WorldWideScience

Sample records for circular equatorial orbits

  1. Equatorial circular orbits in the Kerr-de Sitter spacetimes

    International Nuclear Information System (INIS)

    Stuchlik, Zdenek; Slany, Petr

    2004-01-01

    Equatorial motion of test particles in Kerr-de Sitter spacetimes is considered. Circular orbits are determined, their properties are discussed for both black-hole and naked-singularity spacetimes, and their relevance for thin accretion disks is established. The circular orbits constitute two families that coalesce at the so-called static radius. The orientation of the motion along the circular orbits is, in accordance with case of asymptotically flat Kerr spacetimes, defined by relating the motion to the locally nonrotating frames. The minus-family orbits are all counterrotating, while the plus-family orbits are usually corotating relative to these frames. However, the plus-family orbits become counterrotating in the vicinity of the static radius in all Kerr-de Sitter spacetimes, and they become counterrotating in the vicinity of the ring singularity in Kerr-de Sitter naked-singularity spacetimes with a low enough rotational parameter. In such spacetimes, the efficiency of the conversion of the rest energy into heat energy in the geometrically thin plus-family accretion disks can reach extremely high values exceeding the efficiency of the annihilation process. The transformation of a Kerr-de Sitter naked singularity into an extreme black hole due to accretion in the thin disks is briefly discussed for both the plus-family and minus-family disks. It is shown that such a conversion leads to an abrupt instability of the innermost parts of the plus-family accretion disks that can have strong observational consequences

  2. Gravitational self-force correction to the innermost stable circular equatorial orbit of a Kerr black hole.

    Science.gov (United States)

    Isoyama, Soichiro; Barack, Leor; Dolan, Sam R; Le Tiec, Alexandre; Nakano, Hiroyuki; Shah, Abhay G; Tanaka, Takahiro; Warburton, Niels

    2014-10-17

    For a self-gravitating particle of mass μ in orbit around a Kerr black hole of mass M ≫ μ, we compute the O(μ/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the innermost stable circular equatorial orbit frequency shift as a function of the black hole's spin amplitude, and compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem.

  3. Equatorial circular motion in Kerr spacetime

    International Nuclear Information System (INIS)

    Pugliese, Daniela; Quevedo, Hernando; Ruffini, Remo

    2011-01-01

    We analyze the properties of circular orbits of test particles on the equatorial plane of a rotating central mass whose gravitational field is described by the Kerr spacetime. For rotating black holes and naked singularities we explore all the spatial regions where circular orbits can exist and analyze the behavior of the energy and the angular momentum of the corresponding test particles. In particular, we find all the radii at which a test particle can have zero angular momentum due to the repulsive gravity effects generated by naked singularities. We classify all the stability zones of circular orbits. It is shown that the geometric structure of the stability zones of black holes is completely different from that of naked singularities.

  4. Monitoring Mars LOD Variations from a High Altitude Circular Equatorial Orbit: Theory and Simulation

    Science.gov (United States)

    Barriot, J.; Dehant, V.; Duron, J.

    2003-12-01

    We compute the perturbations of a high altitude circular equatorial orbit of a martian probe under the influence of an annual variation of the martian lenght of day. For this purpose, we use the first order perturbations of the newtonian equations of motion, where the small parameter is given from the hourglass model of Chao and Rubincam, which allow a simple computation of CO2 exchanges during the martian year. We are able to demonstrate that the perturbations contains two components: the first one is a sine/cosine modulation at the orbit frequency, the second one is composed of terms of the form exp(t)*sin(t), so the orbit may not stable in the long term (several martian years), with perturbations growing exponentially. We give the full theory and numbers.

  5. The effect of J2 on equatorial and halo orbits around a magnetic planet

    International Nuclear Information System (INIS)

    Inarrea, Manuel; Lanchares, Victor; Palacian, Jesus F.; Pascual, Ana I.; Pablo Salas, J.; Yanguas, Patricia

    2009-01-01

    We calculate equatorial and halo orbits around a non-spherical (both oblate and prolate) magnetic planet. It is known that circular equatorial and halo orbits exist for a dust grain orbiting a spherical magnetic planet. However, the frequency of the orbit is constrained by the charge-mass ratio of the particle. If the non-sphericity of the planet is taken into account this constraint is modified or, in some cases, it disappears.

  6. The effect of J{sub 2} on equatorial and halo orbits around a magnetic planet

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel [Universidad de la Rioja, Area de Fisica, 26006 Logrono (Spain); Lanchares, Victor [Dpto. de Matematicas y Computacion, CIEMUR: Centro de Investigacion en Informatica, Estadistica y Matematicas, Universidad de la Rioja, 26004 Logrono (Spain)], E-mail: vlancha@unirioja.es; Palacian, Jesus F. [Universidad Publica de Navarra, Departamento de Ingenieria Matematica e Informatica, 31006 Pamplona (Spain); Pascual, Ana I. [Dpto. de Matematicas y Computacion, CIEMUR: Centro de Investigacion en Informatica, Estadistica y Matematicas, Universidad de la Rioja, 26004 Logrono (Spain); Pablo Salas, J. [Universidad de la Rioja, Area de Fisica, 26006 Logrono (Spain); Yanguas, Patricia [Universidad Publica de Navarra, Departamento de Ingenieria Matematica e Informatica, 31006 Pamplona (Spain)

    2009-10-15

    We calculate equatorial and halo orbits around a non-spherical (both oblate and prolate) magnetic planet. It is known that circular equatorial and halo orbits exist for a dust grain orbiting a spherical magnetic planet. However, the frequency of the orbit is constrained by the charge-mass ratio of the particle. If the non-sphericity of the planet is taken into account this constraint is modified or, in some cases, it disappears.

  7. Fast evolution and waveform generator for extreme-mass-ratio inspirals in equatorial-circular orbits

    International Nuclear Information System (INIS)

    Han, Wen-Biao

    2016-01-01

    In this paper we discuss the development of a fast and accurate waveform model for the quasi-circular orbital evolution of extreme-mass-ratio inspirals (EMRIs). This model simply employs the data of a few numerical Teukoulsky-based energy fluxes and waveforms to fit out a set of polynomials for the entire fluxes and waveforms. These obtained polynomials are accurate enough in the entire evolution domain, and much more accurate than the resummation post-Newtonian (PN) energy fluxes and waveforms, especially when the spin of a black hole becomes large. The dynamical equation we adopted for orbital revolution is the effective-one-body (EOB) formalism. Because of the simplified expressions, the efficiency of calculating the orbital evolution with our polynomials is also better than the traditional method which uses the resummed PN analytical fluxes. Our model should be useful in calculations of waveform templates of EMRIs for gravitational wave (GW) detectors such as the evolved Laser Interferometer Space Antenna (eLISA). (paper)

  8. Innermost stable circular orbit of spinning particle in charged spinning black hole background

    Science.gov (United States)

    Zhang, Yu-Peng; Wei, Shao-Wen; Guo, Wen-Di; Sui, Tao-Tao; Liu, Yu-Xiao

    2018-04-01

    In this paper we investigate the innermost stable circular orbit (ISCO) (spin-aligned or anti-aligned orbit) for a classical spinning test particle with the pole-dipole approximation in the background of Kerr-Newman black hole in the equatorial plane. It is shown that the orbit of the spinning particle is related to the spin of the test particle. The motion of the spinning test particle will be superluminal if its spin is too large. We give an additional condition by considering the superluminal constraint for the ISCO in the black hole backgrounds. We obtain numerically the relations between the ISCO and the properties of the black holes and the test particle. It is found that the radius of the ISCO for a spinning test particle is smaller than that of a nonspinning test particle in the black hole backgrounds.

  9. An analysis of near-circular lunar mapping orbits

    Indian Academy of Sciences (India)

    Numerical investigations have been carried out to analyse the evolution of lunar circular orbits and the influence of the higher order harmonics of the lunar gravity field. The aim is to select the appropriate near-circular orbit characteristics, which extend orbit life through passive orbit maintenance. The spherical harmonic ...

  10. Circular revisit orbits design for responsive mission over a single target

    Science.gov (United States)

    Li, Taibo; Xiang, Junhua; Wang, Zhaokui; Zhang, Yulin

    2016-10-01

    The responsive orbits play a key role in addressing the mission of Operationally Responsive Space (ORS) because of their capabilities. These capabilities are usually focused on supporting specific targets as opposed to providing global coverage. One subtype of responsive orbits is repeat coverage orbit which is nearly circular in most remote sensing applications. This paper deals with a special kind of repeating ground track orbit, referred to as circular revisit orbit. Different from traditional repeat coverage orbits, a satellite on circular revisit orbit can visit a target site at both the ascending and descending stages in one revisit cycle. This typology of trajectory allows a halving of the traditional revisit time and does a favor to get useful information for responsive applications. However the previous reported numerical methods in some references often cost lots of computation or fail to obtain such orbits. To overcome this difficulty, an analytical method to determine the existence conditions of the solutions to revisit orbits is presented in this paper. To this end, the mathematical model of circular revisit orbit is established under the central gravity model and the J2 perturbation. A constraint function of the circular revisit orbit is introduced, and the monotonicity of that function has been studied. The existent conditions and the number of such orbits are naturally worked out. Taking the launch cost into consideration, optimal design model of circular revisit orbit is established to achieve a best orbit which visits a target twice a day in the morning and in the afternoon respectively for several days. The result shows that it is effective to apply circular revisit orbits in responsive application such as reconnoiter of natural disaster.

  11. Precipitation regions on the Earth of high energy electrons, injected by a point source moving along a circular Earth orbit

    Science.gov (United States)

    Kolesnikov, E. K.; Klyushnikov, G. N.

    2018-05-01

    In the paper we continue the study of precipitation regions of high-energy charged particles, carried out by the authors since 2002. In contrast to previous papers, where a stationary source of electrons was considered, it is assumed that the source moves along a low circular near-earth orbit with a constant velocity. The orbit position is set by the inclination angle of the orbital plane to the equatorial plane and the longitude of the ascending node. The total number of injected electrons is determined by the source strength and the number of complete revolutions that the source makes along the circumference. Construction of precipitation regions is produced using the computational algorithm based on solving of the system of ordinary differential equations. The features of the precipitation regions structure for the dipole approximation of the geomagnetic field and the symmetrical arrangement of the orbit relative to the equator are noted. The dependencies of the precipitation regions on different orbital parametres such as the incline angle, the ascending node position and kinetic energy of injected particles have been considered.

  12. Two-craft Coulomb formation study about circular orbits and libration points

    Science.gov (United States)

    Inampudi, Ravi Kishore

    This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the

  13. WIYN Open Cluster Study: Binary Orbits and Tidal Circularization in NGC 6819

    Science.gov (United States)

    Morscher, Meagan B.; Mathieu, R. D.; Kaeppler, S.; Hole, K. T.; Meibom, S.

    2006-12-01

    We are conducting a comprehensive stellar radial-velocity survey in NGC 6819, a rich, intermediate age ( 2.4 Gyr) open cluster with [Fe/H] -0.05. As of October 2006, we have obtained 7065 radial-velocity measurements of 1409 stars using the WIYN Hydra Multi-Object Spectrograph, with typical velocity measurement precisions of 0.4 km/s. Using an E/I criterion of 3, we have identified 282 velocity variables. In the past year we have expanded the number of final orbital solutions by 45 to a total of more than 80 solutions. In coeval stellar populations, circular binaries tend to have the shortest orbital periods, while longer period binaries show a distribution of non-zero eccentricities. The circularization of the shortest period orbits is the result of an exchange of stellar and orbital angular momentum due to tidal interactions. We defined a population’s tidal circularization period as the longest orbital period at which a binary of typical initial eccentricity has become circularized (e.g., has evolved to an eccentricity e = 0.01) over the lifetime of the cluster (Meibom & Mathieu, 2005, ApJ, 620, 970). We are studying the trend of increasing tidal circularization periods with population age. Preliminary results in NGC 6819 indicate a tidal circularization period of 7.5 days, which is consistent with this overall trend. We will recalculate the tidal circularization period in order to include the latest sample of orbital solutions. This comprehensive survey also allows us to investigate the relative spatial distributions of spectroscopic binaries and other constant-velocity cluster members of similar mass. We find the spectroscopic binaries to be more centrally concentrated at a statistically significant level, which we attribute to energy equipartition processes. MM was supported by REU NSF grant AST-0453442. RDM, SK, KTH, and SM were supported by NSF grant AST-0406615.

  14. Topology of the Relative Motion: Circular and Eccentric Reference Orbit Cases

    Science.gov (United States)

    FontdecabaiBaig, Jordi; Metris, Gilles; Exertier, Pierre

    2007-01-01

    This paper deals with the topology of the relative trajectories in flight formations. The purpose is to study the different types of relative trajectories, their degrees of freedom, and to give an adapted parameterization. The paper also deals with the research of local circular motions. Even if they exist only when the reference orbit is circular, we extrapolate initial conditions to the eccentric reference orbit case.This alternative approach is complementary with traditional approaches in terms of cartesian coordinates or differences of orbital elements.

  15. Innermost stable circular orbit of Kerr-MOG black hole

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun-Chul; Han, Yong-Jin [Soonchunhyang University, Department of Physics, Asan (Korea, Republic of)

    2017-10-15

    We study the innermost stable circular orbit (ISCO) of the metric of the Kerr black hole in modified gravity (Kerr-MOG black hole), which is one of the exact solutions of the field equation of modified gravity in the strong gravity regime. The Kerr-MOG metric is constructed; it is the commonly known Kerr metric in Boyer-Lindquist coordinates by adding a repulsive term like the Yukawa force, which is explained in quantum gravity. In this paper, we numerically calculate the circular orbit of a photon and the ISCO of a test particle of Kerr-MOG black holes. (orig.)

  16. On the lunar node resonance of the orbital plane evolution of the Earth's satellite orbits

    Science.gov (United States)

    Zhu, Ting-Lei

    2018-06-01

    This paper aims to investigate the effects of lunar node resonance on the circular medium Earth orbits (MEO). The dynamical model is established in classical Hamiltonian systems with the application of Lie transform to remove the non-resonant terms. Resonant condition, stability and phase structures are studied. The lunar node resonance occurs when the secular changing rates of the orbital node (with respect to the equator) and the lunar node (with respect to the ecliptic) form a simple integer ratio. The resonant conditions are satisfied for both inclined and equatorial orbits. The orbital plane would have long period (with typical timescales of several centuries) fluctuation due to the resonance.

  17. Searching Less Perturbed Circular Orbits for a Spacecraft Travelling around Europa

    Directory of Open Access Journals (Sweden)

    J. P. S. Carvalho

    2014-01-01

    Full Text Available Space missions to visit the natural satellite of Jupiter, Europa, constitute an important topic in space activities today, because missions to this moon are under study now. Several considerations have to be made for these missions. The present paper searches for less perturbed circular orbits around Europa. This search is made based on the total effects of the perturbing forces over the time, evaluated by the integral of those forces over the time. This value depends on the dynamical model and on the orbit of the spacecraft. The perturbing forces considered are the third-body perturbation that comes from Jupiter and the J2, J3, and C22 terms of the gravitational potential of Europa. Several numerical studies are performed and the results show the locations of the less perturbed orbits. Using those results, it is possible to find near-circular frozen orbits with smaller amplitudes of variations of the orbital elements.

  18. MACSAT - A Near Equatorial Earth Observation Mission

    Science.gov (United States)

    Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.

    MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.

  19. Circular-Polarization-Selective Transmission Induced by Spin-Orbit Coupling in a Helical Tape Waveguide

    Science.gov (United States)

    Liu, Yahong; Guo, Qinghua; Liu, Hongchao; Liu, Congcong; Song, Kun; Yang, Biao; Hou, Quanwen; Zhao, Xiaopeng; Zhang, Shuang; Navarro-Cía, Miguel

    2018-05-01

    Spin-orbit coupling of light, describing the interaction between the polarization (spin) and spatial degrees of freedom (orbit) of light, plays an important role in subwavelength scale systems and leads to many interesting phenomena, such as the spin Hall effect of light. Here, based on the spin-orbit coupling, we design and fabricate a helical tape waveguide (HTW), which can realize a circular-polarization-selective process. When the incident circularly polarized wave is of the same handedness as the helix of the HTW, a nearly complete transmission is observed; in contrast, a counterrotating circular polarization of incident wave results in a much lower transmission or is even totally blocked by the HTW. Indeed, both simulations and experiments reveal that the blocked component of power leaks through the helical aperture of the HTW and forms a conical beam analogous to helical Cherenkov radiation due to the conversion from the spin angular momentum to the orbital angular momentum. Our HTW structure demonstrates its potential as a polarization selector in a broadband frequency range.

  20. General classification of charged test particle circular orbits in Reissner-Nordstroem spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D. [Silesian University in Opava, Institute of Physics, Faculty of Philosophy and Science, Opava (Czech Republic); Quevedo, H. [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, ICRA, Rome (Italy); Icranet-Pescara, Pescara (Italy); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico, DF (Mexico); Kazakh National University, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); Ruffini, R. [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, ICRA, Rome (Italy); Icranet-Pescara, Pescara (Italy)

    2017-04-15

    We investigate charged particles' circular motion in the gravitational field of a charged mass distribution described by the Reissner-Nordstroem spacetime. We introduce a set of independent parameters completely characterizing the different spatial regions in which circular motion is allowed. We provide a most complete classification of circular orbits for different sets of particle and source charge-to-mass ratios. We study both black holes and naked singularities and show that the behavior of charged particles depend drastically on the type of source. Our analysis shows in an alternative manner that the behavior of circular orbits can in principle be used to distinguish between black holes and naked singularities. From this analysis, special limiting values for the dimensionless charge of black hole and naked singularity emerge, namely, Q/M = 1/2, Q/M = √(13)/5 and Q/M = √(2/3) for the black hole case and Q/M = 1, Q/M = 5/(2√(6)), Q/M = 3√(6)/7, and finally Q/M = √(9/8) for the naked singularity case. Similarly and surprisingly, analogous limits emerge for the orbiting particles charge-to-mass ratio ε, for positive charges ε = 1, ε = 2 and ε = M/Q. These limits play an important role in the study of the coupled electromagnetic and gravitational interactions, and the investigation of the role of the charge in the gravitational collapse of compact objects. (orig.)

  1. Pseudo-Newtonian planar circular restricted 3-body problem

    International Nuclear Information System (INIS)

    Dubeibe, F.L.; Lora-Clavijo, F.D.; González, Guillermo A.

    2017-01-01

    We study the dynamics of the planar circular restricted three-body problem in the context of a pseudo-Newtonian approximation. By using the Fodor–Hoenselaers–Perjés procedure, we perform an expansion in the mass potential of a static massive spherical source up to the first non-Newtonian term, giving place to a gravitational potential that includes first-order general relativistic effects. With this result, we model a system composed by two pseudo-Newtonian primaries describing circular orbits around their common center of mass, and a test particle orbiting the system in the equatorial plane. The dynamics of the new system of equations is studied in terms of the Poincaré section method and the Lyapunov exponents, where the introduction of a new parameter ϵ, allows us to observe the transition from the Newtonian to the pseudo-Newtonian regime. We show that when the Jacobian constant is fixed, a chaotic orbit in the Newtonian regime can be either chaotic or regular in the pseudo-Newtonian approach. As a general result, we find that most of the pseudo-Newtonian configurations are less stable than their Newtonian equivalent.

  2. Pseudo-Newtonian planar circular restricted 3-body problem

    Energy Technology Data Exchange (ETDEWEB)

    Dubeibe, F.L., E-mail: fldubeibem@unal.edu.co [Facultad de Ciencias Humanas y de la Educación, Universidad de los Llanos, Villavicencio (Colombia); Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Lora-Clavijo, F.D., E-mail: fadulora@uis.edu.co [Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); González, Guillermo A., E-mail: guillermo.gonzalez@saber.uis.edu.co [Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia)

    2017-02-12

    We study the dynamics of the planar circular restricted three-body problem in the context of a pseudo-Newtonian approximation. By using the Fodor–Hoenselaers–Perjés procedure, we perform an expansion in the mass potential of a static massive spherical source up to the first non-Newtonian term, giving place to a gravitational potential that includes first-order general relativistic effects. With this result, we model a system composed by two pseudo-Newtonian primaries describing circular orbits around their common center of mass, and a test particle orbiting the system in the equatorial plane. The dynamics of the new system of equations is studied in terms of the Poincaré section method and the Lyapunov exponents, where the introduction of a new parameter ϵ, allows us to observe the transition from the Newtonian to the pseudo-Newtonian regime. We show that when the Jacobian constant is fixed, a chaotic orbit in the Newtonian regime can be either chaotic or regular in the pseudo-Newtonian approach. As a general result, we find that most of the pseudo-Newtonian configurations are less stable than their Newtonian equivalent.

  3. Analytic model for the long-term evolution of circular Earth satellite orbits including lunar node regression

    Science.gov (United States)

    Zhu, Ting-Lei; Zhao, Chang-Yin; Zhang, Ming-Jiang

    2017-04-01

    This paper aims to obtain an analytic approximation to the evolution of circular orbits governed by the Earth's J2 and the luni-solar gravitational perturbations. Assuming that the lunar orbital plane coincides with the ecliptic plane, Allan and Cook (Proc. R. Soc. A, Math. Phys. Eng. Sci. 280(1380):97, 1964) derived an analytic solution to the orbital plane evolution of circular orbits. Using their result as an intermediate solution, we establish an approximate analytic model with lunar orbital inclination and its node regression be taken into account. Finally, an approximate analytic expression is derived, which is accurate compared to the numerical results except for the resonant cases when the period of the reference orbit approximately equals the integer multiples (especially 1 or 2 times) of lunar node regression period.

  4. Ground Target Overflight and Orbital Maneuvering via Atmospheric Maneuvers

    Science.gov (United States)

    2014-03-27

    Total deceleration m ∙ s−2 Gravitational acceleration m ∙ s−2 ℎ Altitude m Inclination angle rad Vehicle mass kg Geocentric ...total atmospheric inclination change approached the limit of approximately 36.2° as the number of atmospheric passes increased. This inclination...determine the longitude. By expanding and simplifying Eqs. (3.1) and (3.5) for a circular orbit, the position can be written in the Geocentric Equatorial

  5. Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Aleman, Ramon [Physical Sciences Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00931 (Puerto Rico); Khanna, Gaurav [Natural Science Division, Long Island University, Southampton, NY 11968 (United States); Pullin, Jorge [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803-4001 (United States)

    2003-07-21

    We consider the problem of the gravitational waves produced by a particle of negligible mass orbiting a Kerr black hole. We treat the Teukolsky perturbation equation in the time domain numerically as a 2 + 1 partial differential equation. We model the particle by smearing the singularities in the source term by the use of narrow Gaussian distributions. We have been able to reproduce earlier results for equatorial circular orbits that were computed using the frequency-domain formalism. The time-domain approach is however geared for a more general evolution, for instance of nearly geodesic orbits under the effects of radiation reaction.

  6. Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation

    International Nuclear Information System (INIS)

    Lopez-Aleman, Ramon; Khanna, Gaurav; Pullin, Jorge

    2003-01-01

    We consider the problem of the gravitational waves produced by a particle of negligible mass orbiting a Kerr black hole. We treat the Teukolsky perturbation equation in the time domain numerically as a 2 + 1 partial differential equation. We model the particle by smearing the singularities in the source term by the use of narrow Gaussian distributions. We have been able to reproduce earlier results for equatorial circular orbits that were computed using the frequency-domain formalism. The time-domain approach is however geared for a more general evolution, for instance of nearly geodesic orbits under the effects of radiation reaction

  7. Circular Orbit Target Capture Using Space Tether-Net System

    Directory of Open Access Journals (Sweden)

    Guang Zhai

    2013-01-01

    Full Text Available The space tether-net system for on-orbit capture is proposed in this paper. In order to research the dynamic behaviors during system deployment, both free and nonfree deployment dynamics in circular orbit are developed; the system motion with respect to Local Vertical and Local Horizontal frame is also researched with analysis and simulation. The results show that in the case of free deployment, the capture net follows curve trajectories due to the relative orbit dynamic perturbation, and the initial deployment velocities are planned by state transformation equations for static and floating target captures; in the case of non-free deployment, the system undergoes an altitude libration along the Local Vertical, and the analytical solutions that describe the attitude libration are obtained by using variable separation and integration. Finally, the dynamics of postdeployment system is also proved marginally stable if the critical initial conditions are satisfied.

  8. Robust Tracking Control for Rendezvous in Near-Circular Orbits

    Directory of Open Access Journals (Sweden)

    Neng Wan

    2013-01-01

    Full Text Available This paper investigates a robust guaranteed cost tracking control problem for thrust-limited spacecraft rendezvous in near-circular orbits. Relative motion model is established based on the two-body problem with noncircularity of the target orbit described as a parameter uncertainty. A guaranteed cost tracking controller with input saturation is designed via a linear matrix inequality (LMI method, and sufficient conditions for the existence of the robust tracking controller are derived, which is more concise and less conservative compared with the previous works. Numerical examples are provided for both time-invariant and time-variant reference signals to illustrate the effectiveness of the proposed control scheme when applied to the terminal rendezvous and other astronautic missions with scheduled states signal.

  9. Homoclinic orbits around spinning black holes. I. Exact solution for the Kerr separatrix

    International Nuclear Information System (INIS)

    Levin, Janna; Perez-Giz, Gabe

    2009-01-01

    For equatorial Kerr orbits, we show that each separatrix between bound and plunging geodesics is a homoclinic orbit--an orbit that asymptotes to an energetically-bound, unstable circular orbit. We derive exact expressions for these trajectories in terms of elementary functions. We also clarify the formal connection between the separatrix and zoom-whirl orbits and show that, contrary to popular belief, zoom-whirl behavior is not intrinsically a near-separatrix phenomenon. This paper focuses on homoclinic behavior in physical space, while in a companion paper we paint the complementary phase space portrait. Although they refer to geodesic motion, the exact solutions for the Kerr separatrix could be useful for analytic or numerical studies of eccentric transitions from orbital to plunging motion under the dissipative effects of gravitational radiation.

  10. Development of a methodology for deriving Plasmaspheric Total Electron Content from In-Situ electron density measurements in highly eccentric equatorial orbits

    Science.gov (United States)

    Sadhique, Aliyuthuman; Buckley, Andrew; Gough, Paul; Sussex Space Science Centre Team

    2017-10-01

    The contribution of the Upper Plasmasphere (defined as the altitudes above semi-synchronous orbit height to the Plasmapause height) to the TEC has been and continues to be un-quantified. The PEACE instrument in the Chinese - ESA Double Star TC1 satellite, the mission's orbit's high eccentricity, low perigee, high apogee and the resulting smaller incident angle while in the above altitude range provide the ideal geometric opportunity to build a methodology and to utilize its empirical in-situ electron density measurements to determine the Upper Plasmaspheric TEC component. Furthermore, the variation of the Inclination Angle of TC1 makes it a suitable equatorial mission confined to the Near-Equatorial region, ie 200 - 250 on either sides of the magnetic equator. As the most pronounced absolute TEC values and variations are within this region, it offers an excellent opportunity to build a Upper Plasmaspheric TEC database. This research generates such, first-ever database along its orbital path, using a methodology of approximation equating arcs of the orbits to straight-line TEC Bars, utilizing complex mathematics, also enabling the determination of the whole Plasmaspheric TEC from any eccentric orbital probe. Presented the paper in 15th International Workshop on Technical and Scientific Aspects of MST radar (MST15/iMST2)'' and ``18th EISCAT Symposium (EISCAT18)'' in Tokyo, Japan and The Royal Astronomical Society National Astronomy Meeting 2017.

  11. Circular orbits and acceleration of particles by near-extremal dirty rotating black holes: general approach

    International Nuclear Information System (INIS)

    Zaslavskii, Oleg B

    2012-01-01

    We study the effect of collisions of ultrahigh energy particles near the black hole horizon (BSW effect) for two scenarios: when one of the particles either (i) moves on a circular orbit or (ii) plunges from it toward the horizon. It is shown that such circular near-horizon orbits can exist for near-extremal black holes only. This includes the innermost stable orbit (ISCO), marginally bound orbit (MBO) and photon one (PhO). We consider generic ‘dirty’ rotating black holes not specifying the metric and show that the energy in the center-of-mass frame has the universal scaling dependence on the surface gravity κ. Namely, E c.m. ∼ κ −n where for the ISCO, n= 1/3 in case (i) or n= 1/2 in case (ii). For the MBO and PhCO, n= 1/2 in both scenarios that agrees with recent calculations of Harada and Kimura for the Kerr metric. We also generalize the Grib and Pavlov observations made for the Kerr metric. The magnitude of the BSW effect on the location of collision has a somewhat paradoxical character: it decreases when approaching the horizon. (paper)

  12. Circular orbits and acceleration of particles by near-extremal dirty rotating black holes: general approach

    Science.gov (United States)

    Zaslavskii, Oleg B.

    2012-10-01

    We study the effect of collisions of ultrahigh energy particles near the black hole horizon (BSW effect) for two scenarios: when one of the particles either (i) moves on a circular orbit or (ii) plunges from it toward the horizon. It is shown that such circular near-horizon orbits can exist for near-extremal black holes only. This includes the innermost stable orbit (ISCO), marginally bound orbit (MBO) and photon one (PhO). We consider generic ‘dirty’ rotating black holes not specifying the metric and show that the energy in the center-of-mass frame has the universal scaling dependence on the surface gravity κ. Namely, Ec.m. ˜ κ-n where for the ISCO, n=\\frac{1}{3} in case (i) or n=\\frac{1}{2} in case (ii). For the MBO and PhCO, n=\\frac{1}{2} in both scenarios that agrees with recent calculations of Harada and Kimura for the Kerr metric. We also generalize the Grib and Pavlov observations made for the Kerr metric. The magnitude of the BSW effect on the location of collision has a somewhat paradoxical character: it decreases when approaching the horizon.

  13. Circular orbits of corotating binary black holes: Comparison between analytical and numerical results

    International Nuclear Information System (INIS)

    Damour, Thibault; Gourgoulhon, Eric; Grandclement, Philippe

    2002-01-01

    We compare recent numerical results, obtained within a 'helical Killing vector' approach, on circular orbits of corotating binary black holes to the analytical predictions made by the effective one-body (EOB) method (which has been recently extended to the case of spinning bodies). On the scale of the differences between the results obtained by different numerical methods, we find good agreement between numerical data and analytical predictions for several invariant functions describing the dynamical properties of circular orbits. This agreement is robust against the post-Newtonian accuracy used for the analytical estimates, as well as under choices of the resummation method for the EOB 'effective potential', and gets better as one uses a higher post-Newtonian accuracy. These findings open the way to a significant 'merging' of analytical and numerical methods, i.e. to matching an EOB-based analytical description of the (early and late) inspiral, up to the beginning of the plunge, to a numerical description of the plunge and merger. We illustrate also the 'flexibility' of the EOB approach, i.e. the possibility of determining some 'best fit' values for the analytical parameters by comparison with numerical data

  14. Taub-NUT spinless particles and Schwarzschild spinning particles

    International Nuclear Information System (INIS)

    Bini, D.; La Sapienza Univ., Rome

    2005-01-01

    The effect of a small gravitomagnetic monopole on (accelerated) circular orbits in the equatorial plane of the Taub-NUT space-time is compared to the corresponding (accelerated) orbits pushed slightly off the equatorial plane in the absence of the monopole (Schwarzschild space-time)

  15. The Carter constant for inclined orbits about a massive Kerr black hole: I. Circular orbits

    Energy Technology Data Exchange (ETDEWEB)

    Komorowski, P G; Valluri, S R; Houde, M, E-mail: pkomorow@uwo.c, E-mail: valluri@uwo.c, E-mail: mhoude2@uwo.c [Department of Physics and Astronomy, University of Western Ontario, London, Ontario (Canada)

    2010-11-21

    In an extreme binary black hole system, an orbit will increase its angle of inclination ({iota}) as it evolves in Kerr spacetime. We focus our attention on the behaviour of the Carter constant (Q) for near-polar orbits, and develop an analysis that is independent of and complements radiation-reaction models. For a Schwarzschild black hole, the polar orbits represent the abutment between the prograde and retrograde orbits at which Q is at its maximum value for given values of the latus rectum ({tilde l}) and the eccentricity (e). The introduction of spin ({tilde S}={vert_bar}J{vert_bar}/M{sup 2}) to the massive black hole causes this boundary, or abutment, to be moved towards greater orbital inclination; thus, it no longer cleanly separates prograde and retrograde orbits. To characterize the abutment of a Kerr black hole (KBH), we first investigated the last stable orbit (LSO) of a test-particle about a KBH, and then extended this work to general orbits. To develop a better understanding of the evolution of Q we developed analytical formulae for Q in terms of {tilde l}, e and {tilde S} to describe elliptical orbits at the abutment, polar orbits and LSOs. By knowing the analytical form of {partial_derivative}Q/{partial_derivative}{tilde l} at the abutment, we were able to test a 2PN flux equation for Q. We also used these formulae to numerically calculate the {partial_derivative}{iota}/{partial_derivative}{tilde l} of hypothetical circular orbits that evolve along the abutment. From these values we have determined that {partial_derivative}{iota}/{partial_derivative}{tilde l} = -(122.7{tilde S} - 36{tilde S}{sup 3}){tilde l}{sup -11/2} - (63/2 {tilde S} + 35/4 {tilde S}{sup 3}){tilde l}{sup -9/2} - 15/2 {tilde S}{tilde l}{sup -7/2} - 9/2 {tilde S}{tilde l}{sup -5/2}. By taking the limit of this equation for {tilde l} {yields} {infinity}, and comparing it with the published result for the weak-field radiation reaction, we found the upper limit on

  16. Spherical null geodesics of rotating Kerr black holes

    International Nuclear Information System (INIS)

    Hod, Shahar

    2013-01-01

    The non-equatorial spherical null geodesics of rotating Kerr black holes are studied analytically. Unlike the extensively studied equatorial circular orbits whose radii are known analytically, no closed-form formula exists in the literature for the radii of generic (non-equatorial) spherical geodesics. We provide here an approximate formula for the radii r ph (a/M;cosi) of these spherical null geodesics, where a/M is the dimensionless angular momentum of the black hole and cos i is an effective inclination angle (with respect to the black-hole equatorial plane) of the orbit. It is well-known that the equatorial circular geodesics of the Kerr spacetime (the prograde and the retrograde orbits with cosi=±1) are characterized by a monotonic dependence of their radii r ph (a/M;cosi=±1) on the dimensionless spin-parameter a/M of the black hole. We use here our novel analytical formula to reveal that this well-known property of the equatorial circular geodesics is actually not a generic property of the Kerr spacetime. In particular, we find that counter-rotating spherical null orbits in the range (3√(3)−√(59))/4≲cosi ph (a/M;cosi=const) on the dimensionless rotation-parameter a/M of the black hole. Furthermore, it is shown that spherical photon orbits of rapidly-rotating black holes are characterized by a critical inclination angle, cosi=√(4/7), above which the coordinate radii of the orbits approach the black-hole radius in the extremal limit. We prove that this critical inclination angle signals a transition in the physical properties of the spherical null geodesics: in particular, it separates orbits which are characterized by finite proper distances to the black-hole horizon from orbits which are characterized by infinite proper distances to the horizon.

  17. Circular orbits in cosmic string and Schwarzschild-AdS spacetime with Fermi-Walker transport

    International Nuclear Information System (INIS)

    Bakke, K.; Furtado, C.; Carvalho, A.M. de

    2009-01-01

    In this paper we discuss the Fermi-Walker transport of vectors along orbits in cosmic string and Schwarzschild-AdS spacetimes. We analyze the influence of acceleration on these holonomies. An effect similar to Thomas precession is observed within the process of Fermi-Walker transport along these circular orbits which are studied in the limit of vanishing cosmological constant in Schwarzschild-AdS case; also we obtain Fermi-Walker transport in a Schwarzschild background. In the case of a Schwarzschild spacetime, we analyze the quantized band holonomy invariance. In the limit of zero acceleration we recover the well-known results for holonomy matrix obtained by parallel transport in all these spacetimes. (orig.)

  18. Influence of the Rashba and Dresselhaus spin-orbit interactions on the electron states in circular quantum rings

    International Nuclear Information System (INIS)

    Kudryashov, V.V.; Baran, A.V.

    2015-01-01

    Within the framework of perturbation theory the energy levels and wave functions are found for an electron in two-dimensional semiconductor circular quantum rings in the presence of the Rashba and Dresselhaus spin-orbit interactions with a realistic axially symmetric confining square well potential of finite depth. (authors)

  19. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft

    Science.gov (United States)

    Genova, A. L.

    2014-01-01

    This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.

  20. A Study of Single- and Double-Averaged Second-Order Models to Evaluate Third-Body Perturbation Considering Elliptic Orbits for the Perturbing Body

    Directory of Open Access Journals (Sweden)

    R. C. Domingos

    2013-01-01

    Full Text Available The equations for the variations of the Keplerian elements of the orbit of a spacecraft perturbed by a third body are developed using a single average over the motion of the spacecraft, considering an elliptic orbit for the disturbing body. A comparison is made between this approach and the more used double averaged technique, as well as with the full elliptic restricted three-body problem. The disturbing function is expanded in Legendre polynomials up to the second order in both cases. The equations of motion are obtained from the planetary equations, and several numerical simulations are made to show the evolution of the orbit of the spacecraft. Some characteristics known from the circular perturbing body are studied: circular, elliptic equatorial, and frozen orbits. Different initial eccentricities for the perturbed body are considered, since the effect of this variable is one of the goals of the present study. The results show the impact of this parameter as well as the differences between both models compared to the full elliptic restricted three-body problem. Regions below, near, and above the critical angle of the third-body perturbation are considered, as well as different altitudes for the orbit of the spacecraft.

  1. Exact solutions of the Schrodinger equation for an electron in the circular quantum ring taking into account spin-orbit interactions

    International Nuclear Information System (INIS)

    Kudryashov, V.V.; Baran, A.V.

    2012-01-01

    The exact solutions of the Schrodinger equation are obtained for an electron in two-dimensional circular semiconductor quantum ring in the presence of the Rashba and Dresselhaus spin-orbit interactions of equal strength. Confinement is simulated by a realistic potential well of finite depth. The dependence of energy levels on the strength of spin-orbit interaction, the relative ring width, and the depth of a potential well is presented. (authors)

  2. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF HOT JUPITERS ON HIGHLY ECCENTRIC ORBITS

    International Nuclear Information System (INIS)

    Kataria, T.; Showman, A. P.; Lewis, N. K.; Fortney, J. J.; Marley, M. S.; Freedman, R. S.

    2013-01-01

    Of the over 800 exoplanets detected to date, over half are on non-circular orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable stellar heating, which has major implications for the planet's atmospheric dynamical regime. However, little is known about the fundamental dynamical regime of such planetary atmospheres, and how it may influence the observations of these planets. Therefore, we present a systematic study of hot Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which couples a three-dimensional general circulation model (the MITgcm) with a plane-parallel, two-stream, non-gray radiative transfer model. In our study, we vary the eccentricity and orbit-average stellar flux over a wide range. We demonstrate that the eccentric hot Jupiter regime is qualitatively similar to that of planets on circular orbits; the planets possess a superrotating equatorial jet and exhibit large day-night temperature variations. As in Showman and Polvani, we show that the day-night heating variations induce momentum fluxes equatorward to maintain the superrotating jet throughout its orbit. We find that as the eccentricity and/or stellar flux is increased (corresponding to shorter orbital periods), the superrotating jet strengthens and narrows, due to a smaller Rossby deformation radius. For a select number of model integrations, we generate full-orbit light curves and find that the timing of transit and secondary eclipse viewed from Earth with respect to periapse and apoapse can greatly affect what we see in infrared (IR) light curves; the peak in IR flux can lead or lag secondary eclipse depending on the geometry. For those planets that have large temperature differences from dayside to nightside and rapid rotation rates, we find that the light curves can exhibit 'ringing' as the planet's hottest region rotates in and out of view from Earth. These results can be used to explain future observations of eccentric transiting exoplanets.

  3. Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves.

    Science.gov (United States)

    Li, Long; Zhou, Xiaoxiao

    2018-03-23

    In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.

  4. Comparison of circular orbit and Fourier power series ephemeris representations for backup use by the upper atmosphere research satellite onboard computer

    Science.gov (United States)

    Kast, J. R.

    1988-01-01

    The Upper Atmosphere Research Satellite (UARS) is a three-axis stabilized Earth-pointing spacecraft in a low-Earth orbit. The UARS onboard computer (OBC) uses a Fourier Power Series (FPS) ephemeris representation that includes 42 position and 42 velocity coefficients per axis, with position residuals at 10-minute intervals. New coefficients and 32 hours of residuals are uploaded daily. This study evaluated two backup methods that permit the OBC to compute an approximate spacecraft ephemeris in the event that new ephemeris data cannot be uplinked for several days: (1) extending the use of the FPS coefficients previously uplinked, and (2) switching to a simple circular orbit approximation designed and tested (but not implemented) for LANDSAT-D. The FPS method provides greater accuracy during the backup period and does not require additional ground operational procedures for generating and uplinking an additional ephemeris table. The tradeoff is that the high accuracy of the FPS will be degraded slightly by adopting the longer fit period necessary to obtain backup accuracy for an extended period of time. The results for UARS show that extended use of the FPS is superior to the circular orbit approximation for short-term ephemeris backup.

  5. Reducing orbital eccentricity in binary black hole simulations

    International Nuclear Information System (INIS)

    Pfeiffer, Harald P; Brown, Duncan A; Kidder, Lawrence E; Lindblom, Lee; Lovelace, Geoffrey; Scheel, Mark A

    2007-01-01

    Binary black hole simulations starting from quasi-circular (i.e., zero radial velocity) initial data have orbits with small but nonzero orbital eccentricities. In this paper, the quasi-equilibrium initial-data method is extended to allow nonzero radial velocities to be specified in binary black hole initial data. New low-eccentricity initial data are obtained by adjusting the orbital frequency and radial velocities to minimize the orbital eccentricity, and the resulting (∼5 orbit) evolutions are compared with those of quasi-circular initial data. Evolutions of the quasi-circular data clearly show eccentric orbits, with eccentricity that decays over time. The precise decay rate depends on the definition of eccentricity; if defined in terms of variations in the orbital frequency, the decay rate agrees well with the prediction of Peters (1964 Phys. Rev. 136 1224-32). The gravitational waveforms, which contain ∼8 cycles in the dominant l = m = 2 mode, are largely unaffected by the eccentricity of the quasi-circular initial data. The overlap between the dominant mode in the quasi-circular evolution and the same mode in the low-eccentricity evolution is about 0.99

  6. A simple method to design non-collision relative orbits for close spacecraft formation flying

    Science.gov (United States)

    Jiang, Wei; Li, JunFeng; Jiang, FangHua; Bernelli-Zazzera, Franco

    2018-05-01

    A set of linearized relative motion equations of spacecraft flying on unperturbed elliptical orbits are specialized for particular cases, where the leader orbit is circular or equatorial. Based on these extended equations, we are able to analyze the relative motion regulation between a pair of spacecraft flying on arbitrary unperturbed orbits with the same semi-major axis in close formation. Given the initial orbital elements of the leader, this paper presents a simple way to design initial relative orbital elements of close spacecraft with the same semi-major axis, thus preventing collision under non-perturbed conditions. Considering the mean influence of J 2 perturbation, namely secular J 2 perturbation, we derive the mean derivatives of orbital element differences, and then expand them to first order. Thus the first order expansion of orbital element differences can be added to the relative motion equations for further analysis. For a pair of spacecraft that will never collide under non-perturbed situations, we present a simple method to determine whether a collision will occur when J 2 perturbation is considered. Examples are given to prove the validity of the extended relative motion equations and to illustrate how the methods presented can be used. The simple method for designing initial relative orbital elements proposed here could be helpful to the preliminary design of the relative orbital elements between spacecraft in a close formation, when collision avoidance is necessary.

  7. Cygnus X-1: Discovery of variable circular polarization

    International Nuclear Information System (INIS)

    Michalsky, J.J.; Swedlund, J.B.; Stokes, R.A.

    1975-01-01

    HDE 226868, the optical counterpart of Cyg X-1, has been observed for circular polarization during 1974. Observations in five colors suggest that circular polarization results from an interstellar effect. Measurements of the blue polarization reveal circular polarization variations synchronous with the 5)./sub /6 orbital period. The circular polarization variation appears to be similar to the blue intensity variation

  8. Evolution of the Orbital Elements for Geosynchronous Orbit of Communications Satellite, II

    Directory of Open Access Journals (Sweden)

    Kyu-Hong Choi

    1987-06-01

    Full Text Available For a geostationary satellite north-south station keeping maneuver must control the inclination elements. The effects on the orbit plane of maneuvers and natural perturbations may be represented by a plane plot of Wc versus Ws, since these inclination elements represent the projection of the unit orbit normal onto the equatorial plane. The evolution of the semi-major axis and the inclination elements are obtained.

  9. Gravitational waves from plunges into Gargantua

    Science.gov (United States)

    Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang

    2018-05-01

    We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.

  10. Circular induction accelerator for borehole logging

    International Nuclear Information System (INIS)

    Chen, F.K.; Bertozzi, W.; Corris, G.W.; Diamond, W.; Doucet, J.A.; Schweitzer, J.S.

    1992-01-01

    This patent describes a downhole logging sonde adapted to be moved through a borehole, a source of gamma rays in the sonde for irradiating earth formations traversed by the borehole, one or more gamma ray detectors for detecting gamma rays scattered back to the sonde from the irradiated earth formations, and means for transmitting signals representative of the detected gamma rays to the earth's surface for processing. This patent describes improvement in the gamma ray source comprises a magnetic induction particle accelerator, including: a magnetic circuit having a field magnet, generally circular opposed pole pieces, and a core magnet metal ions from the group consisting of Mn, Zn and Ni; an excitation circuit including a field coil surrounding the field magnet and the core magnet and a core coil surrounding the central axially leg of the core magnet; an annular acceleration chamber interposed between the pole pieces; means for applying time-varying acceleration voltage pulses across the primary excitation circuit; means for injecting charged particles into orbit within the acceleration chamber; means for compressing the particle orbits to trap particles within generally circular orbits within the acceleration chamber; means for generating a particle accelerating magnetic flux in the magnetic circuit; and means for ejecting charged particles from the generally circular orbits and into contact with a target to produce gamma ray photons

  11. Stable low-altitude orbits around Ganymede considering a disturbing body in a circular orbit

    Science.gov (United States)

    Cardoso dos Santos, J.; Carvalho, J. P. S.; Vilhena de Moraes, R.

    2014-10-01

    Some missions are being planned to visit Ganymede like the Europa Jupiter System Mission that is a cooperation between NASA and ESA to insert the spacecraft JGO (Jupiter Ganymede Orbiter) into Ganymedes orbit. This comprehension of the dynamics of these orbits around this planetary satellite is essential for the success of this type of mission. Thus, this work aims to perform a search for low-altitude orbits around Ganymede. An emphasis is given in polar orbits and it can be useful in the planning of space missions to be conducted around, with respect to the stability of orbits of artificial satellites. The study considers orbits of artificial satellites around Ganymede under the influence of the third-body (Jupiter's gravitational attraction) and the polygenic perturbations like those due to non-uniform distribution of mass (J_2 and J_3) of the main body. A simplified dynamic model for these perturbations is used. The Lagrange planetary equations are used to describe the orbital motion of the artificial satellite. The equations of motion are developed in closed form to avoid expansions in eccentricity and inclination. The results show the argument of pericenter circulating. However, low-altitude (100 and 150 km) polar orbits are stable. Another orbital elements behaved variating with small amplitudes. Thus, such orbits are convenient to be applied to future space missions to Ganymede. Acknowledgments: FAPESP (processes n° 2011/05671-5, 2012/12539-9 and 2012/21023-6).

  12. Measuring the Innermost Stable Circular Orbits of Supermassive Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Chartas, G.; Zalesky, L. [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States); Krawczynski, H. [Physics Department and McDonnell Center for the Space Sciences, Washington University in St. Louis, 1 Brookings Drive, CB 1105, St. Louis, MO 63130 (United States); Kochanek, C. S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Dai, X. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Morgan, C. W.; Mosquera, A., E-mail: chartasg@cofc.edu [Physics Department, United States Naval Academy, Annapolis, MD 21403 (United States)

    2017-03-01

    We present a promising new technique, the g -distribution method, for measuring the inclination angle ( i ), the innermost stable circular orbit (ISCO), and the spin of a supermassive black hole. The g -distribution method uses measurements of the energy shifts in the relativistic iron line emitted by the accretion disk of a supermassive black hole due to microlensing by stars in a foreground galaxy relative to the g -distribution shifts predicted from microlensing caustic calculations. We apply the method to the gravitationally lensed quasars RX J1131–1231 ( z {sub s} = 0.658, z {sub l} = 0.295), QJ 0158–4325 ( z {sub s} = 1.294, z {sub l} = 0.317), and SDSS 1004+4112 ( z {sub s} = 1.734, z {sub l} = 0.68). For RX J1131−1231, our initial results indicate that r {sub ISCO} ≲ 8.5 gravitational radii ( r {sub g}) and i ≳ 55° (99% confidence level). We detect two shifted Fe lines in several observations, as predicted in our numerical simulations of caustic crossings. The current Δ E distribution of RX J1131–1231 is sparsely sampled, but further X-ray monitoring of RX J1131–1231 and other lensed quasars will provide improved constraints on the inclination angles, ISCO radii, and spins of the black holes of distant quasars.

  13. Influence of the Rashba and Dresselhaus spin-orbit interactions of equal strength on the electron states in the circular quantum dot in the presence of a magnetic field

    International Nuclear Information System (INIS)

    Kudryashov, V.V.; Baran, A.V.

    2012-01-01

    The solutions of the Schrodinger equation are obtained for an electron at a two-dimensional circular semiconductor quantum dot in the presence of both an external magnetic field and the Rashba and Dresselhaus spin-orbit interactions of equal strength. Confinement is simulated by a realistic potential well of finite depth. The dependence of energy levels on a magnetic field and a strength of spin-orbit interaction is presented. (authors)

  14. Equatorial enhancement of the nighttime OH mesospheric infrared airglow

    International Nuclear Information System (INIS)

    Baker, D J; Thurgood, B K; Harrison, W K; Mlynczak, M G; Russell, J M

    2007-01-01

    Global measurements of the hydroxyl mesospheric airglow over an extended period of time have been made possible by the NASA SABER infrared sensor aboard the TIMED satellite which has been functioning since December of 2001. The orbital mission has continued over a significant portion of a solar cycle. Experimental data from SABER for several years have exhibited equatorial enhancements of the nighttime mesospheric OH (Δv=2) airglow layer consistent with the high average diurnal solar flux. The brightening of the OH airglow typically means more H+O 3 is being reacted. At both the spring and autumn seasonal equinoxes when the equatorial solar UV irradiance mean is greatest, the peak volume emission rate (VER) of the nighttime Meinel infrared airglow typically appears to be both significantly brighter plus lower in altitude by several kilometres at low latitudes compared with midlatitude findings

  15. Orbiting compressor for residential air-conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jin; Kim, Woo Young; Ahn, Jong Min [Department of Mechanical Engineering, University of Incheon, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea)

    2010-01-15

    A new type of compressor, called an orbiting compressor, is introduced in this paper. The orbiting compressor is characterized by an orbiting piston, and the piston or orbiter consists of a circular base plate and a ring type vane protruding vertically from the base plate. The orbiter is made to orbit in an annular space formed between two concentric circular walls via an Oldham-ring mechanism, producing two sealed gas pockets on both sides of the vane wrap with a 180 phase difference. This operating mechanism leads to alternating compression and discharge processes, which results in low torque variation. The orbiting compressor has been designed for an R410A residential air conditioner with a cooling capacity of 10.0 kW. The performance of the orbiting compressor model has been analytically investigated, where the volumetric, adiabatic and mechanical efficiencies were calculated to be 94.8%, 90.4% and 93.4%, respectively for the ARI condition. The EER was estimated to be about 10.86 with a motor efficiency of 89%. (author)

  16. Space station orbit maintenance

    Science.gov (United States)

    Kaplan, D. I.; Jones, R. M.

    1983-01-01

    The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.

  17. Influence of the Rashba and Dresselhaus spin-orbit interactions of equal strength on the electron states in the circular quantum ring in the presence of a magnetic field

    International Nuclear Information System (INIS)

    Kudryashov, V.V.; Baran, A.V.

    2012-01-01

    The solutions of the Schrodinger equation are obtained for an electron in the two-dimensional circular semiconductor quantum ring in the presence of both an external magnetic and the Rashba and Dresselhaus spin-orbit interactions of equal strength . Confinement is simulated by a realistic potential well of finite depth. The dependence of energy levels on the magnetic field, the strength of spin-orbit interaction, and the relative ring width is presented. (authors)

  18. Satellite Orbital Precessions Caused by the Octupolar Mass Moment ...

    Indian Academy of Sciences (India)

    Abstract. I consider a satellite moving around a non-spherical body of mass M and equatorial radius R, and calculate its orbital precessions caused by the body's octupolar mass moment J4. I consider only the effects averaged over one orbital period T of the satellite. I give exact for- mulas, not restricted to any special values ...

  19. Whirling orbits around twirling black holes from conformal symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hadar, Shahar [Department of Applied Mathematics and Theoretical Physics, University of Cambridge,Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Porfyriadis, Achilleas P. [Department of Physics, UCSB,Santa Barbara, CA 93106 (United States)

    2017-03-03

    Dynamics in the throat of rapidly rotating Kerr black holes is governed by an emergent near-horizon conformal symmetry. The throat contains unstable circular orbits at radii extending from the ISCO down to the light ring. We show that they are related by conformal transformations to physical plunges and osculating trajectories. These orbits have angular momentum arbitrarily higher than that of ISCO. Using the conformal symmetry we compute analytically the radiation produced by the physical orbits. We also present a simple formula for the full self-force on such trajectories in terms of the self-force on circular orbits.

  20. Spin flip in single quantum ring with Rashba spin–orbit interation

    Science.gov (United States)

    Liu, Duan-Yang; Xia, Jian-Bai

    2018-03-01

    We theoretically investigate spin transport in the elliptical ring and the circular ring with Rashba spin–orbit interaction. It is shown that when Rashba spin–orbit interaction is relatively weak, a single circular ring can not realize spin flip, however an elliptical ring may work as a spin-inverter at this time, and the influence of the defect of the geometry is not obvious. Howerver if a giant Rashba spin–orbit interaction strength has been obtained, a circular ring can work as a spin-inverter with a high stability. Project supported by the National Natural Science Foundation of China (Grant No. 11504016).

  1. Conjugate gradient determination of optimal plane changes for a class of three-impulse transfers between noncoplanar circular orbits

    Science.gov (United States)

    Burrows, R. R.

    1972-01-01

    A particular type of three-impulse transfer between two circular orbits is analyzed. The possibility of three plane changes is recognized, and the problem is to optimally distribute these plane changes to minimize the sum of the individual impulses. Numerical difficulties and their solution are discussed. Numerical results obtained from a conjugate gradient technique are presented for both the case where the individual plane changes are unconstrained and for the case where they are constrained. Possibly not unexpectedly, multiple minima are found. The techniques presented could be extended to the finite burn case, but primarily the contents are addressed to preliminary mission design and vehicle sizing.

  2. Equatorial Guinea.

    Science.gov (United States)

    1989-03-01

    Equatorial Guinea is situated on the Gulf of Guinea along the west African coast between Cameroon and Gabon. The people are predominantly of Bantu origin. The country's ties with Spain are significant; in 1959, it became the Spanish Equatorial region ruled by Spain's commissioner general. Recent political developments in Equatorial Guinea include the formation of the Democratic Party for Equatorial Guinea in July of 1987 and the formation of a 60-member unicameral Chamber of Representatives of the People in 1983. Concerning the population, 83% of the people are Catholic and the official language is Spanish. Poverty and serious health, education and sanitary problems exist. There is no adequate hospital and few trained physicians, no dentists, and no opticians. Malaria is endemic and immunization for yellow fever is required for entrance into the country. The water is not potable and many visitors to the country bring bottled water. The tropical climate of Equatorial Guinea provides the climate for the country's largest exports and source of economy; cacao, wood and coffee. Although the country, as a whole, has progressed towards developing a participatory political system, there are still problems of governmental corruption in the face of grave health and welfare conditions. In recent years, the country has received assistance from the World Bank and the United States to aid in its development.

  3. Interactions of circular Rydberg atoms with charged particles

    International Nuclear Information System (INIS)

    Wang, J.

