WorldWideScience

Sample records for chromosomal duplication blocks

  1. Whole genome duplication of intra- and inter-chromosomes in the tomato genome.

    Science.gov (United States)

    Song, Chi; Guo, Juan; Sun, Wei; Wang, Ying

    2012-07-20

    Whole genome duplication (WGD) events have been proven to occur in the evolutionary history of most angiosperms. Tomato is considered a model species of the Solanaceae family. In this study, we describe the details of the evolutionary process of the tomato genome by detecting collinearity blocks and dating the WGD events on the tree of life by combining two different methods: synonymous substitution rates (Ks) and phylogenetic trees. In total, 593 collinearity blocks were discovered out of 12 pseudo-chromosomes constructed. It was evident that chromosome 2 had experienced an intra-chromosomal duplication event. Major inter-chromosomal duplication occurred among all the pseudo-chromosome. We calculated the Ks value of these collinearity blocks. Two peaks of Ks distribution were found, corresponding to two WGD events occurring approximately 36-82 million years ago (MYA) and 148-205 MYA. Additionally, the results of phylogenetic trees suggested that the more recent WGD event may have occurred after the divergence of the rosid-asterid clade, but before the major diversification in Solanaceae. The older WGD event was shown to have occurred before the divergence of the rosid-asterid clade and after the divergence of rice-Arabidopsis (monocot-dicot). Copyright © 2012. Published by Elsevier Ltd.

  2. Hominoid chromosomal rearrangements on 17q map to complex regions of segmental duplication.

    Science.gov (United States)

    Cardone, Maria Francesca; Jiang, Zhaoshi; D'Addabbo, Pietro; Archidiacono, Nicoletta; Rocchi, Mariano; Eichler, Evan E; Ventura, Mario

    2008-01-01

    Chromosomal rearrangements, such as translocations and inversions, are recurrent phenomena during evolution, and both of them are involved in reproductive isolation and speciation. To better understand the molecular basis of chromosome rearrangements and their part in karyotype evolution, we have investigated the history of human chromosome 17 by comparative fluorescence in situ hybridization (FISH) and sequence analysis. Human bacterial artificial chromosome/p1 artificial chromosome probes spanning the length of chromosome 17 were used in FISH experiments on great apes, Old World monkeys and New World monkeys to study the evolutionary history of this chromosome. We observed that the macaque marker order represents the ancestral organization. Human, chimpanzee and gorilla homologous chromosomes differ by a paracentric inversion that occurred specifically in the Homo sapiens/Pan troglodytes/Gorilla gorilla ancestor. Detailed analyses of the paracentric inversion revealed that the breakpoints mapped to two regions syntenic to human 17q12/21 and 17q23, both rich in segmental duplications. Sequence analyses of the human and macaque organization suggest that the duplication events occurred in the catarrhine ancestor with the duplication blocks continuing to duplicate or undergo gene conversion during evolution of the hominoid lineage. We propose that the presence of these duplicons has mediated the inversion in the H. sapiens/P. troglodytes/G. gorilla ancestor. Recently, the same duplication blocks have been shown to be polymorphic in the human population and to be involved in triggering microdeletion and duplication in human. These results further support a model where genomic architecture has a direct role in both rearrangement involved in karyotype evolution and genomic instability in human.

  3. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    Directory of Open Access Journals (Sweden)

    Brenner Sydney

    2008-06-01

    Full Text Available Abstract Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events. RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate

  4. Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae.

    Science.gov (United States)

    Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya

    2014-08-01

    We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.

  5. Chromosome duplication in Lolium multiflorum Lam.

    Directory of Open Access Journals (Sweden)

    Roselaine Cristina Pereira

    2014-11-01

    Full Text Available Artificial chromosome duplication of diploid genotypes of Lolium multiflorum (2n=2x=14 is worthy to breeding, and aims to increase the expression of traits with agronomic interest. The purpose of this study was to obtain polyploid plants of L. multiflorum from local diploid populations in order to exploit adaptation and future verification of the effects of polyploidy in agronomic traits. Seedlings were immersed in different colchicine solutions for an exposure time of 3h and 24h. Ploidy determination was made by the DNA content and certified by chromosomes counts. The plants confirmed as tetraploids were placed in a greenhouse, and, at flowering, pollen viability was evaluated, and seeds were harvested to assess the stability of the progenies. The percentage of polyploids obtained was 20%. Pollen viability of the tetraploids generated ranged from 58% to 69%. The tetraploid plants obtained in the experiment generated 164 progenies, of which 109 presented DNA content compatible with the tetraploid level, showing stability of chromosome duplication in the filial generation.

  6. Partial Duplication of Chromosome 8p

    African Journals Online (AJOL)

    rme

    The partial chromosome 8p duplication is a rare syndrome and is ... abnormality of maternal origin that ... second trimester by vaginal bleeding and ... echocardiography, brain CT scan and. MRI. Fig. 1:Conventional karyotype of case 3 showing.

  7. A molecularly defined duplication set for the X chromosome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Venken, Koen J. T.; Popodi, Ellen; Holtzman, Stacy L.; Schulze, Karen L.; Park, Soo; Carlson, Joseph W.; Hoskins, Roger A.; Bellen, Hugo J.; Kaufman, Thomas C.

    2010-07-22

    We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using C31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.

  8. A molecularly defined duplication set for the X chromosome of Drosophila melanogaster.

    Science.gov (United States)

    Venken, Koen J T; Popodi, Ellen; Holtzman, Stacy L; Schulze, Karen L; Park, Soo; Carlson, Joseph W; Hoskins, Roger A; Bellen, Hugo J; Kaufman, Thomas C

    2010-12-01

    We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using ΦC31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.

  9. Sorting by Cuts, Joins, and Whole Chromosome Duplications.

    Science.gov (United States)

    Zeira, Ron; Shamir, Ron

    2017-02-01

    Genome rearrangement problems have been extensively studied due to their importance in biology. Most studied models assumed a single copy per gene. However, in reality, duplicated genes are common, most notably in cancer. In this study, we make a step toward handling duplicated genes by considering a model that allows the atomic operations of cut, join, and whole chromosome duplication. Given two linear genomes, [Formula: see text] with one copy per gene and [Formula: see text] with two copies per gene, we give a linear time algorithm for computing a shortest sequence of operations transforming [Formula: see text] into [Formula: see text] such that all intermediate genomes are linear. We also show that computing an optimal sequence with fewest duplications is NP-hard.

  10. Chromosomal duplication strains of Aspergillus nidulans and their instability

    International Nuclear Information System (INIS)

    Azevedo, J.L. de; Almeida Okino, L.M. de

    1981-01-01

    Strains of Aspergillus nidulans with chromosomal duplication were obtained after gamma irradiation followed by crossing of the translocated strains with normal strains. From 20 analysed colonies, 12 have shown translocations induced by irradiation. Segregants from four of these translocation strains crossed to normal strains have shown to be unstable although presenting normal morphology. Two segregants were genetically analysed. The first one has shown a duplication of part of linkage groups VIII and the second one presented a duplication of a segment of linkage group V. These new duplication strains in A. nidulans open new perspectives of a more detailed study of the instability phenomenon in this fungus. (Author) [pt

  11. Verification and characterization of chromosome duplication in haploid maize.

    Science.gov (United States)

    de Oliveira Couto, E G; Resende Von Pinho, E V; Von Pinho, R G; Veiga, A D; de Carvalho, M R; de Oliveira Bustamante, F; Nascimento, M S

    2015-06-26

    Doubled haploid technology has been used by various private companies. However, information regarding chromosome duplication methodologies, particularly those concerning techniques used to identify duplication in cells, is limited. Thus, we analyzed and characterized artificially doubled haploids using microsatellites molecular markers, pollen viability, and flow cytometry techniques. Evaluated material was obtained using two different chromosome duplication protocols in maize seeds considered haploids, resulting from the cross between the haploid inducer line KEMS and 4 hybrids (GNS 3225, GNS 3032, GNS 3264, and DKB 393). Fourteen days after duplication, plant samples were collected and assessed by flow cytometry. Further, the plants were transplanted to a field, and samples were collected for DNA analyses using microsatellite markers. The tassels were collected during anthesis for pollen viability analyses. Haploid, diploid, and mixoploid individuals were detected using flow cytometry, demonstrating that this technique was efficient for identifying doubled haploids. The microsatellites markers were also efficient for confirming the ploidies preselected by flow cytometry and for identifying homozygous individuals. Pollen viability showed a significant difference between the evaluated ploidies when the Alexander and propionic-carmin stains were used. The viability rates between the plodies analyzed show potential for fertilization.

  12. Reproductive history of a healthy woman with mosaic duplication of chromosome 4p.

    Science.gov (United States)

    Bernardini, Laura; Sinibaldi, Lorenzo; Ceccarini, Caterina; Novelli, Antonio; Dallapiccola, Bruno

    2005-04-01

    Mosaic autosomal duplications are rare and often result in mental retardation and congenital anomalies. Phenotype is not predictable depending on the chromosomal imbalance involved and the percentage and tissues distribution of unbalanced cells. We report on a young woman carrying a mosaic duplication of chromosome 4p, evaluated because of three abortions due to IUGR and fetal malformation. Mosaic dup(4p) was detected by standard and molecular cytogenetics. Unbalanced cells accounted for about 20 to 30% of nuclei in four examined tissues and did not cause any obvious phenotypic effect. It is likely that mosaic duplications are underascertained because they are not associated with obvious clinical effects in some individuals. Prenatal diagnosis is the method of choice to predict the karyotype in the offspring of subjects carrying mosaic chromosome imbalances.

  13. The Sequence and Analysis of Duplication Rich Human Chromosome 16

    Science.gov (United States)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-01-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  14. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-08-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  15. Cryptorchidism due to chromosome 5q inversion duplication.

    Science.gov (United States)

    Dutta, M K; Gundgurthi, A; Garg, M K; Pakhetr, R

    2013-12-01

    We present a 15 year old boy who was born out of a non consanguineous marriage, and presented with bilateral cryptorchidism, mental retardation, facial dysmorphism, hypergonadotrophic hypogonadism with failure of anatomical and biochemical localisation of testes. Karyotype analysis showed 46 XY with inverted duplication on chromosome 5q22-31.

  16. Molecular evolution of a Y chromosome to autosome gene duplication in Drosophila.

    Science.gov (United States)

    Dyer, Kelly A; White, Brooke E; Bray, Michael J; Piqué, Daniel G; Betancourt, Andrea J

    2011-03-01

    In contrast to the rest of the genome, the Y chromosome is restricted to males and lacks recombination. As a result, Y chromosomes are unable to respond efficiently to selection, and newly formed Y chromosomes degenerate until few genes remain. The rapid loss of genes from newly formed Y chromosomes has been well studied, but gene loss from highly degenerate Y chromosomes has only recently received attention. Here, we identify and characterize a Y to autosome duplication of the male fertility gene kl-5 that occurred during the evolution of the testacea group species of Drosophila. The duplication was likely DNA based, as other Y-linked genes remain on the Y chromosome, the locations of introns are conserved, and expression analyses suggest that regulatory elements remain linked. Genetic mapping reveals that the autosomal copy of kl-5 resides on the dot chromosome, a tiny autosome with strongly suppressed recombination. Molecular evolutionary analyses show that autosomal copies of kl-5 have reduced polymorphism and little recombination. Importantly, the rate of protein evolution of kl-5 has increased significantly in lineages where it is on the dot versus Y linked. Further analyses suggest this pattern is a consequence of relaxed purifying selection, rather than adaptive evolution. Thus, although the initial fixation of the kl-5 duplication may have been advantageous, slightly deleterious mutations have accumulated in the dot-linked copies of kl-5 faster than in the Y-linked copies. Because the dot chromosome contains seven times more genes than the Y and is exposed to selection in both males and females, these results suggest that the dot suffers the deleterious effects of genetic linkage to more selective targets compared with the Y chromosome. Thus, a highly degenerate Y chromosome may not be the worst environment in the genome, as is generally thought, but may in fact be protected from the accumulation of deleterious mutations relative to other nonrecombining

  17. Decoding Synteny Blocks and Large-Scale Duplications in Mammalian and Plant Genomes

    Science.gov (United States)

    Peng, Qian; Alekseyev, Max A.; Tesler, Glenn; Pevzner, Pavel A.

    The existing synteny block reconstruction algorithms use anchors (e.g., orthologous genes) shared over all genomes to construct the synteny blocks for multiple genomes. This approach, while efficient for a few genomes, cannot be scaled to address the need to construct synteny blocks in many mammalian genomes that are currently being sequenced. The problem is that the number of anchors shared among all genomes quickly decreases with the increase in the number of genomes. Another problem is that many genomes (plant genomes in particular) had extensive duplications, which makes decoding of genomic architecture and rearrangement analysis in plants difficult. The existing synteny block generation algorithms in plants do not address the issue of generating non-overlapping synteny blocks suitable for analyzing rearrangements and evolution history of duplications. We present a new algorithm based on the A-Bruijn graph framework that overcomes these difficulties and provides a unified approach to synteny block reconstruction for multiple genomes, and for genomes with large duplications.

  18. Partial duplication of the APBA2 gene in chromosome 15q13 corresponds to duplicon structures

    Directory of Open Access Journals (Sweden)

    Kesterson Robert A

    2003-04-01

    Full Text Available Abstract Background Chromosomal abnormalities affecting human chromosome 15q11-q13 underlie multiple genomic disorders caused by deletion, duplication and triplication of intervals in this region. These events are mediated by highly homologous segments of DNA, or duplicons, that facilitate mispairing and unequal cross-over in meiosis. The gene encoding an amyloid precursor protein-binding protein (APBA2 was previously mapped to the distal portion of the interval commonly deleted in Prader-Willi and Angelman syndromes and duplicated in cases of autism. Results We show that this gene actually maps to a more telomeric location and is partially duplicated within the broader region. Two highly homologous copies of an interval containing a large 5' exon and downstream sequence are located ~5 Mb distal to the intact locus. The duplicated copies, containing the first coding exon of APBA2, can be distinguished by single nucleotide sequence differences and are transcriptionally inactive. Adjacent to APBA2 maps a gene termed KIAA0574. The protein encoded by this gene is weakly homologous to a protein termed X123 that in turn maps adjacent to APBA1 on 9q21.12; APBA1 is highly homologous to APBA2 in the C-terminal region and is distinguished from APBA2 by the N-terminal region encoded by this duplicated exon. Conclusion The duplication of APBA2 sequences in this region adds to a complex picture of different low copy repeats present across this region and elsewhere on the chromosome.

  19. Efficient image duplicated region detection model using sequential block clustering

    Czech Academy of Sciences Publication Activity Database

    Sekeh, M. A.; Maarof, M. A.; Rohani, M. F.; Mahdian, Babak

    2013-01-01

    Roč. 10, č. 1 (2013), s. 73-84 ISSN 1742-2876 Institutional support: RVO:67985556 Keywords : Image forensic * Copy–paste forgery * Local block matching Subject RIV: IN - Informatics, Computer Science Impact factor: 0.986, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/mahdian-efficient image duplicated region detection model using sequential block clustering.pdf

  20. Small homologous blocks in phytophthora genomes do not point to an ancient whole-genome duplication.

    Science.gov (United States)

    van Hooff, Jolien J E; Snel, Berend; Seidl, Michael F

    2014-05-01

    Genomes of the plant-pathogenic genus Phytophthora are characterized by small duplicated blocks consisting of two consecutive genes (2HOM blocks) and by an elevated abundance of similarly aged gene duplicates. Both properties, in particular the presence of 2HOM blocks, have been attributed to a whole-genome duplication (WGD) at the last common ancestor of Phytophthora. However, large intraspecies synteny-compelling evidence for a WGD-has not been detected. Here, we revisited the WGD hypothesis by deducing the age of 2HOM blocks. Two independent timing methods reveal that the majority of 2HOM blocks arose after divergence of the Phytophthora lineages. In addition, a large proportion of the 2HOM block copies colocalize on the same scaffold. Therefore, the presence of 2HOM blocks does not support a WGD at the last common ancestor of Phytophthora. Thus, genome evolution of Phytophthora is likely driven by alternative mechanisms, such as bursts of transposon activity.

  1. A new resource for characterizing X-linked genes in Drosophila melanogaster: systematic coverage and subdivision of the X chromosome with nested, Y-linked duplications.

    Science.gov (United States)

    Cook, R Kimberley; Deal, Megan E; Deal, Jennifer A; Garton, Russell D; Brown, C Adam; Ward, Megan E; Andrade, Rachel S; Spana, Eric P; Kaufman, Thomas C; Cook, Kevin R

    2010-12-01

    Interchromosomal duplications are especially important for the study of X-linked genes. Males inheriting a mutation in a vital X-linked gene cannot survive unless there is a wild-type copy of the gene duplicated elsewhere in the genome. Rescuing the lethality of an X-linked mutation with a duplication allows the mutation to be used experimentally in complementation tests and other genetic crosses and it maps the mutated gene to a defined chromosomal region. Duplications can also be used to screen for dosage-dependent enhancers and suppressors of mutant phenotypes as a way to identify genes involved in the same biological process. We describe an ongoing project in Drosophila melanogaster to generate comprehensive coverage and extensive breakpoint subdivision of the X chromosome with megabase-scale X segments borne on Y chromosomes. The in vivo method involves the creation of X inversions on attached-XY chromosomes by FLP-FRT site-specific recombination technology followed by irradiation to induce large internal X deletions. The resulting chromosomes consist of the X tip, a medial X segment placed near the tip by an inversion, and a full Y. A nested set of medial duplicated segments is derived from each inversion precursor. We have constructed a set of inversions on attached-XY chromosomes that enable us to isolate nested duplicated segments from all X regions. To date, our screens have provided a minimum of 78% X coverage with duplication breakpoints spaced a median of nine genes apart. These duplication chromosomes will be valuable resources for rescuing and mapping X-linked mutations and identifying dosage-dependent modifiers of mutant phenotypes.

  2. Sex-chromosome anaphase movements in crane-fly spermatocytes are coordinated: ultraviolet microbeam irradiation of one kinetochore of one sex chromosome blocks the movements of both sex chromosomes

    International Nuclear Information System (INIS)

    Swedak, J.A.M.; Forer, A.

    1987-01-01

    Sex chromosomes in crane-fly spermatocytes move polewards at anaphase after the autosomes have reached the poles. We irradiated one kinetochore of one sex chromosome using an ultraviolet microbeam. When both sex chromosomes were normally oriented, irradiation of a single kinetochore permanently blocked movement of both sex chromosomes. Irradiation of non-kinetochore chromosomal regions or of spindle fibres did not block movement, or blocked movement only temporarily. We argue that ultraviolet irradiation of one kinetochore blocks movement of both sex chromosomes because of effects on a 'signal' system. Irradiation of one kinetochore of a maloriented sex chromosome did not block motion of either sex chromosome. However, irradiation of one kinetochore of a normally oriented sex chromosome permanently blocked motion of both that sex chromosome and the maloriented sex chromosome. Thus for the signal system to allow the sex chromosomes to move to the pole each sex chromosome must have one spindle fibre to each pole. (author)

  3. Microarray Analysis of Copy Number Variants on the Human Y Chromosome Reveals Novel and Frequent Duplications Overrepresented in Specific Haplogroups.

    Directory of Open Access Journals (Sweden)

    Martin M Johansson

    Full Text Available The human Y chromosome is almost always excluded from genome-wide investigations of copy number variants (CNVs due to its highly repetitive structure. This chromosome should not be forgotten, not only for its well-known relevance in male fertility, but also for its involvement in clinical phenotypes such as cancers, heart failure and sex specific effects on brain and behaviour.We analysed Y chromosome data from Affymetrix 6.0 SNP arrays and found that the signal intensities for most of 8179 SNP/CN probes in the male specific region (MSY discriminated between a male, background signals in a female and an isodicentric male containing a large deletion of the q-arm and a duplication of the p-arm of the Y chromosome. Therefore, this SNP/CN platform is suitable for identification of gain and loss of Y chromosome sequences. In a set of 1718 males, we found 25 different CNV patterns, many of which are novel. We confirmed some of these variants by PCR or qPCR. The total frequency of individuals with CNVs was 14.7%, including 9.5% with duplications, 4.5% with deletions and 0.7% exhibiting both. Hence, a novel observation is that the frequency of duplications was more than twice the frequency of deletions. Another striking result was that 10 of the 25 detected variants were significantly overrepresented in one or more haplogroups, demonstrating the importance to control for haplogroups in genome-wide investigations to avoid stratification. NO-M214(xM175 individuals presented the highest percentage (95% of CNVs. If they were not counted, 12.4% of the rest included CNVs, and the difference between duplications (8.9% and deletions (2.8% was even larger.Our results demonstrate that currently available genome-wide SNP platforms can be used to identify duplications and deletions in the human Y chromosome. Future association studies of the full spectrum of Y chromosome variants will demonstrate the potential involvement of gain or loss of Y chromosome sequence in

  4. Reciprocal duplication of the Williams-Beuren syndrome deletion on chromosome 7q11.23 is associated with schizophrenia.

    Science.gov (United States)

    Mulle, Jennifer Gladys; Pulver, Ann E; McGrath, John A; Wolyniec, Paula S; Dodd, Anne F; Cutler, David J; Sebat, Jonathan; Malhotra, Dheeraj; Nestadt, Gerald; Conrad, Donald F; Hurles, Matthew; Barnes, Chris P; Ikeda, Masashi; Iwata, Nakao; Levinson, Douglas F; Gejman, Pablo V; Sanders, Alan R; Duan, Jubao; Mitchell, Adele A; Peter, Inga; Sklar, Pamela; O'Dushlaine, Colm T; Grozeva, Detelina; O'Donovan, Michael C; Owen, Michael J; Hultman, Christina M; Kähler, Anna K; Sullivan, Patrick F; Kirov, George; Warren, Stephen T

    2014-03-01

    Several copy number variants (CNVs) have been implicated as susceptibility factors for schizophrenia (SZ). Some of these same CNVs also increase risk for autism spectrum disorders, suggesting an etiologic overlap between these conditions. Recently, de novo duplications of a region on chromosome 7q11.23 were associated with autism spectrum disorders. The reciprocal deletion of this region causes Williams-Beuren syndrome. We assayed an Ashkenazi Jewish cohort of 554 SZ cases and 1014 controls for genome-wide CNV. An excess of large rare and de novo CNVs were observed, including a 1.4 Mb duplication on chromosome 7q11.23 identified in two unrelated patients. To test whether this 7q11.23 duplication is also associated with SZ, we obtained data for 14,387 SZ cases and 28,139 controls from seven additional studies with high-resolution genome-wide CNV detection. We performed a meta-analysis, correcting for study population of origin, to assess whether the duplication is associated with SZ. We found duplications at 7q11.23 in 11 of 14,387 SZ cases with only 1 in 28,139 control subjects (unadjusted odds ratio 21.52, 95% confidence interval: 3.13-922.6, p value 5.5 × 10(-5); adjusted odds ratio 10.8, 95% confidence interval: 1.46-79.62, p value .007). Of three SZ duplication carriers with detailed retrospective data, all showed social anxiety and language delay premorbid to SZ onset, consistent with both human studies and animal models of the 7q11.23 duplication. We have identified a new CNV associated with SZ. Reciprocal duplication of the Williams-Beuren syndrome deletion at chromosome 7q11.23 confers an approximately tenfold increase in risk for SZ. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. A 15 Mb large paracentric chromosome 21 inversion identified in Czech population through a pair of flanking duplications.

    Science.gov (United States)

    Drabova, Jana; Trkova, Marie; Hancarova, Miroslava; Novotna, Drahuse; Hejtmankova, Michaela; Havlovicova, Marketa; Sedlacek, Zdenek

    2014-01-01

    Inversions are balanced structural chromosome rearrangements, which can influence gene expression and the risk of unbalanced chromosome constitution in offspring. Many examples of inversion polymorphisms exist in human, affecting both heterochromatic regions and euchromatin. We describe a novel, 15 Mb long paracentric inversion, inv(21)(q21.1q22.11), affecting more than a third of human 21q. Despite of its length, the inversion cannot be detected using karyotyping due to similar band patterns on the normal and inverted chromosomes, and is therefore likely to escape attention. Its identification was aided by the repeated observation of the same pair of 150 kb long duplications present in cis on chromosome 21 in three Czech families subjected to microarray analysis. The finding prompted us to hypothesise that this co-occurrence of two remote duplications could be associated with an inversion of the intervening segment, and this speculation turned out to be right. The inversion was confirmed in a series of FISH experiments which also showed that the second copy of each of the duplications was always located at the opposite end of the inversion. The presence of the same pair of duplications in additional individuals reported in public databases indicates that the inversion may also be present in other populations. Three out of the total of about 4000 chromosomes 21 examined in our sample carried the duplications and were inverted, corresponding to carrier frequency of about 1/660. Although the breakpoints affect protein-coding genes, the occurrence of the inversion in normal parents and siblings of our patients and the occurrence of the duplications in unaffected controls in databases indicate that this rare variant is rather non-pathogenic. The inverted segment carried an identical shared haplotype in the three families studied. The haplotypes, however, diverged very rapidly in the flanking regions, possibly pointing to an ancient founder event at the origin of the

  6. Paracentric inversion of chromosome 2 associated with cryptic duplication of 2q14 and deletion of 2q37 in a patient with autism.

