXTAL model-building, RESOLVE statistical density modification, and phenix.refine structure refinement. Recent advances in the AutoBuild Wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model completion algorithms, and automated solvent molecule picking. Model completion algorithms in the AutoBuild Wizard include loop-building, crossovers between chains in different models of a structure, and side-chain optimization. The AutoBuild Wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 {angstrom} to 3.2 {angstrom}, resulting in a mean R-factor of 0.24 and a mean free R factor of 0.29. The R-factor of the final model is dependent on the quality of the starting electron density, and relatively independent of resolution.

  16. Inclusive science education: learning from Wizard

    Koomen, Michele Hollingsworth


    This case study reports on a student with special education needs in an inclusive seventh grade life science classroom using a framework of disability studies in education. Classroom data collected over 13 weeks consisted of qualitative (student and classroom observations, interviews, student work samples and video-taped classroom teaching and learning record using CETP-COP) methods. Three key findings emerged in the analysis and synthesis of the data: (1) The learning experiences in science for Wizard are marked by a dichotomy straddled between autonomy ["Sometimes I do" (get it)] and dependence ["Sometimes I don't (get it)], (2) the process of learning is fragmented for Wizard because it is underscored by an emerging disciplinary literacy, (3) the nature of the inclusion is fragile and functional. Implications for classroom practices that support students with learning disabilities include focusing on student strengths, intentional use of disciplinary literacy strategies, and opportunities for eliciting student voice in decision making.

  17. Climate tools in mainstream Linux distributions

    McKinstry, Alastair


    Debian/meterology is a project to integrate climate tools and analysis software into the mainstream Debian/Ubuntu Linux distributions. This work describes lessons learnt, and recommends practices for scientific software to be adopted and maintained in OS distributions. In addition to standard analysis tools (cdo,, grads, ferret, metview, ncl, etc.), software used by the Earth System Grid Federation was chosen for integraion, to enable ESGF portals to be built on this base; however exposing scientific codes via web APIs enables security weaknesses, normally ignorable, to be exposed. How tools are hardened, and what changes are required to handle security upgrades, are described. Secondly, to enable libraries and components (e.g. Python modules) to be integrated requires planning by writers: it is not sufficient to assume users can upgrade their code when you make incompatible changes. Here, practices are recommended to enable upgrades and co-installability of C, C++, Fortran and Python codes. Finally, software packages such as NetCDF and HDF5 can be built in multiple configurations. Tools may then expect incompatible versions of these libraries (e.g. serial and parallel) to be simultaneously available; how this was solved in Debian using "pkg-config" and shared library interfaces is described, and best practices for software writers to enable this are summarised.

  18. ProteoWizard - Office of Cancer Clinical Proteomics Research

    ProteoWizard highlight - 2007, Dr. Parag Mallick and Darren Kessner had one idea in mind – how could they develop robust proteomics software that is relatively “easy” to use and transferable between labs.

  19. WIZARD: A New System for Observing Zodiacal Light

    Usui, F.; Ishiguro, M.; Kwon, S. M.; Fujino, M.; Lee, C.; Nakamura, R.; Sekiguchi, K.; Miyashita, A.; Nakagiri, M.; Ueno, M.; Mukai, T.

    Zodiacal light is sunlight scattered by the cloud of the interplanetary dust particles in our solar system. By observing the zodiacal light, we can find the origin and evolution of interplanetary dust. We have developed a new system (WIZARD: Wide-field Imager of Zodiacal light with ARray Detector) designed for zodiacal light observation. Since the zodiacal light is faint and wide-spread all over the sky, WIZARD consists of a very sensitive CCD chip and a wide-angle lens with an airglow reduction filter. WIZARD will be able to measure the absolute brightness of diffuse sources in visible wavelengths. Using this instrument, we observed the zodiacal light in 2001 February, March and 2002 March at Mauna Kea, Hawaii (4200 m). In this paper, we report the design and the current performance of the WIZARD system.

  20. Storm Water Management Model Climate Adjustment Tool (SWMM-CAT)

    The US EPA’s newest tool, the Stormwater Management Model (SWMM) – Climate Adjustment Tool (CAT) is meant to help municipal stormwater utilities better address potential climate change impacts affecting their operations. SWMM, first released in 1971, models hydrology and hydrauli...

  1. Tools for Teaching Climate Change Studies

    Maestas, A.M.; Jones, L.A.


    The Atmospheric Radiation Measurement Climate Research Facility (ACRF) develops public outreach materials and educational resources for schools. Studies prove that science education in rural and indigenous communities improves when educators integrate regional knowledge of climate and environmental issues into school curriculum and public outreach materials. In order to promote understanding of ACRF climate change studies, ACRF Education and Outreach has developed interactive kiosks about climate change for host communities close to the research sites. A kiosk for the North Slope of Alaska (NSA) community was installed at the Iupiat Heritage Center in 2003, and a kiosk for the Tropical Western Pacific locales will be installed in 2005. The kiosks feature interviews with local community elders, regional agency officials, and Atmospheric Radiation Measurement (ARM) Program scientists, which highlight both research and local observations of some aspects of environmental and climatic change in the Arctic and Pacific. The kiosks offer viewers a unique opportunity to learn about the environmental concerns and knowledge of respected community elders, and to also understand state-of-the-art climate research. An archive of interviews from the communities will also be distributed with supplemental lessons and activities to encourage teachers and students to compare and contrast climate change studies and oral history observations from two distinct locations. The U.S. Department of Energy's ACRF supports education and outreach efforts for communities and schools located near its sites. ACRF Education and Outreach has developed interactive kiosks at the request of the communities to provide an opportunity for the public to learn about climate change from both scientific and indigenous perspectives. Kiosks include interviews with ARM scientists and provide users with basic information about climate change studies as well as interviews with elders and community leaders

  2. Development of EXFOR Digitizer Wizard. New Interface

    We have got a lot of user feedbacks for our version of the EXFOR Digitizer during the last two years. Development of a new version of InpGrapf was started in our centre. This decision was motivated by four serious reasons: a) Now our digitizing program is used not only in our center b) Different comments and remarks come from the users c) It is not possible to take into account these comments performing the minor changes only d) New techniques have been developed providing the improvement of user's interface. The idea was to use a new approach 'Parameter Gathering Techniques' which allows the user entering the minimum amount of information. The rest of the parameters are determined by the program itself. We decided to use a Wizard which can lead the user through the interface step by step to do tasks in a prescribed order. Some new possibilities of our Graph Digitizer are listed below: 1. There is no necessity to enter coded words any more. These steps are hidden from the user. 2. It is possible to use automatic scaling (boundary values and a number of reference points are set). 3. Editing of information is allowed at any digitizing stage. 4. Data checking is provided at the stage of entering information. There are four new buttons on a panel: - Add Curve: start new digitizing - Save Data: save digitized data - Check Data: check the order of input (definition of scale, reference points, independent variables and so on). - Process Data: call subprogram to transfer plot coordinates to physical values. Our future plans are: 1. Introduce a possibility of entering asymmetric errors 2. Provide an option for setting data precision (the number of significant figures in data values) 3. Connection with Exfor-Editor will be implemented. It will be possible to include digitized data to Exfor-Editor directly

  3. Where should I drill? Pandell's case wizard helps compare economics

    This article presented Pandell's EANexus v.2.5 software which includes an economic analysis case wizard to help junior and intermediate oil producers acquire and evaluate basic economic information about their assets. The software helps guide engineers and geologists through the development of well cases and comprehensive economic analysis. The software is particularly useful given the changes to the royalty regime in Alberta. The EANexus is an economic, budgeting and reserve reporting software that features automatic price deck updates and a built-in case wizard that prompts users with questions. Separate reports can be generated by analyzing well cases in various provinces and comparing results. 1 ref., 1 fig

  4. A Tool for Assessing Social Climate in University Classrooms

    Sánchez, Carles Rostan; Ortiz, Dolors Cañabate; Carrasco, Mònica González; Carbo, Pilar Albertín; Burriel, Marc Pérez


    Introduction: Despite academic climate being a key aspect of teaching quality in academic institutions, few studies conducted in the university context have analyzed this construct systematically. Method: Given the absence of specific tools to apply to university, we propose the construction of a tool for assessing college students' perceptions of…

  5. NOAA Climate Information and Tools for Decision Support Services

    Timofeyeva, M. M.; Higgins, W.; Strager, C.; Horsfall, F. M.


    provision of information that will help guide long-term preparedness for severe weather events and extreme conditions as well as climate variability and change GFCS recently summarized examples of existing initiatives to advance provision of climate services in the 2012 publication Climate ExChange. In this publication, NWS introduced the new Local Climate Analysis Tool (LCAT), a tool that is used to conduct local climate studies that are needed to create efficient and reliable guidance for DSS. LCAT allows for analyzing trends in local climate variables and identifying local impacts of climate variability (e.g., ENSO) on weather and water conditions. In addition to LCAT, NWS, working in partnership with the North East Regional Climate center, released xmACIS version 2, a climate data mining tool, for NWS field operations. During this talk we will demonstrate LCAT and xmACIS as well as outline several examples of their application to DSS and its potential use for achieving GFCS goals. The examples include LCAT-based temperature analysis for energy decisions, guidance on weather and water events leading to increased algal blooms and red tide months in advance, local climate sensitivities to droughts, probabilities of hot/cold conditions and their potential impacts on agriculture and fish kills or fish stress.

  6. Wizarding in the Classroom: Teaching Harry Potter and Politics

    Deets, Stephen


    This article describes teaching a course called Harry Potter and Politics. Focusing on aspects of political culture, the class tackled themes of identity, institutional behavior, and globalization. Teaching Harry Potter has several benefits. Students are both familiar with the wizarding world and yet have enough distance to examine it…

  7. Assessing Extremes Climatology Using NWS Local Climate Analysis Tool

    Timofeyeva, M. M.; Hollingshead, A.; Hilderbrand, D.; Mayes, B.; Hartley, T.; Kempf McGavock, N. M.; Lau, E.; Olenic, E. A.; Motta, B.; Bunge, R.; Brown, L. E.; Fritsch, F.


    The Local Climate Analysis Tool (LCAT) is evolving out of a need to support and enhance the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) field offices’ ability to access, manipulate, and interpret local climate data and characterize climate variability and change impacts. LCAT will enable NWS Regional Headquarters, Weather Forecast Offices, Weather Service Offices, and River Forecast Centers the ability to conduct regional and local climate studies using station and reanalysis gridded data and various statistical techniques for climate analysis. The analysis results will be used for climate services to guide local decision makers in weather and climate sensitive actions and to deliver information to the general public. Field offices need standardized, scientifically sound methodology for local climate analysis (such as trend, composites, and principal statistical and time-series analysis) that is comprehensive, accessible, and efficient, with the potential to expand with growing NOAA Climate Services needs. The methodology for climate analyses is practiced by the NWS Climate Prediction Center (CPC), NOAA National Climatic Data Center, and NOAA Earth System Research Laboratory, as well as NWS field office staff. LCAT will extend this practice at the local level, allowing it to become both widespread and standardized, and thus improve NWS climate services capabilities. LCAT focus is on the local scale (as opposed to national and global scales of CPC products). The LCAT will: -Improve professional competency of local office staff and expertise in providing local information to their users. LCAT will improve quality of local climate services -Ensure adequate local input to CPC products that depend on local information, such as the U.S. Drought Monitor. LCAT will allow improvement of CPC climate products -Allow testing of local climate variables beyond temperature averages and precipitation totals such as climatology of

  8. Evaluation Tool of Climate Potential for Ventilative Cooling

    Belleri, Annamaria; Psomas, Theofanis Ch.; Heiselberg, Per Kvols


    . Within IEA Annex 62 project, national experts are working on the development of a climate evaluation tool, which aims at assessing the potential of ventilative cooling by taking into account also building envelope thermal properties, internal gains and ventilation needs. The analysis is based on a single......-zone thermal model applied to user-input climatic data on hourly basis. The tool identifies the percentage of hours when natural ventilation can be exploited to assure minimum air change rates required by state of the art research, standards and regulations and the percentage of hours when direct ventilative...... cooling is useful to reduce overheating risk and improve thermal comfort. The tool also assesses the night cooling potential and highlights other useful climate performance indicators such as the day-night temperature swing. Furthermore, the analysis method has also been devised to provide building...

  9. The Development of a Climate Time Line Information Tool

    Kowal, D.; McCaffery, M.; Anderson, D.; Habermann, D. E.


    The "Climate Time Line" or CTL tool currently in development at the National Geophysical Data Center will provide a climatic and "place-based" context for current weather patterns and a pre-instrumental context for current climate trends. Two audiences-GLOBE students and water managers involved with the Western Water Assessment--are targeted in the pilot project phase to test the CTL as a learning and decision-making support tool. Weather, climate and paleoclimatic observations will be integrated through a web-based interface that can be used for comparing data collected over 10 year, 100 year and 1000+ year periods, and made accessible and meaningful to non-technical users. The Climate Time Line prototype will include the following features: 1) Access to diverse data sets such as NCDC's Historic Climate Network, GLOBE Student Data Archive, World Data Center for Paleoclimatology and historical streamflow data from the USGS; 2) Map Locator/Search Utility for regional inquiries and comparison views; 3) Varying temporal and spatial displays; 4) Tutorial and help sections to guide and support users; 5) Supporting materials including a "Powers of Ten" primer examining variability at various timescales; and 6) Statistical assessment tools. The CTL prototype offers a novel approach in the scientific analysis of climate and hydrology data. It will facilitate inquiries by simplifying access to environmental data. Additionally, it will provide historical timelines for the intended user to compare the development of human cultures in relation to climate trends and variability--promoting an inquiry-rich learning environment. Throughout the pilot project phase, the CTL will undergo evaluation particularly in the area of usability, followed by a pre- and post- assessment of its educational impact on the targeted, non-technical audience. A hypernews workspace has been created to facilitate the development of the CTL. > ClimateTimelineProject.html.

  10. Uncertainty assessment tool for climate change impact indicators

    Otto, Juliane; Keup-Thiel, Elke; Jacob, Daniela; Rechid, Diana; Lückenkötter, Johannes; Juckes, Martin


    A major difficulty in the study of climate change impact indicators is dealing with the numerous sources of uncertainties of climate and non-climate data . Its assessment, however, is needed to communicate to users the degree of certainty of climate change impact indicators. This communication of uncertainty is an important component of the FP7 project "Climate Information Portal for Copernicus" (CLIPC). CLIPC is developing a portal to provide a central point of access for authoritative scientific information on climate change. In this project the Climate Service Center 2.0 is in charge of the development of a tool to assess the uncertainty of climate change impact indicators. The calculation of climate change impact indicators will include climate data from satellite and in-situ observations, climate models and re-analyses, and non-climate data. There is a lack of a systematic classification of uncertainties arising from the whole range of climate change impact indicators. We develop a framework that intends to clarify the potential sources of uncertainty of a given indicator and provides - if possible - solutions how to quantify the uncertainties. To structure the sources of uncertainties of climate change impact indicators, we first classify uncertainties along a 'cascade of uncertainty' (Reyer 2013). Our cascade consists of three levels which correspond to the CLIPC meta-classification of impact indicators: Tier-1 indicators are intended to give information on the climate system. Tier-2 indicators attempt to quantify the impacts of climate change on biophysical systems (i.e. flood risks). Tier-3 indicators primarily aim at providing information on the socio-economic systems affected by climate change. At each level, the potential sources of uncertainty of the input data sets and its processing will be discussed. Reference: Reyer, C. (2013): The cascade of uncertainty in modeling forest ecosystem responses to environmental change and the challenge of sustainable

  11. Integrated Framework for an Urban Climate Adaptation Tool

    Omitaomu, O.; Parish, E. S.; Nugent, P.; Mei, R.; Sylvester, L.; Ernst, K.; Absar, M.


    Cities have an opportunity to become more resilient to future climate change through investments made in urban infrastructure today. However, most cities lack access to credible high-resolution climate change projection information needed to assess and address potential vulnerabilities from future climate variability. Therefore, we present an integrated framework for developing an urban climate adaptation tool (Urban-CAT). Urban-CAT consists of four modules. Firstly, it provides climate projections at different spatial resolutions for quantifying urban landscape. Secondly, this projected data is combined with socio-economic data using leading and lagging indicators for assessing landscape vulnerability to climate extremes (e.g., urban flooding). Thirdly, a neighborhood scale modeling approach is presented for identifying candidate areas for adaptation strategies (e.g., green infrastructure as an adaptation strategy for urban flooding). Finally, all these capabilities are made available as a web-based tool to support decision-making and communication at the neighborhood and city levels. In this paper, we present some of the methods that drive each of the modules and demo some of the capabilities available to-date using the City of Knoxville in Tennessee as a case study.

  12. NASA Tools for Climate Impacts on Water Resources

    Toll, David; Doorn, Brad


    Climate and environmental change are expected to fundamentally alter the nation's hydrological cycle and water availability. Satellites provide global or near-global coverage using instruments, allowing for consistent, well-calibrated, and equivalent-quality data of the Earth system. A major goal for NASA climate and environmental change research is to create multi-instrument data sets to span the multi-decadal time scales of climate change and to combine these data with those from modeling and surface-based observing systems to improve process understanding and predictions. NASA and Earth science data and analyses will ultimately enable more accurate climate prediction, and characterization of uncertainties. NASA's Applied Sciences Program works with other groups, including other federal agencies, to transition demonstrated observational capabilities to operational capabilities. A summary of some of NASA tools for improved water resources management will be presented.

  13. Isotopes as validation tools for global climate models

    Global Climate Models (GCMs) are the predominant tool with which we predict the future climate. In order that people can have confidence in such predictions, GCMs require validation. As almost every available item of meteorological data has been exploited in the construction and tuning of GCMs to date, independent validation is very difficult. This paper explores the use of isotopes as a novel and fully independent means of evaluating GCMs. The focus is the Amazon Basin which has a long history of isotope collection and analysis and also of climate modelling: both having been reported for over thirty years. Careful consideration of the results of GCM simulations of Amazonian deforestation and climate change suggests that the recent stable isotope record is more consistent with the predicted effects of greenhouse warming, possibly combined with forest removal, than with GCM predictions of the effects of deforestation alone

  14. Getting The Picture: Our Changing Climate- A new learning tool for climate science

    Yager, K.; Balog, J. D.


    Earth Vision Trust (EVT), founded by James Balog- photographer and scientist, has developed a free, online, multimedia climate science education tool for students and educators. Getting The Picture (GTP) creates a new learning experience, drawing upon powerful archives of Extreme Ice Survey's unique photographs and time-lapse videos of changing glaciers around the world. GTP combines the latest in climate science through interactive tools that make the basic scientific tenets of climate science accessible and easy to understand. The aim is to use a multidisciplinary approach to encourage critical thinking about the way our planet is changing due to anthropogenic activities, and to inspire students to find their own voice regarding our changing climate The essence of this resource is storytelling through the use of inspiring images, field expedition notes and dynamic multimedia tools. EVT presents climate education in a new light, illustrating the complex interaction between humans and nature through their Art + Science approach. The overarching goal is to educate and empower young people to take personal action. GTP is aligned with national educational and science standards (NGSS, CCSS, Climate Literacy) so it may be used in conventional classrooms as well as education centers, museum kiosks or anywhere with Internet access. Getting The Picture extends far beyond traditional learning to provide an engaging experience for students, educators and all those who wish to explore the latest in climate science.


    Oana Maria Popescu; Silvia Georgiana Gane


    One of the most important tendencies in child psychotherapy is the integration of various psychotherapeutic approaches and technical interventions belonging to different orientations. Based on the Harry Potter stories, the „Wizarding School” structured group therapy program is a 12-step integratively oriented program applicable in personal development, individual and group therapy for children aged 6 to 13 (at present being adapted for adult psychotherapy). The program takes place within a fa...

  16. A Decision Analysis Tool for Climate Impacts, Adaptations, and Vulnerabilities

    Omitaomu, Olufemi A [ORNL; Parish, Esther S [ORNL; Nugent, Philip J [ORNL


    Climate change related extreme events (such as flooding, storms, and drought) are already impacting millions of people globally at a cost of billions of dollars annually. Hence, there are urgent needs for urban areas to develop adaptation strategies that will alleviate the impacts of these extreme events. However, lack of appropriate decision support tools that match local applications is limiting local planning efforts. In this paper, we present a quantitative analysis and optimization system with customized decision support modules built on geographic information system (GIS) platform to bridge this gap. This platform is called Urban Climate Adaptation Tool (Urban-CAT). For all Urban-CAT models, we divide a city into a grid with tens of thousands of cells; then compute a list of metrics for each cell from the GIS data. These metrics are used as independent variables to predict climate impacts, compute vulnerability score, and evaluate adaptation options. Overall, the Urban-CAT system has three layers: data layer (that contains spatial data, socio-economic and environmental data, and analytic data), middle layer (that handles data processing, model management, and GIS operation), and application layer (that provides climate impacts forecast, adaptation optimization, and site evaluation). The Urban-CAT platform can guide city and county governments in identifying and planning for effective climate change adaptation strategies.

  17. CLIMCONG: A framework-tool for assessing CLIMate CONGruency

    Buras, Allan; Kölling, Christian; Menzel, Annette


    It is widely accepted that the anticipated elevational and latitudinal shifting of climate forces living organisms (including humans) to track these changes in space over a certain time. Due to the complexity of climate change, prediction of consequent migrations is a difficult procedure afflicted with many uncertainties. To simplify climate complexity and ease respective attempts, various approaches aimed at classifying global climates. For instance, the frequently used Köppen-Geiger climate classification (Köppen, 1900) has been applied to predict the shift of climate zones throughout the 21st century (Rubel and Kottek, 2010). Another - more objective but also more complex - classification approach has recently been presented by Metzger et al. (2013). Though being comprehensive, classifications have certain drawbacks, as I) often focusing on few variables, II) having discrete borders at the margins of classes, and III) subjective selection of an arbitrary number of classes. Ecological theory suggests that when only considering temperature and precipitation (such as Köppen, 1900) particular climate features - e.g. radiation and plant water availability - may not be represented with sufficient precision. Furthermore, sharp boundaries among homogeneous classes do not reflect natural gradients. To overcome the aforementioned drawbacks, we here present CLIMCONG - a framework-tool for assessing climate congruency for quantitatively describing climate similarity through continua in space and time. CLIMCONG allows users to individually select variables for calculation of climate congruency. By this, particular foci can be specified, depending on actual research questions posed towards climate change. For instance, while ecologists focus on a multitude of parameters driving net ecosystem productivity, water managers may only be interested in variables related to drought extremes and water availability. Based on the chosen parameters CLIMCONG determines congruency of

  18. Central America Regional Climate Change Program: Tools for Your Use

    Irwin, Dan; Irving, Bill; Yeager, Carey


    USAID/E-CAM and EGAT's Global Climate Change Team, in partnership with EPA, NASA, Oak Ridge National Lab, and the Central American Commission for Environment and Development (CCAD), have had a significant impact on the region's ability to monitor, mitigate, and adapt to environmental threats. Environmental decision-making tools and data are posted on a website (SERVIR: http://servir.nsstc.nasa.pov/home.html)that provides satellite and geographic data and maps to anybody with an Internet connection. The SERVIR program has been identified as the model for the Global Earth Observation System of Systems (GEOSS) - a major international effort to develop a 21st century system for environmental management and disaster response. In coordination with the USAID/EPA program, NASA has developed a GIs tool that enables countries to examine their forest cover and document changes on an annual basis. This information is used in calculating carbon emissions as part of greenhouse gas inventories, but also serves a valuable monitoring function. In addition, USAID/E-CAM and EGAT's Global Climate Change Team in collaboration with EPA are helping countries meet their obligations as signatories to the United Nations Framework Convention on Climate Change (UNFCCC). EPA is assisting Central American governments to improve the quality of their greenhouse gas emission inventories reported to the UNFCCC through the development of tools and improvements in data quality. New EPA tools developed include software to automatically calculate greenhouse gas emissions for the agricultural and forestry sector inventories, determine key sources of greenhouse gas emissions, and document institutional arrangements. Several of these tools are state of the art and are comparable to tools currently used in the U.S.

  19. ModelWizard: Toward Interactive Model Construction

    Hutchison, Dylan


    Data scientists engage in model construction to discover machine learning models that well explain a dataset, in terms of predictiveness, understandability and generalization across domains. Questions such as "what if we model common cause Z" and "what if Y's dependence on X reverses" inspire many candidate models to consider and compare, yet current tools emphasize constructing a final model all at once. To more naturally reflect exploration when debating numerous models, we propose an inter...

  20. Tools and Techniques for Basin-Scale Climate Change Assessment

    Zagona, E.; Rajagopalan, B.; Oakley, W.; Wilson, N.; Weinstein, P.; Verdin, A.; Jerla, C.; Prairie, J. R.


    The Department of Interior's WaterSMART Program seeks to secure and stretch water supplies to benefit future generations and identify adaptive measures to address climate change. Under WaterSMART, Basin Studies are comprehensive water studies to explore options for meeting projected imbalances in water supply and demand in specific basins. Such studies could be most beneficial with application of recent scientific advances in climate projections, stochastic simulation, operational modeling and robust decision-making, as well as computational techniques to organize and analyze many alternatives. A new integrated set of tools and techniques to facilitate these studies includes the following components: Future supply scenarios are produced by the Hydrology Simulator, which uses non-parametric K-nearest neighbor resampling techniques to generate ensembles of hydrologic traces based on historical data, optionally conditioned on long paleo reconstructed data using various Markov Chain techniuqes. Resampling can also be conditioned on climate change projections from e.g., downscaled GCM projections to capture increased variability; spatial and temporal disaggregation is also provided. The simulations produced are ensembles of hydrologic inputs to the RiverWare operations/infrastucture decision modeling software. Alternative demand scenarios can be produced with the Demand Input Tool (DIT), an Excel-based tool that allows modifying future demands by groups such as states; sectors, e.g., agriculture, municipal, energy; and hydrologic basins. The demands can be scaled at future dates or changes ramped over specified time periods. Resulting data is imported directly into the decision model. Different model files can represent infrastructure alternatives and different Policy Sets represent alternative operating policies, including options for noticing when conditions point to unacceptable vulnerabilities, which trigger dynamically executing changes in operations or other

  1. Supporting Teachers in Climate Change Instruction - The Climate Literacy and Energy Awareness Network (CLEAN) Tool Kit

    Gold, A. U.; Ledley, T. S.; Buhr, S. M.; Manduca, C. A.; Fox, S.; Kirk, K. B.; Grogan, M.; Niepold, F.; Carley, S.; Lynds, S. E.; Howell, C. D.


    The topic of climate change comes up regularly in news stories and household discussions. However, a recent poll among teenagers about their knowledge of climate change shows that teenagers' understanding of the basics of the climate system is minimal with 54% receiving a failing grade (Leiserowitz et al., 2011). The upcoming Next Generation Science Standards emphasize that solid knowledge about climate change and sustainability is essential for students to be prepared for the decisions the next generation of citizens will face. We summarize the needs described by educators in a national, multi-year informant pool study focused on climate instruction, and outline the demands the new Next Generation Science Standards are posing on educators, in terms of climate and sustainability instruction. We then showcase different tools available to educators to address these needs. The Climate Literacy and Energy Awareness Network (CLEAN, supports educators in addressing these challenges and assists them in their teaching about climate topics. In this presentation we will demonstrate the various avenues through which the CLEAN portal can help educators improve their own climate and energy literacy, support them in determining why and how to effectively integrate the climate and energy principles into their teaching, and facilitate their successful use of the resources with their students. This will include a brief overview of the following features: a) The breadth of the collection , which contains over 450 reviewed resources, and the multi-faceted search that can help educators quickly find materials that are most relevant to their needs; b) Annotations of individual resources that provide information extracted from the reviews about the science, pedagogy, and teaching tips, as well as indicating the relevant climate or energy principles and the AAAS Benchmarks for Science Literacy, the National Science Education Standards, and the Guidelines for Excellence in

  2. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard

    Ten measures of experimental electron-density-map quality are examined and the skewness of electron density is found to be the best indicator of actual map quality. A Bayesian approach to estimating map quality is developed and used in the PHENIX AutoSol wizard to make decisions during automated structure solution. Estimates of the quality of experimental maps are important in many stages of structure determination of macromolecules. Map quality is defined here as the correlation between a map and the corresponding map obtained using phases from the final refined model. Here, ten different measures of experimental map quality were examined using a set of 1359 maps calculated by re-analysis of 246 solved MAD, SAD and MIR data sets. A simple Bayesian approach to estimation of map quality from one or more measures is presented. It was found that a Bayesian estimator based on the skewness of the density values in an electron-density map is the most accurate of the ten individual Bayesian estimators of map quality examined, with a correlation between estimated and actual map quality of 0.90. A combination of the skewness of electron density with the local correlation of r.m.s. density gives a further improvement in estimating map quality, with an overall correlation coefficient of 0.92. The PHENIX AutoSol wizard carries out automated structure solution based on any combination of SAD, MAD, SIR or MIR data sets. The wizard is based on tools from the PHENIX package and uses the Bayesian estimates of map quality described here to choose the highest quality solutions after experimental phasing

  3. ARM Climate Research Facility: Outreach Tools and Strategies

    Roeder, L.; Jundt, R.