    1994-01-01

    Recent progress in experimental cross-field techniques has made it possible to produce oriented Rydberg atoms of any angular momentum l within a given n manifold. The largest angular momentum state l max = n - 1 of a given n manifold is of particular interest because of its semiclassical properties for n much-gt 1. The corresponding classical Kepler orbit is circular with highly localized phase space distribution. The circular Rydberg atoms afford the opportunity to study various interactions in the semiclassical regime. The authors report electron capture from circular Rydberg atoms by protons and positrons at speeds comparable to the electron orbital speed. They find orientation dependent, novel peak structures for both protons and positrons in the angular scattering of the particles. The structures may be understood in terms of quasi Thomas double scattering mechanism for capture. Other related aspects including final state population and orientation indulged scattering asymmetry will also be discussed

  4. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    Science.gov (United States)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight

  5. Investigation of electrodynamic stabilization and control of long orbiting tethers

    Science.gov (United States)

    Colombo, G.; Arnold, D.

    1984-01-01

    The state-of-the-art in tether modelling among participants in the Tethered Satellite System (TSS) Program, the slack tether and its behavior, and certain advanced applications of the tether to problems in orbital mechanics are identified. The features and applications of the TSS software set are reviewed. Modelling the slack tether analytically with as many as 50 mass points and the application of this new model to a study of the behavior of a broken tether near the Shuttle are described. A reel control algorithm developed by SAO and examples of its use are described, including an example which also demonstrates the use of the tether in transferring a heavy payload from a low-orbiting Shuttle to a high circular orbit. Capture of a low-orbiting payload by a Space Station in high circular orbit is described. Energy transfer within a dumbbell-type spacecraft by cyclical reeling operations or gravitational effects on the natural elasticity of the connecting tether, it is shown, can circularize the orbit of the spacecraft.

  6. The structure and stability of orbits in Hoag-like ring systems

    Science.gov (United States)

    Bannikova, Elena Yu

    2018-05-01

    Ring galaxies are amazing objects exemplified by the famous case of Hoag's Object. Here the mass of the central galaxy may be comparable to the mass of the ring, making it a difficult case to model mechanically. In a previous paper, it was shown that the outer potential of a torus (ring) can be represented with good accuracy by the potential of a massive circle with the same mass. This approach allows us to simplify the problem of the particle motion in the gravitational field of a torus associated with a central mass by replacing the torus with a massive circle. In such a system, there is a circle of unstable equilibrium that we call `Lagrangian circle' (LC). Stable circular orbits exist only in some region limited by the last possible circular orbit related to the disappearance of the extrema of the effective potential. We call this orbit `the outermost stable circular orbit' (OSCO) by analogy with the innermost stable circular orbit (ISCO) in the relativistic case of a black hole. Under these conditions, there is a region between OSCO and LC where the circular motion is not possible due to the competition between the gravitational forces by the central mass and the ring. As a result, a gap in the matter distribution can form in Hoag-like system with massive rings.

  7. Existence and stability of circular orbits in general static and spherically symmetric spacetimes

    Science.gov (United States)

    Jia, Junji; Liu, Jiawei; Liu, Xionghui; Mo, Zhongyou; Pang, Xiankai; Wang, Yaoguang; Yang, Nan

    2018-02-01

    The existence and stability of circular orbits (CO) in static and spherically symmetric (SSS) spacetime are important because of their practical and potential usefulness. In this paper, using the fixed point method, we first prove a necessary and sufficient condition on the metric function for the existence of timelike COs in SSS spacetimes. After analyzing the asymptotic behavior of the metric, we then show that asymptotic flat SSS spacetime that corresponds to a negative Newtonian potential at large r will always allow the existence of CO. The stability of the CO in a general SSS spacetime is then studied using the Lyapunov exponent method. Two sufficient conditions on the (in)stability of the COs are obtained. For null geodesics, a sufficient condition on the metric function for the (in)stability of null CO is also obtained. We then illustrate one powerful application of these results by showing that three SSS spacetimes whose metric function is not completely known will allow the existence of timelike and/or null COs. We also used our results to assert the existence and (in)stabilities of a number of known SSS metrics.

  8. Orbital Eccentricity and the Stability of Planets in the Alpha Centauri System

    Science.gov (United States)

    Lissauer, Jack

    2016-01-01

    Planets on initially circular orbits are typically more dynamically stable than planets initially having nonzero eccentricities. However, the presence of a major perturber that forces periodic oscillations of planetary eccentricity can alter this situation. We investigate the dependance of system lifetime on initial eccentricity for planets orbiting one star within the alpha Centauri system. Our results show that initial conditions chosen to minimize free eccentricity can substantially increase stability compared to planets on circular orbits.

  9. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.

    Science.gov (United States)

    Driscoll, P E; Barnes, R

    2015-09-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.

  10. Equatorial electrojet in east Brazil longitudes

    Indian Academy of Sciences (India)

    dip latitude as the electrons/ions can move vertically along the inclined magnetic field lines. Equatorial electrojet has been extensively studied from ground, rocket ... Keywords. Equatorial electrojet; Brazilian anomaly in equatorial electrojet; asymmetries in equatorial electrojet. J. Earth Syst. Sci. 119, No. 4, August 2010, pp.

  11. Orbits of the inner satellites of Neptune

    Science.gov (United States)

    Brozovic, Marina; Showalter, Mark R.; Jacobson, Robert Arthur; French, Robert S.; de Pater, Imke; Lissauer, Jack

    2018-04-01

    We report on the numerically integrated orbits of seven inner satellites of Neptune, including S/2004 N1, the last moon of Neptune to be discovered by the Hubble Space Telescope (HST). The dataset includes Voyager imaging data as well as the HST and Earth-based astrometric data. The observations span time period from 1989 to 2016. Our orbital model accounts for the equatorial bulge of Neptune, perturbations from the Sun and the planets, and perturbations from Triton. The initial orbital integration assumed that the satellites are massless, but the residuals improved significantly as the masses adjusted toward values that implied that the density of the satellites is in the realm of 1 g/cm3. We will discuss how the integrated orbits compare to the precessing ellipses fits, mean orbital elements, current orbital uncertainties, and the need for future observations.

  12. Towards adiabatic waveforms for inspiral into Kerr black holes. II. Dynamical sources and generic orbits

    International Nuclear Information System (INIS)

    Sundararajan, Pranesh A.; Hughes, Scott A.; Khanna, Gaurav; Drasco, Steve

    2008-01-01

    This is the second in a series of papers whose aim is to generate adiabatic gravitational waveforms from the inspiral of stellar-mass compact objects into massive black holes. In earlier work, we presented an accurate (2+1)D finite-difference time-domain code to solve the Teukolsky equation, which evolves curvature perturbations near rotating (Kerr) black holes. The key new ingredient there was a simple but accurate model of the singular source term based on a discrete representation of the Dirac-delta function and its derivatives. Our earlier work was intended as a proof of concept, using simple circular, equatorial geodesic orbits as a test bed. Such a source is effectively static, in that the smaller body remains at the same coordinate radius and orbital inclination over an orbit. (It of course moves through axial angle, but we separate that degree of freedom from the problem. Our numerical grid has only radial, polar, and time coordinates.) We now extend the time-domain code so that it can accommodate dynamic sources that move on a variety of physically interesting world lines. We validate the code with extensive comparison to frequency-domain waveforms for cases in which the source moves along generic (inclined and eccentric) bound geodesic orbits. We also demonstrate the ability of the time-domain code to accommodate sources moving on interesting nongeodesic worldlines. We do this by computing the waveform produced by a test mass following a kludged inspiral trajectory, made of bound geodesic segments driven toward merger by an approximate radiation loss formula.

  13. Application of circular polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Miyahara, Tsuneaki; Kawata, Hiroshi

    1988-03-01

    The idea of using the polarizing property of light for physical experiment by controlling it variously has been known from old time, and the Faraday effect and the research by polarizing microscopy are its examples. The light emitted from the electron orbit of an accelerator has the different polarizing characteristics from those of the light of a laboratory light source, and as far as observing it within the electron orbit plane, it becomes linearly polarized light. By utilizing this property well, research is carried out at present in synchrotron experimental facilities. Recently, the technology related to the insert type light cources using permanent magnets has advanced remarkably, and circular polarized light has become to be producible. If the light like this can be obtained with the energy not only in far ultraviolet region but also to x-ray region at high luminance, new possibility should open. At the stage that the design of an insert type light source was finished, and its manufacture was started, the research on the method of evaluating the degree of circular polarization and the research on the utilization of circular polarized synchrotron radiation are earnestly carried out. In this report, the results of researches presented at the study meeting are summarized. Moreover, the design and manufacture of the beam lines for exclusive use will be carried out. (Kako, I.)

  14. Numerical and Analytical Study of Optimal Low-Thrust Limited-Power Transfers between Close Circular Coplanar Orbits

    Directory of Open Access Journals (Sweden)

    Sandro da Silva Fernandes

    2007-01-01

    Full Text Available A numerical and analytical study of optimal low-thrust limited-power trajectories for simple transfer (no rendezvous between close circular coplanar orbits in an inverse-square force field is presented. The numerical study is carried out by means of an indirect approach of the optimization problem in which the two-point boundary value problem, obtained from the set of necessary conditions describing the optimal solutions, is solved through a neighboring extremal algorithm based on the solution of the linearized two-point boundary value problem through Riccati transformation. The analytical study is provided by a linear theory which is expressed in terms of nonsingular elements and is determined through the canonical transformation theory. The fuel consumption is taken as the performance criterion and the analysis is carried out considering various radius ratios and transfer durations. The results are compared to the ones provided by a numerical method based on gradient techniques.

  15. Connecting Land-Based Networks to Ships

    Science.gov (United States)

    2012-09-01

    They are in a circular, equatorial orbit at a height of 35,786km above the surface, rotating at the same angular speed as the earth, resulting at an...TESTING SCRIPT The iperf tool has a graphical frontend, written in Java , called Jperf, and can be downloaded from http://sourceforge.net/projects/jperf

  16. OH Airglow and Equatorial Variations Observed by ISUAL Instrument on Board the FORMOSAT 2 Satellite

    Directory of Open Access Journals (Sweden)

    Jan-Bai Nee

    2010-01-01

    Full Text Available OH airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning instrument on board the FORMOSAT 2 satellite is reported in this paper. The satellite is sun-synchronous and it returns to the same orbit at the same local time daily. By using this property, we can study the upper atmosphere in detail. With a CCD camera, ISUAL has measured the emission layers of OH Meinel band at 630 nm for several two-week periods in 2004 and 2007 in equatorial regions. ISUAL images are snapshots of the atmosphere 250 km (height ¡_ 1200 km (horizontal distance. These images of OH airglow are analyzed to derive its peak height and latitudinal variations. ISUAL observation is unique in its capability of continuous observation of the upper atmosphere as the satellite travels from south to north along a specific orbit. However, 630 nm filter also measured O(1D at 200 km, and there are interferences between O(1D and OH airglows as as observed from a distance in space. We have studied the overlap of two airglows by simulations, and our final analyses show that OH airglow can be correctly derived with its average peak height of 89 ¡_ 2.1 km usually lying within ¡_10¢X latitude about the equator. ISUAL data reveal detailed structures of equatorial OH airglow such as the existences of a few secondary maxima within the equatorial regions, and the oscillations of the peak latitudes. These results are discussed and compared with previous reports.

  17. Effects of solar radiation on the orbits of small particles

    Science.gov (United States)

    Lyttleton, R. A.

    1976-01-01

    A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.

  18. Motion of the moonlet in the binary system 243 Ida

    Science.gov (United States)

    Lan, L.; Ni, Y.; Jiang, Y.; Li, J.

    2018-02-01

    The motion of the moonlet Dactyl in the binary system 243 Ida is investigated in this paper. First, periodic orbits in the vicinity of the primary are calculated, including the orbits around the equilibrium points and large-scale orbits. The Floquet multipliers' topological cases of periodic orbits are calculated to study the orbits' stabilities. During the continuation of the retrograde near-circular orbits near the equatorial plane, two period-doubling bifurcations and one Neimark-Sacker bifurcation occur one by one, leading to two stable regions and two unstable regions. Bifurcations occur at the boundaries of these regions. Periodic orbits in the stable regions are all stable, but in the unstable regions are all unstable. Moreover, many quasi-periodic orbits exist near the equatorial plane. Long-term integration indicates that a particle in a quasi-periodic orbit runs in a space like a tire. Quasi-periodic orbits in different regions have different styles of motion indicated by the Poincare sections. There is the possibility that moonlet Dactyl is in a quasi-periodic orbit near the stable region I, which is enlightening for the stability of the binary system.

  19. The stellar orbit distribution in present-day galaxies inferred from the CALIFA survey

    Science.gov (United States)

    Zhu, Ling; van de Ven, Glenn; Bosch, Remco van den; Rix, Hans-Walter; Lyubenova, Mariya; Falcón-Barroso, Jesús; Martig, Marie; Mao, Shude; Xu, Dandan; Jin, Yunpeng; Obreja, Aura; Grand, Robert J. J.; Dutton, Aaron A.; Macciò, Andrea V.; Gómez, Facundo A.; Walcher, Jakob C.; García-Benito, Rubén; Zibetti, Stefano; Sánchez, Sebastian F.

    2018-03-01

    Galaxy formation entails the hierarchical assembly of mass, along with the condensation of baryons and the ensuing, self-regulating star formation1,2. The stars form a collisionless system whose orbit distribution retains dynamical memory that can constrain a galaxy's formation history3. The orbits dominated by ordered rotation, with near-maximum circularity λz ≈ 1, are called kinematically cold, and the orbits dominated by random motion, with low circularity λz ≈ 0, are kinematically hot. The fraction of stars on `cold' orbits, compared with the fraction on `hot' orbits, speaks directly to the quiescence or violence of the galaxies' formation histories4,5. Here we present such orbit distributions, derived from stellar kinematic maps through orbit-based modelling for a well-defined, large sample of 300 nearby galaxies. The sample, drawn from the CALIFA survey6, includes the main morphological galaxy types and spans a total stellar mass range from 108.7 to 1011.9 solar masses. Our analysis derives the orbit-circularity distribution as a function of galaxy mass and its volume-averaged total distribution. We find that across most of the considered mass range and across morphological types, there are more stars on `warm' orbits defined as 0.25 ≤ λz ≤ 0.8 than on either `cold' or `hot' orbits. This orbit-based `Hubble diagram' provides a benchmark for galaxy formation simulations in a cosmological context.

  20. Observations of EMIC Triggered Emissions off the Magnetic Equatorial Plane

    Science.gov (United States)

    Grison, B.; Breuillard, H.; Santolik, O.; Cornilleau-Wehrlin, N.

    2016-12-01

    On 19/08/2005 Cluster spacecraft had their perigee close to the dayside of the Earth magnetic equatorial plane, at about 14 hours Magnetic Local Time. The spacecraft crossed the equator from the southern hemisphere toward the northern hemisphere. In the Southern hemisphere, at about -23° magnetic latitude (MLAT) and at distance of 5.25 Earth Radii from Earth, Cluster 3 observes an EMIC triggered emission between the He+ and the proton local gyrofrequencies. The magnetic waveform (STAFF instrument data) is transformed into the Fourier space for a study based on single value decomposition (SVD) analysis. The emission lasts about 30s. The emission frequency rises from 1Hz up to 1.9Hz. The emission polarization is left-hand, its coherence value is high and the propagation angle is field aligned (lower than 30º). The Poynting flux orientation could not be established. Based on previous study results, these properties are indicative of an observation in vicinity of the source region of the triggered emission. From our knowledge this is the first time that EMIC triggered emission are observed off the magnetic equator. In order to identify the source region we study two possibilities: a source region at higher latitudes than the observations (and particles orbiting in "Shabansky" orbits) and a source region close to the magnetic equatorial plane, as reported in previous studies. We propose to identify the source region from ray tracing analysis and to compare the observed propagation angle in several frequency ranges to the ray tracing results.

  1. System for circular and complex tomography

    International Nuclear Information System (INIS)

    Hellstrom, M.J.

    1979-01-01

    This invention discloses a system for conducting circular as well as complex tomographic procedures utilizing apparatus which has no mechanical linkage between the X-ray source and the X-ray receptor. The path of travel of the X-ray source both circularly and linearly is sensed by electromagnetic radiation and more particularly by light radiation which is generated by a laser. The linear travel is sensed by means of reflected laser radiation directed to the X-ray source and fed to an interferometer. The circular travel, on the other hand, is sensed by means of a laser gyroscope also receiving light radiation from a laser. Optical energy sensing means is thus used to generate command signals which are coupled to respective drive motors which act to rotate and when desirable, translate the X-ray receptor so that its motion follows the motion, both orbital and linear, of the X-ray source for performing any desired type of tomographic procedure

  2. Targeting Ballistic Lunar Capture Trajectories Using Periodic Orbits in the Sun-Earth CRTBP

    Science.gov (United States)

    Cooley, D.S.; Griesemer, Paul Ricord; Ocampo, Cesar

    2009-01-01

    A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.

  3. Daily observations of the development of the ionospheric equatorial anomaly by means of differential Doppler shift method

    International Nuclear Information System (INIS)

    Huang, Y.N.; Cheng, K.; Chen, S.W.

    1987-01-01

    The differential Doppler frequency shifts observed by receiving coherent radio signals at frequencies of 150 and 400 MHz transmitted from the polar orbiting satellites of U.S. Navy Navigation Satellite System have been used to deduce the latitudinal variations of the ionospheric total electron content (TEC) near the ionospheric equatorial anomaly crest region. All latitudinal variations of TEC thus obtained for each passage of an NNSS satellite are used to construct daily contour plots of TEC in a latitude versus local time coordinates. It has been shown that these contour plot of TEC can be used to investigate the behavior of TEC around equatorial anomaly crest region. Some results are presented and discussed. 18 references

  4. Orbital and Landing Operations at Near-Earth

    Science.gov (United States)

    Scheeres, D. J.

    1995-01-01

    Orbital and landing operations about near-Earth asteroids are different than classical orbital operations about large bodies. The major differences lie with the small mass of the asteroid, the lower orbital velocities, the larger Solar tide and radiation pressure perturbations, the irregular shape of the asteroid and the potential for non-uniform rotation of the asteroid. These differences change the nature of orbits about an asteroid to where it is often common to find trajectories that evolve from stable, near-circular orbits to crashing or escaping orbits in a matter of days. The understanding and control of such orbits is important if a human or robotic presence at asteroids is to be commonplace in the future.

  5. Soft X-ray magnetic circular dichroism study of UFe2

    International Nuclear Information System (INIS)

    Okane, T.; Takeda, Y.; Fujimori, S.-I.; Terai, K.; Saitoh, Y.; Muramatsu, Y.; Fujimori, A.; Haga, Y.; Yamamoto, E.; Onuki, Y.

    2006-01-01

    Soft X-ray magnetic circular dichroism has been measured at the U N 4,5 and Fe L 2,3 absorption edges of ferromagnetic UFe 2 . The orbital and spin magnetic moments of U 5f and Fe 3d electrons are evaluated by a sum-rule analysis of the XMCD data. It is confirmed that the U 5f orbital moment is parallel to the Fe 3d spin moment

  6. Satellite orbits in Levi-Civita space

    Science.gov (United States)

    Humi, Mayer

    2018-03-01

    In this paper we consider satellite orbits in central force field with quadratic drag using two formalisms. The first using polar coordinates in which the satellite angular momentum plays a dominant role. The second is in Levi-Civita coordinates in which the energy plays a central role. We then merge these two formalisms by introducing polar coordinates in Levi-Civita space and derive a new equation for satellite orbits which unifies these two paradigms. In this equation energy and angular momentum appear on equal footing and thus characterize the orbit by its two invariants. Using this formalism we show that equatorial orbits around oblate spheroids can be expressed analytically in terms of Elliptic functions. In the second part of the paper we derive in Levi-Civita coordinates a linearized equation for the relative motion of two spacecrafts whose trajectories are in the same plane. We carry out also a numerical verification of these equations.

  7. X-RAY CIRCULAR-DICHROISM AND LOCAL MAGNETIC-FIELDS

    NARCIS (Netherlands)

    CARRA, P; THOLE, BT; ALTARELLI, M; WANG, XD

    1993-01-01

    Sum rules are derived for the circular dichroic response of a core line (CMXD). They relate the intensity of the CMXD signal to the ground-state expectation value of the magnetic field operators (orbital, spin, and magnetic dipole) of the valence electrons. The results obtained are discussed and

  8. Reanalyses of the radiation belt electron phase space density using nearly equatorial CRRES and polar-orbiting Akebono satellite observations

    Science.gov (United States)

    Ni, Binbin; Shprits, Yuri; Nagai, Tsugunobu; Thorne, Richard; Chen, Yue; Kondrashov, Dmitri; Kim, Hee-jeong

    2009-05-01

    Data assimilation techniques provide algorithms that allow for blending of incomplete and inaccurate data with physics-based dynamic models to reconstruct the electron phase space density (PSD) in the radiation belts. In this study, we perform reanalyses of the radial PSD profile using two independent data sources from the nearly equatorial CRRES Medium Electron A (MEA) observations and the polar-orbiting Akebono Radiation Monitor (RDM) measurements for a 50-day period from 18 August to 6 October 1990. We utilize the University of California, Los Angeles, One-Dimensional Versatile Electron Radiation Belt (UCLA 1-D VERB) code and a Kalman filtering approach. Comparison of the reanalyses obtained independently using the CRRES MEA and Akebono RDM measurements shows that the dynamics of the PSD can be accurately reconstructed using Kalman filtering even when available data are sparse, inaccurate, and contaminated by random errors. The reanalyses exhibit similarities in the locations and magnitudes of peaks in radial profiles of PSD and the rate and radial extent of the dropouts during storms. This study shows that when unidirectional data are not available, pitch angle averaged flux measurements can be used to infer the long-term behavior (climatology) of the radiation belts. The methodology of obtaining PSD from pitch angle averaged and unidirectional fluxes using the Tsyganenko and Stern (1996) magnetic field model is described in detail.

  9. Scaling of the L2,3 circular magnetic x-ray dichroism of Fe nitrides

    International Nuclear Information System (INIS)

    Alouani, M.; Wills, J.M.; Wilkins, J.W.

    1998-01-01

    We have implemented the calculation of the x-ray-absorption cross section for left- and right-circularly polarized x-ray beams within the local-density approximation by means of our all-electron full-relativistic and spin-polarized full-potential linear muffin-tin orbital method. We show that the L 2,3 circular magnetic x-ray dichroism of Fe, Fe 3 N, and Fe 4 N compounds scales to a single curve when divided by the local magnetic moment. Sum rules determine the spin and orbital magnetic moment of iron atoms in these ordered iron nitrides. copyright 1998 The American Physical Society

  10. Projectile Motion in the "Language" of Orbital Motion

    Science.gov (United States)

    Zurcher, Ulrich

    2011-01-01

    We consider the orbit of projectiles launched with arbitrary speeds from the Earth's surface. This is a generalization of Newton's discussion about the transition from parabolic to circular orbits, when the launch speed approaches the value [image omitted]. We find the range for arbitrary launch speeds and angles, and calculate the eccentricity of…

  11. Testing a class of non-Kerr metrics with hot spots orbiting SgrA*

    International Nuclear Information System (INIS)

    Liu, Dan; Li, Zilong; Bambi, Cosimo

    2015-01-01

    SgrA*, the supermassive black hole candidate at the Galactic Center, exhibits flares in the X-ray, NIR, and sub-mm bands that may be interpreted within a hot spot model. Light curves and images of hot spots orbiting a black hole are affected by a number of special and general relativistic effects, and they can be potentially used to check whether the object is a Kerr black hole of general relativity. However, in a previous study we have shown that the relativistic features are usually subdominant with respect to the background noise and the model-dependent properties of the hot spot, and eventually it is at most possible to estimate the frequency of the innermost stable circular orbit. In this case, tests of the Kerr metric are only possible in combination with other measurements. In the present work, we consider a class of non-Kerr spacetimes in which the hot spot orbit may be outside the equatorial plane. These metrics are difficult to constrain from the study of accretion disks and indeed current X-ray observations of stellar-mass and supermassive black hole candidates cannot put interesting bounds. Here we show that near future observations of SgrA* may do it. If the hot spot is sufficiently close to the massive object, the image affected by Doppler blueshift is brighter than the other one and this provides a specific observational signature in the hot spot's centroid track. We conclude that accurate astrometric observations of SgrA* with an instrument like GRAVITY should be able to test this class of metrics, except in the more unlikely case of a small viewing angle

  12. Harmonically excited orbital variations

    International Nuclear Information System (INIS)

    Morgan, T.

    1985-01-01

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs

  13. EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS

    International Nuclear Information System (INIS)

    Showman, Adam P.; Polvani, Lorenzo M.

    2011-01-01

    The increasing richness of exoplanet observations has motivated a variety of three-dimensional (3D) atmospheric circulation models of these planets. Under strongly irradiated conditions, models of tidally locked, short-period planets (both hot Jupiters and terrestrial planets) tend to exhibit a circulation dominated by a fast eastward, or 'superrotating', jet stream at the equator. When the radiative and advection timescales are comparable, this phenomenon can cause the hottest regions to be displaced eastward from the substellar point by tens of degrees longitude. Such an offset has been subsequently observed on HD 189733b, supporting the possibility of equatorial jets on short-period exoplanets. Despite its relevance, however, the dynamical mechanisms responsible for generating the equatorial superrotation in such models have not been identified. Here, we show that the equatorial jet results from the interaction of the mean flow with standing Rossby waves induced by the day-night thermal forcing. The strong longitudinal variations in radiative heating-namely intense dayside heating and nightside cooling-trigger the formation of standing, planetary-scale equatorial Rossby and Kelvin waves. The Rossby waves develop phase tilts that pump eastward momentum from high latitudes to the equator, thereby inducing equatorial superrotation. We present an analytic theory demonstrating this mechanism and explore its properties in a hierarchy of one-layer (shallow-water) calculations and fully 3D models. The wave-mean-flow interaction produces an equatorial jet whose latitudinal width is comparable to that of the Rossby waves, namely the equatorial Rossby deformation radius modified by radiative and frictional effects. For conditions typical of synchronously rotating hot Jupiters, this length is comparable to a planetary radius, explaining the broad scale of the equatorial jet obtained in most hot-Jupiter models. Our theory illuminates the dependence of the equatorial jet

  14. Modified circular velocity law

    Science.gov (United States)

    Djeghloul, Nazim

    2018-05-01

    A modified circular velocity law is presented for a test body orbiting around a spherically symmetric mass. This law exhibits a distance scale parameter and allows to recover both usual Newtonian behaviour for lower distances and a constant velocity limit at large scale. Application to the Galaxy predicts the known behaviour and also leads to a galactic mass in accordance with the measured visible stellar mass so that additional dark matter inside the Galaxy can be avoided. It is also shown that this circular velocity law can be embedded in a geometrical description of spacetime within the standard general relativity framework upon relaxing the usual asymptotic flatness condition. This formulation allows to redefine the introduced Newtonian scale limit in term of the central mass exclusively. Moreover, a satisfactory answer to the galactic escape speed problem can be provided indicating the possibility that one can also get rid of dark matter halo outside the Galaxy.

  15. Equatorial westward electrojet impacting equatorial ionization anomaly development during the 6 April 2000 superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2013-11-01

    investigate the forward plasma fountain and the equatorial ionosphere in the topside region during the 6 April 2000 superstorm in the Australian sector at ~0900 LT. Space- and ground-based multi-instrument measurements, Coupled Thermosphere-Ionosphere-Plasmasphere Electrodynamics (CTIPe) simulations, and field-aligned observations comprise our results. These reveal an unusual storm development during which the eastward prompt penetration electric (E) field (PPEF) developed and operated under the continuous effects of the westward disturbance dynamo E-field (DDEF) while large-scale traveling ionospheric disturbances (TIDs) traveled equatorward and generated strong equatorward wind surges. We have identified the eastward PPEF by the superfountain effect causing the equatorial ionization anomaly (EIA)'s development with crests situated at ~±28°N (geomagnetic) in the topside ionosphere at ~840 km altitude. The westward DDEF's occurrence is confirmed by mapping the "anti-Sq" current system wherein the equatorial westward current created a weak long-lasting westward electrojet event. Line plots of vertical drift data tracked large-scale TIDs. Four scenarios, covering ~3.5 h in universal time, demonstrate that the westward DDEF became superimposed on the eastward PPEF. As these E-fields of different origins became mapped into the F region, they could interact. Consequently, the eastward PPEF-related equatorial upward E × B drift became locally reduced by up to 75 m/s near the dip equator by the westward DDEF-related equatorial downward E × B drift. Meanwhile, the EIA displayed a better development as equatorial wind surges, reproduced by CTIPe, increased from 501 to 629 m/s, demonstrating the crucial role of mechanical wind effects keeping plasma density high.

  16. Microscopic Stern-Gerlach effect and spin-orbit pendulum

    International Nuclear Information System (INIS)

    Rozmej, P.; Arvieu, R.

    1996-01-01

    The motion of a particle with spin in spherical harmonic oscillator potential with spin-orbit interaction is discussed. The attention is focused on the spatial motion of wave packets. The particular case of wave packets moving along the circular orbits for which the most transparent and pedagogical description is possible is considered. The splitting of the wave packets into two components moving differently along classical orbits reflects a strong analogy with the Stern-Gerlach experiment. The periodic transfer of average angular momentum between spin and orbital subspaces accompanying this time evolution is called the spin-orbit pendulum. (author). 6 refs, 3 figs

  17. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra

    Energy Technology Data Exchange (ETDEWEB)

    Goings, Joshua J.; Li, Xiaosong, E-mail: xsli@uw.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)

    2016-06-21

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.

  18. Effect of an elliptical orbit on SPECT resolution and image uniformity

    International Nuclear Information System (INIS)

    Gottschalk, S.; Salem, D.

    1982-01-01

    This paper studies the impact of elliptical motion on SPECT resolution and detector flood correction as implemented in a Technicare Omega 500. Bringing the detector closer to the object improves detector resolution in each view, which results in improved resolution in the reconstructed image. In the Omega 500 the elliptical orbit is realized by a succession of translational and rotational motions of the detector head. This introduces motion of the detector center relative to the object center. Statistical fluctuations in the flood correction matrix due to the finite acquisition time result in ring artifacts for the circular orbit. The relative center motion of an elliptical orbit results in an averaging of the flood correction noise and a significant reduction in artifacts. These two aspects of SPECT spatial resolution and flood correction response improvement in elliptical orbit have been analyzed through computer simulations for point sources and a uniform activity 20 x 30 cm ellipse. Results compared a 35 cm diameter circular orbit to a 35 x 25 cm elliptical orbit

  19. NICER Discovers the Ultracompact Orbit of the Accreting Millisecond Pulsar IGR J17062–6143

    DEFF Research Database (Denmark)

    Strohmayer, T. E.; Arzoumanian, Z.; Bogdanov, S.

    2018-01-01

    We present results of recent Neutron Star Interior Composition Explorer (NICER) observations of the accreting millisecond X-ray pulsar (AMXP) IGR J17062−6143 that show that it resides in a circular, ultracompact binary with a 38-minute orbital period. NICER observed the source for ≈26 ks over a 5...... of the neutron star. A coherent search for the orbital solution using the Z2 method finds a best-fitting circular orbit with a period of 2278.21 s (37.97 minutes), a projected semimajor axis of 0.00390 lt-s, and a barycentric pulsar frequency of 163.6561105 Hz. This is currently the shortest known orbital period...

  20. Spinning test particles in the field of a black hole

    Energy Technology Data Exchange (ETDEWEB)

    Tod, K P; de Felice, F [Padua Univ. (Italy); Calvani, M [Padua Univ. (Italy). Istituto di Astronomia

    1976-08-11

    It is studied the motion of spinning test bodies in the gravitational field of a rotating black hole, confining the examination of the pole-dipole approximation and of the special case of motion in the equatorial plane with the spin vector perpendicular to it. The study also provides the locus of the turning points for the equatorial orbits and also the exact limits of validity of the pole-dipole approximation for any given set of particle parameters. The innermost stable circular orbits are studied in details, and it is found that opposite spinning accreting particles are separated by the gravitational field of the black hole and that the fraction of energy ''at infinity'' which can be extracted when the particle spin is opposite to that of the black hole can be as high as 100%.

  1. The equatorial F-layer: progress and puzzles

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    Full Text Available This work reviews some aspects of the ionospheric F-layer in the vicinity of the geomagnetic equator. Starting with a historical introduction, brief summaries are given of the physics that makes the equatorial ionosphere so interesting, concentrating on the large-scale structure rather than the smaller-scale instability phenomena. Several individual topics are then discussed, including eclipse effects, the asymmetries of the `equatorial trough', variations with longitude, the semiannual variation, the effects of the global thermospheric circulation, and finally the equatorial neutral thermosphere, including `superrotation' and possible topographic influences.

    Keyword: Ionosphere (equatorial ionosphere

  2. Cone-beam and fan-beam image reconstruction algorithms based on spherical and circular harmonics

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Gullberg, Grant T

    2004-01-01

    A cone-beam image reconstruction algorithm using spherical harmonic expansions is proposed. The reconstruction algorithm is in the form of a summation of inner products of two discrete arrays of spherical harmonic expansion coefficients at each cone-beam point of acquisition. This form is different from the common filtered backprojection algorithm and the direct Fourier reconstruction algorithm. There is no re-sampling of the data, and spherical harmonic expansions are used instead of Fourier expansions. As a special case, a new fan-beam image reconstruction algorithm is also derived in terms of a circular harmonic expansion. Computer simulation results for both cone-beam and fan-beam algorithms are presented for circular planar orbit acquisitions. The algorithms give accurate reconstructions; however, the implementation of the cone-beam reconstruction algorithm is computationally intensive. A relatively efficient algorithm is proposed for reconstructing the central slice of the image when a circular scanning orbit is used

  3. DEMETER Observations of Equatorial Plasma Depletions and Related Ionospheric Phenomena

    Science.gov (United States)

    Berthelier, J.; Malingre, M.; Pfaff, R.; Jasperse, J.; Parrot, M.

    2008-12-01

    DEMETER, the first micro-satellite of the CNES MYRIAD program, was launched from Baikonour on June 29, 2004 on a nearly circular, quasi helio-synchronous polar orbit at ~ 715 km altitude. The DEMETER mission focuses primarily on the search for a possible coupling between seismic activity and ionospheric disturbances as well as on the effects of natural phenomena such as tropospheric thunderstorms and man-made activities on the ionosphere. The scientific payload provides fairly complete measurements of the ionospheric plasma, energetic particles above ~ 70 keV, and plasma waves, up to 20 kHz for the magnetic and 3.3 MHz for the electric components. Several studies related to space weather and ionospheric physics have been conducted over the past years. Following a brief description of the payload and the satellite modes of operation, this presentation will focus on a set of results that provide a new insight into the physics of instabilities in the night-time equatorial ionosphere. The observations were performed during the major magnetic storm of November 2004. Deep plasma depletions were observed on several night-time passes at low latitudes characterized by the decrease of the plasma density by nearly 3 orders of magnitude relative to the undisturbed plasma, and a significant abundance of molecular ions. These features can be best interpreted as resulting from the rise of the F-layer above the satellite altitude over an extended region of the ionosphere. In one of the passes, DEMETER was operated in the Burst mode and the corresponding high resolution data allowed for the discovery of two unexpected phenomena. The first one is the existence of high intensity monochromatic wave packets at the LH frequency that develop during the decay phase of intense bursts of broadband LH turbulence. The broadband LH turbulence is triggered by whistlers emitted by lightning from atmospheric thunderstorms beneath the satellite. The second unexpected feature is the detection of a

  4. An asymptotically consistent approximant for the equatorial bending angle of light due to Kerr black holes

    Science.gov (United States)

    Barlow, Nathaniel S.; Weinstein, Steven J.; Faber, Joshua A.

    2017-07-01

    An accurate closed-form expression is provided to predict the bending angle of light as a function of impact parameter for equatorial orbits around Kerr black holes of arbitrary spin. This expression is constructed by assuring that the weak- and strong-deflection limits are explicitly satisfied while maintaining accuracy at intermediate values of impact parameter via the method of asymptotic approximants (Barlow et al 2017 Q. J. Mech. Appl. Math. 70 21-48). To this end, the strong deflection limit for a prograde orbit around an extremal black hole is examined, and the full non-vanishing asymptotic behavior is determined. The derived approximant may be an attractive alternative to computationally expensive elliptical integrals used in black hole simulations.

  5. A Numerical Study of Low-Thrust Limited Power Trajectories between Coplanar Circular Orbits in an Inverse-Square Force Field

    Directory of Open Access Journals (Sweden)

    Sandro da Silva Fernandes

    2012-01-01

    Full Text Available A numerical study of optimal low-thrust limited power trajectories for simple transfer (no rendezvous between circular coplanar orbits in an inverse-square force field is performed by two different classes of algorithms in optimization of trajectories. This study is carried out by means of a direct method based on gradient techniques and by an indirect method based on the second variation theory. The direct approach of the trajectory optimization problem combines the main positive characteristics of two well-known direct methods in optimization of trajectories: the steepest-descent (first-order gradient method and a direct second variation (second-order gradient method. On the other hand, the indirect approach of the trajectory optimization problem involves two different algorithms of the well-known neighboring extremals method. Several radius ratios and transfer durations are considered, and the fuel consumption is taken as the performance criterion. For small-amplitude transfers, the results are compared to the ones provided by a linear analytical theory.

  6. Task-driven orbit design and implementation on a robotic C-arm system for cone-beam CT

    Science.gov (United States)

    Ouadah, S.; Jacobson, M.; Stayman, J. W.; Ehtiati, T.; Weiss, C.; Siewerdsen, J. H.

    2017-03-01

    Purpose: This work applies task-driven optimization to the design of non-circular orbits that maximize imaging performance for a particular imaging task. First implementation of task-driven imaging on a clinical robotic C-arm system is demonstrated, and a framework for orbit calculation is described and evaluated. Methods: We implemented a task-driven imaging framework to optimize orbit parameters that maximize detectability index d'. This framework utilizes a specified Fourier domain task function and an analytical model for system spatial resolution and noise. Two experiments were conducted to test the framework. First, a simple task was considered consisting of frequencies lying entirely on the fz-axis (e.g., discrimination of structures oriented parallel to the central axial plane), and a "circle + arc" orbit was incorporated into the framework as a means to improve sampling of these frequencies, and thereby increase task-based detectability. The orbit was implemented on a robotic C-arm (Artis Zeego, Siemens Healthcare). A second task considered visualization of a cochlear implant simulated within a head phantom, with spatial frequency response emphasizing high-frequency content in the (fy, fz) plane of the cochlea. An optimal orbit was computed using the task-driven framework, and the resulting image was compared to that for a circular orbit. Results: For the fz-axis task, the circle + arc orbit was shown to increase d' by a factor of 1.20, with an improvement of 0.71 mm in a 3D edge-spread measurement for edges located far from the central plane and a decrease in streak artifacts compared to a circular orbit. For the cochlear implant task, the resulting orbit favored complementary views of high tilt angles in a 360° orbit, and d' was increased by a factor of 1.83. Conclusions: This work shows that a prospective definition of imaging task can be used to optimize source-detector orbit and improve imaging performance. The method was implemented for execution of

  7. Circularly polarized zero-phonon transitions of vacancies in diamond at high magnetic fields

    Science.gov (United States)

    Braukmann, D.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.

    2018-05-01

    We study the circularly polarized photoluminescence of negatively charged (NV-) and neutral (NV0) nitrogen-vacancy ensembles and neutral vacancies (V0) in diamond crystals exposed to magnetic fields of up to 10 T. We determine the orbital and spin Zeeman splitting as well as the energetic ordering of their ground and first-excited states. The spin-triplet and -singlet states of the NV- are described by an orbital Zeeman splitting of about 9 μ eV /T , which corresponds to a positive orbital g -factor of gL=0.164 under application of the magnetic field along the (001) and (111) crystallographic directions, respectively. The zero-phonon line (ZPL) of the NV- singlet is defined as a transition from the 1E' states, which are split by gLμBB , to the 1A1 state. The energies of the zero-phonon triplet transitions show a quadratic dependence on intermediate magnetic field strengths, which we attribute to a mixing of excited states with nonzero orbital angular momentum. Moreover, we identify slightly different spin Zeeman splittings in the ground (gs) and excited (es) triplet states, which can be expressed by a deviation between their spin g -factors: gS ,es=gS ,gs+Δ g with values of Δ g =0.014 and 0.029 in the (001) and (111) geometries, respectively. The degree of circular polarization of the NV- ZPLs depends significantly on the temperature, which is explained by an efficient spin-orbit coupling of the excited states mediated through acoustic phonons. We further demonstrate that the sign of the circular polarization degree is switched under rotation of the diamond crystal. A weak Zeeman splitting similar to Δ g μBB measured for the NV- ZPLs is also obtained for the NV0 zero-phonon lines, from which we conclude that the ground state is composed of two optically active states with compensated orbital contributions and opposite spin-1/2 momentum projections. The zero-phonon lines of the V0 show Zeeman splittings and degrees of the circular polarization with opposite

  8. Spontaneous excitation of a circularly accelerated atom coupled to electromagnetic vacuum fluctuations

    International Nuclear Information System (INIS)

    Jin, Yao; Hu, Jiawei; Yu, Hongwei

    2014-01-01

    We study, using the formalism proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji, the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy for a circularly accelerated multilevel atom coupled to vacuum electromagnetic fields in the ultrarelativistic limit. We find that the balance between vacuum fluctuation and radiation reaction is broken, which causes spontaneous excitations of accelerated ground state atoms in vacuum. Unlike for a circularly accelerated atom coupled to vacuum scalar fields, the contribution of radiation reaction is also affected by acceleration, and this term takes the same form as that of a linearly accelerated atom coupled to vacuum electromagnetic fields. For the contribution of vacuum fluctuations, we find that in contrast to the linear acceleration case, terms proportional to the Planckian factor are replaced by those proportional to a non-Planck exponential term, and this indicates that the radiation perceived by a circularly orbiting observer is no longer thermal as is in the linear acceleration case. However, for an ensemble of two-level atoms, an effective temperature can be defined in terms of the atomic transition rates, which is found to be dependent on the transition frequency of the atom. Specifically, we calculate the effective temperature as a function of the transition frequency and find that in contrast to the case of circularly accelerated atoms coupled to the scalar field, the effective temperature in the current case is always larger than the Unruh temperature. -- Highlights: •We study the spontaneous excitation of a circularly accelerated atom. •Contribution of radiation reaction to the excitation is affected by acceleration. •The radiation perceived by a circularly orbiting observer is no longer thermal. •An effective temperature can be defined in terms of atomic transition rates. •Effective temperature is larger than Unruh temperature and frequency-dependent

  9. Administrative Circulars

    CERN Document Server

    Département des Ressources humaines

    2004-01-01

    Administrative Circular N° 2 (Rev. 2) - May 2004 Guidelines and procedures concerning recruitment and probation period of staff members This circular has been revised. It cancels and replaces Administrative Circular N° 2 (Rev. 1) - March 2000. Administrative Circular N° 9 (Rev. 3) - May 2004 Staff members contracts This circular has been revised. It cancels and replaces Administrative Circular N° 9 (Rev. 2) - March 2000. Administrative Circular N° 26 (Rev. 4) - May 2004 Procedure governing the career evolution of staff members This circular has also been revised. It Administrative Circulars Administrative Circular N° 26 (Rev. 3) - December 2001 and brings up to date the French version (Rev. 4) published on the HR Department Web site in January 2004. Operational Circular N° 7 - May 2004 Work from home This circular has been drawn up. Operational Circular N° 8 - May 2004 Dealing with alcohol-related problems...

  10. Seasonal-longitudinal variability of equatorial plasma bubbles

    Directory of Open Access Journals (Sweden)

    W. J. Burke

    2004-09-01

    Full Text Available We compare seasonal and longitudinal distributions of more than 8300 equatorial plasma bubbles (EPBs observed during a full solar cycle from 1989-2000 with predictions of two simple models. Both models are based on considerations of parameters that influence the linear growth rate, γRT, of the generalized Rayleigh-Taylor instability in the context of finite windows of opportunity available during the prereversal enhancement near sunset. These parameters are the strength of the equatorial magnetic field, Beq, and the angle, α, it makes with the dusk terminator line. The independence of α and Beq from the solar cycle phase justifies our comparisons.

    We have sorted data acquired during more than 75000 equatorial evening-sector passes of polar-orbiting Defense Meteorological Satellite Program (DMSP satellites into 24 longitude and 12 one-month bins, each containing ~250 samples. We show that: (1 in 44 out of 48 month-longitude bins EPB rates are largest within 30 days of when α=0°; (2 unpredicted phase shifts and asymmetries appear in occurrence rates at the two times per year when α≈0°; (3 While EPB occurrence rates vary inversely with Beq, the relationships are very different in regions where Beq is increasing and decreasing with longitude. Results (2 and (3 indicate that systematic forces not considered by the two models can become important. Damping by interhemispheric winds appears to be responsible for phase shifts in maximum rates of EPB occurrence from days when α=0°. Low EPB occurrence rates found at eastern Pacific longitudes suggest that radiation belt electrons in the drift loss cone reduce γRT by enhancing E-layer Pedersen conductances. Finally, we analyze an EPB event observed during a magnetic storm at a time and place where α≈-27°, to illustrate how electric-field penetration from

  11. Late Neogene Orbitally-Forced Sea Surface Temperature Variability in the Eastern Equatorial Pacific as Measured by Uk'37 and TEX86

    Science.gov (United States)

    Lawrence, K. T.; Pearson, A.; Castañeda, I. S.; Peterson, L.

    2017-12-01

    Key features of late Neogene climate remain uncertain due to conflicting records derived from different sea surface temperature (SST) proxies. To resolve these disputes, it is necessary to explore both the consistencies and differences between paleotemperature estimates from critical oceanographic regimes. Here, we report orbital-scale climate variability at ODP Site 846 in the Eastern Equatorial Pacific (EEP) in the interval from 5-6 Ma using alkenone and TEX86 temperature estimates. Results from both proxies are very similar in their secular trends and magnitude of long-term temperature change; and spectral analysis demonstrates that the records are coherent and in-phase or nearly in-phase in both the obliquity and precession bands. However, we find that the temperatures reconstructed by TEX86 are consistently offset towards colder values by 2ºC with orbital-scale variations approximately twice the amplitude of the Uk'37 derived estimates. Both temperature records are antiphased - i.e. "colder" - at higher sediment alkenone concentrations, a qualitative indicator of increased glacial productivity. Temperature differences between the proxies are accentuated during glacial intervals in contrasts to modern observations of EEP surface and subsurface temperatures, which show that thermocline temperatures are fairly stable, and thus by analogy, glacial cooling and/or enhanced upwelling should have reduced rather than accentuated temperature gradients in the upper water column. Therefore, arguments that Uk'37 corresponds to temperature variability in the surface, while TEX86 responds to the subsurface, may be too simplistic. Instead, it appears generally true that high-productivity environments, including the EEP, tend to have negative TEX86 anomalies. This may reflect a dual dependence of TEX86 records on both water column temperature and local productivity. Overall, our data suggest that in the EEP and likely in other upwelling zones, paleotemperature data derived

  12. Performance evaluation of GPS receiver under equatorial scintillation

    Directory of Open Access Journals (Sweden)

    Alison de Oliveira Moraes

    2009-06-01

    Full Text Available Equatorial scintillation is a phenomenon that occurs daily in the equatorial region after the sunset and affects radio signals that propagate through the ionosphere. Depending on the temporal and spatial situation, equatorial scintillation can represent a problem in the availability and precision of the Global Positioning System (GPS. This work is concerned with evaluating the impact of equatorial scintillation on the performance of GPS receivers. First, the morphology and statistical model of equatorial scintillation is briefly presented. A numerical model that generates synthetic scintillation data to simulate the effects of equatorial scintillation is presented. An overview of the main theoretical principles on GPS receivers is presented. The analytical models that describe the effects of scintillation at receiver level are presented and compared with numerical simulations using a radio software receiver and synthetic data. The results achieved by simulation agreed quite well with those predicted by the analytical models. The only exception is for links with extreme levels of scintillation and when weak signals are received.

  13. The effect of orbital eccentricity on polarimetric binary diagnostics

    International Nuclear Information System (INIS)

    Aspin, C.; Brown, J.C.; Simmons, J.F.L.

    1980-01-01

    The polarimetric variation from a binary system with an eccentric orbit, thus non-corotating, are calculated and the effect on determining the system parameters is discussed, relative to the circular case. (Auth.)

  14. Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite

    Science.gov (United States)

    Chou, Min-Yang; Shen, Ming-Hsueh; Lin, Charles C. H.; Yue, Jia; Chen, Chia-Hung; Liu, Jann-Yenq; Lin, Jia-Ting

    2018-02-01

    The launch of SpaceX Falcon 9 rocket delivered Taiwan's FORMOSAT-5 satellite to orbit from Vandenberg Air Force Base in California at 18:51:00 UT on 24 August 2017. To facilitate the delivery of FORMOSAT-5 to its mission orbit altitude of 720 km, the Falcon 9 made a steep initial ascent. During the launch, the supersonic rocket induced gigantic circular shock acoustic waves (SAWs) in total electron content (TEC) over the western United States beginning approximately 5 min after the liftoff. The circular SAWs emanated outward with 20 min duration, horizontal phase velocities of 629-726 m/s, horizontal wavelengths of 390-450 km, and period of 10.28 ± 1 min. This is the largest rocket-induced circular SAWs on record, extending approximately 114-128°W in longitude and 26-39°N in latitude ( 1,500 km in diameter), and was due to the unique, nearly vertical attitude of the rocket during orbit insertion. The rocket-exhaust plume subsequently created a large-scale ionospheric plasma hole ( 900 km in diameter) with 10-70% TEC depletions in comparison with the reference days. While the circular SAWs, with a relatively small amplitude of TEC fluctuations, likely did not introduce range errors into the Global Navigation Satellite Systems navigation and positioning system, the subsequent ionospheric plasma hole, on the other hand, could have caused spatial gradients in the ionospheric plasma potentially leading to a range error of 1 m.

  15. An asymptotically consistent approximant for the equatorial bending angle of light due to Kerr black holes

    International Nuclear Information System (INIS)

    Barlow, Nathaniel S; Faber, Joshua A; Weinstein, Steven J

    2017-01-01

    An accurate closed-form expression is provided to predict the bending angle of light as a function of impact parameter for equatorial orbits around Kerr black holes of arbitrary spin. This expression is constructed by assuring that the weak- and strong-deflection limits are explicitly satisfied while maintaining accuracy at intermediate values of impact parameter via the method of asymptotic approximants (Barlow et al 2017 Q. J. Mech. Appl. Math . 70 21–48). To this end, the strong deflection limit for a prograde orbit around an extremal black hole is examined, and the full non-vanishing asymptotic behavior is determined. The derived approximant may be an attractive alternative to computationally expensive elliptical integrals used in black hole simulations. (paper)

  16. Proton flux under radiation belts: near-equatorial zone

    International Nuclear Information System (INIS)

    Grigoryan, O.R.; Panasyuk, M.I.; Petrov, A.N.; Kudela, K.

    2005-01-01

    In this work the features of low-energy proton flux increases in near-equatorial region (McIlvein parameter L th the proton flux (with energy from tens keV up to several MeV) increases are registering regularly. However modern proton flux models (for example AP8 model) works at L>1.15 only and does not take into account near-equatorial protons. These fluxes are not too big, but the investigation of this phenomenon is important in scope of atmosphere-ionosphere connections and mechanisms of particles transport in magnetosphere. In according to double charge-exchange model the proton flux in near-equatorial region does not depend on geomagnetic local time (MLT) and longitude. However the Azur satellite data and Kosmos-484, MIR station and Active satellite data revealed the proton flux dependence on longitude. The other feature of near-equatorial proton flux is the dependence on geomagnetic local time revealed in the Sampex satellite experiment and other experiments listed above. In this work the dependences on MLT and longitude are investigated using the Active satellite (30-500 keV) and Sampex satellite (>800 keV). This data confirms that main sources of near-equatorial protons are radiation belts and ring current. The other result is that near-equatorial protons are quasi-trapped. The empirical proton flux dependences on L, B at near-equatorial longitudes are presented. (author)

  17. Verifying black hole orbits with gravitational spectroscopy

    International Nuclear Information System (INIS)

    Drasco, Steve

    2009-01-01

    Gravitational waves from test masses bound to geodesic orbits of rotating black holes are simulated, using Teukolsky's black hole perturbation formalism, for about ten thousand generic orbital configurations. Each binary radiates power exclusively in modes with frequencies that are integer-linear combinations of the orbit's three fundamental frequencies. General spectral properties are found with a survey of orbits about a black hole taken to be rotating at 80% of the maximal spin. The orbital eccentricity is varied from 0.1 to 0.9. Inclination ranges from 20 deg. to 160 deg. and comes to within 20 deg. of polar. Semilatus rectum is varied from 1.2 to 3 times the value at the innermost stable circular orbits. The following general spectral properties are found: (i) 99% of the radiated power is typically carried by a few hundred modes, and at most by about a thousand modes, (ii) the dominant frequencies can be grouped into a small number of families defined by fixing two of the three integer frequency multipliers, and (iii) the specifics of these trends can be qualitatively inferred from the geometry of the orbit under consideration. Detections using triperiodic analytic templates modeled on these general properties would constitute a verification of radiation from an adiabatic sequence of black hole orbits and would recover the evolution of the fundamental orbital frequencies. In an analogy with ordinary spectroscopy, this would compare to observing the Bohr model's atomic hydrogen spectrum without being able to rule out alternative atomic theories or nuclei. The suitability of such a detection technique is demonstrated using snapshots computed at 12-hour intervals throughout the last three years before merger of a kludged inspiral. The system chosen is typical of those thought to occur in galactic nuclei and to be observable with space-based gravitational wave detectors like LISA. Because of circularization, the number of excited modes decreases as the binary

  18. Photoelectric panel with equatorial mounting of drive

    Science.gov (United States)

    Kukhta, M. S.; Krauinsh, P. Y.; Krauinsh, D. P.; Sokolov, A. P.; Mainy, S. B.

    2018-03-01

    The relevance of the work is determined by the need to create effective models for sunny energy. The article considers a photoelectric panel equipped with a system for tracking the sun. Efficiency of the system is provided by equatorial mounting, which compensates for the rotation of the Earth by rotating the sunny panel in the plane of the celestial equator. The specificity of climatic and geographical conditions of Tomsk is estimated. The dynamics of power variations of photoelectric panels with equatorial mounting during seasonal fluctuations in Tomsk is calculated. A mobile photovoltaic panel with equatorial mounting of the drive has been developed. The methods of design strategy for placing photovoltaic panels in the architectural environment of the city are presented. Key words: sunny energy, photovoltaics, equatorial mounting, mechatronic model, wave reducer, electric drive.

  19. Periodic orbits near the particle resonance in galaxies

    CERN Document Server

    Contopoulos, George

    1978-01-01

    Near the particle resonance of a spiral galaxy the almost circular periodic orbits that exist inside the resonance (direct) or outside it (retrograde) are replaced by elongated trapped orbits around the maxima of the potential L/sub 4/ and L/sub 5/. These are the long- period trapped periodic orbits. The long-period orbits shrink to the points L/sub 4/, L/sub 5/ for a critical value of the Hamiltonian h. For still larger h, a family of short-period trapped orbits appears, with continuously growing size. The evolution of the periodic orbits with h is followed, theoretically and numerically, from the untrapped orbits to the long-periodic orbits and then to the short-periodic orbits, mainly in the case of a bar. In a tight spiral case an explanation of the asymmetric periodic and banana orbits is given, and an example of short-period orbits not surrounding L/sub 4/ or L/sub 5/ is provided. Another family of periodic orbits reaching corotation is trapped at the inner Lindblad resonance. (5 refs).

  20. Injection and extraction techniques in circular accelerators

    International Nuclear Information System (INIS)

    Tang Jingyu

    2008-01-01

    Injection and extraction are usually the key systems in circular accelerators. They play important roles in transferring the beam from one stage acceleration to the other or to experimental stations. It is also in the injection and extraction regions where beam losses happen mostly. Due to the tight space and to reduce the perturbation to the circulating orbit, the devices are usually designed to meet special requirements such as compactness, small stray field, fast rise time or fall time, etc. Usual injection and extraction devices include septum magnets, kicker magnets, electrostatic deflectors, slow bump magnets and strippers. In spite of different accelerators and specification for the injection and extraction devices, many techniques are shared in the design and manufacturing. This paper gives a general review on the techniques employed in the major circular accelerators in China. (authors)

  1. Intermonsoonal equatorial jets

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    , respectively. Hydrographic features and transport computations favour a well developed equatorial jet during both seasons. The net surface eastward and subsurface westward flows are well balanced during the premonsoon transition period and appear...