    Science.gov (United States)

    Devillard, Françoise; Guinchat, Vincent; Moreno-De-Luca, Daniel; Tabet, Anne-Claude; Gruchy, Nicolas; Guillem, Pascale; Nguyen Morel, Marie-Ange; Leporrier, Nathalie; Leboyer, Marion; Jouk, Pierre-Simon; Lespinasse, James; Betancur, Catalina

    2010-09-01

    We describe a patient with autism and a paracentric inversion of chromosome 2q14.2q37.3, with a concurrent duplication of the proximal breakpoint at 2q14.1q14.2 and a deletion of the distal breakpoint at 2q37.3. The abnormality was derived from his mother with a balanced paracentric inversion. The inversion in the child appeared to be cytogenetically balanced but subtelomere FISH revealed a cryptic deletion at the 2q37.3 breakpoint. High-resolution single nucleotide polymorphism array confirmed the presence of a 3.5 Mb deletion that extended to the telomere, and showed a 4.2 Mb duplication at 2q14.1q14.2. FISH studies using a 2q14.2 probe showed that the duplicated segment was located at the telomeric end of chromosome 2q. This recombinant probably resulted from breakage of a dicentric chromosome. The child had autism, mental retardation, speech and language delay, hyperactivity, growth retardation with growth hormone deficiency, insulin-dependent diabetes, and mild facial dysmorphism. Most of these features have been previously described in individuals with simple terminal deletion of 2q37. Pure duplications of the proximal chromosome 2q are rare and no specific syndrome has been defined yet, so the contribution of the 2q14.1q14.2 duplication to the phenotype of the patient is unknown. These findings underscore the need to explore apparently balanced chromosomal rearrangements inherited from a phenotypically normal parent in subjects with autism and/or developmental delay. In addition, they provide further evidence indicating that chromosome 2q terminal deletions are among the most frequently reported cytogenetic abnormalities in individuals with autism.

  7. Delineation of a new chromosome 20q11.2 duplication syndrome including the ASXL1 gene

    DEFF Research Database (Denmark)

    Avila, Magali; Kirchhoff, Eva Maria; Marle, Nathalie

    2013-01-01

    We report on three males with de novo overlapping 7.5, 9.8, and 10 Mb duplication of chromosome 20q11.2. Together with another patient previously published in the literature with overlapping 20q11 microduplication, we show that such patients display common clinical features including metopic ridg...

  8. Inversion duplication deletions involving the long arm of chromosome 13: phenotypic description of additional three fetuses and genotype-phenotype correlation.

    Science.gov (United States)

    Quelin, Chloe; Spaggiari, Emmanuel; Khung-Savatovsky, Suonavy; Dupont, Celine; Pasquier, Laurent; Loeuillet, Laurence; Jaillard, Sylvie; Lucas, Josette; Marcorelles, Pascale; Journel, Hubert; Pluquailec-Bilavarn, Khantaby; Bazin, Anne; Verloes, Alain; Delezoide, Anne-Lise; Aboura, Azzedine; Guimiot, Fabien

    2014-10-01

    Inversion duplication and terminal deletion of the long arm of chromosome 13 (inv dup del 13q) is a rare chromosomal rearrangement: only five patients have been reported, mostly involving a ring chromosome 13. We report on additional three fetuses with pure inv dup del 13q: Patient 1 had macrosomia, enlarged kidneys, hypersegmented lungs, unilateral moderate ventriculomegaly, and a mild form of hand and feet preaxial polydactyly; Patient 2 had intrauterine growth retardation, widely spaced eyes, left microphthalmia, right anophthalmia, short nose, bilateral absent thumbs, cutaneous syndactyly of toes 4 and 5, bifid third metacarpal, a small left kidney, hyposegmented lungs, and partial agenesis of the corpus callosum; Patient 3 had widely spaced eyes, long and smooth philtrum, low-set ears, median notch in the upper alveolar ridge, bifid tongue, cutaneous syndactyly of toes 2 and 3, enlarged kidneys and pancreas, arhinencephaly, and partial agenesis of the corpus callosum. We compared the phenotypes of these patients to those previously reported for ring chromosome 13, pure 13q deletions and duplications. We narrowed some critical regions previously reported for lung, kidney and fetal growth, and for thumb, cerebral, and eye anomalies. © 2014 Wiley Periodicals, Inc.

  9. No significant effect of monosomy for distal 21q22. 3 on the Down syndrom phenotype in mirror' duplications of chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Pangalos, C.; Prieur, M.; Rethore, M.O.; Lejeune, J. (Institut de Progenese, Paris (France)); Theophile, D.; Sinet, P.M.; Chettouh, Z.; Delabar, J.M. (Hopital Necker Enfants Malades, Paris (France)); Marks, A. (Univ. of Toronto, Ontario (Canada)); Stamboulieh-Abazis, D. (Diagnostic Genetic Center, Athens (Greece)); Verellen, C. (Centre de Genetique Humaine, Brussels (Belgium))

    1992-12-01

    Three Down syndrome patients for whom karyotypic analysis showed a mirror' (reverse tandem) duplication of chromosome 21 were studied by phenotypic, cytogenetic, and molecular methods. On high-resolution R-banding analysis performed in two cases, the size of the fusion 21q22.3 band was apparently less than twice the size of the normal 21q22.3, suggesting a partial deletion of distal 21q. The evaluation of eight chromosome 21 single-copy sequences of the 21q22 region - namely, SOD1, D21S15, D21S42, CRYA1, PFKL, CD18, COL6A1, and S100B - by a slot blot method showed in all three cases a partial deletion of 21q22.3 and partial monosomy. The translocation breakpoints were different in each patient, and in two cases the rearranged chromosome was found to be asymmetrical. The molecular definition of the monosomy 21 in each patient was, respectively, COL6A1-S100B, CD18-S100B, and PFKL-S100B. DNA polymorphism analysis indicated in all cases a homozygosity of the duplicated material. The duplicated region was maternal in two patients and paternal in one patient. These data suggest that the reverse tandem chromosomes did not result from a telomeric fusion between chromosomes 21 but from a translocation between sister chromatids. The phenotypes of these patients did not differ significantly from that of individuals with full trisomy 21, except in one case with large ears with an unfolded helix. The fact that monosomy of distal 21q22.3 in these patients resulted in a phenotype very similar to Down syndrome suggests that the duplication of the genes located in this part of chromosome 21 is not necessary for the pathogenesis of the Down syndrome features observed in these patients, including most of the facial and hand features, muscular hypotonia, cardiopathy of the Fallot tetralogy type, and part of the mental retardation. 54 refs., 5 figs., 3 tabs.

  10. Exon duplications in the ATP7A gene

    DEFF Research Database (Denmark)

    Mogensen, Mie; Skjørringe, Tina; Kodama, Hiroko

    2011-01-01

    the identified duplicated fragments originated from a single or from two different X-chromosomes, polymorphic markers located in the duplicated fragments were analyzed. RESULTS: Partial ATP7A gene duplication was identified in 20 unrelated patients including one patient with Occipital Horn Syndrome (OHS...

  11. Distribution of segmental duplications in the context of higher order chromatin organisation of human chromosome 7

    DEFF Research Database (Denmark)

    Ebert, Grit; Steininger, Anne; Weißmann, Robert

    2014-01-01

    of the Williams-Beuren syndrome locus we demonstrate by cross-species comparison that these SDs have inserted at the borders of a topological domain and that they flank regions with distinct DNA conformation. CONCLUSIONS: Our study suggests a link of nuclear architecture and the propagation of SDs across......BACKGROUND: Segmental duplications (SDs) are not evenly distributed along chromosomes. The reasons for this biased susceptibility to SD insertion are poorly understood. Accumulation of SDs is associated with increased genomic instability, which can lead to structural variants and genomic disorders...... chromosome 7, either by promoting regional SD insertion or by contributing to the establishment of higher order chromatin organisation themselves. The latter could compensate for the high risk of structural rearrangements and thus may have contributed to their evolutionary fixation in the human genome....

  12. MURCS Association with Partial Duplication of the Distal Long Chromosome 5 and Unilateral Ovarian Agenesis

    Directory of Open Access Journals (Sweden)

    Anna Dabkowska-Huc

    2013-01-01

    Full Text Available A combination of the congenital abnormalities, Müllerian duct aplasia, renal aplasia, and cervicothoracic somite dysplasia, is defined as the MURCS association. Various genetic defects have been described in the MURCS association so far, yet the unambiguous molecular basis of these disorders has not been established. We report the case of an 18-year-old woman who presented with primary amenorrhea, right kidney, Arnold-Chiari malformation, and Klippel-Feil syndrome. In addition, the patient showed the following unusual features: right ovarian and Skenes gland agenesis, cubitus valgus with hyperextension and decreased range of motion at elbows, and facial changes. Moreover, the performed DNA analysis showed interstitial duplication in chromosome 5 (5q35.1. In the duplicated region, there are genes whose function is not well known. It is thought that they have an influence on the early stages of development and their joining in the later period can lead to neoplastic disorders, especially leukemias.

  13. CHROMOSOMAL DIFFERENTIATIONS OF THE LAMPBRUSH TYPE FORMED BY THE Y CHROMOSOME IN DROSOPHILA HYDEI AND DROSOPHILA NEOHYDEI

    Science.gov (United States)

    Hess, Oswald; Meyer, Günther F.

    1963-01-01

    The nuclei of growing spermatocytes in Drosophila hydei and D. neohydei are characterized by the appearance of phase-specific, paired, loop-shaped structures thought to be similar to the loops in lampbrush chromosomes of amphibian oocytes. In X/O-males of D. hydei spermatogenesis is completely blocked before the first maturation division. No spermatozoa are formed in such testes. In the nuclei of X/O-spermatocytes, paired loop formations are absent. This shows the dependence of these chromosomal functional structures upon the Y chromosome. The basis of this dependence could be shown through an investigation of males with two Y chromosomes. All loop pairs are present in duplicate in XYY males. This proves that the intranuclear formations are structural modifications of the Y chromosome itself. These functional structures are species-specific and characteristically different in Drosophila hydei and D. neohydei. Reciprocal species crosses and a backcross showed that the spermatocyte nuclei of all hybrid males possess the functional structures corresponding to the species which donated the Y chromosome. This shows that the morphological character of the functional structures is also determined by the Y chromosome. PMID:13954225

  14. Malformation/dysplasia syndrome (neural tube defect, hypospadias neuroblastoma) associated with an extra dicentric marker chromosome 15 ({open_quotes}inversion duplication 15{close_quotes})

    Energy Technology Data Exchange (ETDEWEB)

    Reitnauer, P.J.; Rao, K.W.; Tepperberg, J.H. [Univ. of North Carolina, Chapel Hill, NC (United States)

    1994-09-01

    Extra dicentric 15 marker chromosomes are associated with variable degrees of mental retardation but not major structural birth defects. We have studied a unique patient, a male infant who was prenatally diagnosed with lumbar meningomyelocele and an extra pseudodicentric marker chromosome: 47,XY,+psu dic(15)t(15;15)(?q12,?q12)mat. Hairy ears and a coronal hypospadias were noted at birth. At three months of age, a stage I thoracic neuroblastoma was primarily resected. Tumor cells, skin fibroblasts and peripheral blood lymphocytes contained the dicentric 15. The mother is mosaic for the marker chromosome. Fluorescence in situ hybridization (FISH) studies using a classic 15 satellite probe (D15Z1 [Oncor]) confirmed the presence of 2 number 15 centromeres in the marker. The marker is felt to be the result of a translocation rather than an inverted duplication because the G-band morphology of the short arm/satellite complexes differ from one another, implying that the arms originate from 2 different number 15s. FISH analysis using cosmid probes for the Prader-Willi/Angelman critical region (D15S11 and GABRB3 [Oncor]) revealed 2 copies of this region, indicating that these loci are duplicated in the marker. Although some features of the patient`s phenotype such as developmental delay and hypotonia have been associated with dicentric chromosome 15 markers, this is the first malformation/dysplasia syndrome or neuroblastoma reported to our knowledge. The association of neuroblastoma with chromosome 15 aberrations in this case provides speculation as to the role of chromosome 15 loci in cell division control.

  15. Detection and correction of false segmental duplications caused by genome mis-assembly

    Science.gov (United States)

    2010-01-01

    Diploid genomes with divergent chromosomes present special problems for assembly software as two copies of especially polymorphic regions may be mistakenly constructed, creating the appearance of a recent segmental duplication. We developed a method for identifying such false duplications and applied it to four vertebrate genomes. For each genome, we corrected mis-assemblies, improved estimates of the amount of duplicated sequence, and recovered polymorphisms between the sequenced chromosomes. PMID:20219098

  16. A case of de novo duplication of 15q24-q26.3

    Directory of Open Access Journals (Sweden)

    Hye Ran Kim

    2011-06-01

    Full Text Available Distal duplication, or trisomy 15q, is an extremely rare chromosomal disorder characterized by prenatal and postnatal overgrowth, mental retardation, and craniofacial malformations. Additional abnormalities typically include an unusually short neck, malformations of the fingers and toes, scoliosis and skeletal malformations, genital abnormalities, particularly in affected males, and, in some cases, cardiac defects. The range and severity of symptoms and physical findings may vary from case to case, depending upon the length and location of the duplicated portion of chromosome 15q. Most reported cases of duplication of the long arm of chromosome 15 frequently have more than one segmental imbalance resulting from unbalanced translocations involving chromosome 15 and deletions in another chromosome, as well as other structural chromosomal abnormalities. We report a female newborn with a de novo duplication, 15q24- q26.3, showing intrauterine overgrowth, a narrow asymmetric face with down-slanting palpebral fissures, a large, prominent nose, and micrognathia, arachnodactyly, camptodactyly, congenital heart disease, hydronephrosis, and hydroureter. Chromosomal analysis showed a 46,XX,inv(9(p12q13,dup(15(q24q26.3. Array comparative genomic hybridization analysis revealed a gain of 42 clones on 15q24-q26.3. This case represents the only reported patient with a de novo 15q24-q26.3 duplication that did not result from an unbalanced translocation and did not have a concomitant monosomic component in Korea.

  17. Mirror-symmetric duplicated chromosome 21q with minor proximal deletion, and with neocentromere in a child without the classical Down syndrome phenotype.

    Science.gov (United States)

    Barbi, G; Kennerknecht, I; Wöhr, G; Avramopoulos, D; Karadima, G; Petersen, M B

    2000-03-13

    We report on a mentally retarded child with multiple minor anomalies and an unusually rearranged chromosome 21. This der(21) chromosome has a deletion of 21p and of proximal 21q, whereas the main portion of 21q is duplicated leading to a mirror-symmetric appearance with the mirror axis at the breakpoint. The centromere is only characterized by a secondary constriction (with a centromeric index of a G chromosome) at an unexpected distal position, but fluorescence in situ hybridization (FISH) with either chromosome specific or with all human centromeres alpha satellite DNA shows no cross hybridization. Thus, the marker chromosome represents a further example of an "analphoid marker with neocentromere." Molecular analysis using polymorphic markers on chromosome 21 verified a very small monosomic segment of the proximal long arm of chromosome 21, and additionally trisomy of the remaining distal segment. Although trisomic for almost the entire 21q arm, our patient shows no classical Down syndrome phenotype, but only a few minor anomalies found in trisomy 21 and in monosomy of proximal 21q, respectively. Copyright 2000 Wiley-Liss, Inc.

  18. Cumulative Impact of Polychlorinated Biphenyl and Large Chromosomal Duplications on DNA Methylation, Chromatin, and Expression of Autism Candidate Genes.

    Science.gov (United States)

    Dunaway, Keith W; Islam, M Saharul; Coulson, Rochelle L; Lopez, S Jesse; Vogel Ciernia, Annie; Chu, Roy G; Yasui, Dag H; Pessah, Isaac N; Lott, Paul; Mordaunt, Charles; Meguro-Horike, Makiko; Horike, Shin-Ichi; Korf, Ian; LaSalle, Janine M

    2016-12-13

    Rare variants enriched for functions in chromatin regulation and neuronal synapses have been linked to autism. How chromatin and DNA methylation interact with environmental exposures at synaptic genes in autism etiologies is currently unclear. Using whole-genome bisulfite sequencing in brain tissue and a neuronal cell culture model carrying a 15q11.2-q13.3 maternal duplication, we find that significant global DNA hypomethylation is enriched over autism candidate genes and affects gene expression. The cumulative effect of multiple chromosomal duplications and exposure to the pervasive persistent organic pollutant PCB 95 altered methylation of more than 1,000 genes. Hypomethylated genes were enriched for H2A.Z, increased maternal UBE3A in Dup15q corresponded to reduced levels of RING1B, and bivalently modified H2A.Z was altered by PCB 95 and duplication. These results demonstrate the compounding effects of genetic and environmental insults on the neuronal methylome that converge upon dysregulation of chromatin and synaptic genes. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications.

    Science.gov (United States)

    Lu, Jianguo; Peatman, Eric; Tang, Haibao; Lewis, Joshua; Liu, Zhanjiang

    2012-06-15

    Gene duplication has had a major impact on genome evolution. Localized (or tandem) duplication resulting from unequal crossing over and whole genome duplication are believed to be the two dominant mechanisms contributing to vertebrate genome evolution. While much scrutiny has been directed toward discerning patterns indicative of whole-genome duplication events in teleost species, less attention has been paid to the continuous nature of gene duplications and their impact on the size, gene content, functional diversity, and overall architecture of teleost genomes. Here, using a Markov clustering algorithm directed approach we catalogue and analyze patterns of gene duplication in the four model teleost species with chromosomal coordinates: zebrafish, medaka, stickleback, and Tetraodon. Our analyses based on set size, duplication type, synonymous substitution rate (Ks), and gene ontology emphasize shared and lineage-specific patterns of genome evolution via gene duplication. Most strikingly, our analyses highlight the extraordinary duplication and retention rate of recent duplicates in zebrafish and their likely role in the structural and functional expansion of the zebrafish genome. We find that the zebrafish genome is remarkable in its large number of duplicated genes, small duplicate set size, biased Ks distribution toward minimal mutational divergence, and proportion of tandem and intra-chromosomal duplicates when compared with the other teleost model genomes. The observed gene duplication patterns have played significant roles in shaping the architecture of teleost genomes and appear to have contributed to the recent functional diversification and divergence of important physiological processes in zebrafish. We have analyzed gene duplication patterns and duplication types among the available teleost genomes and found that a large number of genes were tandemly and intrachromosomally duplicated, suggesting their origin of independent and continuous duplication

  20. A rare duplication on chromosome 16p11.2 is identified in patients with psychosis in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Xiaojing Zheng

    Full Text Available Epidemiological and genetic studies suggest that schizophrenia and autism may share genetic links. Besides common single nucleotide polymorphisms, recent data suggest that some rare copy number variants (CNVs are risk factors for both disorders. Because we have previously found that schizophrenia and psychosis in Alzheimer's disease (AD+P share some genetic risk, we investigated whether CNVs reported in schizophrenia and autism are also linked to AD+P. We searched for CNVs associated with AD+P in 7 recurrent CNV regions that have been previously identified across autism and schizophrenia, using the Illumina HumanOmni1-Quad BeadChip. A chromosome 16p11.2 duplication CNV (chr16: 29,554,843-30,105,652 was identified in 2 of 440 AD+P subjects, but not in 136 AD subjects without psychosis, or in 593 AD subjects with intermediate psychosis status, or in 855 non-AD individuals. The frequency of this duplication CNV in AD+P (0.46% was similar to that reported previously in schizophrenia (0.46%. This duplication CNV was further validated using the NanoString nCounter CNV Custom CodeSets. The 16p11.2 duplication has been associated with developmental delay, intellectual disability, behavioral problems, autism, schizophrenia (SCZ, and bipolar disorder. These two AD+P patients had no personal of, nor any identified family history of, SCZ, bipolar disorder and autism. To the best of our knowledge, our case report is the first suggestion that 16p11.2 duplication is also linked to AD+P. Although rare, this CNV may have an important role in the development of psychosis.

  1. A conserved segmental duplication within ELA.

    Science.gov (United States)

    Brinkmeyer-Langford, C L; Murphy, W J; Childers, C P; Skow, L C

    2010-12-01

    The assembled genomic sequence of the horse major histocompatibility complex (MHC) (equine lymphocyte antigen, ELA) is very similar to the homologous human HLA, with the notable exception of a large segmental duplication at the boundary of ELA class I and class III that is absent in HLA. The segmental duplication consists of a ∼ 710 kb region of at least 11 repeated blocks: 10 blocks each contain an MHC class I-like sequence and the helicase domain portion of a BAT1-like sequence, and the remaining unit contains the full-length BAT1 gene. Similar genomic features were found in other Perissodactyls, indicating an ancient origin, which is consistent with phylogenetic analyses. Reverse-transcriptase PCR (RT-PCR) of mRNA from peripheral white blood cells of healthy and chronically or acutely infected horses detected transcription from predicted open reading frames in several of the duplicated blocks. This duplication is not present in the sequenced MHCs of most other mammals, although a similar feature at the same relative position is present in the feline MHC (FLA). Striking sequence conservation throughout Perissodactyl evolution is consistent with a functional role for at least some of the genes included within this segmental duplication. © 2010 The Authors, Journal compilation © 2010 Stichting International Foundation for Animal Genetics.

  2. The Macromolecular Machines that Duplicate the Escherichia coli Chromosome as Targets for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Jon M. Kaguni

    2018-03-01

    Full Text Available DNA replication is an essential process. Although the fundamental strategies to duplicate chromosomes are similar in all free-living organisms, the enzymes of the three domains of life that perform similar functions in DNA replication differ in amino acid sequence and their three-dimensional structures. Moreover, the respective proteins generally utilize different enzymatic mechanisms. Hence, the replication proteins that are highly conserved among bacterial species are attractive targets to develop novel antibiotics as the compounds are unlikely to demonstrate off-target effects. For those proteins that differ among bacteria, compounds that are species-specific may be found. Escherichia coli has been developed as a model system to study DNA replication, serving as a benchmark for comparison. This review summarizes the functions of individual E. coli proteins, and the compounds that inhibit them.

  3. The duplicated genes database: identification and functional annotation of co-localised duplicated genes across genomes.

    Directory of Open Access Journals (Sweden)

    Marion Ouedraogo

    Full Text Available BACKGROUND: There has been a surge in studies linking genome structure and gene expression, with special focus on duplicated genes. Although initially duplicated from the same sequence, duplicated genes can diverge strongly over evolution and take on different functions or regulated expression. However, information on the function and expression of duplicated genes remains sparse. Identifying groups of duplicated genes in different genomes and characterizing their expression and function would therefore be of great interest to the research community. The 'Duplicated Genes Database' (DGD was developed for this purpose. METHODOLOGY: Nine species were included in the DGD. For each species, BLAST analyses were conducted on peptide sequences corresponding to the genes mapped on a same chromosome. Groups of duplicated genes were defined based on these pairwise BLAST comparisons and the genomic location of the genes. For each group, Pearson correlations between gene expression data and semantic similarities between functional GO annotations were also computed when the relevant information was available. CONCLUSIONS: The Duplicated Gene Database provides a list of co-localised and duplicated genes for several species with the available gene co-expression level and semantic similarity value of functional annotation. Adding these data to the groups of duplicated genes provides biological information that can prove useful to gene expression analyses. The Duplicated Gene Database can be freely accessed through the DGD website at http://dgd.genouest.org.

  4. Translocations used to generate chromosome segment duplications ...

    Indian Academy of Sciences (India)

    a duplication (Dp) of the translocated segment and four inviable (white, W) ascospores with .... of this work, namely, the definition of breakpoint junction sequences of 12 ..... then our results would place supercontig 10.9 in distal. LG VIR. A third ...

  5. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications.

    Science.gov (United States)

    Lagman, David; Ocampo Daza, Daniel; Widmark, Jenny; Abalo, Xesús M; Sundström, Görel; Larhammar, Dan

    2013-11-02

    Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the

  6. Centrioles: duplicating precariously.

    Science.gov (United States)

    Pelletier, Laurence

    2007-09-04

    To assemble a mitotic spindle and accurately segregate chromosomes to progeny, a cell needs to precisely regulate its centrosome number, a feat largely accomplished through the tight control of centriole duplication. Recent work showing that the overexpression of centriolar proteins can lead to the formation of multiple centrioles in the absence of pre-existing centrioles challenges the idea that it is a self-replicating organelle.

  7. Precise detection of rearrangement breakpoints in mammalian chromosomes

    Directory of Open Access Journals (Sweden)

    Gautier Christian

    2008-06-01

    Full Text Available Abstract Background Genomes undergo large structural changes that alter their organisation. The chromosomal regions affected by these rearrangements are called breakpoints, while those which have not been rearranged are called synteny blocks. We developed a method to precisely delimit rearrangement breakpoints on a genome by comparison with the genome of a related species. Contrary to current methods which search for synteny blocks and simply return what remains in the genome as breakpoints, we propose to go further and to investigate the breakpoints themselves in order to refine them. Results Given some reliable and non overlapping synteny blocks, the core of the method consists in refining the regions that are not contained in them. By aligning each breakpoint sequence against its specific orthologous sequences in the other species, we can look for weak similarities inside the breakpoint, thus extending the synteny blocks and narrowing the breakpoints. The identification of the narrowed breakpoints relies on a segmentation algorithm and is statistically assessed. Since this method requires as input synteny blocks with some properties which, though they appear natural, are not verified by current methods for detecting such blocks, we further give a formal definition and provide an algorithm to compute them. The whole method is applied to delimit breakpoints on the human genome when compared to the mouse and dog genomes. Among the 355 human-mouse and 240 human-dog breakpoints, 168 and 146 respectively span less than 50 Kb. We compared the resulting breakpoints with some publicly available ones and show that we achieve a better resolution. Furthermore, we suggest that breakpoints are rarely reduced to a point, and instead consist in often large regions that can be distinguished from the sequences around in terms of segmental duplications, similarity with related species, and transposable elements. Conclusion Our method leads to smaller

  8. The duplication 17p13.3 phenotype

    DEFF Research Database (Denmark)

    Curry, Cynthia J; Rosenfeld, Jill A; Grant, Erica

    2013-01-01

    . Older patients were often overweight. Three variant phenotypes included cleft lip/palate (CLP), split hand/foot with long bone deficiency (SHFLD), and a connective tissue phenotype resembling Marfan syndrome. The duplications in patients with clefts appear to disrupt ABR, while the SHFLD phenotype......Chromosome 17p13.3 is a gene rich region that when deleted is associated with the well-known Miller-Dieker syndrome. A recently described duplication syndrome involving this region has been associated with intellectual impairment, autism and occasional brain MRI abnormalities. We report 34...... was associated with duplication of BHLHA9 as noted in two recent reports. The connective tissue phenotype did not have a convincing critical region. Our experience with this large cohort expands knowledge of this diverse duplication syndrome....