    Sponsored by the Department of Energy, the ARM Climate Research Facility is a global scientific user facility for the study of climate change. To publicize progress and achievements and to reach new users, the ACRF uses a variety of Web 2.0 tools and strategies that build off of the program’s comprehensive and well established News Center ( These strategies include: an RSS subscription service for specific news categories; an email “newsletter” distribution to the user community that compiles the latest News Center updates into a short summary with links; and a Facebook page that pulls information from the News Center and links to relevant information in other online venues, including those of our collaborators. The ACRF also interacts with users through field campaign blogs, like Discovery Channel’s EarthLive, to share research experiences from the field. Increasingly, field campaign Wikis are established to help ACRF researchers collaborate during the planning and implementation phases of their field studies and include easy to use logs and image libraries to help record the campaigns. This vital reference information is used in developing outreach material that is shared in highlights, news, and Facebook. Other Web 2.0 tools that ACRF uses include Google Maps to help users visualize facility locations and aircraft flight patterns. Easy-to-use comment boxes are also available on many of the data-related web pages on to encourage feedback. To provide additional opportunities for increased interaction with the public and user community, future Web 2.0 plans under consideration for ACRF include: evaluating field campaigns for Twitter and microblogging opportunities, adding public discussion forums to research highlight web pages, moving existing photos into albums on FlickR or Facebook, and building online video archives through YouTube.

  4. Decision-Making in Structure Solution using Bayesian Estimates of Map Quality: The PHENIX AutoSol Wizard

    Terwilliger, T. C.; Adams, P. D.; Read, R. J.; McCoy, A. J.; Moriarty, Nigel W.; Grosse-Kunstleve, R. W.; Afonine, P. V.; Zwart, P. H.; Hung, L.-W.


    Estimates of the quality of experimental maps are important in many stages of structure determination of macromolecules. Map quality is defined here as the correlation between a map and the map calculated based on a final refined model. Here we examine 10 different measures of experimental map quality using a set of 1359 maps calculated by reanalysis of 246 solved MAD, SAD, and MIR datasets. A simple Bayesian approach to estimation of map quality from one or more measures is presented. We find that a Bayesian estimator based on the skew of histograms of electron density is the most accurate of the 10 individual Bayesian estimators of map quality examined, with a correlation between estimated and actual map quality of 0.90. A combination of the skew of electron density with the local correlation of rms density gives a further improvement in estimating map quality, with an overall correlation coefficient of 0.92. The PHENIX AutoSol Wizard carries out automated structure solution based on any combination of SAD, MAD, SIR, or MIR datasets. The Wizard is based on tools from the PHENIX package and uses the Bayesian estimates of map quality described here to choose the highest-quality solutions after experimental phasing.

  5. Climate consequences of large-scale land-use changes as climate engineering tools

    Mayer, Dorothea; Kracher, Daniela; Reick, Christian; Pongratz, Julia


    Terrestrial carbon sinks are much-discussed as climate engineering methods both in politics and science. The debate focuses mostly on their potential for carbon sequestration and fossil-fuel substitution, whereas other effects such as changes in heat and water fluxes are often ignored. We assess potentials and side-effects of two different land-use types suggested as climate engineering tools, forest and herbaceous biomass plantations. We integrate herbaceous biomass plantations as new plant functional types into the land component (JSBACH) of the Max-Planck-Institute Earth System Model (MPI-ESM). Herbaceous biomass plantations alter surface albedo, carbon and water cycles compared to forests. We adapted the JSBACH carbon cycle (assimilation and respiration) to reflect a highly productive biomass grass and the phenology to account for harvests just before the beginning of the growing season. The harvested material is transferred to a separate pool that can be adapted to reflect different biomass utilization pathways. Where possible, the model was validated using yield measurements and water-use efficiency calculations available from literature data. We compare the potentials and side-effects of afforestation and herbaceous biomass plantations in a plausible global scenario: under the representative concentration pathway (RCP) 4.5, large areas of agricultural lands are projected to be abandoned as food production intensifies on the most productive soils. We intend to model the climatic consequences of using these abandoned croplands for afforestation or biomass plantations, under an RCP 8.5 forcing (high CO2 emissions). We emphasize differences between biogeochemical and biogeophysical effects of land-use on climate and how these factors interact on the local and global scale. Apart from direct climatic effects (energy, water, and carbon fluxes), we attempt to consistently account for fossil-fuel substitution effects of biomass plantations in a coupled model. This

  6. Climate risk screening tools and their application: A guide to the guidance

    Traerup, S.; Olhoff, A.


    Climate risk screening is an integral part of efforts to ascertain current and future vulnerabilities and risks related to climate change. It is a prerequisite for identifying and designing adaptation measures, and an important element in the process of integrating, or mainstreaming, climate change adaptation into development project, planning and policy processes. There is an increasing demand and attention among national stakeholders in developing countries to take into account potential implications of climate variability and change for planning and prioritizing of development strategies and activities. Subsequently, there is a need for user friendly guidance on climate risk screening tools and their potentials for application that targets developing country stakeholders. This need is amplified by the sheer volume of climate change mainstreaming guidance documents and risk screening and assessment tools available and currently under development. Against this background, this paper sets out to provide potential users in developing countries, including project and programme developers and managers, with an informational entry point to climate risk screening tools. The emphasis in this report is on providing: 1) An overview of available climate risk screening and assessment tools along with indications of the tools available and relevant for specific purposes and contexts (Section 3). 2) Examples of application of climate risk screening and assessment tools along with links to further information (Section 4). Before turning to the respective sections on available climate risk screening tools and examples of their application, a delimitation of the tools included in this paper is included in Section 2. This section also provides a brief overview of how climate screening and related tools fit into decision making steps at various planning and decision making levels in conjunction with an outline of overall considerations to make when choosing a tool. The paper is

  7. Identifying Decision Support Tools to Bridge Climate and Agricultural Needs in the Midwest

    Hall, B. L.; Kluck, D. R.; Hatfield, J.; Black, C.; Kellner, O.; Woloszyn, M.; Timlin, M. S.


    Climate monitoring tools designed to help stakeholders reduce climate impacts have been developed for the primary Midwest field crops of corn and soybean. However, the region also produces vital livestock and specialty crops that currently lack similar climate monitoring and projection tools. In autumn 2015, the National Oceanic and Atmospheric Administration's (NOAA's) National Integrated Drought Information System (NIDIS) and Midwestern Regional Climate Center (MRCC) partnered with the US Department of Agriculture's Midwest Climate Hub to convene agriculture stakeholders, climate scientists, and climate service specialists to discuss climate impacts and needs for these two, often under-represented, sectors. The goals of this workshop were to (1) identify climate impacts that specialty crops and livestock producers face within the Midwest, (2) develop an understanding of the types of climate and weather information and tools currently available in the Midwest that could be applied to decision making, and (3) discover the types of climate and weather information and tools needed to address concerns of specialty crop and livestock commodities across the Midwest. This presentation will discuss the workshop and provide highlights of the outcomes that developed into strategic plans for the future to better serve these sectors of agriculture in the Midwest.

  8. BASINS and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications (External Review Draft)

    This draft report supports application of two recently developed water modeling tools, the BASINS and WEPP climate assessment tools. The report presents a series of short case studies designed to illustrate the capabilities of these tools for conducting scenario based assessments...

  9. Decision support tools : midterm review report Knowledge for Climate Theme 8

    Ierland, van E.C.


    The KfC program Decision Support Tools aims at improving tools for design and evaluation of adaptation strategies with a special focus on spatial planning and cross cutting issues. The program focuses on three core elements 1. tools for formulation of the adaptation task, based on climate scenarios

  10. Case study applications of the BASINS climate assessment tool (CAT)

    This EPA report will illustrate the application of different climate assessment capabilities within EPA’s BASINS modeling system for assessing a range of potential questions about the effects of climate change on streamflow and water quality in different watershed settings and us...

  11. Wavelet-based peak detection and a new charge inference procedure for MS/MS implemented in ProteoWizard's msConvert.

    French, William R; Zimmerman, Lisa J; Schilling, Birgit; Gibson, Bradford W; Miller, Christine A; Townsend, R Reid; Sherrod, Stacy D; Goodwin, Cody R; McLean, John A; Tabb, David L


    We report the implementation of high-quality signal processing algorithms into ProteoWizard, an efficient, open-source software package designed for analyzing proteomics tandem mass spectrometry data. Specifically, a new wavelet-based peak-picker (CantWaiT) and a precursor charge determination algorithm (Turbocharger) have been implemented. These additions into ProteoWizard provide universal tools that are independent of vendor platform for tandem mass spectrometry analyses and have particular utility for intralaboratory studies requiring the advantages of different platforms convergent on a particular workflow or for interlaboratory investigations spanning multiple platforms. We compared results from these tools to those obtained using vendor and commercial software, finding that in all cases our algorithms resulted in a comparable number of identified peptides for simple and complex samples measured on Waters, Agilent, and AB SCIEX quadrupole time-of-flight and Thermo Q-Exactive mass spectrometers. The mass accuracy of matched precursor ions also compared favorably with vendor and commercial tools. Additionally, typical analysis runtimes (∼1-100 ms per MS/MS spectrum) were short enough to enable the practical use of these high-quality signal processing tools for large clinical and research data sets. PMID:25411686

  12. Crustal Structure and Seismicity along the Central Alpine Fault: Results from the WIZARD Array

    Thurber, C. H.; Roecker, S. W.; Townend, J.; Bannister, S. C.; Guo, B.; Rawles, C.; Feenstra, J. P.


    In 2012 and 2013, the University of Wisconsin-Madison (UW), Rensselaer Polytechnic Institute (RPI), and Victoria University of Wellington (VUW) operated a 20-station temporary seismic array along the obliquely slipping Alpine Fault on the South Island of New Zealand. The stations of the array, nicknamed WIZARD, were deployed mainly north and east of the Deep Fault Drilling Program (DFDP) borehole site in Whataroa Valley (DFPD-2). WIZARD complemented the station distribution of the Southern Alps Microearthquake Borehole Array (SAMBA) operated by VUW, situated south and west of DFDP-2. Three additional temporary stations were deployed to the north and east of WIZARD by GNS Science, and four GeoNet permanent stations fell within the footprint of our study area. The main goals of the WIZARD project are to image the crustal structure in the region surrounding the DFDP-2 site, relocate earthquakes as precisely and accurately as possible, and determine focal mechanisms for the larger earthquakes, in order to characterize the Alpine Fault and its geometry at depth. Some previous studies had identified the area covered by WIZARD to be largely aseismic, but we have in fact located roughly 500 earthquakes underneath WIZARD. A new automatic S-wave picker proved to be very effective for rapidly increasing the size of our S-wave arrival dataset. Our tomographic inversion results show that significant velocity contrasts in both Vp and Vs (hanging wall fast) appear to delineate the Alpine Fault at depth in most of our study region, dipping typically about 60 degrees SE, and some focal mechanisms show oblique slip. However, we are not able to identify earthquakes that are actually occurring on the Alpine Fault with certainty based only on our location results.

  13. Decision support tools : midterm review report Knowledge for Climate Theme 8

    Ierland, van, E.C.


    The KfC program Decision Support Tools aims at improving tools for design and evaluation of adaptation strategies with a special focus on spatial planning and cross cutting issues. The program focuses on three core elements 1. tools for formulation of the adaptation task, based on climate scenarios and economic development 2. tools for development and visualization of adaptation strategies in general and in particular related to hotspots and case study areas of KfC; and 3. evaluation and moni...

  14. Optimum bolus wizard settings in insulin pumps in children with Type 1 diabetes

    Andersen, A J B; Ostenfeld, A; Pipper, C B;


    AIM: To evaluate current insulin pump settings in an optimally regulated paediatric population using bolus wizard. METHODS: We used a retrospective study design to analyse data from 124 children on insulin pump therapy who had optimum HbA1c levels [... hypoglycaemic events. Bolus wizard settings were used to calculate the insulin to carbohydrate factors and insulin sensitivity factors. Multiple regression analysis was used to analyse the variables associated with the calculation factors. RESULTS: Insulin to carbohydrate factor varied from 276 in the youngest...

  15. Is the European Union Emissions Trading Scheme (EU ETS) the best tool to combat climate change?

    Kebede, Tsegaw


    ABSTRACT Helsinki Metropolia University of Applied Sciences Degree program: Bachelor of Business Administration: International Business and Logistics Dissertation title: Is the European Union Emissions Trading Scheme (EU ETS) the best tool to combat climate change? Author: Tsegaw Kebede The objective and purpose of this research is to discuss and answer whether European Union Emissions Trading Scheme (EU ETS) is the best tool to combat climate change and reduce industr...

  16. Improving Climate Communication through Comprehensive Linguistic Analyses Using Computational Tools

    Gann, T. M.; Matlock, T.


    An important lesson on climate communication research is that there is no single way to reach out and inform the public. Different groups conceptualize climate issues in different ways and different groups have different values and assumptions. This variability makes it extremely difficult to effectively and objectively communicate climate information. One of the main challenges is the following: How do we acquire a better understanding of how values and assumptions vary across groups, including political groups? A necessary starting point is to pay close attention to the linguistic content of messages used across current popular media sources. Careful analyses of that information—including how it is realized in language for conservative and progressive media—may ultimately help climate scientists, government agency officials, journalists and others develop more effective messages. Past research has looked at partisan media coverage of climate change, but little attention has been given to the fine-grained linguistic content of such media. And when researchers have done detailed linguistic analyses, they have relied primarily on hand-coding, an approach that is costly, labor intensive, and time-consuming. Our project, building on recent work on partisan news media (Gann & Matlock, 2014; under review) uses high dimensional semantic analyses and other methods of automated classification techniques from the field of natural language processing to quantify how climate issues are characterized in media sources that differ according to political orientation. In addition to discussing varied linguistic patterns, we share new methods for improving climate communication for varied stakeholders, and for developing better assessments of their effectiveness.

  17. The Weather and Climate Toolkit

    Ansari, S.; Del Greco, S.; Hankins, B.


    The Weather and Climate Toolkit (WCT) is free, platform independent software distributed from NOAA’s National Climatic Data Center (NCDC). The WCT allows the visualization and data export of weather and climate data, including Radar, Satellite and Model data. By leveraging the NetCDF for Java library and Common Data Model, the WCT is extremely scalable and capable of supporting many new datasets in the future. Gridded NetCDF files (regular and irregularly spaced, using Climate-Forecast (CF) conventions) are supported, along with many other formats including GRIB. The WCT provides tools for custom data overlays, Web Map Service (WMS) background maps, animations and basic filtering. The export of images and movies is provided in multiple formats. The WCT Data Export Wizard allows for data export in both vector polygon/point (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, Gridded NetCDF) formats. These data export features promote the interoperability of weather and climate information with various scientific communities and common software packages such as ArcGIS, Google Earth, MatLAB, GrADS and R. The WCT also supports an embedded, integrated Google Earth instance. The Google Earth Browser Plugin allows seamless visualization of data on a native 3-D Google Earth instance linked to the standard 2-D map. Level-II NEXRAD data for Hurricane Katrina GPCP (Global Precipitation Product), visualized in 2-D and internal Google Earth view.

  18. Collaboration pathway(s) using new tools for optimizing `operational' climate monitoring from space

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.


    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a long term solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the collective needs of policy makers, scientific communities and global academic users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent rule-based expert system (RBES) optimization modeling of the intended NPOESS architecture becomes a surrogate for global operational climate monitoring architecture(s). These rulebased systems tools provide valuable insight for global climate architectures, by comparison/evaluation of alternatives and the sheer range of trade space explored. Optimization of climate monitoring architecture(s) for a partial list of ECV (essential climate variables) is explored and described in detail with dialogue on appropriate rule-based valuations. These optimization tool(s) suggest global collaboration advantages and elicit responses from the audience and climate science community. This paper will focus on recent research exploring joint requirement implications of the high profile NPOESS architecture and extends the research and tools to optimization for a climate centric case study. This reflects work from SPIE RS Conferences 2013 and 2014, abridged for simplification30, 32. First, the heavily securitized NPOESS architecture; inspired the recent research question - was Complexity (as a cost/risk factor) overlooked when considering the benefits of aggregating different missions into a single platform. Now years later a complete reversal; should agencies considering Disaggregation as the answer. We'll discuss what some academic research suggests. Second, using the GCOS requirements of earth climate observations via ECV (essential climate variables) many collected from space-based sensors; and accepting their

  19. Investigating Climate Change and Reproduction: Experimental Tools from Evolutionary Biology

    Oliver Y. Martin


    Full Text Available It is now generally acknowledged that climate change has wide-ranging biological consequences, potentially leading to impacts on biodiversity. Environmental factors can have diverse and often strong effects on reproduction, with obvious ramifications for population fitness. Nevertheless, reproductive traits are often neglected in conservation considerations. Focusing on animals, recent progress in sexual selection and sexual conflict research suggests that reproductive costs may pose an underestimated hurdle during rapid climate change, potentially lowering adaptive potential and increasing extinction risk of certain populations. Nevertheless, regime shifts may have both negative and positive effects on reproduction, so it is important to acquire detailed experimental data. We hence present an overview of the literature reporting short-term reproductive consequences of exposure to different environmental factors. From the enormous diversity of findings, we conclude that climate change research could benefit greatly from more coordinated efforts incorporating evolutionary approaches in order to obtain cross-comparable data on how individual and population reproductive fitness respond in the long term. Therefore, we propose ideas and methods concerning future efforts dealing with reproductive consequences of climate change, in particular by highlighting the advantages of multi-generational experimental evolution experiments.

  20. Assembling Tools and Data for Climate Model Decision Support

    Batcheller, A. L.; VanWijngaarden, F.


    The Global Earth Observation System of Systems (GEOSS) effort has identified nine areas in which society benefits from appropriate environmental information. We have targeted specific issues within these societal benefit areas by determining appropriate data sets needed and transforming these data into information useable by decision makers. Here we describe the service-oriented architecture that allows us to ingest real-time or static data into a database with a spatial data engine, make appropriate manipulations to the data using domain knowledge relevant to the problem, and expose the data as services. We then build custom portals using a library of common widgets to display and overlay the data for users to analyze. By using portals and a service-oriented architecture we can reuse services and widgets to rapidly assemble a view of geographic data, and assist decision-makers in applying and interpreting the latest scientific results. As a case study with our system, we have integrated data from Intergovernmental Panel on Climate Change (IPCC) climate models, crop yields, and environmental thresholds for crops to present a first level analysis of the impact of climate change on key crops grown in Mexico. Knowledge about changes in the regions that are favorable for crop growth is important for many stakeholders, ranging from individual farmers, to governments, to scientists working to create new seed varieties. Our work also highlights research opportunities in climate science by identifying the types and resolution of parameters modeled.

  1. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX autosol wizard

    Terwilliger, Thomas C [Los Alamos National Laboratory; Adams, Paul D [LBNL; Read, Randy J [UNIV OF CAMBRIDGE; Mccoy, Airlie J [UNIV OF CAMBRIDGE


    Ten measures of experimental electron-density-map quality are examined and the skewness of electron density is found to be the best indicator of actual map quality. A Bayesian approach to estimating map quality is developed and used in the PHENIX AutoSol wizard to make decisions during automated structure solution.

  2. Scanning probe image wizard: A toolbox for automated scanning probe microscopy data analysis

    Stirling, Julian; Woolley, Richard A. J.; Moriarty, Philip


    We describe SPIW (scanning probe image wizard), a new image processing toolbox for SPM (scanning probe microscope) images. SPIW can be used to automate many aspects of SPM data analysis, even for images with surface contamination and step edges present. Specialised routines are available for images with atomic or molecular resolution to improve image visualisation and generate statistical data on surface structure.

  3. Past climate reconstruction: a tool for assessing site suitability

    Reconstructing past climatic variations can lead to a better understanding of possible future precipitation and groundwater recharge patterns. Work so far has led to several new insights into past climate variability and will provide input into the hydrologic modeling effort in progress for the Waste Management Program. Short-term reconstructions (0 to 350 y) suggest that the basin and range of the southwestern United States have the driest, least variable precipitation record. The Pacific Northwest shows higher variability and several trends lasting for more then 25 y. The Southern High Plains have even more variability, but the upper Midwest and Southwest vary most and have the highest precipitation amounts. Pollen and lake level data from the literature suggest that the Southwest was wetter during at least part of the last glacial maximum than it is today

  4. Measuring School Climate: Using Existing Data Tools on Climate and Effectiveness to Inform School Organizational Health

    Durham, Rachel E.; Bettencourt, Amie; Connolly, Faith


    Despite--or perhaps due to--the lack of consensus on its definition, there is abundant interest in and research on school climate. Researchers have determined that improving school climate is one way to increase academic achievement, school safety, school completion, teacher retention, healthy social interactions, and student well-being (Cohen,…

  5. Apache Open Climate Workbench: Building Open Source Climate Science Tools and Community at the Apache Software Foundation

    Joyce, M.; Ramirez, P.; Boustani, M.; Mattmann, C. A.; Khudikyan, S.; McGibbney, L. J.; Whitehall, K. D.


    Apache Open Climate Workbench (OCW; is a Top-Level Project at the Apache Software Foundation that aims to provide a suite of tools for performing climate science evaluations using model outputs from a multitude of different sources (ESGF, CORDEX, U.S. NCA, NARCCAP) with remote sensing data from NASA, NOAA, and other agencies. Apache OCW is the second NASA project to become a Top-Level Project at the Apache Software Foundation. It grew out of the Jet Propulsion Laboratory's (JPL) Regional Climate Model Evaluation System (RCMES) project, a collaboration between JPL and the University of California, Los Angeles' Joint Institute for Regional Earth System Science and Engineering (JIFRESSE). Apache OCW provides scientists and developers with tools for data manipulation, metrics for dataset comparisons, and a visualization suite. In addition to a powerful low-level API, Apache OCW also supports a web application for quick, browser-controlled evaluations, a command line application for local evaluations, and a virtual machine for isolated experimentation with minimal setup. This talk will look at the difficulties and successes of moving a closed community research project out into the wild world of open source. We'll explore the growing pains Apache OCW went through to become a Top-Level Project at the Apache Software Foundation as well as the benefits gained by opening up development to the broader climate and computer science communities.

  6. Novel Tools for Climate Change Learning and Responding in Earth Science Education

    Sparrow, Elena; Brunacini, Jessica; Pfirman, Stephanie


    Several innovative, polar focused activities and tools including a polar hub website ( have been developed for use in formal and informal earth science or STEM education by the Polar Learning and Responding (PoLAR) Climate Change Education Partnership (consisting of climate scientists, experts in the learning sciences and education practitioners). In seeking to inform understanding of and response to climate change, these tools and activities range from increasing awareness to informing decisions about climate change, from being used in classrooms (by undergraduate students as well as by pre-college students or by teachers taking online climate graduate courses) to being used in the public arena (by stakeholders, community members and the general public), and from using low technology (card games such as EcoChains- Arctic Crisis, a food web game or SMARTIC - Strategic Management of Resources in Times of Change, an Arctic marine spatial planning game) to high technology (Greenify Network - a mobile real world action game that fosters sustainability and allows players to meaningfully address climate change in their daily lives, or the Polar Explorer Data Visualization Tablet App that allows individuals to explore data collected by scientists and presented for the everyday user through interactive maps and visualizations, to ask questions and go on an individualized tour of polar regions and their connections to the rest of the world). Games are useful tools in integrative and applied learning, in gaining practical and intellectual skills, and in systems thinking. Also, as part of the PoLAR Partnership, a Signs of the Land Climate Change Camp was collaboratively developed and conducted, that can be used as a model for engaging and representing indigenous communities in the co-production of climate change knowledge, communication tools and solutions building. Future camps are planned with Alaska Native Elders, educators including classroom

  7. Smart tools of urban climate evaluation for smart spatial planning

    Středová Hana


    Full Text Available Air temperature and humidity conditions were monitored in Hradec Králové, Czech Republic, by a network of meteorological stations. Meteorological sensors were placed across a representative variety of urban and suburban environments. The data collected over the 2011–2014 period are analysed in this paper. The data from reference standard meteorological stations were used for comparison and modelling purposes. Air temperatures at the points of interest were successfully modelled using regression relationships. The spatial expression of point measurements of air temperatures was provided by GIS methods in combination with CORINE land cover layer, and satellite thermal images were used to evaluate the significance of these methods. The use of standard climate information has low priority for urban planners. The impact of the urban heat island on city residents and visitors was evaluated using the HUMIDEX index, as it is more understandable for urban planners than temperature conditions as such. The aim of this paper is the modification, description and presentation of urban climate evaluation methods that are easily useable for spatial planning purposes. These methods are based on comprehensible, easily available but quality data and results. This unified methodology forms a theoretical basis for better urban planning policies to mitigate the urban heat island effects.

  8. Promoting Local Innovations: A tool for adaptation to climate change and sustainable development in Mountains

    Mathez-Stiefel, Sarah-Lan; Murti, Radhika


    Throughout their history mountain communities have had to adapt to changing environmental and socio-economic conditions. They have developed strategies and specialized knowledge to sustain their livelihoods in a context of adverse climatic events and constant change. As negotiations and discussions on climate change emphasize the critical need for locally relevant and community owned adaptation strategies, there is a need for new tools to capitalize on this local knowledge and endogenous pote...

  9. Time of Emergence: A Tool for Exploring When and Where Climate Change Could Matter

    Snover, A. K.; Yu, R.; Salathe, E. P., Jr.; Lynch, C.


    Communities and government agencies are increasingly seeking to incorporate climate change information into decision-making to identify effective response actions. The Time of Emergence tool presents a new approach to supporting climate change risk assessment and decision-making by identifying the "time of emergence" (ToE) of the climate change signal for a suite of management-relevant variables. Because natural and human systems tend to be somewhat adapted to historical climate fluctuations, it is when climate change causes local conditions to deviate significantly from the past that ecological and societal disruptions may occur. A key input to deciding and prioritizing actions on climate change, therefore, is information about when and where the distinctive trend due to climate change is projected to emerge from the noise of natural climate variability. Although this information can be gleaned from existing climate change scenarios, it has not been explicitly characterized for variables and spatial scales relevant to local decision-making. Various local climate change projections, based on different emission scenarios, global climate models and downscaling methods, increases the difficulty of identifying when and where the effects of climate change could matter. Using global and statistically-downscaled climate model outputs from the Coupled Model Intercomparison Project phase 5 (CMIP5) and hydrological model results, management-relevant climatic and environmental variables were analyzed for the US Pacific Northwest (PNW). These variables were selected in consultation with federal, state, and local decision-makers and relate to extreme temperature, precipitation and streamflow events. The web-based interactive system enables user visualization and analysis of ToE for multiple variables across the PNW at varying levels of tolerance for change. The tool also enables users to explore the effects of different sources of uncertainty in the results, e.g., due to

  10. Validating a work group climate assessment tool for improving the performance of public health organizations

    Tracy Allison


    Full Text Available Abstract Background This article describes the validation of an instrument to measure work group climate in public health organizations in developing countries. The instrument, the Work Group Climate Assessment Tool (WCA, was applied in Brazil, Mozambique, and Guinea to assess the intermediate outcomes of a program to develop leadership for performance improvement. Data were collected from 305 individuals in 42 work groups, who completed a self-administered questionnaire. Methods The WCA was initially validated using Cronbach's alpha reliability coefficient and exploratory factor analysis. This article presents the results of a second validation study to refine the initial analyses to account for nested data, to provide item-level psychometrics, and to establish construct validity. Analyses included eigenvalue decomposition analysis, confirmatory factor analysis, and validity and reliability analyses. Results This study confirmed the validity and reliability of the WCA across work groups with different demographic characteristics (gender, education, management level, and geographical location. The study showed that there is agreement between the theoretical construct of work climate and the items in the WCA tool across different populations. The WCA captures a single perception of climate rather than individual sub-scales of clarity, support, and challenge. Conclusion The WCA is useful for comparing the climates of different work groups, tracking the changes in climate in a single work group over time, or examining differences among individuals' perceptions of their work group climate. Application of the WCA before and after a leadership development process can help work groups hold a discussion about current climate and select a target for improvement. The WCA provides work groups with a tool to take ownership of their own group climate through a process that is simple and objective and that protects individual confidentiality.

  11. Tempest: Tools for Addressing the Needs of Next-Generation Climate Models

    Ullrich, P. A.; Guerra, J. E.; Pinheiro, M. C.; Fong, J.