  2. A tool for symmetry studies in circular machines

    International Nuclear Information System (INIS)

    Bozoki, E.

    1988-05-01

    The use of the C [mrad/Amp] conversion factors of the orbit corrector magnets in the sudy of the symmetry properties of a circular accelerator or storage ring, and in the determination of the ratios of the β-functions at corrector locations is discussed. Measurements obtained for the VUV and x-ray rings of the NSLS at Brookhaven National Laboratory are presented. 4 refs., 7 figs., 3 tabs

  3. Periodic orbit-attitude solutions along planar orbits in a perturbed circular restricted three-body problem for the Earth-Moon system

    Science.gov (United States)

    Bucci, Lorenzo; Lavagna, Michèle; Guzzetti, Davide; Howell, Kathleen C.

    2018-06-01

    Interest on Large Space Structures (LSS), orbiting in strategic and possibly long-term stable locations, is nowadays increasing in the space community. LSS can serve as strategic outpost to support a variety of manned and unmanned mission, or may carry scientific payloads for astronomical observations. The paper focuses on analysing LSS in the Earth-Moon system, exploring dynamical structures that are available within a multi-body gravitational environment. Coupling between attitude and orbital dynamics is investigated, with particular interest on the gravity gradient torque exerted by the two massive attractors. First, natural periodic orbit-attitude solutions are obtained; a LSS that exploits such solutions would benefit of a naturally periodic body rotation synchronous with the orbital motion, easing the effort of the attitude control system to satisfy pointing requirements. Then, the solar radiation pressure is introduced into the fully coupled dynamical model and its effects investigated, discovering novel periodic attitude solutions. Benefits of periodic behaviours that incorporate solar radiation pressure are discussed, and analysed via the variation of some parameters (e.g reflection/absorption coefficients, position of the centre of pressure). As a final step to refine the current perturbed orbit-attitude model, a structure flexibility is also superimposed to a reference orbit-attitude rigid body motion via a simple, yet effective model. The coupling of structural vibrations and attitude motion is preliminarily explored, and allows identification of possible challenges, that may be faced to position a LSS in a periodic orbit within the Earth-Moon system.

  4. Calculation of precision satellite orbits with nonsingular elements /VOP formulation/

    Science.gov (United States)

    Velez, C. E.; Cefola, P. J.; Long, A. C.; Nimitz, K. S.

    1974-01-01

    Review of some results obtained in an effort to develop efficient, high-precision trajectory computation processes for artificial satellites by optimum selection of the form of the equations of motion of the satellite and the numerical integration method. In particular, the matching of a Gaussian variation-of-parameter (VOP) formulation is considered which is expressed in terms of equinoctial orbital elements and partially decouples the motion of the orbital frame from motion within the orbital frame. The performance of the resulting orbit generators is then compared with the popular classical Cowell/Gauss-Jackson formulation/integrator pair for two distinctly different orbit types - namely, the orbit of the ATS satellite at near-geosynchronous conditions and the near-circular orbit of the GEOS-C satellite at 1000 km.

  5. CSR Interaction for a 2D Energy-Chirped Bunch on a General Orbit

    International Nuclear Information System (INIS)

    Li, Rui

    2009-01-01

    When an electron bunch with initial linear energy chirp traverses a bunch compression chicane, the bunch interacts with itself via coherent synchrotron radiation (CSR) and space charge force. The effective longitudinal CSR force for such kind of 2D bunch on a circular orbit has been analyzed earlier (1). In this paper, we present the analytical results of the effective longitudinal CSR force for a 2D energy-chirped bunch going through a general orbit, which includes the entrance and exit of a circular orbit. In particular, we will show the behavior of the force in the last bend of a chicane when the bunch is under extreme compression. This is the condition when bifurcation of bunch phase space occurs in many CSR measurements. (1) R. Li, Phys. Rev. ST Accel. Beams 11, 024401 (2008)

  6. Orbital Resonances in the Vinti Solution

    Science.gov (United States)

    Zurita, L. D.

    As space becomes more congested, contested, and competitive, high-accuracy orbital predictions become critical for space operations. Current orbit propagators use the two-body solution with perturbations added, which have significant error growth when numerically integrated for long time periods. The Vinti Solution is a more accurate model than the two-body problem because it also accounts for the equatorial bulge of the Earth. Unfortunately, the Vinti solution contains small divisors near orbital resonances in the perturbative terms of the Hamiltonian, which lead to inaccurate orbital predictions. One approach to avoid the small divisors is to apply transformation theory, which is presented in this research. The methodology of this research is to identify the perturbative terms of the Vinti Solution, perform a coordinate transformation, and derive the new equations of motion for the Vinti system near orbital resonances. An analysis of these equations of motion offers insight into the dynamics found near orbital resonances. The analysis in this research focuses on the 2:1 resonance, which includes the Global Positioning System. The phase portrait of a nominal Global Positioning System satellite orbit is found to contain a libration region and a chaotic region. Further analysis shows that the dynamics of the 2:1 resonance affects orbits with semi-major axes ranging from -5.0 to +5.4 kilometers from an exactly 2:1 resonant orbit. Truth orbits of seven Global Positioning System satellites are produced for 10 years. Two of the satellites are found to be outside of the resonance region and three are found to be influenced by the libration dynamics of the resonance. The final satellite is found to be influenced by the chaotic dynamics of the resonance. This research provides a method of avoiding the small divisors found in the perturbative terms of the Vinti Solution near orbital resonances.

  7. The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b

    Science.gov (United States)

    Winn, Joshua N.; Howard, Andrew W.; Johnson, John A.; Marcy, Geoffrey W.; Gazak, J. Zachary; Starkey, Donn; Ford, Eric B.; Colon, Knicole D.; Reyes, Francisco; Nortmann, Lisa; hide

    2009-01-01

    We reported the first detection of the transit ingress, revealing the transit duration to be 11.64 plus or minus 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibited an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. Thus, the orbit of this planet is not only highly eccentric but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism.

  8. Quantum cloning machines for equatorial qubits

    International Nuclear Information System (INIS)

    Fan Heng; Matsumoto, Keiji; Wang Xiangbin; Wadati, Miki

    2002-01-01

    Quantum cloning machines for equatorial qubits are studied. For the case of a one to two phase-covariant quantum cloning machine, we present the networks consisting of quantum gates to realize the quantum cloning transformations. The copied equatorial qubits are shown to be separable by using Peres-Horodecki criterion. The optimal one to M phase-covariant quantum cloning transformations are given

  9. Circular magnetic dichroism of the Fa center adsorption in KCl doped with Li and Na

    International Nuclear Information System (INIS)

    Baldacchini, G.; Botti, S.; Grassano, U.M.

    1990-01-01

    The spin-orbit structure of F A in KCl:Li and KCl:Na have been studied by means of the magnetic circular dichroism. Due to their C 4V , symmetry the F A centers have two different spin-orbit parameters, Δ * and Δ * , which only in the KCl:Li case follow the relation: Δ * F A centers have been determined using the method of moment

  10. Equatorial electrojet and its response to external electromagnetic effects

    Science.gov (United States)

    Bespalov, P. A.; Savina, O. N.

    2012-09-01

    In the quiet low-latitude Earth's ionosphere, a sufficiently developed current system that is responsible for the Sq magnetic-field variations is formed in quiet Sun days under the action of tidal streams. The density of the corresponding currents is maximum in the midday hours at the equatorial latitudes, where the so-called equatorial electrojet is formed. In this work, we discuss the nature of the equatorial electrojet. This paper studies the value of its response to external effects. First of all, it is concerned with estimating the possibility of using the equatorial electrojet for generating low-frequency electromagnetic signals during periodic heating of the ionosphere by the heating-facility radiation. The equatorial electrojet can also produce electrodynamic response to the natural atmospheric processes, e.g., an acoustic-gravity wave.

  11. Man-Made Debris In and From Lunar Orbit

    Science.gov (United States)

    Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    During 1966-1976, as part of the first phase of lunar exploration, 29 manned and robotic missions placed more than 40 objects into lunar orbit. Whereas several vehicles later successfully landed on the Moon and/or returned to Earth, others were either abandoned in orbit or intentionally sent to their destruction on the lunar surface. The former now constitute a small population of lunar orbital debris; the latter, including four Lunar Orbiters and four Lunar Module ascent stages, have contributed to nearly 50 lunar sites of man's refuse. Other lunar satellites are known or suspected of having fallen from orbit. Unlike Earth satellite orbital decays and deorbits, lunar satellites impact the lunar surface unscathed by atmospheric burning or melting. Fragmentations of lunar satellites, which would produce clouds of numerous orbital debris, have not yet been detected. The return to lunar orbit in the 1990's by the Hagoromo, Hiten, Clementine, and Lunar Prospector spacecraft and plans for increased lunar exploration early in the 21st century, raise questions of how best to minimize and to dispose of lunar orbital debris. Some of the lessons learned from more than 40 years of Earth orbit exploitation can be applied to the lunar orbital environment. For the near-term, perhaps the most important of these is postmission passivation. Unique solutions, e.g., lunar equatorial dumps, may also prove attractive. However, as with Earth satellites, debris mitigation measures are most effectively adopted early in the concept and design phase, and prevention is less costly than remediation.

  12. Spin-orbit beams for optical chirality measurement

    Science.gov (United States)

    Samlan, C. T.; Suna, Rashmi Ranjan; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2018-01-01

    Accurate measurement of chirality is essential for the advancement of natural and pharmaceutical sciences. We report here a method to measure chirality using non-separable states of light with geometric phase-gradient in the circular polarization basis, which we refer to as spin-orbit beams. A modified polarization Sagnac interferometer is used to generate spin-orbit beams wherein the spin and orbital angular momentum of the input Gaussian beam are coupled. The out-of-phase interference between counter-propagating Gaussian beams with orthogonal spin states and lateral-shear or/and linear-phase difference between them results in spin-orbit beams with linear and azimuthal phase gradient. The spin-orbit beams interact efficiently with the chiral medium, inducing a measurable change in the center-of-mass of the beam, using the polarization rotation angle and hence the chirality of the medium are accurately calculated. Tunable dynamic range of measurement and flexibility to introduce large values of orbital angular momentum for the spin-orbit beam, to improve the measurement sensitivity, highlight the techniques' versatility.

  13. Gravitational waveforms from a point particle orbiting a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Martel, Karl

    2004-01-01

    We numerically solve the inhomogeneous Zerilli-Moncrief and Regge-Wheeler equations in the time domain. We obtain the gravitational waveforms produced by a point particle of mass μ traveling around a Schwarzschild black hole of mass M on arbitrary bound and unbound orbits. Fluxes of energy and angular momentum at infinity and the event horizon are also calculated. Results for circular orbits, selected cases of eccentric orbits, and parabolic orbits are presented. The numerical results from the time-domain code indicate that, for all three types of orbital motion, black hole absorption contributes less than 1% of the total flux, so long as the orbital radius r p (t) satisfies r p (t)>5M at all times

  14. Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America

    Science.gov (United States)

    Münnich, M.; Neelin, J. D.

    2005-11-01

    In late boreal spring, especially May, a strong relationship exists in observations among precipitation anomalies over equatorial South America and the Atlantic intertropical convergence zone (ITCZ), and eastern equatorial Pacific and central equatorial Atlantic sea surface temperature anomalies (SSTA). A chain of correlations of equatorial Pacific SSTA, western equatorial Atlantic wind stress (WEA), equatorial Atlantic SSTA, sea surface height, and precipitation supports a causal chain in which El Niño/Southern Oscillation (ENSO) induces WEA stress anomalies, which in turn affect Atlantic equatorial ocean dynamics. These correlations show strong seasonality, apparently arising within the atmospheric links of the chain. This pathway and the influence of equatorial Atlantic SSTA on South American rainfall in May appear independent of that of the northern tropical Atlantic. Brazil's Nordeste is affected by the northern tropical Atlantic. The equatorial influence lies further to the north over the eastern Amazon and the Guiana Highlands.

  15. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M.; Hussain, Z. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  16. The oil boom in Equatorial Guinea

    International Nuclear Information System (INIS)

    Frynas, J.G.

    2004-01-01

    In less than a decade, Equatorial Guinea has transformed itself from an African backwater into one of the world's fastest growing economies and a sought-after political partner in the Gulf of Guinea. The sole reason for this transformation has been the discovery of oil and gas. This article outlines the rise of Equatorial Guinea as one of Africa's leading oil-producing countries and investigates the political, economic and social effects of becoming a petro-state. The article is based on the author's field research in Equatorial Guinea in the autumn of 2003 and interviews with senior oil company staff, government officials and staff of international organizations as well as secondary sources. This research demonstrates how reliance on oil and gas exports can lead to profound changes in a country's political economy. (author)

  17. Mechanical systems with closed orbits on manifolds of revolution

    International Nuclear Information System (INIS)

    Kudryavtseva, E A; Fedoseev, D A

    2015-01-01

    We study natural mechanical systems describing the motion of a particle on a two-dimensional Riemannian manifold of revolution in the field of a central smooth potential. We obtain a classification of Riemannian manifolds of revolution and central potentials on them that have the strong Bertrand property: any nonsingular (that is, not contained in a meridian) orbit is closed. We also obtain a classification of manifolds of revolution and central potentials on them that have the 'stable' Bertrand property: every parallel is an 'almost stable' circular orbit, and any nonsingular bounded orbit is closed. Bibliography: 14 titles

  18. Orbital and epicyclic frequencies around neutron and strange stars in R{sup 2} gravity

    Energy Technology Data Exchange (ETDEWEB)

    Staykov, Kalin V., E-mail: kstaykov@phys.uni-sofia.bg [Department of Theoretical Physics, Faculty of Physics, Sofia University, 1164, Sofia (Bulgaria); Doneva, Daniela D., E-mail: daniela.doneva@uni-tuebingen.de [Theoretical Astrophysics, Eberhard Karls University of Tübingen, 72076, Tübingen (Germany); INRNE-Bulgarian Academy of Sciences, 1784, Sofia (Bulgaria); Yazadjiev, Stoytcho S., E-mail: yazad@phys.uni-sofia.bg [Department of Theoretical Physics, Faculty of Physics, Sofia University, 1164, Sofia (Bulgaria); Theoretical Astrophysics, Eberhard Karls University of Tübingen, 72076, Tübingen (Germany)

    2015-12-21

    According to various models, the orbital and the epicyclic frequencies of particles moving on a circular orbit around compact objects are related to the quasi-periodic oscillations observed in the X-ray flux of some pulsars or black hole candidates. It is expected that they originate from the inner edge of the accretion discs, deep into the gravitational field of the compact objects. Considering the planned new generation X-ray timing observatories with large collective areas, the quasi-periodic oscillations might be an excellent tool for testing gravity in strong field regime and, respectively, alternative gravitational theories. We examine the orbital and the epicyclic frequencies of a particle moving on a circular orbit around neutron or strange stars in R{sup 2} gravity. The case of slow rotation is considered too. The R{sup 2} gravity results are compared to the general relativistic case. We comment on the deviations from general relativity, as well as the deviations due to rotation in both theories.

  19. Orbital and epicyclic frequencies around neutron and strange stars in R{sup 2} gravity

    Energy Technology Data Exchange (ETDEWEB)

    Staykov, Kalin V. [Sofia University, Department of Theoretical Physics, Faculty of Physics, Sofia (Bulgaria); Doneva, Daniela D. [Eberhard Karls University of Tuebingen, Theoretical Astrophysics, Tuebingen (Germany); INRNE-Bulgarian Academy of Sciences, Sofia (Bulgaria); Yazadjiev, Stoytcho S. [Sofia University, Department of Theoretical Physics, Faculty of Physics, Sofia (Bulgaria); Eberhard Karls University of Tuebingen, Theoretical Astrophysics, Tuebingen (Germany)

    2015-12-15

    According to various models, the orbital and the epicyclic frequencies of particles moving on a circular orbit around compact objects are related to the quasi-periodic oscillations observed in the X-ray flux of some pulsars or black hole candidates. It is expected that they originate from the inner edge of the accretion discs, deep into the gravitational field of the compact objects. Considering the planned new generation X-ray timing observatories with large collective areas, the quasi-periodic oscillations might be an excellent tool for testing gravity in strong field regime and, respectively, alternative gravitational theories. We examine the orbital and the epicyclic frequencies of a particle moving on a circular orbit around neutron or strange stars in R{sup 2} gravity. The case of slow rotation is considered too. The R{sup 2} gravity results are compared to the general relativistic case. We comment on the deviations from general relativity, as well as the deviations due to rotation in both theories. (orig.)

  20. Be discs in coplanar circular binaries: Phase-locked variations of emission lines

    Science.gov (United States)

    Panoglou, Despina; Faes, Daniel M.; Carciofi, Alex C.; Okazaki, Atsuo T.; Baade, Dietrich; Rivinius, Thomas; Borges Fernandes, Marcelo

    2018-01-01

    In this paper, we present the first results of radiative transfer calculations on decretion discs of binary Be stars. A smoothed particle hydrodynamics code computes the structure of Be discs in coplanar circular binary systems for a range of orbital and disc parameters. The resulting disc configuration consists of two spiral arms, and this can be given as input into a Monte Carlo code, which calculates the radiative transfer along the line of sight for various observational coordinates. Making use of the property of steady disc structure in coplanar circular binaries, observables are computed as functions of the orbital phase. Some orbital-phase series of line profiles are given for selected parameter sets under various viewing angles, to allow comparison with observations. Flat-topped profiles with and without superimposed multiple structures are reproduced, showing, for example, that triple-peaked profiles do not have to be necessarily associated with warped discs and misaligned binaries. It is demonstrated that binary tidal effects give rise to phase-locked variability of the violet-to-red (V/R) ratio of hydrogen emission lines. The V/R ratio exhibits two maxima per cycle; in certain cases those maxima are equal, leading to a clear new V/R cycle every half orbital period. This study opens a way to identifying binaries and to constraining the parameters of binary systems that exhibit phase-locked variations induced by tidal interaction with a companion star.

  1. Stable orbits for lunar landing assistance

    Science.gov (United States)

    Condoleo, Ennio; Cinelli, Marco; Ortore, Emiliano; Circi, Christian

    2017-10-01

    To improve lunar landing performances in terms of mission costs, trajectory determination and visibility the use of a single probe located over an assistance orbit around the Moon has been taken into consideration. To this end, the properties of two quasi-circular orbits characterised by a stable behaviour of semi-major axis, eccentricity and inclination have been investigated. The analysis has demonstrated the possibility of using an assistance probe, located over one of these orbits, as a relay satellite between lander and Earth, even in the case of landings on the far side of the Moon. A comparison about the accuracy in retrieving the lander's state with respect to the use of a probe located in the Lagrangian point L2 of the Earth-Moon system has also been carried out.

  2. Circular geodesics of naked singularities in the Kehagias-Sfetsos metric of Hořava's gravity

    Science.gov (United States)

    Vieira, Ronaldo S. S.; Schee, Jan; Kluźniak, Włodek; Stuchlík, Zdeněk; Abramowicz, Marek

    2014-07-01

    We discuss photon and test-particle orbits in the Kehagias-Sfetsos (KS) metric of Hořava's gravity. For any value of the Hořava parameter ω, there are values of the gravitational mass M for which the metric describes a naked singularity, and this is always accompanied by a vacuum "antigravity sphere" on whose surface a test particle can remain at rest (in a zero angular momentum geodesic), and inside which no circular geodesics exist. The observational appearance of an accreting KS naked singularity in a binary system would be that of a quasistatic spherical fluid shell surrounded by an accretion disk, whose properties depend on the value of M, but are always very different from accretion disks familiar from the Kerr-metric solutions. The properties of the corresponding circular orbits are qualitatively similar to those of the Reissner-Nordström naked singularities. When event horizons are present, the orbits outside the Kehagias-Sfetsos black hole are qualitatively similar to those of the Schwarzschild metric.

  3. BIRTH: a beam deposition code for non-circular tokamak plasmas

    International Nuclear Information System (INIS)

    Otsuka, Michio; Nagami, Masayuki; Matsuda, Toshiaki

    1982-09-01

    A new beam deposition code has been developed which is capable of calculating fast ion deposition profiles including the orbit correction. The code incorporates any injection geometry and a non-circular cross section plasma with a variable elongation and an outward shift of the magnetic flux surface. Typical cpu time on a DEC-10 computer is 10 - 20 seconds and 5 - 10 seconds with and without the orbit correction, respectively. This is shorter by an order of magnitude than that of other codes, e.g., Monte Carlo codes. The power deposition profile calculated by this code is in good agreement with that calculated by a Monte Carlo code. (author)

  4. Geomagnetic storms and electric fields in the equatorial ionosphere

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1977-01-01

    Using direct measurements of equatorial electric field during a geomagnetic storm it is shown that the large decrease in the field observed near the dip equator is due to the reversal of the equatorial electrojet current. This is caused by the imposition of an additional westward electric field on the equatorial ionosphere which was originated by the interaction of solar wind with the interplanetary magnetic field. (author)

  5. Analysis of orbit determination from Earth-based tracking for relay satellites in a perturbed areostationary orbit

    Science.gov (United States)

    Romero, P.; Pablos, B.; Barderas, G.

    2017-07-01

    Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.

  6. Expected first-order effects of a notional equatorial ring on Earth's night sky: a geometric consideration

    Science.gov (United States)

    Hancock, L. O.

    2013-12-01

    G. Jones (1856) was first to suggest that the Earth might have its own ring, noting that an Earth ring in the ecliptic plane would account for the latitude dependence of the zodiacal light. Jones's proposal was not accepted: it is difficult to see why the ecliptic would accumulate mass within the Earth-Moon system. Very recently, however, this objection has been mitigated by the discovery of Saturn's Phoebe ring: evidently, the plane of a planetary moon's orbit has now been observed as the site of mass accumulation. An adjustment of just a few degrees from ecliptic to the plane of the lunar orbit gives Jones's proposal the boost of an existing Solar System analogue, mysterious though the analogue is. J. O'Keefe (1980) was first to suggest that an Earth ring system could drive climate: a ring in the equatorial plane, waxing and waning in optical depth, could drive the alternation of Ice Age and interglacial climates. This driver would account for the observation that the Ice Age climate was mainly a difference in winter only. Could Earth have a ring system with one or both elements? Even if light and unstable, it would be important to assess, as it could drive climate change. Dust assessments have not discovered a ring system, but they do not cover low orbits well, nor rule out very small particles stringently. Yet tiny particles can be optically important. There are many difficulties with this hypothesis: Why have ground-based observers never identified an equatorial ring, which after all should be the brightest element of a ring system? Why should a ring system be made of very small particles only? The material must be constantly falling to Earth - where is it? Finally, can we believe in the level of lunar geological activity needed to sustain an Earth ring system? This presentation addresses only one issue: Could ground-based observers have seen but misidentified an equatorial ring? To support consideration of that question, herewith a simple geometric exercise

  7. APPLIED OPTICS. Voltage-tunable circular photogalvanic effect in silicon nanowires.

    Science.gov (United States)

    Dhara, Sajal; Mele, Eugene J; Agarwal, Ritesh

    2015-08-14

    Electronic bands in crystals can support nontrivial topological textures arising from spin-orbit interactions, but purely orbital mechanisms can realize closely related dynamics without breaking spin degeneracies, opening up applications in materials containing only light elements. One such application is the circular photogalvanic effect (CPGE), which is the generation of photocurrents whose magnitude and polarity depend on the chirality of optical excitation. We show that the CPGE can arise from interband transitions at the metal contacts to silicon nanowires, where inversion symmetry is locally broken by an electric field. Bias voltage that modulates this field further controls the sign and magnitude of the CPGE. The generation of chirality-dependent photocurrents in silicon with a purely orbital-based mechanism will enable new functionalities in silicon that can be integrated with conventional electronics. Copyright © 2015, American Association for the Advancement of Science.

  8. Pursuit/evasion in orbit

    Science.gov (United States)

    Kelley, H. J.; Cliff, E. M.; Lutze, F. H.

    1981-01-01

    Maneuvers available to a spacecraft having sufficient propellant to escape an antisatellite satellite (ASAT) attack are examined. The ASAT and the evading spacecraft are regarded as being in circular orbits, and equations of motion are developed for the ASAT to commence a two-impulse maneuver sequence. The ASAT employs thrust impulses which yield a minimum-time-to-rendezvous, considering available fuel. Optimal evasion is shown to involve only in-plane maneuvers, and begins as soon as the ASAT launch information is gathered and thrust activation can be initiated. A closest approach, along with a maximum evasion by the target spacecraft, is calculated to be 14,400 ft. Further research to account for ASATs in parking orbit and for generalization of a continuous control-modeled differential game is indicated.

  9. Circular Coinduction

    Science.gov (United States)

    Rosu, Grigore; Goguen, Joseph; Norvig, Peter (Technical Monitor)

    2001-01-01

    Circular coinduction is a technique for behavioral reasoning that extends cobasis coinduction to specifications with circularities. Because behavioral satisfaction is not recursively enumerable, no algorithm can work for every behavioral statement. However. algorithms using circular coinduction can prove every practical behavioral result that we know. This paper proves the correctness of circular coinduction and some consequences.

  10. Cloud and Wind Variability in Saturn's Equatorial Jet prior to the Cassini orbital tour

    Science.gov (United States)

    Sánchez-Lavega, A.; Pérez-Hoyos, S.; Hueso, R.; Rojas, J. F.; French, R. G.

    2004-11-01

    We use ground-based observations (going back to 1876), Pioneer-11 data (1979), Voyager 1 and 2 encounter images in 1980 and 1981, and HST 1990-2004 images, to study the changes that occurred in the vertical cloud structure and morphology and motions, in Saturn's Equatorial Region (approximately the band between latitudes 40 deg North and South). We compare ``calm periods" with ``stormy periods" i. e. those that occur during the development of the phenomenon known as the ``Great White Spots." We discuss different interpretations of the mechanisms that can be involved in the observed changes: vertical wind shears, waves, storm - mean flow interaction and changes in atmospheric angular momentum. Acknowledgements: This work was supported by the Spanish MCYT AYA 2003-03216. SPH acknowledges a PhD fellowship from the Spanish MECD and RH a post-doc fellowship from Gobierno Vasco. RGF was supported in part by NASA's Planetary Geology and Geophysics Program NAG5-10197 and STSCI Grant GO-08660.01A.

  11. Cosmic censorship, black holes, and particle orbits

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1979-01-01

    One of the main reasons for believing in the cosmic censorship hypothesis is the disquieting nature of the alternative: the existence of naked singularities, and hence loss of predictability, the possibility of closed timelike lines and so forth. The consequences of assuming the cosmic hypothesis can also be somewhat strange and unexpected. In particular, Hawking's black hole area theorem is applied to the study of particle orbits near a Schwarzschild black hole. If the cosmic censorship hypothesis (and hence the area theorem) is true, then there exist stable near-circular orbits arbitrarily close to the horizon at r = 2M. (author)

  12. Analysis of the Variation of Energetic Electron Flux with Respect to Longitude and Distance Normal to the Magnetic Equatorial Plane for Galileo Energetic Particle Detector Data

    Science.gov (United States)

    Swimm, R.; Garrett, H. B.; Jun, I.; Evans, R. W.

    2004-12-01

    In this study we examine ten-minute omni-directional averages of energetic electron data measured by the Galileo spacecraft Energetic Particle Detector (EPD). Count rates from electron channels B1, DC2, and DC3 are evaluated using a power law model to yield estimates of the differential electron fluxes from 1 MeV to 11 MeV at distances from the planet Jupiter from 8 to 28 Jupiter radii. Whereas the orbit of the Galileo spacecraft remained close to the rotational equatorial plane of Jupiter, the approximately 11 degree tilt of the magnetic axis of Jupiter relative to its rotational axis allowed the EPD instrument to sample high energy electrons at limited distances normal to the magnetic equatorial plane. We present a Fourier analysis of the semi-diurnal variation of electron radiation with longitude. We also develop a model of the electron flux with respect to distance normal to the magnetic equatorial plane as a function of the distance from Jupiter.

  13. Perturbation of a slowly rotating black hole by a stationary axisymmetric ring of matter. II. Penrose processes, circular orbits, and differential mass formulae

    International Nuclear Information System (INIS)

    Will, C.M.

    1975-01-01

    We present a detailed description of the phenomenon of energy extraction (''Penrose'') from a slowly rotating black hole perturbed by a stationary axisymmetric ring of matter, and show that the gravitational interaction between the ring and the particles used in the Penrose process must be taken into account. For the case of a black-hole-ring configuration of ''minimum enregy'' we show that a Penrose process can extract further energy, but that by measns of their gravitational forces, the particles used in the process cause the radius of the ring to change, releasing precisely sufficient gravitational potential energy to make up for that extracted. By analyzing the properties of circular test-particle orbits in black-hole-ring spacetimes, we show quantitatively how this change in radius is produced. A ''differential mass formula'' relating the total masses of neighboring black-hole-ring configurations is also derived

  14. Observational signature of high spin at the Event Horizon Telescope

    Science.gov (United States)

    Gralla, Samuel E.; Lupsasca, Alexandru; Strominger, Andrew

    2018-04-01

    We analytically compute the observational appearance of an isotropically emitting point source on a circular, equatorial orbit near the horizon of a rapidly spinning black hole. The primary image moves on a vertical line segment, in contrast to the primarily horizontal motion of the spinless case. Secondary images, also on the vertical line, display a rich caustic structure. If detected, this unique signature could serve as a `smoking gun' for a high spin black hole in nature.

  15. Post-midnight occurrence of equatorial plasma bubbles

    Science.gov (United States)

    Ajith, K. K.; Otsuka, Yuichi; Yamamoto, Mamoru; Yokoyama, Tatsuhiro; Tulasiram, S.

    2016-07-01

    The equatorial plasma bubbles (EPBs)/equatorial spread F (ESF) irregularities are an important topic of space weather interest because of their impact on transionospheric radio communications, satellite-based navigation and augmentation systems. This local plasma depleted structures develop at the bottom side F layer through Rayleigh-Taylor instability and rapidly grow to topside ionosphere via polarization electric fields within them. The steep vertical gradients due to quick loss of bottom side ionization and rapid uplift of equatorial F layer via prereversal enhancement (PRE) of zonal electric field makes the post-sunset hours as the most preferred local time for the formation of EPBs. However, there is a different class of irregularities that occurs during the post-midnight hours of June solstice reported by the previous studies. The occurrence of these post-midnight EPBs maximize during the low solar activity periods. The growth characteristics and the responsible mechanism for the formation of these post-midnight EPBs are not yet understood. Using the rapid beam steering ability of 47 MHz Equatorial Atmosphere Radar (EAR) at Kototabang (0.2°S geographic latitude, 100.3°E geographic longitude, and 10.4°S geomagnetic latitude), Indonesia, the spatial and temporal evolution of equatorial plasma bubbles (EPBs) were examined to classify the evolutionary-type EPBs from those which formed elsewhere and drifted into the field of view of radar. The responsible mechanism for the genesis of summer time post-midnight EPBs were discussed in light of growth rate of Rayleigh-Taylor instability using SAMI2 model.

  16. Higher-order geodesic deviations applied to the Kerr metric

    CERN Document Server

    Colistete, R J; Kerner, R

    2002-01-01

    Starting with an exact and simple geodesic, we generate approximate geodesics by summing up higher-order geodesic deviations within a general relativistic setting, without using Newtonian and post-Newtonian approximations. We apply this method to the problem of closed orbital motion of test particles in the Kerr metric spacetime. With a simple circular orbit in the equatorial plane taken as the initial geodesic, we obtain finite eccentricity orbits in the form of Taylor series with the eccentricity playing the role of a small parameter. The explicit expressions of these higher-order geodesic deviations are derived using successive systems of linear equations with constant coefficients, whose solutions are of harmonic oscillator type. This scheme gives best results when applied to orbits with low eccentricities, but with arbitrary possible values of (GM/Rc sup 2).

  17. ITER L 6 equatorial maintenance duct remote handling study

    International Nuclear Information System (INIS)

    Millard, J.

    1996-09-01

    The status and conclusions of a preliminary study of equatorial maintenance duct remote handling is reported. Due to issues with the original duct design a significant portion of the study had to be refocused on equatorial duct layout studies. The study gives an overview of some of the options for design of these ducts and the impact of the design on the equipment to work in the duct. To develop a remote handling concept for creating access through the ducts the following design tasks should be performed: define the operations sequences for equatorial maintenance duct opening and closing; review the remote handling requirements for equatorial maintenance duct opening and closing; design concept for door and pipe handling equipment and to propose preliminary procedures for material handling outsides the duct. 35 figs

  18. Circular Solutions

    NARCIS (Netherlands)

    Annevelink, E.; Bos, H.L.; Meesters, K.P.H.; Oever, van den M.J.A.; Haas, de W.; Kuikman, P.J.; Rietra, R.P.J.J.; Sikirica, N.

    2016-01-01

    The fifth part of this report on Circular Solutions is about the circular principle From Waste to Resource. The purpose of this study is to select promising options for the implementation of this circular principle and to elaborate these options further.

  19. Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals.

    Science.gov (United States)

    Meierhenrich, Uwe J; Thiemann, Wolfram H P; Barbier, Bernard; Brack, André; Alcaraz, Christian; Nahon, Laurent; Wolstencroft, Ray

    2002-04-01

    Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For BepiColombo, the ESA cornerstone mission 5 to Mercury, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter, capable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE.

  20. The growth and decay of equatorial backscatter plumes

    Science.gov (United States)

    Tsunoda, R. T.

    1980-02-01

    During the past three years, a series of rocket experiments from the Kwajalein Atoll, Marshall Islands, were conducted to investigate the character of intense, scintillation-producing irregularities that occur in the nighttime equatorial ionosphere. Because the source mechanism of equatorial irregularities, believed to be the Rayleigh-Taylor instability, is analogous to that which generates plasma-density striations in a nuclear-induced environment, there is considerable interest in the underlying physics that controls the characteristics of these irregularities. A primary objective of ALTAIR investigations of equatorial irregularities is to seek an understanding of the underlying physics by establishing the relationship between meter-scale irregularities (detected by ALTAIR), and the large-scale plasma-density depletions (or 'bubbles') that contain the kilometer-scale, scintillation-producing irregularities. We describe the time evolution of backscatter 'plumes' produced by one meter equatorial field-aligned irregularities. Using ALTAIR, a fully steerable backscatter radar, to repeatedly map selected plumes, we characterize the dynamic behavior of plumes in terms of growth and a decay phase. Most of the observed characteristics are found to be consistent with equatorial-irregularity generation predicted by current theories of Rayleigh-Taylor and gradient-drift instabilities. However, other characteristics have been found that suggest key roles played by the eastward neutral wind and by altitude-modulation of the bottomside F layer in establishing the initial conditions for plume growth.

  1. Global dynamics of dust grains in magnetic planets

    International Nuclear Information System (INIS)

    Inarrea, Manuel; Lanchares, Victor; Palacian, Jesus F.; Pascual, Ana I.; Salas, J. Pablo; Yanguas, Patricia

    2005-01-01

    We study the dynamics of a charged particle orbiting a rotating magnetic planet. The system is modelled by the Hamiltonian of the two-body problem perturbed by an axially-symmetric potential. The perturbation consists in a magnetic dipole field and a corotational electric field. After an averaging process we arrive at a one degree of freedom Hamiltonian system for which we obtain its relative equilibria and bifurcations. It is shown that the system exhibits a complex and rich dynamics. In particular, dramatic changes in the phase flow take place in the vicinity of a circular equatorial orbit, that in the case of Saturn is located inside the E-ring

  2. Global dynamics of dust grains in magnetic planets

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel [Universidad de La Rioja, Area de Fisica Aplicada, 26006 Logrono (Spain)]. E-mail: manuel.inarrea@dq.unirioja.es; Lanchares, Victor [Universidad de La Rioja, Departamento de Matematicas y Computacion, 26004 Logrono (Spain); Palacian, Jesus F. [Universidad Publica de Navarra, Departamento de Matematica e Informatica, 31006 Pamplona (Spain); Pascual, Ana I. [Universidad de La Rioja, Departamento de Matematicas y Computacion, 26004 Logrono (Spain); Salas, J. Pablo [Universidad de La Rioja, Area de Fisica Aplicada, 26006 Logrono (Spain); Yanguas, Patricia [Universidad Publica de Navarra, Departamento de Matematica e Informatica, 31006 Pamplona (Spain)

    2005-05-02

    We study the dynamics of a charged particle orbiting a rotating magnetic planet. The system is modelled by the Hamiltonian of the two-body problem perturbed by an axially-symmetric potential. The perturbation consists in a magnetic dipole field and a corotational electric field. After an averaging process we arrive at a one degree of freedom Hamiltonian system for which we obtain its relative equilibria and bifurcations. It is shown that the system exhibits a complex and rich dynamics. In particular, dramatic changes in the phase flow take place in the vicinity of a circular equatorial orbit, that in the case of Saturn is located inside the E-ring.

  3. Optical force and torque on a dielectric Rayleigh particle by a circular Airy vortex beam

    Science.gov (United States)

    Chen, Musheng; Huang, Sujuan; Shao, Wei; Liu, Xianpeng

    2018-03-01

    Optical force and torque exerted on the Rayleigh particles by tightly focused circularly polarized circular Airy vortex beams (CAVB) in the far field are studied in this paper. The relation between parameters of circularly polarized CAVB and the trapping properties is numerically analyzed based on Rayleigh models and the Debye diffraction theory. The results show that both the high refractive index and low refractive index particles can be fully stably trapped in three dimensions by circularly polarized CAVB. The parameters of circularly polarized CAVB greatly affect the optical force. The longitudinal and transverse gradient force increase with the increase of decay factor and scaling factor, and decrease with the increase of the radius of the first primary ring and topological charges. The positions of the longitudinal stable equilibrium move toward the high numerical aperture lens when the scaling factor and the radius of the primary ring increase. The trapping range is broadened with the decrease of scaling factor. The optical orbital torque (OOT) of circularly polarized CAVB has circular symmetry and remains positive or negative. With the increase of topological charges, the peak value of OOT first increases and then decreases after reaches a maximum. These results are useful for optical trapping, optical levitation and particle acceleration.

  4. Orbitally limited pair-density-wave phase of multilayer superconductors

    Science.gov (United States)

    Möckli, David; Yanase, Youichi; Sigrist, Manfred

    2018-04-01

    We investigate the magnetic field dependence of an ideal superconducting vortex lattice in the parity-mixed pair-density-wave phase of multilayer superconductors within a circular cell Ginzburg-Landau approach. In multilayer systems, due to local inversion symmetry breaking, a Rashba spin-orbit coupling is induced at the outer layers. This combined with a perpendicular paramagnetic (Pauli) limiting magnetic field stabilizes a staggered layer dependent pair-density-wave phase in the superconducting singlet channel. The high-field pair-density-wave phase is separated from the low-field BCS phase by a first-order phase transition. The motivating guiding question in this paper is: What is the minimal necessary Maki parameter αM for the appearance of the pair-density-wave phase of a superconducting trilayer system? To address this problem we generalize the circular cell method for the regular flux-line lattice of a type-II superconductor to include paramagnetic depairing effects. Then, we apply the model to the trilayer system, where each of the layers are characterized by Ginzburg-Landau parameter κ0 and a Maki parameter αM. We find that when the spin-orbit Rashba interaction compares to the superconducting condensation energy, the orbitally limited pair-density-wave phase stabilizes for Maki parameters αM>10 .

  5. The streaming-trapped ion interface in the equatorial inner magnetosphere

    Science.gov (United States)

    Lin, J.; Horwitz, J. L.; Gallagher, D.; Pollock, C. J.

    1994-01-01

    Spacecraft measurements of core ions on L=4-7 field-lines typically show trapped ion distributions near the magnetic equator, and frequently indicate field-aligned ion streams at higher latitudes. The nature of the transition between them may indicate both the microphysics of hot-cold plasma interactions and overall consequences for core plasma evolution. We have undertaken a statistical analysis and characterization of this interface and its relation to the equatorial region of the inner magnetosphere. In this analysis, we have characterized such features as the equatorial ion flux anisotropy, the penetration of field-aligned ionospheric streams into the equatorial region, the scale of the transition into trapped ion populations, and the transition latitude. We found that most transition latitudes occur within 13 deg of the equator. The typical values of equatorial ion anisotropies are consistent with bi-Maxwellian temperature ratios of T(sub perpendicular)/T(sub parallel) in the range of 3-5. The latitudinal scales for the edges of the trapped ion populations display a rather strong peak in the 2-3 deg range. We also found that there is a trend for the penetration ratio, the anisotropy half width, and the transition scale length to decrease with a higher equatorial ion anisotropy. We may interpret these features in terms of Liouville mapping of equatorially trapped ions and the reflection of the incoming ionospheric ion streams from the equatorial potential peaks associated with such trapped ions.

  6. Electric sail elliptic displaced orbits with advanced thrust model

    Science.gov (United States)

    Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2017-09-01

    This paper analyzes the performance of an Electric Solar Wind Sail for generating and maintaining an elliptic, heliocentric, displaced non-Keplerian orbit. In this sense, this paper extends and completes recent studies regarding the performances of an Electric Solar Wind Sail that covers a circular, heliocentric, displaced orbit of given characteristics. The paper presents the general equations that describe the elliptic orbit maintenance in terms of both spacecraft attitude and performance requirements, when a refined thrust model (recently proposed for the preliminary mission design) is taken into account. In particular, the paper also discusses some practical applications on particular mission scenarios in which an analytic solution of the governing equations has been found.

  7. The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits

    International Nuclear Information System (INIS)

    Blanchet, Luc; Faye, Guillaume; Iyer, Bala R; Sinha, Siddhartha

    2008-01-01

    The gravitational waveform (GWF) generated by inspiralling compact binaries moving in quasi-circular orbits is computed at the third post-Newtonian (3PN) approximation to general relativity. Our motivation is two-fold: (i) to provide accurate templates for the data analysis of gravitational wave inspiral signals in laser interferometric detectors; (ii) to provide the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high post-Newtonian prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. This extension of the GWF by half a PN order (with respect to previous work at 2.5PN order) is based on the algorithm of the multipolar post-Minkowskian formalism, and mandates the computation of the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also obtain the 3PN extension of the source multipole moments in the case of compact binaries, and compute the contributions of hereditary terms (tails, tails-of-tails and memory integrals) up to 3PN order. The end results are given for both the complete plus and cross polarizations and the separate spin-weighted spherical harmonic modes

  8. A New Kind of Shift Operators for Infinite Circular and Spherical Wells

    Directory of Open Access Journals (Sweden)

    Guo-Hua Sun

    2014-01-01

    Full Text Available A new kind of shift operators for infinite circular and spherical wells is identified. These shift operators depend on all spatial variables of quantum systems and connect some eigenstates of confined systems of different radii R sharing energy levels with a common eigenvalue. In circular well, the momentum operators P±=Px±iPy play the role of shift operators. The Px and Py operators, the third projection of the orbital angular momentum operator Lz, and the Hamiltonian H form a complete set of commuting operators with the SO(2 symmetry. In spherical well, the shift operators establish a novel relation between ψlm(r and ψ(l ± 1(m±1(r.

  9. Operational circular No. 1 (Rev. 1) – Operational circulars

    CERN Multimedia

    HR Department

    2011-01-01

    Operational Circular No. 1 (Rev. 1) is applicable to members of the personnel and other persons concerned. Operational Circular No. 1 (Rev. 1) entitled "Operational circulars", approved following discussion at the Standing Concertation Committee meeting on 4 May 2011, is available on the intranet site of the Human Resources Department: https://hr-docs.web.cern.ch/hr-docs/opcirc/opcirc.asp It cancels and replaces Operational Circular No. 1 entitled "Operational Circulars” of December 1996. This new version clarifies, in particular, that operational circulars do not necessarily arise from the Staff Rules and Regulations, and the functional titles have been updated to bring them into line with the current CERN organigram. Department Head Office  

  10. Neural network technique for orbit correction in accelerators/storage rings

    International Nuclear Information System (INIS)

    Bozoki, E.; Friedman, A.

    1995-01-01

    The authors are exploring the use of Neural Networks, using the SNNS simulator, for orbit control in accelerators (primarily circular accelerators) and storage rings. The orbit of the beam in those machines are measured by orbit monitors (input nodes) and controlled by orbit corrector magnets (output nodes). The physical behavior of an accelerator is changing slowly in time. Thus, an adoptive algorithm is necessary. The goal is to have a trained net which will predict the exact corrector strengths which will minimize a measured orbit. The relationship between open-quotes kickclose quotes from the correctors and open-quotes responseclose quotes from the monitors is in general non-linear and may slowly change during long-term operation of the machine. In the study, several network architectures are examined as well as various training methods for each architecture

  11. Measuring localized nonlinear components in a circular accelerator with a nonlinear tune response matrix

    Directory of Open Access Journals (Sweden)

    G. Franchetti

    2008-09-01

    Full Text Available In this paper we present a method for measuring the nonlinear errors in a circular accelerator by taking advantage of the feed-down effect of high order multipoles when the closed orbit is globally deformed. We devise a nonlinear tune response matrix in which the response to a closed orbit deformation is obtained in terms of change of machine tune and correlated with the strength of the local multipoles. A numerical example and a proof of principle experiment to validate the theoretical methods are presented and discussed.

  12. The Substellar Companion ROXs12 B: Near-Infrared Spectrum, System Architecture, and Spin-Orbit Misalignment

    Science.gov (United States)

    Bowler, Brendan; Kraus, Adam L.; Bryan, Marta; Knutson, Heather; Brogi, Matteo; Rizzuto, Aaron; Mace, Gregory N.; Vanderburg, Andrew; Liu, Michael C.; Hillenbrand, Lynne; Cieza, Lucas

    2018-01-01

    ROXs 12 B is a substellar companion near the deuterium-burning limit orbiting a young star in Ophiuchus/Upper Scorpius. We present moderate-resolution near-infrared spectroscopy of this little-studied object, which shows clear evidence of low surface gravity and youth. Although ROXs 12 B does not possess obvious signs of a circumplanetary disk, we find that at least half of young (alignment in this system. The rotation axis of ROXs 12 A and the orbital axis of ROXs 12 B are likely misaligned, suggesting this companion formed more akin to fragmenting binary stars than planets in an equatorial disk.

  13. THE NASA-UC ETA-EARTH PROGRAM. III. A SUPER-EARTH ORBITING HD 97658 AND A NEPTUNE-MASS PLANET ORBITING Gl 785

    International Nuclear Information System (INIS)

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard; Johnson, John Asher; Fischer, Debra A.; Wright, Jason T.; Henry, Gregory W.; Valenti, Jeff A.; Anderson, Jay; Piskunov, Nikolai E.

    2011-01-01

    We report the discovery of planets orbiting two bright, nearby early K dwarf stars, HD 97658 and Gl 785. These planets were detected by Keplerian modeling of radial velocities measured with Keck-HIRES for the NASA-UC Eta-Earth Survey. HD 97658 b is a close-in super-Earth with minimum mass Msin i = 8.2 ± 1.2 M + , orbital period P = 9.494 ± 0.005 days, and an orbit that is consistent with circular. Gl 785 b is a Neptune-mass planet with Msin i = 21.6 ± 2.0 M + , P = 74.39 ± 0.12 days, and orbital eccentricity e = 0.30 ± 0.09. Photometric observations with the T12 0.8 m automatic photometric telescope at Fairborn Observatory show that HD 97658 is photometrically constant at the radial velocity period to 0.09 mmag, supporting the existence of the planet.

  14. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses

    International Nuclear Information System (INIS)

    Abu-samha, M.; Madsen, L. B.

    2011-01-01

    We solve the three-dimensional time-dependent Schroedinger equation and present investigations of the imprint of the orbital angular node in photoelectron momentum distributions of an aligned atomic p-type orbital following ionization by an intense elliptically polarized laser pulse of femtosecond duration. We investigate the role of light ellipticity and the alignment angle of the major polarization axis of the external field relative to the probed orbital by studying radial and angular momentum distributions, the latter at a fixed narrow interval of final momenta close to the peak of the photoelectron momentum distribution. In general only the angular distributions carry a clear signature of the orbital symmetry. Our study shows that circular polarization gives the most clear imprints of orbital nodes. These findings are insensitive to pulse duration.

  15. Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes

    Science.gov (United States)

    Sośnica, Krzysztof; Prange, Lars; Kaźmierski, Kamil; Bury, Grzegorz; Drożdżewski, Mateusz; Zajdel, Radosław; Hadas, Tomasz

    2018-02-01

    The space segment of the European Global Navigation Satellite System (GNSS) Galileo consists of In-Orbit Validation (IOV) and Full Operational Capability (FOC) spacecraft. The first pair of FOC satellites was launched into an incorrect, highly eccentric orbital plane with a lower than nominal inclination angle. All Galileo satellites are equipped with satellite laser ranging (SLR) retroreflectors which allow, for example, for the assessment of the orbit quality or for the SLR-GNSS co-location in space. The number of SLR observations to Galileo satellites has been continuously increasing thanks to a series of intensive campaigns devoted to SLR tracking of GNSS satellites initiated by the International Laser Ranging Service. This paper assesses systematic effects and quality of Galileo orbits using SLR data with a main focus on Galileo satellites launched into incorrect orbits. We compare the SLR observations with respect to microwave-based Galileo orbits generated by the Center for Orbit Determination in Europe (CODE) in the framework of the International GNSS Service Multi-GNSS Experiment for the period 2014.0-2016.5. We analyze the SLR signature effect, which is characterized by the dependency of SLR residuals with respect to various incidence angles of laser beams for stations equipped with single-photon and multi-photon detectors. Surprisingly, the CODE orbit quality of satellites in the incorrect orbital planes is not worse than that of nominal FOC and IOV orbits. The RMS of SLR residuals is even lower by 5.0 and 1.5 mm for satellites in the incorrect orbital planes than for FOC and IOV satellites, respectively. The mean SLR offsets equal -44.9, -35.0, and -22.4 mm for IOV, FOC, and satellites in the incorrect orbital plane. Finally, we found that the empirical orbit models, which were originally designed for precise orbit determination of GNSS satellites in circular orbits, provide fully appropriate results also for highly eccentric orbits with variable linear

  16. SOLVING BY PARALLEL COMPUTATION THE POISSON PROBLEM FOR HIGH INTENSITY BEAMS IN CIRCULAR ACCELERATORS

    International Nuclear Information System (INIS)

    LUCCIO, A.U.; DIMPERIO, N.L.; SAMULYAK, R.; BEEB-WANG, J.

    2001-01-01

    Simulation of high intensity accelerators leads to the solution of the Poisson Equation, to calculate space charge forces in the presence of acceleration chamber walls. We reduced the problem to ''two-and-a-half'' dimensions for long particle bunches, characteristic of large circular accelerators, and applied the results to the tracking code Orbit

  17. Characterizing the Survey Strategy and Initial Orbit Determination Abilities of the NASA MCAT Telescope for Geosynchronous Orbital Debris Environmental Studies

    Science.gov (United States)

    Frith, J.; Barker, E.; Cowardin, H.; Buckalew, B.; Anz-Meador, P.; Lederer, S.

    The National Aeronautics and Space Administration (NASA) Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT’s known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment, including collected weather data and the proposed observational data collection cadence. To optimize observing cadences and probability of detection, on-going work using a simulated GEO debris population sampled at various cadences are run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT’s ability to determine accurately the orbits of debris at various sample rates. The goal of this work is to discriminate GEO and near-GEO objects from GEO transfer orbit objects that can appear as GEO objects in the environmental models due to the short arc observation and an assumed circular orbit. The specific methods and results are presented here.

  18. Backscatter measurements of 11-cm equatorial spread-F irregularities

    International Nuclear Information System (INIS)

    Tsunoda, R.T.

    1980-01-01

    In the equatorial F-region ionosphere, a turbulent cascade process has been found to exist that extends from irregularity spatial wavelengths longer than tens of kilometers down to wavelengths as short as 36 cm. To investigate the small-scale regime of wavelengths less than 36 cm, an equatorial radar experiment was conducted using a frequency of 1320 MHz that corresponds to an irregularity wavelength of 11 cm. The first observations of radar backscatter from 11-cm field-aligned irregularities (FAI) are described. These measurements extend the spatial wavelength regime of F-region FAI to lengths that approach both electron gyroradius and the Debye length. Agreement of these results with the theory of high-frequency drift waves suggests that these observations may be unique to the equatorial ionosphere. That is, the requirement of low electron densities for which the theroy calls may preclude the existence of 11-cm FAI elsewhere in the F-region ionosphere, except in equatorial plasma bubbles

  19. Administrative circular

    CERN Multimedia

    2003-01-01

    • N° 21 - August 2003 Special leave This circular has been amended. Copies of this circular are available in the Divisional Secretariats. In addition, administrative and operational circulars, as well as the lists of those in force, are available for consultation on the Web at: http://cern.ch/hr-div/internal/admin_services/admincirc/listadmincirc.asp Human Resources Division Tel. 74128

  20. Global communication using a constellation of low earth meridian orbits

    Science.gov (United States)

    Oli, P. V. S.; Nagarajan, N.; Rayan, H. R.

    1993-07-01

    The concept of 'meridian orbits' is briefly reviewed. It is shown that, if a satellite in the meridian orbit makes an odd number of revolutions per day, then the satellite passes over the same set of meridians twice a day. Satellites in such orbits pass over the same portion of the sky twice a day and every day. This enables a user to adopt a programmed mode of tracking, thereby avoiding a computational facility for orbit prediction, look angle generation, and auto tracking. A constellation of 38 or more satellites placed in a 1200 km altitude circular orbit is favorable for global communications due to various factors. It is shown that appropriate phasing in right ascension of the ascending node and mean anomaly results in a constellation, wherein each satellite appears over the user's horizon one satellite after another. Visibility and coverage plots are provided to verify the continuous coverage.

  1. Administrative Circulars Rev.

    CERN Multimedia

    2003-01-01

    Administrative Circular N° 19 (Rev. 3) - April 2003 Subsistence indemnity - Other expenses necessarily incurred in the course of duty travelAdministrative Circular N° 25 (Rev. 2) - April 2003 Shift work - Special provisions for the Fire and Rescue Service - These circulars have been revised. Human Resources Division Tel. 74128Copies of these circulars are available in the Divisional Secretariats. In addition, administrative and operational circulars, as well as the lists of those in force, are available for consultation on the Web at: http://humanresources.web.cern.ch/humanresources/internal/admin_services/admincirc/listadmincirc.asp

  2. High altitude flights in equatorial regions

    Science.gov (United States)

    Redkar, R. T.

    A thorough analysis of balloon flights made from Hyderabad, India (Latitude 17°28'N, Longitude 78°35'E), and other equatorial sites has been made. It has been shown that limited success is expected for flights made from equatorial latitudes with balloons made out of natural colour polyethylene film, since the best known balloon film in the world today viz. Winzen Stratofilm is tested for low temperature brittleness only at -80°C., whereas the tropopause temperatures over equatorial latitudes vary between -80°C and -90°C. The success becomes even more critical when flights are made with heavy payloads and larger balloons particularly at night when in the absence of solar radiation the balloon film becomes more susceptible to low temperature brittle failure. It is recommended that in case of capped balloons longer caps should be used to fully cover the inflated protion of the balloon at the higher level equatorial tropopause. It is also advised that the conditions such as wind shears in the tropopause should be critically studied before launching and a day with the tropopause temperature nearer to -80°C should be chosen. Special care also should be taken while handling the balloon on ground and during launching phase. Properties of Winzen Stratofilm have been critically studied and fresh mandates have been recommended on the basis of limiting values of film stresses which caused balloon failures in the equatorial tropopause. It is also emphasized that the data on such flights is still meagre especially for flights with heavy payloads and larger balloons. It has been also shown that it is safest to use balloons made out of grey coloured film which retains its flexibility with the absorption of solar radiation, the success obtained with such balloons so far being 100%. The drawback, however, is that these balloons cannot be used for night flights. Stratospheric wind regimes over Hyderabad are also discussed with a view to determine the period over which long

  3. On the spacecraft attitude stabilization in the orbital frame

    Directory of Open Access Journals (Sweden)

    Antipov Kirill A.

    2012-01-01

    Full Text Available The paper deals with spacecraft in the circular near-Earth orbit. The spacecraft interacts with geomagnetic field by the moments of Lorentz and magnetic forces. The octupole approximation of the Earth’s magnetic field is accepted. The spacecraft electromagnetic parameters, namely the electrostatic charge moment of the first order and the eigen magnetic moment are the controlled quasiperiodic functions. The control algorithms for the spacecraft electromagnetic parameters, which allows to stabilize the spacecraft attitude position in the orbital frame are obtained. The stability of the spacecraft stabilized orientation is proved both analytically and by PC computations.