  9. Familial partial duplication (1)(p21p31)

    Energy Technology Data Exchange (ETDEWEB)

    Hoechstetter, L.; Soukup, S.; Schorry, E.K. [Children`s Hospital Research Foundation, Cincinnati, OH (United States)

    1995-11-20

    A partial duplication (1)(p21p31), resulting from a maternal direct insertion (13,1) (q22p21p31), was found in a 30-year-old woman with mental retardation, cleft palate, and multiple minor anomalies. Two other affected and deceased relatives were presumed to have the same chromosome imbalance. Duplication 1p cases are reviewed. 8 refs., 5 figs., 1 tab.

  10. Duplication of C7orf58, WNT16 and FAM3C in an obese female with a t(7;22)(q32.1;q11.2) chromosomal translocation and clinical features resembling Coffin-Siris Syndrome.

    Science.gov (United States)

    Zhu, Jun; Qiu, Jun; Magrane, Gregg; Abedalthagafi, Malak; Zanko, Andrea; Golabi, Mahin; Chehab, Farid F

    2012-01-01

    We characterized the t(7;22)(q32;q11.2) chromosomal translocation in an obese female with coarse features, short stature, developmental delay and a hypoplastic fifth digit. While these clinical features suggest Coffin-Siris Syndrome (CSS), we excluded a CSS diagnosis by exome sequencing based on the absence of deleterious mutations in six chromatin-remodeling genes recently shown to cause CSS. Thus, molecular characterization of her translocation could delineate genes that underlie other syndromes resembling CSS. Comparative genomic hybridization microarrays revealed on chromosome 7 the duplication of a 434,682 bp region that included the tail end of an uncharacterized gene termed C7orf58 (also called CPED1) and spanned the entire WNT16 and FAM3C genes. Because the translocation breakpoint on chromosome 22 did not disrupt any apparent gene, her disorder was deemed to result from the rearrangement on chromosome 7. Mapping of yeast and bacterial artificial chromosome clones by fluorescent in situ hybridization on chromosome spreads from this patient showed that the duplicated region and all three genes within it were located on both derivative chromosomes 7 and 22. Furthermore, DNA sequencing of exons and splice junctional regions from C7orf58, WNT16 and FAM3C revealed the presence of potential splice site and promoter mutations, thereby augmenting the detrimental effect of the duplicated genes. Hence, dysregulation and/or disruptions of C7orf58, WNT16 and FAM3C underlie the phenotype of this patient, serve as candidate genes for other individuals with similar clinical features and could provide insights into the physiological role of the novel gene C7orf58.

  11. Duplication of C7orf58, WNT16 and FAM3C in an obese female with a t(7;22(q32.1;q11.2 chromosomal translocation and clinical features resembling Coffin-Siris Syndrome.

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    Full Text Available We characterized the t(7;22(q32;q11.2 chromosomal translocation in an obese female with coarse features, short stature, developmental delay and a hypoplastic fifth digit. While these clinical features suggest Coffin-Siris Syndrome (CSS, we excluded a CSS diagnosis by exome sequencing based on the absence of deleterious mutations in six chromatin-remodeling genes recently shown to cause CSS. Thus, molecular characterization of her translocation could delineate genes that underlie other syndromes resembling CSS. Comparative genomic hybridization microarrays revealed on chromosome 7 the duplication of a 434,682 bp region that included the tail end of an uncharacterized gene termed C7orf58 (also called CPED1 and spanned the entire WNT16 and FAM3C genes. Because the translocation breakpoint on chromosome 22 did not disrupt any apparent gene, her disorder was deemed to result from the rearrangement on chromosome 7. Mapping of yeast and bacterial artificial chromosome clones by fluorescent in situ hybridization on chromosome spreads from this patient showed that the duplicated region and all three genes within it were located on both derivative chromosomes 7 and 22. Furthermore, DNA sequencing of exons and splice junctional regions from C7orf58, WNT16 and FAM3C revealed the presence of potential splice site and promoter mutations, thereby augmenting the detrimental effect of the duplicated genes. Hence, dysregulation and/or disruptions of C7orf58, WNT16 and FAM3C underlie the phenotype of this patient, serve as candidate genes for other individuals with similar clinical features and could provide insights into the physiological role of the novel gene C7orf58.

  12. Molecular cytogenetic characterization and origin of two de novo duplication 9p cases.

    Science.gov (United States)

    Tsezou, A; Kitsiou, S; Galla, A; Petersen, M B; Karadima, G; Syrrou, M; Sahlèn, S; Blennow, E

    2000-03-13

    We report on two additional cases with duplication of 9p, minor with facial anomalies and developmental delay. Using fluorescence in situ hybridization and single-copy probes, we showed that the first case was a direct duplication, whereas the second case was inverted. The extent of the direct duplication was defined as 9p12 --> p24 by microdissection and microcloning of the aberrant chromosome and subsequent chromosome-specific comparative genomic hybridization. DNA polymorphism analysis with eight microsatellite markers revealed that the origin of the dup(9p) was maternal in the first case, whereas it was paternal in the second. Copyright 2000 Wiley-Liss, Inc.

  13. Cytogenetic comparison of Podocnemis expansa and Podocnemis unifilis: A case of inversion and duplication involving constitutive heterochromatin

    Science.gov (United States)

    Gunski, Ricardo José; Cunha, Isabel Souza; Degrandi, Tiago Marafiga; Ledesma, Mario; Garnero, Analía Del Valle

    2013-01-01

    Podocnemis expansa and P. unifilis present 2n = 28 chromosomes, a diploid number similar to those observed in other species of the genus. The aim of this study was to characterize these two species using conventional staining and differential CBG-, GTG and Ag-NOR banding. We analyzed specimens of P. expansa and P. unifilis from the state of Tocantins (Brazil), in which we found a 2n = 28 and karyotypes differing in the morphology of the 13th pair, which was submetacentric in P. expansa and telocentric in P. unifilis. The CBG-banding patterns revealed a heterochromatic block in the short arm of pair 13 of P. expansa and an interstitial one in pair 13 of P. unifilis, suggesting a pericentric inversion. Pair 14 of P. unifilis showed an insterstitial band in the long arm that was absent in P. expansa, suggesting a duplication in this region. Ag-NORs were observed in the first chromosome pair of both species and was associated to a secondary constriction and heterochromatic blocks. PMID:24130442

  14. Combined cytokinesis-block micronucleus and chromosomal aberration assay for the evaluation of radiosensitizers at low radiation doses

    International Nuclear Information System (INIS)

    Oya, Natsuo; Shibamoto, Yuta; Shibata, Toru

    1994-01-01

    Several methods have been tried for evaluating the efficacy of hypoxic cell radiosensitizers at clinically relevant low radiation doses (1-4 Gy). The cytokinesis-block micronucleus assay is known to be useful for both the in vitro and in vivo evaluation of radiosensitizers, while the chromosomal aberration assay has been commonly used to assess the mutagenicity of various agents. In the present study, the chromosomal aberration assay and the cytokinesis-block micronucleus assay were performed simultaneously to assess the radiosensitizing effect of etanidazole and KU-2285 at low radiation doses. The correlation between the two assays was also evaluated. In vitro study: EMT-6 cells were irradiated at a dose of 1-3 Gy under hypoxic conditions with or without the drugs at 1 mM. In vivo-in vitro study: EMT-6 tumor-bearing BALB/c mice received 2-4 Gy of radiation with or without administration of the drugs at 200 mg/kg. Single-cell suspensions were then obtained in both studies and were used for the cytokinesis-block micronucleus assay and the chromosomal aberration assay. The micronucleus frequency in binucleate cells was evaluated in the former assay, and the frequency of chromosomal aberrations in metaphase cells was evaluated in the latter assay. In vitro study: the sensitizer enhancement ratios of etanidazole and KU-2285 were 1.73 and 2.21, respectively, in the micronucleus assay, and 1.41 and 1.79 in the chromosomal aberration assay. In vivo-in vitro study: the sensitizer enhancement ratios of etanidazole and KU-2285 were 1.18 and 1.31, respectively, in the micronucleus assay, and 1.16 and 1.42 in the chromosomal aberration assay. In both studies, a linear correlation was observed between the micronucleus frequency and the chromosomal aberration frequency. The background (i.e., the frequency at 0 Gy) of the latter assay was considerably lower than that of the former assay, especially in the in vivo study. 31 refs., 4 figs

  15. Constitutional Tandem Duplication of 9q34 that Truncates EHMT1 in a Child with Ganglioglioma

    Science.gov (United States)

    Cheung, Hannah C.; Yatsenko, Svetlana A.; Kadapakkam, Meena; Legay, Hélène; Su, Jack; Lupski, James R.; Plon, Sharon E.

    2011-01-01

    Point mutations of EHMT1 or deletions and duplications of chromosome 9q34.3 are found in patients with variable neurologic and developmental disorders. Here, we present a child with congenital cataract, developmental and speech delay who developed a metastatic ganglioglioma with progression to anaplastic astrocytoma. Molecular analysis identified a novel constitutional tandem duplication in 9q34.3 with breakpoints in intron 1 of TRAF2 and intron 16 of EHMT1 generating a fusion transcript predicted to encode a truncated form of EHMT1. The ganglioglioma showed complex chromosomal aberrations with further duplication of the dup9q34. Thus, this unique tandem 9q34.3 duplication may impact brain tumor formation. PMID:21681934

  16. A recurrent deletion syndrome at chromosome bands 2p11.2-2p12 flanked by segmental duplications at the breakpoints and including REEP1.

    Science.gov (United States)

    Stevens, Servi J C; Blom, Eveline W; Siegelaer, Ingrid T J; Smeets, Eric E J G L

    2015-04-01

    We identified an identical and recurrent 9.4-Mbp deletion at chromosome bands 2p11.2-2p12, which occurred de novo in two unrelated patients. It is flanked at the distal and proximal breakpoints by two homologous segmental duplications consisting of low copy repeat (LCR) blocks in direct orientation, which have >99% sequence identity. Despite the fact that the deletion was almost 10 Mbp in size, the patients showed a relatively mild clinical phenotype, that is, mild-to-moderate intellectual disability, a happy disposition, speech delay and delayed motor development. Their phenotype matches with that of previously described patients. The 2p11.2-2p12 deletion includes the REEP1 gene that is associated with spastic paraplegia and phenotypic features related to this are apparent in most 2p11.2-2p12 deletion patients, but not in all. Other hemizygous genes that may contribute to the clinical phenotype include LRRTM1 and CTNNA2. We propose a recurrent but rare 2p11.2-2p12 deletion syndrome based on (1) the identical, non-random localisation of the de novo deletion breakpoints in two unrelated patients and a patient from literature, (2) the patients' phenotypic similarity and their phenotypic overlap with other 2p deletions and (3) the presence of highly identical LCR blocks flanking both breakpoints, consistent with a non-allelic homologous recombination (NAHR)-mediated rearrangement.

  17. 10p Duplication characterized by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Wiktor, A.; Feldman, G.L.; Van Dyke, D.L.; Kratkoczki, P.; Ditmars, D.M. Jr. [Henry Ford Hospital, Detroit, MI (United States)

    1994-09-01

    We describe a patient with severe failure to thrive, mild-moderate developmental delay, cleft lip and palate, and other anomalies. Routine cytogenetic analysis documented a de novo chromosome rearrangement involving chromosome 4, but the origin of the derived material was unknown. Using chromosome specific painting probes, the karyotype was defined as 46,XY,der(4)t(4;10)(q35;p11.23). Characterization of the dup(10p) by fluorescence in situ hybridization (FISH) analysis provides another example of the usefulness of this technology in identifying small deletions, duplications, or supernumerary marker chromosomes. 19 refs., 4 figs.

  18. Three neuropeptide Y receptor genes in the spiny dogfish, Squalus acanthias, support en bloc duplications in early vertebrate evolution.

    Science.gov (United States)

    Salaneck, Erik; Ardell, David H; Larson, Earl T; Larhammar, Dan

    2003-08-01

    It has been debated whether the increase in gene number during early vertebrate evolution was due to multiple independent gene duplications or synchronous duplications of many genes. We describe here the cloning of three neuropeptide Y (NPY) receptor genes belonging to the Y1 subfamily in the spiny dogfish, Squalus acanthias, a cartilaginous fish. The three genes are orthologs of the mammalian subtypes Y1, Y4, and Y6, which are located in paralogous gene regions on different chromosomes in mammals. Thus, these genes arose by duplications of a chromosome region before the radiation of gnathostomes (jawed vertebrates). Estimates of duplication times from linearized trees together with evidence from other gene families supports two rounds of chromosome duplications or tetraploidizations early in vertebrate evolution. The anatomical distribution of mRNA was determined by reverse-transcriptase PCR and was found to differ from mammals, suggesting differential functional diversification of the new gene copies during the radiation of the vertebrate classes.

  19. The complete sequence of human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State; Gordon, Laurie A.; Scott, Duncan; Xie, Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan, Yee Man; Denys, Mirian; Detter, Chris; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstenin, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimbal, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou, Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar, Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang, Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, Susan M.; Myers, Richard M.; Rubin, Edward M.

    2004-04-15

    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).

  20. The genomic distribution of intraspecific and interspecific sequence divergence of human segmental duplications relative to human/chimpanzee chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Eichler Evan E

    2008-08-01

    Full Text Available Abstract Background It has been suggested that chromosomal rearrangements harbor the molecular footprint of the biological phenomena which they induce, in the form, for instance, of changes in the sequence divergence rates of linked genes. So far, all the studies of these potential associations have focused on the relationship between structural changes and the rates of evolution of single-copy DNA and have tried to exclude segmental duplications (SDs. This is paradoxical, since SDs are one of the primary forces driving the evolution of structure and function in our genomes and have been linked not only with novel genes acquiring new functions, but also with overall higher DNA sequence divergence and major chromosomal rearrangements. Results Here we take the opposite view and focus on SDs. We analyze several of the features of SDs, including the rates of intraspecific divergence between paralogous copies of human SDs and of interspecific divergence between human SDs and chimpanzee DNA. We study how divergence measures relate to chromosomal rearrangements, while considering other factors that affect evolutionary rates in single copy DNA. Conclusion We find that interspecific SD divergence behaves similarly to divergence of single-copy DNA. In contrast, old and recent paralogous copies of SDs do present different patterns of intraspecific divergence. Also, we show that some relatively recent SDs accumulate in regions that carry inversions in sister lineages.

  1. Molecular mechanism in the formation of a human ring chromosome 21

    International Nuclear Information System (INIS)

    Wong, C.; Kazazian, H.H. Jr.; Stetten, G.; Earnshaw, W.C.; Antonarakis, S.E.; Van Keuren, M.L.

    1989-01-01

    The authors have characterized the structural rearrangements of a chromosome 21 that led to the de novo formation of a human ring chromosome 21 [r(21)]. Molecular cloning and chromosomal localization of the DNA regions flanking the ring junction provide evidence for a long arm to long arm fusion in formation of the r(21). In addition, the centromere and proximal long arm region of a maternal chromosome 21 are duplicated in the r(21). Therefore, the mechanism in formation of the r(21) was complex involving two sequential chromosomal rearrangements. (i) Duplication of the centromere and long arm of one maternal chromosome 21 occurred forming a rearranged intermediate. (ii) Chromosomal breaks in both the proximal and telomeric long arm regions on opposite arms of this rearranged chromosome occurred with subsequent reunion producing the r(21)

  2. Evolution of the DAZ gene and the AZFc region on primate Y chromosomes

    Directory of Open Access Journals (Sweden)

    Yu Jane-Fang

    2008-03-01

    Full Text Available Abstract Background The Azoospermia Factor c (AZFc region of the human Y chromosome is a unique product of segmental duplication. It consists almost entirely of very long amplicons, represented by different colors, and is frequently deleted in subfertile men. Most of the AZFc amplicons have high sequence similarity with autosomal segments, indicating recent duplication and transposition to the Y chromosome. The Deleted in Azoospermia (DAZ gene within the red-amplicon arose from an ancestral autosomal DAZ-like (DAZL gene. It varies significantly between different men regarding to its copy number and the numbers of RNA recognition motif and DAZ repeat it encodes. We used Southern analyses to study the evolution of DAZ and AZFc amplicons on the Y chromosomes of primates. Results The Old World monkey rhesus macaque has only one DAZ gene. In contrast, the great apes have multiple copies of DAZ, ranging from 2 copies in bonobos and gorillas to at least 6 copies in orangutans, and these DAZ genes have polymorphic structures similar to those of their human counterparts. Sequences homologous to the various AZFc amplicons are present on the Y chromosomes of some but not all primates, indicating that they arrived on the Y chromosome at different times during primate evolution. Conclusion The duplication and transposition of AZFc amplicons to the human Y chromosome occurred in three waves, i.e., after the branching of the New World monkey, the gorilla, and the chimpanzee/bonobo lineages, respectively. The red-amplicon, one of the first to arrive on the Y chromosome, amplified by inverted duplication followed by direct duplication after the separation of the Old World monkey and the great ape lineages. Subsequent duplication/deletion in the various lineages gave rise to a spectrum of DAZ gene structure and copy number found in today's great apes.

  3. Comparative inference of duplicated genes produced by polyploidization in soybean genome.

    Science.gov (United States)

    Yang, Yanmei; Wang, Jinpeng; Di, Jianyong

    2013-01-01

    Soybean (Glycine max) is one of the most important crop plants for providing protein and oil. It is important to investigate soybean genome for its economic and scientific value. Polyploidy is a widespread and recursive phenomenon during plant evolution, and it could generate massive duplicated genes which is an important resource for genetic innovation. Improved sequence alignment criteria and statistical analysis are used to identify and characterize duplicated genes produced by polyploidization in soybean. Based on the collinearity method, duplicated genes by whole genome duplication account for 70.3% in soybean. From the statistical analysis of the molecular distances between duplicated genes, our study indicates that the whole genome duplication event occurred more than once in the genome evolution of soybean, which is often distributed near the ends of chromosomes.

  4. Cytogenetic and molecular studies on a recombinant human X chromosome: implications for the spreading of X chromosome inactivation

    International Nuclear Information System (INIS)

    Mohandas, T.; Geller, R.L.; Yen, P.H.; Rosendorff, J.; Bernstein, R.; Yoshida, A.; Shapiro, L.J.

    1987-01-01

    A pericentric inversion of human X chromosome and a recombinant X chromosome [rec(X)] derived from crossing-over within the inversion was identified in a family. The rec(X) had a duplication of the segment Xq26.3 → Xqter and a deletion of Xp22.3 → Xpter and was interpreted to be Xqter → Xq26.3::Xp22.3 → Xqter. To characterize the rec(X) chromosome, dosage blots were done on genomic DNA from carriers of this rearranged X chromosome using a number of X chromosome probes. Results showed that anonymous sequences from the distal end of the long arm to which probes 4D8, Hx120A, DX13, and St14 bind as well as the locus for glucose-6-phosphate dehydrogenase (G6PD) wee duplicated on the rec(X). Mouse-human cell hybrids were constructed that retained the rec(X) in the active or inactive state. Analyses of these hybrid clones for markers from the distal short arm of the X chromosome showed that the rec(X) retained the loci for steroid sulfatase (STS) and the cell surface antigen 12E7 (MIC2); but not the pseudoautosomal sequence 113D. These molecular studies confirm that the rec(X) is a duplication-deficiency chromosome as expected. In the inactive state in cell hybrids, STS and MIC2 (which usually escape X chromosome inactivation) were expressed from the rec(X), whereas G6PD was not. Therefore, in the rec(X) X chromosome inactivation has spread through STS and MIC2 leaving these loci unaffected and has inactivated G6PD in the absence of an inactivation center in the q26.3 → qter region of the human X chromosome. The mechanism of spreading of inactivation appears to operate in a sequence-specific fashion. Alternatively, STS and MIC2 may have undergone inactivation initially but could not be maintained in an inactive state

  5. Reversion in variants from a duplication strain of Aspergillus nidulans

    International Nuclear Information System (INIS)

    Menezes, E.M.; Azevedo, J.L.

    1978-01-01

    Strains of Aspergillus nidulans with a chromosome segment in duplicate, one in normal position and one translocated to another chromosome, are unstable at mitosis. In addition to variants which result from deletions in either of the duplicate segments, which usually have improved morphology, they produce variants with deteriorated morphology. Three deteriorated variants reverted frequently to parental type morphology, both spontaneously and after ultra-violet treatment. Of six reversions analysed genetically, five were due to suppressors and one was probably due to back mutation. The suppressors segregated as single genes and were not linked to the mutation which they suppress. The instability of these so-called 'deteriorated' variants is discussed in relation to mitotic instability phenomena in A. nidulans. (orig.) [de

  6. Duplicate laboratory test reduction using a clinical decision support tool.

    Science.gov (United States)

    Procop, Gary W; Yerian, Lisa M; Wyllie, Robert; Harrison, A Marc; Kottke-Marchant, Kandice

    2014-05-01

    Duplicate laboratory tests that are unwarranted increase unnecessary phlebotomy, which contributes to iatrogenic anemia, decreased patient satisfaction, and increased health care costs. We employed a clinical decision support tool (CDST) to block unnecessary duplicate test orders during the computerized physician order entry (CPOE) process. We assessed laboratory cost savings after 2 years and searched for untoward patient events associated with this intervention. This CDST blocked 11,790 unnecessary duplicate test orders in these 2 years, which resulted in a cost savings of $183,586. There were no untoward effects reported associated with this intervention. The movement to CPOE affords real-time interaction between the laboratory and the physician through CDSTs that signal duplicate orders. These interactions save health care dollars and should also increase patient satisfaction and well-being.

  7. Nucleoplasmic bridges are a sensitive measure of chromosome rearrangement in the cytokinesis-block micronucleus assay

    International Nuclear Information System (INIS)

    Fenech, M.; Umegaki, K.

    2003-01-01

    Full text: We have performed experiments using the WIL2-NS human B-lymphoblastoid cell line and primary human lymphocytes to (a) determine the importance of including measurements of nucleoplasmic bridges (NPB) in the cytokinesis-block micronucleus (CBMN) assay and (b) provide evidence that NPB originate from dicentric chromosomes and centric ring chromosomes. In addition we describe theoretical models that explain how dicentric chromosomes and centric ring chromosomes may result in the formation of NPB at anaphase. The results with WIL2-NS showed that it was possible to distinguish genotoxic effects induced by different oxidizing agents in terms of the NPB/micronucleus frequency ratio. The results with lymphocytes indicated a strong correlation (a) between NPB, centric ring chromosomes and dicentric chromosomes in metaphases (R>0.93, P 0.93, P<0.0001). The dose-response curves with gamma rays were very similar for NPB, ring chromosomes and dicentric chromosomes, as were the dose-responses for MNi, acentric rings and fragments. However, not all acentric chromosomes and dicentric chromosomes/centric rings were converted to MNi and NPB respectively, depending on the dose of radiation. Preliminary data, using FISH, suggests that NPB often represent DNA from a structural rearrangement involving only one or two homologous chromosomes. The results from this study validate the inclusion of NPB in the CBMN assay which provides a valuable measure of chromosome breakage/ rearrangement that was otherwise not available in the micronucleus assay. The CBMN assay allows NPB measurement to be achieved reliably because inhibition of cytokinesis prevents the loss of NPB that would otherwise occur if cells were allowed to divide

  8. Phenotypic variation within European carriers of the Y-chromosomal gr/gr deletion is independent of Y-chromosomal background

    DEFF Research Database (Denmark)

    Krausz, C; Giachini, C; Xue, Y

    2008-01-01

    of duplications and the Y-chromosomal haplogroup were characterised. Although the study had good power to detect factors that accounted for >or=5.5% of the variation in sperm concentration, no such factor was found. A negative effect of gr/gr deletions followed by b2/b4 duplication was found within...

  9. Williams Syndrome and 15q Duplication: Coincidence versus Association.

    Science.gov (United States)

    Khokhar, Aditi; Agarwal, Swashti; Perez-Colon, Sheila

    2017-01-01

    Williams syndrome is a multisystem disorder caused by contiguous gene deletion in 7q11.23, commonly associated with distinctive facial features, supravalvular aortic stenosis, short stature, idiopathic hypercalcemia, developmental delay, joint laxity, and a friendly personality. The clinical features of 15q11q13 duplication syndrome include autism, mental retardation, ataxia, seizures, developmental delay, and behavioral problems. We report a rare case of a girl with genetically confirmed Williams syndrome and coexisting 15q duplication syndrome. The patient underwent treatment for central precocious puberty and later presented with primary amenorrhea. The karyotype revealed 47,XX,+mar. FISH analysis for the marker chromosome showed partial trisomy/tetrasomy for proximal chromosome 15q (15p13q13). FISH using an ELN -specific probe demonstrated a deletion in the Williams syndrome critical region in 7q11.23. To our knowledge, a coexistence of Williams syndrome and 15q duplication syndrome has not been reported in the literature. Our patient had early pubertal development, which has been described in some patients with Williams syndrome. However, years later after discontinuing gonadotropin-releasing hormone analogue treatment, she developed primary amenorrhea.