    Tempest is a comprehensive simulation-to-science infrastructure that tackles the needs of next-generation, high-resolution, data intensive climate modeling activities. This project incorporates three key components: TempestDynamics, a global modeling framework for experimental numerical methods and high-performance computing; TempestRemap, a toolset for arbitrary-order conservative and consistent remapping between unstructured grids; and TempestExtremes, a suite of detection and characterization tools for identifying weather extremes in large climate datasets. In this presentation, the latest advances with the implementation of this framework will be discussed, and a number of projects now utilizing these tools will be featured.

  12. Using the Wizard-of-Oz technique in requirements engineering processes : A trial in a tourism context

    Wik, Malin


    The purpose of the study is to explore the possibility to use the experimental prototyping technique called Wizard of Oz as a requirements engineering technique in multimedia development with a focus on how to capture (and test) requirements for system responses in on-going GUI dialogues between user and system. The Wizard-of-Oz technique makes it possible to try interactive prototypes with users or in the development team without needing any programming to be conducted first. In a tourism co...

  13. A tool to assess potential for alien plant establishment and expansion under climate change.

    Roger, Erin; Duursma, Daisy Englert; Downey, Paul O; Gallagher, Rachael V; Hughes, Lesley; Steel, Jackie; Johnson, Stephen B; Leishman, Michelle R


    Predicting the influence of climate change on the potential distribution of naturalised alien plant species is an important and challenging task. While prioritisation of management actions for alien plants under current climatic conditions has been widely adopted, very few systems explicitly incorporate the potential of future changes in climate conditions to influence the distribution of alien plant species. Here, we develop an Australia-wide screening tool to assess the potential of naturalised alien plants to establish and spread under both current and future climatic conditions. The screening tool developed uses five spatially explicit criteria to establish the likelihood of alien plant population establishment and expansion under baseline climate conditions and future climates for the decades 2035 and 2065. Alien plants are then given a threat rating according to current and future threat to enable natural resource managers to focus on those species that pose the largest potential threat now and in the future. To demonstrate the screening tool, we present results for a representative sample of approximately 10% (n = 292) of Australia's known, naturalised alien plant species. Overall, most alien plant species showed decreases in area of habitat suitability under future conditions compared to current conditions and therefore the threat rating of most alien plant species declined between current and future conditions. Use of the screening tool is intended to assist natural resource managers in assessing the threat of alien plant establishment and spread under current and future conditions and thus prioritise detailed weed risk assessments for those species that pose the greatest threat. The screening tool is associated with a searchable database for all 292 alien plant species across a range of spatial scales, available through an interactive web-based portal at PMID:26063516

  14. GENIES/SimCLIM Tools to Support Climate Change Information and Marine Resource Management

    Li, Y.; Urich, P.; Yin, C.; Kouwenhoven, P.; CLIMsystems Team


    Climate change will significantly impact the global environment, and the faster the change, the greater the risk of damage. The natural environment will be assaulted by increases in sea surface temperature and changes in the biogeochemical cycles of ocean ecosystems. Marine resource managers have begun to realize that the projected impacts of climate change in coastal and marine environments are full of uncertainties, creating enormous challenges when it comes to climate change response planning. CMIP5 GCMs produced a large amount of climate and ocean biogeochemical data for different climate change scenarios, which can provide indispensable information for marine resource planning and decision making. However, for end users, climate and ocean information needs to be processed to make it usable while applying robust scientific methods to make that processing acceptable. SimCLIM/GENIES software provides a comprehensive climate information, data management, and impact assessment platform. The software system consists of historical data and projections for atmospheric and oceanic variables, including air-temperature, precipitation, wind speed, sea surface temperature, ocean primary production, pH, pCO2, DIO, and DIC, with the potential for other data layers. These data are pre-processed using different downscaling and pattern scaling approaches, and then stored in a compact format with a very high compression ratio, which makes them more transferable. Users can carry out statistical and ensemble analyses with the software in order to better understand uncertainties. Within the software system, historical climate data, a climate change scenario generator, and impact assessment tools are all integrated into a single platform. They are policy-maker and end-user oriented and present climate information in a friendly and easily understandable manner with excellent spatial visualization tools. Moreover, the system provided and released an ArcGIS/marine add-in, which allows

  15. State Wildlife Action Plans as Tools for Adapting to a Continuously Changing Climate

    Metivier, D. W.; Yocum, H.; Ray, A. J.


    Public land management plans are potentially powerful policies for building sustainability and adaptive capacity. Land managers are recognizing the need to respond to numerous climate change impacts on natural and human systems. For the first time, in 2015, the federal government required each state to incorporate climate change into their State Wildlife Action Plans (SWAP) as a condition for funding. As important land management tools, SWAPs have the potential to guide state agencies in shaping and implementing practices for climate change adaptation. Intended to be revised every ten years, SWAPs can change as conditions and understanding of climate change evolves. This study asks what practices are states using to integrate climate change, and how does this vary between states? To answer this question, we conducted a broad analysis among seven states (CO, MT, NE, ND, SD, UT, WY) and a more in-depth analysis of four states (CO, ND, SD, WY). We use seven key factors that represent best practices for incorporating climate change identified in the literature. These best practices are species prioritization, key habitats, threats, monitoring, partnerships and participation, identification of management options, and implementation of management options. The in-depth analysis focuses on how states are using climate change information for specific habitats addressed in the plans. We find that states are integrating climate change in many different ways, showing varying degrees of sophistication and preparedness. We summarize different practices and highlight opportunities to improve the effectiveness of plans through: communication tools across state lines and stakeholders, explicit targeting of key habitats, enforcement and monitoring progress and success, and conducting vulnerability analyses that incorporate topics beyond climate and include other drivers, trajectories, and implications of historic and future land-use change.

  16. Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Final Report

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    A partnership across government, academic, and private sectors has created a novel system that enables climate researchers to solve current and emerging data analysis and visualization challenges. The Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) software project utilizes the Python application programming interface (API) combined with C/C++/Fortran implementations for performance-critical software that offers the best compromise between "scalability" and “ease-of-use.” The UV-CDAT system is highly extensible and customizable for high-performance interactive and batch visualization and analysis for climate science and other disciplines of geosciences. For complex, climate data-intensive computing, UV-CDAT’s inclusive framework supports Message Passing Interface (MPI) parallelism as well as taskfarming and other forms of parallelism. More specifically, the UV-CDAT framework supports the execution of Python scripts running in parallel using the MPI executable commands and leverages Department of Energy (DOE)-funded general-purpose, scalable parallel visualization tools such as ParaView and VisIt. This is the first system to be successfully designed in this way and with these features. The climate community leverages these tools and others, in support of a parallel client-server paradigm, allowing extreme-scale, server-side computing for maximum possible speed-up.

  17. Tools for Assessing the Impacts of Climate Variability and Change on Wildfire Regimes in Forests

    Hety Herawati


    Full Text Available Fire is an intrinsic element of many forest ecosystems; it shapes their ecological processes, determines species composition and influences landscape structure. However, wildfires may: have undesirable effects on biodiversity and vegetation coverage; produce carbon emissions to the atmosphere; release smoke affecting human health; and cause loss of lives and property. There have been increasing concerns about the potential impacts of climate variability and change on forest fires. Climate change can alter factors that influence the occurrence of fire ignitions, fuel availability and fuel flammability. This review paper aims to identify tools and methods used for gathering information about the impacts of climate variability and change on forest fires, forest fuels and the probability of fires. Tools to assess the impacts of climate variability and change on forest fires include: remote sensing, dynamic global vegetation and landscape models, integrated fire-vegetation models, fire danger rating systems, empirical models and fire behavior models. This review outlines each tool in terms of its characteristics, spatial and temporal resolution, limitations and applicability of the results. To enhance and improve tool performance, each must be continuously tested in all types of forest ecosystems.

  18. COLLABORATIVE RESEARCH: Parallel Analysis Tools and New Visualization Techniques for Ultra-Large Climate Data Set

    middleton, Don [Co-PI; Haley, Mary


    ParVis was a project funded under LAB 10-05: “Earth System Modeling: Advanced Scientific Visualization of Ultra-Large Climate Data Sets”. Argonne was the lead lab with partners at PNNL, SNL, NCAR and UC-Davis. This report covers progress from January 1st, 2013 through Dec 1st, 2014. Two previous reports covered the period from Summer, 2010, through September 2011 and October 2011 through December 2012, respectively. While the project was originally planned to end on April 30, 2013, personnel and priority changes allowed many of the institutions to continue work through FY14 using existing funds. A primary focus of ParVis was introducing parallelism to climate model analysis to greatly reduce the time-to-visualization for ultra-large climate data sets. Work in the first two years was conducted on two tracks with different time horizons: one track to provide immediate help to climate scientists already struggling to apply their analysis to existing large data sets and another focused on building a new data-parallel library and tool for climate analysis and visualization that will give the field a platform for performing analysis and visualization on ultra-large datasets for the foreseeable future. In the final 2 years of the project, we focused mostly on the new data-parallel library and associated tools for climate analysis and visualization.

  19. Facilitating climate change adaptation through communication: Insights from the development of a visualization tool

    Glaas, Erik; Ballantyne, Anne Gammelgaard; Neset, Tina;


    capacity among Nordic homeowners. Based on the results from continuous user-testing and focus group interviews we outline lessons learned and key aspects to consider in the design of tools for communicating complex issues such as climate change effects and adaptive response measures.......Climate change communication on anticipated impacts and adaptive responses is frequently presented as an effective means to facilitate implementation of adaptation to mitigate risks to residential buildings. However, it requires that communication is developed in a way that resonates with the...... context of the target audience, provides intelligible information and addresses perceived barriers to adaptation. In this paper we reflect upon criteria for useful climate change communication gained over a three year development process of a web-based tool - VisAdaptTM – aimed at increasing the adaptive...

  20. Comparative analysis between fantasy The Wizard of Oz by Lyman Frank Baum and film adaption

    Pibernik, Lana Milana


    Diploma work begins with the definition of fantasy and its structure, adapted from the book The Magic Code: The Use of Magical Patterns and Fantasy for Children by swedish structuralist Maria Nikolajeva from 1988. Followed by the presentation of american writer Lyman Frank Baum (1856-1919) and his bibliography. The following is a presentation of his most famous work, in the slovenian version of the fantasy The Wondeful Wizard of Oz first published in 1959 and comparison with the same name ...

  1. Improving control panel consistency of wizard of oz design and evaluation studies

    Li, Andol X; Bonner, John V.H.


    This paper investigates how a Wizard of Oz (WoZ) control panel could be developed to improve ‘between-subject’ consistency. To achieve this we conducted a comparative study of two control panels. Both control panels were used by the experimenter to ostensibly facilitate the design and evaluation of a novel domestic planning application allowing members of a family to coordinate a range of social arrangements and tasks. Based on video analysis and semi-formal interviews, the control panels as ...

  2. A strategy for climate evaluation of aircraft technology: an efficient climate impact assessment tool – AirClim

    A. Stenke


    Full Text Available Climate change is a challenge to society and to cope with requires assessment tools which are suitable to evaluate new technology options with respect to their impact on climate. Here we present AirClim, a model which comprises a linearisation of the processes occurring from the emission to an estimate in near surface temperature change, which is presumed to be a reasonable indicator for climate change. The model is designed to be applicable to aircraft technology, i.e.~the climate agents CO2, H2O, CH4 and O3 (latter two resulting from NOx-emissions and contrails are taken into account. It employs a number of precalculated atmospheric data and combines them with aircraft emission data to obtain the temporal evolution of atmospheric concentration changes, radiative forcing and temperature changes. The linearisation is based on precalculated data derived from 25 steady-state simulations of the state-of-the-art climate-chemistry model E39/C, which include sustained normalised emissions at various atmospheric regions. The results show that strongest climate impacts from ozone changes occur for emissions in the tropical upper troposphere (60 mW/m²; 80 mK for 1 TgN emitted, whereas from methane in the middle tropical troposphere (–2.7% change in methane lifetime; –30 mK per TgN. The estimate of the temperature changes caused by the individual climate agents takes into account a perturbation lifetime, related to the region of emission. A comparison of this approach with results from the TRADEOFF and SCENIC projects shows reasonable agreement with respect to concentration changes, radiative forcing, and temperature changes. The total impact of a supersonic fleet on radiative forcing (mainly water vapour is reproduced within 5%. For subsonic air traffic (sustained emissions after 2050 results show that although ozone-radiative forcing is much less important than that from CO2 for the year 2100. However the impact on temperature is of comparable size

  3. USDA Regional Climate Hubs - Partnering to bring information and tools to managers of working lands

    Johnson, R.


    In February 2014, USDA announced the location of seven Regional Hubs for Risk Adaptation and Mitigation to Climate Change (Climate Hubs) and three "Sub Hubs". The mission of these Climate Hubs is to develop and deliver science-based region-specific information and technologies to agricultural and natural resource managers that enable climate-smart decision-making and to direct land managers to USDA programs that can assist them in implementing those decisions. This mission is similar to that of Cooperative Extension and the Agricultural Experiment Stations (both of which benefit from USDA funding); therefore it is crucial that we partner with Land Grant Universities in order to achieve this mission. As USDA stands up these Climate Hubs we are working closely with USDA agencies, Land Grant Universities, other federal climate science programs, and other partners to determine how best to provide usable information and tools to farmers, ranchers and forest land managers to enable them to make climate-smart decisions.

  4. Climate Twins - a tool to explore future climate impacts by assessing real world conditions: Exploration principles, underlying data, similarity conditions and uncertainty ranges

    Loibl, Wolfgang; Peters-Anders, Jan; Züger, Johann


    To achieve public awareness and thorough understanding about expected climate changes and their future implications, ways have to be found to communicate model outputs to the public in a scientifically sound and easily understandable way. The newly developed Climate Twins tool tries to fulfil these requirements via an intuitively usable web application, which compares spatial patterns of current climate with future climate patterns, derived from regional climate model results. To get a picture of the implications of future climate in an area of interest, users may click on a certain location within an interactive map with underlying future climate information. A second map depicts the matching Climate Twin areas according to current climate conditions. In this way scientific output can be communicated to the public which allows for experiencing climate change through comparison with well-known real world conditions. To identify climatic coincidence seems to be a simple exercise, but the accuracy and applicability of the similarity identification depends very much on the selection of climate indicators, similarity conditions and uncertainty ranges. Too many indicators representing various climate characteristics and too narrow uncertainty ranges will judge little or no area as regions with similar climate, while too little indicators and too wide uncertainty ranges will address too large regions as those with similar climate which may not be correct. Similarity cannot be just explored by comparing mean values or by calculating correlation coefficients. As climate change triggers an alteration of various indicators, like maxima, minima, variation magnitude, frequency of extreme events etc., the identification of appropriate similarity conditions is a crucial question to be solved. For Climate Twins identification, it is necessary to find a right balance of indicators, similarity conditions and uncertainty ranges, unless the results will be too vague conducting a

  5. 2014 Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Conference Report

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The climate and weather data science community met December 9–11, 2014, in Livermore, California, for the fourth annual Earth System Grid Federation (ESGF) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Conference, hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UVCDATremain global collaborations committed to developing a new generation of open-source software infrastructure that provides distributed access and analysis to simulated and observed data from the climate and weather communities. The tools and infrastructure created under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change. In addition, the F2F conference fosters a stronger climate and weather data science community and facilitates a stronger federated software infrastructure. The 2014 F2F conference detailed the progress of ESGF, UV-CDAT, and other community efforts over the year and sets new priorities and requirements for existing and impending national and international community projects, such as the Coupled Model Intercomparison Project Phase Six. Specifically discussed at the conference were project capabilities and enhancements needs for data distribution, analysis, visualization, hardware and network infrastructure, standards, and resources.

  6. To widen the action tools against the climatic change by domestic projects. Evaluation report

    In the framework of the climatic change fight, each country aims to implement tools of emissions reduction. In France, the european system of CO2 quotas exchange, applied on the more emitted installations, covers less than 30% of the national carbon emissions. The other 70% are free of taxes. The 'climate mission' realized an evaluation of the emission reduction in the case of a new policy aiming to develop domestic projects of emission control. This report presents the study and its conclusions: the domestic projects, the possibilities of these projects in the transportation agriculture and forests and building sectors, the implementing conditions

  7. The DSET Tool Library: A software approach to enable data exchange between climate system models

    McCormick, J. [Lawrence Livermore National Lab., CA (United States)


    Climate modeling is a computationally intensive process. Until recently computers were not powerful enough to perform the complex calculations required to simulate the earth`s climate. As a result standalone programs were created that represent components of the earth`s climate (e.g., Atmospheric Circulation Model). However, recent advances in computing, including massively parallel computing, make it possible to couple the components forming a complete earth climate simulation. The ability to couple different climate model components will significantly improve our ability to predict climate accurately and reliably. Historically each major component of the coupled earth simulation is a standalone program designed independently with different coordinate systems and data representations. In order for two component models to be coupled, the data of one model must be mapped to the coordinate system of the second model. The focus of this project is to provide a general tool to facilitate the mapping of data between simulation components, with an emphasis on using object-oriented programming techniques to provide polynomial interpolation, line and area weighting, and aggregation services.

  8. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    Jablonowski, Christiane [Univ. of Michigan, Ann Arbor, MI (United States)


    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively with advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project

  9. The regional climate model as a tool for long-term planning of Quebec water resources

    'Full text': In recent years, important progress has been made in downscaling GCM (Global Climate Model) projections to a resolution where hydrological studies become feasible. Climate change simulations performed with RCMs (Regional Climate Models) have reached a level of confidence that allows us to take advantage of this information in long-term planning of water resources. The RCMs' main advantage consist in their construction based on balanced land as well as atmosphere water and energy budgets, and on their inclusion of feedbacks between the surface and the atmosphere. Such models therefore generate sequences of weather events, providing long time series of hydro-climatic variables that are internally consistent, allowing the analysis of hydrologic regimes. At OURANOS, special attention is placed on the hydrological cycle, given its key role on socioeconomic activities. The Canadian Regional Climate Model (CRCM) was developed as a potential tool to provide climate projections at the watershed scale. Various analyses performed over small basins in Quebec provide information on the level of confidence we have in the CRCM for use in hydrological studies. Even though this approach is not free of uncertainty, it was found useful by some water resource managers and hence this information should be considered. One of the keys to retain usefulness, despite the associated uncertainties, is to make use of more than a single regional climate projection. This approach will allow for the evaluation of the climate change signal and its associated level of confidence. Such a methodology is already applied by Hydro-Quebec in the long-term planning of its water resources for hydroelectric generation over the Quebec territory. (author)

  10. Regional Climate Model Aladin-Climate - a Tool for Regionalization of Climate Change Estimates in Central Europe: First Results

    Huth, Radan; Metelka, L.; Kliegerová, S.; Sedlák, Pavel; Kyselý, Jan; Mládek, R.; Halenka, T.; Kalvová, J.

    Bratislava: Geophysical Institute of SAS, Slovak Hydrometeorological Institute, Slovak Mining Society, Slovak Meteorological Society, 2001 - (Matejka, F.; Ostrožlík, M.), s. - ISBN 80-85754-10-X. [150 years of the meteorological service in central Europe. Stará Lesná (SK), 09.10.2001-11.10.2001] R&D Projects: GA ČR GA205/01/0804 Institutional research plan: CEZ:AV0Z3042911 Keywords : Regional Climate Model * validation * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology

  11. Proceedings of the Atlantic climate change 2008 conference : risk, responses and tools for action

    This conference provided a forum for members of the private and public sector, as well as researchers and industry leaders to discuss methods of preventing and adapting to climate change in the Maritime provinces. Presentations at the conference evaluated a range of options, opportunities, and potential outcomes from strategies for reducing environmental impacts and improving energy efficiency in the region. Topics discussed at the conference included adaptation tools; carbon markets; resource management; corporate and public policy; and risk assessment and decision-making processes. The conference was divided into the following 5 sessions: (1) land use planning and adaptation, (2) fish, farms and forests, (3) climate science and modelling, (4) energy policy for mitigation and sustainability, and (5) tools for adaptation and infrastructure. A workshop discussing the use of LIDAR in decision-making processes was also held. The conference featured 11 presentations, of which 3 have been catalogued separately for inclusion in this database. tabs., figs.

  12. Climate modeling - a tool for the assessment of the paleodistribution of source and reservoir rocks

    Roscher, M.; Schneider, J.W. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Geologie; Berner, U. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany). Referat Organische Geochemie/Kohlenwasserstoff-Forschung


    In an on-going project of BGR and TU Bergakademie Freiberg, numeric paleo-climate modeling is used as a tool for the assessment of the paleo-distribution of organic rich deposits as well as of reservoir rocks. This modeling approach is based on new ideas concerning the formation of the Pangea supercontinent. The new plate tectonic concept is supported by paleo- magnetic data as it fits the 95% confidence interval of published data. Six Permocarboniferous time slices (340, 320, 300, 290, 270, 255 Ma) were chosen within a first paleo-climate modeling approach as they represent the most important changes of the Late Paleozoic climate development. The digital maps have a resolution of 2.8 x 2.8 (T42), suitable for high-resolution climate modeling, using the PLASIM model. CO{sub 2} concentrations of the paleo-atmosphere and paleo-insolation values have been estimated by published methods. For the purpose of validation, quantitative model output, had to be transformed into qualitative parameters in order to be able to compare digital data with qualitative data of geologic indicators. The model output of surface temperatures and precipitation was therefore converted into climate zones. The reconstructed occurrences of geological indicators like aeolian sands, evaporites, reefs, coals, oil source rocks, tillites, phosphorites and cherts were then compared to the computed paleo-climate zones. Examples of the Permian Pangea show a very good agreement between model results and geological indicators. From the modeling approach we are able to identify climatic processes which lead to the deposition of hydrocarbon source and reservoir rocks. The regional assessment of such atmospheric processes may be used for the identification of the paleo-distribution of organic rich deposits or rock types suitable to form hydrocarbon reservoirs. (orig.)

  13. The NOAA Local Climate Analysis Tool - An Application in Support of a Weather Ready Nation

    Timofeyeva, M. M.; Horsfall, F. M.


    Citizens across the U.S., including decision makers from the local to the national level, have a multitude of questions about climate, such as the current state and how that state fits into the historical context, and more importantly, how climate will impact them, especially with regard to linkages to extreme weather events. Developing answers to these types of questions for locations has typically required extensive work to gather data, conduct analyses, and generate relevant explanations and graphics. Too frequently providers don't have ready access to or knowledge of reliable, trusted data sets, nor sound, scientifically accepted analysis techniques such that they can provide a rapid response to queries they receive. In order to support National Weather Service (NWS) local office forecasters with information they need to deliver timely responses to climate-related questions from their customers, we have developed the Local Climate Analysis Tool (LCAT). LCAT uses the principles of artificial intelligence to respond to queries, in particular, through use of machine technology that responds intelligently to input from users. A user translates customer questions into primary variables and issues and LCAT pulls the most relevant data and analysis techniques to provide information back to the user, who in turn responds to their customer. Most responses take on the order of 10 seconds, which includes providing statistics, graphical displays of information, translations for users, metadata, and a summary of the user request to LCAT. Applications in Phase I of LCAT, which is targeted for the NWS field offices, include Climate Change Impacts, Climate Variability Impacts, Drought Analysis and Impacts, Water Resources Applications, Attribution of Extreme Events, and analysis techniques such as time series analysis, trend analysis, compositing, and correlation and regression techniques. Data accessed by LCAT are homogenized historical COOP and Climate Prediction Center

  14. A simulation tool for integrating climate change and Canadian surface transport : towards assessing impacts and adaptations

    Extreme weather events resulting from climate change will have a significant impact of the performance of the Canadian transportation system. This presentation described a simulation tool designed to investigate the potential ramifications of future climate change on transportation and the economy. The CLIMATE-C tool was designed to simulate future weather scenarios for the years 2020 and 2050 using weather parameters obtained from a global general circulation model. The model accounted for linkages between weather, transportation, and economic systems. A random utility-based multi-regional input-output model was used to predict inter-regional trade flows by truck and rail in Canada. Simulated weather scenarios were used to describe predicted changes in demographic, social, economic, technological and environmental developments to 2100. Various changes in population and economic growth were considered. Six additional scenarios were formulated to consider moderate and high rainfall events, moderate, high and extreme snowfall, and cold temperatures. Results of the preliminary analysis indicated that the model is sensitive to changes in weather events. Future research is needed to evaluate future weather scenarios and analyze weather-transport data in order to quantify travel speed reduction parameters. tabs., figs.

  15. Climate- and remote sensing-based tools for drought management application in North and South Korea

    Nam, W.; Wardlow, B.; Hayes, M. J.; Tadesse, T.; Svoboda, M.; Fuchs, B.; Wilhite, D. A.


    North and South Korea have experienced more frequent and extreme droughts since the late 1990s. In recent years, severe droughts in 2000-2001, 2012, and 2015 have led to widespread agricultural and environmental impacts, and resulted in water shortages and large reductions in crop yields. This has been particularly problematic in the agricultural sector of North Korea, which has a high-level of vulnerability due to variations of climate and this, in turn, results in food security issues. This vulnerability is exacerbated by North Korea's relatively small area of arable land, most of which is not very productive. The objective of this study was to develop a drought management application using climate- and remote sensing-based tools for North and South Korea. These tools are essential for improving drought planning and preparedness in this area. In this study, various drought indicators derived from climate and remote sensing data (SPI, SC-PDSI, SPEI, and VegDRI-Korea) were investigated to monitor the current drought condition and evaluate their ability to characterize agricultural and meteorological drought events and their potential impacts. Results from this study can be used to develop or improve the national-level drought management application for these countries. The goal is to provide improved and more timely information on both the spatial and temporal dimensions of drought conditions and provide a tool to identify both past and present drought events in order to make more informed management decisions and reduce the impacts of current droughts and reduce the risk to future events.

  16. A vulnerability tool for adapting water and aquatic resources to climate change and extremes on the Shoshone National Forest, Wyoming

    Rice, J.; Joyce, L. A.; Armel, B.; Bevenger, G.; Zubic, R.


    Climate change introduces a significant challenge for land managers and decision makers managing the natural resources that provide many benefits from forests. These benefits include water for urban and agricultural uses, wildlife habitat, erosion and climate control, aquifer recharge, stream flows regulation, water temperature regulation, and cultural services such as outdoor recreation and aesthetic enjoyment. The Forest Service has responded to this challenge by developing a national strategy for responding to climate change (the National Roadmap for Responding to Climate Change, July 2010). In concert with this national strategy, the Forest Service's Westwide Climate Initiative has conducted 4 case studies on individual Forests in the western U.S to develop climate adaptation tools. Western National Forests are particularly vulnerable to climate change as they have high-mountain topography, diversity in climate and vegetation, large areas of water limited ecosystems, and increasing urbanization. Information about the vulnerability and capacity of resources to adapt to climate change and extremes is lacking. There is an urgent need to provide customized tools and synthesized local scale information about the impacts to resources from future climate change and extremes, as well as develop science based adaptation options and strategies in National Forest management and planning. The case study on the Shoshone National Forest has aligned its objectives with management needs by developing a climate extreme vulnerability tool that guides adaptation options development. The vulnerability tool determines the likely degree to which native Yellowstone cutthroat trout and water availability are susceptible to, or unable to cope with adverse effects of climate change extremes. We spatially categorize vulnerability for water and native trout resources using exposure, sensitivity, and adaptive capacity indicators that use minimum and maximum climate and GIS data. Results

  17. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved.