  4. Extension of Earth-Moon libration point orbits with solar sail propulsion

    NARCIS (Netherlands)

    Heiligers, M.J.; Macdonald, Malcolm; Parker, Jeffrey S.

    2016-01-01

    This paper presents families of libration point orbits in the Earth-Moon system that originate from complementing the classical circular restricted three-body problem with a solar sail. Through the use of a differential correction scheme in combination with a continuation on the solar sail

  5. Operational Circulars

    CERN Multimedia

    2003-01-01

    Operational Circular N° 4 - April 2003 Conditions for use by members of the CERN personnel of vehicles belonging to or rented by CERN - This circular has been drawn up. Operational Circular N° 5 - October 2000 Use of CERN computing facilities - Further details on the personal use of CERN computing facilities Operational Circular N° 5 and its Subsidiary Rules http://cern.ch/ComputingRules defines the rules for the use of CERN computing facilities. One of the basic principles governing such use is that it must come within the professional duties of the user concerned, as defined by the user's divisional hierarchy. However, personal use of the computing facilities is tolerated or allowed provided : a) It is in compliance with Operational Circular N° 5 and not detrimental to official duties, including those of other users; b) the frequency and duration is limited and there is a negligible use of CERN resources; c) it does not constitute a political, commercial and/or profit-making activity; d) it is not...

  6. Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons

    Science.gov (United States)

    Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard M.; Li, Jinxing; Dai, Lei; Zhan, Xiaoya

    2015-08-01

    Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the flux of these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from an equatorial pitch angle of 90° down to lower values. However, this mechanism has not been uniquely identified yet. Here we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1, 2, and 3) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear, and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude à and normalized wave number k~z. The threshold for higher harmonic resonance is more strict, favoring higher à and k~z, and the change in equatorial pitch angle is strongly controlled by k~z. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasma density, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90°.

  7. Information Circulars

    International Nuclear Information System (INIS)

    1969-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars which were of current interest on 15 January 1969 is given below, followed by an index to their subject matter. Other circulars can be traced by reference to earlier issues of the present document.

  8. Information Circulars

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-01-24

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars which were of current interest on 15 January 1969 is given below, followed by an index to their subject matter. Other circulars can be traced by reference to earlier issues of the present document.

  9. MALBEC: a new CUDA-C ray-tracer in general relativity

    Science.gov (United States)

    Quiroga, G. D.

    2018-06-01

    A new CUDA-C code for tracing orbits around non-charged black holes is presented. This code, named MALBEC, take advantage of the graphic processing units and the CUDA platform for tracking null and timelike test particles in Schwarzschild and Kerr. Also, a new general set of equations that describe the closed circular orbits of any timelike test particle in the equatorial plane is derived. These equations are extremely important in order to compare the analytical behavior of the orbits with the numerical results and verify the correct implementation of the Runge-Kutta algorithm in MALBEC. Finally, other numerical tests are performed, demonstrating that MALBEC is able to reproduce some well-known results in these metrics in a faster and more efficient way than a conventional CPU implementation.

  10. On geodesics with negative energies in the ergoregions of dirty black holes

    Science.gov (United States)

    Zaslavskii, O. B.

    2015-03-01

    We consider behavior of equatorial geodesics with the negative energy in the ergoregion of a generic rotating "dirty" (surrounded by matter) black hole. It is shown that under very simple and generic conditions on the metric coefficients, there are no such circular orbits. This entails that such geodesic must originate and terminate under the event horizon. These results generalize the observation made for the Kerr metric in A. A. Grib, Yu. V. Pavlov and V. D. Vertogradov, Mod. Phys. Lett.29, 1450110 (2014), arXiv:1304.7360.

  11. Spin dynamics of electron beams in circular accelerators

    International Nuclear Information System (INIS)

    Boldt, Oliver

    2014-04-01

    Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.

  12. Design for Circular Behaviour: Considering Users in a Circular Economy

    Directory of Open Access Journals (Sweden)

    Thomas Wastling

    2018-05-01

    Full Text Available In a linear economy, a product is manufactured and sold to a customer. Then, little concern is given to what the user actually does with it when they have it. However, in a circular economy where the aim is to circulate products at their highest level of value, the customer’s behaviour can become an important part of the system. Circular design strategies have tended to focus on the physical aspects of a product (e.g., disassembly, material selection, but the design of products and services can also have an influence on user behaviour and, to date, this aspect of circular design has not been fully explored. This project aims to define what key user behaviours are required for circular business models to work and to outline how design can enable these ‘circular behaviours’. This research project consists of a literature review, case study analysis and expert interviews with practitioners. A theoretical framework for designing products and services to encourage circular behaviour is developed. This work provides an initial step towards a better understanding of the user’s role in the transition to a circular economy as well as a preliminary model for how design for behaviour change strategies could be implemented in this context.

  13. Quantum wave-packet revivals in circular billiards

    International Nuclear Information System (INIS)

    Robinett, R.W.; Heppelmann, S.

    2002-01-01

    We examine the long-term time dependence of Gaussian wave packets in a circular infinite well (billiard) system and find that there are approximate revivals. For the special case of purely m=0 states (central wave packets with no momentum) the revival time is T rev (m=0) =8μR 2 /(ℎ/2π)π, where μ is the mass of the particle, and the revivals are almost exact. For all other wave packets, we find that T rev (m≠0) =(π 2 /2)T rev (m=0) ≅5T rev (m=0) and the nature of the revivals becomes increasingly approximate as the average angular momentum or number of m≠0 states is increased. The dependence of the revival structure on the initial position, energy, and angular momentum of the wave packet and the connection to the energy spectrum is discussed in detail. The results are also compared to two other highly symmetrical two-dimensional infinite well geometries with exact revivals, namely, the square and equilateral triangle billiards. We also show explicitly how the classical periodicity for closed orbits in a circular billiard arises from the energy eigenvalue spectrum, using a WKB analysis

  14. Modelling the development of mixing height in near equatorial region

    Energy Technology Data Exchange (ETDEWEB)

    Samah, A.A. [Univ. of Malaya, Air Pollution Research Unit, Kuala Lumpur (Malaysia)

    1997-10-01

    Most current air pollution models were developed for mid-latitude conditions and as such many of the empirical parameters used were based on observations taken in the mid-latitude boundary layer which is physically different from that of the equatorial boundary layer. In the equatorial boundary layer the Coriolis parameter f is small or zero and moisture plays a more important role in the control of stability and the surface energy balance. Therefore air pollution models such as the OMLMULTI or the ADMS which were basically developed for mid-latitude conditions must be applied with some caution and would need some adaptation to properly simulate the properties of equatorial boundary layer. This work elucidates some of the problems of modelling the evolution of mixing height in the equatorial region. The mixing height estimates were compared with routine observations taken during a severe air pollution episodes in Malaysia. (au)

  15. A global climatology for equatorial plasma bubbles in the topside ionosphere

    Directory of Open Access Journals (Sweden)

    L. C. Gentile

    2006-03-01

    Full Text Available We have developed a global climatology of equatorial plasma bubble (EPB occurrence based on evening sector plasma density measurements from polar-orbiting Defense Meteorological Satellite Program (DMSP spacecraft during 1989-2004. EPBs are irregular plasma density depletions in the post-sunset ionosphere that degrade communication and navigation signals. More than 14400 EPBs were identified in ~134000 DMSP orbits. DMSP observations basically agree with Tsunoda's (1985 hypothesis that EPB rates peak when the terminator is aligned with the Earth's magnetic field, but there are also unpredicted offsets in many longitude sectors. We present an updated climatology for the full database from 1989-2004 along with new plots for specific phases of the solar cycle: maximum 1989-1992 and 1999-2002, minimum 1994-1997, and transition years 1993, 1998, and 2003. As expected, there are significant differences between the climatologies for solar maximum and minimum and between the two solar maximum phases as well. We also compare DMSP F12, F14, F15, and F16 observations at slightly different local times during 2000-2004 to examine local time effects on EPB rates. The global climatologies developed using the DMSP EPB database provide an environmental context for the long-range prediction tools under development for the Communication/Navigation Outage Forecasting System (C/NOFS mission.

  16. THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. III. A PAUCITY OF PROTO-HOT JUPITERS ON SUPER-ECCENTRIC ORBITS

    International Nuclear Information System (INIS)

    Dawson, Rebekah I.; Murray-Clay, Ruth A.; Johnson, John Asher

    2015-01-01

    Gas giant planets orbiting within 0.1 AU of their host stars are unlikely to have formed in situ and are evidence for planetary migration. It is debated whether the typical hot Jupiter smoothly migrated inward from its formation location through the proto-planetary disk, or was perturbed by another body onto a highly eccentric orbit, which tidal dissipation subsequently shrank and circularized during close stellar passages. Socrates and collaborators predicted that the latter model should produce a population of super-eccentric proto-hot Jupiters readily observable by Kepler. We find a paucity of such planets in the Kepler sample, which is inconsistent with the theoretical prediction with 96.9% confidence. Observational effects are unlikely to explain this discrepancy. We find that the fraction of hot Jupiters with an orbital period P > 3 days produced by the star-planet Kozai mechanism does not exceed (at two-sigma) 44%. Our results may indicate that disk migration is the dominant channel for producing hot Jupiters with P > 3 days. Alternatively, the typical hot Jupiter may have been perturbed to a high eccentricity by interactions with a planetary rather than stellar companion, and began tidal circularization much interior to 1 AU after multiple scatterings. A final alternative is that early in the tidal circularization process at high eccentricities tidal circularization occurs much more rapidly than later in the process at low eccentricities, although this is contrary to current tidal theories

  17. Dynamics of Orbits near 3:1 Resonance in the Earth-Moon System

    Science.gov (United States)

    Dichmann, Donald J.; Lebois, Ryan; Carrico, John P., Jr.

    2013-01-01

    The Interstellar Boundary Explorer (IBEX) spacecraft is currently in a highly elliptical orbit around Earth with a period near 3:1 resonance with the Moon. Its orbit is oriented so that apogee does not approach the Moon. Simulations show this orbit to be remarkably stable over the next twenty years. This article examines the dynamics of such orbits in the Circular Restricted 3-Body Problem (CR3BP). We look at three types of periodic orbits, each exhibiting a type of symmetry of the CR3BP. For each of the orbit types, we assess the local stability using Floquet analysis. Although not all of the periodic solutions are stable in the mathematical sense, any divergence is so slow as to produce practical stability over several decades. We use Poincare maps with twenty-year propagations to assess the nonlinear stability of the orbits, where the perturbation magnitudes are related to the orbit uncertainty for the IBEX mission. Finally we show that these orbits belong to a family of orbits connected in a bifurcation diagram that exhibits exchange of stability. The analysis of these families of period orbits provides a valuable starting point for a mission orbit trade study.

  18. Multi-pinhole SPECT calibration. Influence of data noise and systematic orbit deviations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lin; Vunckx, Kathleen; Nuyts, Johan [Katholieke Univ. Leuven (Belgium). Dept. of Nuclear Medicine

    2011-07-01

    Previously it has been proved that the geometry of a multi-pinhole SPECT system with circular orbit can be uniquely determined from a measurement of two point sources, without the knowledge of the distance between them. In this paper, we report that this conclusion only holds if the motion of the camera is perfectly circular. In reality, the detector heads systematically slightly deviate from the circular orbit, which may introduce nonnegligible bias in the calibrated parameters. An analytical linear model was extended to estimate the influence of both data noise and systematic deviations on the accuracy of the calibration and the image quality of the reconstruction. It turns out that applying the knowledge of the distances greatly reduces the reconstruction error, especially in the presence of systematic deviations. In addition, we propose that instead of using the information about the distances between the point sources, it is more straightforward to use the knowledge about the distances between the pinhole apertures during multi-pinhole calibration. The two distance fixing approaches yield similar calibration accuracy, but fixing the inter-pinhole distances is more preferable since it facilitates simultaneous animal-calibration data acquisition. Our theoretical results are supported by reconstruction images of a Jaszczak-type phantom. (orig.)

  19. Linear and nonlinear stability of periodic orbits in annular billiards

    Science.gov (United States)

    Dettmann, Carl P.; Fain, Vitaly

    2017-04-01

    An annular billiard is a dynamical system in which a particle moves freely in a disk except for elastic collisions with the boundary and also a circular scatterer in the interior of the disk. We investigate the stability properties of some periodic orbits in annular billiards in which the scatterer is touching or close to the boundary. We analytically show that there exist linearly stable periodic orbits of an arbitrary period for scatterers with decreasing radii that are located near the boundary of the disk. As the position of the scatterer moves away from a symmetry line of a periodic orbit, the stability of periodic orbits changes from elliptic to hyperbolic, corresponding to a saddle-center bifurcation. When the scatterer is tangent to the boundary, the periodic orbit is parabolic. We prove that slightly changing the reflection angle of the orbit in the tangential situation leads to the existence of Kolmogorov-Arnold-Moser islands. Thus, we show that there exists a decreasing to zero sequence of open intervals of scatterer radii, along which the billiard table is not ergodic.

  20. Gigantic transverse x-ray magnetic circular dichroism in ultrathin Co in Au/Co/Au(001)

    Science.gov (United States)

    Koide, T.; Mamiya, K.; Asakura, D.; Osatune, Y.; Fujimori, A.; Suzuki, Y.; Katayama, T.; Yuasa, S.

    2014-04-01

    Transverse-geometry x-ray magnetic circular dichroism (TXMCD) measurements on Au/Co-staircase/Au(001) reveal the orbital origin of intrinsic in-plane magnetic anisotropy A gigantic TXMCD was successfully observed at the Co L3,2 edges for Co thickness (tC0) in the 2-monolayer regime. A TXMCD-sum-rule analysis shows a remarkable enhancement of an orbital-moment anisotropy (Δmorb) and of an in-plane magnetic dipole moment (m||T). Both Δmorb and m||T exhibit close similarity in tCo dependence, reflecting the in-plane magnetic anisotropy These observations evidence that extremely strong, intrinsic, in-plane magnetic anisotropy originates from the anisotropic orbital part of the wave function, dominating the dipole-dipole-interaction-derived, extrinsic, in-plane magnetic anisotropy.

  1. QATAR-2: A K DWARF ORBITED BY A TRANSITING HOT JUPITER AND A MORE MASSIVE COMPANION IN AN OUTER ORBIT

    International Nuclear Information System (INIS)

    Bryan, Marta L.; Alsubai, Khalid A.; Latham, David W.; Quinn, Samuel N.; Carter, Joshua A.; Berlind, Perry; Brown, Warren R.; Calkins, Michael L.; Esquerdo, Gilbert A.; Fűrész, Gábor; Stefanik, Robert P.; Torres, Guillermo; Parley, Neil R.; Collier Cameron, Andrew; Horne, Keith D.; Fulton, Benjamin J.; Street, Rachel A.; Buchhave, Lars A.; Jørgensen, Uffe Gråe; West, Richard G.

    2012-01-01

    We report the discovery and initial characterization of Qatar-2b, a hot Jupiter transiting a V = 13.3 mag K dwarf in a circular orbit with a short period, P b = 1.34 days. The mass and radius of Qatar-2b are M P = 2.49 M J and R P = 1.14 R J , respectively. Radial-velocity monitoring of Qatar-2 over a span of 153 days revealed the presence of a second companion in an outer orbit. The Systemic Console yielded plausible orbits for the outer companion, with periods on the order of a year and a companion mass of at least several M J . Thus, Qatar-2 joins the short but growing list of systems with a transiting hot Jupiter and an outer companion with a much longer period. This system architecture is in sharp contrast to that found by Kepler for multi-transiting systems, which are dominated by objects smaller than Neptune, usually with tightly spaced orbits that must be nearly coplanar.

  2. Circular defects detection in welded joints using circular hough transform

    International Nuclear Information System (INIS)

    Hafizal Yazid; Mohd Harun; Shukri Mohd; Abdul Aziz Mohamed; Shaharudin Sayuti; Muhamad Daud

    2007-01-01

    Conventional radiography is one of the common non-destructive testing which employs manual image interpretation. The interpretation is very subjective and depends much on the inspector experience and working conditions. It is therefore useful to have pattern recognition system in order to assist human interpreter in evaluating the quality of the radiograph sample, especially radiographic image of welded joint. This paper describes a system to detect circular discontinuities that is present in the joints. The system utilizes together 2 different algorithms, which is separability filter to identify the best object candidate and Circular Hough Transform to detect the present of circular shape. The result of the experiment shows a promising output in recognition of circular discontinuities in a radiographic image. This is based on 81.82-100% of radiography film with successful circular detection by using template movement of 10 pixels. (author)

  3. Equatorial waves in the stratosphere of Uranus

    Science.gov (United States)

    Hinson, David P.; Magalhaes, Julio A.

    1991-01-01

    Analyses of radio occultation data from Voyager 2 have led to the discovery and characterization of an equatorial wave in the Uranus stratosphere. The observed quasi-periodic vertical atmospheric density variations are in close agreement with theoretical predictions for a wave that propagates vertically through the observed background structure of the stratosphere. Quantitative comparisons between measurements obtained at immersion and at emersion yielded constraints on the meridional and zonal structure of the wave; the fact that the two sets of measurements are correlated suggests a wave of planetary scale. Two equatorial wave models are proposed for the wave.

  4. The K-1 Active Dispenser for Orbit Transfer

    Science.gov (United States)

    Lai, G.; Cochran, D.; Curtis, R.

    2002-01-01

    Kistler Aerospace Corporation is building the K-1, the world's first fully reusable launch vehicle. The two-stage K- 1 is designed primarily to service the market for low-earth orbit (LEO) missions, due to Kistler's need to recover both stages. For customers requiring payload delivery to high-energy orbits, Kistler can outfit the payload with a K- 1 Active Dispenser (an expendable third stage). The K-1 second stage will deploy the Active Dispenser mated with its payload into a 200 km circular LEO parking orbit. From this orbit, the Active Dispenser would use its own propulsion to place its payload into the final desired drop-off orbit or earth-escape trajectory. This approach allows Kistler to combine the low-cost launch services offered by the reusable two-stage K-1 with the versatility of a restartable, expendable upper stage. Enhanced with an Active Dispenser, the K-1 will be capable of delivering 1,500 kg to a geosynchronous transfer orbit or up to approximately 1,000 kg into a Mars rendezvous trajectory. The list price of a K-1 Active Dispenser launch is 25 million (plus the price of mission unique integration services) significantly less than the price of any launch vehicle service in the world with comparable capability.

  5. Pacific Equatorial Transect

    OpenAIRE

    Pälike, Heiko; Nishi, Hiroshi; Lyle, Mitch; Raffi, Isabella; Klaus, Adam; Gamage, Kusali

    2009-01-01

    Integrated Ocean Drilling Program Expedition 320/321, "Pacific Equatorial Age Transect" (Sites U1331–U1338), was designed to recover a continuous Cenozoic record of the paleoequatorial Pacific by coring above the paleoposition of the Equator at successive crustal ages on the Pacific plate. These sediments record the evolution of the paleoequatorial climate system throughout the Cenozoic. As we gained more information about the past movement of plates and when in Earth's history "critical" cli...

  6. Handbook of satellite orbits from Kepler to GPS

    CERN Document Server

    Capderou, Michel

    2014-01-01

    Fifty years after Sputnik, artificial satellites have become indispensable monitors in many areas, such as economics, meteorology, telecommunications, navigation and remote sensing. The specific orbits are important for the proper functioning of the satellites. This book discusses the great variety of satellite orbits, both in shape (circular to highly elliptical) and properties (geostationary, Sun-synchronous, etc.). This volume starts with an introduction into geodesy. This is followed by a presentation of the fundamental equations of mechanics to explain and demonstrate the properties for all types of orbits. Numerous examples are included, obtained through IXION software developed by the author. The book also includes an exposition of the historical background that is necessary to help the reader understand the main stages of scientific thought from Kepler to GPS. This book is intended for researchers, teachers and students working in the field of satellite technology. Engineers, geographers and all those...

  7. Multiple embryos, multiple nepionts and multiple equatorial layers in Cycloclypeus carpenteri.

    Science.gov (United States)

    Briguglio, Antonino; Kinoshita, Shunichi; Wolfgring, Erik; Hohenegger, Johann

    2016-04-01

    In this study, 17 specimens of Cycloclypeus carpenteri have been analyzed by means of microCT scanning. We used CT scanning technique as it enables the visualization and the quantifications of internal structures of hollow specimens without their destruction. It has been observed that many specimens possessing the natural morphology of this taxon, actually contain multiple embryos (up to 16 in one single specimen) and, in some few cases, multiple nepionts each with its own heterosteginid chambers (up to three separated nepionts). The diameter of each proloculus has been measured, and as a result, they are very variable even within the same specimen, therefore questioning the long known theory that schizonts have smaller proloculi than gamonts and also questioning the fact that proloculi in the same species should all have comparable size. Furthermore, we have observed the presence of additional equatorial planes on several specimens. Such additional planes are always connected to what seems to be the main equatorial plane. Such connections are T-shaped and are located at the junction between two equatorial layers; these junctions are made by a chamberlet, which possesses an unusually higher number of apertures. The connections between equatorial planes are always perfectly synchronized with the relative growth step and the same chamber can be therefore followed along the multiple equatorial planes. Apparently there is a perfect geometric relationship between the creation of additional equatorial planes and the position of the nepionts. Whenever the nepionts are positioned on different planes, additional planes are created and the angle of the nepionts is related to the banding angle of the equatorial planes. The presence of additional planes do not hamper the life of the cell, on the contrary, it seems that the cell is still able to build nicely shaped chamberlets and, after volumetric calculations, it seems all specimens managed to keep their logistic growth

  8. Formation flying for electric sails in displaced orbits. Part I: Geometrical analysis

    Science.gov (United States)

    Wang, Wei; Mengali, Giovanni; Quarta, Alessandro A.; Yuan, Jianping

    2017-09-01

    We present a geometrical methodology for analyzing the formation flying of electric solar wind sail based spacecraft that operate in heliocentric, elliptic, displaced orbits. The spacecraft orbit is maintained by adjusting its propulsive acceleration modulus, whose value is estimated using a thrust model that takes into account a variation of the propulsive performance with the sail attitude. The properties of the relative motion of the spacecraft are studied in detail and a geometrical solution is obtained in terms of relative displaced orbital elements, assumed to be small quantities. In particular, for the small eccentricity case (i.e. for a near-circular displaced orbit), the bounds characterized by the extreme values of relative distances are analytically calculated, thus providing an useful mathematical tool for preliminary design of the spacecraft formation structure.

  9. EG Andromedae: A New Orbit and Additional Evidence for a Photoionized Wind

    Science.gov (United States)

    Kenyon, Scott J.; Garcia, Michael R.

    2016-07-01

    We analyze a roughly 20 yr set of spectroscopic observations for the symbiotic binary EG And. Radial velocities derived from echelle spectra are best fit with a circular orbit having an orbital period of P = 483.3 ± 1.6 days and semi-amplitude K = 7.34 ± 0.07 km s-1. Combined with previous data, these observations rule out an elliptical orbit at the 10σ level. Equivalent widths of H I Balmer emission lines and various absorption features vary in phase with the orbital period. Relative to the radius of the red giant primary, the apparent size of the H II region is consistent with a model where a hot secondary star with effective temperature T h ≈ 75,000 K ionizes the wind from the red giant.

  10. Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system

    Science.gov (United States)

    Zotos, Euaggelos E.; Dubeibe, F. L.; González, Guillermo A.

    2018-04-01

    The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modeled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping and (iii) displaying close encounters. Using the smaller alignment index (SALI) chaos indicator, we further classify bounded orbits into regular, sticky or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.

  11. Laplace plane modifications arising from solar radiation pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rosengren, Aaron J.; Scheeres, Daniel J., E-mail: aaron.rosengren@colorado.edu [ADepartment of Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, CO 80309 (United States)

    2014-05-01

    The dynamical effects of solar radiation pressure (SRP) in the solar system have been rigorously studied since the early 1900s. This non-gravitational perturbation plays a significant role in the evolution of dust particles in circumplanetary orbits, as well as in the orbital motion about asteroids and comets. For gravitationally dominated orbits, SRP is negligible and the resulting motion is largely governed by the oblateness of the primary and the attraction of the Sun. The interplay between these gravitational perturbations gives rise to three mutually perpendicular planes of equilibrium for circular satellite orbits. The classical Laplace plane lies between the equatorial and orbital planes of the primary, and is the mean reference plane about whose axis the pole of a satellite's orbit precesses. From a previously derived solution for the secular motion of an orbiter about a small body in a SRP dominated environment, we find that SRP acting alone will cause an initially circular orbit to precess around the pole of the primary's heliocentric orbital plane. When the gravitational and non-gravitational perturbations act in concert, the resulting equilibrium planes turn out to be qualitatively different, in some cases, from those obtained without considering the radiation pressure. The warping of the surfaces swept out by the modified equilibria as the semi-major axis varies depends critically on the cross-sectional area of the body exposed. These results, together with an adiabatic invariance argument on Poynting-Robertson drag, provide a natural qualitative explanation for the initial albedo dichotomy of Saturn's moon, Iapetus.

  12. Proto-jet configurations in RADs orbiting a Kerr SMBH: symmetries and limiting surfaces

    Science.gov (United States)

    Pugliese, D.; Stuchlík, Z.

    2018-05-01

    Ringed accretion disks (RADs) are agglomerations of perfect-fluid tori orbiting around a single central attractor that could arise during complex matter inflows in active galactic nuclei. We focus our analysis to axi-symmetric accretion tori orbiting in the equatorial plane of a supermassive Kerr black hole; equilibrium configurations, possible instabilities, and evolutionary sequences of RADs were discussed in our previous works. In the present work we discuss special instabilities related to open equipotential surfaces governing the material funnels emerging at various regions of the RADs, being located between two or more individual toroidal configurations of the agglomerate. These open structures could be associated to proto-jets. Boundary limiting surfaces are highlighted, connecting the emergency of the jet-like instabilities with the black hole dimensionless spin. These instabilities are observationally significant for active galactic nuclei, being related to outflows of matter in jets emerging from more than one torus of RADs orbiting around supermassive black holes.

  13. An AUTONOMOUS STAR IDENTIFICATION ALGORITHM BASED ON THE DIRECTED CIRCULARITY PATTERN

    Directory of Open Access Journals (Sweden)

    J. Xie

    2012-07-01

    Full Text Available The accuracy of the angular distance may decrease due to lots of factors, such as the parameters of the stellar camera aren't calibrated on-orbit, or the location accuracy of the star image points is low, and so on, which can cause the low success rates of star identification. A robust directed circularity pattern algorithm is proposed in this paper, which is developed on basis of the matching probability algorithm. The improved algorithm retains the matching probability strategy to identify master star, and constructs a directed circularity pattern with the adjacent stars for unitary matching. The candidate matching group which has the longest chain will be selected as the final result. Simulation experiments indicate that the improved algorithm has high successful identification and reliability etc, compared with the original algorithm. The experiments with real data are used to verify it.

  14. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After...... of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)]....

  15. Origin-Independent Sum Over States Simulations of Magnetic and Electronic Circular Dichroism Spectra via the Localized Orbital/Local Origin Method

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, Petr; Bouř, Petr

    2015-01-01

    Roč. 36, č. 10 (2015), s. 723-730 ISSN 0192-8651 R&D Projects: GA ČR GA13-03978S; GA ČR GAP208/11/0105 Grant - others:GA AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : density functional theory * electronic circular dichroism * magnetic circular dichroism * origin-dependence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.648, year: 2015

  16. The Role of Reversed Equatorial Zonal Transport in Terminating an ENSO Event

    Science.gov (United States)

    Chen, H. C.; Hu, Z. Z.; Huang, B.; Sui, C. H.

    2016-02-01

    In this study, we demonstrate that a sudden reversal of anomalous equatorial zonal current at the peaking ENSO phase triggers the rapid termination of an ENSO event. Throughout an ENSO cycle, the anomalous equatorial zonal current is strongly controlled by the concavity of the anomalous thermocline meridional structure near the equator. During the ENSO developing phase, the anomalous zonal current in the central and eastern Pacific generally enhances the ENSO growth through its zonal SST advection. In the mature phase of ENSO, however, the equatorial thermocline depth anomalies are reflected in the eastern Pacific and slowly propagate westward off the equator in both hemispheres. As a result, the concavity of the thermocline anomalies near the equator is reversed, i.e., the off-equatorial thermocline depth anomalies become higher than that on the equator for El Niño events and lower for La Niño events. This meridional change of thermocline structure reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, which weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal mass transport weakens the existing zonal tilting of equatorial thermocline and suppresses the thermocline feedback. Both processes are concentrated in the eastern equatorial Pacific and can be effective on subseasonal time scales. These current reversal effects are built-in to the ENSO peak phase and independent of the zonal wind effect on thermocline slope. It functions as an oceanic control on ENSO evolution during both El Niño and La Niña events.

  17. CONVECTIVE BURSTS AND THE COUPLING OF SATURN'S EQUATORIAL STORMS AND INTERIOR ROTATION

    International Nuclear Information System (INIS)

    Heimpel, Moritz; Aurnou, Jonathan M.

    2012-01-01

    Temporal variations of Saturn's equatorial jet and magnetic field hint at rich dynamics coupling the atmosphere and the deep interior. However, it has been assumed that rotation of the interior dynamo must be steady over tens of years of modern observations. Here we use a numerical convection model and scaling estimates to show how equatorial convective bursts can transfer angular momentum to the deeper interior. The numerical model allows angular momentum transfer between a fluid outer spherical shell and a rigid inner sphere. Convection drives a prograde equatorial jet exhibiting quasiperiodic bursts that fill the equatorial volume outside the tangent cylinder. For each burst strong changes in the equatorial surface velocity are associated with retrograde torque on the inner sphere. Our results suggest that Saturn's Great White Spot, a giant storm that was observed to fill the equatorial region in 1990, could mobilize a volume of fluid carrying roughly 15% of Saturn's moment of inertia. Conservation of angular momentum then implies that a 20% change in the equatorial jet angular velocity could change the average interior rotation rate by about 0.1%—roughly an order of magnitude less than the apparent rotation rate changes associated with Saturn's kilometric radio (SKR) signal. However, if the SKR signal originates outside the liquid metal core in a 'planetary tachocline' that separates the layer of fast zonal flow from the magnetically controlled and slowly convecting deep interior, then convective bursts can provide a possible mechanism for the observed ∼1% SKR changes.

  18. Gigantic transverse x-ray magnetic circular dichroism in ultrathin Co in Au/Co/Au(001)

    International Nuclear Information System (INIS)

    Koide, T; Mamiya, K; Asakura, D; Osatune, Y; Fujimori, A; Suzuki, Y; Katayama, T; Yuasa, S

    2014-01-01

    Transverse-geometry x-ray magnetic circular dichroism (TXMCD) measurements on Au/Co-staircase/Au(001) reveal the orbital origin of intrinsic in-plane magnetic anisotropy A gigantic TXMCD was successfully observed at the Co L 3,2 edges for Co thickness (t C0 ) in the 2-monolayer regime. A TXMCD-sum-rule analysis shows a remarkable enhancement of an orbital-moment anisotropy (Δm orb ) and of an in-plane magnetic dipole moment (m || T ). Both Δm orb and m || T exhibit close similarity in t Co dependence, reflecting the in-plane magnetic anisotropy These observations evidence that extremely strong, intrinsic, in-plane magnetic anisotropy originates from the anisotropic orbital part of the wave function, dominating the dipole-dipole-interaction-derived, extrinsic, in-plane magnetic anisotropy.

  19. On the tidal interaction of massive extrasolar planets on highly eccentric orbits

    Science.gov (United States)

    Ivanov, P. B.; Papaloizou, J. C. B.

    2004-01-01

    In this paper we develop a theory of disturbances induced by the stellar tidal field in a fully convective slowly rotating planet orbiting on a highly eccentric orbit around a central star. In this case it is appropriate to treat the tidal influence as a succession of impulsive tidal interactions occurring at periastron passage. For a fully convective planet mainly the l= 2 fundamental mode of oscillation is excited. We show that there are two contributions to the mode energy and angular momentum gain due to impulsive tidal interaction: (i) `the quasi-static' contribution, which requires dissipative processes operating in the planet, and (ii) the dynamical contribution associated with excitation of modes of oscillation. These contributions are obtained self-consistently from a single set of the governing equations. We calculate a critical `equilibrium' value of angular velocity of the planet Ωcrit determined by the condition that action of the dynamic tides does not alter the angular velocity at this rotation rate. We show that this can be much larger than the corresponding rate associated with quasi-static tides and that at this angular velocity, the rate of energy exchange is minimized. We also investigate the conditions for the stochastic increase in oscillation energy that may occur if many periastron passages are considered and dissipation is not important. We provide a simple criterion for this instability to occur. Finally, we make some simple estimates of the time-scale of evolution of the orbital semimajor axis and circularization of the initially eccentric orbit due to tides, using a realistic model of the planet and its cooling history, for orbits with periods after circularization typical of those observed for extrasolar planets Pobs>~ 3 d. Quasi-static tides are found to be ineffective for semimajor axes >~0.1 au. On the other hand, dynamic tides could have produced a very large decrease of the semimajor axis of a planet with mass of the order of the

  20. Information Circulars

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-09-10

    Information circulars are published from time to time under the symbol INFCIRC/.. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A subject index to the circulars is presented overleaf. It covers all those published in the last five years (that is, since the beginning of 1968 and ending with INFCIRC/192), as well as others which, for one reason or another, are still considered to be of current rather than merely historical interest. Such circulars can be traced by reference to the indexes that were included in earlier revisions of the present document.

  1. Information Circulars

    International Nuclear Information System (INIS)

    1973-01-01

    Information circulars are published from time to time under the symbol INFCIRC/.. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A subject index to the circulars is presented overleaf. It covers all those published in the last five years (that is, since the beginning of 1968 and ending with INFCIRC/192), as well as others which, for one reason or another, are still considered to be of current rather than merely historical interest. Such circulars can be traced by reference to the indexes that were included in earlier revisions of the present document.

  2. ExoMars Trace Gas Orbiter provides atmospheric data during Aerobraking into its final orbit

    Science.gov (United States)

    Svedhem, Hakan; Vago, Jorge L.; Bruinsma, Sean; Müller-Wodarg, Ingo; ExoMars 2016 Team

    2017-10-01

    After the arrival of the Trace Gas Orbiter (TGO) at Mars on 19 October 2016 a number of initial orbit change manoeuvres were executed and the spacecraft was put in an orbit with a 24 hour period and 74 degrees inclination. The spacecraft and its four instruments were thoroughly checked out after arrival and a few measurements and images were taken in November 2016 and in Feb-March 2017. The solar occultation observations have however not yet been possible due to lack of the proper geometry.On 15 March a long period of aerobraking to reach the final 400km semi-circular frozen orbit (370x430km, with a fixed pericentre latitude). This orbit is optimised for the payload observations and for the communication relay with the ExoMars Rover, due to arrive in 2021.The aerobraking is proceeding well and the final orbit is expected to be reached in April 2018. A large data set is being acquired for the upper atmosphere of Mars, from the limit of the sensitivity of the accelerometer, down to lowest altitude of the aerobraking at about 105km. Initial analysis has shown a highly variable atmosphere with a slightly lower density then predicted by existing models. Until the time of the abstract writing no dust storms have been observed.The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. ESA is providing the TGO spacecraft and Schiaparelli (EDM) and two of the TGO instruments and ROSCOSMOS is providing the Proton launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission, consisting of a Rover and a Surface platform also launched by a Proton rocket, the TGO will handle the communication between the Earth and the Rover and Surface Platform through its (NASA provided) UHF communication system.

  3. Variability in the origins and pathways of Pacific Equatorial Undercurrent water

    NARCIS (Netherlands)

    Qin, Xuerong; Sen Gupta, Alex; Van Sebille, Erik

    2015-01-01

    The Pacific Equatorial Undercurrent (EUC) transports water originating from a number of distinct source regions, eastward across the Pacific Ocean. It is responsible for supplying nutrients to the productive eastern Equatorial Pacific Ocean. Of particular importance is the transport of iron by the

  4. Frozen orbit realization using LQR analogy

    Science.gov (United States)

    Nagarajan, N.; Rayan, H. Reno

    In the case of remote sensing orbits, the Frozen Orbit concept minimizes altitude variations over a given region using passive means. This is achieved by establishing the mean eccentricity vector at the orbital poles i.e., by fixing the mean argument of perigee at 90 deg with an appropriate eccentricity to balance the perturbations due to zonal harmonics J2 and J3 of the Earth's potential. Eccentricity vector is a vector whose magnitude is the eccentricity and direction is the argument of perigee. The launcher dispersions result in an eccentricity vector which is away from the frozen orbit values. The objective is then to formulate an orbit maneuver strategy to optimize the fuel required to achieve the frozen orbit in the presence of visibility and impulse constraints. It is shown that the motion of the eccentricity vector around the frozen perigee can be approximated as a circle. Combining the circular motion of the eccentricity vector around the frozen point and the maneuver equation, the following discrete equation is obtained. X(k+1) = AX(k) + Bu(k), where X is the state (i.e. eccentricity vector components), A the state transition matrix, u the scalar control force (i.e. dV in this case) and B the control matrix which transforms dV into eccentricity vector change. Based on this, it is shown that the problem of optimizing the fuel can be treated as a Linear Quadratic Regulator (LQR) problem in which the maneuver can be solved by using control system design tools like MATLAB by deriving an analogy LQR design.

  5. Searching sequences of resonant orbits between a spacecraft and Jupiter

    International Nuclear Information System (INIS)

    Formiga, J K S; Prado, A F B A

    2013-01-01

    This research shows a study of the dynamical behavior of a spacecraft that performs a series of close approaches with the planet Jupiter. The main idea is to find a sequence of resonant orbits that allows the spacecraft to stay in the region of the space near the orbit of Jupiter around the Sun gaining energy from each passage by the planet. The dynamical model considers the existence of only two massive bodies in the systems, which are the Sun and Jupiter. They are assumed to be in circular orbits around their center of mass. Analytical equations are used to obtain the values of the parameters required to get this sequence of close approaches. Those equations are useful, because they show which orbits are physically possible when taking into account that the periapsis distances have to be above the surface of the Sun and that the closest approach distances during the passage by Jupiter have to be above its surface

  6. Collisional redistribution of circularly polarized light in barium perturbed by argon

    International Nuclear Information System (INIS)

    Alford, W.J.; Andersen, N.; Belsley, M.; Cooper, J.; Warrington, D.M.; Burnett, K.

    1984-01-01

    We have measured the orientation of the Ba 6p 1 P level produced by collision-induced excitation from the ground state by circularly polarized light. The detuning dependence of the far-wing excited state orientation can be interpreted in terms of reorientation of molecular orbitals which occur during the collision. Effects due to rotational coupling are seen to occure at large blue wing detunings. We have also determined the collisional rate for destruction of orientation by measuring the pressure dependence of the excited state orientation. (orig.)

  7. Detecting a Subsurface Ocean From Periodic Orbits at Enceladus

    Science.gov (United States)

    Casotto, S.; Padovan, S.; Russell, R. P.; Lara, M.

    2008-12-01

    Enceladus is a small icy satellite of Saturn which has been observed by the Cassini orbiter to eject plumes mainly consisting of water vapor from the "tiger stripes" located near its South pole. While tidal heating has been ruled out as an inadequate energy source to drive these eruptions, tidally induced shear stress both along and across the stripes appears to be sufficiently powerful. The internal constitution of Enceladus that fits this model is likely to entail a thin crust and a subcrustal water layer above an undifferentiated interior. Apart from the lack of a core/mantle boundary, the situation is similar to the current hypothetical models of Europa's interior. The determination of the existence of a subsurface fluid layer can therefore be pursued with similar methods, including the study of the gravitational perturbations of tidal origin on an Enceladus orbiter, and the use of altimeter measurements to the tidally deformed surface. The dynamical environment of an Enceladus orbiter is made very unstable by the overwhelming presence of nearby Saturn. The Enceladus sphere of influence is roughly twice its radius. This makes it considerably more difficult to orbit than Europa, whose sphere of influence is ~six times its radius. While low-altitude, near-polar Enceladus orbits suffer extreme instability, recent works have extended the inclination envelope for long-term stable orbits at Enceladus. Several independent methods suggest that ~65 degrees inclination is the maximum attainable for stable, perturbed Keplerian motion. These orbits are non-circular and exist with altitude variations from ~200 to ~300 km. We propose a nominal reference orbit that enjoys long term stability and is favorable for long-term mapping and other scientific experiments. A brief excursion to a lower altitude, slightly higher inclined, yet highly unstable orbit is proposed to improve gravity signatures and enable high resolution, nadir-pointing experiments on the geysers emanating

  8. Perpendicular magnetic anisotropy at the interface between ultrathin Fe film and MgO studied by angular-dependent x-ray magnetic circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Okabayashi, J. [Research Center for Spectrochemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Koo, J. W.; Mitani, S. [National Institute for Materials Science (NIMS), Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577 (Japan); Sukegawa, H. [National Institute for Materials Science (NIMS), Tsukuba 305-0047 (Japan); Takagi, Y.; Yokoyama, T. [Institute of Molecular Science, Okazaki, Aichi 444-8585 (Japan)

    2014-09-22

    Interface perpendicular magnetic anisotropy (PMA) in ultrathin Fe/MgO (001) has been investigated using angular-dependent x-ray magnetic circular dichroism (XMCD). We found that anisotropic orbital magnetic moments deduced from the analysis of XMCD contribute to the large PMA energies, whose values depend on the annealing temperature. The large PMA energies determined from magnetization measurements are related to those estimated from the XMCD and the anisotropic orbital magnetic moments through the spin-orbit interaction. The enhancement of anisotropic orbital magnetic moments can be explained mainly by the hybridization between the Fe 3d{sub z}{sup 2} and O 2p{sub z} states.

  9. Relativistic effects on magnetic circular dichroism studied by GUHF/SECI method

    Science.gov (United States)

    Honda, Y.; Hada, M.; Ehara, M.; Nakatsuji, H.; Downing, J.; Michl, J.

    2002-04-01

    Quasi-relativistic formulation of the Magnetic circular dichroism (MCD) Faraday terms are presented using the generalized unrestricted Hartree-Fock (GUHF)/single excitation configuration interaction (SECI) method combined with the finite perturbation method and applied to the MCD of the three n-σ ∗ states ( 3Q1, 3Q0, 1Q1) of CH 3I. The Faraday B term for the 1Q1 state was 0.1976( Debye) 2( Bohr magneton )/(10 3 cm-1) in the non-relativistic theory, but was dramatically improved by the relativistic effect and became 0.0184 in agreement with the experimental values, 0.014 and 0.0257. This change was mainly due to the one-electron spin-orbit (SO1) term rather than the spin-free relativistic (SFR) and the two-electron spin-orbit (SO2) terms.

  10. Saturn's equatorial jet structure from Cassini/ISS

    Science.gov (United States)

    García-Melendo, Enrique; Legarreta, Jon; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Hueso, Ricardo

    2010-05-01

    Detailed wind observations of the equatorial regions of the gaseous giant planets, Jupiter and Saturn, are crucial for understanding the basic problem of the global circulation and obtaining new detailed information on atmospheric phenomena. In this work we present high resolution data of Saturn's equatorial region wind profile from Cassini/ISS images. To retrieve wind measurements we applied an automatic cross correlator to image pairs taken by Cassini/ISS with the MT1, MT2, MT3 filters centred at the respective three methane absorbing bands of 619nm, 727nm, and 889nm, and with the adjacent continuum CB1, CB2, and CB3 filters. We obtained a complete high resolution coverage of Saturn's wind profile in the equatorial region. The equatorial jet displays an overall symmetric structure similar to that shown the by same region in Jupiter. This result suggests that, in accordance to some of the latest compressible atmosphere computer models, probably global winds in gaseous giants are deeply rooted in the molecular hydrogen layer. Wind profiles in the methane absorbing bands show the effect of strong vertical shear, ~40m/s per scale height, confirming previous results and an important decay in the wind intensity since the Voyager era (~100 m/s in the continuum and ~200 m/s in the methane absorbing band). We also report the discovery of a new feature, a very strong and narrow jet on the equator, about only 5 degrees wide, that despite the vertical shear maintains its intensity (~420 m/s) in both, the continuum and methane absorbing band filters. Acknowledgements: Work supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.

  11. A study on ionospheric scintillation near the EIA crest in relation to equatorial electrodynamics

    Science.gov (United States)

    Chatterjee, S.; Chakraborty, S. K.; Veenadhari, B.; Banola, S.

    2014-02-01

    Equatorial electrojet (EEJ) data, which are considered as a proxy index of equatorial electric field, are analyzed in conjunction with equatorial ionosonde, total electron content (TEC) and scintillation data near the equatorial ionization anomaly (EIA) crest for the equinoctial months of high solar activity years (2011-2012) to identify any precursor index of postsunset evolution of equatorial electron density irregularities and subsequent occurrence of scintillation near the northern EIA crest. Only geomagnetically quiet and normal electrojet days are considered. The diurnal profiles of EEJ on the scintillation days exhibit a secondary enhancement in the afternoon to presunset hours following diurnal peaks. A series of electrodynamical processes conducive for generation of irregularities emerge following secondary enhancement of EEJ. Latitudinal profile of TEC exhibits resurgence in EIA structure around the postsunset period. Diurnal TEC profile near the EIA crest resembles postsunset secondary enhancement on the days with afternoon enhancement in EEJ. Occurrence of equatorial spread F and postsunset scintillation near the EIA crest seems to follow the secondary enhancement events in EEJ. Both the magnitude and duration of enhanced EEJ are found to be important for postsunset intensification of EIA structure and subsequent occurrence of equatorial irregularities. A critical value combining the two may be considered an important precursor for postsunset occurrence of scintillation near the EIA crest. The results are validated using archived data for the years 1989-1990 and explained in terms of modulation effects of enhanced equatorial fountain.

  12. No iron fertilization in the equatorial Pacific Ocean during the last ice age.

    Science.gov (United States)

    Costa, K M; McManus, J F; Anderson, R F; Ren, H; Sigman, D M; Winckler, G; Fleisher, M Q; Marcantonio, F; Ravelo, A C

    2016-01-28

    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age--the Last Glacial Period (LGP)--but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the (232)Th proxy), phytoplankton productivity (using opal, (231)Pa/(230)Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ(15)N) from six cores in the central equatorial Pacific for the Holocene (0-10,000 years ago) and the LGP (17,000-27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the

  13. The D1 parameter for the equatorial F1 region

    International Nuclear Information System (INIS)

    Adeniyi, J.O.; Radicella, S.M.

    2002-01-01

    This work is a contribution to the effort at improving the representation of the F1 equatorial ionospheric region in the International Reference Ionosphere (IRI) model. The D1 parameter has been proposed for describing the F1 layer. We have therefore produced a maiden table of D1 parameter for an equatorial station. Diurnal and seasonal effects were considered. (author)

  14. EG ANDROMEDAE: A NEW ORBIT AND ADDITIONAL EVIDENCE FOR A PHOTOIONIZED WIND

    International Nuclear Information System (INIS)

    Kenyon, Scott J.; Garcia, Michael R.

    2016-01-01

    We analyze a roughly 20 yr set of spectroscopic observations for the symbiotic binary EG And. Radial velocities derived from echelle spectra are best fit with a circular orbit having an orbital period of P = 483.3 ± 1.6 days and semi-amplitude K = 7.34 ± 0.07 km s −1 . Combined with previous data, these observations rule out an elliptical orbit at the 10 σ level. Equivalent widths of H i Balmer emission lines and various absorption features vary in phase with the orbital period. Relative to the radius of the red giant primary, the apparent size of the H ii region is consistent with a model where a hot secondary star with effective temperature T h ≈ 75,000 K ionizes the wind from the red giant.

  15. EG ANDROMEDAE: A NEW ORBIT AND ADDITIONAL EVIDENCE FOR A PHOTOIONIZED WIND

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Garcia, Michael R., E-mail: skenyon@cfa.harvard.edu, E-mail: michael.r.garcia@nasa.gov [NASA Headquarters, Mail Suite 3Y28, 300 E Street SW, Washington, DC 20546-0001 (United States)

    2016-07-01

    We analyze a roughly 20 yr set of spectroscopic observations for the symbiotic binary EG And. Radial velocities derived from echelle spectra are best fit with a circular orbit having an orbital period of P = 483.3 ± 1.6 days and semi-amplitude K = 7.34 ± 0.07 km s{sup −1}. Combined with previous data, these observations rule out an elliptical orbit at the 10 σ level. Equivalent widths of H i Balmer emission lines and various absorption features vary in phase with the orbital period. Relative to the radius of the red giant primary, the apparent size of the H ii region is consistent with a model where a hot secondary star with effective temperature T{sub h} ≈ 75,000 K ionizes the wind from the red giant.

  16. The role of the Indonesian Throughflow in equatorial Pacific thermocline ventilation

    Science.gov (United States)

    Rodgers, Keith B.; Cane, Mark A.; Naik, Naomi H.; Schrag, Daniel P.

    1999-09-01

    The role of the Indonesian Throughflow (ITF) in the thermocline circulation of the low-latitude Pacific Ocean is explored using a high-resolution primitive equation ocean circulation model. Seasonally forced runs for a domain with an open Indonesian passage are compared with seasonally forced runs for a closed Pacific domain. Three cases are considered: one with no throughflow, one with 10 Sv of imposed ITF transport, and one with 20 Sv of ITF transport. Two idealized tracers, one that tags northern component subtropical water and another that tags southern component subtropical water, are used to diagnose the mixing ratio of northern and southern component waters in the equatorial thermocline. It is found that the mixing ratio of north/south component waters in the equatorial thermocline is highly sensitive to whether the model accounts for an ITF. Without an ITF, the source of equatorial undercurrent water is primarily of North Pacific origin, with the ratio of northern to southern component water being approximately 2.75 to 1. The ratio of northern to southern component water in the Equatorial Undercurrent with 10 Sv of ITF is approximately 1.4 to 1, and the ratio with 20 Sv of imposed ITF is 1 to 1.25. Estimates from data suggest a mean mixing ratio of northern to southern component water of less than 1 to 1. Assuming that the mixing ratio changes approximately linearly as the ITF transport varies between 10 and 20 Sv, an approximate balance between northern and southern component water is reached when the ITF transport is approximately 16 Sv. It is also shown that for the isopycnal surfaces within the core of the equatorial undercurrent, a 2°C temperature front exists across the equator in the western equatorial Pacific, beneath the warm pool. The implications of the model results and the temperature data for the heat budget of the equatorial Pacific are considered.

  17. Information Circulars

    International Nuclear Information System (INIS)

    1965-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current on 31 December 1964 is given, followed by an index to their subject matter.

  18. Information circulars

    International Nuclear Information System (INIS)

    1992-08-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. This revision contains INFCIRCs published up to mid-August 1992. A complete numerical lift of Information Circulars with their titles is reproduced in an Annex

  19. Information Circulars

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-01-18

    Information circulars are published from time to time under the symbol INFCIRC/. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current on 31 December 1964 is given, followed by an index to their subject matter.

  20. Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma

    Science.gov (United States)

    Wilkens, Roy H.; Westerhold, Thomas; Drury, Anna J.; Lyle, Mitchell; Gorgas, Thomas; Tian, Jun

    2017-07-01

    Isotope stratigraphy has become the method of choice for investigating both past ocean temperatures and global ice volume. Lisiecki and Raymo (2005) published a stacked record of 57 globally distributed benthic δ18O records versus age (LR04 stack). In this study LR04 is compared to high-resolution records collected at all of the sites drilled during ODP Leg 154 on the Ceara Rise, in the western equatorial Atlantic Ocean. Newly developed software is used to check data splices of the Ceara Rise sites and better align out-of-splice data with in-splice data. Core images recovered from core table photos are depth and age scaled and greatly assist in the data analysis. The entire splices of ODP sites 925, 926, 927, 928 and 929 were reviewed. Most changes were minor although several were large enough to affect age models based on orbital tuning. A Ceara Rise composite record of benthic δ18O is out of sync with LR04 between 1.80 and 1.90 Ma, where LR04 exhibits two maxima but Ceara Rise data contain only one. The interval between 4.0 and 4.5 Ma in the Ceara Rise compilation is decidedly different from LR04, reflecting both the low amplitude of the signal over this interval and the limited amount of data available for the LR04 stack. A regional difference in benthic δ18O of 0.2 ‰ relative to LR04 was found. Independent tuning of Site 926 images and physical property data to the Laskar et al. (2004) orbital solution and integration of available benthic stable isotope data from the Ceara Rise provides a new regional reference section for the equatorial Atlantic covering the last 5 million years.

  1. Occurrence of Equatorial Plasma Bubbles during Intense Magnetic Storms

    Directory of Open Access Journals (Sweden)

    Chao-Song Huang

    2011-01-01

    Full Text Available An important issue in low-latitude ionospheric space weather is how magnetic storms affect the generation of equatorial plasma bubbles. In this study, we present the measurements of the ion density and velocity in the evening equatorial ionosphere by the Defense Meteorological Satellite Program (DMSP satellites during 22 intense magnetic storms. The DMSP measurements show that deep ion density depletions (plasma bubbles are generated after the interplanetary magnetic field (IMF turns southward. The time delay between the IMF southward turning and the first DMSP detection of plasma depletions decreases with the minimum value of the IMF Bz, the maximum value of the interplanetary electric field (IEF Ey, and the magnitude of the Dst index. The results of this study provide strong evidence that penetration electric field associated with southward IMF during the main phase of magnetic storms increases the generation of equatorial plasma bubbles in the evening sector.

  2. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years

    OpenAIRE

    Winckler, Gisela; Anderson, Robert F.; Jaccard, Samuel L.; Marcantonio, Franco

    2016-01-01

    Biological productivity in the equatorial Pacific is relatively high compared with other low latitude regimes especially east of the dateline where divergence driven by the trade winds brings nutrient rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high nutrient low chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited in part by the availability of iron. Throughout most of the equatorial Paci...

  3. Lagrangian mixed layer modeling of the western equatorial Pacific

    Science.gov (United States)

    Shinoda, Toshiaki; Lukas, Roger

    1995-01-01

    Processes that control the upper ocean thermohaline structure in the western equatorial Pacific are examined using a Lagrangian mixed layer model. The one-dimensional bulk mixed layer model of Garwood (1977) is integrated along the trajectories derived from a nonlinear 1 1/2 layer reduced gravity model forced with actual wind fields. The Global Precipitation Climatology Project (GPCP) data are used to estimate surface freshwater fluxes for the mixed layer model. The wind stress data which forced the 1 1/2 layer model are used for the mixed layer model. The model was run for the period 1987-1988. This simple model is able to simulate the isothermal layer below the mixed layer in the western Pacific warm pool and its variation. The subduction mechanism hypothesized by Lukas and Lindstrom (1991) is evident in the model results. During periods of strong South Equatorial Current, the warm and salty mixed layer waters in the central Pacific are subducted below the fresh shallow mixed layer in the western Pacific. However, this subduction mechanism is not evident when upwelling Rossby waves reach the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific due to episodes of strong wind and light precipitation associated with the El Nino-Southern Oscillation. Comparison of the results between the Lagrangian mixed layer model and a locally forced Eulerian mixed layer model indicated that horizontal advection of salty waters from the central Pacific strongly affects the upper ocean salinity variation in the western Pacific, and that this advection is necessary to maintain the upper ocean thermohaline structure in this region.

  4. Properties of the Equatorial Magnetotail Flanks ˜50-200 RE Downtail

    Science.gov (United States)

    Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Wang, C.-P.; Zelenyi, L. M.

    2017-12-01

    In space, thin boundaries separating plasmas with different properties serve as a free energy source for various plasma instabilities and determine the global dynamics of large-scale systems. In planetary magnetopauses and shock waves, classical examples of such boundaries, the magnetic field makes a significant contribution to the pressure balance and plasma dynamics. The configuration and properties of such boundaries have been well investigated and modeled. However, much less is known about boundaries that form between demagnetized plasmas where the magnetic field is not important for pressure balance. The most accessible example of such a plasma boundary is the equatorial boundary layer of the Earth's distant magnetotail. Rather, limited measurements since its first encounter in the late 1970s by the International Sun-Earth Explorer-3 spacecraft revealed the basic properties of this boundary, but its statistical properties and structure have not been studied to date. In this study, we use Geotail and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) missions to investigate the equatorial boundary layer from lunar orbit (˜55 Earth radii, RE, downtail) to as far downtail as ˜200 RE. Although the magnetic field has almost no effect on the structure of the boundary layer, the layer separates well the hot, rarefied plasma sheet from dense cold magnetosheath plasmas. We suggest that the most important role in plasma separation is played by polarization electric fields, which modify the efficiency of magnetosheath ion penetration into the plasma sheet. We also show that the total energies (bulk flow plus thermal) of plasma sheet ions and magnetosheath ions are very similar; that is, magnetosheath ion thermalization (e.g., via ion scattering by magnetic field fluctuations) is sufficient to produce hot plasma sheet ions without any additional acceleration.