  10. Recombinant Chromosome 4 from a Familial Pericentric Inversion: Prenatal and Adulthood Wolf-Hirschhorn Phenotypes

    Directory of Open Access Journals (Sweden)

    Francesca Malvestiti

    2013-01-01

    Full Text Available Pericentric inversion of chromosome 4 can give rise to recombinant chromosomes by duplication or deletion of 4p. We report on a familial case of Wolf-Hirschhorn Syndrome characterized by GTG-banding karyotypes, FISH, and array CGH analysis, caused by a recombinant chromosome 4 with terminal 4p16.3 deletion and terminal 4q35.2 duplication. This is an aneusomy due to a recombination which occurred during the meiosis of heterozygote carrier of cryptic pericentric inversion. We also describe the adulthood and prenatal phenotypes associated with the recombinant chromosome 4.

  11. An effective detection algorithm for region duplication forgery in digital images

    Science.gov (United States)

    Yavuz, Fatih; Bal, Abdullah; Cukur, Huseyin

    2016-04-01

    Powerful image editing tools are very common and easy to use these days. This situation may cause some forgeries by adding or removing some information on the digital images. In order to detect these types of forgeries such as region duplication, we present an effective algorithm based on fixed-size block computation and discrete wavelet transform (DWT). In this approach, the original image is divided into fixed-size blocks, and then wavelet transform is applied for dimension reduction. Each block is processed by Fourier Transform and represented by circle regions. Four features are extracted from each block. Finally, the feature vectors are lexicographically sorted, and duplicated image blocks are detected according to comparison metric results. The experimental results show that the proposed algorithm presents computational efficiency due to fixed-size circle block architecture.

  12. Xq28 duplications including MECP2 in five females: Expanding the phenotype to severe mental retardation.

    Science.gov (United States)

    Bijlsma, E K; Collins, A; Papa, F T; Tejada, M I; Wheeler, P; Peeters, E A J; Gijsbers, A C J; van de Kamp, J M; Kriek, M; Losekoot, M; Broekma, A J; Crolla, J A; Pollazzon, M; Mucciolo, M; Katzaki, E; Disciglio, V; Ferreri, M I; Marozza, A; Mencarelli, M A; Castagnini, C; Dosa, L; Ariani, F; Mari, F; Canitano, R; Hayek, G; Botella, M P; Gener, B; Mínguez, M; Renieri, A; Ruivenkamp, C A L

    2012-06-01

    Duplications leading to functional disomy of chromosome Xq28, including MECP2 as the critical dosage-sensitive gene, are associated with a distinct clinical phenotype in males, characterized by severe mental retardation, infantile hypotonia, progressive neurologic impairment, recurrent infections, bladder dysfunction, and absent speech. Female patients with Xq duplications including MECP2 are rare. Only recently submicroscopic duplications of this region on Xq28 have been recognized in four females, and a triplication in a fifth, all in combination with random X-chromosome inactivation (XCI). Based on this small series, it was concluded that in females with MECP2 duplication and random XCI, the typical symptoms of affected boys are not present. We present clinical and molecular data on a series of five females with an Xq28 duplication including the MECP2 gene, both isolated and as the result of a translocation, and compare them with the previously reported cases of small duplications in females. The collected data indicate that the associated phenotype in females is distinct from males with similar duplications, but the clinical effects may be as severe as seen in males. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Two sequence-ready contigs spanning the two copies of a 200-kb duplication on human 21q: partial sequence and polymorphisms.

    Science.gov (United States)

    Potier, M; Dutriaux, A; Orti, R; Groet, J; Gibelin, N; Karadima, G; Lutfalla, G; Lynn, A; Van Broeckhoven, C; Chakravarti, A; Petersen, M; Nizetic, D; Delabar, J; Rossier, J

    1998-08-01

    Physical mapping across a duplication can be a tour de force if the region is larger than the size of a bacterial clone. This was the case of the 170- to 275-kb duplication present on the long arm of chromosome 21 in normal human at 21q11.1 (proximal region) and at 21q22.1 (distal region), which we described previously. We have constructed sequence-ready contigs of the two copies of the duplication of which all the clones are genuine representatives of one copy or the other. This required the identification of four duplicon polymorphisms that are copy-specific and nonallelic variations in the sequence of the STSs. Thirteen STSs were mapped inside the duplicated region and 5 outside but close to the boundaries. Among these STSs 10 were end clones from YACs, PACs, or cosmids, and the average interval between two markers in the duplicated region was 16 kb. Eight PACs and cosmids showing minimal overlaps were selected in both copies of the duplication. Comparative sequence analysis along the duplication showed three single-basepair changes between the two copies over 659 bp sequenced (4 STSs), suggesting that the duplication is recent (less than 4 mya). Two CpG islands were located in the duplication, but no genes were identified after a 36-kb cosmid from the proximal copy of the duplication was sequenced. The homology of this chromosome 21 duplicated region with the pericentromeric regions of chromosomes 13, 2, and 18 suggests that the mechanism involved is probably similar to pericentromeric-directed mechanisms described in interchromosomal duplications. Copyright 1998 Academic Press.

  14. Submicroscopic duplication of the Wolf-Hirschhorn critical region with a 4p terminal deletion.

    Science.gov (United States)

    Roselló, M; Monfort, S; Orellana, C; Ferrer-Bolufer, I; Quiroga, R; Oltra, S; Martínez, F

    2009-01-01

    Chromosomal rearrangements in the short arm of chromosome 4 can result in 2 different clinical entities: Wolf-Hirschhorn syndrome (WHS), characterized by severe growth delay, mental retardation, microcephaly, 'Greek helmet' facies, and closure defects, or partial 4p trisomy, associated with multiple congenital anomalies, mental retardation, and facial dysmorphisms. We present clinical and laboratory findings in a patient who showed a small duplication in 4p16.3 associated with a subtle terminal deletion in the same chromosomal region. GTG-banding analyses, multiplex ligation-dependent probe amplification analyses, and studies by array-based comparative genomic hybridization were performed. The results of the analyses revealed a de novo 1.3 Mb deletion of the terminal 4p and a 1.1 Mb duplication in our patient, encompassing the WHS critical region. Interestingly, this unusual duplication/deletion rearrangement results in an intermediate phenotype that shares characteristics of the WHS and the 4p trisomy syndrome. The use of novel technologies in the genetic diagnosis leads to the description of new clinical syndromes; there is a growing list of microduplication syndromes. Therefore, we propose that overexpression of candidate genes in WHS (WHSC1, WHSC2 and LETM1) due to a duplication causes a clinical entity different to both the WHS and 4p trisomy syndrome. (c) 2009 S. Karger AG, Basel.

  15. Segmental Duplication, Microinversion, and Gene Loss Associated with a Complex Inversion Breakpoint Region in Drosophila

    Science.gov (United States)

    Calvete, Oriol; González, Josefa; Betrán, Esther; Ruiz, Alfredo

    2012-01-01

    Chromosomal inversions are usually portrayed as simple two-breakpoint rearrangements changing gene order but not gene number or structure. However, increasing evidence suggests that inversion breakpoints may often have a complex structure and entail gene duplications with potential functional consequences. Here, we used a combination of different techniques to investigate the breakpoint structure and the functional consequences of a complex rearrangement fixed in Drosophila buzzatii and comprising two tandemly arranged inversions sharing the middle breakpoint: 2m and 2n. By comparing the sequence in the breakpoint regions between D. buzzatii (inverted chromosome) and D. mojavensis (noninverted chromosome), we corroborate the breakpoint reuse at the molecular level and infer that inversion 2m was associated with a duplication of a ∼13 kb segment and likely generated by staggered breaks plus repair by nonhomologous end joining. The duplicated segment contained the gene CG4673, involved in nuclear transport, and its two nested genes CG5071 and CG5079. Interestingly, we found that other than the inversion and the associated duplication, both breakpoints suffered additional rearrangements, that is, the proximal breakpoint experienced a microinversion event associated at both ends with a 121-bp long duplication that contains a promoter. As a consequence of all these different rearrangements, CG5079 has been lost from the genome, CG5071 is now a single copy nonnested gene, and CG4673 has a transcript ∼9 kb shorter and seems to have acquired a more complex gene regulation. Our results illustrate the complex effects of chromosomal rearrangements and highlight the need of complementing genomic approaches with detailed sequence-level and functional analyses of breakpoint regions if we are to fully understand genome structure, function, and evolutionary dynamics. PMID:22328714

  16. The hidden duplication past of the plant pathogen Phytophthora and its consequences for infection

    Directory of Open Access Journals (Sweden)

    Martens Cindy

    2010-06-01

    Full Text Available Abstract Background Oomycetes of the genus Phytophthora are pathogens that infect a wide range of plant species. For dicot hosts such as tomato, potato and soybean, Phytophthora is even the most important pathogen. Previous analyses of Phytophthora genomes uncovered many genes, large gene families and large genome sizes that can partially be explained by significant repeat expansion patterns. Results Analysis of the complete genomes of three different Phytophthora species, using a newly developed approach, unveiled a large number of small duplicated blocks, mainly consisting of two or three consecutive genes. Further analysis of these duplicated genes and comparison with the known gene and genome duplication history of ten other eukaryotes including parasites, algae, plants, fungi, vertebrates and invertebrates, suggests that the ancestor of P. infestans, P. sojae and P. ramorum most likely underwent a whole genome duplication (WGD. Genes that have survived in duplicate are mainly genes that are known to be preferentially retained following WGDs, but also genes important for pathogenicity and infection of the different hosts seem to have been retained in excess. As a result, the WGD might have contributed to the evolutionary and pathogenic success of Phytophthora. Conclusions The fact that we find many small blocks of duplicated genes indicates that the genomes of Phytophthora species have been heavily rearranged following the WGD. Most likely, the high repeat content in these genomes have played an important role in this rearrangement process. As a consequence, the paucity of retained larger duplicated blocks has greatly complicated previous attempts to detect remnants of a large-scale duplication event in Phytophthora. However, as we show here, our newly developed strategy to identify very small duplicated blocks might be a useful approach to uncover ancient polyploidy events, in particular for heavily rearranged genomes.

  17. Multiple chromosomal rearrangements structured the ancestral vertebrate Hox-bearing protochromosomes.

    Directory of Open Access Journals (Sweden)

    Vincent J Lynch

    2009-01-01

    Full Text Available While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion--such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these--is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox "paralogon" and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.

  18. Prenatal detection of a de novo terminal inverted duplication 4p in a fetus with the Wolf-Hirschhorn syndrome phenotype.

    Science.gov (United States)

    Beaujard, M-P; Jouannic, J-M; Bessières, B; Borie, C; Martin-Luis, I; Fallet-Bianco, C; Portnoï, M-F

    2005-06-01

    To present the prenatal diagnosis of a de novo terminal inversion duplication of the short arm of chromosome 4 and a review of the literature. An amniocentesis for chromosome analysis was performed at 33 weeks' gestation because ultrasound examination showed a female fetus with multiple abnormalities consisting of severe intrauterine growth retardation, microcephaly, a cleft lip and renal hypoplasia. Cytogenetic analysis and FISH studies of the cultured amniocytes revealed a de novo terminal inversion duplication of the short arm of chromosome 4 characterized by a duplication of 4p14-p16.1 chromosome region concomitant with a terminal deletion 4p16.1-pter. The karyotype was thus: 46,XX, inv dup del (4)(:p14-->p16.1::p16.1-->qter). The parents opted to terminate the pregnancy. Fetopathological examination showed dysmorphic features and abnormalities consistent with a Wolf-Hirschhorn syndrome (WHS) diagnosis, clinical manifestations of partial 4p trisomy being mild. Although relatively rare, inverted duplications have been reported repeatedly in an increasing number of chromosomes. Only two previous cases with de novo inv dup del (4p) and one with tandem dup 4p have been reported, all of them associated with a 4pter deletion. We report the first case diagnosed prenatally. Breakpoints are variable, resulting in different abnormal phenotype. In our case, clinical manifestations resulted in a WHS phenotype.

  19. A Rare Chromosome 3 Imbalance and Its Clinical Implications

    Directory of Open Access Journals (Sweden)

    Karen Sims

    2012-01-01

    Full Text Available The duplication of chromosome 3q is a rare disorder with varying chromosomal breakpoints and consequently symptoms. Even rarer is the unbalanced outcome from a parental inv(3 resulting in duplicated 3q and a deletion of 3p. Molecular karyotyping should aid in precisely determining the length and breakpoints of the 3q+/3p− so as to better understand a child’s future development and needs. We report a case of an infant male with a 57.5 Mb duplication from 3q23-qter. This patient also has an accompanying 1.7 Mb deletion of 3p26.3. The duplicated segment in this patient encompasses the known critical region of 3q26.3-q27, which is implicated in the previously reported 3q dup syndrome; however, the accompanying 3p26.3 deletion is smaller than the previously reported cases. The clinical phenotype of this patient relates to previously reported cases of 3q+ that may suggest that the accompanying 1.7 Mb heterozygous deletion is not clinically relevant. Taken together, our data has refined the location and extent of the chromosome 3 imbalance, which will aid in better understanding the molecular underpinning of the 3q syndrome.

  20. The prevalence of gene duplications and their ancient origin in Rhodobacter sphaeroides 2.4.1

    Directory of Open Access Journals (Sweden)

    Cho Hyuk

    2010-12-01

    Full Text Available Abstract Background Rhodobacter sphaeroides 2.4.1 is a metabolically versatile organism that belongs to α-3 subdivision of Proteobacteria. The present study was to identify the extent, history, and role of gene duplications in R. sphaeroides 2.4.1, an organism that possesses two chromosomes. Results A protein similarity search (BLASTP identified 1247 orfs (~29.4% of the total protein coding orfs that are present in 2 or more copies, 37.5% (234 gene-pairs of which exist in duplicate copies. The distribution of the duplicate gene-pairs in all Clusters of Orthologous Groups (COGs differed significantly when compared to the COG distribution across the whole genome. Location plots revealed clusters of gene duplications that possessed the same COG classification. Phylogenetic analyses were performed to determine a tree topology predicting either a Type-A or Type-B phylogenetic relationship. A Type-A phylogenetic relationship shows that a copy of the protein-pair matches more with an ortholog from a species closely related to R. sphaeroides while a Type-B relationship predicts the highest match between both copies of the R. sphaeroides protein-pair. The results revealed that ~77% of the proteins exhibited a Type-A phylogenetic relationship demonstrating the ancient origin of these gene duplications. Additional analyses on three other strains of R. sphaeroides revealed varying levels of gene loss and retention in these strains. Also, analyses on common gene pairs among the four strains revealed that these genes experience similar functional constraints and undergo purifying selection. Conclusions Although the results suggest that the level of gene duplication in organisms with complex genome structuring (more than one chromosome seems to be not markedly different from that in organisms with only a single chromosome, these duplications may have aided in genome reorganization in this group of eubacteria prior to the formation of R. sphaeroides as gene

  1. Whole Genome and Tandem Duplicate Retention facilitated Glucosinolate Pathway Diversification in the Mustard Family.

    NARCIS (Netherlands)

    Hofberger, J.A.; Lyons, E.; Edger, P.P.; Pires, J.C.; Schranz, M.E.

    2013-01-01

    Plants share a common history of successive whole genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence

  2. Dynamics of chromosome segregation in Escherichia coli

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck

    2007-01-01

    Since the 1960’es the conformation and segregation of the chromosome in Escherichia coli has been a subject of interest for many scientists. However, after 40 years of research, we still know incredibly little about how the chromosome is organized inside the cell, how it manages to duplicate...... this incredibly big molecule and separate the two daughter chromosomes and how it makes sure that the daughter cells receives one copy each. The fully extended chromosome is two orders of magnitude larger than the cell in which it is contained. Hence the chromosome is heavily compacted in the cell...

  3. [Recombinant chromosome 4 with partial 4p deletion and 4q duplication inherited from paternal pericentric inversion].

    Science.gov (United States)

    Mun, Se Jin; Cho, Eun Hae; Chey, Myoung-Jae; Shim, Gyu-Hong; Shin, Bo-Moon; Lee, Rae-Kyung; Ko, Ji-Kyung; Yoo, Soo Jin

    2010-02-01

    Pericentric inversion of chromosome 4 can give rise to 2 alternate recombinant (rec) chromosomesby duplication or deletion of 4p. The deletion of distal 4p manifests as Wolf-Hirschhorn syndrome (WHS). Here, we report the molecular cytogenetic findings and clinical manifestations observed in an infant with 46,XX,rec(4)dup(4q)inv(4)(p16q31.3)pat. The infant was delivered by Cesarean section at the 33rd week of gestation because pleural effusion and polyhydramnios were detected on ultrasonography. At birth, the infant showed no malformation or dysfunction, except for a preauricular skin tag. Array comparative genomic hybridization analysis of neonatal peripheral blood samples showed a gain of 38 Mb on 4q31.3-qter and a loss of 3 Mb on 4p16.3, and these results were consistent with WHS. At the last follow-up at 8 months of age (corrected age, 6 months), the infant had not achieved complete head control.

  4. Chromosome 15 structural abnormalities: effect on IGF1R gene expression and function

    Directory of Open Access Journals (Sweden)

    Rossella Cannarella

    2017-09-01

    Full Text Available Insulin-like growth factor 1 receptor (IGF1R, mapping on the 15q26.3 chromosome, is required for normal embryonic and postnatal growth. The aim of the present study was to evaluate the IGF1R gene expression and function in three unrelated patients with chromosome 15 structural abnormalities. We report two male patients with the smallest 15q26.3 chromosome duplication described so far, and a female patient with ring chromosome 15 syndrome. Patient one, with a 568 kb pure duplication, had overgrowth, developmental delay, mental and psychomotor retardation, obesity, cryptorchidism, borderline low testis volume, severe oligoasthenoteratozoospermia and gynecomastia. We found a 1.8-fold increase in the IGF1R mRNA and a 1.3-fold increase in the IGF1R protein expression (P < 0.05. Patient two, with a 650 kb impure duplication, showed overgrowth, developmental delay, mild mental retardation, precocious puberty, low testicular volume and severe oligoasthenoteratozoospermia. The IGF1R mRNA and protein expression was similar to that of the control. Patient three, with a 46,XX r(15 (p10q26.2 karyotype, displayed intrauterine growth retardation, developmental delay, mental and psychomotor retardation. We found a <0.5-fold decrease in the IGF1R mRNA expression and an undetectable IGF1R activity. After reviewing the previously 96 published cases of chromosome 15q duplication, we found that neurological disorders, congenital cardiac defects, typical facial traits and gonadal abnormalities are the prominent features in patients with chromosome 15q duplication. Interestingly, patients with 15q deletion syndrome display similar features. We speculate that both the increased and decreased IGF1R gene expression may play a role in the etiology of neurological and gonadal disorders.

  5. Ascorbate peroxidase-related (APx-R) is not a duplicable gene.

    Science.gov (United States)

    Dunand, Christophe; Mathé, Catherine; Lazzarotto, Fernanda; Margis, Rogério; Margis-Pinheiro, Marcia

    2011-12-01

    Phylogenetic, genomic and functional analyses have allowed the identification of a new class of putative heme peroxidases, so called APx-R (APx-Related). These new class, mainly present in the green lineage (including green algae and land plants), can also be detected in other unicellular chloroplastic organisms. Except for recent polyploid organisms, only single-copy of APx-R gene was detected in each genome, suggesting that the majority of the APx-R extra-copies were lost after chromosomal or segmental duplications. In a similar way, most APx-R co-expressed genes in Arabidopsis genome do not have conserved extra-copies after chromosomal duplications and are predicted to be localized in organelles, as are the APx-R. The member of this gene network can be considered as unique gene, well conserved through the evolution due to a strong negative selection pressure and a low evolution rate. © 2011 Landes Bioscience

  6. Rapid diagnosis of aneuploidy using segmental duplication quantitative fluorescent PCR.

    Directory of Open Access Journals (Sweden)

    Xiangdong Kong

    Full Text Available The aim of this study was use a simple and rapid procedure, called segmental duplication quantitative fluorescent polymerase chain reaction (SD-QF-PCR, for the prenatal diagnosis of fetal chromosomal aneuploidies. This method is based on the co-amplification of segmental duplications located on two different chromosomes using a single pair of fluorescent primers. The PCR products of different sizes were subsequently analyzed through capillary electrophoresis, and the aneuploidies were determined based on the relative dosage between the two chromosomes. Each primer set, containing five pairs of primers, was designed to simultaneously detect aneuploidies located on chromosomes 21, 18, 13, X and Y in a single reaction. We applied these two primer sets to DNA samples isolated from individuals with trisomy 21 (n = 36; trisomy 18 (n = 6; trisomy 13 (n = 4; 45, X (n = 5; 47, XXX (n = 3; 48, XXYY (n = 2; and unaffected controls (n = 40. We evaluated the performance of this method using the karyotyping results. A correct and unambiguous diagnosis with 100% sensitivity and 100% specificity, was achieved for clinical samples examined. Thus, the present study demonstrates that SD-QF-PCR is a robust, rapid and sensitive method for the diagnosis of common aneuploidies, and these analyses can be performed in less than 4 hours for a single sample, providing a competitive alternative for routine use.

  7. Brief Report: Visual-Spatial Deficit in a 16-Year-Old Girl with Maternally Derived Duplication of Proximal 15q

    Science.gov (United States)

    Cohen, David; Martel, Claire; Wilson, Anna; Dechambre, Nicole; Amy, Celine; Duverger, Ludovic; Guile, Jean-Marc; Pipiras, Eva; Benzacken, Brigitte; Cave, Helene; Cohen, Laurent; Heron, Delphine; Plaza, Monique

    2007-01-01

    Duplications of chromosome 15 may be one of the most common single genetic causes of autism spectrum disorders (ASD), aside from fragile X. Most of the cases are associated with maternally derived interstitial duplication involving 15q11-13. This case report describes a female proband with a maternally derived interstitial duplication of proximal…

  8. Oculocutaneous albinism in a patient with 17p13.2-pter duplication - a review on the molecular syndromology of 17p13 duplication.

    Science.gov (United States)

    Kucharczyk, Marzena; Jezela-Stanek, Aleksandra; Gieruszczak-Bialek, Dorota; Kugaudo, Monika; Cieslikowska, Agata; Pelc, Magdalena; Krajewska-Walasek, Malgorzata

    2015-06-01

    Chromosomal duplications involving 17p13.3 have recently been defined as a new distinctive syndrome with several diagnosed patients. Some variation is known to occur in the breakpoints of the duplicated region and, consequently, in the phenotype as well. We report on a patient, the fifth to our knowledge, a 4-year-old girl with a pure de novo subtelomeric 17p13.2-pter duplication. She presents all of the facial features described so far for this duplication and in addition, a unilateral palmar transversal crease and oculocutaneous albinism which has not been reported previously. A detailed molecular description of the reported aberration and correlation with the observed phenotypical features based on a literature review. We discuss the possible molecular etiology of albinism in regard to the mode of inheritance. The new data provided here may be useful for further genotype correlations in syndromes with oculocutaneous albinism, especially of autosomal dominant inheritance.

  9. Genotype-phenotype analysis of recombinant chromosome 4 syndrome: an array-CGH study and literature review.

    Science.gov (United States)

    Hemmat, Morteza; Hemmat, Omid; Anguiano, Arturo; Boyar, Fatih Z; El Naggar, Mohammed; Wang, Jia-Chi; Wang, Borris T; Sahoo, Trilochan; Owen, Renius; Haddadin, Mary

    2013-05-02

    Recombinant chromosome 4, a rare constitutional rearrangement arising from pericentric inversion, comprises a duplicated segment of 4p13~p15→4pter and a deleted segment of 4q35→4qter. To date, 10 cases of recombinant chromosome 4 have been reported. We describe the second case in which array-CGH was used to characterize recombinant chromosome 4 syndrome. The patient was a one-year old boy with consistent clinical features. Conventional cytogenetics and FISH documented a recombinant chromosome 4, derived from a paternal pericentric inversion, leading to partial trisomy 4p and partial monosomy of 4q. Array-CGH, performed to further characterize the rearranged chromosome 4 and delineate the breakpoints, documented a small (4.36 Mb) 4q35.1 terminal deletion and a large (23.81 Mb) 4p15.1 terminal duplication. Genotype-phenotype analysis of 10 previously reported cases and the present case indicated relatively consistent clinical features and breakpoints. This consistency was more evident in our case and another characterized by array-CGH, where both showed the common breakpoints of p15.1 and q35.1. A genotype-phenotype correlation study between rec(4), dup(4p), and del(4q) syndromes revealed that urogenital and cardiac defects are probably due to the deletion of 4q whereas the other clinical features are likely due to 4p duplication. Our findings support that the clinical features of patients with rec(4) are relatively consistent and specific to the regions of duplication or deletion. Recombinant chromosome 4 syndrome thus appears to be a discrete entity that can be suspected on the basis of clinical features or specific deleted and duplicated chromosomal regions.

  10. Chromosomal organization of adrenergic receptor genes

    International Nuclear Information System (INIS)

    Yang-Feng, T.L.; Xue, Feiyu; Zhong, Wuwei; Cotecchia, S.; Frielle, T.; Caron, M.G.; Lefkowitz, R.J.; Francke, U.