    Brassard, Patrick; Godbout, Stéphane; Raghavan, Vijaya


    Biochar, a solid porous material obtained from the carbonization of biomass under low or no oxygen conditions, has been proposed as a climate change mitigation tool because it is expected to sequester carbon (C) for centuries and to reduce greenhouse gas (GHG) emissions from soils. This review aimed to identify key biochar properties and production parameters that have an effect on these specific applications of the biochar. Moreover, mechanisms involved in interactions between biochar and soils were highlighted. Following a compilation and comparison of the characteristics of 76 biochars from 40 research studies, biochars with a lower N content, and consequently a higher C/N ratio (>30), were found to be more suitable for mitigation of N2O emissions from soils. Moreover, biochars produced at a higher pyrolysis temperature, and with O/C ratio <0.2, H/Corg ratio <0.4 and volatile matter below 80% may have high C sequestration potential. Based on these observations, biochar production and application to the field can be used as a tool to mitigate climate change. However, it is important to determine the pyrolysis conditions and feedstock needed to produce a biochar with the desired properties for a specific application. More research studies are needed to identify the exact mechanisms involved following biochar amendment to soil. PMID:27420171

  18. Tooling up urban planning for climate change mitigation in Malaysian cities

    The city's 2-dimensional spatial structure and 3-dimensional form significantly influence its energy and GHG emission intensity. In rapidly developing urban-regions, the ability of the local planning authorities to quantify the spatial structure and form of existing urban areas, new developments and the emergent urban-region in terms of GHG emission is vital to any effective local, national and global climate change mitigation effort. While a wide array of tools has been developed for assessing built environment sustainability at various spatial scales, these are predominantly eco-efficiency rating tools that do not model the 'spatial structure-GHG' relationship and do not illustrate the GHG implications of urban structure and form, which crucially inform local planning decisions with respect to climate change mitigation. This paper takes the first steps in analysing three spatial-based planning models (Envision Tomorrow, GHGProof, URBEMIS) that estimate GHG emissions towards assessing their adaptability for application in Malaysian cities. It looks into the models' inner working, unpacking the variables and their relationships; assumptions and conversion rates used; and their data requirement and structure. The models' characteristics and features are critically compared to evaluate their capabilities, limitations and relevance to the Malaysian urban planning context, particularly in terms of data availability

  19. Agricultural insurance: A strategic tool for climate change adaptation in the agricultural sector

    F. N. Nnadi


    Full Text Available Agriculture is a major economic sector and a critical source of livelihood in many developing countries. It is particularly exposed to adverse natural events, such as droughts or floods, and the economic costs of major disasters may even increase further in the future because of climate change. This unexpected event can lead farmers to poverty if unchecked. Agricultural insurance is a veritable tool that agricultural producers can potentially use to adapt and even mitigate the risks associated with adverse natural events. This paper describes the importance of agriculture in developing countries, how agricultural insurance can complement and enhance risk management activities. This topic becomes imperative because the traditional adaptation practices alone cannot sustain the farmers in the face of changing climatic scenarios, especially in Nigeria where no formal adaptation blueprint is in place. It outlines the various agricultural insurance products available to farmers and the regular perils that insurance policy could cover. It summarizes with the role government play in assisting agricultural producers cope with climate variability.

  20. Climate change, land slide risks and sustainable development, risk analysis and decision support process tool

    Andersson-sköld, Y. B.; Tremblay, M.


    Climate change is in most parts of Sweden expected to result in increased precipitation and increased sea water levels causing flooding, erosion, slope instability and related secondary consequences. Landslide risks are expected to increase with climate change in large parts of Sweden due to increased annual precipitation, more intense precipitation and increased flows combined with dryer summers. In response to the potential climate related risks, and on the commission of the Ministry of Environment, the Swedish Geotechnical Institute (SGI) is at present performing a risk analysis project for the most prominent landslide risk area in Sweden: the Göta river valley. As part of this, a methodology for land slide ex-ante consequence analysis today, and in a future climate, has been developed and applied in the Göta river valley. Human life, settlements, industry, contaminated sites, infrastructure of national importance are invented and assessed important elements at risk. The goal of the consequence analysis is to produce a map of geographically distributed expected losses, which can be combined with a corresponding map displaying landslide probability to describe the risk (the combination of probability and consequence of a (negative) event). The risk analysis is GIS-aided in presenting and visualise the risk and using existing databases for quantification of the consequences represented by ex-ante estimated monetary losses. The results will be used on national, regional and as an indication of the risk on local level, to assess the need of measures to mitigate the risk. The costs and environmental and social impacts to mitigate the risk are expected to be very high but the costs and impacts of a severe landslide are expected to be even higher. Therefore, civil servants have pronounced a need of tools to assess both the vulnerability and a more holistic picture of impacts of climate change adaptation measures. At SGI a tool for the inclusion of sustainability

  1. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  2. LandCaRe-DSS - model based tools for irrigation management under climate change

    Dotterweich, Markus; Wilkinson, Kristina; Cassel, Martin; Scherzer, Jörg; Köstner, Barbara; Berg, Michael; Grocholl, Jürgen


    Climate change is expected to have a strong influence on agricultural systems in the future. It will be important for decision makers and stakeholders to assess the impact of climate change at the farm and regional level in order to facilitate and maintain a sustainable and profitable farming infrastructure. Climate change impact studies have to incorporate aspects of uncertainty and the underlying knowledge is constantly expanding and improving. Decision support systems (DSS) with flexible data bases are therefore a useful tool for management and planning: different models can be applied under varying boundary conditions within a conceptual framework and the results can be used e.g. to show the effects of climate change scenarios and different land management options. Within this project, the already existing LandCaRe DSS will be further enhanced and improved. A first prototype had been developed for two regions in eastern Germany, mainly to show the effects of climate change on yields, nutrient balances and farm economy. The new model version will be tested and applied for a region in north-western Germany (Landkreis Uelzen) where arable land makes up about 50% of overall land-use and where 80 % of the arable land is already irrigated. For local decision makers, it will be important to know how water demand and water availability are likely to change in the future: Is more water needed for irrigation? Is more water actually available for irrigation? Will the existing limits for ground water withdrawal be sufficient for farmers to irrigate their crops? How can the irrigation water demand be influenced by land management options like the use of different crops and varieties or different farming and irrigation techniques? The main tasks of the project are (I) the integration of an improved irrigation model, (II) the development of a standardized interface to apply the DSS in different regions, (III) to optimize the graphical user interface, (IV) to transfer and

  3. Geophysical Tools, Challenges and Perspectives Related to Natural Hazards, Climate Change and Food Security

    Fucugauchi, J. U.


    In the coming decades a changing climate and natural hazards will likely increase the vulnerability of agricultural and other food production infrastructures, posing increasing treats to industrialized and developing economies. While food security concerns affect us globally, the huge differences among countries in stocks, population size, poverty levels, economy, technologic development, transportation, health care systems and basic infrastructure will pose a much larger burden on populations in the developing and less developed world. In these economies, increase in the magnitude, duration and frequency of droughts, floods, hurricanes, rising sea levels, heat waves, thunderstorms, freezing events and other phenomena will pose severe costs on the population. For this presentation, we concentrate on a geophysical perspective of the problems, tools available, challenges and short and long-term perspectives. In many instances, a range of natural hazards are considered as unforeseen catastrophes, which suddenly affect without warning, resulting in major losses. Although the forecasting capacity in the different situations arising from climate change and natural hazards is still limited, there are a range of tools available to assess scenarios and forecast models for developing and implementing better mitigation strategies and prevention programs. Earth observation systems, geophysical instrumental networks, satellite observatories, improved understanding of phenomena, expanded global and regional databases, geographic information systems, higher capacity for computer modeling, numerical simulations, etc provide a scientific-technical framework for developing strategies. Hazard prevention and mitigation programs will result in high costs globally, however major costs and challenges concentrate on the less developed economies already affected by poverty, famines, health problems, social inequalities, poor infrastructure, low life expectancy, high population growth

  4. Game wizard

    Mota, Pedro Bueno


    Hoje em dia, há um aumento evidente dos produtos ou soluções sob medida, com o objectivo de melhor se adaptarem às necessidades dos perfis de clientes. Num outro contexto, existe um largo crescimento da presença da computação informática nas salas de aulas, de maneira a auxiliar o professor a cativar e motivar os alunos, através de jogos educativos. Contudo, nem todos os docentes têm conhecimentos informáticos avançados, então não têm forma de perso-nalizar jogos, o que beneficiaria as crianç...

  5. Oxide Wizard: an EELS application to characterize the white lines of transition metal edges.

    Yedra, Lluís; Xuriguera, Elena; Estrader, Marta; López-Ortega, Alberto; Baró, Maria D; Nogués, Josep; Roldan, Manuel; Varela, Maria; Estradé, Sònia; Peiró, Francesca


    Physicochemical properties of transition metal oxides are directly determined by the oxidation state of the metallic cations. To address the increasing need to accurately evaluate the oxidation states of transition metal oxide systems at the nanoscale, here we present "Oxide Wizard." This script for Digital Micrograph characterizes the energy-loss near-edge structure and the position of the transition metal edges in the electron energy-loss spectrum. These characteristics of the edges can be linked to the oxidation states of transition metals with high spatial resolution. The power of the script is demonstrated by mapping manganese oxidation states in Fe3O4/Mn3O4 core/shell nanoparticles with sub-nanometer resolution in real space. PMID:24750576

  6. Application of flood risk modelling in a web-based geospatial decision support tool for coastal adaptation to climate change

    P. J. Knight; T. Prime; J M Brown; Morrissey, K; Plater, A.J.


    A pressing problem facing coastal decision makers is the conversion of "high-level" but plausible climate change assessments into an effective basis for climate change adaptation at the local scale. Here, we describe a web-based, geospatial decision support tool (DST) that provides an assessment of the potential flood risk for populated coastal lowlands arising from future sea-level rise, coastal storms, and high river flows. This DST has been developed to support operationa...

  7. Application of flood risk modelling in a web-based geospatial decision support tool for coastal adaptation to climate change

    P. J. Knight; T. Prime; J M Brown; Morrissey, K; Plater, A.J.


    A pressing problem facing coastal decision makers is the conversion of "high level" but plausible climate change assessments into an effective basis for climate change adaptation at the local scale. Here, we describe a web-based, geospatial decision-support tool (DST) that provides an assessment of the potential flood risk for populated coastal lowlands arising from future sea-level rise, coastal storms and high river flows. This DST has been d...

  8. Forecasting weed distributions using climate data: a GIS early warning tool

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Barnett, David T.; Stohlgren, Thomas J.; Kartesz, John T.


    The number of invasive exotic plant species establishing in the United States is continuing to rise. When prevention of exotic species from entering into a country fails at the national level and the species establishes, reproduces, spreads, and becomes invasive, the most successful action at a local level is early detection followed eradication. We have developed a simple geographic information system (GIS) analysis for developing watch lists for early detection of invasive exotic plants that relies upon currently available species distribution data coupled with environmental data to aid in describing coarse-scale potential distributions. This GIS analysis tool develops environmental envelopes for species based upon the known distribution of a species thought to be invasive and represents the first approximation of its potential habitat while the necessary data are collected to perform more in­-depth analyses. To validate this method we looked at a time series of species distributions for 66 species in Pacific Northwest, and northern Rocky Mountain counties. The time series analysis presented here did select counties that the invasive exotic weeds invaded in subsequent years, showing that this technique could be useful in developing watch lists for the spread of particular exotic species. We applied this same habitat-matching model based upon bioclimaric envelopes to 100 invasive exotics with various levels of known distributions within continental U.S. counties. For species with climatically limited distributions, county watch lists describe county-specific vulnerability to invasion. Species with matching habitats in a county would be added to that county's list. These watch lists can influence management decisions for early warning, control prioritization, and targeted research to determine specific locations within vulnerable counties. This tool provides useful information for rapid assessment of the potential distribution based upon climate envelopes of

  9. Biochar soil amendments as a tool for climate change adaptation in PNW agriculture

    Phillips, C. L.; Trippe, K. M.; Murphy, B. A.; Beovich, A. V.; Griffith, S. M.


    Loss of snow pack, changing hydrographs, and increased temperatures and irrigation demands as a result of climate change all threaten to create transformational drought for growers in the Pacific Northwest. One approach for adapting to drought is to improve moisture retention through soil management practices. Recent efforts at the FSCRU to develop on-farm power have produced a biochar from gasification of seed mill waste that may prove useful as a tool for drought adaption. Testing of this biochar revealed that it contains no toxic elements, making it suitable as a soil amendment, and additions of 20 tonnes ha-1 in dryland wheat system showed improved soil moisture and yield increases of 250%. Persistent but weaker impacts were observed in growing years 2 and 3 following the biochar amendments. Here we present results from a series of laboratory and field studies characterizing how grass seed screening biochar, which is produced from a regionally abundant feedstock, impacted soil hydraulic and thermal properties, soil chemistry, and plant growth. Because of the liming qualities of gasified biochar, the greatest growth benefits are likely to be realized in acidified soils, a growing problem in the PNW. Although the persistence of biochar impacts in soil is still unknown, our results indicate that gasified biochar, particularly when utilized as part of a system of on-farm power production, waste reduction, and nutrient recycling, can improve agricultural sustainability in the context of climate change.

  10. Use of the NatureServe Climate Change Vulnerability Index as an Assessment Tool for Reptiles and Amphibians: Lessons Learned

    Tuberville, Tracey D.; Andrews, Kimberly M.; Sperry, Jinelle H.; Grosse, Andrew M.


    Climate change threatens biodiversity globally, yet it can be challenging to predict which species may be most vulnerable. Given the scope of the problem, it is imperative to rapidly assess vulnerability and identify actions to decrease risk. Although a variety of tools have been developed to assess climate change vulnerability, few have been evaluated with regard to their suitability for certain taxonomic groups. Due to their ectothermic physiology, low vagility, and strong association with temporary wetlands, reptiles and amphibians may be particularly vulnerable relative to other groups. Here, we evaluate use of the NatureServe Climate Change Vulnerability Index (CCVI) to assess a large suite of herpetofauna from the Sand Hills Ecoregion of the southeastern United States. Although data were frequently lacking for certain variables (e.g., phenological response to climate change, genetic variation), sufficient data were available to evaluate all 117 species. Sensitivity analyses indicated that results were highly dependent on size of assessment area and climate scenario selection. In addition, several ecological traits common in, but relatively unique to, herpetofauna are likely to contribute to their vulnerability and need special consideration during the scoring process. Despite some limitations, the NatureServe CCVI was a useful tool for screening large numbers of reptile and amphibian species. We provide general recommendations as to how the CCVI tool's application to herpetofauna can be improved through more specific guidance to the user regarding how to incorporate unique physiological and behavioral traits into scoring existing sensitivity factors and through modification to the assessment tool itself.

  11. Using the Climate Assessment Tool (CAT) in U.S. EPA BASINS integrated modeling system to assess watershed vulnerability to climate change.

    Imhoff, J C; Kittle, J L; Gray, M R; Johnson, T E


    During the last century, much of the United States experienced warming temperatures and changes in amount and intensity of precipitation. Changes in future climate conditions present additional risk to water and watershed managers. The most recent release of U.S. EPA's BASINS watershed modeling system includes a Climate Assessment Tool (CAT) that provides new capabilities for assessing impacts of climate change on water resources. The BASINS CAT provides users with the ability to modify historical climate and conduct systematic sensitivity analyses of specific hydrologic and water quality endpoints to changes in climate using the BASINS models (Hydrologic Simulation Program - FORTRAN (HSPF)). These capabilities are well suited for addressing questions about the potential impacts of climate change on key hydrologic and water quality goals using the watershed scale at which most important planning decisions are made. This paper discusses the concepts that motivated the CAT development effort; the resulting capabilities incorporated into BASINS CAT; and the opportunities that result from integrating climate assessment capabilities into a comprehensive watershed water quality modeling system. PMID:17978432

  12. Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    This report summarizes work carried out by the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Team for the period of January 1, 2011 through June 30, 2011. It discusses highlights, overall progress, period goals, and collaborations and lists papers and presentations. To learn more about our project, please visit our UV-CDAT website (URL: This report will be forwarded to the program manager for the Department of Energy (DOE) Office of Biological and Environmental Research (BER), national and international collaborators and stakeholders, and to researchers working on a wide range of other climate model, reanalysis, and observation evaluation activities. The UV-CDAT executive committee consists of Dean N. Williams of Lawrence Livermore National Laboratory (LLNL); Dave Bader and Galen Shipman of Oak Ridge National Laboratory (ORNL); Phil Jones and James Ahrens of Los Alamos National Laboratory (LANL), Claudio Silva of Polytechnic Institute of New York University (NYU-Poly); and Berk Geveci of Kitware, Inc. The UV-CDAT team consists of researchers and scientists with diverse domain knowledge whose home institutions also include the National Aeronautics and Space Administration (NASA) and the University of Utah. All work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Working directly with BER climate science analysis projects, this consortium will develop and deploy data and computational resources useful to a wide variety of stakeholders, including scientists, policymakers, and the general public. Members of this consortium already collaborate with other institutions and universities in researching data discovery, management, visualization, workflow analysis, and provenance. The UV-CDAT team will address the following high-level visualization requirements: (1) Alternative parallel streaming statistics and analysis pipelines - Data

  13. Decision tools for coral reef managers: Using participatory decision support to integrate potential climate impacts and informed decision making

    Pamela J. Fletcher


    Full Text Available The decline in coral reef health presents a complex management issue. While several causes of decline have been identified and are under continued study, it is often difficult to discern management actions necessary to address multiple near- and far-field stressors to these ecosystems. As a result, resource managers seek tools to improve the understanding of ecosystem condition and to develop management responses to reduce local and regional pressures in the wake of larger, global impacts. A research study conducted from 2010 to 2014 in southeast Florida, USA consisted of two objectives: (1 conduct a needs assessment survey with coral reef and marine resource managers to identify data needs and the preferred design and delivery of climate information; and (2 develop and evaluate prototype decision support tools. The needs assessment process was helpful for identifying the types of climate information managers would like to obtain to inform decision making and to specify the preferred format for the delivery of that information. Three prototype tools were evaluated by managers using pre/post surveys that included hands-on tutorials to explore the functionality of each. Manager responses were recorded using a five-point scale with 1 being No or Not Useful to 5 being Absolutely or Very Useful. The median responses rated the usefulness of the tools (4, if they would consider using the tool (4, and if they would recommend using the tool to other managers (4 or 5. The median response for increasing manager’s knowledge about climate impacts after completing a tutorial of each of the climate tools was a 3 (moderately useful. Of the managers surveyed in the pre/post-survey, all but one stated they believed they would use the decision support tools in the future with the single response due to wealth of data availability in their institution.

  14. Climate Risk Management and Decision Support Tools for the Agriculture Sector in Lao PDR, Bangladesh, and Indonesia

    Allis, E. C.; Greene, A. M.; Cousin, R.


    We describe a comprehensive project for developing climate information and decision support / climate risk management tools in Lao PDR, Bangladesh and Indonesia. Mechanisms are developed for bringing the benefits of these tools to both policy makers and poor rural farmers, with the goal of enabling better management, at the farm level, of the risks associated with climate variability and change. The project comprises several interwoven threads, differentially applied in the different study regions. These include data management and quality control, development of seasonal forecast capabilities, use of dynamic cropping calendars and climate advisories, the development of longer-term climate information for both past and future and a weather index insurance component. Stakeholder engagement and capacity building served as reinforcing and complementary elements to all components. In this talk we will provide a project overview, show how the various components fit together and describe some lessons learned in this attempt to promote the uptake of actionable climate information from farmer to policy level. The applied research project was led by the International Research Institute for Climate and Society (IRI) at Columbia University with funding from the International Fund for Agriculture Development (IFAD) and in close collaboration with our regional partners at the Centre for Climate Risk and Opportunity Management in Southeast Asia Pacific (at Bogor Agricultural University in Indonesia), Indonesia's National Agency for Meteorology, Climatology and Geophysics (BMKG), Lao PDR's National Agriculture and Forestry Research Institute (NAFRI), Laotian Department of Meteorology and Hydrology (DMH), WorldFish Center, Bangladesh Meteorology Department (BMD), and CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

  15. The cosmogenic radionuclides 26Al and 10Be as a dating tool for climate archives

    Full text: Polar ice is a unique archive of the earth's climate history. Crucial for the interpretation of the information contained in the ice is an accurate dating. Currently, all methods for dating rely on a more or less undisturbed stratigraphy of the ice, which cannot necessarily be assumed for the ice layers close to the bottom. Using the two cosmogenic radionuclides 26Al and 10Be (half-life 0.7 and 1.5 Ma, respectively) absolute dating of ice may become possible: Due to the different half-lives, the change of the 26Al/10Be isotopic ratio can be used as a clock. The extremely low abundance of both isotopes requires measurement by accelerator mass spectrometry (AMS). In order to apply the 26Al/10Be dating method, analytical challenges have to be overcome but also the sources of 10Be and 26Al and their atmospheric transport have to be well understood. In particular, there may be differences in the sources of 26Al and 10Be which could seriously limit the applicability of 26Al/10Be as a dating tool. In addition, the long half-lives of 26Al and 10Be require a high precision measurement for dating, which is a technical challenge, primarily due to the very low abundance of 26Al. First measurements of atmospheric 26Al and 10Be have been carried out at the Vienna Environmental Research Accelerator (VERA) of the University of Vienna. We report here on the measurements as well as on the implications for sources and transport of 26Al and 10Be and on the feasibility of 26Al/10Be as a dating tool. (author)

  16. Useful to Usable (U2U): Transforming climate information into usable tools to support Midwestern agricultural production

    Prokopy, L. S.; Widhalm, M.


    There is a close connection between weather and climate patterns and successful agricultural production. Therefore, incorporating climate information into farm management is likely to reduce the risk of economic losses and increase profitability. While weather and climate information is becoming ever more abundant and accessible, the use of such information in the agricultural community remains limited. Useful to Usable (U2U): Transforming Climate Variability and Change Information for Cereal Crop Producers is a USDA-NIFA funded research and extension project focused on improving the use of climate information for agricultural production in the Midwestern United States by developing user-driven decision tools and training resources. The U2U team is a diverse and uniquely qualified group of climatologists, crop modelers, agronomists, and social scientists from 9 Midwestern universities and two NOAA Regional Climate Centers. Together, we strive to help producers make better long-term plans on what, when and where to plant and also how to manage crops for maximum yields and minimum environmental damage. To ensure relevance and usability of U2U products, our social science team is using a number of techniques including surveys and focus groups to integrate stakeholder interests, needs, and concerns into all aspects of U2U research. It is through this coupling of physical and social science disciplines that we strive to transform existing climate information into actionable knowledge.

  17. Etude Climat no. 38 'The economic tools of Chinese climate and energy policy at the time of the at the time of the 12. five-year plan'

    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: The largest developing country and the main source of GHG emissions in the world, China has undertaken in its 12. five-year plan (2011-2015) to strengthen the strategy initiated in the 11. five-year plan. It proposes making the Chinese economy more flexible - hence its change of name to five-year 'guide'-, particularly through increased use of market instruments. This change applies across all fields, including energy and climate policies. Economic instruments are especially expected to help achieve the 2020 strategic energy and climate objectives which China committed to at the Copenhagen Conference in 2009. The five-year plan forms a programmatic document requiring translation into law to develop details of the measures required to achieve the objectives set out. Following the publication of the 12. five-year plan, the Chinese central government therefore introduced a series of regulations to promote energy conservation and reduction of greenhouse gas (GHG) emissions, including at a regional and sectoral level. Local governments are particularly expected to participate, by incorporating progress in achieving their climate and energy policy objectives into the system of administrative appraisal. In relation to energy policy, the economic tools put in place exist side by side with pre-existing administrative tools and remain subject to very strong administrative control. They concern the adjustment of both the production pattern - reinforcement of exchanges of production rights and renewable energy production quotas - and the structure of energy consumption - market for energy savings certificates coordinated at a regional level. In terms of climate policy, the Chinese government is testing a range of instruments, including market and taxation mechanisms. The 12. five-year plan notably includes the development of a

  18. NDVI as a tool for measuring impact of climate variability upon vegetation

    Delitala, Alessandro M. S.; Vizzari, Marco; Capece, Paolo; Fiori, Michele; Mannu, Giovanna Maria; Pacicco, Ciro Luca; Pinna Nossai, Roberto


    Land-atmosphere interactive processes are useful to understand impacts of year by year climate variability and to highlight possible trends, since the status of the natural vegetation cover is strongly controlled by climate factors. The so-called NDVI (Normalized Difference Vegetation Index), derived from the red and the near infrared channels of NOAA satellite, is a reliable indicator applicable to the analysis of photosynthetic biomass variations in vegetated areas. NDVI images, derived on a monthly basis by maximum composite value technique, can become a useful tool to monitor the dynamics of vegetation and to determine the maximum level of vegetation greenness observed over every year. Interannual variability of precipitation is likely to have a significant impact on the greenness of vegetation cover, since rainy seasons are expected to stimulate a much richer plants development than drier ones. The present poster intends to outline a research, jointly carried by ARPAS (the Regional Environmental Protection Agency of Sardinia) and the 'Department of Man and Territory' of the University of Perugia, that aimed to correlate the year by year variability of hydrological variables (precipitation and soil water content) and the maximum annual NDVI over the island of Sardinia. In order to do that, the authors defined four test areas, extending from 235 km2 to 1015 km2. Test areas were chosen in order to be mostly covered by natural vegetations, according to CORINE land-cover. Over such areas surface measures by ARPAS stations were compared against annual maximum NDVI index from 1998 to 2008, focusing on the so-called 'rainy season' that in Sardinia ranges from October to April. Precipitation for the selected areas was measured with the network of ground stations of ARPAS. Evapotranspiration was estimated by means of Hargreaves-Samani method applied to data from the above stations. Finally, estimation of the soil moisture content was carried out by means of a daily time

  19. PatternCoder: A Programming Support Tool for Learning Binary Class Associations and Design Patterns

    Paterson, J. H.; Cheng, K. F.; Haddow, J.


    PatternCoder is a software tool to aid student understanding of class associations. It has a wizard-based interface which allows students to select an appropriate binary class association or design pattern for a given problem. Java code is then generated which allows students to explore the way in which the class associations are implemented in a…

  20. The Tribal Lands Collaboratory: Building partnerships and developing tools to support local Tribal community response to climate change.

    Jones, K. D.; Wee, B.; Kuslikis, A.


    Response of Tribal nations and Tribal communities to current and emerging climate change challenges requires active participation of stakeholders who have effective access to relevant data, information and analytical tools. The Tribal Lands Collaboratory (TLC), currently under development, is a joint effort between the American Indian Higher Education Consortium (AIHEC), the Environmental Systems Research Institute (Esri), and the National Ecological Observatory Network (NEON). The vision of the TLC is to create an integrative platform that enables coordination between multiple stakeholders (e.g. Tribal resource managers, Tribal College faculty and students, farmers, ranchers, and other local community members) to collaborate on locally relevant climate change issues. The TLC is intended to facilitate the transformation of data into actionable information that can inform local climate response planning. The TLC will provide the technical mechanisms to access, collect and analyze data from both internal and external sources (e.g. NASA's Giovanni climate data portal, Ameriflux or USA National Phenology Network) while also providing the social scaffolds to enable collaboration across Tribal communities and with members of the national climate change research community. The prototype project focuses on phenology, a branch of science focused on relationships between climate and the seasonal timing of biological phenomena. Monitoring changes in the timing and duration of phenological stages in plant and animal co­­­­mmunities on Tribal lands can provide insight to the direct impacts of climate change on culturally and economically significant Tribal resources . The project will leverage existing phenological observation protocols created by the USA-National Phenology Network and NEON to direct data collection efforts and will be tailored to the specific needs and concerns of the community. Phenology observations will be captured and managed within the Collaboratory

  1. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    Abdelaziz, Omar; Fricke, Brian; Vineyard, Edward A.


    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, both the direct emissions related to refrigerant leakage and the indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications...

  2. Animal Agriculture in a Changing Climate Online Course: An Effective Tool for Creating Extension Competency

    Whitefield, Elizabeth; Schmidt, David; Witt-Swanson, Lindsay; Smith, David; Pronto, Jennifer; Knox, Pam; Powers, Crystal


    There is a need to create competency among Extension professionals on the topic of climate change adaptation and mitigation in animal agriculture. The Animal Agriculture in a Changing Climate online course provides an easily accessible, user-friendly, free, and interactive experience for learning science-based information on a national and…

  3. A new statistical tool to predict phenology under climate change scenarios

    Gienapp, P.; Hemerik, L.; Visser, M.E.


    Climate change will likely affect the phenology of trophic levels differently and thereby disrupt the phenological synchrony between predators and prey. To predict this disruption of the synchrony under different climate change scenarios, good descriptive models for the phenology of the different sp

  4. Prospects of tools from differential games in the study of macroeconomics of climate change

    Engwerda, Jacob; Bernard, L.; Semmler, W.


    In this chapter we sketch a dynamic framework within which the discussion on the macro economic effects of climate change take place. The problem setting is characterized by scientific uncertainties about the development of climate, potential large economic losses, and specific characteristics of hu

  5. Tools for adaptation and mitigation of climate change on southwestern working-lands

    In February 2014, the USDA established 7 Hubs and 3 Sub Hubs across the nation to assist farmers, ranchers and foresters in adapting to the effects of climate change. Specific vulnerabilities related to projected climatic changes in the Southwest (SW) include water scarcity, the effects of elevated ...

  6. EnviroAtlas: A Spatially Explicit Tool Combining Climate Change Scenarios and Ecosystem ServicesIndicators

    While discussions of global climate change tend to center on greenhouse gases and sea level rise, other factors, such as technological developments, land and energy use, economics, and population growth all play a critical role in understanding climate change. There is increasin...

  7. Prospects of Tools from Differential Games in the Study Of Macroeconomics of Climate Change

    Engwerda, J.C.