  5. EMPIRICAL CONSTRAINTS ON TROJAN COMPANIONS AND ORBITAL ECCENTRICITIES IN 25 TRANSITING EXOPLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Madhusudhan, N.; Winn, Joshua N.

    2009-01-01

    We present a search for Trojan companions to 25 transiting exoplanets. We use the technique of Ford and Gaudi, in which a difference is sought between the observed transit time and the transit time that is calculated by fitting a two-body Keplerian orbit to the radial-velocity data. This technique is sensitive to the imbalance of mass at the L4/L5 points of the planet-star orbit. No companions were detected above 2σ confidence. The median 2σ upper limit is 56 M + , and the most constraining limit is 2.8 M + for the case of GJ 436. A similar survey using forthcoming data from the Kepler satellite mission, along with the radial-velocity data that will be needed to confirm transit candidates, will be sensitive to 10-50 M + Trojan companions in the habitable zones of their parent stars. As a by-product of this study, we present empirical constraints on the eccentricities of the planetary orbits, including those which have previously been assumed to be circular. The limits on eccentricity are of interest for investigations of tidal circularization and for bounding possible systematic errors in the measured planetary radii and the predicted times of secondary eclipses.

  6. Information circulars

    International Nuclear Information System (INIS)

    1997-02-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Member States. This revision contains INFCIRCs published up to February 1997, grouped by field of activity. A complete list of information circulars in numerical order is given in an annex

  7. X-ray magnetic circular dichroism study of epitaxial magnetite ultrathin film on MgO(100)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W. Q.; Xu, Y. B., E-mail: yongbing.xu@york.ac.uk, E-mail: rzhang@nju.edu.cn [York-Nanjing International Center for Spintronics (YNICS), School of Electronics Science and Engineering, Nanjing University, Nanjing 210093 (China); Spintronics and Nanodevice Laboratory, Department of Electronics, University of York, York YO10 5DD (United Kingdom); Song, M. Y.; Lin, J. G. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Maltby, N. J.; Li, S. P. [Spintronics and Nanodevice Laboratory, Department of Electronics, University of York, York YO10 5DD (United Kingdom); Samant, M. G.; Parkin, S. S. P. [IBM Research Division, Almaden Research Center, San Jose, California 95120 (United States); Bencok, P.; Steadman, Paul; Dobrynin, Alexey [Diamond Light Source, Didcot OX11 0DE (United Kingdom); Zhang, R., E-mail: yongbing.xu@york.ac.uk, E-mail: rzhang@nju.edu.cn [York-Nanjing International Center for Spintronics (YNICS), School of Electronics Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2015-05-07

    The spin and orbital magnetic moments of the Fe{sub 3}O{sub 4} epitaxial ultrathin film synthesized by plasma assisted simultaneous oxidization on MgO(100) have been studied with X-ray magnetic circular dichroism. The ultrathin film retains a rather large total magnetic moment, i.e., (2.73 ± 0.15) μ{sub B}/f.u., which is ∼70% of that for the bulk-like Fe{sub 3}O{sub 4}. A significant unquenched orbital moment up to 0.54 ± 0.05 μ{sub B}/f.u. was observed, which could come from the symmetry breaking at the Fe{sub 3}O{sub 4}/MgO interface. Such sizable orbital moment will add capacities to the Fe{sub 3}O{sub 4}-based spintronics devices in the magnetization reversal by the electric field.

  8. Orbits of the Asteroids Discovered at the Molėtai Observatory in 2000–2004

    Directory of Open Access Journals (Sweden)

    Černis K.

    2014-12-01

    Full Text Available The paper presents statistics of the asteroids observed and discovered at the Molėtai Observatory, Lithuania in 2000–2004 within the project for astrometric observations of the near-Earth objects (NEOs, the main belt asteroids and comets. CCD observations of asteroids were obtained with the 35/51 cm Maksutov-type meniscus telescope and the 1.65 m Ritchey-Chretien reflector. In the Minor Planet Circulars and the Minor Planet Electronic Circulars (2000–2004 we published 6629 astrometric positions of 1114 asteroids. Among them 78 were newly discovered asteroids at Molėtai, a few NEOs were found by our team independently. For the 67 asteroids discovered at Molėtai the precise orbits were calculated. Because of small number of observations, a few asteroids have low-precision orbits and some asteroids have been lost. For seven objects we present their ephemerides for 2015.

  9. Information circulars

    International Nuclear Information System (INIS)

    1994-08-01

    Information circulars are published from time to time under the symbol INFCIRC/... for the purpose of bringing matters of general interest to the attention of all Members of the Agency. The present revision contains INFCIRCs published up to mid-August 1994. A complete numerical list of information circulars is reproduced with their titles in the Annex

  10. Information circulars

    International Nuclear Information System (INIS)

    2002-05-01

    Information circulars are published from time to time under the symbol INFCIRC/... for the purpose of bringing matters of general interest to the attention of all Members of the Agency. The present revision contains INFCIRCs published up to the end of April 2002. A complete numerical list of information circulars is reproduced with their titles in the Annex

  11. Information circulars

    International Nuclear Information System (INIS)

    1999-06-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Member States. This revision contains INFCIRCs published up to the end of May 1999, grouped by field of activity. A complete list of information circulars in numerical order is given in an annex

  12. Information Circulars

    International Nuclear Information System (INIS)

    1966-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current or on the press on 15 May 1966 is given, followed by an index to their subject matter.

  13. Information Circulars

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-06-10

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current or on the press on 15 May 1966 is given, followed by an index to their subject matter.

  14. Transposable elements and circular DNAs

    KAUST Repository

    Mourier, Tobias

    2016-09-26

    Circular DNAs are extra-chromosomal fragments that become circularized by genomic recombination events. We have recently shown that yeast LTR elements generate circular DNAs through recombination events between their flanking long terminal repeats (LTRs). Similarly, circular DNAs can be generated by recombination between LTRs residing at different genomic loci, in which case the circular DNA will contain the intervening sequence. In yeast, this can result in gene copy number variations when circles contain genes and origins of replication. Here, I speculate on the potential and implications of circular DNAs generated through recombination between human transposable elements.

  15. Transposable elements and circular DNAs

    KAUST Repository

    Mourier, Tobias

    2016-01-01

    Circular DNAs are extra-chromosomal fragments that become circularized by genomic recombination events. We have recently shown that yeast LTR elements generate circular DNAs through recombination events between their flanking long terminal repeats (LTRs). Similarly, circular DNAs can be generated by recombination between LTRs residing at different genomic loci, in which case the circular DNA will contain the intervening sequence. In yeast, this can result in gene copy number variations when circles contain genes and origins of replication. Here, I speculate on the potential and implications of circular DNAs generated through recombination between human transposable elements.

  16. Circular polarimetry of EXO 033319-2554.2 - A new eclipsing AM Herculis star

    Science.gov (United States)

    Berriman, Graham; Smith, Paul S.

    1988-01-01

    This Letter presents circular polarimetry that unequivocally identifies EXO 033319-2554.2 as only the third eclipsing AM Her star and brings the total number of AM Her stars now identified to 14. The orbital period is 126.4 minutes, as previously reported, and defines a new short-period edge to the period gap seen in all classes of cataclysmic variable stars. EXO 033319-2554.2 shows 2.5 mag deep eclipses of the predominantly accreting magnetic pole on the white dwarf. Before the eclipse, the pole rotates into the line of sight and shows white-light circular polarization, due to cyclotron radiation, that reaches values as high as 10 percent. There is some evidence that the second pole is emitting cyclotron radiation too. How high time resolution photometry, linear polarimetry, and spectroscopy will be of great value in understanding this system.

  17. Genealogy and stability of periodic orbit families around uniformly rotating asteroids

    Science.gov (United States)

    Hou, Xiyun; Xin, Xiaosheng; Feng, Jinglang

    2018-03-01

    Resonance orbits around a uniformly rotating asteroid are studied from the approach of periodic orbits in this work. Three periodic families (denoted as I, II, and III in the paper) are fundamental in organizing the resonance families. For the planar case: (1) Genealogy and stability of Families I, II and the prograde resonance families are studied. For extremely irregular asteroids, family genealogy close to the asteroid is greatly distorted from that of the two body-problem (2BP), indicating that it is inappropriate to treat the orbital motions as perturbed Keplerian orbits. (2) Genealogy and stability of Family III are also studied. Stability of this family may be destroyed by the secular resonance between the orbital ascending node's precession and the asteroid's rotation. For the spatial case: (1) Genealogy of the near circular three-dimensional periodic families are studied. The genealogy may be broken apart by families of eccentric frozen orbits whose argument of perigee is ;frozen; in space. (2) The joint effects between the secular resonance and the orbital resonances may cause instability to three-dimensional orbital motion with orbit inclinations close to the critical values. Applying the general methodology to a case study - the asteroid Eros and also considering higher order non-spherical terms, some extraordinary orbits are found, such as the ones with orbital plane co-rotating with the asteroid, and the stable frozen orbits with argument of perigee librating around values different from 0°, 90°, 180°, 270°.

  18. The physical and theoretical basis of solar-terrestrial relationships 1. Equatorial locations

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-07-01

    The theory of solar-terrestrial relationships developed earlier by the author is extended to incorporate expressions that represent the non-linear responses of the earth-atmosphere system to incoming solar radiation in a more detailed manner. Application of the extended theory to equatorial locations leads to new and interesting features that are consistent with past observations. It also predicts the existence of new oscillations in the equatorial atmosphere whose causative physical processes are given and explained. Non-equatorial locations are treated along similar lines in Part 2 of the series. (author). 44 refs

  19. Role of interannual Kelvin wave propagations in the equatorial Atlantic on the Angola Benguela Current system

    Science.gov (United States)

    Imbol Koungue, Rodrigue Anicet; Illig, Serena; Rouault, Mathieu

    2017-06-01

    The link between equatorial Atlantic Ocean variability and the coastal region of Angola-Namibia is investigated at interannual time scales from 1998 to 2012. An index of equatorial Kelvin wave activity is defined based on Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). Along the equator, results show a significant correlation between interannual PIRATA monthly dynamic height anomalies, altimetric monthly Sea Surface Height Anomalies (SSHA), and SSHA calculated with an Ocean Linear Model. This allows us to interpret PIRATA records in terms of equatorial Kelvin waves. Estimated phase speed of eastward propagations from PIRATA equatorial mooring remains in agreement with the linear theory, emphasizing the dominance of the second baroclinic mode. Systematic analysis of all strong interannual equatorial SSHA shows that they precede by 1-2 months extreme interannual Sea Surface Temperature Anomalies along the African coast, which confirms the hypothesis that major warm and cold events in the Angola-Benguela current system are remotely forced by ocean atmosphere interactions in the equatorial Atlantic. Equatorial wave dynamics is at the origin of their developments. Wind anomalies in the Western Equatorial Atlantic force equatorial downwelling and upwelling Kelvin waves that propagate eastward along the equator and then poleward along the African coast triggering extreme warm and cold events, respectively. A proxy index based on linear ocean dynamics appears to be significantly more correlated with coastal variability than an index based on wind variability. Results show a seasonal phasing, with significantly higher correlations between our equatorial index and coastal SSTA in October-April season.

  20. Tidal stripping of stars near supermassive black holes

    Directory of Open Access Journals (Sweden)

    Blandford R.

    2012-12-01

    Full Text Available In a binary system composed of a supermassive black hole and a star orbiting the hole in an equatorial, circular orbit, the stellar orbit will shrink due to the action of gravitational radiation, until the star fills its Roche lobe outside the Innermost Stable Circular Orbit (ISCO of the hole or plunges into the hole. In the former case, gas will flow through the inner Lagrange point (L1 to the hole. If this tidal stripping process happens on a time scale faster than the thermal time scale but slower than the dynamical time scale, the entropy as a function of the interior mass is conserved. The star will evolve adiabatically, and, in most cases, will recede from the hole while filling its Roche lobe. We calculate how the stellar equilibrium properties change, which determines how the stellar orbital period and mass-transfer rate change through the “Roche evolution” for various types of stars in the relativistic regime. We envisage that the mass stream eventually hits the accretion disc, where it forms a hot spot orbiting the hole and may ultimately modulate the luminosity with the stellar orbital frequency. The ultimate goal is to probe the mass and spin of the hole and provide a test of general relativity in the strong-field regime from the resultant quasi-periodic signals. The observability of such a modulation is discussed along with a possible interpretation of an intermittent 1 hour period in the X-ray emission of RE J1034+ 396.

  1. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-11-15

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)

  2. Equatorial ionospheric electric fields during the November 2004 magnetic storm

    OpenAIRE

    Fejer, Bela G.; Jensen, J. W.; Kikuchi, T.; Abdu, M. A.; Chau, J. L.

    2007-01-01

    [1] We use radar measurements from the Jicamarca Radio Observatory, magnetometer observations from the Pacific sector and ionosonde data from Brazil to study equatorial ionospheric electric fields during the November 2004 geomagnetic storm. Our data show very large eastward and westward daytime electrojet current perturbations with lifetimes of about an hour (indicative of undershielding and overshielding prompt penetration electric fields) in the Pacific equatorial region during the November...

  3. Loops in the Sun’s orbit

    Directory of Open Access Journals (Sweden)

    Marjanov Milutin

    2013-01-01

    Full Text Available Besides translation, spin around its axis and rotation around center of the Milky Way, the Sun performs relative motion in the solar system Laplacian plane, also. This motion was anticipated by Newton himself, in his Principia. The form of the Sun’s orbit is substantially different from the other solar system bodies’ orbits. Namely, the Sun moves along the path composed of the chain of large and small loops [1, 2, 6, 9]. This chain is situated within the circular outline with the diameter approximately twice as large as the Sun’s is. Under supposition that the solar system is stable, the Sun is going to move along it, in the same region, for eternity, never reitereiting the same path. It was also shown in this work that velocity and acceleration of the Sun’s center of mass are completely defined by the relative velocities and accelerations of the planets with respect to the Sun.

  4. Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma

    Directory of Open Access Journals (Sweden)

    R. H. Wilkens

    2017-07-01

    Full Text Available Isotope stratigraphy has become the method of choice for investigating both past ocean temperatures and global ice volume. Lisiecki and Raymo (2005 published a stacked record of 57 globally distributed benthic δ18O records versus age (LR04 stack. In this study LR04 is compared to high-resolution records collected at all of the sites drilled during ODP Leg 154 on the Ceara Rise, in the western equatorial Atlantic Ocean. Newly developed software is used to check data splices of the Ceara Rise sites and better align out-of-splice data with in-splice data. Core images recovered from core table photos are depth and age scaled and greatly assist in the data analysis. The entire splices of ODP sites 925, 926, 927, 928 and 929 were reviewed. Most changes were minor although several were large enough to affect age models based on orbital tuning. A Ceara Rise composite record of benthic δ18O is out of sync with LR04 between 1.80 and 1.90 Ma, where LR04 exhibits two maxima but Ceara Rise data contain only one. The interval between 4.0 and 4.5 Ma in the Ceara Rise compilation is decidedly different from LR04, reflecting both the low amplitude of the signal over this interval and the limited amount of data available for the LR04 stack. A regional difference in benthic δ18O of 0.2 ‰ relative to LR04 was found. Independent tuning of Site 926 images and physical property data to the Laskar et al. (2004 orbital solution and integration of available benthic stable isotope data from the Ceara Rise provides a new regional reference section for the equatorial Atlantic covering the last 5 million years.

  5. Instability of equatorial protons in Jupiter's mid-magnetosphere

    International Nuclear Information System (INIS)

    Northrop, T.G.; Schardt, A.W.

    1980-01-01

    Two different models for the distribution function are fit to the Jovian protons seen by Pioneer 10 inbound. The models reproduce the observed energy and angular distributions. These models are then used to assess the collisionless mirror instability. Because of the pancake proton angular distributions in the equatorial ring current region, the ring current particle population appears to be mirror unstable at times, with instability growth rates of approx.10 min. Such a time is consistent with observed proton flux autocorrelation times. An instability such as this (there are other candidates) may be responsible for the previously established proton flux flowing parallel to the magnetic field away from the equatorial region

  6. Information circulars

    International Nuclear Information System (INIS)

    1987-06-01

    The document summarizes the information circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. In the main body of the document only those documents which are regarded as likely to be of current interest are listed. A complete numerical list of information circulars with their titles is reproduced in the Annex

  7. Doubly excited circular Ba(6pj, 21c) states: e-e interaction effects in weak external fields

    International Nuclear Information System (INIS)

    Chen, L.; Cheret, M.; Poirier, M.; Roussel, F.; Bolzinger, T.; Spiess, G.

    1992-01-01

    The behaviour of doubly excited circular atoms in weak parallel electric and magnetic fields has been studied. The Hamiltonian, including the e-e interaction between the two excited electrons, Stark and Zeeman effects, is diagonalized in a truncated basis. The Rydberg electron, initially in a circular state, experiences a mixing of its orbital and magnetic quantum numbers, due to the presence of the external fields and to the excitation of the inner electron. This mixing depends on the spatial symmetry of the excited core and on the amplitude of the electric field. It can be detected by the field-ionization method which provides a new way for studying non-autoionizing doubly excited states. (orig.)

  8. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  9. Time dependent response of equatorial ionospheric electric fieldsto magnetospheric disturbances

    OpenAIRE

    Fejer, Bela G.; Scherliess, L.

    1995-01-01

    We use extensive radar measurements of F region vertical plasma drifts and auroral electrojet indices to determine the storm time dependence of equatorial zonal electric fields. These disturbance drifts result from the prompt penetration of high latitude electric fields and from the dynamo action of storm time winds which produce largest perturbations a few hours after the onset of magnetic activity. The signatures of the equatorial disturbance electric fields change significantly depending o...

  10. Coccolithophores in the equatorial Atlantic Ocean

    DEFF Research Database (Denmark)

    Kinkel, Hanno; Baumann, K.-H.; Cepek, M.

    2000-01-01

    with each other. In general, the living coccolithophores in the surface and subsurface waters show considerable variation in cell numbers and distribution patterns. Cell densities reached a maximum of up to 300 x 10 coccospheres/l in the upwelling area of the equatorial Atlantic. Here, Emiliania huxleyi...

  11. Tunnelling of orbital angular momentum in parallel optical waveguides

    International Nuclear Information System (INIS)

    Alexeyev, C N; Fadeyeva, T A; Yavorsky, M A; Boklag, N A

    2011-01-01

    We study the evolution of circularly polarized optical vortices (OVs) in the system of two coupled few-mode optical fibres. We demonstrate that upon propagation OVs tunnel into the adjacent fibre as a complex superposition of OVs that comprise also OVs of opposite polarization and topological charge. The initial OV may tunnel into the other fibre as the same vortex state of lesser energy. The evolution of the orbital angular momentum in coupled fibres is studied

  12. Injection of a microsatellite in circular orbits using a three-stage launch vehicle

    Science.gov (United States)

    Marchi, L. O.; Murcia, J. O.; Prado, A. F. B. A.; Solórzano, C. R. H.

    2017-10-01

    The injection of a satellite into orbit is usually done by a multi-stage launch vehicle. Nowadays, the space market demonstrates a strong tendency towards the use of smaller satellites, because the miniaturization of the systems improve the cost/benefit of a mission. A study to evaluate the capacity of the Brazilian Microsatellite Launch Vehicle (VLM) to inject payloads into Low Earth Orbits is presented in this paper. All launches are selected to be made to the east side of the Alcântara Launch Center (CLA). The dynamical model to calculate the trajectory consists of the three degrees of freedom (3DOF) associated with the translational movement of the rocket. Several simulations are performed according to a set of restrictions imposed to the flight. The altitude reached in the separation of the second stage, the altitude and velocity of injection, the flight path angle at the moment of the activation of the third stage and the duration of the ballistic flight are presented as a function of the payload carried.

  13. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  14. Circular polarimetry of EXO 033319-2554.2 - a new eclipsing AM Herculis star

    International Nuclear Information System (INIS)

    Berriman, G.; Smith, P.S.

    1988-01-01

    This Letter presents circular polarimetry that unequivocally identifies EXO 033319-2554.2 as only the third eclipsing AM Her star and brings the total number of AM Her stars now identified to 14. The orbital period is 126.4 minutes, as previously reported, and defines a new short-period edge to the period gap seen in all classes of cataclysmic variable stars. EXO 033319-2554.2 shows 2.5 mag deep eclipses of the predominantly accreting magnetic pole on the white dwarf. Before the eclipse, the pole rotates into the line of sight and shows white-light circular polarization, due to cyclotron radiation, that reaches values as high as 10 percent. There is some evidence that the second pole is emitting cyclotron radiation too. How high time resolution photometry, linear polarimetry, and spectroscopy will be of great value in understanding this system. 17 references

  15. Modeling Global Ocean Biogeochemistry With Physical Data Assimilation: A Pragmatic Solution to the Equatorial Instability

    Science.gov (United States)

    Park, Jong-Yeon; Stock, Charles A.; Yang, Xiaosong; Dunne, John P.; Rosati, Anthony; John, Jasmin; Zhang, Shaoqing

    2018-03-01

    Reliable estimates of historical and current biogeochemistry are essential for understanding past ecosystem variability and predicting future changes. Efforts to translate improved physical ocean state estimates into improved biogeochemical estimates, however, are hindered by high biogeochemical sensitivity to transient momentum imbalances that arise during physical data assimilation. Most notably, the breakdown of geostrophic constraints on data assimilation in equatorial regions can lead to spurious upwelling, resulting in excessive equatorial productivity and biogeochemical fluxes. This hampers efforts to understand and predict the biogeochemical consequences of El Niño and La Niña. We develop a strategy to robustly integrate an ocean biogeochemical model with an ensemble coupled-climate data assimilation system used for seasonal to decadal global climate prediction. Addressing spurious vertical velocities requires two steps. First, we find that tightening constraints on atmospheric data assimilation maintains a better equatorial wind stress and pressure gradient balance. This reduces spurious vertical velocities, but those remaining still produce substantial biogeochemical biases. The remainder is addressed by imposing stricter fidelity to model dynamics over data constraints near the equator. We determine an optimal choice of model-data weights that removed spurious biogeochemical signals while benefitting from off-equatorial constraints that still substantially improve equatorial physical ocean simulations. Compared to the unconstrained control run, the optimally constrained model reduces equatorial biogeochemical biases and markedly improves the equatorial subsurface nitrate concentrations and hypoxic area. The pragmatic approach described herein offers a means of advancing earth system prediction in parallel with continued data assimilation advances aimed at fully considering equatorial data constraints.

  16. Central Equatorial Pacific Experiment (CEPEX)

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Earth's climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27[degree]C, but never 31[degree]C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.

  17. Jupiter's Magnetic Field and Magnetosphere after Juno's First 8 Orbits

    Science.gov (United States)

    Connerney, J. E. P.; Oliversen, R. J.; Espley, J. R.; Gruesbeck, J.; Kotsiaros, S.; DiBraccio, G. A.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Denver, T.; Benn, M.; Bjarno, J. B.; Malinnikova Bang, A.; Bloxham, J.; Moore, K.; Bolton, S. J.; Levin, S.; Gershman, D. J.

    2017-12-01

    The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, embarking upon an ambitious mission to map Jupiter's magnetic and gravitational potential fields and probe its deep atmosphere, in search of clues to the planet's formation and evolution. Juno is also instrumented to conduct the first exploration of the polar magnetosphere and to acquire images and spectra of its polar auroras and atmosphere. Juno's 53.5-day orbit trajectory carries her science instruments from pole to pole in approximately 2 hours, with a closest approach to within 1.05 Rj of the center of the planet (one Rj = 71,492 km, Jupiter's equatorial radius), just a few thousand km above the clouds. Repeated periapsis passes will eventually encircle the planet with a dense net of observations equally spaced in longitude (magnetometer sensor suites, located 10 and 12 m from the center of the spacecraft at the end of one of Juno's three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads, providing accurate attitude determination for the FGM sensors. We present an overview of the magnetometer observations obtained during Juno's first year in orbit in context with prior observations and those acquired by Juno's other science instruments.

  18. Space Weather Research in the Equatorial Region: A Philosophical Reinforcement

    Science.gov (United States)

    Chukwuma, Victor; Odunaike, Rasaki; Laoye, John

    Investigations using radio waves reflected from the ionosphere, at high-and mid-latitudes indicate that ionospheric absorption can strongly increase following geomagnetic storms; which appears to suggest some definite relationship between ionospheric radio wave absorption and geomagnetic storms at these latitudes. However, corresponding earlier studies in the equatorial region did not appear to show any explicit relationship between ionospheric radio wave absorption and geomagnetic storm activity. This position appeared acceptable to the existing scientific paradigm, until in an act of paradigm shift, by a change of storm selection criteria, some more recent space weather investigations in the low latitudes showed that ionospheric radio wave absorption in the equatorial region clearly increases after intense storms. Given that these results in the equatorial region stood against the earlier results, this paper presently attempts to highlight their philosophical underpinning and posit that they constitute a scientific statement.

  19. Quantitative magnetic-moment mapping of a permanent-magnet material by X-ray magnetic circular dichroism nano-spectroscopy

    Directory of Open Access Journals (Sweden)

    Tetsuro Ueno

    2017-05-01

    Full Text Available We demonstrate the quantitative mapping of magnetic moments in a permanent-magnet material by X-ray magnetic circular dichroism nano-spectroscopy. An SmCo5 specimen was prepared from the bulk material by using a micro-fabrication technique. Scanning transmission X-ray microscopy images were obtained around the Sm M4,5 absorption edges. By applying the magneto-optical sum rules to these images, we obtained quantitative maps of the orbital and spin magnetic moments as well as their ratio. We found that the magnitudes of the orbital and spin magnetic moments and their ratio do not depend on thickness of the specimen.

  20. Vesta: its shape and deformed equatorial belt predicted by the wave planetology

    Science.gov (United States)

    Kochemasov, G. G.

    2012-09-01

    At EPSC2011 we stated: "Expected detailed images of Vesta sent by DAWN spacecraft certainly will show a prominent tectonic (must be also compositional) dichotomy of this large asteroid. The assuredness is based on some mainly the HST photos and the wave planetology fundamental conception: Theorem 1 - " Ce lestial bodies are dichotomous""[1]. Now a convexo-concave shape of Vesta is well known but the huge deep depression of the south hemisphere is assigned to two random large impacts almost at one place [2, 3]. This supposition has a very small probability, besides the largest asteroid Ceres also has a large depression at one side (the Piazzi basin). The theorem 1 of the wave planetology explains that all celestial bodies (not only small ones) are subjected to a warping action of the fundamental wave1 uplifting one side and subsiding (pressing in) the opposite one. This is a manifestation of the orbital energy acting in any body moving in keplerian noncircular orbit with changing acceleration (a). Arising inertia-gravity force F= (a1 - a2) x m is very important because of large planetary masses (m) and large cosmic speeds. Increase and decrease of accelerations were much larger in the beginning of planetary formation when orbits were more elliptical. Thus, pressing in of the subsiding hemisphere-segment is so strong that it often squeezes out some mantle material appearing as elevation-mound (compare to the Hawaii in the Pacific basin and look at Hyperion with a large basin and a mound at its center, Fig, 1, 2). Vesta's prominent subsiding equatorial belt with graben systems [4] (Fig. 4, 5) is a manifestation of another general planetary rule : " Rotating celestial body tends to even angular momenta of tropics and extra-tropics by regulating mass distribution and distance to the rotation axis " [5-7]. Often observed a sensible difference in appearance and structure between tropical and extra-tropical zones of various heavenly bodies including rocky and gas planets

  1. Post sunset equatorial spread-F at Kwajalein and interplanetary magnetic field

    Science.gov (United States)

    Rastogi, R. G.; Chandra, H.; Janardhan, P.; Reinisch, B. W.; Bisoi, Susanta Kumar

    2017-10-01

    We connect the time sequence of changes in the IMF-Bz to the development of spread-F at an equatorial station Kwajalein on three different nights in November 2004, one during a geomagnetic quiet period and other two during geomagnetic disturbed periods. The chosen days show clear and smooth variations of IMF-Bz without any large fluctuations thereby enabling one to correlate changes in equatorial spread-F with corresponding changes in IMF-Bz. It is shown that a slow and continuous increase in the IMF-Bz over a duration of few hours has a similar effect on the equatorial ionosphere as of a sudden northward turning of the IMF-Bz in causing an electric field through the polar region and then to the equator. We conclude that the Spread-F at equatorial and low latitudes are due to echoes from ionization irregularities that arise due to the plasma instabilities generated by an eastward electric field on the large plasma density gradient in or below the base of the F-layer during any period of the night time along with the gravity driven Rayleigh-Taylor instability.

  2. Publication of administrative circular

    CERN Multimedia

    HR Department

    2009-01-01

    ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee on 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in Departmental Secretariats. Human Resources Department Tel. 78003

  3. PUBLICATION OF ADMINISTRATIVE CIRCULAR

    CERN Multimedia

    HR Department

    2008-01-01

    ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee meeting of 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in departmental secretariats. Human Resources Department Tel. 78003

  4. Towards an Accurate Orbital Calibration of Late Miocene Climate Events: Insights From a High-Resolution Chemo- and Magnetostratigraphy (8-6 Ma) from Equatorial Pacific IODP Sites U1337 and U1338

    Science.gov (United States)

    Drury, A. J.; Westerhold, T.; Frederichs, T.; Wilkens, R.; Channell, J. E. T.; Evans, H. F.; Hodell, D. A.; John, C. M.; Lyle, M. W.; Roehl, U.; Tian, J.

    2015-12-01

    In the 8-6 Ma interval, the late Miocene is characterised by a long-term -0.3 ‰ reduction in benthic foraminiferal δ18O and distinctive short-term δ18O cycles, possibly related to dynamic Antarctic ice sheet variability. In addition, the late Miocene carbon isotope shift (LMCIS) marks a permanent long-term -1 ‰ shift in oceanic δ13CDIC, which is the largest, long-term perturbation in the global marine carbon cycle since the mid Miocene Monterey excursion. Accurate age control is crucial to investigate the origin of the δ18O cyclicity and determine the precise onset of the LMCIS. The current Geological Time Scale in the 8-6 Ma interval is constructed using astronomical tuning of sedimentary cycles in Mediterranean outcrops. However, outside of the Mediterranean, a comparable high-resolution chemo-, magneto-, and cyclostratigraphy at a single DSDP/ODP/IODP site does not exist. Generating an accurate astronomically-calibrated chemo- and magneto-stratigraphy in the 8-6 Ma interval became possible with retrieval of equatorial Pacific IODP Sites U1337 and U1338, as both sites have sedimentation rates ~2 cm/kyr, high biogenic carbonate content, and magnetic polarity stratigraphies. Here we present high-resolution correlation of Sites U1337 and U1338 using Milankovitch-related cycles in core images and X-ray fluorescence core scanning data. By combining inclination and declination data from ~400 new discrete samples with shipboard measurements, we are able to identify 14 polarity reversals at Site U1337 from the young end of Chron C3An.1n (~6.03 Ma) to the onset of Chron C4n.2n (~8.11 Ma). New high-resolution (<1.5 kyr) stable isotope records from Site U1337 correlate highly with Site U1338 records, enabling construction of a high-resolution stack. Initial orbital tuning of the U1337-U1338 records show that the δ18O cyclicity is obliquity driven, indicating high-latitude climate forcing. The LMCIS starts ~7.55 Ma and is anchored in Chron C4n.1n, which is

  5. Ground Track Acquisition and Maintenance Maneuver Modeling for Low-Earth Orbit Satellite

    Directory of Open Access Journals (Sweden)

    Byoung-Sun Lee

    1997-12-01

    Full Text Available This paper presents a comprehensive analytical approach for determining key maneuver parameters associated with the acquisition and maintenance of the ground track for a low-earth orbit. A livearized model relating changes in the drift rate of the ground track directly to changes in the orbital semi-major axis is also developed. The effect of terrestrial atmospheric drag on the semi-major axis is also explored, being quantified through an analytical expression for the decay rate as a function of density. The non-singular Lagrange planetary equations, further simplified for nearly circular orbits, provide the desired relationships between the corrective in-plane impulsive velocity increments and the corresponding effects on the orbit elements. The resulting solution strategy offers excellent insight into the dynamics affecting the timing, magnitude, and frequency of these maneuvers. Simulations are executed for the ground track acquisition and maintenance maneuver as a pre-flight planning and analysis.

  6. Solar radiation pressure and deviations from Keplerian orbits

    Energy Technology Data Exchange (ETDEWEB)

    Kezerashvili, Roman Ya. [Physics Department, New York City College of Technology, the City University of New York, Brooklyn, NY 11201 (United States); Vazquez-Poritz, Justin F. [Physics Department, New York City College of Technology, City University of New York, Brooklyn, NY 11201 (United States)], E-mail: jporitz@gmail.com

    2009-05-04

    Newtonian gravity and general relativity give exactly the same expression for the period of an object in circular orbit around a static central mass. However, when the effects of the curvature of spacetime and solar radiation pressure are considered simultaneously for a solar sail propelled satellite, there is a deviation from Kepler's third law. It is shown that solar radiation pressure affects the period of this satellite in two ways: by effectively decreasing the solar mass, thereby increasing the period, and by enhancing the effects of other phenomena, potentially rendering some of them detectable. In particular, we consider deviations from Keplerian orbits due to spacetime curvature, frame dragging from the rotation of the sun, the oblateness of the sun, a possible net electric charge of the sun, and a very small positive cosmological constant.

  7. Bottomside sinusoidal irregularities in the equatorial F region

    Science.gov (United States)

    Valladares, C. E.; Hanson, W. B.; Mcclure, J. P.; Cragin, B. L.

    1983-01-01

    By using the Ogo 6 satellite, McClure and Hanson (1973) have discovered sinusoidal irregularities in the equatorial F region ion number density. In the present investigation, a description is provided of the properties of a distinct category of sinusoidal irregularities found in equatorial data from the AE-C and AE-E satellites. The observed scale sizes vary from about 300 m to 3 km in the direction perpendicular to B, overlapping with and extending the range observed by using Ogo 6. Attention is given to low and high resolution data, a comparison with Huancayo ionograms, the confinement of 'bottomside sinusoidal' (BSS) irregularities essentially to the bottomside of the F layer, spectral characteristics, and BSS, scintillation, and ionosonde observations.

  8. Aerosol Transport Over Equatorial Africa

    Science.gov (United States)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  9. NICER Discovers the Ultracompact Orbit of the Accreting Millisecond Pulsar IGR J17062–6143

    Science.gov (United States)

    Strohmayer, T. E.; Arzoumanian, Z.; Bogdanov, S.; Bult, P. M.; Chakrabarty, D.; Enoto, T.; Gendreau, K. C.; Guillot, S.; Harding, A. K.; Ho, W. C. G.; Homan, J.; Jaisawal, G. K.; Keek, L.; Kerr, M.; Mahmoodifar, S.; Markwardt, C. B.; Ransom, S. M.; Ray, P. S.; Remillard, R.; Wolff, M. T.

    2018-05-01

    We present results of recent Neutron Star Interior Composition Explorer (NICER) observations of the accreting millisecond X-ray pulsar (AMXP) IGR J17062‑6143 that show that it resides in a circular, ultracompact binary with a 38-minute orbital period. NICER observed the source for ≈26 ks over a 5.3-day span in 2017 August, and again for 14 and 11 ks in 2017 October and November, respectively. A power spectral analysis of the August exposure confirms the previous detection of pulsations at 163.656 Hz in Rossi X-ray Timing Explorer (RXTE) data, and reveals phase modulation due to orbital motion of the neutron star. A coherent search for the orbital solution using the Z 2 method finds a best-fitting circular orbit with a period of 2278.21 s (37.97 minutes), a projected semimajor axis of 0.00390 lt-s, and a barycentric pulsar frequency of 163.6561105 Hz. This is currently the shortest known orbital period for an AMXP. The mass function is 9.12 × 10‑8 M ⊙, presently the smallest known for a stellar binary. The minimum donor mass ranges from ≈0.005 to 0.007 M ⊙ for a neutron star mass from 1.2 to 2 M ⊙. Assuming mass transfer is driven by gravitational radiation, we find donor mass and binary inclination bounds of 0.0175–0.0155 M ⊙ and 19° < i < 27.°5, where the lower and upper bounds correspond to 1.4 and 2 M ⊙ neutron stars, respectively. Folding the data accounting for the orbital modulation reveals a sinusoidal profile with fractional amplitude 2.04 ± 0.11% (0.3–3.2 keV).

  10. Use of eigenvectors in understanding and correcting storage ring orbits

    International Nuclear Information System (INIS)

    Friedman, A.; Bozoki, E.

    1994-01-01

    The response matrix A is defined by the equation X=AΘ, where Θ is the kick vector and X is the resulting orbit vector. Since A is not necessarily a symmetric or even a square matrix we symmetrize it by using A T A. Then we find the eigenvalues and eigenvectors of this A T A matrix. The physical interpretation of the eigenvectors for circular machines is discussed. The task of the orbit correction is to find the kick vector Θ for a given measured orbit vector X. We are presenting a method, in which the kick vector is expressed as linear combination of the eigenvectors. An additional advantage of this method is that it yields the smallest possible kick vector to correct the orbit. We will illustrate the application of the method to the NSLS X-ray and UV storage rings and the resulting measurements. It will be evident, that the accuracy of this method allows the combination of the global orbit correction and local optimization of the orbit for beam lines and insertion devices. The eigenvector decomposition can also be used for optimizing kick vectors, taking advantage of the fact that eigenvectors with corresponding small eigenvalue generate negligible orbit changes. Thus, one can reduce a kick vector calculated by any other correction method and still stay within the tolerance for orbit correction. The use of eigenvectors in accurately measuring the response matrix and the use of the eigenvalue decomposition orbit correction algorithm in digital feedback is discussed. (orig.)

  11. Post-midnight equatorial irregularity distributions and vertical drift velocity variations during solstices

    Science.gov (United States)

    Su, S.-Y.; Liu, C. H.; Chao, C.-K.

    2018-04-01

    Longitudinal distributions of post-midnight equatorial ionospheric irregularity occurrences observed by ROCSAT-1 (1st satellite of the Republic of China) during moderate to high solar activity years in two solstices are studied with respect to the vertical drift velocity and density variations. The post-midnight irregularity distributions are found to be similar to the well-documented pre-midnight ones, but are different from some published distributions taken during solar minimum years. Even though the post-midnight ionosphere is sinking in general, longitudes of frequent positive vertical drift and high density seems to coincide with the longitudes of high irregularity occurrences. Large scatters found in the vertical drift velocity and density around the dip equator in different ROCSAT-1 orbits indicate the existence of large and frequent variations in the vertical drift velocity and density that seem to be able to provide sufficient perturbations for the Rayleigh-Taylor (RT) instability to cause the irregularity occurrences. The need of seeding agents such as gravity waves from atmospheric convective clouds to initiate the Rayleigh-Taylor instability may not be necessary.

  12. M2K. II. A TRIPLE-PLANET SYSTEM ORBITING HIP 57274

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Debra A.; Giguere, Matthew J.; Moriarty, John; Brewer, John; Spronck, Julien F. P.; Schwab, Christian; Szymkowiak, Andrew [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822 (United States); Howard, Andrew W.; Marcy, Geoffrey W. [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States); Johnson, John A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Wright, Jason T. [Center for Exoplanets and Habitable Worlds, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16803 (United States); Valenti, Jeff A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Piskunov, Nikolai [Department of Astronomy and Space Physics, Uppsala University, Box 515, 751 20 Uppsala (Sweden); Clubb, Kelsey I.; Isaacson, Howard [Pufendorf Institute for Advanced Studies, Lund University, Lund (Sweden); Apps, Kevin [75B Cheyne Walk, Surrey RH6 7LR (United Kingdom); Lepine, Sebastien [American Museum of Natural History, New York, NY 10023 (United States); Mann, Andrew, E-mail: debra.fischer@yale.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2012-01-20

    Doppler observations from Keck Observatory have revealed a triple-planet system orbiting the nearby K4V star, HIP 57274. The inner planet, HIP 57274b, is a super-Earth with Msin i = 11.6 M{sub Circled-Plus} (0.036 M{sub Jup}), an orbital period of 8.135 {+-} 0.004 days, and slightly eccentric orbit e = 0.19 {+-} 0.1. We calculate a transit probability of 6.5% for the inner planet. The second planet has Msin i = 0.4 M{sub Jup} with an orbital period of 32.0 {+-} 0.02 days in a nearly circular orbit (e = 0.05 {+-} 0.03). The third planet has Msin i = 0.53 M{sub Jup} with an orbital period of 432 {+-} 8 days (1.18 years) and an eccentricity e = 0.23 {+-} 0.03. This discovery adds to the number of super-Earth mass planets with M sin i < 12 M{sub Circled-Plus} that have been detected with Doppler surveys. We find that 56% {+-} 18% of super-Earths are members of multi-planet systems. This is certainly a lower limit because of observational detectability limits, yet significantly higher than the fraction of Jupiter mass exoplanets, 20% {+-} 8%, that are members of Doppler-detected, multi-planet systems.

  13. M2K. II. A TRIPLE-PLANET SYSTEM ORBITING HIP 57274

    International Nuclear Information System (INIS)

    Fischer, Debra A.; Giguere, Matthew J.; Moriarty, John; Brewer, John; Spronck, Julien F. P.; Schwab, Christian; Szymkowiak, Andrew; Gaidos, Eric; Howard, Andrew W.; Marcy, Geoffrey W.; Johnson, John A.; Wright, Jason T.; Valenti, Jeff A.; Piskunov, Nikolai; Clubb, Kelsey I.; Isaacson, Howard; Apps, Kevin; Lepine, Sebastien; Mann, Andrew

    2012-01-01

    Doppler observations from Keck Observatory have revealed a triple-planet system orbiting the nearby K4V star, HIP 57274. The inner planet, HIP 57274b, is a super-Earth with Msin i = 11.6 M ⊕ (0.036 M Jup ), an orbital period of 8.135 ± 0.004 days, and slightly eccentric orbit e = 0.19 ± 0.1. We calculate a transit probability of 6.5% for the inner planet. The second planet has Msin i = 0.4 M Jup with an orbital period of 32.0 ± 0.02 days in a nearly circular orbit (e = 0.05 ± 0.03). The third planet has Msin i = 0.53 M Jup with an orbital period of 432 ± 8 days (1.18 years) and an eccentricity e = 0.23 ± 0.03. This discovery adds to the number of super-Earth mass planets with M sin i ⊕ that have been detected with Doppler surveys. We find that 56% ± 18% of super-Earths are members of multi-planet systems. This is certainly a lower limit because of observational detectability limits, yet significantly higher than the fraction of Jupiter mass exoplanets, 20% ± 8%, that are members of Doppler-detected, multi-planet systems.

  14. Five Stereoactive Orbitals on Silicon: Charge and Spin Localization in the n-Si4Me10(-•) Radical Anion by Trigonal Bipyramidalization.

    Science.gov (United States)

    MacLeod, Matthew K; Michl, Josef

    2013-05-16

    RIUMP2/def2-TZVPPD calculations show that in addition to its usual conformation with charge and spin delocalized over the Si backbone, the isolated Si4Me10(-•) radical anion also has isomeric conformations with localized charge and spin. A structure with localization on a terminal Si atom has been examined in detail. In vacuum, it is calculated to lie 11.5 kcal/mol higher in energy than the charge-and-spin delocalized conformation, and in water the difference is as little as 1.6 kcal/mol. According to natural orbital and localized orbital analyses, the charge-and-spin-carrying terminal Si atom uses five stereoactive hybrid orbitals in a trigonal bipyramidal geometry. Four are built mostly from 3s and 3p atomic orbitals (AOs) and are used to attach a Si3(CH3)7 and three CH3 groups, whereas the larger equatorial fifth orbital is constructed from 4s and 4p AOs and acts as a nonbonding (radical) hybrid orbital with an occupancy of about 0.65 e.

  15. Thermally induced vibrations of smart solar panel in a low-orbit satellite

    Science.gov (United States)

    Azadi, E.; Fazelzadeh, S. Ahmad; Azadi, M.

    2017-03-01

    In this paper, a smart flexible satellite moving in a circular orbit with two flexible panels are studied. The panels have been modeled as clamped-free-free-free rectangular plates with attached piezoelectric actuators. It is assumed that the satellite has a pitch angle rotation maneuver. Rapid temperature changes at day-night transitions in orbit generate time dependent bending moments. Satellite maneuver and temperature varying induce vibrations in the appendages. So, to simulate the system, heat radiation effects on the appendages have been considered. The nonlinear equations of motion and the heat transfer equations are coupled and solved simultaneously. So, the governing equations of motion are nonlinear and very complicated ones. Finally, the whole system is simulated and the effects of the heat radiation, radius of the orbit, piezoelectric voltages, and piezoelectric locations on the response of the system are studied.

  16. Reflection of equatorial Kelvin waves at eastern ocean boundaries Part I: hypothetical boundaries

    Directory of Open Access Journals (Sweden)

    J. Soares

    1999-06-01

    Full Text Available A baroclinic shallow-water model is developed to investigate the effect of the orientation of the eastern ocean boundary on the behavior of equatorial Kelvin waves. The model is formulated in a spherical polar coordinate system and includes dissipation and non-linear terms, effects which have not been previously included in analytical approaches to the problem. Both equatorial and middle latitude response are considered given the large latitudinal extent used in the model. Baroclinic equatorial Kelvin waves of intraseasonal, seasonal and annual periods are introduced into the domain as pulses of finite width. Their subsequent reflection, transmission and dissipation are investigated. It is found that dissipation is very important for the transmission of wave energy along the boundary and for reflections from the boundary. The dissipation was found to be dependent not only on the presence of the coastal Kelvin waves in the domain, but also on the period of these coastal waves. In particular the dissipation increases with wave period. It is also shown that the equatorial β-plane approximation can allow an anomalous generation of Rossby waves at higher latitudes. Nonlinearities generally have a small effect on the solutions, within the confines of this model.Key words. Oceanography: general (equatorial oceanography; numerical modeling · Oceanography: physical (eastern boundary currents

  17. Coulomb-interacting billiards in circular cavities

    International Nuclear Information System (INIS)

    Solanpää, J; Räsänen, E; Nokelainen, J; Luukko, P J J

    2013-01-01

    We apply a molecular dynamics scheme to analyze classically chaotic properties of a two-dimensional circular billiard system containing two Coulomb-interacting electrons. As such, the system resembles a prototype model for a semiconductor quantum dot. The interaction strength is varied from the noninteracting limit with zero potential energy up to the strongly interacting regime where the relative kinetic energy approaches zero. At weak interactions the bouncing maps show jumps between quasi-regular orbits. In the strong-interaction limit we find an analytic expression for the bouncing map. Its validity in the general case is assessed by comparison with our numerical data. To obtain a more quantitative view on the dynamics as the interaction strength is varied, we compute and analyze the escape rates of the system. Apart from very weak or strong interactions, the escape rates show consistently exponential behavior, thus suggesting strongly chaotic dynamics and a phase space without significant sticky regions within the considered time scales. (paper)

  18. A study of evolution/suppression parameters of equatorial postsunset plasma instability

    Directory of Open Access Journals (Sweden)

    O. S. Oyekola

    2009-01-01

    Full Text Available Evening equatorial pre-reversal vertical ion E×B drift (VZP and the peak of the ionospheric F2 maximum altitude (hmF2P of the postsunset equatorial F-layer, which are the essential parameters requisite for the generation or inhibition of postsunset bottomside equatorial irregularities were deduced from ionosonde observations made in the Africa region (Ouagadougou: ~3° N dip latitude between January 1987 and December 1990 for solar activity minimum, medium, and maxima (F10.7=85, 141, 214, and 190, respectively for quiet geomagnetic conditions. We investigate variations of evening equatorial pre-reversal drift and the corresponding altitude at four levels of solar activity. Our observations show strong variations with solar variability. Correlation analysis between these parameters indicates that the correlation coefficient value between hmF2P versus VZP decreases considerably with increasing solar flux value. There seems to be no significant link between these parameters under high solar activity, especially for solar intensity F10.7>200 units. We conclude that meridional neutral wind in the F-region contributes substantially to the variations of the pre-reversal vertical plasma drifts enhancement and the peak hmF2, particularly the electrodynamics during twilight high solar flux conditions.

  19. Effects of the equatorial ionosphere on L-band Earth-space transmissions

    Science.gov (United States)

    Smith, Ernest K.; Flock, Warren L.

    1993-01-01

    Ionosphere scintillation can effect satellite telecommunication up to Ku-band. Nighttime scintillation can be attributed to large-scale inhomogeneity in the F-region of the ionosphere predominantly between heights of 200 and 600 km. Daytime scintillation has been attributed to sporadic E. It can be thought of as occurring in three belts: equatorial, high-latitude, and mid-latitude, in order of severity. Equatorial scintillation occurs between magnetic latitudes +/- 25 degrees, peaking near +/- 10 degrees. It commonly starts abruptly near 2000 local time and dies out shortly after midnight. There is a strong solar cycle dependence and a seasonal preference for the equinoxes, particularly the vernal one. Equatorial scintillation occurs more frequently on magnetically quiet than on magnetically disturbed days in most longitudes. At the peak of the sunspot cycle scintillation depths as great as 20 dB were observed at L-band.

  20. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    Science.gov (United States)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  1. Beyond the geodesic approximation: Conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Barack, Leor; Sago, Norichika

    2011-01-01

    We study conservative finite-mass corrections to the motion of a particle in a bound (eccentric) strong-field orbit around a Schwarzschild black hole. We assume the particle's mass μ is much smaller than the black hole mass M, and explore post-geodesic corrections of O(μ/M). Our analysis uses numerical data from a recently developed code that outputs the Lorenz-gauge gravitational self-force (GSF) acting on the particle along the eccentric geodesic. First, we calculate the O(μ/M) conservative correction to the periastron advance of the orbit, as a function of the (gauge-dependent) semilatus rectum and eccentricity. A gauge-invariant description of the GSF precession effect is made possible in the circular-orbit limit, where we express the correction to the periastron advance as a function of the invariant azimuthal frequency. We compare this relation with results from fully nonlinear numerical-relativistic simulations. In order to obtain a gauge-invariant measure of the GSF effect for fully eccentric orbits, we introduce a suitable generalization of Detweiler's circular-orbit ''redshift'' invariant. We compute the O(μ/M) conservative correction to this invariant, expressed as a function of the two invariant frequencies that parametrize the orbit. Our results are in good agreement with results from post-Newtonian calculations in the weak-field regime, as we shall report elsewhere. The results of our study can inform the development of analytical models for the dynamics of strongly gravitating binaries. They also provide an accurate benchmark for future numerical-relativistic simulations.

  2. Linear and circular dichroism in angle resolved Fe 3p photomission. Revision 1

    International Nuclear Information System (INIS)

    Tamura, E.; Waddill, G.D.; Tobin, J.G.; Sterne, P.A.

    1994-01-01

    Using a recently developed spin-polarized, fully relativistic, multiple scattering approach based on the layer KKR Green function method, we have reproduced the Fe 3p angle-resolved soft x-ray photoemission spectra and analyzed the associated large magnetic dichroism effects for excitation with both linearly and circularly polarized light. Comparison between theory and experiment yields a spin-orbit splitting of 1.0--1.2 eV and an exchange splitting of 0.9-- 1.0 eV for Fe 3p. These values are 50--100% larger than those hitherto obtained experimentally

  3. The Imaging X-Ray Polarimetry Explorer (IXPE): Overview

    Science.gov (United States)

    O'Dell, Steve; Weisskopf, M.; Soffitta, P.; Baldini, L.; Bellazzini, R.; Costa, E.; Elsner, R.; Kaspi, V.; Kolodziejczak, J.; Latronico, L.; hide

    2017-01-01

    Mission background: Imaging x-ray polarimetry in 2–8 kiloelectronvolt band; NASA Astrophysics Small Explorer (SMEX) selected in 2017 January. Orbit: Pegasus-XL (airborne) launch in 2021, from Kwajalein; Equatorial circular orbit at greater than or approximately equal to 540 kilometers (620 kilometers, goal) altitude. Flight system: Spacecraft, payload structure, and integration by Ball Aerospace - Deployable payload boom from Orbital-ATK, under contract to Ball; X-ray Mirror Module Assemblies by NASA/MSFC; X-ray (polarization-sensitive) Instruments by IAPS/INAF (Istituto di Astrofisica e Planetologia Spaziali / Istituto Nazionale di Astrofisica) and INFN (Istituto Nazionale di Fisica Nucleare). Ground system: ASI (Agenzia Spaziale Italiana) Malindi ground station, with Singapore backup; Mission Operations Center at LASP (Laboratory for Atmospheric and Space Physics, University of Colorado); Science Operations Center at NASA/MSFC; Data archive at HEASARC (High Energy Astrophysics Science Archive Research Center), (NASA/GSFC), mirror at ASI Data Center. Science: Active galactic nuclei; Microquasars; Radio pulsars and pulsar wind nebulae; Supernova remnants; Magnetars; Accreting x-ray pulsars.

  4. Equatorial electrojet as part of the global circuit: a case-study from the IEEY

    Directory of Open Access Journals (Sweden)

    A. T. Kobea

    1998-06-01

    Full Text Available Geomagnetic storm-time variations often occur coherently at high latitude and the day-side dip equator where they affect the normal eastward Sq field. This paper presents an analysis of ground magnetic field and ionospheric electrodynamic data related to the geomagnetic storm which occured on 27 May 1993 during the International Equatorial Electrojet Year (IEEY experiment. This storm-signature analysis on the auroral, mid-latitude and equatorial ground field and ionospheric electrodynamic data leads to the identification of a sensitive response of the equatorial electrojet (EEJ to large-scale auroral return current: this response consists in a change of the eastward electric field during the pre-sunrise hours (0400-0600 UT coherently to the high-, mid-, and equatorial-latitude H decrease and the disappearance of the EEJ irregularities between the time-interval 0800-0950 UT. Subsequent to the change in h'F during pre-sunrise hours, the observed foF2 increase revealed an enhancement of the equatorial ionization anomaly (EIA caused by the high-latitude penetrating electric field. The strengthening of these irregularities attested by the Doppler frequency increase tracks the H component at the equator which undergoes a rapid increase around 0800 UT. The ∆H variations observed at the equator are the sum of the following components: SR, DP, DR, DCF and DT.Keywords. Equatorial electrojet · Magnetosphere-ionosphere interactions · Electric fields and currents · Auroral ionosphere · Ionospheric disturbances

  5. Electron Interference in Molecular Circular Polarization Attosecond XUV Photoionization

    Directory of Open Access Journals (Sweden)

    Kai-Jun Yuan

    2015-01-01

    Full Text Available Two-center electron interference in molecular attosecond photoionization processes is investigated from numerical solutions of time-dependent Schrödinger equations. Both symmetric H\\(_2^+\\ and nonsymmetric HHe\\(^{2+}\\ one electron diatomic systems are ionized by intense attosecond circularly polarized XUV laser pulses. Photoionization of these molecular ions shows signature of interference with double peaks (minima in molecular attosecond photoelectron energy spectra (MAPES at critical angles \\(\\vartheta_c\\ between the molecular \\(\\textbf{R}\\ axis and the photoelectron momentum \\(\\textbf{p}\\. The interferences are shown to be a function of the symmetry of electronic states and the interference patterns are sensitive to the molecular orientation and pulse polarization. Such sensitivity offers possibility for imaging of molecular structure and orbitals.

  6. Modeling low-thrust transfers between periodic orbits about five libration points: Manifolds and hierarchical design

    Science.gov (United States)

    Zeng, Hao; Zhang, Jingrui

    2018-04-01

    The low-thrust version of the fuel-optimal transfers between periodic orbits with different energies in the vicinity of five libration points is exploited deeply in the Circular Restricted Three-Body Problem. Indirect optimization technique incorporated with constraint gradients is employed to further improve the computational efficiency and accuracy of the algorithm. The required optimal thrust magnitude and direction can be determined to create the bridging trajectory that connects the invariant manifolds. A hierarchical design strategy dividing the constraint set is proposed to seek the optimal solution when the problem cannot be solved directly. Meanwhile, the solution procedure and the value ranges of used variables are summarized. To highlight the effectivity of the transfer scheme and aim at different types of libration point orbits, transfer trajectories between some sample orbits, including Lyapunov orbits, planar orbits, halo orbits, axial orbits, vertical orbits and butterfly orbits for collinear and triangular libration points, are investigated with various time of flight. Numerical results show that the fuel consumption varies from a few kilograms to tens of kilograms, related to the locations and the types of mission orbits as well as the corresponding invariant manifold structures, and indicates that the low-thrust transfers may be a beneficial option for the extended science missions around different libration points.