    1990-01-01

    The adrenergic receptors (ARs) (subtypes α 1 , α 2 , β 1 , and β 2 ) are a prototypic family of guanine nucleotide binding regulatory protein-coupled receptors that mediate the physiological effects of the hormone epinephrine and the neurotransmitter norepinephrine. The authors have previously assigned the genes for β 2 -and α 2 -AR to human chromosomes 5 and 10, respectively. By Southern analysis of somatic cell hybrids and in situ chromosomal hybridization, they have now mapped the α 1 -AR gene to chromosome 5q32→q34, the same position as β 2 -AR, and the β 1 -AR gene to chromosome 10q24→q26, the region where α 2 -AR, is located. In mouse, both α 2 -and β 1 -AR genes were assigned to chromosome 19, and the α 1 -AR locus was localized to chromosome 11. Pulsed field gel electrophoresis has shown that the α 1 -and β 2 -AR genes in humans are within 300 kilobases (kb) and the distance between the α 2 - and β 1 -AR genes is <225 kb. The proximity of these two pairs of AR genes and the sequence similarity that exists among all the ARs strongly suggest that they are evolutionarily related. Moreover, they likely arose from a common ancestral receptor gene and subsequently diverged through gene duplication and chromosomal duplication to perform their distinctive roles in mediation the physiological effects of catecholamines. The AR genes thus provide a paradigm for understanding the evolution of such structurally conserved yet functionally divergent families off receptor molecules

  11. A case report of two male siblings with autism and duplication of Xq13-q21, a region including three genes predisposing for autism.

    Science.gov (United States)

    Wentz, Elisabet; Vujic, Mihailo; Kärrstedt, Ewa-Lotta; Erlandsson, Anna; Gillberg, Christopher

    2014-05-01

    Autism spectrum disorder, severe behaviour problems and duplication of the Xq12 to Xq13 region have recently been described in three male relatives. To describe the psychiatric comorbidity and dysmorphic features, including craniosynostosis, of two male siblings with autism and duplication of the Xq13 to Xq21 region, and attempt to narrow down the number of duplicated genes proposed to be leading to global developmental delay and autism. We performed DNA sequencing of certain exons of the TWIST1 gene, the FGFR2 gene and the FGFR3 gene. We also performed microarray analysis of the DNA. In addition to autism, the two male siblings exhibited severe learning disability, self-injurious behaviour, temper tantrums and hyperactivity, and had no communicative language. Chromosomal analyses were normal. Neither of the two siblings showed mutations of the sequenced exons known to produce craniosynostosis. The microarray analysis detected an extra copy of a region on the long arm of chromosome X, chromosome band Xq13.1-q21.1. Comparison of our two cases with previously described patients allowed us to identify three genes predisposing for autism in the duplicated chromosomal region. Sagittal craniosynostosis is also a new finding linked to the duplication.

  12. A Rare Interstitial Duplication of 8q22.1–8q24.3 Associated with Syndromic Bilateral Cleft Lip/Palate

    Directory of Open Access Journals (Sweden)

    Regina Ferreira Rezek

    2014-01-01

    Full Text Available We present a rare case of 8q interstitial duplication derived from maternal balanced translocations in a patient with bilateral cleft lip and palate in syndromic form associated with other congenital malformations. G-banding cytogenetic analysis revealed a chromosomal abnormality in the form of the karyotype 46,XX der(22t(8;22(q22.1;p11.1mat. Chromosome microarray analysis evidenced a 49 Mb duplicated segment of chromosome 8q with no pathogenic imbalances on chromosome 22. Two siblings also carry the balanced translocation. We have compared this case with other “pure” trisomies of 8q patients reported in the literature and with genome wide association studies recently published. This work highlights the involvement of chromosome 8q in orofacial clefts.

  13. Screening synteny blocks in pairwise genome comparisons through integer programming.

    Science.gov (United States)

    Tang, Haibao; Lyons, Eric; Pedersen, Brent; Schnable, James C; Paterson, Andrew H; Freeling, Michael

    2011-04-18

    It is difficult to accurately interpret chromosomal correspondences such as true orthology and paralogy due to significant divergence of genomes from a common ancestor. Analyses are particularly problematic among lineages that have repeatedly experienced whole genome duplication (WGD) events. To compare multiple "subgenomes" derived from genome duplications, we need to relax the traditional requirements of "one-to-one" syntenic matchings of genomic regions in order to reflect "one-to-many" or more generally "many-to-many" matchings. However this relaxation may result in the identification of synteny blocks that are derived from ancient shared WGDs that are not of interest. For many downstream analyses, we need to eliminate weak, low scoring alignments from pairwise genome comparisons. Our goal is to objectively select subset of synteny blocks whose total scores are maximized while respecting the duplication history of the genomes in comparison. We call this "quota-based" screening of synteny blocks in order to appropriately fill a quota of syntenic relationships within one genome or between two genomes having WGD events. We have formulated the synteny block screening as an optimization problem known as "Binary Integer Programming" (BIP), which is solved using existing linear programming solvers. The computer program QUOTA-ALIGN performs this task by creating a clear objective function that maximizes the compatible set of synteny blocks under given constraints on overlaps and depths (corresponding to the duplication history in respective genomes). Such a procedure is useful for any pairwise synteny alignments, but is most useful in lineages affected by multiple WGDs, like plants or fish lineages. For example, there should be a 1:2 ploidy relationship between genome A and B if genome B had an independent WGD subsequent to the divergence of the two genomes. We show through simulations and real examples using plant genomes in the rosid superorder that the quota

  14. Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21

    DEFF Research Database (Denmark)

    McGinniss, M J; Kazazian, H H; Stetten, G

    1992-01-01

    We studied the mechanism of ring chromosome 21 (r(21)) formation in 13 patients (11 unique r(21)s), consisting of 7 from five families with familial r(21) and 6 with de novo r(21). The copy number of chromosome 21 sequences in the rings of these patients was determined by quantitative dosage......), resulting in deletion of varying amounts of 21q22.1 to 21qter. The data from one individual who had a Down syndrome phenotype were consistent with asymmetric breakage and reunion of 21q sequences from an intermediate isochromosome or Robertsonian translocation chromosome as reported by Wong et al. Another......). The phenotype of patients correlated well with the extent of deletion or duplication of chromosome 21 sequences. These data demonstrate three mechanisms of r(21) formation and show that the phenotype of r(21) patients varies with the extent of chromosome 21 monosomy or trisomy....

  15. A de novo 11p12-p15.4 duplication in a patient with pharmacoresistant epilepsy, mental retardation, and dysmorphisms.

    Science.gov (United States)

    Coppola, Antonietta; Striano, Pasquale; Gimelli, Stefania; Ciampa, Clotilde; Santulli, Lia; Caranci, Ferdinando; Zuffardi, Orsetta; Gimelli, Giorgio; Striano, Salvatore; Zara, Federico

    2010-03-01

    We report a 22-year-old male patient with pharmacoresistant epilepsy, mental retardation and dysmorphisms. Standard cytogenetic analysis revealed a de novo interstitial duplication of the short arm of chromosome 11 (11p). High density array-CGH analysis showed that the rearrangement spans about 35Mb on chromosome 11p12-p15.4. Duplications of 11p are rare and usually involve the distal part of the chromosome arm (11p15), being not associated with epilepsy, whereas our patient showed a unique epileptic phenotype associated with mental retardation and dysmorphic features. The role of some rearranged genes in epilepsy pathogenesis in this patient is also discussed.

  16. Rare recombination events generate sequence diversity among balancer chromosomes in Drosophila melanogaster.

    Science.gov (United States)

    Miller, Danny E; Cook, Kevin R; Yeganeh Kazemi, Nazanin; Smith, Clarissa B; Cockrell, Alexandria J; Hawley, R Scott; Bergman, Casey M

    2016-03-08

    Multiply inverted balancer chromosomes that suppress exchange with their homologs are an essential part of the Drosophila melanogaster genetic toolkit. Despite their widespread use, the organization of balancer chromosomes has not been characterized at the molecular level, and the degree of sequence variation among copies of balancer chromosomes is unknown. To map inversion breakpoints and study potential diversity in descendants of a structurally identical balancer chromosome, we sequenced a panel of laboratory stocks containing the most widely used X chromosome balancer, First Multiple 7 (FM7). We mapped the locations of FM7 breakpoints to precise euchromatic coordinates and identified the flanking sequence of breakpoints in heterochromatic regions. Analysis of SNP variation revealed megabase-scale blocks of sequence divergence among currently used FM7 stocks. We present evidence that this divergence arose through rare double-crossover events that replaced a female-sterile allele of the singed gene (sn(X2)) on FM7c with a sequence from balanced chromosomes. We propose that although double-crossover events are rare in individual crosses, many FM7c chromosomes in the Bloomington Drosophila Stock Center have lost sn(X2) by this mechanism on a historical timescale. Finally, we characterize the original allele of the Bar gene (B(1)) that is carried on FM7, and validate the hypothesis that the origin and subsequent reversion of the B(1) duplication are mediated by unequal exchange. Our results reject a simple nonrecombining, clonal mode for the laboratory evolution of balancer chromosomes and have implications for how balancer chromosomes should be used in the design and interpretation of genetic experiments in Drosophila.

  17. p53 protects against genome instability following centriole duplication failure

    Science.gov (United States)

    Lambrus, Bramwell G.; Uetake, Yumi; Clutario, Kevin M.; Daggubati, Vikas; Snyder, Michael; Sluder, Greenfield

    2015-01-01

    Centriole function has been difficult to study because of a lack of specific tools that allow persistent and reversible centriole depletion. Here we combined gene targeting with an auxin-inducible degradation system to achieve rapid, titratable, and reversible control of Polo-like kinase 4 (Plk4), a master regulator of centriole biogenesis. Depletion of Plk4 led to a failure of centriole duplication that produced an irreversible cell cycle arrest within a few divisions. This arrest was not a result of a prolonged mitosis, chromosome segregation errors, or cytokinesis failure. Depleting p53 allowed cells that fail centriole duplication to proliferate indefinitely. Washout of auxin and restoration of endogenous Plk4 levels in cells that lack centrioles led to the penetrant formation of de novo centrioles that gained the ability to organize microtubules and duplicate. In summary, we uncover a p53-dependent surveillance mechanism that protects against genome instability by preventing cell growth after centriole duplication failure. PMID:26150389

  18. Recurrent duplications of 17q12 associated with variable phenotypes

    DEFF Research Database (Denmark)

    Mitchell, Elyse; Douglas, Andrew; Kjaegaard, Susanne

    2015-01-01

    The ability to identify the clinical nature of the recurrent duplication of chromosome 17q12 has been limited by its rarity and the diverse range of phenotypes associated with this genomic change. In order to further define the clinical features of affected patients, detailed clinical information......, potentially contributory copy number changes in a subset of patients, including one patient each with 16p11.2 deletion and 15q13.3 deletion. Our data further define and expand the clinical spectrum associated with duplications of 17q12 and provide support for the role of genomic modifiers contributing...... to phenotypic variability....

  19. Histone modifications: Cycling with chromosomal replication

    DEFF Research Database (Denmark)

    Thon, Genevieve

    2008-01-01

    Histone modifications tend to be lost during chromosome duplication. Several recent studies suggest that the RNA interference pathway becomes active during the weakened transcriptional repression occurring at centromeres in S phase, resulting in the re-establishment of histone modifications...

  20. Cell division control by the Chromosomal Passenger Complex

    Energy Technology Data Exchange (ETDEWEB)

    Waal, Maike S. van der; Hengeveld, Rutger C.C.; Horst, Armando van der; Lens, Susanne M.A., E-mail: s.m.a.lens@umcutrecht.nl

    2012-07-15

    The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.

  1. Startling mosaicism of the Y-chromosome and tandem duplication of the SRY and DAZ genes in patients with Turner Syndrome.

    Directory of Open Access Journals (Sweden)

    Sanjay Premi

    Full Text Available Presence of the human Y-chromosome in females with Turner Syndrome (TS enhances the risk of development of gonadoblastoma besides causing several other phenotypic abnormalities. In the present study, we have analyzed the Y chromosome in 15 clinically diagnosed Turner Syndrome (TS patients and detected high level of mosaicisms ranging from 45,XO:46,XY = 100:0% in 4; 45,XO:46,XY:46XX = 4:94:2 in 8; and 45,XO:46,XY:46XX = 50:30:20 cells in 3 TS patients, unlike previous reports showing 5-8% cells with Y- material. Also, no ring, marker or di-centric Y was observed in any of the cases. Of the two TS patients having intact Y chromosome in >85% cells, one was exceptionally tall. Both the patients were positive for SRY, DAZ, CDY1, DBY, UTY and AZFa, b and c specific STSs. Real Time PCR and FISH demonstrated tandem duplication/multiplication of the SRY and DAZ genes. At sequence level, the SRY was normal in 8 TS patients while the remaining 7 showed either absence of this gene or known and novel mutations within and outside of the HMG box. SNV/SFV analysis showed normal four copies of the DAZ genes in these 8 patients. All the TS patients showed aplastic uterus with no ovaries and no symptom of gonadoblastoma. Present study demonstrates new types of polymorphisms indicating that no two TS patients have identical genotype-phenotype. Thus, a comprehensive analysis of more number of samples is warranted to uncover consensus on the loci affected, to be able to use them as potential diagnostic markers.

  2. Promotion and Suppression of Centriole Duplication Are Catalytically Coupled through PLK4 to Ensure Centriole Homeostasis

    Directory of Open Access Journals (Sweden)

    Minhee Kim

    2016-08-01

    Full Text Available PLK4 is the major kinase driving centriole duplication. Duplication occurs only once per cell cycle, forming one new (or daughter centriole that is tightly engaged to the preexisting (or mother centriole. Centriole engagement is known to block the reduplication of mother centrioles, but the molecular identity responsible for the block remains unclear. Here, we show that the centriolar cartwheel, the geometric scaffold for centriole assembly, forms the identity of daughter centrioles essential for the block, ceasing further duplication of the mother centriole to which it is engaged. To ensure a steady block, we found that the cartwheel requires constant maintenance by PLK4 through phosphorylation of the same substrate that drives centriole assembly, revealing a parsimonious control in which “assembly” and “block for new assembly” are linked through the same catalytic reaction to achieve homeostasis. Our results support a recently deduced model that the cartwheel-bound PLK4 directly suppresses centriole reduplication.

  3. Human Chromosome 7: DNA Sequence and Biology

    OpenAIRE

    Scherer, Stephen W.; Cheung, Joseph; MacDonald, Jeffrey R.; Osborne, Lucy R.; Nakabayashi, Kazuhiko; Herbrick, Jo-Anne; Carson, Andrew R.; Parker-Katiraee, Layla; Skaug, Jennifer; Khaja, Razi; Zhang, Junjun; Hudek, Alexander K.; Li, Martin; Haddad, May; Duggan, Gavin E.

    2003-01-01

    DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate gene...

  4. Drug-induced premature chromosome condensation (PCC) protocols: cytogenetic approaches in mitotic chromosome and interphase chromatin.

    Science.gov (United States)

    Gotoh, Eisuke

    2015-01-01

    Chromosome analysis is a fundamental technique which is used in wide areas of cytogenetic study including karyotyping species, hereditary diseases diagnosis, or chromosome biology study. Chromosomes are usually prepared from mitotic cells arrested by colcemid block protocol. However, obtaining mitotic chromosomes is often hampered under several circumstances. As a result, cytogenetic analysis will be sometimes difficult or even impossible in such cases. Premature chromosome condensation (PCC) (see Note 1) is an alternative method that has proved to be a unique and useful way in chromosome analysis. Former, PCC has been achieved following cell fusion method (cell-fusion PCC) mediated either by fusogenic viruses (e.g., Sendai virus) or cell fusion chemicals (e.g., polyethylene glycol), but the cell fusion PCC has several drawbacks. The novel drug-induced PCC using protein phosphatase inhibitors was introduced about 20 years ago. This method is much simpler and easier even than the conventional mitotic chromosome preparation protocol use with colcemid block and furthermore obtained PCC index (equivalent to mitotic index for metaphase chromosome) is usually much higher than colcemid block method. Moreover, this method allows the interphase chromatin to be condensed to visualize like mitotic chromosomes. Therefore drug-induced PCC has opened the way for chromosome analysis not only in metaphase chromosomes but also in interphase chromatin. The drug-induced PCC has thus proven the usefulness in cytogenetics and other cell biology fields. For this second edition version, updated modifications/changes are supplemented in Subheadings 2, 3, and 4, and a new section describing the application of PCC in chromosome science fields is added with citation of updated references.

  5. North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene.

    Science.gov (United States)

    Bowne, Sara J; Sullivan, Lori S; Wheaton, Dianna K; Locke, Kirsten G; Jones, Kaylie D; Koboldt, Daniel C; Fulton, Robert S; Wilson, Richard K; Blanton, Susan H; Birch, David G; Daiger, Stephen P

    2016-01-01

    To identify the underlying cause of disease in a large family with North Carolina macular dystrophy (NCMD). A large four-generation family (RFS355) with an autosomal dominant form of NCMD was ascertained. Family members underwent comprehensive visual function evaluations. Blood or saliva from six affected family members and three unaffected spouses was collected and DNA tested for linkage to the MCDR1 locus on chromosome 6q12. Three affected family members and two unaffected spouses underwent whole exome sequencing (WES) and subsequently, custom capture of the linkage region followed by next-generation sequencing (NGS). Standard PCR and dideoxy sequencing were used to further characterize the mutation. Of the 12 eyes examined in six affected individuals, all but two had Gass grade 3 macular degeneration features. Large central excavation of the retinal and choroid layers, referred to as a macular caldera, was seen in an age-independent manner in the grade 3 eyes. The calderas are unique to affected individuals with MCDR1. Genome-wide linkage mapping and haplotype analysis of markers from the chromosome 6q region were consistent with linkage to the MCDR1 locus. Whole exome sequencing and custom-capture NGS failed to reveal any rare coding variants segregating with the phenotype. Analysis of the custom-capture NGS sequencing data for copy number variants uncovered a tandem duplication of approximately 60 kb on chromosome 6q. This region contains two genes, CCNC and PRDM13 . The duplication creates a partial copy of CCNC and a complete copy of PRDM13 . The duplication was found in all affected members of the family and is not present in any unaffected members. The duplication was not seen in 200 ethnically matched normal chromosomes. The cause of disease in the original family with MCDR1 and several others has been recently reported to be dysregulation of the PRDM13 gene, caused by either single base substitutions in a DNase 1 hypersensitive site upstream of the CCNC

  6. Colonic duplication in adults: Report of two cases presenting with rectal bleeding

    Institute of Scientific and Technical Information of China (English)

    C Fotiadis; M Genetzakis; I Papandreou; EP Misiakos; E Agapitos; GC Zografos

    2005-01-01

    Gastrointestinal duplication is an uncommon congenital abnormality in two-thirds of cases manifesting before the age of 2 years. Ileal duplication is common while colonic duplication, either cystic or tubular, is a rather unusual clinical entity that remains asymptomatic and undiagnosed in most cases. Mostly occurring in pediatric patients,colonic duplication is encountered in adults only in a few cases. This study reports two cases of colonic duplication in adults. Both cases presented with rectal bleeding on admission. The study was focused on clinical, imaging,histological, and therapeutical aspects of the presenting cases. Gastrografin enema established the diagnosis in both cases. The cystic structure and the adjacent part of the colon were excised en-block. The study implies that colonic duplication, though uncommon, should be included in the differential diagnosis of rectal bleeding.

  7. Colonic duplication in adults: report of two cases presenting with rectal bleeding.

    Science.gov (United States)

    Fotiadis, C; Genetzakis, M; Papandreou, I; Misiakos, E P; Agapitos, E; Zografos, G C

    2005-08-28

    Gastrointestinal duplication is an uncommon congenital abnormality in two-thirds of cases manifesting before the age of 2 years. Ileal duplication is common while colonic duplication, either cystic or tubular, is a rather unusual clinical entity that remains asymptomatic and undiagnosed in most cases. Mostly occurring in pediatric patients, colonic duplication is encountered in adults only in a few cases. This study reports two cases of colonic duplication in adults. Both cases presented with rectal bleeding on admission. The study was focused on clinical, imaging, histological, and therapeutical aspects of the presenting cases. Gastrografin enema established the diagnosis in both cases. The cystic structure and the adjacent part of the colon were excised en-block. The study implies that colonic duplication, though uncommon, should be included in the differential diagnosis of rectal bleeding.

  8. Characterization of a complex rearrangement involving duplication and deletion of 9p in an infant with craniofacial dysmorphism and cardiac anomalies

    Directory of Open Access Journals (Sweden)

    Di Bartolo Daniel L

    2012-07-01

    Full Text Available Abstract Partial duplication and partial deletion of the short arm of chromosome 9 have each been reported in the literature as clinically recognizable syndromes. We present clinical, cytogenetic, and molecular findings on a five-week-old female infant with concomitant duplication and terminal deletion of the short arm of chromosome 9. To our knowledge ten such cases have previously been reported. Conventional cytogenetic analysis identified additional material on chromosome 9 at band p23. FISH analysis aided in determining the additional material consisted of an inverted duplication with a terminal deletion of the short arm. Microarray analysis confirmed this interpretation and further characterized the abnormality as a duplication of about 32.7 Mb, from 9p23 to 9p11.2, and a terminal deletion of about 11.5 Mb, from 9p24.3 to 9p23. The infant displayed characteristic features of Duplication 9p Syndrome (hypotonia, bulbous nose, single transverse palmar crease, cranial anomalies, as well as features associated with Deletion 9p Syndrome (flat nasal bridge, long philtrum, cardiac anomalies despite the deletion being distal to the reported critical region for this syndrome. This case suggests that there are genes or regulatory elements that lie outside of the reported critical region responsible for certain phenotypic features associated with Deletion 9p Syndrome. It also underscores the importance of utilizing array technology to precisely define abnormalities involving the short arm of 9p in order to further refine genotype/phenotype associations and to identify additional cases of duplication/deletion.

  9. Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady's slipper orchid

    Directory of Open Access Journals (Sweden)

    Albert Victor A

    2011-09-01

    Full Text Available Abstract Background Paphiopedilum is a horticulturally and ecologically important genus of ca. 80 species of lady's slipper orchids native to Southeast Asia. These plants have long been of interest regarding their chromosomal evolution, which involves a progressive aneuploid series based on either fission or fusion of centromeres. Chromosome number is positively correlated with genome size, so rearrangement processes must include either insertion or deletion of DNA segments. We have conducted Fluorescence In Situ Hybridization (FISH studies using 5S and 25S ribosomal DNA (rDNA probes to survey for rearrangements, duplications, and phylogenetically-correlated variation within Paphiopedilum. We further studied sequence variation of the non-transcribed spacers of 5S rDNA (5S-NTS to examine their complex duplication history, including the possibility that concerted evolutionary forces may homogenize diversity. Results 5S and 25S rDNA loci among Paphiopedilum species, representing all key phylogenetic lineages, exhibit a considerable diversity that correlates well with recognized evolutionary groups. 25S rDNA signals range from 2 (representing 1 locus to 9, the latter representing hemizygosity. 5S loci display extensive structural variation, and show from 2 specific signals to many, both major and minor and highly dispersed. The dispersed signals mainly occur at centromeric and subtelomeric positions, which are hotspots for chromosomal breakpoints. Phylogenetic analysis of cloned 5S rDNA non-transcribed spacer (5S-NTS sequences showed evidence for both ancient and recent post-speciation duplication events, as well as interlocus and intralocus diversity. Conclusions Paphiopedilum species display many chromosomal rearrangements - for example, duplications, translocations, and inversions - but only weak concerted evolutionary forces among highly duplicated 5S arrays, which suggests that double-strand break repair processes are dynamic and ongoing. These

  10. The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications.

    Science.gov (United States)

    Smith, Jeramiah J; Keinath, Melissa C

    2015-08-01

    It is generally accepted that many genes present in vertebrate genomes owe their origin to two whole-genome duplications that occurred deep in the ancestry of the vertebrate lineage. However, details regarding the timing and outcome of these duplications are not well resolved. We present high-density meiotic and comparative genomic maps for the sea lamprey (Petromyzon marinus), a representative of an ancient lineage that diverged from all other vertebrates ∼550 million years ago. Linkage analyses yielded a total of 95 linkage groups, similar to the estimated number of germline chromosomes (1n ∼ 99), spanning a total of 5570.25 cM. Comparative mapping data yield strong support for the hypothesis that a single whole-genome duplication occurred in the basal vertebrate lineage, but do not strongly support a hypothetical second event. Rather, these comparative maps reveal several evolutionarily independent segmental duplications occurring over the last 600+ million years of chordate evolution. This refined history of vertebrate genome duplication should permit more precise investigations of vertebrate evolution. © 2015 Smith and Keinath; Published by Cold Spring Harbor Laboratory Press.

  11. Chromosome Evolution in the Free-Living Flatworms: First Evidence of Intrachromosomal Rearrangements in Karyotype Evolution of Macrostomum lignano (Platyhelminthes, Macrostomida)

    Science.gov (United States)

    Zadesenets, Kira S.; Ershov, Nikita I.; Berezikov, Eugene; Rubtsov, Nikolay B.