    Abstract: In this note we sketch a dynamic framework within which the discussion on the macro economic effects of climate change take place. The problem setting is characterized by scientific uncertainties about the development of climate, potential large economic losses and human beings having thei

  8. The need for combining IEA and IE tools. The potential effects of a global ban on PVC on climate change

    Over the last decades the concepts of Integrated Environmental Assessment (IEA) and Industrial Ecology (IE), both claiming to provide analyses and solutions for sustainability issues, have been developed separately as they emerged in response to questions from different policy-fields. In both fields, specific tools are used to support national and international environmental policy. The focus of IEA and IE tools, however, is different. IEA tools focus on one or a limited number of specific environmental issues. They often model the chain environmental processes with high spatial (and temporal) resolution, but have a low resolution for the material structure of the economy and only partly take into account indirect effects that occur via physical and socio-economic linkages. IE tools take into account all environmental issues related to a specific substance or product. They have a high resolution for the material structure of the economy and take into account indirect effects that occur via physical linkages, however, their environmental modelling is very limited. Both IE and IEA tools have proven to be very useful and neither is superior to the other. However, a combination of both can provide additional information that can be used for more effective policy making. We use the case of a hypothetical world-wide ban on PVC to show that a measure that is not directly related to climate change could still have significant climate effects. This indirect effect is a result of the linkages of material flows in society. We show that IEA tools are not well suited to include these types of effects and that IE tools can fill this gap partially. What is really needed is a broader systems perspective that takes into account the full range of possible side-effects of environmental policy measures. (author)

  9. Enhancing Tools and Geospatial Data to Support Operational Forest Management and Regional Forest Planning in the Face of Climate Change

    Falkowski, M. J.; Fekety, P.; Hudak, A. T.; Kayastha, N.; Nagel, L. M.


    A detailed understanding of how forest composition, structure, and function will be impacted by projected climate change and related adaptive forest management activities are particularly lacking at local scales, where on-the-ground management activities are implemented. Climate sensitive forest dynamics models may prove to be effective tools for developing a comprehensive understanding. However, to be applicable to both regional forest planning and operational forest management, modeling approaches must be capable of simulating forest dynamics across large spatial extents (required for regional planning) while maintaining a high-level of spatial detail (required for operational management). LiDAR remote sensing has shown great utility for operational forest inventory and management, including forest dynamics modeling, albeit across relatively small spatial extents. We present a remote sensing driven approach to spatially initialize a climate-sensitive forest dynamics model (LANDIS-II) in the Pacific Northwest of the US via an integration of airborne LiDAR data with satellite remote sensing data. The system provides detailed forest inventory information - at the landscape level - that is subsequently employed to demonstrate how such models can be used to 1) investigate the potential impacts of climate change on future forest composition and structure, and 2) assess how various forest management practices may either enhance or degrade forest resilience to changing climate and disturbance regimes.

  10. Seismic site characterization for the Deep Fault Drilling Project (DFDP), Alpine Fault, New Zealand: Preliminary results from the WIZARD array

    Thurber, C. H.; Roecker, S. W.; Feenstra, J.; Lord, N.; O'Brien, G.; Pesicek, J. D.; Bannister, S. C.; Townend, J.


    In support of the Deep Fault Drilling Project (DFDP) on the Alpine Fault, UW-Madison (UW) and RPI, with assistance from Victoria University of Wellington (VUW) and GNS Science (GNS), deployed a 20-station seismic array in January 2012 around the planned drill site for the DFDP-2 boreholes in the Whataroa Valley on New Zealand's South Island. Half of the stations are short-period PASSCAL instruments deployed by helicopter in remote sites; the other half are UW broadband instruments deployed in the lowland areas. All are being continuously recorded at 100 samples per second. In combination with the SAMBA array operated by VUW, ALFA'12 stations deployed by GNS, and regional GeoNet stations, there is now excellent seismic coverage of a ~100 km stretch of the Alpine Fault. At present, data are in hand from the first ~2 months of WIZARD array operation. As expected based on previous studies in the region, most of the local seismic activity lies outside the perimeter of the WIZARD array, mainly to the north and east. Included in this activity are swarms of similar earthquakes near the northeastern edge of the array. Earthquake swarms have also been reported by Boese et al. (2012) within the SAMBA array to the southwest. In addition, we identify explosions from tunneling operations associated with a hydropower tunnel construction project in the northern part of the WIZARD array. These explosions should prove useful for constraining the shallow P-wave velocity structure. For our initial tomographic analysis, we will merge new data from the WIZARD, SAMBA, and ALFA'12 arrays with the regional dataset of Eberhart-Phillips and Bannister (2002) for the Southern Alps region of the South Island. The regional dataset includes active-source data from the SIGHT offshore-onshore project as well as arrival times from about 300 earthquakes. In this presentation, we present an update of Eberhart-Phillips and Bannister's (2002) regional 3D P-wave velocity model and preliminary 3D P- and S

  11. Modeling Climate Change and Ecosystem Response—Developing Tools to Guide Resource Management in the Southeastern U.S

    Hughes, W. B.; Dalton, M.; Jones, S.


    Resource managers are at the forefront of a new era of management. They must consider the potential impacts of climate change on the Nation’s resources and proactively develop strategies for dealing with those impacts on terrestrial and aquatic ecosystems. This requires rigorous, scientific understanding of the interactions among the varying components of the atmospheric, hydrologic, terrestrial, and biological systems and the ability to predict future changes to these systems. The Southeast Regional Assessment Project (SERAP) is the first regional assessment by the USGS National Climate Change and Wildlife Science Center to analyze climate-change data and develop tools for assessing how changing conditions are likely to impact resources. The following six components are being developed for SERAP by an interdisciplinary team of USGS and University researchers: Climate Downscaling—Statistical downscaled climate models will provide information on long-term average changes and high-impact climate extremes that other team members need to assess regional change. Relative Sea-Level Rise—Probabilistic forecasts of sea-level rise along the Gulf Coast will incorporate parameters that affect land-surface elevation such as inundation, erosion, subsidence, and accretion. These and other new tools will assist resource managers to visualize areas most impacted by sea-level rise. Terrestrial Habitat Change—Regional climate models integrated with models of urbanization and vegetation dynamics will assess landscape change and its impact on bird species. Streamflow and Aquatic Ecosystems—A watershed model of the Apalachicola-Chatthoochee-Flint River Basin will simulate streamflow and water temperature conditions in response to future climate scenarios. Ecological models that incorporate these simulated streamflow and water-temperature changes will predict the distribution of fish and mussel species under altered conditions. Optimizing Conservation—Strategies for

  12. Generating relevant climate adaptation science tools in concert with local natural resource agencies

    Micheli, L.; Flint, L. E.; Veloz, S.; Heller, N. E.


    To create a framework for adapting to climate change, decision makers operating at the urban-wildland interface need to define climate vulnerabilities in the context of site-specific opportunities and constraints relative to water supply, land use suitability, wildfire risks, ecosystem services and quality of life. Pepperwood's is crafting customized climate vulnerability assessments with selected water and natural resource agencies of California's Sonoma, Marin, Napa and Mendocino counties under the auspices of Climate Ready North Bay, a public-private partnership funded by the California Coastal Conservancy. Working directly with managers from the very start of the process to define resource-specific information needs, we are developing high-resolution, spatially-explicit data products to help local governments and agency staff implement informed and effective climate adaptation strategies. Key preliminary findings for the region using the USGS' Basin Characterization Model (at a 270 m spatial resolution) include a unidirectional trend, independent of greater or lesser precipitation, towards increasing climatic water deficits across model scenarios. Therefore a key message is that managers will be facing an increasingly arid environment. Companion models translate the impacts of shifting climate and hydrology on vegetation composition and fire risks. The combination of drought stress on water supplies and native vegetation with an approximate doubling of fire risks may demand new approaches to watershed planning. Working with agencies we are exploring how to build capacity for protection and enhancement of key watershed functions with a focus on groundwater recharge, facilitating greater drought tolerance in forest and rangeland systems, and considering more aggressive approaches to management of fuel loads. Lessons learned about effective engagement include the need for extended in-depth dialog, translation of key climate adaptation questions into

  13. Parasite zoonoses and climate change: molecular tools for tracking shifting boundaries.

    Polley, Lydden; Thompson, R C Andrew


    For human, domestic animal and wildlife health, key effects of directional climate change include the risk of the altered occurrence of infectious diseases. Many parasite zoonoses have high potential for vulnerability to the new climate, in part because their free-living life-cycle stages and ectothermic hosts are directly exposed to climatic conditions. For these zoonoses, climate change can shift boundaries for ecosystem components and processes integral to parasite transmission and persistence, and these shifts can impact host health. Vulnerable boundaries include those for spatial distributions, host-parasite assemblages, demographic rates, life-cycle phenologies, associations within ecosystems, virulence, and patterns of infection and disease. This review describes these boundary shifts and how molecular techniques can be applied to defining the new boundaries. PMID:19428303

  14. Evaluation of a chemical proxy for fire intensity: A potential tool for studying fire-climate feedbacks

    Hockaday, W. C.; White, J. D.; Von Bargen, J.; Yao, J.


    The legacy of wildfire is recorded in the geologic record, due to the stability of charcoal. Well-preserved charcoal is abundant in paleo-soils and sediments, documenting paleo-fires affecting even the earliest land plants. The dominant role of fire in shaping the biosphere is evidenced by some 40% of the land surface which is occupied by fire-prone and fire-adapted biomes: boreal forest, savanna, grassland, and Mediterranean shrubland. While fire ecologists appreciate the role that fire played in the evolution of these ecosystems, and climate scientists appreciate the role of these biomes in the regulation of Earth's climate, our understanding of the system of fire-vegetation-climate feedbacks is poor. This knowledge gap exists because we lack tools for evaluating change in fire regimes of the past for which climate proxy records exist. Fire regime is a function of fire frequency and fire intensity. Although fire frequency estimates are available from laminated sediment and tree ring records, tools for estimating paleo-fire intensity are lacking. We have recently developed a chemical proxy for fire intensity that is based upon the molecular structure of charcoal, assessed using solid-state nuclear magnetic resonance (NMR) spectroscopy. The molecular dimensions of aromatic domains in charcoal increased linearly (R2 = 0.9) with the intensity (temperature x duration) of heating. Our initial field-based validation in prescribed fires shows a promising correlation (R2 = 0.7) between the proxy-based estimates and thermistor-based measurements of fire intensity. This presentation will discuss the competencies and potential limitations of this novel proxy.

  15. Accelerator mass spectrometry: An important tool for the geochronology of past climatic events

    The development of a good chronology is very important to the understanding of past climatic changes and their relationship to other events. The correlation of distinct climatic features requires a precise chronology. More important also is the need to be able to correlate phenomena which are dated independently. For example, several authors have tried to cross-correlate climatic events observed in Greenland ice cores with climatic events identified in other terrestrial and marine records. The improvement in the radiocarbon calibration curve over the last 25,000 yr and the ability to cross-correlate fluctuations in the 14C curve directly with those in the ice-core records has improved the situation. This extension of the calibration curve uses tree rings to about 11,900 calibrated years and beyond, using corals and varved marine sediments. Other records take us back to the limits of radiocarbon dating, using lake sediments and speleothems. Another important problem in geochronology of past climate change is that events may be manifest differently in different parts of the world. For example, the uniformly 'cold' younger Dryas in northern Europe can be correlated with oscillatory cold and wet behavior in other parts of the world. Chinese loess deposits show an oscillatory pattern during this time period, and the deserts of the American southwest show a drought followed by a period of increased precipitation. Hence, we must identify local and regional variations as well as global events. Many megafuana became extinct close to the end of the late Pleistocene and the exact time of these extinctions, and whether they are cause by climate alone, or by other pressures such as the expansion of humans into previously unoccupied areas. The exact timing of climatic change is also of importance in understanding the expansion of early man in the New World. The exact time of arrival of early man in the western hemisphere is usually thought to be close to the end of the last

  16. Genre Analysis:Comparison between the Original Version of The Won-derful Wizard of Oz and One Version of Its Abridgements



    The Wonderful Wizard of Oz is a world-renowned novel . This essay compares the original version and one abridged version. The abridged version keeps the main plot of the original version and easy to read, but loses the embedded message and decreases pleasure of reading. It may help varied readers choose literary works and induct ELS teachers to arrange reading lists for students.

  17. Quantitative and creative design tools for urban design in cold and windy climates

    Koss, Holger; Jensen, Lotte Bjerregaard; Nielsen, Thomas Alexander Sick


    Technical University of Denmark has had an initiative to combine the University’s existing knowledge, relevant for large scale physical planning, in new ways. Technical-scientific knowledge about traffic and transportation, water-management, snow drift, wind engineering, sun and daylight have prospered in...... between the design processes and the academic knowledge available is a focus area. The effects of climate change and a general higher demand for quantitative assessment of urban planning proposals in hard climatic locations have created a demand for research based design advice. The paper will present...

  18. Etude Climat no. 36 'Regional Climate - Air - Energy Plans: a tool for guiding the energy and climate transition in French regions'

    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: The Regional Climate-Air-Energy Plan (SRCAE - Schema Regional Climat-Air-Energie) was introduced by the Grenelle II legislation. The Plans are co-authored by the State through its decentralised services and the 'Conseil Regionaux' (regional councils) with the objective to guide climate and energy policy in the 26 French regions through to 2020 and 2050. Starting from an assessment of regional greenhouse gas (GHG) emissions, the SRCAE establishes energy transition scenarios based on the sectoral and structural guidelines that constitute the principal framework of the regional strategy. This report offers a detailed analysis of the strategies chosen by the various Regions for a successful transition to low-carbon energy sources, via the study of eleven SRCAEs that were opened to public consultation before the end of July 2012 (Alsace, Aquitaine, Auvergne, Bourgogne, Centre, Champagne-Ardenne, Ile-de-France, Midi-Pyrenees, Nord-Pas de Calais, Picardie and Rhone-Alpes regions). The wide range of methodologies used by the Regions, both to draw up their inventories of GHG emissions and for their scenarios, means that a quantitative comparison between regions or against the national objectives is not possible. Nevertheless, the report establishes a typology of regions and identifies policies that are common to all regions and those chosen in response to local characteristics. Certain guidelines could be applied by other regions of the same type, or could feed into discussions at national level. The report also indicates that the SRCAEs go beyond the competencies of the Regions, highlighting the role of local, national and European decision-making in the success of a regional energy transition. Particular attention was paid to the building and transport sectors, often identified as having the largest potential for reducing

  19. Uncertainty Analysis of Coupled Socioeconomic-Cropping Models: Building Confidence in Climate Change Decision-Support Tools for Local Stakeholders

    Malard, J. J.; Rojas, M.; Adamowski, J. F.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.


    While cropping models represent the biophysical aspects of agricultural systems, system dynamics modelling offers the possibility of representing the socioeconomic (including social and cultural) aspects of these systems. The two types of models can then be coupled in order to include the socioeconomic dimensions of climate change adaptation in the predictions of cropping models.We develop a dynamically coupled socioeconomic-biophysical model of agricultural production and its repercussions on food security in two case studies from Guatemala (a market-based, intensive agricultural system and a low-input, subsistence crop-based system). Through the specification of the climate inputs to the cropping model, the impacts of climate change on the entire system can be analysed, and the participatory nature of the system dynamics model-building process, in which stakeholders from NGOs to local governmental extension workers were included, helps ensure local trust in and use of the model.However, the analysis of climate variability's impacts on agroecosystems includes uncertainty, especially in the case of joint physical-socioeconomic modelling, and the explicit representation of this uncertainty in the participatory development of the models is important to ensure appropriate use of the models by the end users. In addition, standard model calibration, validation, and uncertainty interval estimation techniques used for physically-based models are impractical in the case of socioeconomic modelling. We present a methodology for the calibration and uncertainty analysis of coupled biophysical (cropping) and system dynamics (socioeconomic) agricultural models, using survey data and expert input to calibrate and evaluate the uncertainty of the system dynamics as well as of the overall coupled model. This approach offers an important tool for local decision makers to evaluate the potential impacts of climate change and their feedbacks through the associated socioeconomic system.


    The U.S. Environmental Protection Agency’s Global Change Research Program (GCRP) is an assessment-oriented program within the Office of Research and Development that focuses on assessing how potential changes in climate and other global environmental stressors may impact water qu...

  1. Grazing game: a learning tool for adaptive management in response to climate variability in semiarid areas of Ghana

    Grace B. Villamor


    Full Text Available In West Africa, the most extreme predicted effects of climate change are expected to occur in desert and grassland areas. It is crucial for local populations in this region to better understand what such projections signify to them to identify sound adaptation policies and interventions. We developed a game, called the "grazing game," and conducted trials with local farmers at multiple study sites as a learning tool to better understand their behavior in response to climate variability under semiarid conditions in West Africa and to facilitate social learning. The grazing game was designed to reveal the processes that lead to overgrazing and desertification based on the players' interactions with environmental conditions and their resulting decisions. We conducted a total of 23 game trials around the Vea catchment of the Upper East Region of Ghana involving 243 individual farmers. From the games, local farmers exhibited a very positive response to how the game replicated rainfall fluctuations that they currently experience and led to the identification of coping strategies, such as selling cows, seeking government assistance, and engaging in alternative livelihood means. Participating farmers tended to avoid uncertain situations and sought to simplify their decisions, and the game provided insight into the rich local ecological knowledge of environmental indicators. Based on the game trial results, we found that the game facilitated instrumental and communicative learning among the players and facilitators. Further, the game served as a platform where players could share their views, knowledge, and perceptions of climate-related issues.

  2. Urban Climate Change Resilience as a Teaching Tool for a STEM Summer Bridge Program

    Rosenzweig, B.; Vorosmarty, C. J.; Socha, A.; Corsi, F.


    Community colleges have been identified as important gateways for the United States' scientific workforce development. However, students who begin their higher education at community colleges often face barriers to developing the skills needed for higher-level STEM careers, including basic training in mathematics, programming, analytical problem solving, and cross-disciplinary communication. As part of the Business Higher Education Forum's Undergraduate STEM Interventions in Industry (USI2) Consortium, we are developing a summer bridge program for students in STEM fields transferring from community college to senior (4-year) colleges at the City University of New York. Our scientific research on New York City climate change resilience will serve as the foundation for the bridge program curriculum. Students will be introduced to systems thinking and improve their analytical skills through guided problem-solving exercises using the New York City Climate Change Resilience Indicators Database currently being developed by the CUNY Environmental Crossroads Initiative. Students will also be supported in conducting an introductory, independent research project using the database. The interdisciplinary nature of climate change resilience assessment will allow students to explore topics related to their STEM field of interest (i.e. engineering, chemistry, and health science), while working collaboratively across disciplines with their peers. We hope that students that participate in the bridge program will continue with their research projects through their tenure at senior colleges, further enhancing their academic training, while actively contributing to the study of urban climate change resilience. The effectiveness of this approach will be independently evaluated by NORC at the University of Chicago, as well as through internal surveying and long-term tracking of participating student cohorts.

  3. Estimating the impact of extreme climatic events on riverine sediment transport: new tools and methods

    Lajeunesse, E.; Delacourt, C.; Allemand, P.; Limare, A.; Dessert, C.; Ammann, J.; Grandjean, P.


    A series of recent works have underlined that the flux of material exported outside of a watershed is dramatically increased during extreme climatic events, such as storms, tropical cyclones and hurricanes [Dadson et al., 2003 and 2004; Hilton et al., 2008]. Indeed the exceptionally high rainfall rates reached during these events trigger runoff and landsliding which destabilize slopes and accumulate a significant amount of sediments in flooded rivers. This observation raises the question of the control that extreme climatic events might exert on the denudation rate and the morphology of watersheds. Addressing this questions requires to measure sediment transport in flooded rivers. However most conventional sediment monitoring technics rely on manned operated measurements which cannot be performed during extreme climatic events. Monitoring riverine sediment transport during extreme climatic events remains therefore a challenging issue because of the lack of instruments and methodologies adapted to such extreme conditions. In this paper, we present a new methodology aimed at estimating the impact of extreme events on sediment transport in rivers. Our approach relies on the development of two instruments. The first one is an in-situ optical instrument, based on a LISST-25X sensor, capable of measuring both the water level and the concentration of suspended matter in rivers with a time step going from one measurement every hour at low flow to one measurement every 2 minutes during a flood. The second instrument is a remote controlled drone helicopter used to acquire high resolution stereophotogrammetric images of river beds used to compute DEMs and to estimate how flash floods impact the granulometry and the morphology of the river. These two instruments were developed and tested during a 1.5 years field survey performed from june 2007 to january 2009 on the Capesterre river located on Basse-Terre island (Guadeloupe archipelago, Lesser Antilles Arc).

  4. Application of flood risk modelling in a web-based geospatial decision support tool for coastal adaptation to climate change

    Knight, P. J.; Prime, T.; Brown, J. M.; Morrissey, K.; Plater, A. J.


    A pressing problem facing coastal decision makers is the conversion of "high-level" but plausible climate change assessments into an effective basis for climate change adaptation at the local scale. Here, we describe a web-based, geospatial decision support tool (DST) that provides an assessment of the potential flood risk for populated coastal lowlands arising from future sea-level rise, coastal storms, and high river flows. This DST has been developed to support operational and strategic decision making by enabling the user to explore the flood hazard from extreme events, changes in the extent of the flood-prone areas with sea-level rise, and thresholds of sea-level rise where current policy and resource options are no longer viable. The DST is built in an open-source GIS that uses freely available geospatial data. Flood risk assessments from a combination of LISFLOOD-FP and SWAB (Shallow Water And Boussinesq) models are embedded within the tool; the user interface enables interrogation of different combinations of coastal and river events under rising-sea-level scenarios. Users can readily vary the input parameters (sea level, storms, wave height and river flow) relative to the present-day topography and infrastructure to identify combinations where significant regime shifts or "tipping points" occur. Two case studies demonstrate the attributes of the DST with respect to the wider coastal community and the UK energy sector. Examples report on the assets at risk and illustrate the extent of flooding in relation to infrastructure access. This informs an economic assessment of potential losses due to climate change and thus provides local authorities and energy operators with essential information on the feasibility of investment for building resilience into vulnerable components of their area of responsibility.

  5. Application of flood risk modelling in a web-based geospatial decision support tool for coastal adaptation to climate change

    P. J. Knight


    Full Text Available A pressing problem facing coastal decision makers is the conversion of "high level" but plausible climate change assessments into an effective basis for climate change adaptation at the local scale. Here, we describe a web-based, geospatial decision-support tool (DST that provides an assessment of the potential flood risk for populated coastal lowlands arising from future sea-level rise, coastal storms and high river flows. This DST has been developed to support operational and strategic decision making by enabling the user to explore the flood hazard from extreme events, changes in the extent of the flood-prone areas with sea-level rise, and thresholds of sea-level rise where current policy and resource options are no longer viable. The DST is built in an open source GIS that uses freely available geospatial data. Flood risk assessments from a combination of LISFLOOD-FP and SWAB models are embedded within the tool; the user interface enables interrogation of different combinations of coastal and river events under rising sea-level scenarios. Users can readily vary the input parameters (sea level, storms, wave height and river flow relative to the present-day topography and infrastructure to identify combinations where significant regime shifts or "tipping points" occur. Two case studies are used to demonstrate the attributes of the DST with respect to the wider coastal community and the UK energy sector. Examples report on the assets at risk and illustrate the extent of flooding in relation to infrastructure access. This informs an economic assessment of potential losses due to climate change and thus provides local authorities and energy operators with essential information on the feasibility of investment for building resilience into vulnerable components of their area of responsibility.

  6. Dynamic Bayesian Networks as a Decision Support tool for assessing Climate Change impacts on highly stressed groundwater systems

    Molina, José-Luis; Pulido-Velázquez, David; García-Aróstegui, José Luis; Pulido-Velázquez, Manuel


    SummaryBayesian Networks (BNs) are powerful tools for assessing and predicting consequences of water management scenarios and uncertain drivers like climate change, integrating available scientific knowledge with the interests of the multiple stakeholders. However, among their major limitations, the non-transient treatment of the cause-effect relationship stands out. A Decision Support System (DSS) based on Dynamic Bayesian Networks (DBNs) is proposed here aimed to palliate that limitation through time slicing technique. The DSS comprises several classes (Object-Oriented BN networks), especially designed for future 5 years length time steps (time slices), covering a total control period of 30 years (2070-2100). The DSS has been developed for assessing impacts generated by different Climate Change (CC) scenarios (generated from several Regional Climatic Models (RCMs) under two emission scenarios, A1B and A2) in an aquifer system (Serral-Salinas) affected by intensive groundwater use over the last 30 years. A calibrated continuous water balance model was used to generate hydrological CC scenarios, and then a groundwater flow model (MODFLOW) was employed in order to analyze the aquifer behavior under CC conditions. Results obtained from both models were used as input for the DSS, considering rainfall, aquifer recharge, variation of piezometric levels and temporal evolution of aquifer storage as the main hydrological components of the aquifer system. Results show the evolution of the aquifer storage for each future time step under different climate change conditions and under controlled water management interventions. This type of applications would allow establishing potential adaptation strategies for aquifer systems as the CC comes into effect.

  7. Development of water use scenarios as a tool for adaptation to climate change

    R. Jacinto


    Full Text Available The project ADAPTACLIMA, promoted by EPAL, the largest Portuguese Water Supply Utility, aims to provide the company with an adaptation strategy in the medium and long term to reduce the vulnerability of its activities to climate change. We used the four scenarios (A1, A2, B1, B2 adopted in the Special Report Emissions Scenarios (SRES of the IPCC (Intergovernmental Panel on Climate Change to produce local scenarios of water use. Available population SRES for Portugal were downscaled to the study area using a linear approach. Local land use scenarios were produced using the following steps: (1 characterization of the present land use for each municipality of the study area using Corine Land Cover and adaptation of the CLC classes to those used in the SRES; (2 identification of recent tendencies in land use change for the study area; (3 identification of SRES tendencies for land use change in Europe; and (4 production of local scenarios of land use. Water use scenarios were derived considering both population and land use scenarios as well as scenarios of change in other parameters (technological developments, increases in efficiency, climate changes, or political and behavioural changes. The A2 scenario forecasts an increase in population (+16% in the study area while the other scenarios show a reduction in the resident population (−6 to 8%. All scenarios, but especially A1, show a reduction in agricultural area and an increase in urban area. Regardless of the scenario, water use will progressively be reduced until 2100. These reductions are mainly due to increased water use efficiency and the reduction of irrigated land. The results accord with several projects modelling water use at regional and global level.

  8. A modeling tool to evaluate regional coral reef responses to changes in climate and ocean chemistry

    Buddemeier, R.W.; Jokiel, P.L.; Zimmerman, K.M.; Lane, D.R.; Carey, J.M.; Bohling, G.C.; Martinich, J.A.


    We developed a spreadsheet-based model for the use of managers, conservationists, and biologists for projecting the effects of climate change on coral reefs at local-to-regional scales. The COMBO (Coral Mortality and Bleaching Output) model calculates the impacts to coral reefs from changes in average SST and CO2 concentrations, and from high temperature mortality (bleaching) events. The model uses a probabilistic assessment of the frequency of high temperature events under a future climate to address scientific uncertainties about potential adverse effects. COMBO offers data libraries and default factors for three selected regions (Hawai'i, Great Barrier Reef, and Caribbean), but it is structured with user-selectable parameter values and data input options, making possible modifications to reflect local conditions or to incorporate local expertise. Preliminary results from sensitivity analyses and simulation examples for Hawai'i demonstrate the relative importance of high temperature events, increased average temperature, and increased CO2 concentration on the future status of coral reefs; Illustrate significant interactions among variables; and allow comparisons of past environmental history with future predictions. ?? 2008, by the American Society of Limnology and Oceanugraphy, Inc.

  9. Life-cycle modelling of waste management in Europe: tools, climate change and waste prevention

    Gentil, Emmanuel

    disposal to resources management, requiring modelling tools, such as life-cycle assessment (LCA) models, for carrying out environmental assessment, because of the complexity of the systems. A review of the key waste LCA models was performed in the present PhD project and showed that the results...... of these models most importantly depend on the technical assumptions and parameters defining waste management technologies. Some of these technical assumptions have evolved significantly from the early models to the more recent ones. An important purpose of waste LCA models is to perform environmental assessments...... of waste management systems and communicate the outcomes to develop evidence-based waste management policy. Global warming potential is an environmental indicator routinely modelled in LCA tools, but also reported by a number of other accounting protocols, leading to potential confusion. In this thesis...

  10. Local air quality management and climate change: tools for joined up policy

    Ireland, Matthew P.


    All tiers of UK Government are required to include a range of environmental objectives in developing land use and transportation plans. The current trend towards regionalisation of governance brings with it uncertainty and debate. Part of this debate must include determination of the optimum scale for implementing land use and transportation plans to incorporate environmental objectives. This thesis is the result of developing tools to assist in this debate, using the environmental objectives...

  11. NOAA tools to support CSC and LCC regional climate science priorities in the western Gulf of Mexico

    Brown, D. P.; Marcy, D.; Robbins, K.; Shafer, M.; Stiller, H.