  7. Low-Cost Propellant Launch to Earth Orbit from a Tethered Balloon

    Science.gov (United States)

    Wilcox, Brian H.

    2006-01-01

    Propellant will be more than 85% of the mass that needs to be lofted into Low Earth Orbit (LEO) in the planned program of Exploration of the Moon, Mars, and beyond. This paper describes a possible means for launching thousands of tons of propellant per year into LEO at a cost 15 to 30 times less than the current launch cost per kilogram. The basic idea is to mass-produce very simple, small and relatively low-performance rockets at a cost per kilogram comparable to automobiles, instead of the 25X greater cost that is customary for current launch vehicles that are produced in small quantities and which are manufactured with performance near the limits of what is possible. These small, simple rockets can reach orbit because they are launched above 95% of the atmosphere, where the drag losses even on a small rocket are acceptable, and because they can be launched nearly horizontally with very simple guidance based primarily on spin-stabilization. Launching above most of the atmosphere is accomplished by winching the rocket up a tether to a balloon. A fuel depot in equatorial orbit passes over the launch site on every orbit (approximately every 90 minutes). One or more rockets can be launched each time the fuel depot passes overhead, so the launch rate can be any multiple of 6000 small rockets per year, a number that is sufficient to reap the benefits of mass production.

  8. Orbital evolution of a test particle around a black hole: indirect determination of the self-force in the post-Newtonian approximation

    International Nuclear Information System (INIS)

    Burko, Lior M

    2006-01-01

    Comparing the corrections to Kepler's law with orbital evolution under a self-force, we extract the finite, already regularized part of the latter in a specific gauge. We apply this method to a quasi-circular orbit around a Schwarzschild black hole of an extreme mass ratio binary, and determine the first- and second-order conservative gravitational self-force in a post-Newtonian expansion. We use these results in the construction of the gravitational waveform, and revisit the question of the relative contribution of the self-force and spin-orbit coupling

  9. Westward equatorial electrojet during daytime hours. [relation to geomagnetic horizontal field depression

    Science.gov (United States)

    Rastogi, R. G.

    1974-01-01

    The phenomenon of the depression of the geomagnetic horizontal field during the daytime hours of magnetically quiet days at equatorial stations is described. These events are generally seen around 0700 and 1600 LT, being more frequent during the evening than the morning hours. The evening events are more frequent during periods of low solar activity and in the longitude region of weak equatorial electrojet currents. The latitudinal extent of the phenomenon is limited to the normal equatorial electrojet region, and on some occasions the phenomenon is not seen at both stations, separated by only a few hours in longitude. During such an event, the latitudinal profile of the geomagnetic vertical field across the equator is reversed, the ionospheric drift near the equator is reversed toward the east, the q type of sporadic E layer is completely absent, and the height of the peak ionization in the F2 region is decreased. It is suggested that these effects are caused by a narrow band of current flowing westward in the E region of the ionosphere and within the latitude region of the normal equatorial electrojet, due to the reversal of the east-west electrostatic field at low latitudes.

  10. Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces

    International Nuclear Information System (INIS)

    Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.

    2010-01-01

    We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.

  11. Measurement of the circular polarization of gamma radiation from heavy ion collisions

    International Nuclear Information System (INIS)

    Lauterbach, C.

    1981-01-01

    For the nuclear reactions 16 O + 27 Al, 16 O + 58 Ni, 16 O + 62 Ni, 40 Ar + sup(nat)Ag, 86 Kr + sup(nat)Ag, and 86 Kr + 197 Au at incident energies of about 7 MeV/nucleon the circular polarization of the #betta# radiation emitted by the reaction products was measured. The projectile - like reaction products were detected by a δE-E telescope at a fixed angle of 35 0 relative to the beam axis. It is shown that the sign of the scattering angle for the classical orbit of the reaction partners can be determined by the experimental detection of circularly polarized #betta#-radiation from the decay of the highly excited reaction products. In the performed experiments for the first time extensive polarization phenomena in deep inelastic reactions were observed. The dominance of negative scattering angles was verified for a large range of light and medium-heavy systems. The results are compared with the predictions of theoretical models in which statistical or quantum mechanical fluctuations of the dynamical quantities are regarded. (orig./HSI) [de

  12. Experimental evaluation of the Skylab orbital workshop ventilation system concept

    Science.gov (United States)

    Allums, S. L.; Hastings, L. J.; Ralston, J. T.

    1972-01-01

    Extensive testing was conducted to evaluate the Orbital Workshop ventilation concept. Component tests were utilized to determine the relationship between operating characteristics at 1 and 0.34 atm. System tests were conducted at 1 atm within the Orbital Workshop full-scale mockup to assess delivered volumetric flow rate and compartment air velocities. Component tests with the Anemostat circular diffusers (plenum- and duct-mounted) demonstrated that the diffuser produced essentially equivalent airflow patterns and velocities in 1- and 0.34-atm environments. The tests also showed that the pressure drop across the diffuser could be scaled from 1 to 0.34 atm using the atmosphere pressure ratio. Fan tests indicated that the performance of a multiple, parallel-mounted fan cluster could be predicted by summing the single-fan flow rates at a given delta P.

  13. S-TYPE AND P-TYPE HABITABILITY IN STELLAR BINARY SYSTEMS: A COMPREHENSIVE APPROACH. II. ELLIPTICAL ORBITS

    International Nuclear Information System (INIS)

    Cuntz, M.

    2015-01-01

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes ( r adiative habitable zone ; RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs are truncated by the additional constraint of orbital stability, the notation of ST-type and PT-type habitability applies. In comparison to the circular case, it is found that in systems of higher eccentricity, the range of the RHZs is significantly reduced. Moreover, for a considerable number of models, the orbital stability constraint also reduces the range of S-type and P-type habitability. Nonetheless, S-, P-, ST-, and PT-type habitability is identified for a considerable set of system parameters. The method as presented is utilized for BinHab, an online code available at The University of Texas at Arlington

  14. S-TYPE AND P-TYPE HABITABILITY IN STELLAR BINARY SYSTEMS: A COMPREHENSIVE APPROACH. II. ELLIPTICAL ORBITS

    Energy Technology Data Exchange (ETDEWEB)

    Cuntz, M., E-mail: cuntz@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019-0059 (United States)

    2015-01-10

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes ({sup r}adiative habitable zone{sup ;} RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs are truncated by the additional constraint of orbital stability, the notation of ST-type and PT-type habitability applies. In comparison to the circular case, it is found that in systems of higher eccentricity, the range of the RHZs is significantly reduced. Moreover, for a considerable number of models, the orbital stability constraint also reduces the range of S-type and P-type habitability. Nonetheless, S-, P-, ST-, and PT-type habitability is identified for a considerable set of system parameters. The method as presented is utilized for BinHab, an online code available at The University of Texas at Arlington.

  15. Disruption of Saturn's quasi-periodic equatorial oscillation by the great northern storm

    Science.gov (United States)

    Fletcher, Leigh N.; Guerlet, Sandrine; Orton, Glenn S.; Cosentino, Richard G.; Fouchet, Thierry; Irwin, Patrick G. J.; Li, Liming; Flasar, F. Michael; Gorius, Nicolas; Morales-Juberías, Raúl

    2017-11-01

    The equatorial middle atmospheres of the Earth1, Jupiter2 and Saturn3,4 all exhibit a remarkably similar phenomenon—a vertical, cyclic pattern of alternating temperatures and zonal (east-west) wind regimes that propagate slowly downwards with a well-defined multi-year period. Earth's quasi-biennial oscillation (QBO) (observed in the lower stratospheric winds with an average period of 28 months) is one of the most regular, repeatable cycles exhibited by our climate system1,5,6, and yet recent work has shown that this regularity can be disrupted by events occurring far away from the equatorial region, an example of a phenomenon known as atmospheric teleconnection7,8. Here, we reveal that Saturn's equatorial quasi-periodic oscillation (QPO) (with an 15-year period3,9) can also be dramatically perturbed. An intense springtime storm erupted at Saturn's northern mid-latitudes in December 201010-12, spawning a gigantic hot vortex in the stratosphere at 40° N that persisted for three years13. Far from the storm, the Cassini temperature measurements showed a dramatic 10 K cooling in the 0.5-5 mbar range across the entire equatorial region, disrupting the regular QPO pattern and significantly altering the middle-atmospheric wind structure, suggesting an injection of westward momentum into the equatorial wind system from waves generated by the northern storm. Hence, as on Earth, meteorological activity at mid-latitudes can have a profound effect on the regular atmospheric cycles in Saturn's tropics, demonstrating that waves can provide horizontal teleconnections between the phenomena shaping the middle atmospheres of giant planets.

  16. Spin and orbital magnetisation densities determined by Compton scattering of photons

    International Nuclear Information System (INIS)

    Collins, S.P.; Laundy, D.; Cooper, M.J.; Lovesey, S.W.; Uppsala Univ.

    1990-03-01

    Compton scattering of a circularly polarized photon beam is shown to provide direct information on orbital and spin magnetisation densities. Experiments are reported which demonstrate the feasibility of the method by correctly predicting the ratio of spin and orbital magnetisation components in iron and cobalt. A partially polarised beam of 45 keV photons from the Daresbury Synchrotron Radiation Source produces charge-magnetic interference scattering which is measured by a field-difference method. Theory shows that the interference cross section contains the Compton profile of polarised electrons modulated by a structure factor which is a weighted sum of spin and orbital magnetisations. In particular, the scattering geometry for which the structure factor vanishes yields a unique value for the ratio of the magnetisation densities. Compton scattering, being an incoherent process, provides data on total unit cell magnetisations which can be directly compared with bulk data. In this respect, Compton scattering complements magnetic neutron and photon Bragg diffraction. (author)

  17. A novel orbiter mission concept for venus with the EnVision proposal

    Science.gov (United States)

    de Oliveira, Marta R. R.; Gil, Paulo J. S.; Ghail, Richard

    2018-07-01

    In space exploration, planetary orbiter missions are essential to gain insight into planets as a whole, and to help uncover unanswered scientific questions. In particular, the planets closest to the Earth have been a privileged target of the world's leading space agencies. EnVision is a mission proposal designed for Venus and competing for ESA's next launch opportunity with the objective of studying Earth's closest neighbor. The main goal is to study geological and atmospheric processes, namely surface processes, interior dynamics and atmosphere, to determine the reasons behind Venus and Earth's radically different evolution despite the planets' similarities. To achieve these goals, the operational orbit selection is a fundamental element of the mission design process. The design of an orbit around Venus faces specific challenges, such as the impossibility of choosing Sun-synchronous orbits. In this paper, an innovative genetic algorithm optimization was applied to select the optimal orbit based on the parameters with more influence in the mission planning, in particular the mission duration and the coverage of sites of interest on the Venusian surface. The solution obtained is a near-polar circular orbit with an altitude of 259 km that enables the coverage of all priority targets almost two times faster than with the parameters considered before this study.

  18. The orbits of satellites of (22) Kalliope and (317) Roxane

    Science.gov (United States)

    Drummond, Jack D.; Reynolds, Odell; Buckman, Miles; Eickhoff, Mark

    2017-10-01

    Between October 2016 and February 2017 we imaged asteroid (22) Kalliope (10.3RC) a=243+/-6 km; P=11.5265+/-0.0204 d; T0=2457725.137+/-0.050; Pole[RA;Dec]=[ 96.2;-68.3]; e=0Roxane S/1 (PC) a=245+/-6 km; P=11.5858+/-0.0203 d; T0=2457721.631+/-0.051; Pole[RA;Dec]=[275.7;+68.8]; e= 0Roxane S/1 (RE) a=251+/-8 km; P=11.4927+/-0.0215 d; T0=2457717.730+/-0.126; Pole[RA;Dec]=[ 95.3; -67.8]; e=0.178+/-0.061ω=124+/-4Roxane S/1 (PE) a=249+/-7 km; P=11.5594+/-0.0190 d; T0=2457717.603+/-0.162; Pole[RADec]=[276.6+69.2]e=0.133+/-0.038ω= 230+/-5Roxane’s moon’s orbital pole is less than 4 degrees from the Ecliptic pole or Roxane’s orbital pole, but more than 22 degrees from Roxane’s rotational pole. Perhaps this indicates that the moon was captured from the Ecliptic plane rather than spun into Roxanne’s equatorial plane.The Starfire Optical Range’s 3.5 m telescope is the smallest ground based telescope used to derive orbits of asteroid satellites. Kalliope and Roxane follow our study of (87) Sylvia and its Romulus (Drummond, Reynolds, and Buckman (2016), Icarus 276, 107-115).

  19. Circular states of atomic hydrogen

    International Nuclear Information System (INIS)

    Lutwak, R.; Holley, J.; Chang, P.P.; Paine, S.; Kleppner, D.; Ducas, T.

    1997-01-01

    We describe the creation of circular states of hydrogen by adiabatic transfer of a Rydberg state in crossed electric and magnetic fields, and also by adiabatic passage in a rotating microwave field. The latter method permits rapid switching between the two circular states of a given n manifold. The two methods are demonstrated experimentally, and results are presented of an analysis of the field ionization properties of the circular states. An application for the circular states is illustrated by millimeter-wave resonance in hydrogen of the n=29→n=30 transition. copyright 1997 The American Physical Society

  20. Self-force correction to geodetic spin precession in Kerr spacetime

    Science.gov (United States)

    Akcay, Sarp

    2017-08-01

    We present an expression for the gravitational self-force correction to the geodetic spin precession of a spinning compact object with small, but non-negligible mass in a bound, equatorial orbit around a Kerr black hole. We consider only conservative backreaction effects due to the mass of the compact object (m1), thus neglecting the effects of its spin s1 on its motion; i.e., we impose s1≪G m12/c and m1≪m2, where m2 is the mass parameter of the background Kerr spacetime. We encapsulate the correction to the spin precession in ψ , the ratio of the accumulated spin-precession angle to the total azimuthal angle over one radial orbit in the equatorial plane. Our formulation considers the gauge-invariant O (m1) part of the correction to ψ , denoted by Δ ψ , and is a generalization of the results of Akcay et al. [Classical Quantum Gravity 34, 084001 (2017), 10.1088/1361-6382/aa61d6] to Kerr spacetime. Additionally, we compute the zero-eccentricity limit of Δ ψ and show that this quantity differs from the circular orbit Δ ψcirc by a gauge-invariant quantity containing the gravitational self-force correction to general relativistic periapsis advance in Kerr spacetime. Our result for Δ ψ is expressed in a manner that readily accommodates numerical/analytical self-force computations, e.g., in the radiation gauge, and paves the way for the computation of a new eccentric-orbit Kerr gauge invariant beyond the generalized redshift.

  1. Vortical null orbits, repulsive barriers, energy confinement in Kerr metric

    Energy Technology Data Exchange (ETDEWEB)

    Calvani, M [Padua Univ. (Italy). Ist. di Astronomia; De Felice, F

    1978-10-01

    The complete analytical description of the null trajectories in the field of a Kerr naked singularity is given. Two peculiar phenomena are described: the existence of repulsive barriers in the r < O world and the existence of null circular bound orbits which surround the singularity in 'shells'. They distribute around the surface at r = m, which is the position of the horizon in the extreme black-hole case; this suggests that a naked singularity 'remembers' the position of the last horizon.

  2. ON THE ORBIT OF EXOPLANET WASP-12b

    International Nuclear Information System (INIS)

    Campo, Christopher J.; Harrington, Joseph; Hardy, Ryan A.; Stevenson, Kevin B.; Nymeyer, Sarah; Lust, Nate B.; Blecic, Jasmina; Britt, Christopher B. T.; Bowman, William C.; Ragozzine, Darin; Anderson, David R.; Hellier, Coel; Maxted, Pierre F. L.; Collier-Cameron, Andrew; Wheatley, Peter J.; Loredo, Thomas J.; Deming, Drake; Hebb, Leslie; Pollaco, Don; West, Richard G.

    2011-01-01

    We observed two secondary eclipses of the exoplanet WASP-12b using the Infrared Array Camera on the Spitzer Space Telescope. The close proximity of WASP-12b to its G-type star results in extreme tidal forces capable of inducing apsidal precession with a period as short as a few decades. This precession would be measurable if the orbit had a significant eccentricity, leading to an estimate of the tidal Love number and an assessment of the degree of central concentration in the planetary interior. An initial ground-based secondary-eclipse phase reported by Lopez-Morales et al. (0.510 ± 0.002) implied eccentricity at the 4.5σ level. The spectroscopic orbit of Hebb et al. has eccentricity 0.049 ± 0.015, a 3σ result, implying an eclipse phase of 0.509 ± 0.007. However, there is a well-documented tendency of spectroscopic data to overestimate small eccentricities. Our eclipse phases are 0.5010 ± 0.0006 (3.6 and 5.8 μm) and 0.5006 ± 0.0007 (4.5 and 8.0 μm). An unlikely orbital precession scenario invoking an alignment of the orbit during the Spitzer observations could have explained this apparent discrepancy, but the final eclipse phase of Lopez-Morales et al. (0.510 ± +0.007 -0.006 ) is consistent with a circular orbit at better than 2σ. An orbit fit to all the available transit, eclipse, and radial-velocity data indicates precession at <1σ; a non-precessing solution fits better. We also comment on analysis and reporting for Spitzer exoplanet data in light of recent re-analyses.

  3. Perfect fluid tori orbiting Kehagias-Sfetsos naked singularities

    Science.gov (United States)

    Stuchlík, Z.; Pugliese, D.; Schee, J.; Kučáková, H.

    2015-09-01

    We construct perfect fluid tori in the field of the Kehagias-Sfetsos (K-S) naked singularities. These are spherically symmetric vacuum solutions of the modified Hořava quantum gravity, characterized by a dimensionless parameter ω M^2, combining the gravitational mass parameter M of the spacetime with the Hořava parameter ω reflecting the role of the quantum corrections. In dependence on the value of ω M^2, the K-S naked singularities demonstrate a variety of qualitatively different behavior of their circular geodesics that is fully reflected in the properties of the toroidal structures, demonstrating clear distinction to the properties of the torii in the Schwarzschild spacetimes. In all of the K-S naked singularity spacetimes the tori are located above an "antigravity" sphere where matter can stay in a stable equilibrium position, which is relevant for the stability of the orbiting fluid toroidal accretion structures. The signature of the K-S naked singularity is given by the properties of marginally stable tori orbiting with the uniform distribution of the specific angular momentum of the fluid, l= const. In the K-S naked singularity spacetimes with ω M^2 > 0.2811, doubled tori with the same l= const can exist; mass transfer between the outer torus and the inner one is possible under appropriate conditions, while only outflow to the outer space is allowed in complementary conditions. In the K-S spacetimes with ω M^2 < 0.2811, accretion from cusped perfect fluid tori is not possible due to the non-existence of unstable circular geodesics.

  4. Perfect fluid tori orbiting Kehagias-Sfetsos naked singularities

    Energy Technology Data Exchange (ETDEWEB)

    Stuchlik, Z.; Pugliese, D.; Schee, J.; Kucakova, H. [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Opava (Czech Republic)

    2015-09-15

    We construct perfect fluid tori in the field of the Kehagias-Sfetsos (K-S) naked singularities. These are spherically symmetric vacuum solutions of the modified Horava quantum gravity, characterized by a dimensionless parameter ωM{sup 2}, combining the gravitational mass parameter M of the spacetime with the Horava parameter ω, reflecting the role of the quantum corrections. In dependence on the value of ωM{sup 2}, the K-S naked singularities demonstrate a variety of qualitatively different behavior of their circular geodesics that is fully reflected in the properties of the toroidal structures, demonstrating clear distinction to the properties of the torii in the Schwarzschild spacetimes. In all of the K-S naked singularity spacetimes the tori are located above an @gantigravity@h sphere where matter can stay in a stable equilibrium position, which is relevant for the stability of the orbiting fluid toroidal accretion structures. The signature of the K-S naked singularity is given by the properties of marginally stable tori orbiting with the uniform distribution of the specific angular momentum of the fluid, l = const. In the K-S naked singularity spacetimes with ωM{sup 2} > 0.2811, doubled tori with the same l = const can exist; mass transfer between the outer torus and the inner one is possible under appropriate conditions, while only outflow to the outer space is allowed in complementary conditions. In the K-S spacetimes with ωM{sup 2} < 0.2811, accretion from cusped perfect fluid tori is not possible due to the non-existence of unstable circular geodesics. (orig.)

  5. The Global Precipitation Measurement (GPM) Spacecraft Power System Design and Orbital Performance

    Science.gov (United States)

    Dakermanji, George; Burns, Michael; Lee, Leonine; Lyons, John; Kim, David; Spitzer, Thomas; Kercheval, Bradford

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The spacecraft is in a circular 400 Km altitude, 65 degrees inclination nadir pointing orbit with a three year basic mission life. The solar array consists of two sun tracking wings with cable wraps. The panels are populated with triple junction cells of nominal 29.5% efficiency. One axis is canted by 52 degrees to provide power to the spacecraft at high beta angles. The power system is a Direct Energy Transfer (DET) system designed to support 1950 Watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s x 84p batteries operated in parallel as a single battery. The paper describes the power system design details, its performance to date and the lithium ion battery model that was developed for use in the energy balance analysis and is being used to predict the on-orbit health of the battery.

  6. Equatorial electrojet as part of the global circuit: a case-study from the IEEY

    Directory of Open Access Journals (Sweden)

    A. T. Kobea

    Full Text Available Geomagnetic storm-time variations often occur coherently at high latitude and the day-side dip equator where they affect the normal eastward Sq field. This paper presents an analysis of ground magnetic field and ionospheric electrodynamic data related to the geomagnetic storm which occured on 27 May 1993 during the International Equatorial Electrojet Year (IEEY experiment. This storm-signature analysis on the auroral, mid-latitude and equatorial ground field and ionospheric electrodynamic data leads to the identification of a sensitive response of the equatorial electrojet (EEJ to large-scale auroral return current: this response consists in a change of the eastward electric field during the pre-sunrise hours (0400-0600 UT coherently to the high-, mid-, and equatorial-latitude H decrease and the disappearance of the EEJ irregularities between the time-interval 0800-0950 UT. Subsequent to the change in h'F during pre-sunrise hours, the observed foF2 increase revealed an enhancement of the equatorial ionization anomaly (EIA caused by the high-latitude penetrating electric field. The strengthening of these irregularities attested by the Doppler frequency increase tracks the H component at the equator which undergoes a rapid increase around 0800 UT. The ∆H variations observed at the equator are the sum of the following components: SR, DP, DR, DCF and DT.

    Keywords. Equatorial electrojet · Magnetosphere-ionosphere interactions · Electric fields and currents · Auroral ionosphere · Ionospheric disturbances

  7. Molecular characterization of Cryptosporidium isolates from humans in Equatorial Guinea.

    Science.gov (United States)

    Blanco, María Alejandra; Iborra, Asunción; Vargas, Antonio; Nsie, Eugenia; Mbá, Luciano; Fuentes, Isabel

    2009-12-01

    The aim of the study was to perform a molecular characterization of clinical isolates of Cryptosporidium species from Equatorial Guinea. Standard laboratory methods were used to identify 35 cryptosporidiosis cases among 185 patients. PCR-RFLP successfully identified 34 Cryptosporidium species from these 35 cases, comprising C. parvum (52.9%), C. hominis (44.1%) and C. meleagridis (2.9%); over 90% of the species were isolated from HIV-positive patients. This is the first report of the molecular characterization of Cryptosporidium species isolated from humans in Equatorial Guinea and shows that zoonotic and anthroponotic transmission is present in this country.

  8. Nuclear reactor power for an electrically powered orbital transfer vehicle

    Science.gov (United States)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  9. Nuclear reactor power for an electrically powered orbital transfer vehicle

    International Nuclear Information System (INIS)

    Jaffe, L.; Beatty, R.; Bhandari, P.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant

  10. X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy of tetragonal Mn72Ge28 epitaxial thin film

    Science.gov (United States)

    Kim, Jinhyeok; Mizuguchi, Masaki; Inami, Nobuhito; Ueno, Tetsuro; Ueda, Shigenori; Takanashi, Koki

    2018-04-01

    An epitaxially grown Mn72Ge28 film with a tetragonal crystal structure was fabricated. It was clarified that the film had a perpendicular magnetization and a high perpendicular magnetic anisotropy energy of 14.3 Merg/cm3. The electronic structure was investigated by X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy. The obtained X-ray magnetic circular dichroism spectrum revealed that the Mn orbital magnetic moment governed the magnetocrystalline anisotropy of the Mn72Ge28 film. A doublet structure was observed for the Mn 2p3/2 peak of hard X-ray photoelectron spectrum, indicating the spin exchange interaction between the 2p core-hole and 3d valence electrons.

  11. Geology of the Venus equatorial region from Pioneer Venus radar imaging

    International Nuclear Information System (INIS)

    Senske, D.A.; Head, J.W.

    1989-01-01

    The surface characteristics and morphology of the equatorial region of Venus were first described by Masursky et al. who showed this part of the planet to be characterized by two topographic provinces, rolling plains and highlands, and more recently by Schaber who described and interpreted tectonic zones in the highlands. Using Pioneer Venus (PV) radar image data (15 deg S to 45 deg N), Senske and Head examined the distribution, characteristics, and deposits of individual volcanic features in the equatorial region, and in addition classified major equatorial physiographic and tectonic units on the basis of morphology, topographic signature, and radar properties derived from the PV data. Included in this classification are: plains (undivided), inter-highland tectonic zones, tectonically segmented linear highlands, upland rises, tectonic junctions, dark halo plains, and upland plateaus. In addition to the physiographic units, features interpreted as coronae and volcanic mountains have also been mapped. The latter four of the physiographic units along with features interpreted to be coronae

  12. Solid Angle Computations for a Circular Radiator and a Circular Detector

    Energy Technology Data Exchange (ETDEWEB)

    Konijn, J; Tollander, B

    1963-02-15

    The problem of particle detection, when using an isotropic neutron point source at different distances from a circular target or a radioactive source as seen by a circular detector, e. g. a solid state counter, is dealt with. Tables are given for different distances of the source when the reaction at the target has an isotropic or a cosine angular distribution in the laboratory system.

  13. Vertical Rise Velocity of Equatorial Plasma Bubbles Estimated from Equatorial Atmosphere Radar Observations and High-Resolution Bubble Model Simulations

    Science.gov (United States)

    Yokoyama, T.; Ajith, K. K.; Yamamoto, M.; Niranjan, K.

    2017-12-01

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPBs from a space weather point of view. The development of EPBs is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPBs which shows very turbulent internal structures such as bifurcation and pinching. As EPBs have field-aligned structures, the latitude range that is affected by EPBs depends on the apex altitude of EPBs over the dip equator. However, it was not easy to observe the apex altitude and vertical rise velocity of EPBs. Equatorial Atmosphere Radar (EAR) in Indonesia is capable of steering radar beams quickly so that the growth phase of EPBs can be captured clearly. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller compared to those observed in postsunset hours. Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The HIRB model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model.

  14. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...

  15. An Enduring Rapidly Moving Storm as a Guide to Saturn's Equatorial Jet's Complex Structure

    Science.gov (United States)

    Sanchez-Lavega, A.; Garcia-Melendo, E.; Perez-Hoyos, S.; Hueso, R.; Wong, M. H.; Simon, A.; Sanz-Requena, J. F.; Antunano, A.; Barrado-Izagirre, N.; Garate-Lopez, I.; hide

    2016-01-01

    Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn's equator a natural laboratory to test models of jets in giant planets. Here we report on a bright equatorial atmospheric feature imaged in 2015 that moved steadily at a high speed of 450/ms not measured since 1980-1981 with other equatorial clouds moving within an ample range of velocities. Radiative transfer models show that these motions occur at three altitude levels within the upper haze and clouds. We find that the peak of the jet (latitudes 10degN to 10degS) suffers intense vertical shears reaching + 2.5/ms/km, two orders of magnitude higher than meridional shears, and temporal variability above 1 bar altitude level.

  16. Larger CO2 source at the equatorial Pacific during the last deglaciation

    Science.gov (United States)

    Kubota, Kaoru; Yokoyama, Yusuke; Ishikawa, Tsuyoshi; Obrochta, Stephen; Suzuki, Atsushi

    2014-01-01

    While biogeochemical and physical processes in the Southern Ocean are thought to be central to atmospheric CO2 rise during the last deglaciation, the role of the equatorial Pacific, where the largest CO2 source exists at present, remains largely unconstrained. Here we present seawater pH and pCO2 variations from fossil Porites corals in the mid equatorial Pacific offshore Tahiti based on a newly calibrated boron isotope paleo-pH proxy. Our new data, together with recalibrated existing data, indicate that a significant pCO2 increase (pH decrease), accompanied by anomalously large marine 14C reservoir ages, occurred following not only the Younger Dryas, but also Heinrich Stadial 1. These findings indicate an expanded zone of equatorial upwelling and resultant CO2 emission, which may be derived from higher subsurface dissolved inorganic carbon concentration. PMID:24918354

  17. Towards Circular Business Models

    DEFF Research Database (Denmark)

    Guldmann, Eva; Remmen, Arne

    The present report concerns the practical process of developing initiatives based on the circular economy in eight Danish companies. The report outlines how the process of integrating the circular economy was approached in each of the participating companies during 2014 and 2015 and what came out...

  18. Upper ocean circulation modulation by phytoplankton concentration in the Equatorial Pacific and the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Sammarco, P.; Muneyama, K.; Sato, T.; AjoyKumar, A.; Frouin, R.

    gradient in the upper ocean. This strengthens the geostrophically balanced westward currents in both side of the equatorial wave-guide (within 5 degree bands). Once these currents reach the western Pacific coast, they feed the Equatorial undercurrent (EUC...

  19. An overview on the equatorial electrojet theoretical grounds

    International Nuclear Information System (INIS)

    Zamlutti, C.J.; Sobral, J.H.A.; Abdu, M.A.

    1988-01-01

    The grounds on which the equatorial electrojet theory is based are reexamined in a way as to suggest specific additional implementations in the existing electrodynamical modeling of this phenomena, making use of now existing improved computer processing speeds. (author) [pt

  20. A study of evolution/suppression parameters of equatorial postsunset plasma instability

    Directory of Open Access Journals (Sweden)

    O. S. Oyekola

    2009-01-01

    Full Text Available Evening equatorial pre-reversal vertical ion E×B drift (VZP and the peak of the ionospheric F2 maximum altitude (hmF2P of the postsunset equatorial F-layer, which are the essential parameters requisite for the generation or inhibition of postsunset bottomside equatorial irregularities were deduced from ionosonde observations made in the Africa region (Ouagadougou: ~3° N dip latitude between January 1987 and December 1990 for solar activity minimum, medium, and maxima (F10.7=85, 141, 214, and 190, respectively for quiet geomagnetic conditions. We investigate variations of evening equatorial pre-reversal drift and the corresponding altitude at four levels of solar activity. Our observations show strong variations with solar variability. Correlation analysis between these parameters indicates that the correlation coefficient value between hmF2P versus VZP decreases considerably with increasing solar flux value. There seems to be no significant link between these parameters under high solar activity, especially for solar intensity F10.7>200 units. We conclude that meridional neutral wind in the F-region contributes substantially to the variations of the pre-reversal vertical plasma drifts enhancement and the peak hmF2, particularly the electrodynamics during twilight high solar flux conditions.

  1. ENSO-driven nutrient variability recorded by central equatorial Pacific corals

    Science.gov (United States)

    LaVigne, M.; Nurhati, I. S.; Cobb, K. M.; McGregor, H. V.; Sinclair, D. J.; Sherrell, R. M.

    2012-12-01

    Recent evidence for shifts in global ocean primary productivity suggests that surface ocean nutrient availability is a key link between global climate and ocean carbon cycling. Time-series records from satellite, in situ buoy sensors, and bottle sampling have documented the impact of the El Niño Southern Oscillation (ENSO) on equatorial Pacific hydrography and broad changes in biogeochemistry since the late 1990's, however, data are sparse prior to this. Here we use a new paleoceanographic nutrient proxy, coral P/Ca, to explore the impact of ENSO on nutrient availability in the central equatorial Pacific at higher-resolution than available from in situ nutrient data. Corals from Christmas (157°W 2°N) and Fanning (159°W 4°N) Islands recorded a well-documented decrease in equatorial upwelling as a ~40% decrease in P/Ca during the 1997-98 ENSO cycle, validating the application of this proxy to Pacific Porites corals. We compare the biogeochemical shifts observed through the 1997-98 event with two pre-TOGA-TAO ENSO cycles (1982-83 and 1986-87) reconstructed from a longer Christmas Island core. All three corals revealed ~30-40% P/Ca depletions during ENSO warming as a result of decreased regional wind stress, thermocline depth, and equatorial upwelling velocity. However, at the termination of each El Niño event, surface nutrients did not return to pre-ENSO levels for ~4-12 months after, SST as a result of increased biological draw down of surface nutrients. These records demonstrate the utility of high-resolution coral nutrient archives for understanding the impact of tropical Pacific climate on the nutrient and carbon cycling of this key region.

  2. Intraseasonal vertical velocity variation caused by the equatorial wave in the central equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Horii, T.; Masumoto, Y.; Ueki, I.; PrasannaKumar, S.; Mizuno, K.

    to the theoretical solution of the equatorial waves [Matsuno, 1966] and the phase speed of the baroclinic mode, the wave that has meridional current on the equator with a quasi-biweekly period is the anti-symmetric mixed Rossby-gravity wave. In the wave... and conclusions are given in section 5. 2. Field Experiment, Data, and Methods 2.1. MISMO Ocean Observation [8] The goal of MISMO was to observe atmospheric conditions and variability associated with intraseasonal disturbances and resulting ocean responses...

  3. Circularity and Lambda Abstraction

    DEFF Research Database (Denmark)

    Danvy, Olivier; Thiemann, Peter; Zerny, Ian

    2013-01-01

    unknowns from what is done to them, which we lambda-abstract with functions. The circular unknowns then become dead variables, which we eliminate. The result is a strict circu- lar program a la Pettorossi. This transformation is reversible: given a strict circular program a la Pettorossi, we introduce...

  4. Fast-PPP assessment in European and equatorial region near the solar cycle maximum

    Science.gov (United States)

    Rovira-Garcia, Adria; Juan, José Miguel; Sanz, Jaume

    2014-05-01

    The Fast Precise Point Positioning (Fast-PPP) is a technique to provide quick high-accuracy navigation with ambiguity fixing capability, thanks to an accurate modelling of the ionosphere. Indeed, once the availability of real-time precise satellite orbits and clocks is granted to users, the next challenge is the accuracy of real-time ionospheric corrections. Several steps had been taken by gAGE/UPC to develop such global system for precise navigation. First Wide-Area Real-Time Kinematics (WARTK) feasibility studies enabled precise relative continental navigation using a few tens of reference stations. Later multi-frequency and multi-constellation assessments in different ionospheric scenarios, including maximum solar-cycle conditions, were focussed on user-domain performance. Recently, a mature evolution of the technique consists on a dual service scheme; a global Precise Point Positioning (PPP) service, together with a continental enhancement to shorten convergence. A end to end performance assessment of the Fast-PPP technique is presented in this work, focussed in Europe and in the equatorial region of South East Asia (SEA), both near the solar cycle maximum. The accuracy of the Central Processing Facility (CPF) real-time precise satellite orbits and clocks is respectively, 4 centimetres and 0.2 nanoseconds, in line with the accuracy of the International GNSS Service (IGS) analysis centres. This global PPP service is enhanced by the Fast-PPP by adding the capability of global undifferenced ambiguity fixing thanks to the fractional part of the ambiguities determination. The core of the Fast-PPP is the capability to compute real-time ionospheric determinations with accuracies at the level or better than 1 Total Electron Content Unit (TECU), improving the widely-accepted Global Ionospheric Maps (GIM), with declared accuracies of 2-8 TECU. This large improvement in the modelling accuracy is achieved thanks to a two-layer description of the ionosphere combined with

  5. Orbital angular momentum of general astigmatic modes

    International Nuclear Information System (INIS)

    Visser, Jorrit; Nienhuis, Gerard

    2004-01-01

    We present an operator method to obtain complete sets of astigmatic Gaussian solutions of the paraxial wave equation. In case of general astigmatism, the astigmatic intensity and phase distribution of the fundamental mode differ in orientation. As a consequence, the fundamental mode has a nonzero orbital angular momentum, which is not due to phase singularities. Analogous to the operator method for the quantum harmonic oscillator, the corresponding astigmatic higher-order modes are obtained by repeated application of raising operators on the fundamental mode. The nature of the higher-order modes is characterized by a point on a sphere, in analogy with the representation of polarization on the Poincare sphere. The north and south poles represent astigmatic Laguerre-Gaussian modes, similar to circular polarization on the Poincare sphere, while astigmatic Hermite-Gaussian modes are associated with points on the equator, analogous to linear polarization. We discuss the propagation properties of the modes and their orbital angular momentum, which depends on the degree of astigmatism and on the location of the point on the sphere

  6. Spin dynamics of electron beams in circular accelerators; Spindynamik von Elektronenstrahlen in Kreisbeschleunigern

    Energy Technology Data Exchange (ETDEWEB)

    Boldt, Oliver

    2014-04-15

    Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.

  7. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    Science.gov (United States)

    Simon-Miller, A. A.; Rogers, John H.; Gierasch, Peter J.; Choi, David; Allison, Michael; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    We have conducted a detailed study of the cloud features in the strong southern equatorial wind jet near 7.5 S planetographic latitude. To understand the apparent variations in average zonal wind jet velocity at this latitude [e.g.. 1,2,3], we have searched for variations iIi both feature latitude and velocity with longitude and time. In particular, we focused on the repetitive chevron-shaped dark spots visible on most dates and the more transient large anticyclonic system known as the South Equatorial Disturbance (SED). These small dark spots are interpreted as cloud holes, and are often used as material tracers of the wind field.

  8. Test of the periodic-orbit approximation in n-disk systems

    International Nuclear Information System (INIS)

    Wirzba, A.

    1993-01-01

    The scattering of a point particle in two dimensions from two (or three) equally-sized (and spaced) circular hard disks is one of the simplest classically hyperbolic scattering problems. Because of this simplicity such systems are well suited for the study of the semiclassical periodic-orbit approximation in the cycle expansion of the dynamical zeta function applied to a quantum-mechanical scattering problem. Especially the predictions of the semiclassical cycle expansion for the quantum-mechanical resonances can be tested in these n-disk systems. Whereas for high wave numbers the cycle expansion gives quite accurate results, there are systematic deviations for low wave numbers from the exact quantum-mechanical values. The low-lying quantum-mechanical resonance poles of the 2- and 3-disk problem are constructed and compared to the cycle-expansion results. The characteristic determinant of the scattering matrix is expanded in terms of simple traces which in turn are related to the classical periodic orbits and possible creeping contributions. It will be shown that for large separations of the disks the correct resonance-pole positions can be extracted just from the knowledge of the lowest traces whose semiclassical limit are the fundamental periodic orbits. Creeping-orbit corrections are shown to be small. (orig.)

  9. Dynamics of a charged particle in a circularly polarized travelling electromagnetic wave. Self-consistent model for the wave-particle dynamical interaction

    International Nuclear Information System (INIS)

    Bourdier, A.

    1999-01-01

    This work concerns mainly the dynamics of a charged particle in an electromagnetic wave. It is a first step in elaborating a more general model permitting to predict the wave-particle interaction. We show how deriving a first integral gives an idea on how to create an electron current in a cold electron plasma. We present results which can be used to test the 2D and 3D Vlasov-Maxwell codes being built up in CEA-DAM. These codes will allow the calcination of the magnetic field created by an electromagnetic wave like the one due to the inverse Faraday effect when a circularly polarized wave drives the electrons of a plasma into circular orbits. (author)

  10. The generalized circular model

    NARCIS (Netherlands)

    Webers, H.M.

    1995-01-01

    In this paper we present a generalization of the circular model. In this model there are two concentric circular markets, which enables us to study two types of markets simultaneously. There are switching costs involved for moving from one circle to the other circle, which can also be thought of as

  11. Best Practice Examples of Circular Business Models

    DEFF Research Database (Denmark)

    Guldmann, Eva

    Best practice examples of circular business models are presented in this report. The purpose is to inform and inspire interested readers, in particular companies that aspire to examine the potentials of the circular economy. Circular business models in two different sectors are examined, namely...... the textile and clothing sector as well as the durable goods sector. In order to appreciate the notion of circular business models, the basics of the circular economy are outlined along with three frameworks for categorizing the various types of circular business models. The frameworks take point of departure...... in resource loops, value bases and business model archetypes respectively, and they are applied for analysing and organizing the business models that are presented throughout the report. The investigations in the report show that circular business models are relevant to businesses because they hold...

  12. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1997-10-01

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  13. Preliminary report: STOIC CGCM intercomparison - equatorial sections

    International Nuclear Information System (INIS)

    Davey, M; Huddleston, M; Sperber, K R.

    1999-01-01

    An intercomparison and assessment of the tropical behaviour of coupled general circulation models (CGCMs) is being carried out, to identify common strengths and weaknesses and thus guide future CGCM development. The work is being carried out as part of the CLIVAR climate research programme, as a WG-SIP (Working Group on Seasonal to Interannual Prediction) project called STOIC (Study of Tropical Oceans In CGCMs), organised by Michael Davey. This project complements a companion sub-project called ENSIP (El Ni no Simulation Intercomparison Project) organised by Mojib Latif (Max- Planck-Institute for Meteorology) that focusses on equatorial Pacific CGCM behaviour (Latif et al. 1999). Previous coupled model assessments (Mechoso et al. 1995, Neelin et al. 1992, and ENSIP) have focussed on tropical Pacific behaviour. The aim of STOIC is to look at model performance in all tropical ocean regions. This status report contains a sample of the STOIC assessment work, highlighting mean and inter- annual equatorial sea surface temperatures and zonal windstresses. The intention is to submit STOIC and ENSIP papers in mid-1999 for publication together in a refereed journal

  14. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  15. Shutdown dose rates at ITER equatorial ports considering radiation cross-talk from torus cryopump lower port

    Energy Technology Data Exchange (ETDEWEB)

    Juárez, Rafael, E-mail: rjuarez@ind.uned.es [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain); Pampin, Raul [F4E, Torres Diagonal Litoral B3, Josep Pla 2, Barcelona 08019 (Spain); Levesy, Bruno [ITER Organization, 13115 Route de Vinon sur Verdon, St Paul Lez Durance (France); Moro, Fabio [ENEA, Via Enrico Fermi 45, Frascati, Rome (Italy); Suarez, Alejandro [ITER Organization, 13115 Route de Vinon sur Verdon, St Paul Lez Durance (France); Sanz, Javier [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain)

    2015-11-15

    Shutdown dose rates for planned maintenance purposes is an active research field in ITER. In this work the radiation (neutron and gamma) cross-talk between ports in the most conservative case foreseen in ITER is investigated: the presence of a torus cryopump lower port, mostly empty for pumping efficiency reasons. There will be six of those ports: #4, #6, #10, #12, #16 and #18. The equatorial ports placed above them will receive a significant amount of additional radiation affecting the shutdown dose rates during in situ maintenance activities inside the cryostat, and particularly in the port interspace area. In this study a general situation to all the equatorial ports placed above torus cryopump lower ports is considered: a generic diagnostics equatorial port placed above the torus cryopump lower port (LP#4). In terms of shutdown dose rates at equatorial port interspace after 10{sup 6} s of cooling time, 405 μSv/h has been obtained, of which 160 μSv/h (40%) are exclusively due to radiation cross-talk from a torus cryopump lower port. Equatorial port activation due to only “local neutrons” contributes 166 μSv/h at port interspace, showing that radiation cross-talk from such a lower port is a phenomenon comparable in magnitude to the neutron leakage though the equatorial port plug.

  16. Possible ionospheric preconditioning by shear flow leading to equatorial spread F

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2005-10-01

    Full Text Available Vertical shear in the zonal plasma drift speed is apparent in incoherent and coherent scatter radar observations of the bottomside F region ionosphere made at Jicamarca from about 1600–2200 LT. The relative importance of the factors controlling the shear, which include competition between the E and F region dynamos as well as vertical currents driven in the E and F regions at the dip equator, is presently unknown. Bottom-type scattering layers arise in strata where the neutral and plasma drifts differ widely, and periodic structuring of irregularities within the layers is telltale of intermediate-scale waves in the bottomside. These precursor waves appear to be able to seed ionospheric interchange instabilities and initiate full-blown equatorial spread F. The seed or precursor waves may be generated by a collisional shear instability. However, assessing the viability of shear instability requires measurements of the same parameters needed to understand shear flow quantitatively - thermospheric neutral wind and off-equatorial conductivity profiles. Keywords. Ionosphere (Equatorial ionosphere; ionospheric irregularities – Space plasma physics (Waves and instabilities

  17. Characterisation of tectonic lineaments in the Central Equatorial ...

    African Journals Online (AJOL)

    Characterisation of tectonic lineaments in the Central Equatorial Atlantic region of Africa using Bouguer anomaly gravity data. ... Ife Journal of Science ... 3-D standard Euler deconvolution analysis was carried out on Bouguer anomaly gravity data for configuration definition and approximate depth estimate of tectonic ...

  18. Spatial relationship of 1-meter equatorial spread-F irregularities and depletions in total electron content

    International Nuclear Information System (INIS)

    Tsunoda, R.T.; Towle, D.M.

    1979-01-01

    An experiment was conducted at Kwajalein Atoll, Marshall Islands to investigate the spatial relationship of 1-m equatorial spread-F irregularities to total electron content (TEC) depletions. A high-power radar was operated (1) in a backscatter scan mode to spatially map the distribution of 1-m irregularities, and (2) in a dual-frequency, satellite-track mode to obtain the longitudinal TEC variations. We show that radar backscatter ''plumes'' found in the disturbed, nighttime equatorial ionosphere are longitudinally coincident with TEC depletions. We suggest that the TEC depletions are probably due to the presence of plasma ''bubbles'' in the equatorial F layer

  19. Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini

    Science.gov (United States)

    Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.

    2013-01-01

    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.

  20. Seasonal cycle of cross-equatorial flow in the central Indian Ocean

    Science.gov (United States)

    Wang, Yi; McPhaden, Michael J.

    2017-05-01

    This study investigates the seasonal cycle of meridional currents in the upper layers of central equatorial Indian Ocean using acoustic Doppler current profiler (ADCP) and other data over the period 2004-2013. The ADCP data set collected along 80.5°E is the most comprehensive collection of direct velocity measurements in the central Indian Ocean to date, providing new insights into the meridional circulation in this region. We find that mean volume transport is southward across the equator in the central Indian Ocean in approximate Sverdrup balance with the wind stress curl. In addition, mean westerly wind stress near the equator drives convergent Ekman flow in the surface layer and subsurface divergent geostrophic flow in the thermocline at 50-150 m depths. In response to a mean northward component of the surface wind stress, the maximum surface layer convergence is shifted off the equator to between 0.5° and 1°N. Evidence is also presented for the existence of a shallow equatorial roll consisting of a northward wind-driven surface drift overlaying the southward directed subsurface Sverdrup transport. Seasonal variations are characterized by cross-equatorial transports flowing from the summer to the winter hemisphere in quasi-steady Sverdrup balance with the wind stress curl. In addition, semiannually varying westerly monsoon transition winds lead to semiannual enhancements of surface layer Ekman convergence and geostrophic divergence in the thermocline. These results quantify expectations from ocean circulation theories for equatorial Indian Ocean meridional circulation patterns with a high degree of confidence given the length of the data records.

  1. Influence of biomass burning emissions on precipitation chemistry in the equatorial forests of Africa

    International Nuclear Information System (INIS)

    Lacaux, J.P.; Lefeivre, B.; Delmas, R.A.; Cros, B.; Andreae, M.O.

    1991-01-01

    As part of the DESCAFE program (Dynamics and Chemistry of the Atmosphere in Equatorial Forest), measurements of precipitation chemistry were made at two sampling sites of the equatorial forest in the Republic of Congo. The measurements were made in order to identify and compare atmospheric sources of gases and particles (mainly biogenic sources and emissions from burning vegetation)

  2. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  3. Biogeochemical impact of a model western iron source in the Pacific Equatorial Undercurrent

    OpenAIRE

    Slemons, L.; Gorgues, T.; Aumont, Olivier; Menkès, Christophe; Murray, J. W.

    2009-01-01

    Trace element distributions in the source waters of the Pacific Equatorial Undercurrent (EUC) show the existence of elevated total acid-soluble iron concentrations. This region has been suggested to contribute enough bioavailable iron to regulate interannual and interglacial variability in biological productivity downstream in the high-nitrate low-chlorophyll upwelling zone of the eastern equatorial Pacific. We investigated the advection and first-order biogeochemical impact of an imposed, da...

  4. Characteristics of Volcanic Stratospheric Aerosol Layer Observed by CALIOP and Ground Based Lidar at Equatorial Atmosphere Radar Site

    Science.gov (United States)

    Abo, Makoto; Shibata, Yasukuni; Nagasawa, Chikao

    2018-04-01

    We investigated the relation between major tropical volcanic eruptions in the equatorial region and the stratospheric aerosol data, which have been collected by the ground based lidar observations at at Equatorial Atmosphere Radar site between 2004 and 2015 and the CALIOP observations in low latitude between 2006 and 2015. We found characteristic dynamic behavior of volcanic stratospheric aerosol layers over equatorial region.

  5. A Conceptual Framework for Circular Design

    Directory of Open Access Journals (Sweden)

    Mariale Moreno

    2016-09-01

    Full Text Available Design has been recognised in the literature as a catalyst to move away from the traditional model of take-make-dispose to achieve a more restorative, regenerative and circular economy. As such, for a circular economy to thrive, products need to be designed for closed loops, as well as be adapted to generate revenues. This should not only be at the point of purchase, but also during use, and be supported by low-cost return chains and reprocessing structures, as well as effective policy and regulation. To date, most academic and grey literature on the circular economy has focused primarily on the development of new business models, with some of the latter studies addressing design strategies for a circular economy, specifically in the area of resource cycles and design for product life extension. However, these studies primarily consider a limited spectrum of the technical and biological cycles where materials are recovered and restored and nutrients (e.g., materials, energy, water are regenerated. This provides little guidance or clarity for designers wishing to design for new circular business models in practice. As such, this paper aims to address this gap by systematically analysing previous literature on Design for Sustainability (DfX (e.g., design for resource conservation, design for slowing resource loops and whole systems design and links these approaches to the current literature on circular business models. A conceptual framework is developed for circular economy design strategies. From this conceptual framework, recommendations are made to enable designers to fully consider the holistic implications for design within a circular economy.

  6. Asymptotic theory of circular polarization memory.

    Science.gov (United States)

    Dark, Julia P; Kim, Arnold D

    2017-09-01

    We establish a quantitative theory of circular polarization memory, which is the unexpected persistence of the incident circular polarization state in a strongly scattering medium. Using an asymptotic analysis of the three-dimensional vector radiative transfer equation (VRTE) in the limit of strong scattering, we find that circular polarization memory must occur in a boundary layer near the portion of the boundary on which polarized light is incident. The boundary layer solution satisfies a one-dimensional conservative scattering VRTE. Through a spectral analysis of this boundary layer problem, we introduce the dominant mode, which is the slowest-decaying mode in the boundary layer. To observe circular polarization memory for a particular set of optical parameters, we find that this dominant mode must pass three tests: (1) this dominant mode is given by the largest, discrete eigenvalue of a reduced problem that corresponds to Fourier mode k=0 in the azimuthal angle, and depends only on Stokes parameters U and V; (2) the polarization state of this dominant mode is largely circular polarized so that |V|≫|U|; and (3) the circular polarization of this dominant mode is maintained for all directions so that V is sign-definite. By applying these three tests to numerical calculations for monodisperse distributions of Mie scatterers, we determine the values of the size and relative refractive index when circular polarization memory occurs. In addition, we identify a reduced, scalar-like problem that provides an accurate approximation for the dominant mode when circular polarization memory occurs.

  7. Detection of radiation from a heated and modulated equatorial electrojet current system

    International Nuclear Information System (INIS)

    Lunnen, R.J.; Lee, H.S.; Ferraro, A.J.; Collins, T.W.

    1984-01-01

    In May 1983, ionospheric heating experiments were conducted using the very high frequency radar facility at Lima, Peru. Experiments involving high frequency heating of the ionosphere were successfully conducted during 1982 at Islote, Puerto Rico. These local experiments had characterized the signal radiated from a heated and modulated ionospheric current system near the mid-latitudes. A long-path signal had also been received in September 1982 at Salinas, Puerto Rico from a mid-day equatorial electrojet, heated and modulated by the Jicamarca facility. The authors have investigated the characteristics of the local signal that would be radiated from a strong equatorial electrojet when heated and modulated, and report here that at the geomagnetic equator they were similar to, but less intense than, those observed at Arecibo, Puerto Rico due to parameter differences. This radiation is believed to be the first detected from a heated and modulated equatorial electrojet current system in the Western Hemisphere. (author)

  8. Survival probability of precipitations and rain attenuation in tropical and equatorial regions

    Science.gov (United States)

    Mohebbi Nia, Masoud; Din, Jafri; Panagopoulos, Athanasios D.; Lam, Hong Yin

    2015-08-01

    This contribution presents a stochastic model useful for the generation of a long-term tropospheric rain attenuation time series for Earth space or a terrestrial radio link in tropical and equatorial heavy rain regions based on the well-known Cox-Ingersoll-Ross model previously employed in research in the fields of finance and economics. This model assumes typical gamma distribution for rain attenuation in heavy rain climatic regions and utilises the temporal dynamic of precipitation collected in equatorial Johor, Malaysia. Different formations of survival probability are also discussed. Furthermore, the correlation between these probabilities and the Markov process is determined, and information on the variance and autocorrelation function of rain events with respect to the particular characteristics of precipitation in this area is presented. The proposed technique proved to preserve the peculiarities of precipitation for an equatorial region and reproduce fairly good statistics of the rain attenuation correlation function that could help to improve the prediction of dynamic characteristics of rain fade events.

  9. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    Science.gov (United States)

    Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.

    2018-06-01

    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.

  10. Analysis of Hot Ions Detected during Equatorial Orbits of the Cassini Spacecraft at Saturn using the Convected Kappa Distribution Function and a Comparison to Voyager and Galileo Measurements at Jupiter

    Science.gov (United States)

    Kane, M.; Mitchell, D. G.; Carbary, J. F.; Hill, M. E.; Dialynas, K.; Mauk, B.; Krimigis, S. M.

    2017-12-01

    An extensive analysis of Cassini INCA and CHEMS measurements of 5-149 keV ions acquired during all equatorial orbits has been completed using a 3-D convected kappa distribution model. The computed plasma azimuthal speed, expressed as a fraction of the local corotation speed, decreases sharply with increasing distance from Saturn. The oxygen ion profile follows the hydrogen ion trend. For both species, the polar convection speed is the smallest of the 3 velocity components, and is centered about zero, but the radial speed has a significant radially outward component. Further, the radial component is enhanced in the pre-dawn sector. The hydrogen and oxygen temperatures increase with decreasing distance to Saturn. The calculated pattern of convection is consistent with an empirical model of plasma convection that includes outward radial transport and escape of plasma in a dawnside boundary layer of plasma entrained by the dawn magnetosheath flow. When the model convection pattern is scaled to the sub-solar magnetopause distance and to the sizes of Jupiter and Saturn, the pattern agrees with that derived from analysis of hot ions detected by the LECP detector on Voyager and the EPD instrument on Galileo. This and previous analysis of hot ion distributions has shown that the convected kappa distribution, with isotropy assumed in the plasma rest frame, has well described hot ion observed fluxes within a limited range of ion energies and has produced meaningful and ordered physical plasma parameters including plasma bulk velocity vectors, kappa distribution temperature profiles, and the general magnetospheric convection pattern at Jupiter and Saturn.

  11. The Orbital Angular Momentum Modes Supporting Fibers Based on the Photonic Crystal Fiber Structure

    Directory of Open Access Journals (Sweden)

    Hu Zhang

    2017-10-01

    Full Text Available The orbital angular momentum (OAM of light can be another physical dimension that we exploit to make multiplexing in the spatial domain. The design of the OAM mode supporting fiber attracts many attentions in the field of the space division multiplexing (SDM system. This paper reviews the recent progresses in photonic crystal fiber (PCF supporting OAM modes, and summarizes why a PCF structure can be used to support stable OAM transmission modes. The emphasis is on the circular PCFs, which possess many excellent features of transmission performance, such as good-quality OAM modes, enough separation of the effective indices, low confinement loss, flat dispersion, a large effective area, and a low nonlinear coefficient. We also compare the transmission properties between the circular PCF and the ring core fiber, as well as the properties between the OAM EDFA based on circular PCF and the OAM EDFA based on the ring core fiber. At last, the challenges and prospects of OAM fibers based on the PCF structure are also discussed.