    2017-01-01

    The free-living flatworm Macrostomum lignano is a hidden tetraploid. Its genome was formed by a recent whole genome duplication followed by chromosome fusions. Its karyotype (2n = 8) consists of a pair of large chromosomes (MLI1), which contain regions of all other chromosomes, and three pairs of small metacentric chromosomes. Comparison of MLI1 with metacentrics was performed by painting with microdissected DNA probes and fluorescent in situ hybridization of unique DNA fragments. Regions of MLI1 homologous to small metacentrics appeared to be contiguous. Besides the loss of DNA repeat clusters (pericentromeric and telomeric repeats and the 5S rDNA cluster) from MLI1, the difference between small metacentrics MLI2 and MLI4 and regions homologous to them in MLI1 were revealed. Abnormal karyotypes found in the inbred DV1/10 subline were analyzed, and structurally rearranged chromosomes were described with the painting technique, suggesting the mechanism of their origin. The revealed chromosomal rearrangements generate additional diversity, opening the way toward massive loss of duplicated genes from a duplicated genome. Our findings suggest that the karyotype of M. lignano is in the early stage of genome diploidization after whole genome duplication, and further studies on M. lignano and closely related species can address many questions about karyotype evolution in animals. PMID:29084138

  12. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family

    Directory of Open Access Journals (Sweden)

    Bowerman Bruce

    2009-08-01

    Full Text Available Abstract Background GATA transcription factors influence many developmental processes, including the specification of embryonic germ layers. The GATA gene family has significantly expanded in many animal lineages: whereas diverse cnidarians have only one GATA transcription factor, six GATA genes have been identified in many vertebrates, five in many insects, and eleven to thirteen in Caenorhabditis nematodes. All bilaterian animal genomes have at least one member each of two classes, GATA123 and GATA456. Results We have identified one GATA123 gene and one GATA456 gene from the genomic sequence of two invertebrate deuterostomes, a cephalochordate (Branchiostoma floridae and a hemichordate (Saccoglossus kowalevskii. We also have confirmed the presence of six GATA genes in all vertebrate genomes, as well as additional GATA genes in teleost fish. Analyses of conserved sequence motifs and of changes to the exon-intron structure, and molecular phylogenetic analyses of these deuterostome GATA genes support their origin from two ancestral deuterostome genes, one GATA 123 and one GATA456. Comparison of the conserved genomic organization across vertebrates identified eighteen paralogous gene families linked to multiple vertebrate GATA genes (GATA paralogons, providing the strongest evidence yet for expansion of vertebrate GATA gene families via genome duplication events. Conclusion From our analysis, we infer the evolutionary birth order and relationships among vertebrate GATA transcription factors, and define their expansion via multiple rounds of whole genome duplication events. As the genomes of four independent invertebrate deuterostome lineages contain single copy GATA123 and GATA456 genes, we infer that the 0R (pre-genome duplication invertebrate deuterostome ancestor also had two GATA genes, one of each class. Synteny analyses identify duplications of paralogous chromosomal regions (paralogons, from single ancestral vertebrate GATA123 and GATA456

  13. Dose effect of the uvsA+ gene product in duplication strains of Aspergillus nidulans

    International Nuclear Information System (INIS)

    Majerfeld, I.H.; Roper, J.A.

    1978-01-01

    Strains of Aspergillus nidulans which carry a particular segment of chromosome I in duplicate - one segment in normal position, the other translocated to chromosome II - are more resistant to uv light than are strains with a balanced haploid genome. A double dose of the uvsA + allele, carried on the duplicate segment, determines this enhanced resistance; this is shown by the descending order of resistance of duplication haploids uvsA + /uvsA + , uvsA1/uvsA + and uvsA1/uvsA1. An unbalanced diploid with three doses of the uvsA + allele also shows greater resistance than a balanced uvsA + //uvsA + diploid. However, in balanced diploids the uvsA1 allele appears to be completely recessive; uvsA + //uvsA + and uvsA + //uvsA1 diploids produce indistinguishable survival curves after uv irradiation. Thus, the uvsA + gene product is not rate-limiting in repair processes in strains with a balanced genome. The rate-limiting effect observed in these unbalanced strains presumably reflects an interaction of the uvsA + product and other functions determined by the rest of the genome. Duplication haploids and normal haploids lose photorepairable lesions at similar rates. This observation may be interpreted to indicate that differences in survival are not due to differences in the efficiency of excision of uv-induced pyrimidime dimers

  14. 19q12q13.2 duplication syndrome: neuropsychiatric long-term follow-up of a new case and literature update

    Directory of Open Access Journals (Sweden)

    Nacinovich R

    2017-10-01

    Full Text Available Renata Nacinovich,1,2 Nicoletta Villa,3 Fiorenza Broggi,1,2 Cristina Tavaniello,1 Monica Bomba,1 Donatella Conconi,2 Serena Redaelli,2 Elena Sala,3 Marialuisa Lavitrano,2 Francesca Neri1,2 1Childhood and Adolescence Neuropsychiatric Unit, San Gerardo Hospital, 2School of Medicine and Surgery, University of Milano Bicocca, 3Medical Genetics Laboratory, Clinical Pathology Department, San Gerardo Hospital, Monza, Italy Abstract: Genetic syndromes are well characterized by the phenotypic point of view, but little is known about their progression and patients’ quality of life. We report a 10-year neuropsychiatric follow-up of a boy with duplication of chromosome 19. Cytogenetic investigation was requested at the age of 5 years for psychomotor and speech delay. The genomic study identified an 8.17 Mb duplication on chromosome 19q12q13.2. We propose that the long-term follow-up of our patient would help to delineate the neuropsychiatric phenotype associated with 19q duplication. This study could be a model for further long-term research in the neuropsychiatric follow-up of patients with 19q duplication syndrome. Keywords: 19q duplication, neuropsychiatric follow-up, array-CGH

  15. Recurrent Gene Duplication Leads to Diverse Repertoires of Centromeric Histones in Drosophila Species.

    Science.gov (United States)

    Kursel, Lisa E; Malik, Harmit S

    2017-06-01

    Despite their essential role in the process of chromosome segregation in most eukaryotes, centromeric histones show remarkable evolutionary lability. Not only have they been lost in multiple insect lineages, but they have also undergone gene duplication in multiple plant lineages. Based on detailed study of a handful of model organisms including Drosophila melanogaster, centromeric histone duplication is considered to be rare in animals. Using a detailed phylogenomic study, we find that Cid, the centromeric histone gene, has undergone at least four independent gene duplications during Drosophila evolution. We find duplicate Cid genes in D. eugracilis (Cid2), in the montium species subgroup (Cid3, Cid4) and in the entire Drosophila subgenus (Cid5). We show that Cid3, Cid4, and Cid5 all localize to centromeres in their respective species. Some Cid duplicates are primarily expressed in the male germline. With rare exceptions, Cid duplicates have been strictly retained after birth, suggesting that they perform nonredundant centromeric functions, independent from the ancestral Cid. Indeed, each duplicate encodes a distinct N-terminal tail, which may provide the basis for distinct protein-protein interactions. Finally, we show some Cid duplicates evolve under positive selection whereas others do not. Taken together, our results support the hypothesis that Drosophila Cid duplicates have subfunctionalized. Thus, these gene duplications provide an unprecedented opportunity to dissect the multiple roles of centromeric histones. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Identification of a rare 17p13.3 duplication including the BHLHA9 and YWHAE genes in a family with developmental delay and behavioural problems

    Directory of Open Access Journals (Sweden)

    Capra Valeria

    2012-10-01

    Full Text Available Abstract Background Deletions and duplications of the PAFAH1B1 and YWHAE genes in 17p13.3 are associated with different clinical phenotypes. In particular, deletion of PAFAH1B1 causes isolated lissencephaly while deletions involving both PAFAH1B1 and YWHAE cause Miller-Dieker syndrome. Isolated duplications of PAFAH1B1 have been associated with mild developmental delay and hypotonia, while isolated duplications of YWHAE have been associated with autism. In particular, different dysmorphic features associated with PAFAH1B1 or YWHAE duplication have suggested the need to classify the patient clinical features in two groups according to which gene is involved in the chromosomal duplication. Methods We analyze the proband and his family by classical cytogenetic and array-CGH analyses. The putative rearrangement was confirmed by fluorescence in situ hybridization. Results We have identified a family segregating a 17p13.3 duplication extending 329.5 kilobases by FISH and array-CGH involving the YWHAE gene, but not PAFAH1B1, affected by a mild dysmorphic phenotype with associated autism and mental retardation. We propose that BHLHA9, YWHAE, and CRK genes contribute to the phenotype of our patient. The small chromosomal duplication was inherited from his mother who was affected by a bipolar and borderline disorder and was alcohol addicted. Conclusions We report an additional familial case of small 17p13.3 chromosomal duplication including only BHLHA9, YWHAE, and CRK genes. Our observation and further cases with similar microduplications are expected to be diagnosed, and will help better characterise the clinical spectrum of phenotypes associated with 17p13.3 microduplications.

  17. Unique signatures of natural background radiation on human Y chromosomes from Kerala, India.

    Directory of Open Access Journals (Sweden)

    Sanjay Premi

    Full Text Available The most frequently observed major consequences of ionizing radiation are chromosomal lesions and cancers, although the entire genome may be affected. Owing to its haploid status and absence of recombination, the human Y chromosome is an ideal candidate to be assessed for possible genetic alterations induced by ionizing radiation. We studied the human Y chromosome in 390 males from the South Indian state of Kerala, where the level of natural background radiation (NBR is ten-fold higher than the worldwide average, and that from 790 unexposed males as control.We observed random microdeletions in the Azoospermia factor (AZF a, b and c regions in >90%, and tandem duplication and copy number polymorphism (CNP of 11 different Y-linked genes in about 80% of males exposed to NBR. The autosomal homologues of Y-linked CDY genes largely remained unaffected. Multiple polymorphic copies of the Y-linked genes showing single Y-specific signals suggested their tandem duplication. Some exposed males showed unilocus duplication of DAZ genes resulting in six copies. Notably, in the AZFa region, approximately 25% of exposed males showed deletion of the DBY gene, whereas flanking genes USP9Y and UTY remained unaffected. All these alterations were detected in blood samples but not in the germline (sperm samples.Exposure to high levels of NBR correlated with several interstitial polymorphisms of the human Y chromosome. CNPs and enhanced transcription of the SRY gene after duplication are envisaged to compensate for the loss of Y chromosome in some cells. The aforesaid changes, confined to peripheral blood lymphocytes, suggest a possible innate mechanism protecting the germline DNA from the NBR. Genome analysis of a larger population focusing on greater numbers of genes may provide new insights into the mechanisms and risks of the resultant genetic damages. The present work demonstrates unique signatures of NBR on human Y chromosomes from Kerala, India.

  18. X-linked congenital ptosis and associated intellectual disability, short stature, microcephaly, cleft palate, digital and genital abnormalities define novel Xq25q26 duplication syndrome

    DEFF Research Database (Denmark)

    Møller, R S; Jensen, L R; Maas, S M

    2014-01-01

    , hypogonadism and feeding difficulties. Female carriers are often phenotypically normal or show a similar but milder phenotype, as in most cases the X-chromosome harbouring the duplication is subject to inactivation. Xq28, which includes MECP2 is the major locus for submicroscopic X-chromosome duplications......, whereas duplications in Xq25 and Xq26 have been reported in only a few cases. Using genome-wide array platforms we identified overlapping interstitial Xq25q26 duplications ranging from 0.2 to 4.76 Mb in eight unrelated families with in total five affected males and seven affected females. All affected...... males shared a common phenotype with intrauterine- and postnatal growth retardation and feeding difficulties in childhood. Three had microcephaly and two out of five suffered from epilepsy. In addition, three males had a distinct facial appearance with congenital bilateral ptosis and large protruding...

  19. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates.

    Directory of Open Access Journals (Sweden)

    Görel Sundström

    Full Text Available BACKGROUND: The opioid system is involved in reward and pain mechanisms and consists in mammals of four receptors and several peptides. The peptides are derived from four prepropeptide genes, PENK, PDYN, PNOC and POMC, encoding enkephalins, dynorphins, orphanin/nociceptin and beta-endorphin, respectively. Previously we have described how two rounds of genome doubling (2R before the origin of jawed vertebrates formed the receptor family. METHODOLOGY/PRINCIPAL FINDINGS: Opioid peptide gene family members were investigated using a combination of sequence-based phylogeny and chromosomal locations of the peptide genes in various vertebrates. Several adjacent gene families were investigated similarly. The results show that the ancestral peptide gene gave rise to two additional copies in the genome doublings. The fourth member was generated by a local gene duplication, as the genes encoding POMC and PNOC are located on the same chromosome in the chicken genome and all three teleost genomes that we have studied. A translocation has disrupted this synteny in mammals. The PDYN gene seems to have been lost in chicken, but not in zebra finch. Duplicates of some peptide genes have arisen in the teleost fishes. Within the prepropeptide precursors, peptides have been lost or gained in different lineages. CONCLUSIONS/SIGNIFICANCE: The ancestral peptide and receptor genes were located on the same chromosome and were thus duplicated concomitantly. However, subsequently genetic linkage has been lost. In conclusion, the system of opioid peptides and receptors was largely formed by the genome doublings that took place early in vertebrate evolution.

  20. Cellular irradiation during phase S: a study of induced chromosomic damage and its transmission

    International Nuclear Information System (INIS)

    Antoine, J.L.

    1986-01-01

    The author examines the effects of ionizing radiation on the chromosomes during phase S (synthesis) in which DNA progressively duplicates itself. He analyses disturbances in the cellular cycle of human lymphocytes caused by the type and number of radiologically induced lesions on the chromosomes [fr

  1. A case with concurrent duplication, triplication, and uniparental isodisomy at 1q42.12-qter supporting microhomology-mediated break-induced replication model for replicative rearrangements.

    Science.gov (United States)

    Kohmoto, Tomohiro; Okamoto, Nana; Naruto, Takuya; Murata, Chie; Ouchi, Yuya; Fujita, Naoko; Inagaki, Hidehito; Satomura, Shigeko; Okamoto, Nobuhiko; Saito, Masako; Masuda, Kiyoshi; Kurahashi, Hiroki; Imoto, Issei

    2017-01-01

    Complex genomic rearrangements (CGRs) consisting of interstitial triplications in conjunction with uniparental isodisomy (isoUPD) have rarely been reported in patients with multiple congenital anomalies (MCA)/intellectual disability (ID). One-ended DNA break repair coupled with microhomology-mediated break-induced replication (MMBIR) has been recently proposed as a possible mechanism giving rise to interstitial copy number gains and distal isoUPD, although only a few cases providing supportive evidence in human congenital diseases with MCA have been documented. Here, we report on the chromosomal microarray (CMA)-based identification of the first known case with concurrent interstitial duplication at 1q42.12-q42.2 and triplication at 1q42.2-q43 followed by isoUPD for the remainder of chromosome 1q (at 1q43-qter). In distal 1q duplication/triplication overlapping with 1q42.12-q43, variable clinical features have been reported, and our 25-year-old patient with MCA/ID presented with some of these frequently described features. Further analyses including the precise mapping of breakpoint junctions within the CGR in a sequence level suggested that the CGR found in association with isoUPD in our case is a triplication with flanking duplications, characterized as a triplication with a particularly long duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) structure. Because microhomology was observed in both junctions between the triplicated region and the flanking duplicated regions, our case provides supportive evidence for recently proposed replication-based mechanisms, such as MMBIR, underlying the formation of CGRs + isoUPD implicated in chromosomal disorders. To the best of our knowledge, this is the first case of CGRs + isoUPD observed in 1q and having DUP-TRP/INV-DUP structure with a long proximal duplication, which supports MMBIR-based model for genomic rearrangements. Molecular cytogenetic analyses using CMA containing single

  2. Chromosomal Replication Complexity: A Novel DNA Metrics and Genome Instability Factor.

    Directory of Open Access Journals (Sweden)

    Andrei Kuzminov

    2016-10-01

    Full Text Available As the ratio of the copy number of the most replicated to the unreplicated regions in the same chromosome, the definition of chromosomal replication complexity (CRC appears to leave little room for variation, being either two during S-phase or one otherwise. However, bacteria dividing faster than they replicate their chromosome spike CRC to four and even eight. A recent experimental inquiry about the limits of CRC in Escherichia coli revealed two major reasons to avoid elevating it further: (i increased chromosomal fragmentation and (ii complications with subsequent double-strand break repair. Remarkably, examples of stable elevated CRC in eukaryotic chromosomes are well known under various terms like "differential replication," "underreplication," "DNA puffs," "onion-skin replication," or "re-replication" and highlight the phenomenon of static replication fork (sRF. To accurately describe the resulting "amplification by overinitiation," I propose a new term: "replification" (subchromosomal overreplication. In both prokaryotes and eukaryotes, replification, via sRF processing, causes double-strand DNA breaks and, with their repair elevating chromosomal rearrangements, represents a novel genome instability factor. I suggest how static replication bubbles could be stabilized and speculate that some tandem duplications represent such persistent static bubbles. Moreover, I propose how static replication bubbles could be transformed into tandem duplications, double minutes, or inverted triplications. Possible experimental tests of these models are discussed.

  3. A survey of innovation through duplication in the reduced genomes of twelve parasites.

    Directory of Open Access Journals (Sweden)

    Jeremy D DeBarry

    Full Text Available We characterize the prevalence, distribution, divergence, and putative functions of detectable two-copy paralogs and segmental duplications in the Apicomplexa, a phylum of parasitic protists. Apicomplexans are mostly obligate intracellular parasites responsible for human and animal diseases (e.g. malaria and toxoplasmosis. Gene loss is a major force in the phylum. Genomes are small and protein-encoding gene repertoires are reduced. Despite this genomic streamlining, duplications and gene family amplifications are present. The potential for innovation introduced by duplications is of particular interest. We compared genomes of twelve apicomplexans across four lineages and used orthology and genome cartography to map distributions of duplications against genome architectures. Segmental duplications appear limited to five species. Where present, they correspond to regions enriched for multi-copy and species-specific genes, pointing toward roles in adaptation and innovation. We found a phylum-wide association of duplications with dynamic chromosome regions and syntenic breakpoints. Trends in the distribution of duplicated genes indicate that recent, species-specific duplicates are often tandem while most others have been dispersed by genome rearrangements. These trends show a relationship between genome architecture and gene duplication. Functional analysis reveals: proteases, which are vital to a parasitic lifecycle, to be prominent in putative recent duplications; a pair of paralogous genes in Toxoplasma gondii previously shown to produce the rate-limiting step in dopamine synthesis in mammalian cells, a possible link to the modification of host behavior; and phylum-wide differences in expression and subcellular localization, indicative of modes of divergence. We have uncovered trends in multiple modes of duplicate divergence including sequence, intron content, expression, subcellular localization, and functions of putative recent duplicates that

  4. Extensive duplication of the Wolbachia DNA in chromosome four of Drosophila ananassae.

    Science.gov (United States)

    Klasson, Lisa; Kumar, Nikhil; Bromley, Robin; Sieber, Karsten; Flowers, Melissa; Ott, Sandra H; Tallon, Luke J; Andersson, Siv G E; Dunning Hotopp, Julie C

    2014-12-12

    Lateral gene transfer (LGT) from bacterial Wolbachia endosymbionts has been detected in ~20% of arthropod and nematode genome sequencing projects. Many of these transfers are large and contain a substantial part of the Wolbachia genome. Here, we re-sequenced three D. ananassae genomes from Asia and the Pacific that contain large LGTs from Wolbachia. We find that multiple copies of the Wolbachia genome are transferred to the Drosophila nuclear genome in all three lines. In the D. ananassae line from Indonesia, the copies of Wolbachia DNA in the nuclear genome are nearly identical in size and sequence yielding an even coverage of mapped reads over the Wolbachia genome. In contrast, the D. ananassae lines from Hawaii and India show an uneven coverage of mapped reads over the Wolbachia genome suggesting that different parts of these LGTs are present in different copy numbers. In the Hawaii line, we find that this LGT is underrepresented in third instar larvae indicative of being heterochromatic. Fluorescence in situ hybridization of mitotic chromosomes confirms that the LGT in the Hawaii line is heterochromatic and represents ~20% of the sequence on chromosome 4 (dot chromosome, Muller element F). This collection of related lines contain large lateral gene transfers composed of multiple Wolbachia genomes that constitute >2% of the D. ananassae genome (~5 Mbp) and partially explain the abnormally large size of chromosome 4 in D. ananassae.

  5. The presence of two rare genomic syndromes, 1q21 deletion and Xq28 duplication, segregating independently in a family with intellectual disability.

    Science.gov (United States)

    Ha, Kyungsoo; Shen, Yiping; Graves, Tyler; Kim, Cheol-Hee; Kim, Hyung-Goo

    2016-01-01

    1q21 microdeletion syndrome is a rare contiguous gene deletion disorder with de novo or autosomal dominant inheritance patterns and its phenotypic features include intellectual disability, distinctive facial dysmorphism, microcephaly, cardiac abnormalities, and cataracts. MECP2 duplication syndrome is an X-linked recessive neurodevelopmental disorder characterized by intellectual disability, global developmental delay, and other neurological complications including late-onset seizures. Previously, these two different genetic syndromes have not been reported segregating independently in a same family. Here we describe two siblings carrying either a chromosome 1q21 microdeletion or a chromosome Xq28 duplication. Using a comparative genomic hybridization (CGH) array, we identified a 1.24 Mb heterozygous deletion at 1q21 resulting in the loss of 9 genes in a girl with learning disability, hypothyroidism, short stature, sensory integration disorder, and soft dysmorphic features including cupped ears and a unilateral ear pit. We also characterized a 508 kb Xq28 duplication encompassing MECP2 in her younger brother with hypotonia, poor speech, cognitive and motor impairment. The parental CGH and quantitative PCR (qPCR) analyses revealed that the 1q21 deletion in the elder sister is de novo , but the Xq28 duplication in the younger brother was originally inherited from the maternal grandmother through the mother, both of whom are asymptomatic carriers. RT-qPCR assays revealed that the affected brother has almost double the amount of MECP2 mRNA expression compared to other family members of both genders including maternal grandmother and mother who have the same Xq28 duplication with no phenotype. This suggests the X chromosome with an Xq28 duplication in the carrier females is preferentially silenced. From our understanding, this would be the first report showing the independent segregation of two genetically unrelated syndromes, 1q21 microdeletion and Xq28 duplication

  6. Prenatal diagnosis of foetuses with congenital abnormalities and duplication of the MECP2 region.

    Science.gov (United States)

    Fu, Fang; Liu, Huan-ling; Li, Ru; Han, Jin; Yang, Xin; Min, Pan; Zhen, Li; Zhang, Yong-ling; Xie, Gui-e; Lei, Ting-ying; Li, Yan; Li, Jian; Li, Dong-zhi; Liao, Can

    2014-08-10

    MECP2 duplication results in a well-recognised syndrome in 100% of affected male children; this syndrome is characterised by severe neurodevelopmental disabilities and recurrent infections. However, no sonographic findings have been reported for affected foetuses, and prenatal molecular diagnosis has not been possible for this disease due to lack of prenatal clinical presentation. In this study, we identified a small duplication comprising the MECP2 and L1CAM genes in the Xq28 region in a patient from a family with severe X-linked mental retardation and in a prenatal foetus with brain structural abnormalities. Using high-resolution chromosome microarray analysis (CMA) to screen 108 foetuses with congenital structural abnormalities, we identified additional three foetuses with the MECP2 duplication. Our study indicates that ventriculomegaly, hydrocephalus, agenesis of the corpus callosum, choroid plexus cysts, foetal growth restriction and hydronephrosis might be common ultrasound findings in prenatal foetuses with the MECP2 duplication and provides the first set of prenatal cases with MECP2 duplication, the ultrasonographic phenotype described in these patients will help to recognise the foetuses with possible MECP2 duplication and prompt the appropriate molecular testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Cytogenetic and molecular analysis of inv dup(15) chromosomes observed in two patients with autistic disorder and mental retardation

    Energy Technology Data Exchange (ETDEWEB)

    Flejter, W.L. [Univ. of Utah, Salt Lake City, UT (United States); Bennett-Baker, P.E.; Gorski, J.L. [Univ. of Michigan, Ann Arbor, MI (United States)] [and other

    1996-01-11

    A variety of distinct phenotypes has been associated with supernumerary inv dup(15) chromosomes. Although different cytogenetic rearrangements have been associated with distinguishable clinical syndromes, precise genotype-phenotype correlations have not been determined. However, the availability of chromosome 15 DNA markers provides a means to characterize inv dup(15) chromosomes in detail to facilitate the determination of specific genotype-phenotype associations. We describe 2 patients with an autistic disorder, mental retardation, developmental delay, seizures, and supernumerary inv dup(15) chromosomes. Conventional and molecular cytogenetic studies confirmed the chromosomal origin of the supernumerary chromosomes and showed that the duplicated region extended to at least band 15q13. An analysis of chromosome 15 microsatellite CA polymorphisms suggested a maternal origin of the inv dup(15) chromosomes and biparental inheritance of the two intact chromosome 15 homologs. The results of this study add to the existing literature which suggests that the clinical phenotype of patients with a supernumerary inv dup(15) chromosome is determined not only by the extent of the duplicated region, but by the dosage of genes located within band 15q13 and the origin of the normal chromosomes 15. 21 refs., 2 figs., 1 tab.