    The National Oceanic and Atmospheric Administration (NOAA) is an active regional partner with the Department of Interior (DOI) in supplying and supporting the delivery of climate science and services. A primary mechanism for NOAA-DOI coordination at the regional scale is the Landscape Conservation Cooperative (LCC) network, which is supported in part by DOI Climate Science Centers (CSC). Together, the CSCs and LCCs provide a framework to identify landscape-scale science and services priorities for conservation and management. As a key partner of the CSCs and an active member of many LCCs, NOAA is working to ensure its own regional product and service delivery efforts will help address these conservation and management challenges. Two examples of NOAA's regional efforts are highlighted here, with a focus on the coastal and interior geographies of the western Gulf of Mexico where NOAA partners with the South Central CSC and participates as a member of the Gulf Coast Prairie LCC. Along the Texas coastline, a sea level rise and coastal flooding impacts viewer, produced by NOAA's Coastal Services Center and available via its Digital Coast interface, allows constituents to visualize estimates of sea level rise, measures of uncertainty, flood frequencies, and environmental (e.g., marsh migration) and socioeconomic (e.g., tidal flooding of built environments) impacts. In the interior of Texas and Louisiana, NOAA's Southern Regional Climate Center is leading a consortium of partners in the development of a unified source of regional water reservoir information, including current conditions, a historical database, and web-based visualization tools to illustrate spatio-temporal variations in water availability to a broad array of hydrological, agricultural, and other customers. These two examples of NOAA products can, in their existing forms, support regional conservation and management priorities for CSCs and LCCs by informing vulnerability assessments and adaptation

  12. Developing Coastal Adaptation to Climate Change in the New York City Infrastructure-Shed: Process, Approach, Tools, and Strategies

    Rosenzweig, Cynthia; Solecki, William D.; Blake, Reginald; Bowman, Malcolm; Faris, Craig; Gornitz, Vivien; Horton, Radley; Jacob, Klaus; LeBlanc, Alice; Leichenko, Robin; Linkin, Megan; Major, David; O'Grady, Megan; Patrick, Lesley; Sussman, Edna; Yohe, Gary; Zimmerman, Rae


    While current rates of sea level rise and associated coastal flooding in the New York City region appear to be manageable by stakeholders responsible for communications, energy, transportation, and water infrastructure, projections for sea level rise and associated flooding in the future, especially those associated with rapid icemelt of the Greenland and West Antarctic Icesheets, may be beyond the range of current capacity because an extreme event might cause flooding and inundation beyond the planning and preparedness regimes. This paper describes the comprehensive process, approach, and tools developed by the New York City Panel on Climate Change (NPCC) in conjunction with the region s stakeholders who manage its critical infrastructure, much of which lies near the coast. It presents the adaptation approach and the sea-level rise and storm projections related to coastal risks developed through the stakeholder process. Climate change adaptation planning in New York City is characterized by a multi-jurisdictional stakeholder-scientist process, state-of-the-art scientific projections and mapping, and development of adaptation strategies based on a risk-management approach.

  13. Installing and maintaining CDAT (Climate Data Analysis Tools) in multi-user and multi-platform environments

    Peterschmitt, Jean-Yves


    CDAT is an extensible software environment for the climate scientist, based on the widely used python scripting language. Thanks to all the bundled python modules, CDAT can be used for a wide range of applications, from the powerful replacement of traditional shell scripts for automated data-processing to the interactive graphical analysis of scientific data (with an emphasis on climate data). CDAT is traditionally used as a single-user desktop tool (each user is responsible for his own version of CDAT). This poster will show how CDAT can be centrally installed, tested and maintained so that multiple users can easily and seamlessly use it in their laboratory and remote computing centers. We use the combination of standard initialization scripts (for the CDAT-manager and the end users) and of standard installation steps to deploy CDAT consistently on all the managed platforms (with the possible concurrent installation of different versions on the same platform). Reference:

  14. The Freshwater Oyster Etheria elliptica as a Tool to Reconstruct Climate Variability across the African Continent

    Vanhove, D.; Gillikin, D. P.; Kelemen, Z.; Bouillon, S.


    The bivalve Etheria elliptica occurs abundantly in (sub)tropical African river basins. We investigate its potential use for the reconstruction of ambient water chemistry and climate by means of stable oxygen isotope ratios in specimens from the Congo river (Kisangani), the Oubangui river (Bangui) and the Victoria Nile (Jinja). Unlike other common African bivalve species, E. elliptica contains distinct organic-rich growth increments, previously suggested to correlate with lunar periodicity. However, cavities in the shell complicate age reading and little is known about the exact timing and continuity of these growth increments. We set up a comparative study between different techniques to visualize and enhance growth features, and find that staining with Mutvei's solution and confocal fluorescence microscopy perform equally well. Despite the presence of cavities, growth lines can generally be followed from umbo to shell margin. Moreover, preliminary δ18O results of two micro-sampled specimens from the Oubangui river show that 12-13 growth lines occur within one year of growth. This corroborates that these increments can be used as temporal anchor points, providing a moon-monthly time frame for sequential microchemistry. In two Congo river specimens, δ18Oshell values vary between -1.9 and -3.8 ‰ (VPDB), in line with a predicted range of -2.1 to -4.1 ‰ based on fortnightly δ18Owater and T monitoring. Reconstructed intra-annual δ18Owater variability from δ18Oshell values and observed T correlates with discharge, reflecting rainfall and runoff variability in the upstream catchment area. In two Victoria Nile specimens, collected 20 km downstream from Lake Victoria, δ18Oshell values are high and relatively constant, varying between +1.8 and +3.2 ‰. Enrichment of 18Oshell is consistent with isotopically heavy rainfall signatures and elevated surface evaporation in Lake Victoria. These first results suggest that E. elliptica is well-suited for the reconstruction

  15. Material input and geometry data editor-wizard for Monte Carlo numerical experiments in medical physics using FOTELP/EM code

    In this paper, the software package for Monte Carlo numerical experiments in medical physics is presented. The application of Monte Carlo simulation methods to medical physics is very complex; especially the description of materials and geometrical forms of source and irradiated region and without some form of automation of simulation steps is difficult to achieve. Therefore, we have developed Fotelp Editor Wizard to facilitate the use of own Monte Carlo code, FOTELP/EM. The Fotelp Editor Wizard is a specialised integrated environment in which we can define geometrical forms and describe properties of chosen objects. Users can quickly start programs of FOTELP/EM packages, test definitions of geometrical areas, data preparation about materials and start programs for visualisation of the simulation results. The software application for calculation absorbed dose in nuclear medicine, radiotherapy and radiology will be developed. (author)

  16. Spatial Analysis of Climate Change Effects on Urbanized Delta Territories as a Tool for Planning: The Case of the Lower Parana Delta

    Zagare, V.M.E.


    This paper presents the spatial implication of climate change-related variables and the role of the representation and analysis of the data as a tool for the development of planning policies in urbanized deltas. The presentation illustrates some partial and preliminary results of a broader investiga

  17. Using a map-based assesment tool for the development of cost-effective WFD river basin action programmes in a changing climate

    Kaspersen, Bjarke Stoltze; Vammen Jacobsen, Torsten; Brian Butts, Michael;


    in order to develop robust and cost-effective adaptation strategies for the next WFD RBMP cycles. The aim of this paper is to demonstrate and discuss how a map-based PoMs assessment tool can support the development of adaptive and cost-effective strategies to reduce N losses in the Isefjord and...... Roskilde Fjord River Basin in the north east of Denmark. The tool facilitates assessments of the application of agri-environmental measures that are targeted towards low retention agricultural areas, where limited or no surface and subsurface N reduction takes place. Effects of climate change on nitrate...... particular PoMs investigated in our study show that WFD N reduction targets can be achieved by targeted land use changes on approx. 4% of the agricultural area under current climate conditions and approx. 9% of the agricultural area, when projected climate change impacts on nitrate leaching rates are...

  18. Appendix 2. Guide for Running AgMIP Climate Scenario Generation Tools with R in Windows, Version 2.3

    Hudson, Nicholas; Ruane, Alexander Clark


    This Guide explains how to create climate series and climate change scenarios by using the AgMip Climate team's methodology as outlined in the AgMIP Guide for Regional Assessment: Handbook of Methods and Procedures. It details how to: install R and the required packages to run the AgMIP Climate Scenario Generation scripts, and create climate scenarios from CMIP5 GCMs using a 30-year baseline daily weather dataset. The Guide also outlines a workflow that can be modified for application to your own climate data.

  19. Using EPA Tools and Data Services to Inform Changes to Design Storm Definitions for Wastewater Utilities based on Climate Model Projections

    Tryby, M.; Fries, J. S.; Baranowski, C.


    Extreme precipitation events can cause significant impacts to drinking water and wastewater utilities, including facility damage, water quality impacts, service interruptions and potential risks to human health and the environment due to localized flooding and combined sewer overflows (CSOs). These impacts will become more pronounced with the projected increases in frequency and intensity of extreme precipitation events due to climate change. To model the impacts of extreme precipitation events, wastewater utilities often develop Intensity, Duration, and Frequency (IDF) rainfall curves and "design storms" for use in the U.S. Environmental Protection Agency's (EPA) Storm Water Management Model (SWMM). Wastewater utilities use SWMM for planning, analysis, and facility design related to stormwater runoff, combined and sanitary sewers, and other drainage systems in urban and non-urban areas. SWMM tracks (1) the quantity and quality of runoff made within each sub-catchment; and (2) the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period made up of multiple time steps. In its current format, EPA SWMM does not consider climate change projection data. Climate change may affect the relationship between intensity, duration, and frequency described by past rainfall events. Therefore, EPA is integrating climate projection data available in the Climate Resilience Evaluation and Awareness Tool (CREAT) into SWMM. CREAT is a climate risk assessment tool for utilities that provides downscaled climate change projection data for changes in the amount of rainfall in a 24-hour period for various extreme precipitation events (e.g., from 5-year to 100-year storm events). Incorporating climate change projections into SWMM will provide wastewater utilities with more comprehensive data they can use in planning for future storm events, thereby reducing the impacts to the utility and customers served from flooding and stormwater issues.

  20. A numerical modelling tool for assessing the impact of climate change and management options on water supply systems

    Romano, Emanuele; Guyennon, Nicolas; Mariani, Davide; Bruna Petrangeli, Anna; Portoghese, Ivan


    Conditions of scarcity for a water supply system occur when the available resource are not able to satisfy the connected demands. They can arise both from a decreasing of the inflow to the exploited resources and/or from a increasing of the demand. Such conditions can be assessed by a water balance model able to simulate both the hydrological processes describing the relationships between the meteorological forcing (precipitation) and the inflows to the exploited reservoir, and the intra- and inter-annual time distribution of the connected demand and the reservoir management policies. We present a numerical modelling tool, developed for the management of the Maggiore Lake, that computes at daily scale the water budget of such reservoir taking into account 1) the monthly precipitation over the watershed basin and the related inflow; 2) the seasonal demand for irrigation and 3) the operative hydrometric levels constraints to the lake water withdrawal. The model represents precipitation over the basin through the space mean of the standardized precipitation indices computed at different aggregation scales using observed time series. The relationship between the precipitation regime and the inflow to the reservoir is obtained through a simple multilinear regression model, considering the SPI computed at 1, 3 and 6 months as independent variables: this allows to take hydrological processes into account featuring different characteristic times and to simulate both the historic inflow regime and the possible conditions forecast by climate scenarios. The regression model is validated on the precipitation and lake inflow observations in the period 1996-2013 using a leave-one-out cross validation. The seasonal irrigation demand is assigned based on the extensions of crops fed by the lake water and regardless of the climate conditions; the actual supply is limited by the operative hydrometric range of allowable water levels, which stop water distribution when the lake level

  1. A Hybrid Evaluation System Framework (Shell & Web) with Standardized Access to Climate Model Data and Verification Tools for a Clear Climate Science Infrastructure on Big Data High Performance Computers

    Kadow, Christopher; Illing, Sebastian; Kunst, Oliver; Ulbrich, Uwe; Cubasch, Ulrich


    The project 'Integrated Data and Evaluation System for Decadal Scale Prediction' (INTEGRATION) as part of the German decadal prediction project MiKlip develops a central evaluation system. The fully operational hybrid features a HPC shell access and an user friendly web-interface. It employs one common system with a variety of verification tools and validation data from different projects in- and outside of MiKlip. The evaluation system is located at the German Climate Computing Centre (DKRZ) and has direct access to the bulk of its ESGF node including millions of climate model data sets, e.g. from CMIP5 and CORDEX. The database is organized by the international CMOR standard using the meta information of the self-describing model, reanalysis and observational data sets. Apache Solr is used for indexing the different data projects into one common search environment. This implemented meta data system with its advanced but easy to handle search tool supports users, developers and their tools to retrieve the required information. A generic application programming interface (API) allows scientific developers to connect their analysis tools with the evaluation system independently of the programming language used. Users of the evaluation techniques benefit from the common interface of the evaluation system without any need to understand the different scripting languages. Facilitating the provision and usage of tools and climate data increases automatically the number of scientists working with the data sets and identify discrepancies. Additionally, the history and configuration sub-system stores every analysis performed with the evaluation system in a MySQL database. Configurations and results of the tools can be shared among scientists via shell or web-system. Therefore, plugged-in tools gain automatically from transparency and reproducibility. Furthermore, when configurations match while starting a evaluation tool, the system suggests to use results already produced

  2. 《绿野仙踪》与泰山%Study on the Relationship Between The Wizard of oz and Taishan Mountain



    古代小说写及泰山的作品很多,但以泰山形象被摄入作品的直接描写之大量与深刻而言,古代章回小说中李百川《绿野仙踪》可谓泰山的最热“粉丝”,与泰山的关系更为密切。泰山是《绿野仙踪》最重要的故事背景,小说描绘了风景优美的泰山景观,展示了泰山丰富的人文内涵和宗教民俗,并且在语言修辞上使用“泰山”的频率也较高。作者李百川熟悉泰山并对其情有独钟,泰山文化作为《绿野仙踪》的重要背景和内涵值得研究。%There are many ancient novels about Taishan Mountain. In the works with direct description to the image of Taishan Mountain abundantly and deeply, the ancient novel The Wizard of oz Written by Li Baichun is the hottest “fans”of Taishan Mountain,with a closer relationship to it. Taishan Mountain is the most important background of The Wizard of oz,which describes the beautiful scenery of Taishan Mountain, exposes rich humanistic connotations and religious customs of Taishan Mountain,and employs frequently“Taishan Mountain”in rhetorics. The author Li Baichun was familiar with Taishan Mountain and showed special preference to it. The Taishan Mountain culture as the important background and conotation of The Wizard of oz deserves the study.

  3. Spatial Analysis of Climate Change Effects on Urbanized Delta Territories as a Tool for Planning: The Case of the Lower Parana Delta

    Zagare, V.M.E.


    This paper presents the spatial implication of climate change-related variables and the role of the representation and analysis of the data as a tool for the development of planning policies in urbanized deltas. The presentation illustrates some partial and preliminary results of a broader investigation regarding socio-economic variables too, in order to analyze the spatial impact of changes in deltaic systems. In the deltas’ territories, a complex relation between urban patterns and the natu...

  4. Calculating green house gas emissions for buildings: analysis of the performance of several carbon counting tools in different climates

    La Roche, P.


    Full Text Available The first step to reduce greenhouse gas emissions from buildings is to be able to count them. If this counting is integrated in the design process the impact of architectural design strategies can be evaluated more easily and a building with reduced emissions can be developed. Fifty greenhouse gas calculators and energy modeling software were compared in the main areas in which buildings are responsible for carbon emissions: operation, water, construction, waste and transportation to and from the building. These tools had to be free and easy to use so that they could be used by everybody in the initial phases of the architectural design process, while providing sufficient precision to provide useful input to the designer. The effect of modifying the envelope insulation, the quality of the windows, the efficiency of the heating and cooling systems, and integrating direct gain and night ventilation, on operation emissions was evaluated with two energy modeling tools: HEED and Design Builder. Results demonstrated that implementing appropriate design strategies significantly reduced emissions from operation in all climates. An easy to implement protocol that combines several tools for GHG counting in buildings is provided at the end.

    El primer paso para reducir las emisiones de gases invernadero generadas por las edificaciones es el poder calcularlas adecuadamente. Si esta actividad se integra al proceso de diseño arquitectónico; entonces el impacto de las estrategias de diseño se puede evaluar más fácilmente; resultando un edificio con menores emisiones. Cincuenta herramientas de cálculo de emisiones y programas de modelaje se compararon en las áreas en las cuales los edificios son responsables de las emisiones de gases invernadero: operación; agua; construcción; basura; y transporte desde y hasta el edificio. Las herramientas comparadas debían ser fáciles de utilizar; pero con suficiente precisión para proveer información de

  5. Using a map-based assessment tool for the development of cost-effective WFD river basin action programmes in a changing climate.

    Kaspersen, Bjarke Stoltze; Jacobsen, Torsten Vammen; Butts, Michael Brian; Jensen, Niels H; Boegh, Eva; Seaby, Lauren Paige; Müller, Henrik Gioertz; Kjaer, Tyge


    For the 2nd and 3rd river basin management cycles (2015-2027) of the Water Framework Directive (WFD), EU Member States are required to fully integrate climate change into the process of river basin management planning (RBMP). Complying with the main WFD objective of achieving 'good ecological status' in all water bodies in Denmark requires Programmes of Measures (PoMs) to reduce nitrogen (N) pollution from point and diffuse sources. Denmark is among the world's most intensively farmed countries and in spite of thirty years of significant policy actions to reduce diffuse nutrient emissions, there is still a need for further reductions. In addition, the impacts of climate change are projected to lead to a situation where nutrient loads will have to be reduced still further in comparison to current climate conditions. There is an urgent need to address this challenge in WFD action programmes in order to develop robust and cost-effective adaptation strategies for the next WFD RBMP cycles. The aim of this paper is to demonstrate and discuss how a map-based PoMs assessment tool can support the development of adaptive and cost-effective strategies to reduce N losses in the Isefjord and Roskilde Fjord River Basin in the north east of Denmark. The tool facilitates assessments of the application of agri-environmental measures that are targeted towards low retention agricultural areas, where limited or no surface and subsurface N reduction takes place. Effects of climate change on nitrate leaching were evaluated using the dynamic agro-ecosystem model 'Daisy'. Results show that nitrate leaching rates increase by approx. 25% under current management practices. This impact outweighs the expected total N reduction effect of Baseline 2015 and the first RBMP in the case study river basin. The particular PoMs investigated in our study show that WFD N reduction targets can be achieved by targeted land use changes on approx. 4% of the agricultural area under current climate conditions

  6. The Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT): Data Analysis and Visualization for Geoscience Data

    Williams, Dean [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doutriaux, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Patchett, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Sean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Ross [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Steed, Chad [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Krishnan, Harinarayan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Silva, Claudio [NYU Polytechnic School of Engineering, New York, NY (United States); Chaudhary, Aashish [Kitware, Inc., Clifton Park, NY (United States); Bremer, Peer-Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pugmire, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Childs, Hank [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prabhat, Mr. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States); Bauer, Andrew [Kitware, Inc., Clifton Park, NY (United States); Pletzer, Alexander [Tech-X Corp., Boulder, CO (United States); Poco, Jorge [NYU Polytechnic School of Engineering, New York, NY (United States); Ellqvist, Tommy [NYU Polytechnic School of Engineering, New York, NY (United States); Santos, Emanuele [Federal Univ. of Ceara, Fortaleza (Brazil); Potter, Gerald [NASA Johnson Space Center, Houston, TX (United States); Smith, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maxwell, Thomas [NASA Johnson Space Center, Houston, TX (United States); Kindig, David [Tech-X Corp., Boulder, CO (United States); Koop, David [NYU Polytechnic School of Engineering, New York, NY (United States)


    To support interactive visualization and analysis of complex, large-scale climate data sets, UV-CDAT integrates a powerful set of scientific computing libraries and applications to foster more efficient knowledge discovery. Connected through a provenance framework, the UV-CDAT components can be loosely coupled for fast integration or tightly coupled for greater functionality and communication with other components. This framework addresses many challenges in the interactive visual analysis of distributed large-scale data for the climate community.

  7. Are post-fire silvicultural treatments a useful tool to fight the climate change threat in terms of plant diversity?

    Hedo de Santiago, Javier; Esteban Lucasr Borja, Manuel; de las Heras, Jorge


    Adaptative forest management demands a huge scientific knowledge about post-fire vegetation dynamics, taking into account the current context of global change. We hypothesized that management practices should be carry out taking into account the climate change effect, to obtain better results in the biodiversity maintenance across time. All of this with respect to diversity and species composition of the post-fire naturally regenerated Aleppo pine forests understory. The study was carried out in two post-fire naturally regenerated Aleppo pine forests in the Southeastern of the Iberian Peninsula, under contrasting climatic conditions: Yeste (Albacete) shows a dry climate and Calasparra (Murcia) shows a semiarid climate. Thinning as post-fire silvicultural treatment was carried out five years after the wildfire event, in the year 1999. An experiment of artificial drought was designed to evacuate 15% of the natural rainfall in both sites, Yeste and Calasparra, to simulate climate change. Taking into account all the variables (site, silvicultural treatment and artificial drought), alpha diversity indices including species richness, Shannon and Simpson diversity indices, and plant cover, were analyzed as a measure of vegetation abundance. The results showed that plant species were affected by thinning, whereas induced drought affected total cover and species, with lower values at Yeste. Significant site variation was also observed in soil properties, species richness and total plant cover, conversely to the plant species diversity indices. We conclude that the plant community shows different responses to a simulated environment of climate change depending on the experimental site.

  8. Urban planning as a tool to cope with climate change. Cooperation between the University of Lisbon and the Municipality

    Alcoforado, M. J.; Andrade, H.; Lopes, A.


    Climate change is a current and urgent topic. Urban areas are particularly vulnerable to climate change due to the concentration of population, infrastructures and activities and to their specific climatic features, for example the urban heat island. In certain cities, temperature has already risen to values predicted for the planet's mean temperature in 2100. Some questions arise: Is there a direct or indirect effect of urban warming upon planetary climate change? What are the consequences of global warming to the urban heat island? What can be done to cope with climate change impacts in urban areas without compromising their sustainability, that is, to minimise the impacts upon the environment while maintaining the quality of life of urban dwellers? On the other hand, cities have the potential (in terms of critical mass and technology) to promote innovative solutions that are easily reproducible on a wider scale. The great concentration of resources may, in certain cases, improve our capacity to take the most appropriate action. In cities, there are potentially less obstructions to the implementation of measures and to decision making than at a national and global level. So, the main question is: should we not consider cities as privileged places to test different types of adaptation to climate change? We are still at an initial stage in the development of a global answer to the threat of climate change and in this sense cities can be an advantageous starting point. Lisbon's case will be presented. Geographers form the University of Lisbon have worked together with the Municipality of Lisbon and have studied Lisbon's urban climate in order to give spatialized climate guidelines, both for the whole city and at a city district level. The mapping of Lisbon's physical features was done using a Geographical Information System. A "ventilation map” was produced using a Digital Terrain Model and data of urban roughness. A "built-density” map was also prepared based

  9. Polar Bears or People?: How Framing Can Provide a Useful Analytic Tool to Understand & Improve Climate Change Communication in Classrooms

    Busch, K. C.


    Not only will young adults bear the brunt of climate change's effects, they are also the ones who will be required to take action - to mitigate and to adapt. The Next Generation Science Standards include climate change, ensuring the topic will be covered in U.S. science classrooms in the near future. Additionally, school is a primary source of information about climate change for young adults. The larger question, though, is how can the teaching of climate change be done in such a way as to ascribe agency - a willingness to act - to students? Framing - as both a theory and an analytic method - has been used to understand how language in the media can affect the audience's intention to act. Frames function as a two-way filter, affecting both the message sent and the message received. This study adapted both the theory and the analytic methods of framing, applying them to teachers in the classroom to answer the research question: How do teachers frame climate change in the classroom? To answer this question, twenty-five lessons from seven teachers were analyzed using semiotic discourse analysis methods. It was found that the teachers' frames overlapped to form two distinct discourses: a Science Discourse and a Social Discourse. The Science Discourse, which was dominant, can be summarized as: Climate change is a current scientific problem that will have profound global effects on the Earth's physical systems. The Social Discourse, used much less often, can be summarized as: Climate change is a future social issue because it will have negative impacts at the local level on people. While it may not be surprising that the Science Discourse was most often heard in these science classrooms, it is possibly problematic if it were the only discourse used. The research literature on framing indicates that the frames found in the Science Discourse - global scale, scientific statistics and facts, and impact on the Earth's systems - are not likely to inspire action-taking. This

  10. Forest management under changing climate conditions: Is timing a tool for Sustainable Forest Management? Relevant questions for research development

    D'Aprile, Fabrizio; McShane, Paul; Tapper, Nigel


    Change of climate conditions influence energy fluxes applicable to forest ecosystems. These affect cycles of nutrients and materials, primary productivity of the ecosystem, biodiversity, ecological functionality and, consequently, carbon equilibria of the forest ecosystem. Temporal factors influence physical, biological, ecological, and climatic processes and functions. For example, seasonality, cycles, periodicity, and trends in climate variables; tree growth, forest growth, and forest metabolic activities (i.e., photosynthesis and respiration) are commonly known to be time-related. In tropical forests, the impacts of changing climate conditions may exceed temperature and/or precipitation thresholds critical to forest tree growth or health. Historically, forest management emphasises growth rates and financial returns as affected by species and site. Until recently, the influence of climate variability on growth dynamics has not been influential in forest planning and management. Under this system, especially in climatic and forest regions where most of species are stenoecious, periodical wood harvesting may occur in any phase of growth (increasing, decreasing, peak, and trough). This scenario presents four main situations: a) harvesting occurs when the rate of growth is decreasing: future productivity is damaged; the minimum biomass capital may be altered, and CO2 storage is negatively affected; b) harvesting occurs during a trough of the rate of growth: the minimum biomass capital necessary to preserve the resilience of the forest is damaged; the damage can be temporary (decades) or permanent; CO2 storage capacity is deficient - which may be read as an indirect emission of CO2 since the balance appears negative; c) harvesting occurs when the rate of growth is increasing: the planned wood mass can be used without compromising the resilience and recovery of the forest; CO2 storage remains increasing; d) harvesting occurs during a peak period of growth: the wood

  11. Climate Informatics

    Monteleoni, Claire; Schmidt, Gavin A.; Alexander, Francis J.; Niculescu-Mizil, Alexandru; Steinhaeuser, Karsten; Tippett, Michael; Banerjee, Arindam; Blumenthal, M. Benno; Ganguly, Auroop R.; Smerdon, Jason E.; Tedesco, Marco


    The impacts of present and potential future climate change will be one of the most important scientific and societal challenges in the 21st century. Given observed changes in temperature, sea ice, and sea level, improving our understanding of the climate system is an international priority. This system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. But with an ever-growing supply of climate data from satellites and environmental sensors, the magnitude of data and climate model output is beginning to overwhelm the relatively simple tools currently used to analyze them. A computational approach will therefore be indispensable for these analysis challenges. This chapter introduces the fledgling research discipline climate informatics: collaborations between climate scientists and machine learning researchers in order to bridge this gap between data and understanding. We hope that the study of climate informatics will accelerate discovery in answering pressing questions in climate science.

  12. Prognosis of groundwater recharge by means of the simulation tool PCSiWaPro® under the conditions of climate change

    Meyer, M.; Sallwey, J.; Hasan, I.; Graeber, P.-W.


    Recent studies showed that varying atmospheric conditions as a result of climate change have a significant impact on the magnitude and time variable development of groundwater recharge. Essentially there are two driving factors that influence groundwater recharge: the temporal distribution of precipitation, and the saturation processes resulting from capillary effects in the unsaturated soil zone. Water balance processes can accurately be modelled by using the Richards' equation for transient flow, together with the Van-Genuchten/Luckner approximation describing hysteresis relationships between water contents and pressure heads in the soil. Precipitation distributions, as boundary conditions for the unsaturated model, can be generated from climate data measurements using statistical analysis tools. These synthetic time series reflect both the real climate conditions in a given model area, as well as statistical variations of rainfall by implementing characteristics of a predefined probability distribution. Depending on the kind of distribution, the resulting time series can represent both annual rainfall variations as well as long-term climate changes. The Institute of Waste Management and Contaminated Site Treatment of the TU Dresden has developed two software programs that help estimate these two driving forces for groundwater recharge. WettGen is a weather generator using a Weibull distribution and Markov chain approximations to create synthetic climate time series. These are applied as an upper boundary condition for PCSiWaPro®, a numerical finite element simulation tool solving the Richards' equation for water balance and a convection dispersion equation for contaminant. The result of this coupled simulation is an outflow at the lower boundary of the PCSiWaPro® model, which can be interpreted as a recharge rate for the underlying aquifer. Considering that climate change scenarios for Germany predict longer dry periods and an increase of extreme precipitation

  13. CloudDOE: a user-friendly tool for deploying Hadoop clouds and analyzing high-throughput sequencing data with MapReduce.