  12. Radar observation of the equatorial counter-electrojet

    International Nuclear Information System (INIS)

    Hanuise, C.; Crochet, M.; Gouin, P.; Ogubazghi, Ghebrebrhan

    1979-01-01

    Electron drift velocity in the equatorial electrojet has been measured for a few years by coherent radar techniques in Africa. For the first time such measurements were performed during a strong reversal of the ionospheric current dubbed 'counter-electrojet'. These observations agree with the theories of the plasma instabilities at the origin of the electron density irregularities giving the radar echoes

  13. Collisional Rayleigh-Taylor instability and shear-flow in equatorial Spread-F plasma

    Directory of Open Access Journals (Sweden)

    N. Chakrabarti

    2003-05-01

    Full Text Available Collisional Rayleigh-Taylor (RT instability is considered in the bottom side of the equatorial F-region. By a novel nonmodal calculation it is shown that for an applied shear flow in equilibrium, the growth of the instability is considerably reduced. Finite but small amounts of diffusion enhances the stabilization process. The results may be relevant to the observations of long-lived irregularities at the bottom-side of the F-layer.Key words. Ionosphere (ionospheric irregularities, equatorial ionosphere, plasma waves and instabilities

  14. How to Assess Product Performance in the Circular Economy? Proposed Requirements for the Design of a Circularity Measurement Framework

    OpenAIRE

    Saidani , Michael; YANNOU , Bernard; Leroy , Yann; Cluzel , François

    2017-01-01

    International audience; Assessing product circularity performance is not straightforward. Meanwhile, it gains increasingly importance for businesses and industrial practitioners who are willing to effectively take benefits from circular economy promises. Thus, providing methods and tools to evaluate then enhance product performance—in the light of circular economy—becomes a significant but still barely addressed topic. Following a joint agreement on the need to measure product circularity per...

  15. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    Energy Technology Data Exchange (ETDEWEB)

    Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim, E-mail: ekarimi@uottawa.ca [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Boyd, Robert W. [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2014-09-08

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.

  16. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    International Nuclear Information System (INIS)

    Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim; Boyd, Robert W.

    2014-01-01

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.

  17. An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet

    Science.gov (United States)

    Tang, C. C. H.

    1986-01-01

    This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.

  18. An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet

    Science.gov (United States)

    Tang, C. C. H.

    1986-08-01

    This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.

  19. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuetao; Li, Wen; Schlegel, H. Bernhard, E-mail: hbs@chem.wayne.edu [Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (United States)

    2016-08-28

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C{sub 2} core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H{sub 2}CCH{sup +} ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C{sub 2}H{sub 3}{sup +} has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μm cosine squared pulses with peak intensity of 5.6 × 10{sup 13} W/cm{sup 2} and 3.15 × 10{sup 13} W/cm{sup 2}, respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C{sub 2}H{sub 3}{sup +}. The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C{sub 2} core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C{sub 2} core of protonated acetylene.

  20. Circular Updates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Circular Updates are periodic sequentially numbered instructions to debriefing staff and observers informing them of changes or additions to scientific and specimen...

  1. Central Equatorial Pacific Experiment (CEPEX). Design document

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The Earth`s climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27{degree}C, but never 31{degree}C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.

  2. Effect of geomagnetic storm conditions on the equatorial ionization anomaly and equatorial temperature anomaly

    Science.gov (United States)

    Bharti, Gaurav; Bag, T.; Sunil Krishna, M. V.

    2018-03-01

    The effect of the geomagnetic storm on the equatorial ionization anomaly (EIA) and equatorial temperature anomaly (ETA) has been studied using the atomic oxygen dayglow emissions at 577.7 nm (OI 557.7 nm) and 732.0 nm (OII 732.0 nm). For the purpose of this study, four intense geomagnetic storms during the ascending phase of solar cycle 24 have been considered. This study is primarily based on the results obtained using photochemical models with necessary inputs from theoretical studies and experimental observations. The latest reaction rate coefficients, quantum yields and the corresponding cross-sections have also been incorporated in these models. The volume emission rate of airglow emissions has been calculated using the neutral densities from NRLMSISE-00 and charged densities from IRI-2012 model. The modeled volume emission rate (VER) for OI 557.7 nm shows a positive correlation with the Dst index at 150 km and negative correlation with Dst at 250 and 280 km altitudes. Latitudinal profile of the greenline emission rate at different altitudes show a distinct behaviour similar to what has been observed in EIA with crests on either sides of the equator. The EIA crests are found to show poleward movement in the higher altitude regions. The volume emission rate of 732.0 nm emission shows a strong enhancement during the main phase of the storm. The changes observed in the airglow emission rates are explained with the help of variations induced in neutral densities and parameters related to EIA and ETA. The latitudinal variation of 732.0 nm emission rate is correlated to the variability in EIA during the storm period.

  3. Global mode of Pi2 waves in the equatorial region

    International Nuclear Information System (INIS)

    Kitamura, Tai-ichi; Saka, Ousuke; Shimoizumi, Masashi

    1988-01-01

    Fluxgate magnetometers with accurate timing data logger were set up at two equatorial stations (Garous-Marous and Huancayo), and also at a middle latitude station (Kuju). The phase of Pi2 waves is compared among these stations. It is found that 1) Pi2 pulsations in low and equatorial latitudes are linearly polarized approximately along the magnetic meridian, 2) phase difference of the H component of Pi2 waves at different stations is much less than 1 - 10 of the pulsation period despite a large longitudinal separation (∼ 90 deg) of the stations, showing the so-called azimuthal wave number, m, to be much less than unity and 3) phase difference of the D component at different stations is variable. (author)

  4. Ongoing Analysis of Jupiter's Equatorial Hotspots and Plumes from Cassini

    Science.gov (United States)

    Choi, D. S.; Showmwn, A. P.; Vasavada, A. R.; Simon-Miller, A. A.

    2012-01-01

    We present updated results from our ongoing analysis of Cassini observations of Jupiter's equatorial meteorology. For two months preceding the spacecraft's closest approach of the planet, the ISS instrument onboard Cassini regularly imaged the atmosphere of Jupiter. We created time-lapse movies from this period that show the complex activity and interactions of the equatorial atmosphere. During this period, hot spots exhibited significant variations in size and shape over timescales of days and weeks. Some of these changes appear to be a result of interactions with passing vortex systems in adjacent latitudes. Strong anticyclonic gyres to the southeast of the dark areas converge with flow from the west and appear to circulate into a hot spot at its southwestern corner.

  5. Iron sources and pathways into the Pacific Equatorial Undercurrent

    NARCIS (Netherlands)

    Qin, Xuerong; Menviel, Laurie; Sen Gupta, Alex; van Sebille, Erik

    2016-01-01

    Using a novel observationally constrained Lagrangian iron model forced by outputs from an eddy-resolving biogeochemical ocean model, we examine the sensitivity of the Equatorial Undercurrent (EUC) iron distribution to EUC source region iron concentrations. We find that elevated iron concentrations

  6. Circular RNAs as Promising Biomarkers: A mini-review

    Directory of Open Access Journals (Sweden)

    Nadiah Abu

    2016-08-01

    Full Text Available The interest in circular RNAs has resurfaced in the past few years. What was considered as junk for nearly two decades is now one of the most interesting molecules. Circular RNAs are non-coding RNAs that are formed by back-splicing events and have covalently closed loops with no poly-adenylated tails. The regulation of circular RNAs is distinctive and they are selectively abundant in different types of tissues. Based on the current knowledge of circular RNAs, these molecules have the potential to be the next big thing especially as biomarkers for different diseases. This mini-review attempts to concisely look at the biology of circular RNAs, the putative functional activities, the prevalence of circular RNAs, and the possible role of circular RNA as biomarkers for diagnosis or measuring drug response.

  7. Broadband Circularly Polarized Slot Antenna Loaded by a Multiple-Circular-Sector Patch.

    Science.gov (United States)

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2018-05-15

    In this paper, a microstrip-fed broadband circularly polarized (CP) slot antenna is presented. CP operation can be attained simply by embedding an S-shaped strip. By loading with a multiple-circular-sector patch, which consists of 12 circular-sector patches with identical central angles of 30° and different radii, the 3 dB axial ratio (AR) bandwidth is significantly broadened. To validate the performance of the proposed antenna, an antenna prototype is fabricated and tested. The fabricated antenna is 54 mm × 54 mm × 0.8 mm in size. The measured -10 dB reflection and 3 dB AR bandwidths are 81.06% (1.68⁻3.97 GHz) and 70.55% (1.89⁻3.95 GHz), respectively. Within the 3 dB AR bandwidth, the measured peak gain is 3.81 dBic. Reasonable agreement is also obtained between the measured and simulated results.

  8. Circular Business: Collaborate and Circulate : a bookreview

    NARCIS (Netherlands)

    Timmermans, Ratna W.; Witjes, S.|info:eu-repo/dai/nl/381088200

    2016-01-01

    With their book, “Circular Business: Collaborate and Circulate”, Circular Collaboration, Amersfoort, ISBN: 978-90-824902-0-6, €35, Kraaijenhagen et al. (2016) give companies practical guidance on their contribution to the development of a more circular economy by presenting a practical 10-step

  9. Capture orbits around asteroids by hitting zero-velocity curves

    Science.gov (United States)

    Wang, Wei; Yang, Hongwei; Zhang, Wei; Ma, Guangfu

    2017-12-01

    The problem of capturing a spacecraft from a heliocentric orbit into a high parking orbit around binary asteroids is investigated in the current study. To reduce the braking Δ V, a new capture strategy takes advantage of the three-body gravity of the binary asteroid to lower the inertial energy before applying the Δ V. The framework of the circular restricted three-body problem (CR3BP) is employed for the binary asteroid system. The proposed capture strategy is based on the mechanism by which inertial energy can be decreased sharply near zero-velocity curves (ZVCs). The strategy has two steps, namely, hitting the target ZVC and raising the periapsis by a small Δ V at the apoapsis. By hitting the target ZVC, the positive inertial energy decreases and becomes negative. Using a small Δ V, the spacecraft inserts into a bounded orbit around the asteroid. In addition, a rotating mass dipole model is employed for elongated asteroids, which leads to dynamics similar to that of the CR3BP. With this approach, the proposed capture strategy can be applied to elongated asteroids. Numerical simulations validate that the proposed capture strategy is applicable for the binary asteroid 90 Antiope and the elongated asteroid 216 Kleopatra.

  10. Nanosatellites constellation as an IoT communication platform for near equatorial countries

    Science.gov (United States)

    Narayanasamy, A.; Ahmad, Y. A.; Othman, M.

    2017-11-01

    Anytime, anywhere access for real-time intelligence by Internet of Things (IoT) is changing the way that the whole world will operate as it moves toward data driven technologies. Over the next five years, IoT related devices going to have a dramatic breakthrough in current and new applications, not just on increased efficiency and cost reduction on current system, but it also will make trillion-dollar revenue generation and improve customer satisfaction. IoT communications is the networking of intelligent devices which enables data collection from remote assets. It covers a broad range of technologies and applications which connect to the physical world while allowing key information to be transferred automatically. The current terrestrial wireless communications technologies used to enable this connectivity include GSM, GPRS, 3G, LTE, WIFI, WiMAX and LoRa. These connections occur short to medium range distance however, none of them can cover a whole country or continent and the networks are getting congested with the multiplication of IoT devices. In this study, we discuss a conceptual design of a nanosatellite constellation those can provide a space-based communication platform for IoT devices for near Equatorial countries. The constellation design i.e. the orbital plane and number of satellites and launch deployment concepts are presented.

  11. Meteor Observational Data Visualisation in the Equatorial Coordinate System Using Information Technology

    Science.gov (United States)

    Golovashchenko, V. A.; Kolomiyets, S. V.

    As a result of dynamic evolution of IT industry and astronomical research in the XXI century, which have resulted in obtaining large and complex data sets known as Big Data (e.g. data from the European Space Agency missions, such as GAIA mission, etc.), as well as due to rapid development of computer technologies, astronomy and computer science have become closely linked to each other. In the XXI century, Information technology has become an essential part of understanding the world around. This paper presents a solution to the problem of meteor data representation in the second equatorial coordinate (RA-Dec) system using Information Technology. Such a visualisation solution is needed to analyse the results of experiments based on the radar observations conducted in 1972-1978 (stage 1 - the data obtained in 1972 comprise 10,247 meteor orbits), which have been accumulated and stored in the Meteor Database of the Kharkiv National University of Radio Electronics (KNURE). A sample set of data with their characteristics and details about their delivery has been presented by (Kashcheyev & Tkachuk, 1980). An electronic calculator application was developed by employing the model of data visualisation in the form of celestial hemispheres using the object-oriented programming language C#.

  12. Development of intermediate-scale structure at different altitudes within an equatorial plasma bubble: Implications for L-band scintillations

    Science.gov (United States)

    Bhattacharyya, A.; Kakad, B.; Gurram, P.; Sripathi, S.; Sunda, S.

    2017-01-01

    An important aspect of the development of intermediate-scale length (approximately hundred meters to few kilometers) irregularities in an equatorial plasma bubble (EPB) that has not been considered in the schemes to predict the occurrence pattern of L-band scintillations in low-latitude regions is how these structures develop at different heights within an EPB as it rises in the postsunset equatorial ionosphere due to the growth of the Rayleigh-Taylor instability. Irregularities at different heights over the dip equator map to different latitudes, and their spectrum as well as the background electron density determine the strength of L-band scintillations at different latitudes. In this paper, VHF and L-band scintillations recorded at different latitudes together with theoretical modeling of the scintillations are used to study the implications of this structuring of EPBs on the occurrence and strength of L-band scintillations at different latitudes. Theoretical modeling shows that while S4 index for scintillations on a VHF signal recorded at an equatorial station may be >1, S4 index for scintillations on a VHF signal recorded near the crest of the equatorial ionization anomaly (EIA) generally does not exceed the value of 1 because the intermediate-scale irregularity spectrum at F layer peak near the EIA crest is shallower than that found in the equatorial F layer peak. This also explains the latitudinal distribution of L-band scintillations. Thus, it is concluded that there is greater structuring of an EPB on the topside of the equatorial F region than near the equatorial F layer peak.

  13. Orbit covariance propagation via quadratic-order state transition matrix in curvilinear coordinates

    Science.gov (United States)

    Hernando-Ayuso, Javier; Bombardelli, Claudio

    2017-09-01

    In this paper, an analytical second-order state transition matrix (STM) for relative motion in curvilinear coordinates is presented and applied to the problem of orbit uncertainty propagation in nearly circular orbits (eccentricity smaller than 0.1). The matrix is obtained by linearization around a second-order analytical approximation of the relative motion recently proposed by one of the authors and can be seen as a second-order extension of the curvilinear Clohessy-Wiltshire (C-W) solution. The accuracy of the uncertainty propagation is assessed by comparison with numerical results based on Monte Carlo propagation of a high-fidelity model including geopotential and third-body perturbations. Results show that the proposed STM can greatly improve the accuracy of the predicted relative state: the average error is found to be at least one order of magnitude smaller compared to the curvilinear C-W solution. In addition, the effect of environmental perturbations on the uncertainty propagation is shown to be negligible up to several revolutions in the geostationary region and for a few revolutions in low Earth orbit in the worst case.

  14. Observations in equatorial anomaly region of total electron content enhancements and depletions

    Directory of Open Access Journals (Sweden)

    N. Dashora

    2005-10-01

    Full Text Available A GSV 4004A GPS receiver has been operational near the crest of the equatorial anomaly at Udaipur, India for some time now. The receiver provides the line-of-sight total electron content (TEC, the phase and amplitude scintillation index, σφ and S4, respectively. This paper presents the first results on the nighttime TEC depletions associated with the equatorial spread F in the Indian zone. The TEC depletions are found to be very well correlated with the increased S4 index. A new feature of low-latitude TEC is also reported, concerning the observation of isolated and localized TEC enhancements in the nighttime low-latitude ionosphere. The TEC enhancements are not correlated with the S4 index. The TEC enhancements have also been observed along with the TEC depletions. The TEC enhancements have been interpreted as the manifestation of the plasma density enhancements reported by Le et al. (2003.

    Keywords. Ionosphere (Equatorial ionosphere; Ionospheric irregularities

  15. Orbital misalignment of the Neptune-mass exoplanet GJ 436b with the spin of its cool star

    Science.gov (United States)

    Bourrier, Vincent; Lovis, Christophe; Beust, Hervé; Ehrenreich, David; Henry, Gregory W.; Astudillo-Defru, Nicola; Allart, Romain; Bonfils, Xavier; Ségransan, Damien; Delfosse, Xavier; Cegla, Heather M.; Wyttenbach, Aurélien; Heng, Kevin; Lavie, Baptiste; Pepe, Francesco

    2018-01-01

    The angle between the spin of a star and the orbital planes of its planets traces the history of the planetary system. Exoplanets orbiting close to cool stars are expected to be on circular, aligned orbits because of strong tidal interactions with the stellar convective envelope. Spin–orbit alignment can be measured when the planet transits its star, but such ground-based spectroscopic measurements are challenging for cool, slowly rotating stars. Here we report the three-dimensional characterization of the trajectory of an exoplanet around an M dwarf star, derived by mapping the spectrum of the stellar photosphere along the chord transited by the planet. We find that the eccentric orbit of the Neptune-mass exoplanet GJ 436b is nearly perpendicular to the stellar equator. Both eccentricity and misalignment, surprising around a cool star, can result from dynamical interactions (via Kozai migration) with a yet-undetected outer companion. This inward migration of GJ 436b could have triggered the atmospheric escape that now sustains its giant exosphere.

  16. Continuous day-time time series of E-region equatorial electric fields derived from ground magnetic observatory data

    Science.gov (United States)

    Alken, P.; Chulliat, A.; Maus, S.

    2012-12-01

    The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays an important role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF. However, there are limited sources of direct EEF measurements with full temporal and spatial coverage of the equatorial ionosphere. In this work, we propose a method of estimating a continuous day-time time series of the EEF at any longitude, provided there is a pair of ground magnetic observatories in the region which can accurately track changes in the strength of the EEJ. First, we derive a climatological unit latitudinal current profile from direct overflights of the CHAMP satellite and use delta H measurements from the ground observatory pair to determine the magnitude of the current. The time series of current profiles is then inverted for the EEF by solving the governing electrodynamic equations. While this method has previously been applied and validated in the Peruvian sector, in this work we demonstrate the method using a pair of magnetometers in Africa (Samogossoni, SAM, 0.18 degrees magnetic latitude and Tamanrasset, TAM, 11.5 degrees magnetic latitude) and validate the resulting EEF values against the CINDI ion velocity meter (IVM) instrument on the C/NOFS satellite. We find a very good 80% correlation with C/NOFS IVM measurements and a root-mean-square difference of 9 m/s in vertical drift velocity. This technique can be extended to any pair of ground observatories which can capture the day-time strength of the EEJ. We plan to apply this work to more observatory pairs around the globe and distribute real-time equatorial electric field values to the community.

  17. Symplectic methods in circular accelerators

    International Nuclear Information System (INIS)

    Forest, E.

    1994-01-01

    By now symplectic integration has been applied to many problems in classical mechanics. It is my conviction that the field of particle simulation in circular rings is ideally suited for the application of symplectic integration. In this paper, I present a short description symplectic tools in circular storage rings

  18. 76 FR 60593 - Title VI; Proposed Circular

    Science.gov (United States)

    2011-09-29

    ..., several of them related to ambiguous language in the existing Circular. The proposed Circular reorganizes... regional entity, and inclusive of public and private entities. This term is used exclusively in Chapter IV... revisions to the Title VI Circular. The section that addresses the existing requirement for a Language...

  19. Equatorial storm sudden commencements and interplanetary magnetic field

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1980-01-01

    A comparison is made of the signatures of interplanetary (IP) shocks in the B and theta plots of interplanetary magnetic field (IMF) data of satellites Explorer 33, 34 and 35 and in the H magnetograms at ground observatories within the equatorial electrojet belt, Huancayo, Addis Ababa and Trivandrum associated with major storm sudden commencements during 1967-70. The IP shocks showing sudden increase of the scalar value of IMF, i.e. B without any change of the latitude theta or with the southward turning of theta, were followed by a purely positive sudden increase of H, at any of the magnetic observatories, either on the dayside or the nightside of the earth. The IP shocks identified by a sudden increase of B and with the northward turning of the latitude theta (positive ΔBsub(z)) were associated with purely positive sudden commencement (SC) at the observatories in the nightside, but at the equatorial observatories in the dayside of the earth the signature of the shock was a SC in H with a preliminary negative impulse followed by the main positive excursion (SC-+). It is suggested that the SCs in H at low latitudes are composed of two effects, viz. (i) one due to hydromagnetic pressure on the magnetosphere by the solar plasma and (ii) the other due to the induced electric field associated with the solar wind velocity, V and the Z-component of the IP magnetic field (E = - V x Bsub(z)). The effect of magnetosphere electric field is faster than the effect due to the compression of the magnetosphere by the impinging solar plasma. The negative impulse of SC-+ at low latitude is seen at stations close to the dip equator and only during daytime due to the existence of high ionospheric conductivities in the equatorial electrojet region. (author)

  20. A Nonequilibrium Figure of Saturn's Satellite Iapetus and the Origin of the Equatorial Ridge on Its Surface

    Science.gov (United States)

    Kondratyev, B. P.

    2018-03-01

    The structure, dynamical equilibrium, and evolution of Saturn's moon Iapetus are studied. It has been shown that, in the current epoch, the oblateness of the satellite ɛ2 ≈ 0.046 does not correspond to its angular velocity of rotation, which causes the secular spherization behavior of the ice shell of Iapetus. To study this evolution, we apply a spheroidal model, containing a rock core and an ice shell with an external surface ɛ2, to Iapetus. The model is based on the equilibrium finite-difference equation of the Clairaut theory, while the model parameters are taken from observations. The mean radius of the rock core and the oblateness of its level surface, ɛ1 ≈ 0.028, were determined. It was found that Iapetus is covered with a thick ice shell, which is 56.6% of the mean radius of the figure. We analyze a role of the core in the evolution of the shape of a gravitating figure. It was determined that the rock core plays a key part in the settling of the ice masses of the equatorial bulge, which finally results in the formation of a large circular equatorial ridge on the surface of the satellite. From the known mean altitude of this ice ridge, it was found that, in the epoch of its formation, the rotation period of Iapetus was 166 times shorter than that at present, as little as T ≈ 11h27m. This is consistent with the fact that a driving force of the evolution of the satellite in our model was its substantial despinning. The model also predicts that the ice ridge should be formed more intensively in the leading (dark and, consequently, warmer) hemisphere of the satellite, where the ice is softer. This inference agrees with the observations: in the leading hemisphere of Iapetus, the ridge is actually high and continuous everywhere, while it degenerates into individual ice peaks in the opposite colder hemisphere.

  1. Particle orbit analysis for LHD helical axis configurations

    International Nuclear Information System (INIS)

    Guasp, J.; Yamazaki, K.; Motojima, O.

    1993-04-01

    Fast ion orbits for helical magnetic axis configurations in LHD (Large Helical Device) are analyzed and compared with the standard circular axis case. Boundaries between passing and helically trapped particle regions show clear differences: in the non-planar axis case the helically trapped region spreads, near the magnetic axis, over a much wider band across the 90deg pitch angle value and shows a very marked asymmetry. The locally trapped particle region is also wider than in the standard case. The differences in the loss cone boundaries of the two cases are rather small, however, the effects of re-entering criteria are very important in both cases. On the contrary, effects of finite coil size are not significant. (author)

  2. Nonlinear Rayleigh-Taylor instability in partially ionized plasma and the equatorial spread - F

    International Nuclear Information System (INIS)

    Jain, R.K.; Das, A.C.

    1978-01-01

    The nonlinear evolution of the collisional gravitation induced Rayleigh-Taylor (R-T) instability in the equatorial F region is investigated taking into account the finite Larmor radius (FLR) effects and the complete ion inertial term in ion equation of motion. A special class of coherent weakly nonlinear modes as solutions to the wave equation describing R-T instability driven modes is obtained. The leading nonlinear effects in the wave equation are found to appear through Vsub(L), the ion diamagnetic drift which essentially gives the FLR corrections. It is shown that the R-T modes in the equatorial F region can evolve into coherent, nonlinear, almost sinusoidal, stationary wave structures. These structures are found to travel with a constant phase velocity and to have slightly distorted sinusoidal shapes. These results seem to have a good agreement with many of the recent rocket and satellite observations of the equatorial spread F irregularities. (author)

  3. Range expansion drives dispersal evolution in an equatorial three-species symbiosis.

    Science.gov (United States)

    Léotard, Guillaume; Debout, Gabriel; Dalecky, Ambroise; Guillot, Sylvain; Gaume, Laurence; McKey, Doyle; Kjellberg, Finn

    2009-01-01

    Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions. We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists--an ant-plant and its protective ant--and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants. Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated with dispersal are

  4. Investigation of Jupiter's Equatorial Hotspots and Plumes Using Cassini ISS Observations

    Science.gov (United States)

    Choi, David S.; Showman, A. P.; Vasavada, A. R.; Simon-Miller, A. A.

    2012-01-01

    We present updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the ISS onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial 5-micron hot spots and their interactions with adjacent latitudes. Hot spots are quasi-stable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but a diffuse western edge serving as a nebulous boundary with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-iike 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. This raises the possibility that the plumes and fast-moving clouds are at higher altitudes, because their speed does not match previously published zonal wind profiles. Most profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby waves controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed. Instead, our expanded data set demonstrating the rapid flow of these scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. This research was supported by a NASA JDAP grant and the NASA Postdoctoral Program.

  5. equatorial electrojet strength in the african sector during high

    African Journals Online (AJOL)

    Preferred Customer

    shown to be consistent with the earlier similar work carried out for the American and ... reference to the quiet day night time level of H, ... February and July, and shifts equator ward to 27°N ... effect of the equatorial electrojet along this line is.

  6. Global equatorial sea-surface temperatures over the last 150,000 years: An update from foraminiferal elemental analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.

    for the warmest waters. However, how the equatorial SST affects global climate, is still not clear. Long-term past seawater temperature records are required to understand the effect of temporal changes in equatorial SST on the global climate. Various techniques...

  7. The Thermal Expansion of Ring Particles and the Secular Orbital Evolution of Rings Around Planets and Asteroids

    Science.gov (United States)

    Rubincam, David P.

    2013-01-01

    The thermal expansion and contraction of ring particles orbiting a planet or asteroid can cause secular orbit evolution. This effect, called here the thermal expansion effect, depends on ring particles entering and exiting the shadow of the body they orbit. A particle cools off in the shadow and heats up again in the sunshine, suffering thermal contraction and expansion. The changing cross-section it presents to solar radiation pressure plus time lags due to thermal inertia lead to a net along-track force. The effect causes outward drift for rocky particles. For the equatorial orbits considered here, the thermal expansion effect is larger than Poynting-Robertson drag in the inner solar system for particles in the size range approx. 0.001 - 0.02 m. This leads to a net increase in the semimajor axis from the two opposing effects at rates ranging from approx. 0.1 R per million years for Mars to approx. 1 R per million years for Mercury, for distances approx. 2R from the body, where R is the body's radius. Asteroid 243 Ida has approx. 10 R per million years, while a hypothetical Near-Earth Asteroid (NEA) can have faster rates of approx. 0.5 R per thousand years, due chiefly to its small radius compared to the planets. The thermal expansion effect weakens greatly at Jupiter and is overwhelmed by Poynting-Robertson for icy particles orbiting Saturn. Meteoroids in eccentric orbits about the Sun also suffer the thermal expansion effect, but with only approx. 0.0003e2 AU change in semimajor axis over a million years for a 2 m meteoroid orbiting between Mercury and Earth.

  8. High-Order Analytic Expansion of Disturbing Function for Doubly Averaged Circular Restricted Three-Body Problem

    Directory of Open Access Journals (Sweden)

    Takashi Ito

    2016-01-01

    Full Text Available Terms in the analytic expansion of the doubly averaged disturbing function for the circular restricted three-body problem using the Legendre polynomial are explicitly calculated up to the fourteenth order of semimajor axis ratio (α between perturbed and perturbing bodies in the inner case (α1. The expansion outcome is compared with results from numerical quadrature on an equipotential surface. Comparison with direct numerical integration of equations of motion is also presented. Overall, the high-order analytic expansion of the doubly averaged disturbing function yields a result that agrees well with the numerical quadrature and with the numerical integration. Local extremums of the doubly averaged disturbing function are quantitatively reproduced by the high-order analytic expansion even when α is large. Although the analytic expansion is not applicable in some circumstances such as when orbits of perturbed and perturbing bodies cross or when strong mean motion resonance is at work, our expansion result will be useful for analytically understanding the long-term dynamical behavior of perturbed bodies in circular restricted three-body systems.

  9. Equatorial Cross-Cutting Ripples on Titan - Regularly Warped Subsiding Methane Plains, not Eolian Dunes.

    Science.gov (United States)

    Kochemasov, G. G.

    2008-09-01

    Widely circulating opinion that titanian methane lowlands in a broad equatorial region are covered with eolian formations needs to be carefully checked. Of coarse, all three solid bodies with atmospheres in the inner solar system have dunes. Why do not have them on Titan? Most probably they do exist but discovered by radar up to now cross-cutting rippling features cannot be taken for them. For this there are several reasons. How it can be that prevailing "dune" strike coincides with prevailing wind direction? Normally (with some African exceptions) one sees real terrestrial dunes stretching across winds. And this is understandable from a point of view eolian dunes formation. This formation gives particular cross profile to dunes. Asymmetric profile - one slope is long and gentle and another one short and abrupt. But titanian "dunes" are mostly uniform and symmetric. And this characteristic is preserved for many hundreds of kilometers of very straight features. Then, the finest solid particles precipitation from the thick atmosphere of Titan should be distributed on the satellite surface more uniformly and cover dark lowlands and light icy highlands of the wide equatorial belt more or less evenly. But "dunes" are strictly associated with dark lowlands and tend to turn round light icy obstacles. Cindering smoggy particles to produce sands for making dunes is a pure imagination. Then, radar preferably sees one direction but nevertheless one or more crossing directions of rippling are distinguished (Fig.3, 4) They mean two wind directions at the same time or another wind direction at another time? If so, the earlier "dunes" should be more or less obliterated by the later ones. Nothing of the kind! Both crossing ripples directions are fresh. Then, eolian action is not seen at the higher latitudes (Fig. 5). There are no winds there? Probably it is not so. Only a liquid state of methane can help (but liquid should be disturbed by winds). Solid methane there is also

  10. Equatorial wave activity during 2007 over Gadanki, a tropical station

    Indian Academy of Sciences (India)

    been used to investigate the wave activity in the troposphere and lower stratosphere. Waves in the ...... Oltmans S J 2001 Water vapor control at the tropopause by equatorial Kelvin .... observed in UARS microwave limb sounder temperature.

  11. Nonlinearly coupled dynamics of irregularities in the equatorial electrojet

    Energy Technology Data Exchange (ETDEWEB)

    Atul, J.K., E-mail: jkatulphysics@gmail.com [Department of Physics, College of Commerce under Magadh University, Patna 800020 (India); Sarkar, S. [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India); Singh, S.K. [Department of Physics, College of Commerce under Magadh University, Patna 800020 (India)

    2016-04-01

    Kinetic wave description is used to study the nonlinear influence of background Farley Buneman (FB) modes on the Gradient Drift (GD) modes in the equatorial electrojet ionosphere. The dominant nonlinearity is mediated through the electron flux term in the governing fluid equation which further invokes a turbulent current into the system. Electron dynamics reveals the modification in electron collision frequency and inhomogeneity scale length. It is seen that the propagation and growth rate of GD modes get modified by the background FB modes. Also, a new quasimode gets excited through the quadratic dispersion relation. Physical significance of coupled dynamics between the participating modes is also discussed. - Highlights: • Nonlinear influence of Farley Buneman mode on the Gradient drift mode, is investigated. • Electron collision frequency and density gradient scale length get modified. • A new quasimode gets excited due to the competition between these modes. • It seems to be important for modelling of Equatorial Electrojet current system.

  12. Nonlinearly coupled dynamics of irregularities in the equatorial electrojet

    International Nuclear Information System (INIS)

    Atul, J.K.; Sarkar, S.; Singh, S.K.

    2016-01-01

    Kinetic wave description is used to study the nonlinear influence of background Farley Buneman (FB) modes on the Gradient Drift (GD) modes in the equatorial electrojet ionosphere. The dominant nonlinearity is mediated through the electron flux term in the governing fluid equation which further invokes a turbulent current into the system. Electron dynamics reveals the modification in electron collision frequency and inhomogeneity scale length. It is seen that the propagation and growth rate of GD modes get modified by the background FB modes. Also, a new quasimode gets excited through the quadratic dispersion relation. Physical significance of coupled dynamics between the participating modes is also discussed. - Highlights: • Nonlinear influence of Farley Buneman mode on the Gradient drift mode, is investigated. • Electron collision frequency and density gradient scale length get modified. • A new quasimode gets excited due to the competition between these modes. • It seems to be important for modelling of Equatorial Electrojet current system.

  13. The ion circus: A novel circular Paul trap to resolve isobaric contamination

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, E. Minaya [CSNSM-IN2P3/CNRS, Bat. 108, Universite de Paris Sud, 91405 Orsay (France)], E-mail: minaya@csnsm.in2p3.fr; Cabaret, S.; Lunney, D. [CSNSM-IN2P3/CNRS, Bat. 108, Universite de Paris Sud, 91405 Orsay (France)

    2008-10-15

    The ion circus is a miniature storage ring formed by a segmented radiofrequency mass filter bent into a circle. The primary goal of this unique device is to perform high-resolution mass separation with small transmission loss since the resolving power is increased while the orbiting ions cool in the ring. Contrary to its linear brother, this circular Paul trap is designed to cool and mass separate the ions over a much longer flight path, thus requiring lower buffer gas pressure. Ions can be accumulated in the ring and extracted either in tangential or perpendicular directions. This way, the trap also serves as a versatile beam distribution device. Design principles are presented and the prototype instrument, under test in Orsay, is described.

  14. Non-exclusive satellite power system

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.E. (Power Conversion Technology, Inc., San Diego, Calif.); Cowhey, P.F. (California, University, La Jolla, Calif.)

    1980-09-01

    A modification of the satellite solar power system employing smaller satellites that are not stationary but move in circular or elliptical orbits of two or three hour periods is discussed. The orbits could be inclined at plus or minus 63.4 deg, 73.1 deg, or 14.3 deg to the equatorial plane. This Interregional or Isoinsolation Power System (IPS) greatly reduces the mass and cost of the antenna needed in the sky and the area required for the rectenna and safety region on the ground (the product of the areas of the antennas and rectennas of the IPS system being between 10 and 20 times lower than that required in the conventional SPS system). International control of IPS through a Solar Satellite Consortium (Solsat) is advocated, patterned after the successful Intelsat consortium, and it is stressed that the system must not be allowed to acquire a military capacity. It is emphasized that the smaller rectennas would not destabilize the ionosphere.

  15. Long wavelength irregularities in the equatorial electrojet

    OpenAIRE

    Kudeki, E.; Farley, D. T.; Fejer, Bela G.

    1982-01-01

    We have used the radar interferometer technique at Jicamarca to study in detail irregularities with wavelengths of a few kilometers generated in the unstable equatorial electrojet plasma during strong type 1 conditions. In-situ rocket observations of the same instability process are discussed in a companion paper. These large scale primary waves travel essentially horizontally and have large amplitudes. The vertical electron drift velocities driven by the horizontal wave electric fields reach...

  16. Development pattern of circular economy in Jiangsu coastland

    OpenAIRE

    Wang, Liang

    2009-01-01

    Circular economy is an effective development pattern to balance economic growth, social development and environmental protection. Based on apprehending the connotation of circular economy, this paper fully considers and studies on the future trends in this area according to the theory of circular economy and the empirical circumstances of Jiangsu Coastland. This paper also discusses the circular economy development pattern adopted by Jiangsu coastland during economic and social development fr...

  17. Molecular photoionisation using synchrotron radiation. Photoelectron photoion coincidence and circular dichroism

    International Nuclear Information System (INIS)

    Garcia-Macias, Gustavo Adolfo

    2002-01-01

    The first ionisation potential of the CF 3 radical has been determined in this work from the appearance potential of the CF 3 + fragment, formed in the photofragmentation of CF 3 Br. In obtaining this value special care has been taken in removing the contributions from second order light and internal energy of the fragmenting parent ion. The resulting ionisation potential was found to be in very good agreement with a number of recent theoretical calculations. The valence photoelectron spectra of three monoterpenes such as limonene, carvone and camphor have been recorded along with their mass spectra taken in coincidence with energy selected photoelectrons, providing information about state selected parent ion fragmentation channels. A new photoelectron spectrometer based on the Alien box design has been studied by ray-tracing simulations. It will include a two dimensional position sensitive detector system consisting in two micro channel plates in a chevron stack and a delay-line anode to encode the impact position. It is currently under construction and it is expected to be commissioned by summer 2002. Continuum molecular scattering calculations have been performed in the optically active carvone. We have looked for circular dichroism in the angular distributions of core and valence photoelectron spectra. The values have been found to be of at least four orders of magnitude bigger than the normal circular dichroism in absorption. Experimental results have been obtained for the circular dichroism in the valence and inner shells of camphor and carvone as a function of photon energy. The experiments were performed in the BESSY II and SACO storage rings in Berlin and Orsay respectively. The core results on camphor show a definite difference between the partial cross-sections of the carbonyl carbon Is orbital when switching the helicity of either the light or the enantiomer. The core results on carvone have yet to be properly analysed and are noisier but the circular

  18. The physical and theoretical basis of solar-terrestrial relationships 2. Non-equatorial locations

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-07-01

    The basic formulations presented in Part 1 of this series (hereinafter simply referred to as ''Paper 1'') are modified in order to mathematically represent the expected solar-terrestrial influences in non-equatorial regions. Analysis and interpretation of these formulations lead to the establishment of several new periodicities as well as other features associated with the non-equatorial atmosphere. Besides, we show through suitable examples that the physical processes that cause and influence some previously observed climatic and upper atmospheric variations in temperate and polar regions are easily deduced from our formulations. (author). 35 refs

  19. Total and Differential Efficiencies for a Circular Detector Viewing a Circular Radiator of Finite Thickness

    Energy Technology Data Exchange (ETDEWEB)

    Lauber, A; Tollander, B

    1967-08-15

    Total and differential detection efficiencies have been computed for a circular detector viewing a circular radiator of finite thickness. Isotropic, cosines and n-p scattering angular emission distributions of the radiated particles are considered. Tables are given for the total efficiencies as well as for the differential efficiencies in the n-p scattering case.

  20. Orbital single particle tracking on a commercial confocal microscope using piezoelectric stage feedback

    International Nuclear Information System (INIS)

    Lanzanò, L; Gratton, E

    2014-01-01

    Single Particle Tracking (SPT) is a technique used to locate fluorescent particles with nanometer precision. In the orbital tracking method the position of a particle is obtained analyzing the distribution of intensity along a circular orbit scanned around the particle. In combination with an active feedback this method allows tracking of particles in 2D and 3D with millisecond temporal resolution. Here we describe a SPT setup based on a feedback approach implemented with minimal modification of a commercially available confocal laser scanning microscope, the Zeiss LSM 510, in combination with an external piezoelectric stage scanner. The commercial microscope offers the advantage of a user-friendly software interface and pre-calibrated hardware components. The use of an external piezo-scanner allows the addition of feedback into the system but also represents a limitation in terms of its mechanical response. We describe in detail this implementation of the orbital tracking method and discuss advantages and limitations. As an example of application to live cell experiments we perform the 3D tracking of acidic vesicles in live polarized epithelial cells. (paper)

  1. Photoinduced quantum spin and valley Hall effects, and orbital magnetization in monolayer MoS2

    KAUST Repository

    Tahir, M.

    2014-09-22

    We theoretically demonstrate that 100% valley-polarized transport in monolayers of MoS2 and other group-VI dichalcogenides can be obtained using off-resonant circularly polarized light. By tuning the intensity of the off-resonant light the intrinsic band gap in one valley is reduced, while it is enhanced in the other valley, enabling single valley quantum transport. As a consequence, we predict (i) enhancement of the longitudinal electrical conductivity, accompanied by an increase in the spin polarization of the flowing electrons, (ii) enhancement of the intrinsic spin Hall effect, together with a reduction of the intrinsic valley Hall effect, and (iii) enhancement of the orbital magnetic moment and orbital magnetization. These mechanisms provide appealing opportunities to the design of nanoelectronics based on dichalcogenides.

  2. Photoinduced quantum spin and valley Hall effects, and orbital magnetization in monolayer MoS2

    KAUST Repository

    Tahir, M.; Manchon, Aurelien; Schwingenschlö gl, Udo

    2014-01-01

    We theoretically demonstrate that 100% valley-polarized transport in monolayers of MoS2 and other group-VI dichalcogenides can be obtained using off-resonant circularly polarized light. By tuning the intensity of the off-resonant light the intrinsic band gap in one valley is reduced, while it is enhanced in the other valley, enabling single valley quantum transport. As a consequence, we predict (i) enhancement of the longitudinal electrical conductivity, accompanied by an increase in the spin polarization of the flowing electrons, (ii) enhancement of the intrinsic spin Hall effect, together with a reduction of the intrinsic valley Hall effect, and (iii) enhancement of the orbital magnetic moment and orbital magnetization. These mechanisms provide appealing opportunities to the design of nanoelectronics based on dichalcogenides.

  3. Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective

    Science.gov (United States)

    Dowsett, Harry J.; Robinson, Marci M.

    2009-01-01

    The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4°C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east-west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG.

  4. On the how latitude scanning photometer signatures of equatorial ionosphere plasma bubbles

    International Nuclear Information System (INIS)

    Abdu, M.A.; Sobral, J.H.A.; Nakamura, Y.

    1985-01-01

    Meridional and east-west scan 6300 (angstrom) night airglow photometer are being extensively used at the low latitude station Cachoeira Paulista (23 0 S 45 0 W, dip latitude 14 0 ), Brazil, for investigation of trans-equatorial ionospheric plasma bubble dynamics. The zonal velocities of the flux aligned plasma bubbles can be determined, in a straingforward way, from the east-west displacement of the airglow intensity valleys observed by the east-west scan photometer. On the other hand, the determination of the other velocity component of the plasma bubble motion (namely, vertical motion in the equatorial plane) has to be based on the meridional propagation of the airglow valleys observed by the meriodinal scan photometer. Such determinatios of the bubbles vertical rise velocity should, however, involved considerations on different bubble parameters such as, for exemple, the phase of the bubble event (whether growth, mature or decay phase), the limited east-west extension, and the often observed westward tilt of the bubble. In this brief report there were condidered in some detail, possible influences of these different factors on the interpretation of low latitude scanning photometer data to infer trans-equatorial plasma bubble dynamics. (author) [pt

  5. Circular codes revisited: a statistical approach.

    Science.gov (United States)

    Gonzalez, D L; Giannerini, S; Rosa, R

    2011-04-21

    In 1996 Arquès and Michel [1996. A complementary circular code in the protein coding genes. J. Theor. Biol. 182, 45-58] discovered the existence of a common circular code in eukaryote and prokaryote genomes. Since then, circular code theory has provoked great interest and underwent a rapid development. In this paper we discuss some theoretical issues related to the synchronization properties of coding sequences and circular codes with particular emphasis on the problem of retrieval and maintenance of the reading frame. Motivated by the theoretical discussion, we adopt a rigorous statistical approach in order to try to answer different questions. First, we investigate the covering capability of the whole class of 216 self-complementary, C(3) maximal codes with respect to a large set of coding sequences. The results indicate that, on average, the code proposed by Arquès and Michel has the best covering capability but, still, there exists a great variability among sequences. Second, we focus on such code and explore the role played by the proportion of the bases by means of a hierarchy of permutation tests. The results show the existence of a sort of optimization mechanism such that coding sequences are tailored as to maximize or minimize the coverage of circular codes on specific reading frames. Such optimization clearly relates the function of circular codes with reading frame synchronization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Regulation of primary productivity rate in the equatorial Pacific

    International Nuclear Information System (INIS)

    Barber, R.T.; Chavez, F.P.

    1991-01-01

    Analysis of the Chl-specific rate of primary productivity (P B ) as a function of subsurface nutrient concentration at >300 equatorial stations provides an answer to the question: What processes regulate primary productivity rate in the high-nutrient, low-chlorophyll waters of the equatorial Pacific? In the western Pacific where there is a gradient in 60-m [NO 3 ] from 0 to ∼12 μM, the productivity rate is a linear function of nutrient concentration; in the eastern Pacific where the gradient is from 12 to 28 μM, the productivity rate is independent of nutrient concentration and limited to ∼36 mg C(mg Chl) -1 d -1 , or a mean euphotic zone C-specific growth rate (μ) of 0.47 d -1 . However, rates downstream of the Galapagos Islands are not limited; they are 46.4 mg C(mg Chl) -1 d -1 and μ = 0.57 d -1 , very close to the predicted nutrient-regulated rates in the absence of other limitation. This pattern of rate regulation can be accounted for by a combination of eolian Fe, subsurface nutrients, and sedimentary Fe derived from the Galapagos platform. In the low-nutrient western Pacific the eolian supply of Fe is adequate to allow productivity rate to be set by subsurface nutrient concentration. In the nutrient-rich easter equatorial region eolian Fe is inadequate to support productivity rates proportional to the higher nutrient concentrations, so in this region eolian Fe is rate limiting. Around the Galapagos Islands productivity rates reach levels consistent with nutrient concentrations; sedimentary Fe from the Galapagos platform seems adequate to support increased nutrient-regulated productivity rates in this region

  7. New Measurements Of Jupiter's Equatorial Region In Visible Wavelengths

    Science.gov (United States)

    Rojas, Jose; Arregi, J.; García-Melendo, E.; Barrado-Izagirre, N.; Hueso, R.; Gómez-Forrellad, J. M.; Pérez-Hoyos, S.; Sanz-Requena, J. F.; Sánchez-Lavega, A.

    2010-10-01

    We have studied the equatorial region of Jupiter, between 15ºS and 15ºN, on Cassini ISS images obtained during the Jupiter flyby at the end of 2000 and on HST images acquired in May and July 2008. We have found significant longitudinal variations in the intensity of the 6ºN eastward jet, up to 60 m s-1 in Cassini and HST observations. In the HST case we found that these longitudinal variations are associated to different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images shows that there is only a small height difference, no larger than 0.5 - 1 scale heights at most, between the slow ( 100 m s-1) and fast ( 150 m s-1) moving features. This suggests that speed variability at 6ºN is not dominated by vertical wind shears and we propose that Rossby wave activity is the responsible for the zonal variability. After removing this variability we found that Jupiter's equatorial jet is actually symmetric relative to the equator with two peaks of 140 - 150 m s-1 located at latitudes 6ºN and 6ºS and at a similar pressure level. We also studied a large, long-lived feature called the White Spot (WS) located at 6ºS that turns to form and desapear. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow. Acknowledgements: This work was supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.

  8. Building a Circular Future

    DEFF Research Database (Denmark)

    Merrild, Heidi

    2016-01-01

    Natural resources are scarce and construction accounts for 40 percent of the material and energy consumption in Europe. This means that a switch to a circular future is necessary. ’Building a Circular Future’ maps out where we are, where we are going, and what is needed for this conversion to take...... on the project’s strategies. The financial result is a profit of DKK 35 million on the structure alone in the demolition of a building built for the cost of DKK 860 million. The total potential for the whole building, calculated in projected material prices, is estimated to be up to 16% of the total construction...... of the circular strategies is not only in the future. Increased flexibility, optimized operation and maintenance, as well as a healthier building, is low-hanging fruit that can be harvested today. The project’s principles can be implemented in industrialized construction in a large scale today. That is proven...

  9. ADMINISTRATIVE CIRCULARS

    CERN Multimedia

    Division des ressources humaines

    2000-01-01

    N° 2 (Rev. 1) - March 2000Guidelines and procedures concerning recruitment and probation period of staff membersN° 9 (Rev. 2) - March 2000Staff members contractsN° 16 (Rev. 2) - January 2000TrainingN° 30 (Rev. 1) - January 2000Indemnities and reimbursements upon taking up appointment and termination of contractN° 32 - February 2000Principles and procedures governing complaints of harassmentThese circular have been amended (No 2, N° 9, N° 16 and N° 30) or drawn up (N° 32).Copies are available in the Divisional Secretariats.Note:\tAdministrative and operational circulars, as well as the lists of those in force, are available for consultation in the server SRV4_Home in the Appletalk zone NOVELL (as GUEST or using your Novell username and password), volume PE Division Data Disk.The Word files are available in the folder COM, folder Public, folder ADM.CIRC.docHuman Resources DivisionTel. 74128

  10. Detection and Characterization of Equatorial Scintillation for Real-Time Operational Support

    National Research Council Canada - National Science Library

    McNeil, W

    1997-01-01

    The Phillips Laboratory Scintillation Network Decision Aid (PL-SCINDA) is a software tool which uses real-time data from remote sites to model ionospheric plasma depletions in the equatorial region...

  11. Perceptions of Circular Business Models in SMEs

    Directory of Open Access Journals (Sweden)

    Sebastian-Ion Ceptureanu

    2018-05-01

    Full Text Available Testing circular economy business models is crucial in understanding Circular Economy features across various industries. This paper analyses Circular Economy perceptions in Romanian SMEs by investigating entrepreneurs from PVC joinery industry. Using a multidimensional framework, ReSOLVE, as a conceptual model, and Lewandowski systematization, we measured 6 business actions and their relations with Value creation. The results of our survey can be described as mixed. Of the 6 business actions of ReSOLVE framework, for half of them (Regenerate, Optimize and Exchange we can definitely conclude that these are correlated with Circular Economy in terms of Value Creation, while for a fourth there are variables significantly correlated without being able to conclude its overall contribution in terms of Value creation. Our empirical investigation contributes to literature development on Circular Economy research in SMEs and a step forward to shape future research initiatives.

  12. Properties of general relativistic irrotational binary neutron stars at the innermost orbit

    International Nuclear Information System (INIS)

    Uryu, K.; Shibata, M.

    2001-01-01

    We investigate properties of binary neutron stars around innermost orbits, assuming that the binary is equal mass and in quasiequilibrium. The quasiequilibrium configurations are numerically computed assuming the existence of a helicoidal Killing vector, conformal flatness for spatial components of the metric, and irrotational velocity field for the neutron stars. The computation is performed for the polytropic equation of state with a wide range of the polytropic index n (= 0.5, 0.66667, 0.8, 1, 1.25), and compactness of neutron stars (M/R) ∞ (= 0.03-0.3). Quasiequilibrium sequences of constant rest mass are appropriate models for the final evolution phase of binary neutron stars. It is found that these sequences are always terminated at the innermost orbit where a cusp (inner Lagrange point) appears at the inner edges of the stellar surface. We apply a turning point method to determine the stability of the innermost orbits and found that the innermost stable circular orbit (ISCO) exists for stiff equations of state (n = 0.5 with any (M/R) ∞ and n = 0.66667 with (M/R) ∞ > or ∼ 0.17). The ISCO for n = 0.5 is carefully analyzed. It is clarified that the ISCO are mainly determined by a hydrodynamic instability for realistic compactness of the neutron stars as 0.14 ∞ < or ∼ 0.2. These configurations at the innermost orbits can be used as initial conditions for fully general relativistic simulation for the binary neutron star merger. (author)

  13. Localization of CO2 Leakage from a Circular Hole on a Flat-Surface Structure Using a Circular Acoustic Emission Sensor Array

    Directory of Open Access Journals (Sweden)

    Xiwang Cui

    2016-11-01

    Full Text Available Leak localization is essential for the safety and maintenance of storage vessels. This study proposes a novel circular acoustic emission sensor array to realize the continuous CO2 leak localization from a circular hole on the surface of a large storage vessel in a carbon capture and storage system. Advantages of the proposed array are analyzed and compared with the common sparse arrays. Experiments were carried out on a laboratory-scale stainless steel plate and leak signals were obtained from a circular hole in the center of this flat-surface structure. In order to reduce the influence of the ambient noise and dispersion of the acoustic wave on the localization accuracy, ensemble empirical mode decomposition is deployed to extract the useful leak signal. The time differences between the signals from the adjacent sensors in the array are calculated through correlation signal processing before estimating the corresponding distance differences between the sensors. A hyperbolic positioning algorithm is used to identify the location of the circular leak hole. Results show that the circular sensor array has very good directivity toward the circular leak hole. Furthermore, an optimized method is proposed by changing the position of the circular sensor array on the flat-surface structure or adding another circular sensor array to identify the direction of the circular leak hole. Experiential results obtained on a 100 cm × 100 cm stainless steel plate demonstrate that the full-scale error in the leak localization is within 0.6%.

  14. Saturation of equatorial inertial instability

    NARCIS (Netherlands)

    Kloosterziel, R.C.; Orlandi, P.; Carnevale, G.F.

    2015-01-01

    Inertial instability in parallel shear flows and circular vortices in a uniformly rotating system ( $f$f-plane) redistributes absolute linear momentum or absolute angular momentum in such a way as to neutralize the instability. In previous studies we showed that, in the absence of other

  15. Ionization of oriented targets by intense circularly polarized laser pulses: Imprints of orbital angular nodes in the two-dimensional momentum distribution

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a few-cycle circularly polarized femtosecond laser pulse that interacts with an oriented target exemplified by an argon atom, initially in a 3px or 3py state. The photoelectron momentum distributions show distinct signatures o...

  16. Linear and nonlinear waves with orbital angular momentum in magnetized plasma

    Science.gov (United States)

    Ali, Shahid; Kant Shukla, Padma; Tito Mendonca, José.

    2009-11-01

    Here we discuss the concept of orbital angular momentum (OAM) for electromagnetic waves in a magnetized plasma. Nonlinear effects of photons with spin and OAM will be considered. In particular, we examine the case of parametric interactions between circularly polarized electromagnetic waves and Langmuir and ion acoustic waves, including the ponderomotive force of light with OAM in magnetized plasma (Shukla & Stenflo, PRA). This will be a generalization of recent results published in PRL by J.T. Mendonca and B. Thide. We also examine the influence of OAM on the magnetic field generation by the inverse Faraday effect.

  17. The magnetic field of the equatorial magnetotail from 10 to 40 earth radii

    Science.gov (United States)

    Fairfield, D. H.

    1986-01-01

    A statistical study of IMP 6, 7, and 8 magnetotail magnetic field measurements near the equatorial plane reveals new information about various aspects of magnetospheric structure. More magnetic flux crosses the equatorial plane on the dawn and dusk flanks of the tail than near midnight, but no evidence is found for a dependence on the interplanetary magnetic field sector polarity. Field magnitudes within 3 earth radii of the equatorial plane near dawn are more than twice as large as those near dusk for Xsm = -20 to -10 earth radii. The frequency of occurrence of southward fields is greatest near midnight, and such fields are seen almost twice as often for Xsm = -20 to -10 earth radii as for Xsm beyond -20 earth radii. This latter result supports the idea that the midnight region of the tail between 10 and 20 is a special location where neutral lines are particularly apt to form. Such a neutral line will approach nearest the earth in the midnight and premidnight region, where substorms are thought to have their onset.

  18. Impact of convection over the equatorial trough on the summer monsoon activity over India

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Shenoi, S.S.C.; Schulz, J.

    . There have been studies (Cadet and Olory Togbe, 1981; Sadhuram and Sastry, 1987) on the role of Equatorial Trough (ET) as well as Southern Hemispheric Equatorial Trough (SHET) on the rainfall over central India. Most of these studies are related... the ET, WET and EET behave in a similar fashion during different monsoon and El Nino conditions ? c) What role do the synoptic systems play during the BM over the Indian subcontinent? 2. Data and Methodology The pentad precipitation data used...

  19. Photoinduced Circular Anisotropy in Side-Chain Azobenzene Polyesters

    DEFF Research Database (Denmark)

    Nikolova, L.; Todorov, T.; Ivanov, M.

    1997-01-01

    We report for the first time the inducing of large circular anisotropy in previously unoriented films of side-chain azobenzene polyesters on illumination with circularly polarized light at a wavelength of 488 nm. The circular dichroism and optical activity are measured simultaneously in real time...