  8. Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs

    Directory of Open Access Journals (Sweden)

    Michael H. Kohn

    2008-01-01

    Full Text Available While it remains a matter of some debate, rapid sequence evolution of the coding sequences of duplicate genes is characteristic for early phases past duplication, but long established duplicates generally evolve under constraint, much like the rest of the coding genome. As for coding sequences, it may be possible to infer evolutionary rate, selection, and constraint via contrasts between duplicate gene divergence in the 5 prime regions and in the corresponding synonymous site divergence in the coding regions. Finding elevated rates for the 5 prime regions of duplicated genes, in addition to the coding regions, would enable statements regarding the early processes of duplicate gene evolution. Here, 1 kb of each of the 5 prime regulatory regions of Drosophila melanogaster duplicate gene pairs were mapped onto one another to isolate shared sequence blocks. Genetic distances within shared sequence blocks (d5’ were found to increase as a function of synonymous (dS, and to a lesser extend, amino-acid (dA site divergence between duplicates. The rate d5’/dS was found to rapidly decay from values > 1 in young duplicate pairs (dS 0.8. Such rapid rates of 5 prime evolution exceeding 1 (~neutral predominantly were found to occur in duplicate pairs with low amino-acid site divergence and that tended to be co-regulated when assayed on microarrays. Conceivably, functional redundancy and relaxation of selective constraint facilitates subsequent positive selection on the 5 prime regions of young duplicate genes. This might promote the evolution of new functions (neofunctionalization or division of labor among duplicate genes (subfunctionalization. In contrast, similar to the vast portion of the non-coding genome, the 5 prime regions of long-established gene duplicates appear to evolve under selective constraint, indicating that these long-established gene duplicates have assumed critical functions.

  9. A strategy for generation and balancing of autosome: Y chromosome translocations.

    Science.gov (United States)

    Joshi, Sonal S; Cheong, Han; Meller, Victoria H

    2014-01-01

    We describe a method for generation and maintenance of translocations that move large autosomal segments onto the Y chromosome. Using this strategy we produced ( 2;Y) translocations that relocate between 1.5 and 4.8 Mb of the 2nd chromosome.. All translocations were easily balanced over a male-specific lethal 1 (msl-1) mutant chromosome. Both halves of the translocation carry visible markers, as well as P-element ends that enable molecular confirmation. Halves of these translocations can be separated to produce offspring with duplications and with lethal second chromosome deficiencies . Such large deficiencies are otherwise tedious to generate and maintain.

  10. Analysis of the 9p21.3 sequence associated with coronary artery disease reveals a tendency for duplication in a CAD patient

    Science.gov (United States)

    Kouprina, Natalay; Noskov, Vladimir N.; Waterfall, Joshua J.; Walker, Robert L.; Meltzer, Paul S.; Topol, Eric J.; Larionov, Vladimir

    2018-01-01

    Tandem segmental duplications (SDs) greater than 10 kb are widespread in complex genomes. They provide material for gene divergence and evolutionary adaptation, while formation of specific de novo SDs is a hallmark of cancer and some human diseases. Most SDs map to distinct genomic regions termed ‘duplication blocks’. SDs organization within these blocks is often poorly characterized as they are mosaics of ancestral duplicons juxtaposed with younger duplicons arising from more recent duplication events. Structural and functional analysis of SDs is further hampered as long repetitive DNA structures are underrepresented in existing BAC and YAC libraries. We applied Transformation-Associated Recombination (TAR) cloning, a versatile technique for large DNA manipulation, to selectively isolate the coronary artery disease (CAD) interval sequence within the 9p21.3 chromosome locus from a patient with coronary artery disease and normal individuals. Four tandem head-to-tail duplicons, each ∼50 kb long, were recovered in the patient but not in normal individuals. Sequence analysis revealed that the repeats varied by 10-15 SNPs between each other and by 82 SNPs between the human genome sequence (version hg19). SNPs polymorphism within the junctions between repeats allowed two junction types to be distinguished, Type 1 and Type 2, which were found at a 2:1 ratio. The junction sequences contained an Alu element, a sequence previously shown to play a role in duplication. Knowledge of structural variation in the CAD interval from more patients could help link this locus to cardiovascular diseases susceptibility, and maybe relevant to other cases of regional amplification, including cancer. PMID:29632643

  11. Enteric and rectal duplications and duplication cysts in the adult.

    Science.gov (United States)

    Simsek, Abdurrahman; Zeybek, Nazif; Yagci, Gokhan; Kaymakcioglu, Nihat; Tas, Huseyin; Saglam, Mutlu; Cetiner, Sadettin

    2005-03-01

    Alimentary tract duplication and duplication cysts are rare congenital malformations. The ileum is the most frequently affected site. However, alimentary tract duplication and duplication cysts can occur at any point along the gastrointestinal tract. Early diagnosis and prompt surgical treatment is the best way to prevent associated morbidity. This article presents the cases of three patients admitted to Gulhane Military Medical Academy with signs of acute abdomen, intra-abdominal mass and chronic abdominal pain. These patients were found to have enteric duplication, duplication cyst and/or retro-rectal cyst. The literature on alimentary tract duplications is reviewed.

  12. Mapping Breakpoints of Complex Chromosome Rearrangements Involving a Partial Trisomy 15q23.1-q26.2 Revealed by Next Generation Sequencing and Conventional Techniques.

    Directory of Open Access Journals (Sweden)

    Qiong Pan

    Full Text Available Complex chromosome rearrangements (CCRs, which are rather rare in the whole population, may be associated with aberrant phenotypes. Next-generation sequencing (NGS and conventional techniques, could be used to reveal specific CCRs for better genetic counseling. We report the CCRs of a girl and her mother, which were identified using a combination of NGS and conventional techniques including G-banding, fluorescence in situ hybridization (FISH and PCR. The girl demonstrated CCRs involving chromosomes 3 and 8, while the CCRs of her mother involved chromosomes 3, 5, 8, 11 and 15. HumanCytoSNP-12 Chip analysis identified a 35.4 Mb duplication on chromosome 15q21.3-q26.2 in the proband and a 1.6 Mb microdeletion at chromosome 15q21.3 in her mother. The proband inherited the rearranged chromosomes 3 and 8 from her mother, and the duplicated region on chromosome 15 of the proband was inherited from the mother. Approximately one hundred genes were identified in the 15q21.3-q26.2 duplicated region of the proband. In particular, TPM1, SMAD6, SMAD3, and HCN4 may be associated with her heart defects, and HEXA, KIF7, and IDH2 are responsible for her developmental and mental retardation. In addition, we suggest that a microdeletion on the 15q21.3 region of the mother, which involved TCF2, TCF12, ADMA10 and AQP9, might be associated with mental retardation. We delineate the precise structures of the derivative chromosomes, chromosome duplication origin and possible molecular mechanisms for aberrant phenotypes by combining NGS data with conventional techniques.

  13. The conversion of centrioles to centrosomes: essential coupling of duplication with segregation.

    Science.gov (United States)

    Wang, Won-Jing; Soni, Rajesh Kumar; Uryu, Kunihiro; Tsou, Meng-Fu Bryan

    2011-05-16

    Centrioles are self-reproducing organelles that form the core structure of centrosomes or microtubule-organizing centers (MTOCs). However, whether duplication and MTOC organization reflect innate activities of centrioles or activities acquired conditionally is unclear. In this paper, we show that newly formed full-length centrioles had no inherent capacity to duplicate or to organize pericentriolar material (PCM) but acquired both after mitosis through a Plk1-dependent modification that occurred in early mitosis. Modified centrioles initiated PCM recruitment in G1 and segregated equally in mitosis through association with spindle poles. Conversely, unmodified centrioles segregated randomly unless passively tethered to modified centrioles. Strikingly, duplication occurred only in centrioles that were both modified and disengaged, whereas unmodified centrioles, engaged or not, were "infertile," indicating that engagement specifically blocks modified centrioles from reduplication. These two requirements, centriole modification and disengagement, fully exclude unlimited duplication in one cell cycle. We thus uncovered a Plk1-dependent mechanism whereby duplication and segregation are coupled to maintain centriole homeostasis.

  14. Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement

    Science.gov (United States)

    Willis, Nicholas A.; Rass, Emilie; Scully, Ralph

    2015-01-01

    Chromosome rearrangement plays a causal role in tumorigenesis by contributing to the inactivation of tumor suppressor genes, the dysregulated expression or amplification of oncogenes and the generation of novel gene fusions. Chromosome breaks are important intermediates in this process. How, when and where these breaks arise and the specific mechanisms engaged in their repair strongly influence the resulting patterns of chromosome rearrangement. Here, we review recent progress in understanding how certain distinctive features of the cancer genome, including clustered mutagenesis, tandem segmental duplications, complex breakpoints, chromothripsis, chromoplexy and chromoanasynthesis may arise. PMID:26726318

  15. External cystic rectal duplication: an unusual presentation of rectal duplication cyst.

    Science.gov (United States)

    Karaman, I; Karaman, A; Arda, N; Cakmak, O

    2007-11-01

    Duplications of gastrointestinal tract are rare anomalies, and rectal duplications account for five percent of the alimentary tract duplications. We present an unusual case of rectal duplication, which was located externally in a newborn female, and discuss the types of distal hindgut duplications.

  16. Dynamics of chromosome number and genome size variation in a cytogenetically variable sedge (Carex scoparia var. scoparia, Cyperaceae).

    Science.gov (United States)

    Chung, Kyong-Sook; Weber, Jaime A; Hipp, Andrew L

    2011-01-01

    High intraspecific cytogenetic variation in the sedge genus Carex (Cyperaceae) is hypothesized to be due to the "diffuse" or non-localized centromeres, which facilitate chromosome fission and fusion. If chromosome number changes are dominated by fission and fusion, then chromosome evolution will result primarily in changes in the potential for recombination among populations. Chromosome duplications, on the other hand, entail consequent opportunities for divergent evolution of paralogs. In this study, we evaluate whether genome size and chromosome number covary within species. We used flow cytometry to estimate genome sizes in Carex scoparia var. scoparia, sampling 99 plants (23 populations) in the Chicago region, and we used meiotic chromosome observations to document chromosome numbers and chromosome pairing relations. Chromosome numbers range from 2n = 62 to 2n = 68, and nuclear DNA 1C content from 0.342 to 0.361 pg DNA. Regressions of DNA content on chromosome number are nonsignificant for data analyzed by individual or population, and a regression model that excludes slope is favored over a model in which chromosome number predicts genome size. Chromosome rearrangements within cytogenetically variable Carex species are more likely a consequence of fission and fusion than of duplication and deletion. Moreover, neither genome size nor chromosome number is spatially autocorrelated, which suggests the potential for rapid chromosome evolution by fission and fusion at a relatively fine geographic scale (<350 km). These findings have important implications for ecological restoration and speciation within the largest angiosperm genus of the temperate zone.

  17. FUNCTIONAL SPECIALIZATION OF DUPLICATED FLAVONOID BIOSYNTHESIS GENES IN WHEAT

    Directory of Open Access Journals (Sweden)

    Khlestkina E.

    2012-08-01

    Full Text Available Gene duplication followed by subfunctionalization and neofunctionalization is of a great evolutionary importance. In plant genomes, duplicated genes may result from either polyploidization (homoeologous genes or segmental chromosome duplications (paralogous genes. In allohexaploid wheat Triticum aestivum L. (2n=6x=42, genome BBAADD, both homoeologous and paralogous copies were found for the regulatory gene Myc encoding MYC-like transcriptional factor in the biosynthesis of flavonoid pigments, anthocyanins, and for the structural gene F3h encoding one of the key enzymes of flavonoid biosynthesis, flavanone 3-hydroxylase. From the 5 copies (3 homoeologous and 2 paralogous of the Myc gene found in T. aestivum, only one plays a regulatory role in anthocyanin biosynthesis, interacting complementary with another transcriptional factor (MYB-like to confer purple pigmentation of grain pericarp in wheat. The role and functionality of the other 4 copies of the Myc gene remain unknown. From the 4 functional copies of the F3h gene in T. aestivum, three homoeologues have similar function. They are expressed in wheat organs colored with anthocyanins or in the endosperm, participating there in biosynthesis of uncolored flavonoid substances. The fourth copy (the B-genomic paralogue is transcribed neither in wheat organs colored with anthocyanins nor in seeds, however, it’s expression has been noticed in roots of aluminium-stressed plants, where the three homoeologous copies are not active. Functional diversification of the duplicated flavonoid biosynthesis genes in wheat may be a reason for maintenance of the duplicated copies and preventing them from pseudogenization.The study was supported by RFBR (11-04-92707. We also thank Ms. Galina Generalova for technical assistance.

  18. Clinical features of SMARCA2 duplication overlap with Coffin-Siris syndrome.

    Science.gov (United States)

    Miyake, Noriko; Abdel-Salam, Ghada; Yamagata, Takanori; Eid, Maha M; Osaka, Hitoshi; Okamoto, Nobuhiko; Mohamed, Amal M; Ikeda, Takahiro; Afifi, Hanan H; Piard, Juliette; van Maldergem, Lionel; Mizuguchi, Takeshi; Miyatake, Satoko; Tsurusaki, Yoshinori; Matsumoto, Naomichi

    2016-10-01

    Coffin-Siris syndrome is a rare congenital malformation and intellectual disability syndrome. Mutations in at least seven genes have been identified. Here, we performed copy number analysis in 37 patients with features of CSS in whom no causative mutations were identified by exome sequencing. We identified a patient with a 9p24.3-p22.2 duplication and another patient with the chromosome der(6)t(6;9)(p25;p21)mat. Both patients share a duplicated 15.8-Mb region containing 46 protein coding genes, including SMARCA2. Dominant negative effects of SMARCA2 mutations may contribute to Nicolaides-Baraitser syndrome. We conclude that their features better resemble Coffin-Siris syndrome, rather than Nicolaides-Baraitser syndrome and that these features likely arise from SMARCA2 over-dosage. Pure 9p duplications (not caused by unbalanced translocations) are rare. Copy number analysis in patients with features that overlap with Coffin-Siris syndrome is recommended to further determine their genetic aspects. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Enteric Duplication.

    Science.gov (United States)

    Jeziorczak, Paul M; Warner, Brad W

    2018-03-01

    Enteric duplications have been described throughout the entire gastrointestinal tract. The usual perinatal presentation is an abdominal mass. Duplications associated with the foregut have associated respiratory symptoms, whereas duplications in the midgut and hindgut can present with obstructive symptoms, perforation, nausea, emesis, hemorrhage, or be asymptomatic, and identified as an incidental finding. These are differentiated from other cystic lesions by the presence of a normal gastrointestinal mucosal epithelium. Enteric duplications are located on the mesenteric side of the native structures and are often singular with tubular or cystic characteristics. Management of enteric duplications often requires operative intervention with preservation of the native blood supply and intestine. These procedures are usually very well tolerated with low morbidity.

  20. A large duplication involving the IHH locus mimics acrocallosal syndrome.

    Science.gov (United States)

    Yuksel-Apak, Memnune; Bögershausen, Nina; Pawlik, Barbara; Li, Yun; Apak, Selcuk; Uyguner, Oya; Milz, Esther; Nürnberg, Gudrun; Karaman, Birsen; Gülgören, Ayan; Grzeschik, Karl-Heinz; Nürnberg, Peter; Kayserili, Hülya; Wollnik, Bernd

    2012-06-01

    Indian hedgehog (Ihh) signaling is a major determinant of various processes during embryonic development and has a pivotal role in embryonic skeletal development. A specific spatial and temporal expression of Ihh within the developing limb buds is essential for accurate digit outgrowth and correct digit number. Although missense mutations in IHH cause brachydactyly type A1, small tandem duplications involving the IHH locus have recently been described in patients with mild syndactyly and craniosynostosis. In contrast, a ∼600-kb deletion 5' of IHH in the doublefoot mouse mutant (Dbf) leads to severe polydactyly without craniosynostosis, but with craniofacial dysmorphism. We now present a patient resembling acrocallosal syndrome (ACS) with extensive polysyndactyly of the hands and feet, craniofacial abnormalities including macrocephaly, agenesis of the corpus callosum, dysplastic and low-set ears, severe hypertelorism and profound psychomotor delay. Single-nucleotide polymorphism (SNP) array copy number analysis identified a ∼900-kb duplication of the IHH locus, which was confirmed by an independent quantitative method. A fetus from a second pregnancy of the mother by a different spouse showed similar craniofacial and limb malformations and the same duplication of the IHH-locus. We defined the exact breakpoints and showed that the duplications are identical tandem duplications in both sibs. No copy number changes were observed in the healthy mother. To our knowledge, this is the first report of a human phenotype similar to the Dbf mutant and strikingly overlapping with ACS that is caused by a copy number variation involving the IHH locus on chromosome 2q35.

  1. A SNP Based Linkage Map of the Arctic Charr (Salvelinus alpinus Genome Provides Insights into the Diploidization Process After Whole Genome Duplication

    Directory of Open Access Journals (Sweden)

    Cameron M. Nugent

    2017-02-01

    Full Text Available Diploidization, which follows whole genome duplication events, does not occur evenly across the genome. In salmonid fishes, certain pairs of homeologous chromosomes preserve tetraploid loci in higher frequencies toward the telomeres due to residual tetrasomic inheritance. Research suggests this occurs only in homeologous pairs where one chromosome arm has undergone a fusion event. We present a linkage map for Arctic charr (Salvelinus alpinus, a salmonid species with relatively fewer chromosome fusions. Genotype by sequencing identified 19,418 SNPs, and a linkage map consisting of 4508 markers was constructed from a subset of high quality SNPs and microsatellite markers that were used to anchor the new map to previous versions. Both male- and female-specific linkage maps contained the expected number of 39 linkage groups. The chromosome type associated with each linkage group was determined, and 10 stable metacentric chromosomes were identified, along with a chromosome polymorphism involving the sex chromosome AC04. Two instances of a weak form of pseudolinkage were detected in the telomeric regions of homeologous chromosome arms in both female and male linkage maps. Chromosome arm homologies within the Atlantic salmon (Salmo salar and rainbow trout (Oncorhynchus mykiss genomes were determined. Paralogous sequence variants (PSVs were identified, and their comparative BLASTn hit locations showed that duplicate markers exist in higher numbers on seven pairs of homeologous arms, previously identified as preserving tetrasomy in salmonid species. Homeologous arm pairs where neither arm has been part of a fusion event in Arctic charr had fewer PSVs, suggesting faster diploidization rates in these regions.

  2. Cytokinesis-block micronucleus assay evolves into a 'cytome' assay of chromosomal instability, mitotic dysfunction and cell death

    International Nuclear Information System (INIS)

    Fenech, Michael

    2006-01-01

    The cytokinesis-block micronucleus (CBMN) assay was originally developed as an ideal system for measuring micronuclei (MNi) however it can also be used to measure nucleoplasmic bridges (NPBs), nuclear buds (NBUDs), cell death (necrosis or apoptosis) and nuclear division rate. Current evidence suggests that (a) NPBs originate from dicentric chromosomes in which the centromeres have been pulled to the opposite poles of the cell at anaphase and are therefore indicative of DNA mis-repair, chromosome rearrangement or telomere end-fusions, (b) NPBs may break to form MNi, (c) the nuclear budding process is the mechanism by which cells remove amplified and/or excess DNA and is therefore a marker of gene amplification and/or altered gene dosage, (d) cell cycle checkpoint defects result in micronucleus formation and (e) hypomethylation of DNA, induced nutritionally or by inhibition of DNA methyl transferase can lead to micronucleus formation either via chromosome loss or chromosome breakage. The strong correlation between micronucleus formation, nuclear budding and NPBs (r = 0.75-0.77, P < 0.001) induced by either folic acid deficiency or exposure to ionising radiation is supportive of the hypothesis that folic acid deficiency and/or ionising radiation cause genomic instability and gene amplification by the initiation of breakage-fusion-bridge cycles. In its comprehensive mode, the CBMN assay measures all cells including necrotic and apoptotic cells as well as number of nuclei per cell to provide a measure of cytotoxicity and mitotic activity. The CBMN assay has in fact evolved into a 'cytome' method for measuring comprehensively chromosomal instability phenotype and altered cellular viability caused by genetic defects and/or nutrional deficiencies and/or exogenous genotoxins thus opening up an exciting future for the use of this methodology in the emerging fields of nutrigenomics and toxicogenomics and their combinations

  3. Mutation mechanisms that underlie turnover of a human telomere-adjacent segmental duplication containing an unstable minisatellite.

    Science.gov (United States)

    Hills, Mark; Jeyapalan, Jennie N; Foxon, Jennifer L; Royle, Nicola J

    2007-04-01

    Subterminal regions, juxtaposed to telomeres on human chromosomes, contain a high density of segmental duplications, but relatively little is known about the evolutionary processes that underlie sequence turnover in these regions. We have characterized a segmental duplication adjacent to the Xp/Yp telomere, each copy containing a hypervariable array of the DXYS14 minisatellite. Both DXYS14 repeat arrays mutate at a high rate (0.3 and 0.2% per gamete) but linkage disequilibrium analysis across 27 SNPs and a direct crossover assay show that recombination during meiosis is suppressed. Therefore instability at DXYS14a and b is dominated by intra-allelic processes or possibly conversion limited to the repeat arrays. Furthermore some chromosomes (14%) carry only one copy of the duplicon, including one DXYS14 repeat array that is also highly mutable (1.2% per gamete). To explain these and other observations, we propose there is another low-rate mutation process that causes copy number change in part or all of the duplicon.

  4. Divergence of the bZIP Gene Family in Strawberry, Peach, and Apple Suggests Multiple Modes of Gene Evolution after Duplication

    Directory of Open Access Journals (Sweden)

    Xiao-Long Wang

    2015-01-01

    Full Text Available The basic leucine zipper (bZIP transcription factors are the most diverse members of dimerizing transcription factors. In the present study, 50, 116, and 47 bZIP genes were identified in Malus domestica (apple, Prunus persica (peach, and Fragaria vesca (strawberry, respectively. Species-specific duplication was the main contributor to the large number of bZIPs observed in apple. After WGD in apple genome, orthologous bZIP genes corresponding to strawberry on duplicated regions in apple genome were retained. However, in peach ancestor, these syntenic regions were quickly lost or deleted. Maybe the positive selection contributed to the expansion of clade S to adapt to the development and environment stresses. In addition, purifying selection was mainly responsible for bZIP sequence-specific DNA binding. The analysis of orthologous pairs between chromosomes indicates that these orthologs derived from one gene duplication located on one of the nine ancient chromosomes in the Rosaceae. The comparative analysis of bZIP genes in three species provides information on the evolutionary fate of bZIP genes in apple and peach after they diverged from strawberry.

  5. Sex Chromosome Evolution, Heterochiasmy, and Physiological QTL in the Salmonid Brook Charr Salvelinus fontinalis

    Directory of Open Access Journals (Sweden)

    Ben J.G. Sutherland

    2017-08-01

    Full Text Available Whole-genome duplication (WGD can have large impacts on genome evolution, and much remains unknown about these impacts. This includes the mechanisms of coping with a duplicated sex determination system and whether this has an impact on increasing the diversity of sex determination mechanisms. Other impacts include sexual conflict, where alleles having different optimums in each sex can result in sequestration of genes into nonrecombining sex chromosomes. Sex chromosome development itself may involve sex-specific recombination rate (i.e., heterochiasmy, which is also poorly understood. The family Salmonidae is a model system for these phenomena, having undergone autotetraploidization and subsequent rediploidization in most of the genome at the base of the lineage. The salmonid master sex determining gene is known, and many species have nonhomologous sex chromosomes, putatively due to transposition of this gene. In this study, we identify the sex chromosome of Brook Charr Salvelinus fontinalis and compare sex chromosome identities across the lineage (eight species and four genera. Although nonhomology is frequent, homologous sex chromosomes and other consistencies are present in distantly related species, indicating probable convergence on specific sex and neo-sex chromosomes. We also characterize strong heterochiasmy with 2.7-fold more crossovers in maternal than paternal haplotypes with paternal crossovers biased to chromosome ends. When considering only rediploidized chromosomes, the overall heterochiasmy trend remains, although with only 1.9-fold more recombination in the female than the male. Y chromosome crossovers are restricted to a single end of the chromosome, and this chromosome contains a large interspecific inversion, although its status between males and females remains unknown. Finally, we identify quantitative trait loci (QTL for 21 unique growth, reproductive, and stress-related phenotypes to improve knowledge of the genetic

  6. [Anterior rectal duplication in adult patient: a case report].

    Science.gov (United States)

    Rodríguez-Cabrera, J; Villanueva-Sáenz, E; Bolaños-Badillo, L E

    2009-01-01

    To report a case of rectal duplication in the adult and make a literature review. The intestinal duplications are injuries of congenital origin that can exist from the base of the tongue to the anal verge, being the most frequent site at level of terminal ileum (22%) and at the rectal level in 5% To date approximately exist 80 reports in world-wide Literature generally in the pediatric population being little frequent in the adult age. Its presentation could be tubular or cystic. The recommended treatment is the surgical resection generally in block with coloanal anastomosis. A case review of rectal duplication in the adult and the conducted treatment. The case of a patient appears with diagnose of rectal duplication with tubular type,whose main symptom was constipation and fecal impactation. In the exploration was detect double rectal lumen (anterior and posterior) that it above initiates by of the anorectal ring with fibrous ulcer of fibrinoid aspect of 3 approx cm of length x 1 cm wide, at level of the septum that separates both rectal lumina. The rectal duplication is a rare pathology in the adult nevertheless is due to suspect before the existence of alterations in the mechanics of the defecation, rectal prolapse and rectal bleeding,the election treatment is a protectomy with colonic pouch in "J" and coloanal anastomosis.