    Wei-Chun Chung

    Full Text Available BACKGROUND: Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce. RESULTS: We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard. CONCLUSIONS: CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and

  14. Methodological framework, analytical tool and database for the assessment of climate change impacts, adaptation and vulnerability in Denmark

    Kaspersen, Per Skougaard; Halsnæs, Kirsten; Gregg, Jay Sterling;

    This report was prepared at the request of and funded by the Coordination Unit for Research in Climate Change Adaptation (KFT). The report is a milestone of the project titled “Udvikling af metodisk ramme for dansk analytisk værktøj og database over klimasårbarhed og klimatilpasning”, funded by K...

  15. An Integrated Hydrologic-Economic Modeling Tool for Evaluating Water Management Responses to Climate Change in the Boise River Basin

    Schmidt, R. D.; Taylor, R. G.; Stodick, L. D.; Contor, B. A.


    A recent federal interagency report on climate change and water management (Brekke et. al., 2009) describes several possible management responses to the impacts of climate change on water supply and demand. Management alternatives include changes to water supply infrastructure, reservoir system operations, and water demand policies. Water users in the Bureau of Reclamation’s Boise Project (located in the Lower Boise River basin in southwestern Idaho) would be among those impacted both hydrologically and economically by climate change. Climate change and management responses to climate change are expected to cause shifts in water supply and demand. Supply shifts would result from changes in basin precipitation patterns, and demand shifts would result from higher evapotranspiration rates and a longer growing season. The impacts would also extend to non-Project water users in the basin, since most non-Project groundwater pumpers and drain water diverters rely on hydrologic externalities created by seepage losses from Boise Project water deliveries. An integrated hydrologic-economic model was developed for the Boise basin to aid Reclamation in evaluating the hydrologic and economic impacts of various management responses to climate change. A spatial, partial-equilibrium, economic optimization model calculates spatially-distinct equilibrium water prices and quantities, and maximizes a social welfare function (the sum of consumer and producers surpluses) for all agricultural and municipal water suppliers and demanders (both Project and non-Project) in the basin. Supply-price functions and demand-price functions are exogenous inputs to the economic optimization model. On the supply side, groundwater and river/reservoir models are used to generate hydrologic responses to various management alternatives. The response data is then used to develop water supply-price functions for Project and non-Project water users. On the demand side, crop production functions

  16. Regional Arctic System Model (RASM): A Tool to Advance Understanding and Prediction of Arctic Climate Change at Process Scales

    Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.


    The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.

  17. SAT Has No Wizards

    Di Zenzo, Silvano


    An (encoded) decision problem is a pair (E, F) where E=words that encode instances of the problem, F=words to be accepted. We use "strings" in a technical sense. With an NP problem (E, F) we associate the "logogram" of F relative to E, which conveys structural information on E, F, and how F is embedded in E. The kernel Ker(P) of a program P that solves (E, F) consists of those strings in the logogram that are used by P. There are relations between Ker(P) and the complexity of P. We develop an application to SAT that relies upon a property of internal independence of SAT. We show that SAT cannot have in its logogram strings serving as collective certificates. As consequence, all programs that solve SAT have same kernel.

  18. The wizards of Oz

    Woof, M.


    This article describes developments by Australian firms in software systems for mining, and other developments in mining equipment. These innovations include: software exploration packages; deep mine design software; opencast mine design software; dozers for opencast mines and power stations; underground haulage; mine rescue equipment; drill rigs; and project management services. 4 figs.

  19. Coal wizards of Oz

    Hornsby, D.T.; Partridge, A.C. [Australian Coal Preparation Society, Indooroopilly, Qld. (Australia)


    The first of two parts of a paper discusses how the Australian coal industry has grown to become the world`s largest coal exporter. Bar charts show coal product, exports, and consumption of metallurgical and steaming coal for the years 1987 to 1996. The importance of coal preparation is discussed. 8 figs., 2 photos.

  20. How the biodiversity sciences may aid biological tools and ecological engineering to assess the impact of climatic changes.

    Morand, S; Guégan, J-F


    This paper addresses how climate changes interact with other global changes caused by humans (habitat fragmentation, changes in land use, bioinvasions) to affect biodiversity. Changes in biodiversity at all levels (genetic, population and community) affect the functioning of ecosystems, in particular host-pathogen interactions, with major consequences in health ecology (emergence and re-emergence; the evolution of virulence and resistance). In this paper, the authors demonstrate that the biodiversity sciences, epidemiological theory and evolutionary ecology are indispensable in assessing the impact of climate changes, and also for modelling the evolution of host-pathogen interactions in a changing environment. The next step is to apply health ecology to the science of ecological engineering. PMID:18819665

  1. Shading and watering as a tool to mitigate the impacts of climate change in sea turtle nests.

    Jacob E Hill

    Full Text Available Increasing sand temperatures resulting from climate change may negatively impact sea turtle nests by altering sex ratios and decreasing reproductive output. We analyzed the effect of nest shading and watering on sand temperatures as climate mitigation strategies in a beach hatchery at Playa Grande, Costa Rica. We set up plots and placed thermocouples at depths of 45 cm and 75 cm. Half of the plots were shaded and half were exposed to the sun. Within these exposure treatments, we applied three watering treatments over one month, replicating local climatic conditions experienced in this area. We also examined gravimetric water content of sand by collecting sand samples the day before watering began, the day after watering was complete, and one month after completion. Shading had the largest impact on sand temperature, followed by watering and depth. All watering treatments lowered sand temperature, but the effect varied with depth. Temperatures in plots that received water returned to control levels within 10 days after watering stopped. Water content increased at both depths in the two highest water treatments, and 30 days after the end of water application remained higher than plots with low water. While the impacts of watering on sand temperature dissipate rapidly after the end of application, the impacts on water content are much more lasting. Although less effective at lowering sand temperatures than shading, watering may benefit sea turtle clutches by offsetting negative impacts of low levels of rain in particularly dry areas. Prior to implementing such strategies, the natural conditions at the location of interest (e.g. clutch depth, environmental conditions, and beach characteristics and natural hatchling sex ratios should be taken into consideration. These results provide insight into the effectiveness of nest shading and watering as climate mitigation techniques and illustrate important points of consideration in the crafting of such

  2. A benchmarking framework to evaluate business climate change risks: A practical tool suitable for investors decision-making process

    Nikolaos Demertzidis


    Full Text Available A fundamental concern for the investor community is to identify techniques which would allow them to evaluate and highlight the most probable financial risks that could affect the value of their asset portfolio. Traditional techniques primarily focus on estimating certain conventional social-economic factors and many fail to cover an array of climate change risks. A limited number of institutional documents present, to a somewhat limited extent, some general-defined types of business climate change risks, which are deemed most likely to influence the value of an investors’ portfolio. However, it is crucial that stakeholders of businesses and scholars consider a wider range of information so as to assist investors in their decision making. This paper aims at establishing a new framework to operationalize and quantify an array of business climate change risks to provide more comprehensive and tangible information on non-traditional risks. This framework relies on the benchmarking – scoring systems and Global Reporting Initiative (GRI guidelines, and is applied to various Greek businesses that are certified by Environmental Management and Audit Scheme (EMAS.

  3. WMOST: A tool for assessing cost-benefits of watershed management decisions affecting community resilience under varying climate regimes.

    The Watershed Management Optimization Support Tool (WMOST v.1) was released by the US Environmental Protection Agency in December 2013( The objective of WMOST is to serve as a public-domain screening toolthat ...

  4. Isotopes as validation tools for predictions of the impact of Amazonian deforestation on climate and regional hydrology

    Isotopic analysis and modelling of the Amazon Basin have both been reported for about thirty years. Isotopic data have been used to explain important characteristics of Amazonian hydrologic cycling by means of simple models. To date there has been no attempt to use isotopic data to evaluate global climate models employed to predict the possible impacts of Amazonian deforestation. This paper reviews the history of isotopic analysis and simulations of deforestation in the Amazon and initiates isotopic evaluation of GCMs. It is shown that one widely reported simulation set gives seasonal transpiration and re-evaporated canopy interception budgets different from those derived from isotopic analysis. It is found that temporal changes (1965 to 1990) in wet season deuterium excess differences between Belem and Manaus are consistent with GCM results only if there has been a relative increase in evaporation from non-fractionating water sources over this period. We propose synergistic future interactions among the climate/hydrological modelling and isotopic analysis communities in order to improve confidence in simulations of Amazonian deforestation. (author)

  5. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    Rosenfeld, Daniel [Hebrew Univ. of Jerusalem (Israel)


    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  6. Electronic Safety Resource Tools -- Supporting Hydrogen and Fuel Cell Commercialization

    Barilo, Nick F.


    The Pacific Northwest National Laboratory (PNNL) Hydrogen Safety Program conducted a planning session in Los Angeles, CA on April 1, 2014 to consider what electronic safety tools would benefit the next phase of hydrogen and fuel cell commercialization. A diverse, 20-person team led by an experienced facilitator considered the question as it applied to the eight most relevant user groups. The results and subsequent evaluation activities revealed several possible resource tools that could greatly benefit users. The tool identified as having the greatest potential for impact is a hydrogen safety portal, which can be the central location for integrating and disseminating safety information (including most of the tools identified in this report). Such a tool can provide credible and reliable information from a trustworthy source. Other impactful tools identified include a codes and standards wizard to guide users through a series of questions relating to application and specific features of the requirements; a scenario-based virtual reality training for first responders; peer networking tools to bring users from focused groups together to discuss and collaborate on hydrogen safety issues; and a focused tool for training inspectors. Table ES.1 provides results of the planning session, including proposed new tools and changes to existing tools.

  7. 3rd Annual Earth System Grid Federation and 3rd Annual Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Face-to-Face Meeting Report December 2013

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The climate and weather data science community gathered December 3–5, 2013, at Lawrence Livermore National Laboratory, in Livermore, California, for the third annual Earth System Grid Federation (ESGF) and Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Meeting, which was hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UV-CDAT are global collaborations designed to develop a new generation of open-source software infrastructure that provides distributed access and analysis to observed and simulated data from the climate and weather communities. The tools and infrastructure developed under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change, while the F2F meetings help to build a stronger climate and weather data science community and stronger federated software infrastructure. The 2013 F2F meeting determined requirements for existing and impending national and international community projects; enhancements needed for data distribution, analysis, and visualization infrastructure; and standards and resources needed for better collaborations.

  8. To widen the action tools against the climatic change by domestic projects. Evaluation report; Elargir les instruments d'action contre le changement climatique grace aux projets domestiques. Rapport d'evaluation

    Arnaud, E.; Dominicis, A. de; Leguet, B.; Leseur, A.; Perthuis, Ch. de


    In the framework of the climatic change fight, each country aims to implement tools of emissions reduction. In France, the european system of CO{sub 2} quotas exchange, applied on the more emitted installations, covers less than 30% of the national carbon emissions. The other 70% are free of taxes. The 'climate mission' realized an evaluation of the emission reduction in the case of a new policy aiming to develop domestic projects of emission control. This report presents the study and its conclusions: the domestic projects, the possibilities of these projects in the transportation agriculture and forests and building sectors, the implementing conditions.

  9. TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission X-ray microscopy

    A suite of GUI programs written in MATLAB for advanced data collection and analysis of full-field transmission X-ray microscopy data including mosaic imaging, tomography and XANES imaging is presented. Transmission X-ray microscopy (TXM) has been well recognized as a powerful tool for non-destructive investigation of the three-dimensional inner structure of a sample with spatial resolution down to a few tens of nanometers, especially when combined with synchrotron radiation sources. Recent developments of this technique have presented a need for new tools for both system control and data analysis. Here a software package developed in MATLAB for script command generation and analysis of TXM data is presented. The first toolkit, the script generator, allows automating complex experimental tasks which involve up to several thousand motor movements. The second package was designed to accomplish computationally intense tasks such as data processing of mosaic and mosaic tomography datasets; dual-energy contrast imaging, where data are recorded above and below a specific X-ray absorption edge; and TXM X-ray absorption near-edge structure imaging datasets. Furthermore, analytical and iterative tomography reconstruction algorithms were implemented. The compiled software package is freely available

  10. Solar geometry tool applied to systems and bio-climatic architecture; Herramienta de geometria solar aplicada a sistemas y arquitectura bio-climatica

    Urbano, Antonio; Matsumoto, Yasuhiro; Aguilar, Jaime; Asomoza Rene [CIMVESTAV-IPN, Mexico, D.F (Mexico)


    The present article shows the annual solar path, by means of graphic Cartesian, as well as the use of these, taken as base the astronomical, geographical antecedents and of the place. These graphs indicate the hours of sun along the day, month and year for the latitude of 19 Celsius degrees north, as well as the values of radiation solar schedule for the most important declines happened annually (equinoxes, solstices and the intermediate months). These graphs facilitate the user's good location to evaluate inherent obstacles of the environment and to determine in the place, the shades on the solar equipment or immovable (mountains, tree, buildings, windows, terraces, domes, et cetera), the hours of sun or the radiation for the wanted bio-climatic calculation. The present work is a tool of place engineering for the architects, designers, manufactures, planners, installers, energy auditors among other that require the use of the solar energy for anyone of its multiple applications. [Spanish] El presente articulo, muestra las trayectorias solares anules, mediante graficas cartesianas, asi como la utilizacion de estas, tomando como base los antecedentes astronomicos, geograficos y del lugar. Estas graficas indican las horas del sol a lo largo del dia, mes y ano para la latitud de 19 grados Celsius norte, asi como los valores de radiacion solar horaria para las declinaciones mas importantes ocurridas anualmente (equinoccios, solsticios y los meses intermedios). Estas graficas facilitan la ubicacion optima del usuario para evaluar obstaculos inherentes del entorno y determinar en el sitio, las sombras sobre los equipos solares o inmuebles (montanas, arboles, edificios, ventanas, terrazas, domos, etc.), las horas de sol o bien la radiacion para el calculo bio-climatico deseado. El presente trabajo es una herramienta de Ingenieria de sitio para los Arquitectos, Disenadores, Constructores, Proyectistas, Instaladores, Auditores Energeticos entre otros, que requieran el

  11. LCA as a decision support tool in policy making: the case study of Danish spring barley production in a changed climate

    Niero, Monia; Ingvordsen, Cathrine Heinz; Hauschild, Michael Zwicky;


    Life Cycle Assessment (LCA) can support policy makers in the choice of the most effective measures to adapt to climate change in crop production. A case study involving spring barley cultivation in Denmark under changed climate conditions has been performed using primary data from future climate...... scenarios. We developed and applied a 3-step procedure based on combined contribution, scenario and uncertainty analyses. This approach can be useful to deal with uncertainty in scenario analysis for LCA of crop production in a changed climate, when the goal of the study is to suggest strategies for...... adaptation of crop cultivation practices towards low environmental impacts....

  12. CECILIA Regional Climate Simulations for Future Climate: Analysis of Climate Change Signal

    Michal Belda; Petr Skalák; Aleš Farda; Tomáš Halenka; Michel Déqué; Gabriella Csima; Judit Bartholy; Csaba Torma; Constanta Boroneant; Mihaela Caian; Valery Spiridonov


    Regional climate models (RCMs) are important tools used for downscaling climate simulations from global scale models. In project CECILIA, two RCMs were used to provide climate change information for regions of Central and Eastern Europe. Models RegCM and ALADIN-Climate were employed in downscaling global simulations from ECHAM5 and ARPEGE-CLIMAT under IPCC A1B emission scenario in periods 2021–2050 and 2071–2100. Climate change signal present in these simulations is consistent with respective...

  13. Developing potential adaptations to climate change for farming systems in Western Australia’s Northern Agricultural Region using the economic analysis tool STEP

    Abrahams, Megan; Reynolds, Chad; van Gool, Dennis; Falconer, Kari-Lee; Peek, Caroline; Foster, Ian; Gardiner, Daniel


    Climate change is expected to have a significant effect on agricultural production but less is known about its projected impact on the farm business. This paper provides a first attempt at an economic analysis of the impacts of climate change for broadacre farming systems and provides an insight into agricultural production areas in Western Australia at risk over the next 50 years. These risks have been assessed using the Simulated Transitional Economic Planning (STEP) model to investigate th...

  14. Development of a management tool for the equal evaluation of economic, social and ecological effects of adaptation scenarios for attenuating the effects of climate change induced flooding

    De Smet, Lieven; De Sutter, Renaat


    Climate change is expected to influence river flooding which may have important implications for socio-economic and ecological systems. Changed flood risks require a proper policy. Water managers need to develop and select those adaptation scenarios that maximise welfare. Doing so requires addressing various challenges; integrating climate change effects in flood modelling, development of assessment methods for flood risk to social and ecological systems, development of methodologies for the ...

  15. Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning

    Monteleoni, Claire; Schmidt, Gavin A.; McQuade, Scott


    The goal of climate informatics, an emerging discipline, is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the field's remaining challenges. Given the impact of climate change, understanding the climate system is an international priority. The goal of climate informatics is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the remaining challenges.

  16. A Climate Change Screening Tool for Assessment of Adaptation in Water Sector: a case study in the Haihe River Basin(China)

    Li, H.; Xia, Jun; Wang, Jinxia; Zhang, Yongyong


    The impending of climate changes has already presented risks to the efficiency and effectiveness of development investments globally. In order to minimize negative impacts and maximize opportunities, adaptations to climate changes play a crucial role in development planning and project management increasingly. But before the adaptation designing and implementation, it should be evaluated. An interdisciplinary screening frame work was developed to evaluate the adaptations in this paper. It includes 6 parts, which are project description, problems analysis, identifying climate-sensitive components, semi-quantitative analysis, benefit-cost analysis and multi criteria analysis. In this paper, we selected the "Water Conservation Project of China" funded by World Bank as case study. One of the main objectives of this project is to reduce the scarcity in Haihe River Basin in North China. The applying of modified CAPSIM-PODIUM illustrated, in 2030, climate change will significantly impact on water demand, supply and scarcity in Haihe River Basin. To rebalance the water scarcity caused by climate change, a mixing price policy, which is easier to bring into effect than other price policy was selected. The result of evaluation showed it will be both economic efficiency based on benefit-cost analysis, and technologic possible when we take irrigation efficiency into consideration in future. For "do nothing policy" is also a choice responding to climate change, we used multi criteria analysis, which is an important compensation of Benefit-Cost analysis , to compare it with "mix water pricing policy". The score of "mix water pricing policy" was higher than "do nothing policy" in this case study, which means it's a feasible policy to reduce water scarcity caused by economic development and climate change in Haihe River Basin.

  17. NPOESS, Essential Climates Variables and Climate Change

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.


    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  18. Patrizio Vinciarelli: power design wizard


    Article about Patrizio Vinciarelli, inventor of zero-current switching and zero-voltage switching which enables power converters to be designed much smaller and more efficient than conventional units (1 page).

  19. MODIS time series analysis as a tool for forest drought detection in Catalonia (NE Iberian Peninsula): integration of remote sensing and climatic variables.

    Domingo, Cristina; Cristóbal, Jordi; Ninyerola, Miquel; Pons, Xavier


    Climate warming may accelerate the hydrological cycle as a result of enhanced evaporative demand in some regions where water is not limiting. However, the combination of warmer temperatures with constant or reduced precipitation in other regions may lead to a large decrease in water availability for natural and agricultural systems as well as for human needs, especially in arid or semiarid areas such as the Mediterranean basin, increasing drought occurrence. Nowadays drought remains a phenomenon that affects a wide variety of natural areas in many parts of the globe. Droughts are considered the abiotic factor with most harmful effects on forest areas, thus it is especially important to identify the locations with highest potential impact. Its temporal and spatial distribution, as well as the different types of drought defined, makes difficult its prediction and the impact degree that their appearance involve. Climatic drought, characterized by a temporal sequence with a higher frequency of atmospheric conditions that are unfavorable to the development of precipitation over a region, is the trigger of the process associated with the risk of biological drought. One methodology used to identify periods of climatic drought is mainly based on the analysis of climatic variables such as precipitation or temperature. However, these analyses don't take into account the physiological state of vegetation, a highly important variable that should be used to monitor the status of forest ecosystems vulnerable to droughts. In this work we evaluate the potential of satellite images regarding the identification of Mediterranean forest areas that could potentially have had a maximum affection during drought periods. A long temporal series of images of MODIS sensors onboard TERRA satellite, for the period 2000-2011 together with climatic data from the Digital Atlas of Catalonia were integrated to detect drought in forest canopies. This integration may provide a readily applicable

  20. Development of an uncertainty technique using Bayesian methods to study the impact of climate change and land use change on solutions obtained by the BMP selection and placement optimization tool

    Maringanti, C.; Chaubey, I.


    A multi-objective genetic algorithm (NSGA-II) in combination with a watershed model (Soil and Water Assessment Tool (SWAT)) is used in an optimization framework for making the Best Management Practices (BMP) selection and placement decisions to reduce the nonpoint source (NPS) pollutants and the net cost for implementation of BMPs. Shuffled complex evolutionary metropolis uncertainty analysis (SCEM-UA) method will be used to quantify the uncertainty of the BMP selection and placement tool. The sources of input uncertainty for the tool include the uncertainties in the estimation of economic costs for the implementation of BMPs, and input SWAT model predictions at field level. The SWAT model predictions are in turn influenced by the model parameters and the input climate forcing such as precipitation and temperature which in turn are affected due to the changing climate, and the changing land use in the watershed. The optimization tool is also influenced by the operational parameters of the genetic algorithm. The SCEM-UA method will be initiated using a uniform distribution for the range of the model parameters and the input sources of uncertainty to estimate the posterior probability distribution of the model response variables. This methodology will be applied to estimate the uncertainty in the BMP selection and placement in Wildcat Creek Watershed located in northcentral Indiana. Nitrogen, phosphorus, sediment, and pesticide are the various NPS pollutants that will be reduced through implementation of BMPs in the watershed. The uncertainty bounds around the Pareto-optimal fronts after the optimization will provide the watershed management groups a clear insight on how the desired water quality goals could be realistically met for the least amount of money that is available for BMP implementation in the watershed.


    The Coastal Biodiversity Risk Analysis Tool (CBRAT) is a public website that functions as an ecoinformatics platform to synthesize biogeographical distributions, abundances, life history attributes, and environmental tolerances for near-coastal invertebrates and fishes on a broad...

  2. Tools for a collective management of the climate risks. An analysis framework centered on the means to derive a signal-price

    The greenhouse effect appears as a particular problem (collective uncertainty, imprecise understanding, etc.) that necessitates a specific strategical approach and tool selection adequate criteria. The applicability of any environmental regulation concerning greenhouse gas abatement must take into account aspects such as efficiency, predictability, political sovereignty, perverted effects and practicability. Combined tools have to be coordinated: regulations, negotiation, financial incentives, exchangeable emission rights..., that could be controlled by a signal price system

  3. Addressing Climate Change Adaptation in Regional Transportation Plans in California: A Guide and Online Visualization Tool for Planners to Incorporate Risks of Climate Change Impacts in Policy and Decision-Making

    Tao, W.; Tucker, K.; DeFlorio, J.


    The reality of a changing climate means that transportation and planning agencies need to understand the potential effects of changes in storm activity, sea levels, temperature, and precipitation patterns; and develop strategies to ensure the continuing robustness and resilience of transportation infrastructure and services. This is a relatively new challenge for California's regional planning agencies - adding yet one more consideration to an already complex and multifaceted planning process. In that light, the California Department of Transportation (Caltrans) is developing a strategy framework using a module-based process that planning agencies can undertake to incorporating the risks of climate change impacts into their decision-making and long-range transportation plans. The module-based approach was developed using a best practices survey of existing work nationally, along with a set of structured interviews with metropolitan planning organizations (MPOs) and regional transportation planning agencies (RTPAs) within California. Findings led to the development of a process, as well as a package of foundational geospatial layers (i.e. the Statewide Transportation Asset Geodatabase - STAG), primarily comprising state and Federal transportation assets. These assets are intersected with a set of geospatial layers for the climate stressors of relevance in the state which are placed in the same reference layers as the STAG; thus providing a full set of GIS layers that can be a starting point for MPOs/RTPAs that want to follow the step-by-step module-based approach in its entirety. The fast-paced changes in science and climate change knowledge requires a flexible platform to display continuously evolving information. To this end, the development of the modules are accompanied by a set of geospatial analysis disseminated using an online web portal. In this way, the information can be relayed to MPO/RTPAs in a easy-to-use fashion that can help them follow the modules

  4. Functional paleoclimate networks of North Atlantic terrestrial proxies: A new tool for studying spatio-temporal climate variability within the Arctic 2k framework

    Franke, Jasper G.; Donner, Reik V.


    The increasing availability of high-resolution paleoclimate proxies allows to not only study climate variations in time, but also temporal changes in spatial variability patterns. In this study we use the method of functional paleoclimate network analysis [1] to investigate changes in the statistical similarity patterns among ensembles of high-resolution terrestrial paleoclimate records from Northern Europe. The study region ranging from Southern Finland over Northern Fennoscandia to Iceland is of paramount importance for reconstructions of the climate of the last two millennia within the Arctic 2k framework, and understanding the associated spatial variability of regional paleoclimate is a key question for further regional reconstructions. The analysis reported here is based on an ensemble of 16 paleoclimate proxy records comprising tree ring data from the Scandinavian Peninsula, different lacustrine archives from Southern Finland and one lake sediment record cored on Iceland, having a common interpretation as proxies of (mainly summer) temperatures. Based on the mentioned selection of existing data sets, we construct complex networks capturing the mutual statistical similarity of the variability recorded by different archives furing different episodes in time. These ''functional'' networks are not restricted to capturing linear Pearson correlations, but can also be obtained based on nonlinear characteristics like mutual information. This allows for comparing non-normally distributed time series or data of different origin like tree ring and lake sediment records as considered in this study. Furthermore, the obtained functional paleoclimate networks are used to test if regional (gridded) proxy-based temperature reconstructions preserve the essential spatial correlation patterns of the underlying archives. Temporal changes in the network structure indicate changing dynamics in the regional climate system and enable us to distinguish different episodes with distinct

  5. Social Network Analysis for the U.S. National Climate Assessment: A Tool for Improving the Transmission of Scientific Information to Public Audiences

    Maldonado, J.; Frank, K.; Chen, T.


    The U.S. National Climate Assessment (NCA) is working with experts from Michigan State University to use social network analysis to analyze the NCA's outreach and engagement activities to improve upon these components for the ongoing, sustained assessment. The social network analysis diagrams the NCA's engagement with stakeholders around the country, showing how the network of stakeholders with whom the NCA engaged expanded over the course of the Third NCA. Showing the avenues for how information moves through a social system, social network analysis can be used to inform gaps in the types and locations of stakeholders engaged with, suggesting places to improve the flow of information. The social network analysis helped illuminate which stakeholders were involved in the Third NCA and which were missed, what key networks the NCA has engaged with, and to what extent these relationships have been sustained. This presentation will include examples of how the outcomes of the social network analysis can be used to better understand the engagement and outreach with a group of stakeholders, what networks in a particular group were engaged with, what the gaps were, and ways to improve in the future. It will also include suggestions for how to more effectively translate climate change information to stakeholders. This information can help inform the ongoing NCA on how to more successfully reach stakeholder groups and improve its public engagement and outreach.