  20. A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption

    DEFF Research Database (Denmark)

    Kaminski, Maciej; Cukras, Janusz; Pecul, Magdalena

    2015-01-01

    We present a computational methodology to calculate the intensity of circular dichroism (CD) in spinforbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet–singlet transitions in chiral compounds. The protocol is based...

  1. Self-complementary circular codes in coding theory.

    Science.gov (United States)

    Fimmel, Elena; Michel, Christian J; Starman, Martin; Strüngmann, Lutz

    2018-04-01

    Self-complementary circular codes are involved in pairing genetic processes. A maximal [Formula: see text] self-complementary circular code X of trinucleotides was identified in genes of bacteria, archaea, eukaryotes, plasmids and viruses (Michel in Life 7(20):1-16 2017, J Theor Biol 380:156-177, 2015; Arquès and Michel in J Theor Biol 182:45-58 1996). In this paper, self-complementary circular codes are investigated using the graph theory approach recently formulated in Fimmel et al. (Philos Trans R Soc A 374:20150058, 2016). A directed graph [Formula: see text] associated with any code X mirrors the properties of the code. In the present paper, we demonstrate a necessary condition for the self-complementarity of an arbitrary code X in terms of the graph theory. The same condition has been proven to be sufficient for codes which are circular and of large size [Formula: see text] trinucleotides, in particular for maximal circular codes ([Formula: see text] trinucleotides). For codes of small-size [Formula: see text] trinucleotides, some very rare counterexamples have been constructed. Furthermore, the length and the structure of the longest paths in the graphs associated with the self-complementary circular codes are investigated. It has been proven that the longest paths in such graphs determine the reading frame for the self-complementary circular codes. By applying this result, the reading frame in any arbitrary sequence of trinucleotides is retrieved after at most 15 nucleotides, i.e., 5 consecutive trinucleotides, from the circular code X identified in genes. Thus, an X motif of a length of at least 15 nucleotides in an arbitrary sequence of trinucleotides (not necessarily all of them belonging to X) uniquely defines the reading (correct) frame, an important criterion for analyzing the X motifs in genes in the future.

  2. Millennial-scale iron fertilization of the eastern equatorial Pacific over the past 100,000 years

    Science.gov (United States)

    Loveley, Matthew R.; Marcantonio, Franco; Wisler, Marilyn M.; Hertzberg, Jennifer E.; Schmidt, Matthew W.; Lyle, Mitchell

    2017-10-01

    The eastern equatorial Pacific Ocean plays a crucial role in global climate, as it is a substantial source of CO2 to the atmosphere and accounts for a significant portion of global new export productivity. Here we present a 100,000-year sediment core from the eastern equatorial Pacific, and reconstruct dust flux, export productivity and bottom-water oxygenation using excess-230Th-derived fluxes of 232Th and barium, and authigenic uranium concentrations, respectively. We find that during the last glacial period (71,000 to 41,000 years ago), increased delivery of dust to the eastern equatorial Pacific was coeval with North Atlantic Heinrich stadial events. Millennial-scale pulses of increased dust flux coincided with episodes of heightened biological productivity, suggesting that dissolution of dust released iron that promoted ocean fertilization. We also find that periods of low atmospheric CO2 concentrations were associated with suboxic conditions and increased storage of respired carbon in the deep eastern equatorial Pacific. Increases in CO2 concentrations during the deglaciation are coincident with increases in deep Pacific and Southern Ocean water oxygenation levels. We suggest that deep-ocean ventilation was a primary control on CO2 outgassing in this region, with superimposed pulses of high productivity providing a negative feedback.

  3. A product design framework for a circular economy

    NARCIS (Netherlands)

    Van den Berg, M.R.; Bakker, C.A.

    2015-01-01

    The paper provides a circular economy framework from a product design perspective with tools to aid product designers in applying circular product design in practice. Design research for circular economy has so far mainly been limited to referring to existing fields of research such as design for

  4. Climate regulation of fire emissions and deforestation in equatorial Asia

    NARCIS (Netherlands)

    van der Werf, G. R.; Dempewolf, J.; Trigg, S. N.; Randerson, J. T.; Kasibhatla, P. S.; Giglio, L.; Murdiyarso, D.; Peters, W.; Morton, D. C.; Collatz, G. J.; Dolman, A. J.; Defries, R. S.

    2008-01-01

    Drainage of peatlands and deforestation have led to large-scale fires in equatorial Asia, affecting regional air quality and global concentrations of greenhouse gases. Here we used several sources of satellite data with biogeochemical and atmospheric modeling to better understand and constrain fire

  5. Spatial and temporal variability in nutrients and carbon uptake during 2004 and 2005 in the eastern equatorial Pacific Ocean

    DEFF Research Database (Denmark)

    Palacz, A. P.; Chai, F.

    2012-01-01

    The eastern equatorial Pacific plays a great role in the global carbon budget due to its enhanced biological productivity linked to the equatorial upwelling. However, as confirmed by the Equatorial Biocomplexity cruises in 2004 and 2005, nutrient upwelling supply varies strongly, partly due...... and intraseasonal time scales. Here, high resolution Pacific ROMS-CoSiNE (Regional Ocean Modeling System-Carbon, Silicon, Nitrogen Ecosystem) model results were evaluated with in situ and remote sensing data. The results of model-data comparison revealed a good agreement in domain-average hydrographic....... In order to fully resolve the complexity of biological and physical interactions in the eastern equatorial Pacific, we recommended improving CoSiNE and other models by introducing more phytoplankton groups, variable Redfield and carbon to chlorophyll ratios, as well as resolving the Fe-Si co...

  6. Zernike vs. Bessel circular functions in visual optics.

    Science.gov (United States)

    Trevino, Juan P; Gómez-Correa, Jesus E; Iskander, D Robert; Chávez-Cerda, Sabino

    2013-07-01

    We propose the Bessel Circular Functions as alternatives of the Zernike Circle Polynomials to represent relevant circular ophthalmic surfaces. We assess the fitting capabilities of the orthogonal Bessel Circular Functions by comparing them to Zernike Circle Polynomials for approximating a variety of computationally generated surfaces which can represent ophthalmic surfaces. The Bessel Circular Functions showed better modelling capabilities for surfaces with abrupt variations such as the anterior eye surface at the limbus region, and influence functions. From our studies we find that the Bessel Circular Functions can be more suitable for studying particular features of post surgical corneal surfaces. We show that given their boundary conditions and free oscillating properties, the Bessel Circular Functions are an alternative for representing specific wavefronts and can be better than the Zernike Circle Polynomials for some important cases of corneal surfaces, influence functions and the complete anterior corneal surface. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  7. Dynamical variability in Saturn Equatorial Atmosphere

    Science.gov (United States)

    Sánchez-Lavega, A.; Pérez-Hoyos, S.; Hueso, R.; Rojas, J. F.; French, R. G.; Grupo Ciencias Planetarias Team

    2003-05-01

    Historical ground-based and recent HST observations show that Saturn's Equatorial Atmosphere is the region where the most intense large-scale dynamical variability took place at cloud level in the planet. Large-scale convective storms (nicknamed the ``Great White Spots") occurred in 1876, 1933 and 1990. The best studied case (the 1990 storm), produced a dramatic change in the cloud aspect in the years following the outburst of September 1990. Subsequently, a new large storm formed in 1994 and from 1996 to 2002 our HST observations showed periods of unusual cloud activity in the southern part of the Equator. This contrast with the aspect observed during the Voyager 1 and 2 encounters in 1980 and 1981 when the Equator was calm, except for some mid-scale plume-like features seen in 1981. Cloud-tracking of the features have revealed a dramatic slow down in the equatorial winds from maximum velocities of ˜ 475 m/s in 1980-1981 to ˜ 275 m/s during 1996-2002, as we have recently reported in Nature, Vol. 423, 623 (2003). We discuss the possibility that seasonal and ring-shadowing effects are involved in generating this activity and variability. Acknowledgements: This work was supported by the Spanish MCYT PNAYA 2000-0932. SPH acknowledges a PhD fellowship from the Spanish MECD and RH a post-doc fellowship from Gobierno Vasco. RGF was supported in part by NASA's Planetary Geology and Geophysics Program NAG5-10197 and STSCI Grant GO-08660.01A.

  8. Observation of low energy particle precipitation at low altitude in the equatorial zone

    Science.gov (United States)

    Miah, M. A.

    1989-01-01

    Precipitation of protons in the equatorial zone was investigated by the Phoenix-1 experiment on the S81-1 mission from May to November, 1982. The protons show a precipitation peak along the line of minimum magnetic field strength with a FWHM of 13 deg. The index of equatorial pitch angle distribution is about 19. The peak proton flux shows a fifth-power altitude dependence, and the proton flux shows approximately a factor of 3 times increase in 1982 compared to that in 1969 due, possibly, to the stronger solar maximum conditions of 10.7-cm radiation in 1982.

  9. Nighttime ionospheric D region: Equatorial and nonequatorial

    Science.gov (United States)

    Thomson, Neil R.; McRae, Wayne M.

    2009-08-01

    Nighttime ionospheric D region parameters are found to be generally well modeled by the traditional H‧ and β as used by Wait and by the U.S. Navy in their Earth-ionosphere VLF radio waveguide programs. New comparisons with nonequatorial, mainly all-sea VLF path observations reported over several decades are shown to be consistent with the previously determined height H‧ ˜ 85.0 km and sharpness β ˜ 0.63 km-1. These paths include NPM (Hawaii) to Washington, D. C., Omega Hawaii and NLK (Seattle) to Japan, NWC (N.W. Australia) to Madagascar, and NBA (Panama) to Colorado. In marked contrast, transequatorial path observations (even when nearly all-sea) are found to be often not well modeled: for example, for Omega Japan and JJI (Japan) to Dunedin, New Zealand, the observed amplitudes are markedly lower than those which would be expected from H‧ ˜ 85.0 km and β ˜ 0.63 km-1, or any other realistic values of H‧ and β. Other transequatorial observations compared with modeling include NWC to Japan, Omega Hawaii to Dunedin, and NPM (Hawaii) to Dunedin. It is suggested that the effects of irregularities in the equatorial electrojet may extend down into the nighttime D region and so account for the observed equatorial VLF perturbations through scattering or mode conversion.

  10. Glossina palpalis palpalis populations from Equatorial Guinea belong to distinct allopatric clades.

    Science.gov (United States)

    Cordon-Obras, Carlos; Cano, Jorge; Knapp, Jenny; Nebreda, Paloma; Ndong-Mabale, Nicolas; Ncogo-Ada, Policarpo Ricardo; Ndongo-Asumu, Pedro; Navarro, Miguel; Pinto, Joao; Benito, Agustin; Bart, Jean-Mathieu

    2014-01-17

    Luba is one of the four historical foci of Human African Trypanosomiasis (HAT) on Bioko Island, in Equatorial Guinea. Although no human cases have been detected since 1995, T. b. gambiense was recently observed in the vector Glossina palpalis palpalis. The existence of cryptic species within this vector taxon has been previously suggested, although no data are available regarding the evolutionary history of tsetse flies populations in Bioko. A phylogenetic analysis of 60 G. p. palpalis from Luba was performed sequencing three mitochondrial (COI, ND2 and 16S) and one nuclear (rDNA-ITS1) DNA markers. Phylogeny reconstruction was performed by Distance Based, Maximum Likelihood and Bayesian Inference methods. The COI and ND2 mitochondrial genes were concatenated and revealed 10 closely related haplotypes with a dominant one found in 61.1% of the flies. The sequence homology of the other 9 haplotypes compared to the former ranged from 99.6 to 99.9%. Phylogenetic analysis clearly clustered all island samples with flies coming from the Western African Clade (WAC), and separated from the flies belonging to the Central Africa Clade (CAC), including samples from Mbini and Kogo, two foci of mainland Equatorial Guinea. Consistent with mitochondrial data, analysis of the microsatellite motif present in the ITS1 sequence exhibited two closely related genotypes, clearly divergent from the genotypes previously identified in Mbini and Kogo. We report herein that tsetse flies populations circulating in Equatorial Guinea are composed of two allopatric subspecies, one insular and the other continental. The presence of these two G. p. palpalis cryptic taxa in Equatorial Guinea should be taken into account to accurately manage vector control strategy, in a country where trypanosomiasis transmission is controlled but not definitively eliminated yet.

  11. Range expansion drives dispersal evolution in an equatorial three-species symbiosis.

    Directory of Open Access Journals (Sweden)

    Guillaume Léotard

    Full Text Available Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions.We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists--an ant-plant and its protective ant--and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants.Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated

  12. Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154

    Science.gov (United States)

    Wilkens, Roy; Drury, Anna Joy; Westerhold, Thomas; Lyle, Mitchell; Gorgas, Thomas; Tian, Jun

    2017-04-01

    Isotope stratigraphy has become the method of choice for investigating both past ocean temperatures and global ice volume. Lisiecki and Raymo (2005) published a stacked record of 57 globally distributed benthic δ18O records versus age (LR04 stack). In this study LR04 is compared to high resolution records collected at all of the sites drilled during Ocean Drilling Program (ODP) Leg 154 on the Ceara Rise, in the western equatorial Atlantic Ocean. Newly developed software - the Code for Ocean Drilling Data (CODD) - is used to check data splices of the Ceara sites and better align out-of-splice data with in-splice data. CODD allows to depth and age scaled core images recovered from core table photos enormously facilitating data analysis. The entire splices of ODP Sites 925, 926, 927, 928 and 929 were reviewed. Most changes were minor although several large enough to affect age models based on orbital tuning. We revised the astronomically tuned age model for the Ceara Rise by tuning darker, more clay rich layers to Northern Hemisphere insolation minima. Then we assembled a regional composite benthic stable isotope record from published data. This new Ceara Rise stack provides a new regional reference section for the equatorial Atlantic covering the last 5 million years with an independent age model compared to the non-linear ice volume models of the LR04 stack. Comparison shows that the benthic δ18O composite is consistent with the LR04 stack from 0 - 4 Ma despite a short interval between 1.80 and 1.90 Ma, where LR04 exhibits 2 maxima but where Ceara Rise contains only 1. The interval between 4.0 and 4.5 Ma in the Ceara Rise compilation is decidedly different from LR04, reflecting both the low amplitude of the signal over this interval and the limited amount of data available for the LR04 stack. Our results also point out that precession cycles have been misinterpreted as obliquity in the LR04 stack as suggested by the Ceara Rise composite at 4.2 Ma.

  13. Information circulars

    International Nuclear Information System (INIS)

    1989-04-01

    The document summarizes the Information Circulars published by the IAEA under the symbol INFCIRC/ for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A complete list of INFCIRCs in numerical order with their titles is given in the Annex

  14. Photoexcitation circular dichroism in chiral molecules

    Science.gov (United States)

    Beaulieu, S.; Comby, A.; Descamps, D.; Fabre, B.; Garcia, G. A.; Géneaux, R.; Harvey, A. G.; Légaré, F.; Mašín, Z.; Nahon, L.; Ordonez, A. F.; Petit, S.; Pons, B.; Mairesse, Y.; Smirnova, O.; Blanchet, V.

    2018-05-01

    Chiral effects appear in a wide variety of natural phenomena and are of fundamental importance in science, from particle physics to metamaterials. The standard technique of chiral discrimination—photoabsorption circular dichroism—relies on the magnetic properties of a chiral medium and yields an extremely weak chiral response. Here, we propose and demonstrate an orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexcitation circular dichroism. This technique does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation using linearly polarized laser pulses, without the aid of further chiral interactions. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.

  15. Equatorial electrojet in the Indian region during the geomagnetic ...

    Indian Academy of Sciences (India)

    1998-11-14

    Nov 14, 1998 ... In the recovery phase of the storm, the electric field due to shielding layer penetrates to equatorial latitudes as an overshielding electric field with opposite polarity, westward during day- side and eastward during night side (Kelley et al. 1979). In addition to the prompt penetration elec- tric fields, there are ...

  16. Orbits of two electrons released from rest in a uniform transverse magnetic field

    Science.gov (United States)

    Mungan, Carl E.

    2018-03-01

    Two identical charged particles released from rest repel each other radially. A uniform perpendicular magnetic field will then cause their trajectories to curve into a flower petal pattern. The orbit of each particle is approximately circular with a long period for a strong magnetic field, whereas it becomes a figure-eight for a weak magnetic field with each lobe completed in a cyclotron period. For example, such radially bound motions arise for two-dimensional electron gases. The level of treatment is appropriate for an undergraduate calculus-based electromagnetism course.

  17. Planktonic foraminifera from core tops of western equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Guptha, M.V.S.

    distributional pattern showing upward trend in its abundance from 38 per cent at 21 degrees S latitude to 0.8 per cent at 6 degrees N latitude. Sub-tropical fauna is sparsely distributed in the Equatorial Indian Ocean. Based on these studies it is interpreted...

  18. Targeting Aurora B to the equatorial cortex by MKlp2 is required for cytokinesis.

    Directory of Open Access Journals (Sweden)

    Mayumi Kitagawa

    Full Text Available Although Aurora B is important in cleavage furrow ingression and completion during cytokinesis, the mechanism by which kinase activity is targeted to the cleavage furrow and the molecule(s responsible for this process have remained elusive. Here, we demonstrate that an essential mitotic kinesin MKlp2 requires myosin-II for its localization to the equatorial cortex, and this event is required to recruit Aurora B to the equatorial cortex in mammalian cells. This recruitment event is also required to promote the highly focused accumulation of active RhoA at the equatorial cortex and stable ingression of the cleavage furrow in bipolar cytokinesis. Specifically, in drug-induced monopolar cytokinesis, targeting Aurora B to the cell cortex by MKlp2 is essential for cell polarization and furrow formation. Once the furrow has formed, MKlp2 further recruits Aurora B to the growing furrow. This process together with continuous Aurora B kinase activity at the growing furrow is essential for stable furrow propagation and completion. In contrast, a MKlp2 mutant defective in binding myosin-II does not recruit Aurora B to the cell cortex and does not promote furrow formation during monopolar cytokinesis. This mutant is also defective in maintaining the ingressing furrow during bipolar cytokinesis. Together, these findings reveal that targeting Aurora B to the cell cortex (or the equatorial cortex by MKlp2 is essential for the maintenance of the ingressing furrow for successful cytokinesis.

  19. Relationship between vertical ExB drift and F2-layer characteristics in the equatorial ionosphere at solar minimum conditions

    Science.gov (United States)

    Oyekola, Oyedemi S.

    2012-07-01

    Equatorial and low-latitude electrodynamics plays a dominant role in determining the structure and dynamics of the equatorial and low-latitude ionospheric F-region. Thus, they constitute essential input parameters for quantitative global and regional modeling studies. In this work, hourly median value of ionosonde measurements namely, peak height F2-layer (hmF2), F2-layer critical frequency (foF2) and propagation factor M(3000)F2 made at near equatorial dip latitude, Ouagadougou, Burkina Faso (12oN, 1.5oW; dip: 1.5oN) and relevant F2-layer parameters such as thickness parameter (Bo), electron temperature (Te), ion temperature (Ti), total electron content (TEC) and electron density (Ne, at the fixed altitude of 300 km) provided by the International Reference Ionosphere (IRI) model for the longitude of Ouagadougou are contrasted with the IRI vertical drift model to explore in detail the monthly climatological behavior of equatorial ionosphere and the effects of equatorial vertical plasma drift velocities on the diurnal structure of F2-layer parameters. The analysis period covers four months representative of solstitial and equinoctial seasonal periods during solar minimum year of 1987 for geomagnetically quiet-day. We show that month-by-month morphological patterns between vertical E×B drifts and F2-layer parameters range from worst to reasonably good and are largely seasonally dependent. A cross-correlation analysis conducted between equatorial drift and F2-layer characteristics yield statistically significant correlations for equatorial vertical drift and IRI-Bo, IRI-Te and IRI-TEC, whereas little or no acceptable correlation is obtained with observational evidence. Assessment of the association between measured foF2, hmF2 and M(3000)F2 illustrates consistent much more smaller correlation coefficients with no systematic linkage. In general, our research indicates strong departure from simple electrodynamically controlled behavior.

  20. 'Inca City' is Part of a Circular Feature

    Science.gov (United States)

    2002-01-01

    MGS MOC Release No. MOC2-319, 8 August 2002 [figure removed for brevity, see original site] 'Inca City' is the informal name given by Mariner 9 scientists in 1972 to a set of intersecting, rectilinear ridges that are located among the layered materials of the south polar region of Mars. Their origin has never been understood; most investigators thought they might be sand dunes, either modern dunes or, more likely, dunes that were buried, hardened, then exhumed. Others considered them to be dikes formed by injection of molten rock (magma) or soft sediment into subsurface cracks that subsequently hardened and then were exposed at the surface by wind erosion. The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) has provided new information about the 'Inca City' ridges, though the camera's images still do not solve the mystery. The new information comes in the form of a MOC red wide angle context frame taken in mid-southern spring, shown above left and above right. The original Mariner 9 view of the ridges is seen at the center. The MOC image shows that the 'Inca City' ridges, located at 82oS, 67oW, are part of a larger circular structure that is about 86 km (53 mi) across. It is possible that this pattern reflects an origin related to an ancient, eroded meteor impact crater that was filled-in, buried, then partially exhumed. In this case, the ridges might be the remains of filled-in fractures in the bedrock into which the crater formed, or filled-in cracks within the material that filled the crater. Or both explanations could be wrong. While the new MOC image shows that 'Inca City' has a larger context as part of a circular form, it does not reveal the exact origin of these striking and unusual martian landforms.

  1. Breaking the fault tree circular logic

    International Nuclear Information System (INIS)

    Lankin, M.

    2000-01-01

    Event tree - fault tree approach to model failures of nuclear plants as well as of other complex facilities is noticeably dominant now. This approach implies modeling an object in form of unidirectional logical graph - tree, i.e. graph without circular logic. However, genuine nuclear plants intrinsically demonstrate quite a few logical loops (circular logic), especially where electrical systems are involved. This paper shows the incorrectness of existing practice of circular logic breaking by elimination of part of logical dependencies and puts forward a formal algorithm, which enables the analyst to correctly model the failure of complex object, which involves logical dependencies between system and components, in form of fault tree. (author)

  2. A novel technique for injecting and extracting beams in a circular hadron accelerator without using septum magnets

    CERN Document Server

    AUTHOR|(SzGeCERN)395725

    2015-01-01

    With a few exceptions, all on-axis injection and extraction schemes implemented in circular particle accelerators, synchrotrons, and storage rings, make use of magnetic and electrostatic septa with systems of slow-pulsing dipoles acting on tens of thousands of turns and fast-pulsing dipoles on just a few. The dipoles create a closed orbit deformation around the septa, usually referred to as an orbit bump. A new approach is presented which obviates the need for the septum deflectors. Fastpulsing elements are still required, but their strength can be minimized by choosing appropriate local accelerator optics. This technique should increase the beam clearance and reduce the usually high radiation levels found around the septa and also reduce the machine impedance introduced by the fast-pulsing dipoles. The basis of the technique is the creation of stable islands around stable fixed points in horizontal phase space. The trajectories of these islands may then be adjusted to match the position and angle of the inco...

  3. Equatorial noise emissions with quasiperiodic modulation of wave intensity

    Czech Academy of Sciences Publication Activity Database

    Němec, F.; Santolík, Ondřej; Hrbáčková, Zuzana; Pickett, J. S.; Cornilleau-Wehrlin, N.

    2015-01-01

    Roč. 120, č. 4 (2015), s. 2649-2661 ISSN 2169-9380 R&D Projects: GA MŠk(CZ) LH11122 Institutional support: RVO:68378289 Keywords : equatorial noise * magnetosonic waves * quasiperiodic modulation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.318, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020816/full

  4. Typical disturbances of the daytime equatorial F region observed with a high-resolution HF radar

    Directory of Open Access Journals (Sweden)

    E. Blanc

    1998-06-01

    Full Text Available HF radar measurements were performed near the magnetic equator in Africa (Korhogo 9°24'63''N–5°37'38''W during the International Equatorial Electrojet Year (1993–1994. The HF radar is a high-resolution zenithal radar. It gives ionograms, Doppler spectra and echo parameters at several frequencies simultaneously. This paper presents a comparative study of the daytime ionospheric structures observed during 3 days selected as representative of different magnetic conditions, given by magnetometer measurements. Broad Doppler spectra, large echo width, and amplitude fluctuations revealed small-scale instability processes up to the F-region peak. The height variations measured at different altitudes showed gravity waves and larger-scale disturbances related to solar daytime influence and equatorial electric fields. The possibility of retrieving the ionospheric electric fields from these Doppler or height variation measurements in the presence of the other possible equatorial ionospheric disturbances is discussed.

  5. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian Throughflow

    Science.gov (United States)

    Rodgers, Keith B.; Latif, Mojib; Legutke, Stephanie

    2000-09-01

    The sensitivity of the thermal structure of the equatorial Pacific and Indian Ocean pycnoclines to a model's representation of the Indonesian Straits connecting the two basins is investigated. Two integrations are performed using the global HOPE ocean model. The initial conditions and surface forcing for both cases are identical; the only difference between the runs is that one has an opening for the Indonesian Straits which spans the equator on the Pacific side, and the other has an opening which lies fully north of the equator. The resulting sensitivity throughout much of the upper ocean is greater than 0.5°C for both the equatorial Indian and Pacific. A realistic simulation of net Indonesian Throughflow (ITF) transport (measured in Sverdrups) is not sufficient for an adequate simulation of equatorial watermasses. The ITF must also contain a realistic admixture of northern and southern Pacific source water.

  6. NUMERICAL MODELING OF STRESSES NEAR THE SURFACE IN THE INGOT OF CIRCULAR SECTION, CRYSTALLIZABLE AT CIRCULAR TORCH SECONDARY COOLING

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2004-01-01

    Full Text Available The results of computer calculations of the stresses, generated in outside layer of ingot of steel 20 of circular section with diameter 300 mm, in application to one of the industrial technological schemas of RUP “BMZ”, are presented. The segments of compressive and tensile stresses formation along the length of ingot are determined and the principal possibility of production of continuously cast slug of circular section at circular-torch spray cooling is shown.

  7. Study of the behaviour of the equatorial ionization anomaly (EIA) during solar flares

    Science.gov (United States)

    Aggarwal, Malini; Astafyeva, Elvira

    2014-05-01

    A solar flare occurring in the sun's chromosphere is observed in various wavebands (radio to x-rays). The response of the solar flare which causes sudden changes in the earth's ionosphere is not yet well understood though investigations suggested that its impact depends on the size and location of occurrence of solar flare on sun. Considering this, we have carried an investigation to study the response of two strong and gradual solar flares: 2 Apr 2001 (X20, limb) and 7 Feb 2010 (M6.4, disk) on the earth's equatorial-low latitude regions using multi-technique observations of satellite and ground-based instruments. We found a weakening of strength of equatorial ionization anomaly (EIA) in total electron content during both the flares as observed by TOPEX, JASON-1 and JASON-2 altimeter measurements. The H component of the geomagnetic field also shows a sudden change at equatorial and low latitude stations in the sunlit hemisphere during the flare. The observations of ionosonde at low-latitudes indicate a strong absorption of higher-frequency radio signals. The detail response of these flare on EIA of the earth's ionosphere will be presented and discussed.

  8. An equatorial coronal hole at solar minimum

    Science.gov (United States)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  9. Healthcare in Equatorial Guinea, West Africa: obstacles and barriers to care.

    Science.gov (United States)

    Reuter, Kim Eleanor; Geysimonyan, Aurora; Molina, Gabriela; Reuter, Peter Robert

    2014-01-01

    The provision of healthcare services in developing countries has received increasing attention, but inequalities persist. One nation with potential inequalities in healthcare services is Equatorial Guinea (Central-West Africa). Mitigating these inequalities is difficult, as the Equatoguinean healthcare system remains relatively understudied. In this study, we interviewed members of the healthcare community in order to: 1) learn which diseases are most common and the most common cause of death from the perspective of healthcare workers; and 2) gain an understanding of the healthcare community in Equatorial Guinea by describing how: a) healthcare workers gain their professional knowledge; b) summarizing ongoing healthcare programs aimed at the general public; c) discussing conflicts within the healthcare community and between the public and healthcare providers; d) and addressing opportunities to improve healthcare delivery. We found that some causes of death, such as serious injuries, may not be currently treatable in country, potentially due to a lack of resources and trauma care facilities. In addition, training and informational programs for both healthcare workers and the general public may not be effectively transmitting information to the intended recipients. This presents hurdles to the healthcare community, both in terms of having professional competence in healthcare delivery and in having a community that is receptive to medical care. Our data also highlight government-facility communication as an opportunity for improvement. Our research is an important first step in understanding the context of healthcare delivery in Equatorial Guinea, a country that is relatively data poor.

  10. Concept development for the ITER equatorial port visible/infrared wide angle viewing system

    International Nuclear Information System (INIS)

    Reichle, R.; Beaumont, B.; Boilson, D.; Bouhamou, R.; Direz, M.-F.; Encheva, A.; Henderson, M.; Kazarian, F.; Lamalle, Ph.; Lisgo, S.; Mitteau, R.; Patel, K. M.; Pitcher, C. S.; Pitts, R. A.; Prakash, A.; Raffray, R.; Schunke, B.; Snipes, J.; Diaz, A. Suarez; Udintsev, V. S.

    2012-01-01

    The ITER equatorial port visible/infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R and D topics are outlined.

  11. Instabilities associated with the equatorial spread-F phenomenon and their north-south asymmetry

    International Nuclear Information System (INIS)

    Beghin, C.; Pandey, R.; Roux, D.

    1985-01-01

    Six North to South passes of AUREOL/ARCAD 3 satellite through the equatorial electron density depletion at variable altitude between 400 and 550 km, at night, during a two weeks period, exhibit a similar feature in plasma density irregularities which are thought to be associated with spread F phenomenon. The irregularities are found to be quasi-sinusoidal with a scale size of about 2 km along the satellite trajectory and occur only on the Northern edge of the equatorial electron density depletion. This implies a violation of the generally believed principle of conjugate mapping for those wavelengths. These observations are analysed and discussed in terms of different known generation mechanisms

  12. Sensitivity of population smoke exposure to fire locations in Equatorial Asia

    Science.gov (United States)

    Kim, Patrick S.; Jacob, Daniel J.; Mickley, Loretta J.; Koplitz, Shannon N.; Marlier, Miriam E.; DeFries, Ruth S.; Myers, Samuel S.; Chew, Boon Ning; Mao, Yuhao H.

    2015-02-01

    High smoke concentrations in Equatorial Asia, primarily from land conversion to oil palm plantations, affect a densely populated region and represent a serious but poorly quantified air quality concern. Continued expansion of the oil palm industry is expected but the resulting population exposure to smoke is highly dependent on where this expansion takes place. We use the adjoint of the GEOS-Chem chemical transport model to map the sensitivity of smoke concentrations in major Equatorial Asian cities, and for the population-weighted region, to the locations of the fires. We find that fires in southern Sumatra are particularly detrimental, and that a land management policy protecting peatswamp forests in Southeast Sumatra would be of great air quality benefit. Our adjoint sensitivities can be used to immediately infer population exposure to smoke for any future fire emission scenario.

  13. The Baltics on Their Way towards a Circular Economy

    Directory of Open Access Journals (Sweden)

    Grigoryan A. A.

    2017-10-01

    Full Text Available Circular economy has been studied extensively both in Europe and worldwide. It is largely viewed as a potential strategy for societal development, aimed to increase prosperity while reducing dependence on raw materials and energy. Many businesses regard circular economy as a way to enhance economic growth and increase profits. Governments across the world actively engage in the discussion about the benefits of a transition to a circular economy and about its impact on employment, economic growth, and the environment. This paper aims to study the major issues of circular economy, to identify its advantages, and to offer an insight into the transition stage the Baltic States are undergoing today on their way to circular economy. It is stressed that the Baltic countries are not fully using the opportunities offered by a circular economy. For example, Latvia’s, Lithuania’s, and Estonia’s recycling rates are significantly below those of other European countries. The Baltics depend heavily on EU financial support. An increase in funding will contribute to the implementation of circular economy technologies.

  14. Numerical simulations of type II gradient drift irregularities in the equatorial electrojet

    International Nuclear Information System (INIS)

    Ferch, R.L.; Sudan, R.N.

    1977-01-01

    Two-dimensional numerical studies of the development of type II irregularities in the equatorial electrojet have been carried out using a method similar to that of McDonald et al., (1974) except that ion inertia has been neglected. This simplification is shown to be a valid approximation whenever the electron drift velocity is small in comparison with the ion acoustic velocity and the values of the other parameters are those appropriate for the equatorial E layer. This code enables us to follow the development of quasi-steady state turbulence from appropriate initial pertubations. The two-dimensional turbulent spectrum of electron density perturbations excited is studied both for the case of devlopment from initial perturbations and for the case of a continuously pumped single driving wave

  15. Observer enhanced control for spin-stabilized tethered formation in earth orbit

    Science.gov (United States)

    Guang, Zhai; Yuyang, Li; Liang, Bin

    2018-04-01

    This paper addresses the issues relevant to control of spin-stabilized tethered formation in circular orbit. Due to the dynamic complexities and nonlinear perturbations, it is challenging to promote the control precision for the formation deployment and maintenance. In this work, the formation dynamics are derived with considering the spinning rate of the central body, then major attention is dedicated to develop the nonlinear disturbance observer. To achieve better control performance, the observer-enhanced controller is designed by incorporating the disturbance observer into the control loop, benefits from the disturbance compensation are demonstrated, and also, the dependences of the disturbance observer performance on some important parameters are theoretically and numerically analyzed.

  16. University Students Alternative Conceptions On Circular Motion

    Directory of Open Access Journals (Sweden)

    Ian Phil Canlas

    2015-08-01

    Full Text Available This study attempted to find out university students alternative conceptions on circular motion. An 18-item researcher-compiled and content-validated questionnaire was administered to twenty-six 26 students taking up a program in Bachelor in Secondary Education-Physical Science in their second year enrolled in a course on mechanics. Results revealed that majority of the students possess alternative conceptions on circular motion specifically along velocity acceleration and force. Moreover results showed the inconsistencies in the students understanding of circular motion concepts.

  17. Propagation of EMIC triggered emissions toward the magnetic equatorial plane

    Science.gov (United States)

    Grison, B.; Santolik, O.; Pickett, J. S.; Omura, Y.; Engebretson, M. J.; Dandouras, I. S.; Masson, A.; Decreau, P.; Cornilleau-Wehrlin, N.

    2011-12-01

    EMIC triggered emissions are observed close to the equatorial plane of the magnetosphere at locations where EMIC waves are commonly observed: close to the plasmapause region and in the dayside magnetosphere close to the magnetopause. Their overall characteristics (frequency with time dispersion, generation mechanism) make those waves the EMIC analogue of rising frequency whistler-mode chorus emissions. In our observations the Poynting flux of these emissions is usually clearly arriving from the equatorial region direction, especially when observations take place at more than 5 degrees of magnetic latitude. Simulations have also confirmed that the conditions of generation by interaction with energetic ions are at a maximum at the magnetic equator (lowest value of the background magnetic field along the field line). However in the Cluster case study presented here the Poynting flux of EMIC triggered emissions is propagating toward the equatorial region. The large angle between the wave vector and the background magnetic field is also unusual for this kind of emission. The rising tone starts just above half of the He+ gyrofrequency (Fhe+) and it disappears close to Fhe+. At the time of detection, the spacecraft magnetic latitude is larger than 10 degrees and L shell is about 4. The propagation sense of the emissions has been established using two independent methods: 1) sense of the parallel component of the Poynting flux for a single spacecraft and 2) timing of the emission detections at each of the four Cluster spacecraft which were in a relatively close configuration. We propose here to discuss this unexpected result considering a reflection of this emission at higher latitude.

  18. Longitudinal Variation of the Lunar Tide in the Equatorial Electrojet

    Science.gov (United States)

    Yamazaki, Yosuke; Stolle, Claudia; Matzka, Jürgen; Siddiqui, Tarique A.; Lühr, Hermann; Alken, Patrick

    2017-12-01

    The atmospheric lunar tide is one known source of ionospheric variability. The subject received renewed attention as recent studies found a link between stratospheric sudden warmings and amplified lunar tidal perturbations in the equatorial ionosphere. There is increasing evidence from ground observations that the lunar tidal influence on the ionosphere depends on longitude. We use magnetic field measurements from the CHAMP satellite during July 2000 to September 2010 and from the two Swarm satellites during November 2013 to February 2017 to determine, for the first time, the complete seasonal-longitudinal climatology of the semidiurnal lunar tidal variation in the equatorial electrojet intensity. Significant longitudinal variability is found in the amplitude of the lunar tidal variation, while the longitudinal variability in the phase is small. The amplitude peaks in the Peruvian sector (˜285°E) during the Northern Hemisphere winter and equinoxes, and in the Brazilian sector (˜325°E) during the Northern Hemisphere summer. There are also local amplitude maxima at ˜55°E and ˜120°E. The longitudinal variation is partly due to the modulation of ionospheric conductivities by the inhomogeneous geomagnetic field. Another possible cause of the longitudinal variability is neutral wind forcing by nonmigrating lunar tides. A tidal spectrum analysis of the semidiurnal lunar tidal variation in the equatorial electrojet reveals the dominance of the westward propagating mode with zonal wave number 2 (SW2), with secondary contributions by westward propagating modes with zonal wave numbers 3 (SW3) and 4 (SW4). Eastward propagating waves are largely absent from the tidal spectrum. Further study will be required for the relative importance of ionospheric conductivities and nonmigrating lunar tides.

  19. Discovery Of A Rossby Wave In Jupiter's South Equatorial Region

    Science.gov (United States)

    Simon-Miller, Amy A.; Choi, D. S.; Rogers, J. H.; Gierasch, P. J.

    2012-01-01

    A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 deg S planetographic latitude shows variations in velocity with longitude and time. The chevrons move with velocities near the maximum wind jet velocity of approx.140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 deg N latitude. Their repetitive nature is consistent with an inertia-gravity wave (n = 75-100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a approx.7-day period. This oscillating motion has a wavelength of approx.20 deg and a speed of approx.100 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it, though they are not perfectly in phase. The transient anticyclonic South Equatorial Disturbance (SED) may be a similar wave feature, but moves at slower velocity. All data show chevron latitude variability, but it is unclear if this Rossby wave is present during other epochs, without time series movies that fully delineate it. In the presence of multiple wave modes, the difference in dominant cloud appearance between 7 deg N and 7.5 deg S may be due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.

  20. Effect of magnetic activity on plasma bubbles over equatorial and low-latitude regions in East Asia

    Directory of Open Access Journals (Sweden)

    G. Li

    2009-01-01

    Full Text Available The dependence of plasma bubble occurrence in the eveningside ionosphere, with magnetic activity during the period years 2001–2004, is studied here based on the TEC observations gathered by ground-based GPS receivers which are located in the equatorial and low-latitude regions in East Asia. The observed plasma bubbles consist of the plasma-bubble events in the equatorial (stations GUAM, PIMO and KAYT, and low-latitude regions (stations WUHN, DAEJ and SHAO. It is shown that most equatorial plasma-bubble events commence at 20:00 LT, and may last for >60 min. The magnetic activity appears to suppress the generation of equatorial plasma bubbles with a time delay of more than 3 h (4–9 h. While in the low-latitude regions, most plasma-bubble events commence at about 23:00 LT and last for <45 min. The best correlation between Kp and low-latitude plasma-bubble occurrence is found with an 8–9 h delay, a weak correlation exists for time delays of 6–7 h. This probably indicates that over 3 h delayed disturbance dynamo electric fields obviously inhibit the development of plasma bubbles in the pre-midnight sector.

  1. X-ray magnetic circular dichroism used to image magnetic domains

    CERN Document Server

    Fischer, P; Kalchgruber, R; Schütz, G M; Schmahl, G; Guttmann, P; Bayreuther, G

    1999-01-01

    A new technique to image magnetic domain structures has been established by the combination of the high resolution transmission X- ray microscope (TXM) at BESSY I based on the zone plate technique with the X-ray magnetic circular $9 dichroism (X-MCD) providing a huge magnetic contrast. A lateral spatial resolution down to 30 nm could be achieved. Basic features of X-MCD are the inherent element- specificity and the potential to gain information on the local spin $9 and orbital moments of the absorbing species applying magneto-optical sum rules. Key results at the Fe L/sub 3,2/ edges of Fe in a layered GdFe system and at the Co L/sub 3/ edge of a PtCo layered system demonstrate the potential of $9 this microscopy. The images can be recorded in varying magnetic fields which allows to study the evolution of magnetic domains within a complete hysteresis loop. (8 refs).

  2. Architectural Surfaces and Structures from Circular Arcs

    KAUST Repository

    Shi, Ling

    2013-01-01

    the most attention from geometry researchers. In this thesis, we aim to realize this process with simple geometric primitives, circular arcs. We investigate architectural surfaces and structures consisting of circular arcs. Our focus is lying on how

  3. Anthropogenic 236U recorded in annually banded coral skeleton at Majuro atoll, the equatorial Pacific

    International Nuclear Information System (INIS)

    Sakaguchi, Aya; Eto, Asuka; Takahashi, Yoshio; Steier, Peter; Yamazaki, Atsuko; Watanabe, Tsuyoshi; Sasaki, Keiichi; Yamano, Hiroya

    2013-01-01

    Historical 236 U/ 238 U atom ratio and concentration of 236 U were determined by Accelerator Mass Spectrometry (AMS) in skeletons of dated modern coral core sample collected from Majuro atoll, equatorial Pacific, to reconstruct anthropogenic 236 U inputs to the Equatorial Pacific. The maximum hydrogen bomb-pulses of 236 U/ 238 U and 236 U concentration, 2.83x10 -9 and 1.85x10 7 atom/g, in an annually resolved coral core were captured in 1954 (Operation Castle at Bikini and Enewetok atolls). The values were abruptly decreased in a few years, and they have been gradually decreased over time. Our results allow studies of not only the present distribution pattern, but gives access to the temporal evolution of 236 U in surface seawater of North Equatorial Current which is introduced to the Japan Sea and the North West Pacific Ocean as Kuroshio and Tsushima currents over the past decades. (author)

  4. Extreme orbital evolution from hierarchical secular coupling of two giant planets

    International Nuclear Information System (INIS)

    Teyssandier, Jean; Naoz, Smadar; Lizarraga, Ian; Rasio, Frederic A.

    2013-01-01

    Observations of exoplanets over the last two decades have revealed a new class of Jupiter-size planets with orbital periods of a few days, the so-called 'hot Jupiters'. Recent measurements using the Rossiter-McLaughlin effect have shown that many (∼50%) of these planets are misaligned; furthermore, some (∼15%) are even retrograde with respect to the stellar spin axis. Motivated by these observations, we explore the possibility of forming retrograde orbits in hierarchical triple configurations consisting of a star-planet inner pair with another giant planet, or brown dwarf, in a much wider orbit. Recently, it was shown that in such a system, the inner planet's orbit can flip back and forth from prograde to retrograde and can also reach extremely high eccentricities. Here we map a significant part of the parameter space of dynamical outcomes for these systems. We derive strong constraints on the orbital configurations for the outer perturber (the tertiary) that could lead to the formation of hot Jupiters with misaligned or retrograde orbits. We focus only on the secular evolution, neglecting other dynamical effects such as mean-motion resonances, as well as all dissipative forces. For example, with an inner Jupiter-like planet initially on a nearly circular orbit at 5 AU, we show that a misaligned hot Jupiter is likely to be formed in the presence of a more massive planetary companion (>2 M J ) within ∼140 AU of the inner system, with mutual inclination >50° and eccentricity above ∼0.25. This is in striking contrast to the test particle approximation, where an almost perpendicular configuration can still cause large-eccentricity excitations, but flips of an inner Jupiter-like planet are much less likely to occur. The constraints we derive can be used to guide future observations and, in particular, searches for more distant companions in systems containing a hot Jupiter.

  5. Surface temperature of the equatorial Pacific Ocean and the Indian rainfall

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.

    The time variation of the monthly mean surface temperature of the equatorial Pacific Ocean during 1982-1987 has been studied in relation to summer monsoon rainfall over India The ENSO events of 1982 and 1987 were related to a significant reduction...

  6. Effective potential for equatorial motion in the Tomimatsu-Sato space-times

    Energy Technology Data Exchange (ETDEWEB)

    Calvani, M [Padua Univ. (Italy). Ist. di Astronomia

    1978-01-28

    We give general rules to draw the effective potential curves for equatorial motion in the T-S space-times either with am. Some general properties of the potentials are pointed out and few examples shown.

  7. Dynamical analysis of rendezvous and docking with very large space infrastructures in non-Keplerian orbits

    Science.gov (United States)

    Colagrossi, Andrea; Lavagna, Michèle

    2018-03-01

    A space station in the vicinity of the Moon can be exploited as a gateway for future human and robotic exploration of the solar system. The natural location for a space system of this kind is about one of the Earth-Moon libration points. The study addresses the dynamics during rendezvous and docking operations with a very large space infrastructure in an EML2 Halo orbit. The model takes into account the coupling effects between the orbital and the attitude motion in a circular restricted three-body problem environment. The flexibility of the system is included, and the interaction between the modes of the structure and those related with the orbital motion is investigated. A lumped parameter technique is used to represents the flexible dynamics. The parameters of the space station are maintained as generic as possible, in a way to delineate a global scenario of the mission. However, the developed model can be tuned and updated according to the information that will be available in the future, when the whole system will be defined with a higher level of precision.

  8. Environmental issues elimination through circular economy

    Energy Technology Data Exchange (ETDEWEB)

    Špirková, M., E-mail: marta.spirkova@stuba.sk; Pokorná, E.; Šujanová, J.; Samáková, J. [Paulínska 16, 917 24 Trnava, Slovakia, Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava (Slovakia)

    2016-04-21

    Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition. Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.

  9. Environmental issues elimination through circular economy

    International Nuclear Information System (INIS)

    Špirková, M.; Pokorná, E.; Šujanová, J.; Samáková, J.

    2016-01-01

    Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition. Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.

  10. Environmental issues elimination through circular economy

    Science.gov (United States)

    Špirková, M.; Pokorná, E.; Šujanová, J.; Samáková, J.

    2016-04-01

    Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition. Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.

  11. The Circular Economy between Desiderates and Realities.

    Directory of Open Access Journals (Sweden)

    Tăchiciu Laurentiu

    2018-05-01

    Full Text Available The present issue of Amfiteatru Economic Journal addresses the subject of the circular economy, bringing together research contributions to a better understanding of the current state and perspectives of the adoption of economic and business models conceived to give resources’ highest utility and value in every stage by reducing waste, reusing and recycling. Contributors are approaching the circular economy from different perspectives. Some are concerned with the macroeconomic and social conditions accompanying a higher circularity in the economy, while others focus on businesses’ and individuals’ behaviours.

  12. Equatorial Scintillation Study at Ilorin and Nsukka, Nigeria during Year 2011-2012

    Science.gov (United States)

    Akala, A.

    2017-12-01

    This study presents GNSS scintillations over Ilorin (8.48 oN, 4.54 oE, and mag lat: 1.83oS) and Nsukka (6.84 oN, 7.37 oE, and mag lat: 2.94oS), Nigeria during year 2011-2012. The two stations are located within the inner flank of the equatorial ionization anomaly. Firstly, we investigated the climatology of equatorial scintillations at the two stations. We suppressed multipath effects on the data by imposing a 300 elevation masking on the data. In addition, we investigated scintillation occurrences at the two locations on a satellite-by-satellite basis at varying elevation angles. The source of scintillation records at low-elevation angle is attributed to multipath, while that at high-elevation angle is attributed to ionospheric irregularities. Seasonally, scintillations recorded highest occurrences during March equinox, and the least during June solstice. The trend of scintillations, at both low- and high-elevation angles at the two stations were almost the same. EGNOS satellites signals scintillated at the two locations during the time intervals when GPS satellites signals experienced scintillations. These results could support the development of scintillation models for equatorial Africa, and could also be of benefit to GPS and EGNOS service providers and designers, with a view to providing robust services for GNSS user community in Africa.

  13. Assessing and Optimizing Argo profile mapping : An example in the Equatorial Pacific

    Science.gov (United States)

    Gasparin, Florent; Roemmich, Dean; Gilson, John; Sprintall, Janet

    2014-05-01

    Estimation of subsurface temperature, salinity and velocity has been revolutionized over the last decade as a result of development and deployment of the Argo Program. Argo products have become one of the major observational tools in Oceanography, used in a wide range of basic research, operational models, and education applications. To assess the skill of Argo in estimating oceanic conditions at different scales of variability in the Equatorial Pacific, we optimize Argo profile mapping by focusing on the covariance function. Decorrelation scales are discussed as well as impacts of several different interpolation schemes. The optimization is based on three points 1) Functional representation of the Argo sampled covariance, 2) Realism/Accuracy of the mapping errors and 3) Comparison with independent data such as TAO moorings and sea surface height. The last points show that Argo can represent more than 90% of the total TAO variance and around 80% of the intraseasonal TAO variability (between 10 and 100 days) at the Equator. As an illustration of the improvement, we show how Argo profiles can reveal the vertical structure and vertical phase propagation corresponding to the steric height annual cycle. We also discuss how this unique equatorial wave phenomena is modified during El Nino/La Nina events. This work anticipates a field experiment beginning in early 2014 and can be used for assessing and adapting the equatorial observational network.

  14. Study of equatorial Kelvin waves using the MST radar and radiosonde observations

    Directory of Open Access Journals (Sweden)

    P. Kishore

    2005-06-01

    Full Text Available In this paper an attempt has been made to study equatorial Kelvin waves using a high power coherent VHF radar located at Gadanki (13.5° N, 79.2° E, a tropical station in the Indian sub-continent. Simultaneous radiosonde observations taken from a nearby meteorological station located in Chennai (13.04° N, 80.17° E were also used to see the coherence in the observed structures. These data sets were analyzed to study the mean winds and equatorial waves in the troposphere and lower stratosphere. Equatorial waves with different periodicities were identified. In the present study, particular attention has been given to the fast Kelvin wave (6.5-day and slow Kelvin wave (16-day. Mean zonal wind structures were similar at both locations. The fast Kelvin wave amplitudes were somewhat similar in both observations and the maximum amplitude is about 8m/s. The phase profiles indicated a slow downward progression. The slow Kelvin wave (16-day amplitudes shown by the radiosonde measurements are a little larger than the radar derived amplitudes. The phase profiles showed downward phase progression and it translates into a vertical wavelength of ~10-12km. The radar and radiosonde derived amplitudes of fast and slow Kelvin waves are larger at altitudes near the tropopause (15-17km, where the mean wind attains westward maximum.

  15. The Circular Economy: In Practice-focused Undergraduate Engineering Education

    DEFF Research Database (Denmark)

    Knudby, Torben; Larsen, Samuel

    2017-01-01

    The growth of the planet’s population makes the traditional industrial model of “take, make and waste” unsustainable. The circular economy, in which resources are continuously reused, offers a solution. For manufacturers of durable goods the circular economy requires a well-functioning circular...

  16. Flow-induced vibration of circular cylindrical structures

    International Nuclear Information System (INIS)

    Chen, S.S.

    1985-06-01

    This report summarizes the flow-induced vibration of circular cylinders in quiescent fluid, axial flow, and crossflow, and applications of the analytical methods and experimental data in design evaluation of various system components consisting of circular cylinders. 219 figs., 30 tabs

  17. Dzyaloshinskii-Moriya interaction in α -Fe2O3 measured by magnetic circular dichroism in resonant inelastic soft x-ray scattering

    Science.gov (United States)

    Miyawaki, Jun; Suga, Shigemasa; Fujiwara, Hidenori; Urasaki, Masato; Ikeno, Hidekazu; Niwa, Hideharu; Kiuchi, Hisao; Harada, Yoshihisa

    2017-12-01

    Fe L2 ,3-edge x-ray absorption spectra (XAS) and magnetic circular dichroism (MCD) in resonant inelastic x-ray scattering (RIXS) of α -Fe2O3 were measured to identify the electronic structure responsible for its weak ferromagnetism caused by the Dzyaloshinskii-Moriya interaction (DMI) at room temperature. In contrast to negligible MCD in XAS, MCD in RIXS (RIXS-MCD) was clearly observed in the d d excitation at 1.8 eV via excitation to charge-transfer states. Furthermore, RIXS-MCD showed a crystal orientation dependence, indicating that the observed RIXS-MCD originated from DMI. The observed RIXS-MCD is well described by ab initio charge-transfer multiplet calculations, revealing that the RIXS-MCD derives from spin flip excitations at delocalized eg orbitals. By the combination of the experiments and calculations, RIXS-MCD has unraveled that the origin of DMI in α -Fe2O3 is the eg orbitals, which are strongly hybridized with the 2 p orbitals of oxygen atoms. The results demonstrate the importance of RIXS-MCD for identifying the electronic structure related to DMI.

  18. Circular Cationic Compounds B3Rgn+ of Triangular Ion B3 Trapping Rare Gases

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ruiwen; LI Anyong; LI Zhuozhe

    2017-01-01

    The circular cationic compounds B3Rgn+(n=1-3,Rg=He-Rn) formed by the electron-deficient aromatic ion B3+ trapping rare gases were studied theoretically.The formed B-Rg bond has large bonding energy in the range of 60--209 kJ/mol,its length is close to the stun of covalent radii of B and Rg,for Ar-Rn.The analyses based on the natural bond orbitals and electron density topology show that the B-Rg bonds for Ar-Rn have strong covalent character.The geometric structures,binding energy,bond nature and thermodynamic stability of the boron-rare gas compounds show that these species for Ar-Rn may be experimentally available.Several different theoretical studies have demonstrated that these triangular cations are aromatic.

  19. ORBITAL VARIATION OF THE X-RAY EMISSION FROM THE DOUBLE NEUTRON STAR BINARY J1537+1155

    International Nuclear Information System (INIS)

    Durant, Martin; Kargaltsev, Oleg; Volkov, Igor; Pavlov, George G.

    2011-01-01

    We observed the double neutron star binary (DNSB) containing PSR J1537+1155 (also known as B1534+12) with the Chandra X-Ray Observatory. This is one of the two DNSBs detected in X-rays and the only one where a hint of variability with orbital phase was found (in the previous Chandra observation). Our follow-up observation supports the earlier result: the distribution of photon arrival times with orbital phase again shows a deficit around apastron. The significance of the deficit in the combined data set exceeds 99%. Such an orbital light curve suggests that the X-ray emission is seen only when neutron star (NS) B passes through the equatorial pulsar wind of NS A. We describe statistical tests that we used to determine the significance of the deficit, and conclusions that can be drawn from its existence, such as interaction of the pulsar wind with the NS companion. We also provide better constrained spectral model parameters obtained from the joint spectral fits to the data from both observations. A power law successfully fits the data, with best-fit photon index Γ = 3.1 ± 0.4 and unabsorbed flux f = (3.2 ± 0.8) × 10 –15 erg s –1 cm –2 (0.3-8 keV range).

  20. Large-scale shifts in phytoplankton groups in the Equatorial Pacific during ENSO cycles

    Directory of Open Access Journals (Sweden)

    I. Masotti

    2011-03-01

    Full Text Available The El Niño Southern Oscillation (ENSO drives important changes in the marine productivity of the Equatorial Pacific, in particular during major El Niño/La Niña transitions. Changes in environmental conditions associated with these climatic events also likely impact phytoplankton composition. In this work, the distribution of four major phytoplankton groups (nanoeucaryotes, Prochlorococcus, Synechococcus, and diatoms was examined between 1996 and 2007 by applying the PHYSAT algorithm to the ocean color data archive from the Ocean Color and Temperature Sensor (OCTS and Sea-viewing Wide Field-of-view Sensor (SeaWiFS. Coincident with the decrease in chlorophyll concentrations, a large-scale shift in the phytoplankton composition of the Equatorial Pacific, that was characterized by a decrease in Synechococcus and an increase in nanoeucaryote dominance, was observed during the early stages of both the strong El Niño of 1997 and the moderate El Niño of 2006. A significant increase in diatoms dominance was observed in the Equatorial Pacific during the 1998 La Niña and was associated with elevated marine productivity. An analysis of the environmental variables using a coupled physical-biogeochemical model (NEMO-PISCES suggests that the Synechococcus dominance decrease during the two El Niño events was associated with an abrupt decline in nutrient availability (−0.9 to −2.5 μM NO3 month−1. Alternatively, increased nutrient availability (3 μM NO3 month−1 during the 1998 La Niña resulted in Equatorial Pacific dominance diatom increase. Despite these phytoplankton community shifts, the mean composition is restored after a few months, which suggests resilience in community structure.