  6. Advancing computational methods for calibration of the Soil and Water Assessment Tool (SWAT): Application for modeling climate change impacts on water resources in the Upper Neuse Watershed of North Carolina

    Ercan, Mehmet Bulent

    Watershed-scale hydrologic models are used for a variety of applications from flood prediction, to drought analysis, to water quality assessments. A particular challenge in applying these models is calibration of the model parameters, many of which are difficult to measure at the watershed-scale. A primary goal of this dissertation is to contribute new computational methods and tools for calibration of watershed-scale hydrologic models and the Soil and Water Assessment Tool (SWAT) model, in particular. SWAT is a physically-based, watershed-scale hydrologic model developed to predict the impact of land management practices on water quality and quantity. The dissertation follows a manuscript format meaning it is comprised of three separate but interrelated research studies. The first two research studies focus on SWAT model calibration, and the third research study presents an application of the new calibration methods and tools to study climate change impacts on water resources in the Upper Neuse Watershed of North Carolina using SWAT. The objective of the first two studies is to overcome computational challenges associated with calibration of SWAT models. The first study evaluates a parallel SWAT calibration tool built using the Windows Azure cloud environment and a parallel version of the Dynamically Dimensioned Search (DDS) calibration method modified to run in Azure. The calibration tool was tested for six model scenarios constructed using three watersheds of increasing size (the Eno, Upper Neuse, and Neuse) for both a 2 year and 10 year simulation duration. Leveraging the cloud as an on demand computing resource allowed for a significantly reduced calibration time such that calibration of the Neuse watershed went from taking 207 hours on a personal computer to only 3.4 hours using 256 cores in the Azure cloud. The second study aims at increasing SWAT model calibration efficiency by creating an open source, multi-objective calibration tool using the Non

  7. Climate oblige

    This file contains 15 articles discussing various aspects of the struggle against climatic change: 'greening' the industry in order to cope with the COP 21 expectations of a 2 deg C maximum warming at the end of this century; financing the transition energy policy in the poorest countries; the issues and stakes for the COP 21 conference to be held in Paris; towards an energy system with fossil fuels to be left in the ground, especially coal; emerging and developing countries could be in the future at the forefront to benefit from the renewable energy technologies; towards a 100 pc renewable France with wind and solar power; low carbon electric power (including nuclear power) is one of the best solutions against global warming; solar energy: the example of India and its 100 GW objective in 2022; the main struggle against climatic change lies in the cities and especially with the development of low-energy buildings and energy conservation systems; with de-polluted engine, connectivity and light structure technologies, the automotive sector can mix mobility and environment protection; some examples of the environmental policy underway in Grenoble city; green collective transportation systems in Sweden; application of simulation tools and satellite observations for climatic change forecasting and analysis; the importance of eco-design of manufactured products following the 'from well to wheel' and 'from cradle to grave' concepts

  8. The geosimulation of West Nile virus propagation: a multi-agent and climate sensitive tool for risk management in public health

    Moulin Bernard


    Full Text Available Abstract Background Since 1999, the expansion of the West Nile virus (WNV epizooty has led public health authorities to build and operate surveillance systems in North America. These systems are very useful to collect data, but cannot be used to forecast the probable spread of the virus in coming years. Such forecasts, if proven reliable, would permit preventive measures to be put into place at the appropriate level of expected risk and at the appropriate time. It is within this context that the Multi-Agent GeoSimulation approach has been selected to develop a system that simulates the interactions of populations of mosquitoes and birds over space and time in relation to the spread and transmission of WNV. This simulation takes place in a virtual mapping environment representing a large administrative territory (e.g. province, state and carried out under various climate scenarios in order to simulate the effects of vector control measures such as larviciding at scales of 1/20 000 or smaller. Results After setting some hypotheses, a conceptual model and system architecture were developed to describe the population dynamics and interactions of mosquitoes (genus Culex and American crows, which were chosen as the main actors in the simulation. Based on a mathematical compartment model used to simulate the population dynamics, an operational prototype was developed for the Southern part of Quebec (Canada. The system allows users to modify the parameters of the model, to select various climate and larviciding scenarios, to visualize on a digital map the progression (on a weekly or daily basis of the infection in and around the crows' roosts and to generate graphs showing the evolution of the populations. The basic units for visualisation are municipalities. Conclusion In all likelihood this system might be used to support short term decision-making related to WNV vector control measures, including the use of larvicides, according to climatic scenarios

  9. Developing an Ecosystem Services Online Decision Support Tool to Assess the Impacts of Climate Change and Urban Growth in the Santa Cruz Watershed: Where We Live, Work, and Play

    Norman, Laura; Tallent-Halsell, Nita; Labiosa, William; Weber, Matt; McCoy, Amy; Hirschboeck, Katie; Callegary, James; van Riper, Charles, III; Gray, Floyd


    Using respective strengths of the biological, physical, and social sciences, we are developing an online decision support tool, the Santa Cruz Watershed Ecosystem Portfolio Model (SCWEPM), to help promote the use of information relevant to water allocation and land management in a binational watershed along the U.S.-Mexico border. The SCWEPM will include an ES valuation system within a suite of linked regional driver-response models and will use a multicriteria scenario-evaluation framework that builds on GIS analysis and spatially-explicit models that characterize important ecological, economic, and societal endpoints and consequences that are sensitive to climate patterns, regional water budgets, and regional LULC change in the SCW.

  10. Comparing global-scale topographic and climatic metrics to long-term erosion rates using ArcSwath, an efficient new ArcGIS tool for swath profile analysis

    Blomqvist, Niclas; Whipp, David


    The topography of the Earth's surface is the result of the interaction of tectonics, erosion and climate. Thus, topography should contain a record of these processes that can be extracted by topographic analysis. The question considered in this study is whether the spatial variations in erosion that have sculpted the modern topography are representative of the long-term erosion rates in mountainous regions. We compare long-term erosion rates derived from low-temperature thermochronometry to erosional proxies calculated from topographic and climatic data analysis. The study has been performed on a global scale including six orogens: The Himalaya, Andes, Taiwan, Olympic Mountains, Southern Alps in New Zealand and European Alps. The data was analyzed using a new swath profile analysis tool for ArcGIS called ArcSwath ( to determine the correlations between the long-term erosion rates and modern elevations, slope angles, relief in 2.5-km- and 5-km-diameter circles, erosion potential, normalized channel steepness index ksn, and annual rainfall. ArcSwath uses a Python script that has been incorporated into an ArcMap 10.2 add-in tool, extracting swath profiles in about ten seconds compared to earlier workflows that could take more than an hour. In ArcMap, UTM-projected point or raster files can be used for creating swath profiles. Point data are projected onto the swath and the statistical parameters (minimum, mean and maximum of the values across the swath) are calculated for the raster data. Both can be immediately plotted using the Python matplotlib library, or plotted externally using the csv-file that is produced by ArcSwath. When raster and point data are plotted together, it is easier to make comparisons and see correlations between the selected data. An unambiguous correlation between the topographic or climatic metrics and long-term erosion rates was not found. Fitting of linear regression lines to the topographic/ climatic metric

  11. Pacific Islands Climate Change Virtual Library

    National Oceanic and Atmospheric Administration, Department of Commerce — The Virtual Library provides access to web based climate variability and climate change information and tools relevant to the Pacific Islands including case...

  12. Palaeomagnetic secular variation and relative field intensity in pleistocene lacustrine sediments in the U.S. great basin as chronologic tools for dating climate in western north America

    Complete text of publication follows. Since the end of the 19th Century when first it was reported that large pluvial lakes formed during the Pleistocene in the U.S. Great Basin (Russell, 1885), the sediments deposited by some of those lakes have been used to study climate in western North America back about 3 m.y. (Smith et al., 1983, Morrison, 1991: many others). That research includes mineralogic, isotopic, geochemical, and sedimentologic data; radiometric dates; lacustrine fossils; volcanic ashes; and a record of long-term behaviour (secular variation) and excursions (Pringle Falls, Laschamp, and Mono Lake) of the palaeomagnetic field. In an attempt to establish an accurate chronology for the palaeoclimate in western North America during the past approximately 50,000 years, I will compare the records of palaeomagnetic directions for Pyramid Lake (the remnant of Lake Lahontan in northwestern Nevada)(Benson et al., 2008), Mono Lake (the remnant of Lake Russell in east-central California)(Lund et al., 1988; Zimmerman et al., 2006), and Searles Lake in the southeastern Great Basin (Liddicoat et al., 2008) with other records of palaeomagnetic field behaviour, especially the relative palaeomagnetic field intensity for the North and South Atlantic oceans (Laj et al., 2000; Stoner et al., 2004). This is possible because large- and small-scale fluctuations occur in the records that are distinctive and often are common to all.

  13. Climate for Culture: assessing the impact of climate change on the future indoor climate in historic buildings using simulations

    Leissner, J; Kilian, R; Kotova, Lola; Jacob, Daniela; Mikolajewicz, U; Brostrom, T; Ashley-Smith, J; Schellen, HL Henk; Martens, MHJ Marco; Schijndel, van, AWM Jos; Antretter, F.; Winkler, M.; Bertolin, C.; Camuffo, D; Simeunovic, Goran


    Background The present study reports results from the large-scale integrated EU project "Climate for Culture". The full name, or title, of the project is Climate for Culture: damage risk assessment, economic impact and mitigation strategies for sustainable preservation of cultural heritage in times of climate change. This paper focusses on implementing high resolution regional climate models together with new building simulation tools in order to predict future outdoor and indoor climate cond...

  14. Climate for Culture: assessing the impact of climate change on the future indoor climate in historic buildings using simulations

    Leissner, J; Kilian, R; Kotova, L.; D. Jacob; Mikolajewicz, U; Broström, T; Ashley-Smith, J; Schellen, H.; Martens, M.; van Schijndel, J.; Antretter, F.; Winkler, M.; Bertolin, C.; Camuffo, D; Simeunovic, G.


    The present study reports results from the large-scale integrated EU project “Climate for Culture”. The full name, or title, of the project is Climate for Culture: damage risk assessment, economic impact and mitigation strategies for sustainable preservation of cultural heritage in times of climate change. This paper focusses on implementing high resolution regional climate models together with new building simulation tools in order to predict future outdoor and indoor climate conditions. The...

  15. Climate Change

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  16. SueMulador: Herramienta para la Simulación de Datos Faltantes en Series Climáticas Diarias de Zonas Ecuatoriales SueMulador: A Tool For Missing Data Simulation of Climatic Series in Equatorial Zones

    Héctor Alberto Chica Ramírez


    Full Text Available Resumen. En la actualidad, los modelos de cultivo son unaherramienta útil a la hora de tomar decisiones, no obstante, pese a su disponibilidad y facilidad de uso, la información necesaria para utilizarlos no existe o no tiene la calidad suficiente. Un ejemplo preciso del déficit de calidad en los datos lo constituyen las series meteorológicas diarias en las que predominan faltantes. Para hacer frente a esta situación y poder utilizar los modelos de cultivo se elaboró un software para llenar espacios vacíos en series climáticas diarias, basada en una cadena de Markov de orden dosy dos estados. La herramienta llamada SueMulador, se probó y validó con éxito en tres estaciones ubicadas en zonas contrastantes de la geografía colombiana. / Abstract. Currently, crop models are an useful tool for decision making; however, even though they are available and are easy to use, the information needed to use does not exist or not have sufficient quality. A specific example of the lack of quality is the daily weather series, in which there is too much missing data. To address this situation and to use crop models, we developed a software to fill gaps in daily climate series based on a Markov chain of order two and two states. The new tool, called SueMulador, was successfully tested and validated in three contrasting regions of Colombia.

  17. Comparative Multi-Criteria Assessment of Climate Policies and Sustainable Development Strategies in Cameroon: Towards a GIS Decision-Support Tool for the Design of an Optimal REDD+ Strategy

    Anderson Gwanyebit Kehbila


    Full Text Available Cameroon is committed to reducing emissions from deforestation and forest degradation plus conservation, sustainable management of forests and enhancement of carbon stocks (REDD+. To achieve this goal, the government has introduced a series of policy reforms and formulated a number of key strategic planning documents to advance the REDD+ readiness process in Cameroon. This paper assesses the extent to which major cross-sectoral policies support or impede the development and implementation of an optimal REDD+ strategy in Cameroon from a comparative multi-criteria perspective. Study results reveal that a majority of the policy instruments reviewed appeared to be less prescriptive in terms of any tangible REDD+ strategy, as they do not have provisions for tangible measures to reduce deforestation and forest degradation. Given the lack of adequate flexibility, prompt review and responsiveness of these cross-sectoral policies to adapt themselves to new realities and respond to a changing environment, this paper introduces a GIS-REDD+ decision support system (GIS-REDD+DSS that is necessary to support the adaptive element of an adaptive REDD+ strategy in Cameroon. The GIS-REDD+DSS, an electronic REDD+agri intermediary hub, serves the following purpose: (1 host a database of locally-relevant climate information, improved input technologies, best practices as well as land use and forest cover geo-spatial maps; (2 host a virtual economic tool that performs economic valuations (costs and benefits and financial analysis of REDD+agri projects to aid investment decision-making; and (3 host an electronic marketplace to mediate any-to-any transactions among REDD+agri project developers, service providers, input suppliers, private and institutional investors and buyers (wholesalers and retailers, thereby creating value in two ways: aggregation and matching. This decision support tool, we argue, is a fundamental prerequisite for “policy and REDD+ safeguard

  18. Four Tools for Science Fair Success

    Smith, Sherry Weaver; Messmer, Barbara; Storm, Bill; Weaver, Cheryl


    These teacher-tested ideas will guide students in creating true inquiry-based projects. Two of the ideas, the Topic Selection Wizard and Science Project Timeline, are appropriate for all science fair programs, even new ones. For existing programs, the Black Box of Project Improvement and After-School Project Clinic improve project quality and…

  19. Strategy for Climate Change Adaptation

    Rasmussen, Torben Valdbjørn


    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that...... enable adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach...... is based on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant...

  20. Strategy for Climate Change Adaptation

    Rasmussen, Torben Valdbjørn


    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that...... enable adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach...... is based on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant...

  1. Climate@Home: Crowdsourcing Climate Change Research

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.


    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  2. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change

    Carlos Carroll; Joshua J Lawler; Roberts, David R; Andreas Hamann


    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth's surface to maintain constant climatic con...

  3. Effectively Rebutting Climate Misinformation

    Cook, J.


    Climate science faces one of the best funded misinformation campaigns in history. The challenge for climate communicators is that misinformation is extremely difficult to dislodge, even after people understand that it's incorrect. Understanding how the human brain processes information is crucial to successful rebuttal. To avoid the danger of reinforcing misinformation (known as the 'backfire effect'), emphasis should be on positive facts, not the myth. Another key to dislodging myths is replacing them with an alternate narrative. In order to provide a narrative about arguments that misrepresent climate science, a broader understanding of how these arguments mislead is required. Movements that deny a scientific consensus have 5 characteristics in common and these also apply to climate denial. The arguments against the scientific consensus involve conspiracy theories, fake experts, cherry picking, logical fallacies and misrepresentation or impossible expectations. Learning to identify these rhetorical techniques is an important tool in the climate communication toolbox. I discuss examples of misrepresentations of climate science and the rhetorical techniques employed. I demonstrate how to respond to these arguments by explaining the facts of climate science while in the process, providing an alternate narrative.

  4. Climate Change

    ... can be caused by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate change can affect our health. It can lead to More heat-related illness ...

  5. Integrating Climate Information and Decision Processes for Regional Climate Resilience

    Buizer, James; Goddard, Lisa; Guido, Zackry


    An integrated multi-disciplinary team of researchers from the University of Arizona and the International Research Institute for Climate and Society at Columbia University have joined forces with communities and institutions in the Caribbean, South Asia and West Africa to develop relevant, usable climate information and connect it to real decisions and development challenges. The overall objective of the "Integrating Climate Information and Decision Processes for Regional Climate Resilience" program is to build community resilience to negative impacts of climate variability and change. We produce and provide science-based climate tools and information to vulnerable peoples and the public, private, and civil society organizations that serve them. We face significant institutional challenges because of the geographical and cultural distance between the locale of climate tool-makers and the locale of climate tool-users and because of the complicated, often-inefficient networks that link them. To use an accepted metaphor, there is great institutional difficulty in coordinating the supply of and the demand for useful climate products that can be put to the task of building local resilience and reducing climate vulnerability. Our program is designed to reduce the information constraint and to initiate a linkage that is more demand driven, and which provides a set of priorities for further climate tool generation. A demand-driven approach to the co-production of appropriate and relevant climate tools seeks to meet the direct needs of vulnerable peoples as these needs have been canvassed empirically and as the benefits of application have been adequately evaluated. We first investigate how climate variability and climate change affect the livelihoods of vulnerable peoples. In so doing we assess the complex institutional web within which these peoples live -- the public agencies that serve them, their forms of access to necessary information, the structural constraints

  6. Simulation tools

    Jenni, F


    In the last two decades, simulation tools made a significant contribution to the great progress in development of power electronics. Time to market was shortened and development costs were reduced drastically. Falling costs, as well as improved speed and precision, opened new fields of application. Today, continuous and switched circuits can be mixed. A comfortable number of powerful simulation tools is available. The users have to choose the best suitable for their application. Here a simple rule applies: The best available simulation tool is the tool the user is already used to (provided, it can solve the task). Abilities, speed, user friendliness and other features are continuously being improved—even though they are already powerful and comfortable. This paper aims at giving the reader an insight into the simulation of power electronics. Starting with a short description of the fundamentals of a simulation tool as well as properties of tools, several tools are presented. Starting with simplified models ...

  7. A National Strategy for Advancing Climate Modeling

    Dunlea, Edward; Elfring, Chris


    Climate models are the foundation for understanding and projecting climate and climate-related changes and are thus critical tools for supporting climate-related decision making. This study developed a holistic strategy for improving the nation’s capability to accurately simulate climate and related Earth system changes on decadal to centennial timescales. The committee’s report is a high level analysis, providing a strategic framework to guide progress in the nation’s climate modeling enterprise over the next 10-20 years. This study was supported by DOE, NSF, NASA, NOAA, and the intelligence community.

  8. U.S. Climate Normals Product Suite (1981-2010)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Climate Normals are a large suite of data products that provide users with many tools to understand typical climate conditions for thousands of locations...

  9. Determining the climate impact of the German government's Integrated Energy and Climate Programme (IEKP) and proposing a plan to continuously monitor its climate impact. Work package 2. Development of monitoring tools for the Integrated Energy and Climate Programme (IEKP); Ermittlung der Klimaschutzwirkung des Integrierten Energie- und Klimaschutzprogramms der Bundesregierung IEKP und Vorschlag fuer ein Konzept zur kontinuierlichen Ueberpruefung der Klimaschutzwirkung des IEKP. Arbeitspaket 2. Entwicklung eines Monitoringkonzepts fuer das Integrierte Energie- und Klimaschutzprogramm (IEKP)

    Doll, Claus; Eichhammer, Wolfgang; Fleiter, Tobias [Fraunhofer-Institut fuer System- und Innovationsforschung, Karlsruhe (DE)] (and others)


    Since November 2010, there exist an obligation to evaluate the effects of the integrated energy and climate program (IEKP) by means of a regular monitoring in order to check the validity of the instruments. With this in mind, the authors of the contribution under consideration at first report on the basic structure of the monitoring plan. Subsequently, 22 measures of this concept are presented.

  10. Challenges of climate change. Which climate governance?

    This report deals with the main challenges of climate change, and attempts to answer some questions: what is the temperature increase foreseen by scientific experts? Who will be affected by the consequences of climate change? Are there technologies to reduce emissions? If yes, why are they not diffused? Is it justified to ask developing countries to do something? Are concurrence distortions a real problem? Which are the main sectors where emissions are to be reduced? Are tools developed at the international level efficient? What is the present assessment for the clean development mechanism? What can be thought of technological partnerships developed with the United States? Then, the report comments the present status of international discussions, proposes a brief assessment of the Kyoto protocol ten years after its implementation, and proposes some improvement pathways

  11. Past Warmer Climate Periods at the Antarctic Margin Detected From Proxies and Measurements of Biogenic Opal in the AND-1B Core: The XRF Spectral Silver (Ag) Peak Used as a new Tool for Biogenic Opal Quantification.

    Kuhn, G.; Helling, D.; von Eynatten, H.; Niessen, F.; Magens, D.


    Quantification of biogenic opal in marine sediments is a time consuming job, but the results could indicate periods of higher bioproductivity and warmer conditions than today at the Antarctic margin. Within the international Antarctic Geological Drilling Program (ANDRILL), core AND-1B was drilled and recovered a 1285 m sequence from a flexural moat basin filled with glacimarine, terrigenous, volcanic and biogenic sediments below the McMurdo Ice Shelf. Our main goal is to study the variability and the stability of the Ross Ice Shelf from Miocene to Recent. The melting and collapse of large Antarctic ice shelves may cause a significant sea level rise because of accelerated inland ice glacier surges into the ocean. Biogenic opal content in sediments can be deduced indirectly from grain density measurements on single samples, or faster and more continuous by gamma ray attenuation measurements on the core, with subsequent wet bulk and grain density calculations. Spectral colour reflectance (b* value) measurements on the split core surface can also be a fast tool for opal content quantification. Of course, they all have disadvantages in comparison to direct measurement on samples using X-ray diffraction or geochemical leaching methods. Some major and minor chemical elements were measured directly on split core surfaces with a non- destructive X-Ray Fluorescence Core Scanner method (XRF-CS, Avaatech) in the field. Quantitative geochemical analyses like determination of total inorganic and organic carbon (TOC), biogenic opal as well as major and minor elements were done on core samples. We found a strong positive correlation between the counts per second of the XRF-CS Ag peak area and the biogenic opal content of the samples (r=0.81) not only in the AND-1B core but in others as well from the Antarctic margin. In literature, it is noted that diatoms could accumulate Ag in sediments, so at first we were pleased to find this Ag enrichment with our tool. But further

  12. Climate Change

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place


    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined and...... evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change and...... illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  13. Climate change

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  14. Climate Change

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place


    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  15. Integrated climate and hydrology modelling

    Larsen, Morten Andreas Dahl

    global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate...... existing climate and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and...... the land surface. The modelling tool consists of a fully dynamic two-way coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model. The expected gain is twofold. Firstly, HIRHAM utilizes the land surface component of the combined MIKE SHE/SWET hydrology and land surface model...

  16. The Portuguese Climate Portal

    Gomes, Sandra; Deus, Ricardo; Nogueira, Miguel; Viterbo, Pedro; Miranda, Miguel; Antunes, Sílvia; Silva, Alvaro; Miranda, Pedro


    quantify a plausible evolution of climate impacts and its uncertainties. Clear information on the data value and limitations is also provided. The portal is expected to become a reference tool for evaluation of impacts and vulnerabilities due to climate change, increased awareness and promotion of local adaptation and sustainable development in Portugal. The Portuguese Local Warming Website is part of the ADAPT programme, and is co-funded by the EEA financial mechanism and the Portuguese Carbon Fund.

  17. Climate economics in progress 2011; Climate economics in progress 2011

    De Perthuis, Christian [Paris-Dauphine University (France); Jouvet, Pierre-Andre [Paris-Ouest University (France); Trotignon, Raphael; Simonet, Gabriela; Boutueil, Virginie [Climate Economics Chair, Paris-Dauphine University (France)


    Climate Economics in Progress offers a global overview of the present status of action on climate change. Drawing on the most recent data, it analyzes the development of carbon markets in Europe and other parts of the world. It also examines the conditions for including major players such as China and new sectors such as agriculture, forestry and transport in the fight against global warming. The book is essential reading for anyone wishing to understand current advances in climate control, which could pave the way for a new form of economic growth. The book brings together a group of researchers whose goal is to make the link between academic research on the economics of climate change and the implementation of operational tools, thereby allowing the climate issue to be integrated into the functioning of the real economy

  18. Visualisation tools

    E. Dupont proposed that visualisation tools should be extended to Nuclear Data (ND) Information Systems in order to cover all data (and formats), all users and all needs. In particular, these ND Information Systems could both serve as an interface between data and users, as well as between data and codes (processing codes or nuclear reaction codes). It is expected that these systems will combine the advantages of processing codes and visualisation tools, as well as serving as a Tool Box to support various ND projects

  19. Possible (water sensitive) mitigation strategies for the urban climate in a regional climate modelling context

    Demuzere, Matthias; Coutts, Andrew; Van Lipzig, Nicole


    Urban climate models provide a useful tool for assessing the impacts of urban land surface modification on urban climates. It provides a mechanism for trialling different scenarios for urban heat island mitigation. Only recently, urban land surfaces have been included in global and regional climate models. Often they represent a trade-off between the complexity of the biophysical processes of the urban canopy layer and the computational demands in order to be workable on regional climate time...

  20. Climate variability and climate change

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  1. Climate variability and climate change

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  2. Climate-conscious architecture—design and wind testing method for climates in change

    Kuismanen, K. (Kimmo)


    Abstract The main objective of this research was to develop practical tools with which it is possible to improve the environment, micro-climate and energy economy of buildings and plans in different climate zones, and take the climate change into account. The parts of the study are: – State of art study into existing know-how about climate and planning. – Study of the effects of climate change on the built environment. – Development of simple micro-climate, nature and bui...

  3. TS Tools

    Yvette Linders


    Full Text Available In deze aflevering van TS Tools laat promovenda Yvette Linders (Radboud Universiteit Nijmegen zien hoe software voor kwalitatieve data-analyse kan worden toegepast in het onderzoek naar literatuurkritiek.

  4. Climate News Across Media Platforms

    Eskjær, Mikkel Fugl


    change news on five different media platforms: newspapers, television, radio, web-news and mobile news. It investigates the themes and actors represented in public climate change communication as well as the diverse possibilities of participating in public debates and information sharing. By combining......In a changing media landscape marked by technological, institutional and cultural convergence, comparative and cross-media content analysis represents a valuable analytical tool in mapping the diverse channels of climate change communication. This paper presents a comparative study of climate...... quantitative and qualitative content analysis the paper documents and explores the extent and character of climate change news across different media platforms. The study aims at contributing to the on-going assessment of how news media are addressing climate change at a time when old and new media are...

  5. Ultrascale Visualization of Climate Data

    Williams, Dean N.; Bremer, Timo; Doutriaux, Charles; Patchett, John; Williams, Sean; Shipman, Galen; Miller, Ross; Pugmire, David R.; Smith, Brian; Steed, Chad; Bethel, E. Wes; Childs, Hank; Krishnan, Harinarayan; Prabhat; Wehner, Michael; Silva, Claudio T.; Santos, Emanuele; Koop, David; Ellqvist, Tommy; Poco, Jorge; Gevecki, Berk; Chaudhary, Aashish; Bauer, Andy; Potter, Gerald L.; Maxwell, Thomas P.


    Fueled by exponential increases in the computational and storage capabilities of high-performance computing platforms, climate simulations are evolving toward higher numerical fidelity, complexity, volume, and dimensionality. These technological breakthroughs are coming at a time of exponential growth in climate data, with estimates of hundreds of exabytes by 2020. To meet the challenges and exploit the opportunities that such explosive growth affords, a consortium of four national laboratories, two universities, a government agency, and two private companies formed to explore the next wave in climate science. Working in close collaboration with domain experts, the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) project aims to provide high-level solutions to a variety of climate data analysis and visualization problems.

  6. Climate Physics

    Space, William


    Numerous connections exist between climate science and topics normally covered in physics and physical science courses. For instance, lessons on heat and light can be used to introduce basic climate science, and the study of electric circuits provides a context for studying the relationship between electricity consumption and carbon pollution. To…

  7. Climate change

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van


    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  8. Climate Change Education in Earth System Science

    Hänsel, Stephanie; Matschullat, Jörg


    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  9. The DEDUCE Guided Query tool: providing simplified access to clinical data for research and quality improvement.

    Horvath, Monica M; Winfield, Stephanie; Evans, Steve; Slopek, Steve; Shang, Howard; Ferranti, Jeffrey


    In many healthcare organizations, comparative effectiveness research and quality improvement (QI) investigations are hampered by a lack of access to data created as a byproduct of patient care. Data collection often hinges upon either manual chart review or ad hoc requests to technical experts who support legacy clinical systems. In order to facilitate this needed capacity for data exploration at our institution (Duke University Health System), we have designed and deployed a robust Web application for cohort identification and data extraction--the Duke Enterprise Data Unified Content Explorer (DEDUCE). DEDUCE is envisioned as a simple, web-based environment that allows investigators access to administrative, financial, and clinical information generated during patient care. By using business intelligence tools to create a view into Duke Medicine's enterprise data warehouse, DEDUCE provides a Guided Query functionality using a wizard-like interface that lets users filter through millions of clinical records, explore aggregate reports, and, export extracts. Researchers and QI specialists can obtain detailed patient- and observation-level extracts without needing to understand structured query language or the underlying database model. Developers designing such tools must devote sufficient training and develop application safeguards to ensure that patient-centered clinical researchers understand when observation-level extracts should be used. This may mitigate the risk of data being misunderstood and consequently used in an improper fashion. PMID:21130181

  10. OpenClimateGIS - A Web Service Providing Climate Model Data in Commonly Used Geospatial Formats

    Erickson, T. A.; Koziol, B. W.; Rood, R. B.


    The goal of the OpenClimateGIS project is to make climate model datasets readily available in commonly used, modern geospatial formats used by GIS software, browser-based mapping tools, and virtual globes.The climate modeling community typically stores climate data in multidimensional gridded formats capable of efficiently storing large volumes of data (such as netCDF, grib) while the geospatial community typically uses flexible vector and raster formats that are capable of storing small volumes of data (relative to the multidimensional gridded formats). OpenClimateGIS seeks to address this difference in data formats by clipping climate data to user-specified vector geometries (i.e. areas of interest) and translating the gridded data on-the-fly into multiple vector formats. The OpenClimateGIS system does not store climate data archives locally, but rather works in conjunction with external climate archives that expose climate data via the OPeNDAP protocol. OpenClimateGIS provides a RESTful API web service for accessing climate data resources via HTTP, allowing a wide range of applications to access the climate data.The OpenClimateGIS system has been developed using open source development practices and the source code is publicly available. The project integrates libraries from several other open source projects (including Django, PostGIS, numpy, Shapely, and netcdf4-python).OpenClimateGIS development is supported by a grant from NOAA's Climate Program Office.