  7. Birth and death of genes linked to chromosomal inversion

    Science.gov (United States)

    Furuta, Yoshikazu; Kawai, Mikihiko; Yahara, Koji; Takahashi, Noriko; Handa, Naofumi; Tsuru, Takeshi; Oshima, Kenshiro; Yoshida, Masaru; Azuma, Takeshi; Hattori, Masahira; Uchiyama, Ikuo; Kobayashi, Ichizo

    2011-01-01

    The birth and death of genes is central to adaptive evolution, yet the underlying genome dynamics remain elusive. The availability of closely related complete genome sequences helps to follow changes in gene contents and clarify their relationship to overall genome organization. Helicobacter pylori, bacteria in our stomach, are known for their extreme genome plasticity through mutation and recombination and will make a good target for such an analysis. In comparing their complete genome sequences, we found that gain and loss of genes (loci) for outer membrane proteins, which mediate host interaction, occurred at breakpoints of chromosomal inversions. Sequence comparison there revealed a unique mechanism of DNA duplication: DNA duplication associated with inversion. In this process, a DNA segment at one chromosomal locus is copied and inserted, in an inverted orientation, into a distant locus on the same chromosome, while the entire region between these two loci is also inverted. Recognition of this and three more inversion modes, which occur through reciprocal recombination between long or short sequence similarity or adjacent to a mobile element, allowed reconstruction of synteny evolution through inversion events in this species. These results will guide the interpretation of extensive DNA sequencing results for understanding long- and short-term genome evolution in various organisms and in cancer cells. PMID:21212362

  8. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution.

    Science.gov (United States)

    Guillén, Yolanda; Ruiz, Alfredo

    2012-02-01

    Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution.

  9. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution

    Directory of Open Access Journals (Sweden)

    Guillén Yolanda

    2012-02-01

    Full Text Available Abstract Background Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. Results In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. Conclusions D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution.

  10. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution

    Science.gov (United States)

    2012-01-01

    Background Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. Results In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. Conclusions D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution. PMID:22296923

  11. Effects of chemical and physical mutagens on the frequency of a large genetic duplication in Salmonella typhimurium. I

    International Nuclear Information System (INIS)

    Hoffman, G.R.; Morgan, R.W.

    1978-01-01

    In Salmonella typhimurium a simple selection has been described to detect bacteria that are merodiploid for almost one-third of the chromosome. The selective procedure is based upon improved utilization of L-malate as the sole carbon source in merodiploid strains. The spontaneous frequency of the duplication in haploid strains is approximately 10 -4 per cell plated. Following the exposure of a haploid strain to mutagenic agents, there is a dose-dependent increase in the duplication frequency above the spontaneous level. In this paper the authors describe the induction of genetic duplications in Salmonella typhimurium by X-rays, ultraviolet light (UV), ethyl methanesulfonate (EMS), nitrous acid, and the azaacridine half mustard, ICR-372. (Auth.)

  12. Gene Conversion in Angiosperm Genomes with an Emphasis on Genes Duplicated by Polyploidization

    Directory of Open Access Journals (Sweden)

    Xi-Yin Wang

    2011-01-01

    Full Text Available Angiosperm genomes differ from those of mammals by extensive and recursive polyploidizations. The resulting gene duplication provides opportunities both for genetic innovation, and for concerted evolution. Though most genes may escape conversion by their homologs, concerted evolution of duplicated genes can last for millions of years or longer after their origin. Indeed, paralogous genes on two rice chromosomes duplicated an estimated 60–70 million years ago have experienced gene conversion in the past 400,000 years. Gene conversion preserves similarity of paralogous genes, but appears to accelerate their divergence from orthologous genes in other species. The mutagenic nature of recombination coupled with the buffering effect provided by gene redundancy, may facilitate the evolution of novel alleles that confer functional innovations while insulating biological fitness of affected plants. A mixed evolutionary model, characterized by a primary birth-and-death process and occasional homoeologous recombination and gene conversion, may best explain the evolution of multigene families.

  13. Stabilization of a duplicated segment Dp (II-I) in an uvs mutant of Aspergillus nidulans through genetic mechanisms

    International Nuclear Information System (INIS)

    Castro Prado, M.A.A. de; Zucchi, T.M.A.

    1991-01-01

    This research presents an analysis of a mutant with a duplicated segment of chromosome II translocated to the paba-y interval of chromosome I. This insertion promotes alterations in the meiotic and mitotic behavior of the strain, mitotic instability, uvs character and deteriorated morphology. The uvs character is closely linked to the insertion point and was shown to be responsible for the mitotic instability. The removal of this mutation through recombination promotes the stabilization of the strain. (author)

  14. Duplication of 20p12.3 associated with familial Wolff-Parkinson-White syndrome.

    Science.gov (United States)

    Mills, Kimberly I; Anderson, Jacqueline; Levy, Philip T; Cole, F Sessions; Silva, Jennifer N A; Kulkarni, Shashikant; Shinawi, Marwan

    2013-01-01

    Wolff-Parkinson-White (WPW) syndrome is caused by preexcitation of the ventricular myocardium via an accessory pathway which increases the risk for paroxysmal supraventricular tachycardia. The condition is often sporadic and of unknown etiology in the majority of cases. Autosomal dominant inheritance and association with congenital heart defects or ventricular hypertrophy were described. Microdeletions of 20p12.3 have been associated with WPW syndrome with either cognitive dysfunction or Alagille syndrome. Here, we describe the association of 20p12.3 duplication with WPW syndrome in a patient who presented with non-immune hydrops. Her paternal uncle carries the duplication and has attention-deficit hyperactivity disorder and electrocardiographic findings consistent with WPW. The 769 kb duplication was detected by the Affymetrix Whole Genome-Human SNP Array 6.0 and encompasses two genes and the first two exons of a third gene. We discuss the potential role of the genes in the duplicated region in the pathogenesis of WPW and possible neurobehavioral abnormalities. Our data provide additional support for a significant role of 20p12.3 chromosomal rearrangements in the etiology of WPW syndrome. Copyright © 2012 Wiley Periodicals, Inc.

  15. A case report of Chinese brothers with inherited MECP2-containing duplication: autism and intellectual disability, but not seizures or respiratory infections.

    Science.gov (United States)

    Xu, Xiu; Xu, Qiong; Zhang, Ying; Zhang, Xiaodi; Cheng, Tianlin; Wu, Bingbing; Ding, Yanhua; Lu, Ping; Zheng, Jingjing; Zhang, Min; Qiu, Zilong; Yu, Xiang

    2012-08-21

    Autistic spectrum disorders (ASDs) are a family of neurodevelopmental disorders with strong genetic components. Recent studies have shown that copy number variations in dosage sensitive genes can contribute significantly to these disorders. One such gene is the transcription factor MECP2, whose loss of function in females results in Rett syndrome, while its duplication in males results in developmental delay and autism. Here, we identified a Chinese family with two brothers both inheriting a 2.2 Mb MECP2-containing duplication (151,369,305 - 153,589,577) from their mother. In addition, both brothers also had a 213.7 kb duplication on Chromosome 2, inherited from their father. The older brother also carried a 48.4 kb duplication on Chromosome 2 inherited from the mother, and a 8.2 kb deletion at 11q13.5 inherited from the father. Based on the published literature, MECP2 is the most autism-associated gene among the identified CNVs. Consistently, the boys displayed clinical features in common with other patients carrying MECP2 duplications, including intellectual disability, autism, lack of speech, slight hypotonia and unsteadiness of movement. They also had slight dysmorphic features including a depressed nose bridge, large ears and midface hypoplasia. Interestingly, they did not exhibit other clinical features commonly observed in American-European patients with MECP2 duplication, including recurrent respiratory infections and epilepsy. To our knowledge, this is the first identification and characterization of Chinese Han patients with MECP2-containing duplications. Further cases are required to determine if the above described clinical differences are due to individual variations or related to the genetic background of the patients.

  16. Duplication and relocation of the functional DPY19L2 gene within low copy repeats

    Directory of Open Access Journals (Sweden)

    Cheung Joseph

    2006-03-01

    Full Text Available Abstract Background Low copy repeats (LCRs are thought to play an important role in recent gene evolution, especially when they facilitate gene duplications. Duplicate genes are fundamental to adaptive evolution, providing substrates for the development of new or shared gene functions. Moreover, silencing of duplicate genes can have an indirect effect on adaptive evolution by causing genomic relocation of functional genes. These changes are theorized to have been a major factor in speciation. Results Here we present a novel example showing functional gene relocation within a LCR. We characterize the genomic structure and gene content of eight related LCRs on human Chromosomes 7 and 12. Two members of a novel transmembrane gene family, DPY19L, were identified in these regions, along with six transcribed pseudogenes. One of these genes, DPY19L2, is found on Chromosome 12 and is not syntenic with its mouse orthologue. Instead, the human locus syntenic to mouse Dpy19l2 contains a pseudogene, DPY19L2P1. This indicates that the ancestral copy of this gene has been silenced, while the descendant copy has remained active. Thus, the functional copy of this gene has been relocated to a new genomic locus. We then describe the expansion and evolution of the DPY19L gene family from a single gene found in invertebrate animals. Ancient duplications have led to multiple homologues in different lineages, with three in fish, frogs and birds and four in mammals. Conclusion Our results show that the DPY19L family has expanded throughout the vertebrate lineage and has undergone recent primate-specific evolution within LCRs.

  17. Radiological findings of male urethral duplication associated with bladder duplication: case report

    International Nuclear Information System (INIS)

    Kim, Hyoung Jung; Lim, Joo Won; Lee, Dong Ho; Ko, Young Tae

    2004-01-01

    Urethral duplication or accessory urethra is a rare congenital anomaly. Even rarer, is its association with bladder duplication. We report a case of urethral duplication associated with bladder duplication in a seven-year-old boy who underwent retrograde urethrography, sonography and magnetic resonance (MR) imaging. WhiIe retrograde urethrography can demonstrate the extent of the duplicated urethra, MR imaging and sonography can provide detailed information on the anatomy of the adjacent tissues as well as urethral duplication

  18. Signals of historical interlocus gene conversion in human segmental duplications.

    Directory of Open Access Journals (Sweden)

    Beth L Dumont

    Full Text Available Standard methods of DNA sequence analysis assume that sequences evolve independently, yet this assumption may not be appropriate for segmental duplications that exchange variants via interlocus gene conversion (IGC. Here, we use high quality multiple sequence alignments from well-annotated segmental duplications to systematically identify IGC signals in the human reference genome. Our analysis combines two complementary methods: (i a paralog quartet method that uses DNA sequence simulations to identify a statistical excess of sites consistent with inter-paralog exchange, and (ii the alignment-based method implemented in the GENECONV program. One-quarter (25.4% of the paralog families in our analysis harbor clear IGC signals by the quartet approach. Using GENECONV, we identify 1477 gene conversion tracks that cumulatively span 1.54 Mb of the genome. Our analyses confirm the previously reported high rates of IGC in subtelomeric regions and Y-chromosome palindromes, and identify multiple novel IGC hotspots, including the pregnancy specific glycoproteins and the neuroblastoma breakpoint gene families. Although the duplication history of a paralog family is described by a single tree, we show that IGC has introduced incredible site-to-site variation in the evolutionary relationships among paralogs in the human genome. Our findings indicate that IGC has left significant footprints in patterns of sequence diversity across segmental duplications in the human genome, out-pacing the contributions of single base mutation by orders of magnitude. Collectively, the IGC signals we report comprise a catalog that will provide a critical reference for interpreting observed patterns of DNA sequence variation across duplicated genomic regions, including targets of recent adaptive evolution in humans.

  19. Gene duplication and fragmentation in the zebra finch major histocompatibility complex.

    Science.gov (United States)

    Balakrishnan, Christopher N; Ekblom, Robert; Völker, Martin; Westerdahl, Helena; Godinez, Ricardo; Kotkiewicz, Holly; Burt, David W; Graves, Tina; Griffin, Darren K; Warren, Wesley C; Edwards, Scott V

    2010-04-01

    Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the

  20. Gene duplication and fragmentation in the zebra finch major histocompatibility complex

    Directory of Open Access Journals (Sweden)

    Burt David W

    2010-04-01

    Full Text Available Abstract Background Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving

  1. Genome-wide signatures of 'rearrangement hotspots' within segmental duplications in humans.

    Directory of Open Access Journals (Sweden)

    Mohammed Uddin

    Full Text Available The primary objective of this study was to create a genome-wide high resolution map (i.e., >100 bp of 'rearrangement hotspots' which can facilitate the identification of regions capable of mediating de novo deletions or duplications in humans. A hierarchical method was employed to fragment segmental duplications (SDs into multiple smaller SD units. Combining an end space free pairwise alignment algorithm with a 'seed and extend' approach, we have exhaustively searched 409 million alignments to detect complex structural rearrangements within the reference-guided assembly of the NA18507 human genome (18× coverage, including the previously identified novel 4.8 Mb sequence from de novo assembly within this genome. We have identified 1,963 rearrangement hotspots within SDs which encompass 166 genes and display an enrichment of duplicated gene nucleotide variants (DNVs. These regions are correlated with increased non-allelic homologous recombination (NAHR event frequency which presumably represents the origin of copy number variations (CNVs and pathogenic duplications/deletions. Analysis revealed that 20% of the detected hotspots are clustered within the proximal and distal SD breakpoints flanked by the pathogenic deletions/duplications that have been mapped for 24 NAHR-mediated genomic disorders. FISH Validation of selected complex regions revealed 94% concordance with in silico localization of the highly homologous derivatives. Other results from this study indicate that intra-chromosomal recombination is enhanced in genic compared with agenic duplicated regions, and that gene desert regions comprising SDs may represent reservoirs for creation of novel genes. The generation of genome-wide signatures of 'rearrangement hotspots', which likely serve as templates for NAHR, may provide a powerful approach towards understanding the underlying mutational mechanism(s for development of constitutional and acquired diseases.

  2. Casein kinase II is required for proper cell division and acts as a negative regulator of centrosome duplication in Caenorhabditis elegans embryos

    Directory of Open Access Journals (Sweden)

    Jeffrey C. Medley

    2017-01-01

    Full Text Available Centrosomes are the primary microtubule-organizing centers that orchestrate microtubule dynamics during the cell cycle. The correct number of centrosomes is pivotal for establishing bipolar mitotic spindles that ensure accurate segregation of chromosomes. Thus, centrioles must duplicate once per cell cycle, one daughter per mother centriole, the process of which requires highly coordinated actions among core factors and modulators. Protein phosphorylation is shown to regulate the stability, localization and activity of centrosome proteins. Here, we report the function of Casein kinase II (CK2 in early Caenorhabditis elegans embryos. The catalytic subunit (KIN-3/CK2α of CK2 localizes to nuclei, centrosomes and midbodies. Inactivating CK2 leads to cell division defects, including chromosome missegregation, cytokinesis failure and aberrant centrosome behavior. Furthermore, depletion or inhibiting kinase activity of CK2 results in elevated ZYG-1 levels at centrosomes, restoring centrosome duplication and embryonic viability to zyg-1 mutants. Our data suggest that CK2 functions in cell division and negatively regulates centrosome duplication in a kinase-dependent manner.

  3. Splitting the chromosome: cutting the ties that bind sister chromatids.

    Science.gov (United States)

    Nasmyth, K; Peters, J M; Uhlmann, F

    2001-01-01

    In eukaryotic cells, replicated DNA molecules remain physically connected from their synthesis in S phase until they are separated during anaphase. This phenomenon, called sister chromatid cohesion, is essential for the temporal separation of DNA replication and mitosis and for the equal separation of the duplicated genome. Recent work has identified a number of chromosomal proteins required for cohesion. In this review we discuss how these proteins may connect sister chromatids and how they are removed from chromosomes to allow sister chromatid separation at the onset of anaphase.

  4. Clinical, Cytogenetic, and Biochemical Analyses of a Family with a t(3;13(q26.2;p11.2: Further Delineation of 3q Duplication Syndrome

    Directory of Open Access Journals (Sweden)

    M. Abreu-González

    2013-01-01

    Full Text Available Chromosomal abnormalities that result in genomic imbalances are a major cause of congenital and developmental anomalies. Partial duplication of chromosome 3q syndrome is a well-described condition, and the phenotypic manifestations include a characteristic facies, microcephaly, hirsutism, synophrys, broad nasal bridge, congenital heart disease, genitourinary disorders, and mental retardation. Approximately 60%–75% of cases are derived from a balanced translocation. We describe a family with a pure typical partial trisomy 3q syndrome derived from a maternal balanced translocation t(3;13(q26.2;p11.2. As the chromosomal rearrangement involves the short arm of an acrocentric chromosome, the phenotype corresponds to a pure trisomy 3q26.2-qter syndrome. There are 4 affected individuals and several carriers among three generations. The report of this family is relevant because there are few cases of pure duplication 3q syndrome reported, and the cases described here contribute to define the phenotype associated with the syndrome. Furthermore, we confirmed that the survival until adulthood is possible. This report also identified the presence of glycosaminoglycans in urine in this family, not related to the chromosomal abnormality or the phenotype.

  5. A case report of Chinese brothers with inherited MECP2-containing duplication: autism and intellectual disability, but not seizures or respiratory infections

    Directory of Open Access Journals (Sweden)

    Xu Xiu

    2012-08-01

    Full Text Available Abstract Background Autistic spectrum disorders (ASDs are a family of neurodevelopmental disorders with strong genetic components. Recent studies have shown that copy number variations in dosage sensitive genes can contribute significantly to these disorders. One such gene is the transcription factor MECP2, whose loss of function in females results in Rett syndrome, while its duplication in males results in developmental delay and autism. Case presentation Here, we identified a Chinese family with two brothers both inheriting a 2.2 Mb MECP2-containing duplication (151,369,305 – 153,589,577 from their mother. In addition, both brothers also had a 213.7 kb duplication on Chromosome 2, inherited from their father. The older brother also carried a 48.4 kb duplication on Chromosome 2 inherited from the mother, and a 8.2 kb deletion at 11q13.5 inherited from the father. Based on the published literature, MECP2 is the most autism-associated gene among the identified CNVs. Consistently, the boys displayed clinical features in common with other patients carrying MECP2 duplications, including intellectual disability, autism, lack of speech, slight hypotonia and unsteadiness of movement. They also had slight dysmorphic features including a depressed nose bridge, large ears and midface hypoplasia. Interestingly, they did not exhibit other clinical features commonly observed in American-European patients with MECP2 duplication, including recurrent respiratory infections and epilepsy. Conclusions To our knowledge, this is the first identification and characterization of Chinese Han patients with MECP2-containing duplications. Further cases are required to determine if the above described clinical differences are due to individual variations or related to the genetic background of the patients.

  6. Duplication of 17(p11.2p11.2) in a male child with autism and severe language delay.

    Science.gov (United States)

    Nakamine, Alisa; Ouchanov, Leonid; Jiménez, Patricia; Manghi, Elina R; Esquivel, Marcela; Monge, Silvia; Fallas, Marietha; Burton, Barbara K; Szomju, Barbara; Elsea, Sarah H; Marshall, Christian R; Scherer, Stephen W; McInnes, L Alison

    2008-03-01

    Duplications of 17(p11.2p11.2) have been associated with various behavioral manifestations including attention deficits, obsessive-compulsive symptoms, autistic traits, and language delay. We are conducting a genetic study of autism and are screening all cases for submicroscopic chromosomal abnormalities, in addition to standard karyotyping, and fragile X testing. Using array-based comparative genomic hybridization analysis of data from the Affymetrix GeneChip(R) Human Mapping Array set, we detected a duplication of approximately 3.3 Mb on chromosome 17p11.2 in a male child with autism and severe expressive language delay. The duplication was confirmed by measuring the copy number of genomic DNA using quantitative polymerase chain reaction. Gene expression analyses revealed increased expression of three candidate genes for the Smith-Magenis neurobehavioral phenotype, RAI1, DRG2, and RASD1, in transformed lymphocytes from Case 81A, suggesting gene dosage effects. Our results add to a growing body of evidence suggesting that duplications of 17(p11.2p11.2) result in language delay as well as autism and related phenotypes. As Smith-Magenis syndrome is also associated with language delay, a gene involved in acquisition of language may lie within this interval. Whether a parent of origin effect, gender of the case, the presence of allelic variation, or changes in expression of genes outside the breakpoints influence the resultant phenotype remains to be determined. (c) 2007 Wiley-Liss, Inc.

  7. Chromatin Structure and Replication Origins: Determinants Of Chromosome Replication And Nuclear Organization

    Science.gov (United States)

    Smith, Owen K.; Aladjem, Mirit I.

    2014-01-01

    The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes on chromatin is illustrated by two recent sets of discoveries. First, chromatin-associated proteins that are not part of the core replication machinery were shown to affect the timing of DNA replication. These chromatin-associated proteins could be working in concert, or perhaps in competition, with the transcriptional machinery and with chromatin modifiers to determine the spatial and temporal organization of replication initiation events. Second, epigenetic interactions are mediated by DNA sequences that determine chromosomal replication. In this review we summarize recent findings and current models linking spatial and temporal regulation of the replication program with epigenetic signaling. We discuss these issues in the context of the genome’s three-dimensional structure with an emphasis on events occurring during the initiation of DNA replication. PMID:24905010

  8. Molecular cytogenetic characterization of mosaicism for a small supernumerary marker chromosome derived from chromosome 8 or r(8(::p12→q13.1:: associated with phenotypic abnormalities

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2016-12-01

    Conclusion: Mosaic sSMC(8 derived from r(8(::p12→q13.1:: can present phenotypic abnormalities. Chromosome 8q12 duplication syndrome should be included in differential diagnosis when an sSMC(8 contains 8q12.2 and CHD7.

  9. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Coleman

    2009-08-01

    Full Text Available The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani, is a member of a group of >50 species known as the "Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on >100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI. Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique

  10. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J.J.; Rounsley, S.D.; Rodriguez-Carres, M.; Kuo, A.; Wasmann, C.c.; Grimwood, J.; Schmutz, J.; Taga, M.; White, G.J.; Zhuo, S.; Schwartz, D.C.; Freitag, M.; Ma, L.-J.; Danchin, E.G.J.; Henrissat, B.; Cutinho, P.M.; Nelson, D.R.; Straney, D.; Napoli, C.A.; Baker, B.M.; Gribskov, M.; Rep, M.; Kroken, S.; Molnar, I.; Rensing, C.; Kennell, J.C.; Zamora, J.; Farman, M.L.; Selker, E.U.; Salamov, A.; Shapiro, H.; Pangilinan, J.; Lindquist, E.; Lamers, C.; Grigoriev, I.V.; Geiser, D.M.; Covert, S.F.; Temporini, S.; VanEtten, H.D.

    2009-04-20

    The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani), is a member of a group of .50 species known as the"Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on .100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique genes on

  11. Quantitative measurement of duplicated DNA as a diagnostic test for Charcot-Marie-Tooth disease type 1a

    NARCIS (Netherlands)

    Hensels, G. W.; Janssen, E. A.; Hoogendijk, J. E.; Valentijn, L. J.; Baas, F.; Bolhuis, P. A.

    1993-01-01

    Charcot-Marie-Tooth disease type 1 (CMT1) is a hereditary motor and sensory neuropathy. The autosomal dominant subtype is often linked with a large duplication on chromosome 17p11.2. The gene encoding the peripheral myelin protein PMP 22 (the critical gene in this subtype of CMT1) is located within

  12. Genes on B chromosomes: old questions revisited with new tools.

    Science.gov (United States)

    Banaei-Moghaddam, Ali M; Martis, Mihaela M; Macas, Jiří; Gundlach, Heidrun; Himmelbach, Axel; Altschmied, Lothar; Mayer, Klaus F X; Houben, Andreas

    2015-01-01

    B chromosomes are supernumerary dispensable parts of the karyotype which appear in some individuals of some populations in some species. Often, they have been considered as 'junk DNA' or genomic parasites without functional genes. Due to recent advances in sequencing technologies, it became possible to investigate their DNA composition, transcriptional activity and effects on the host transcriptome profile in detail. Here, we review the most recent findings regarding the gene content of B chromosomes and their transcriptional activities and discuss these findings in the context of comparable biological phenomena, like sex chromosomes, aneuploidy and pseudogenes. Recent data suggest that B chromosomes carry transcriptionally active genic sequences which could affect the transcriptome profile of their host genome. These findings are gradually changing our view that B chromosomes are solely genetically inert selfish elements without any functional genes. This at one side could partly explain the deleterious effects which are associated with their presence. On the other hand it makes B chromosome a nice model for studying regulatory mechanisms of duplicated genes and their evolutionary consequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. RevSex duplication-induced and sex-related differences in the SOX9 regulatory region chromatin landscape in human fibroblasts.

    Science.gov (United States)

    Lybæk, Helle; de Bruijn, Diederik; den Engelsman-van Dijk, Anke H A; Vanichkina, Darya; Nepal, Chirag; Brendehaug, Atle; Houge, Gunnar

    2014-03-01

    It was recently shown that duplications of the RevSex element, located 0.5 Mb upstream of SOX9, cause XX-disorder of sex development (DSD), and that deletions cause XY-DSD. To explore how a 148 kb RevSex duplication could have turned on gonadal SOX9 expression in the absence of SRY in an XX-male, we examined the chromatin landscape in primary skin fibroblast cultures from the index, his RevSex duplication-carrier father and six controls. The ENCODE project supports the notion that chromatin state maps show overlap between different cell types, i.e., that our study of fibroblasts could be of biological relevance. We examined the SOX9 regulatory region by high-resolution ChIP-on-chip experiments (a kind of "chromatin-CGH") and DNA methylation investigations. The RevSex duplication was associated with chromatin changes predicting better accessibility of the SRY-responsive TESCO enhancer region 14-15 kb upstream of SOX9. Four kb downstream of the TESCO evolutionary conserved region, a peak of the enhancer/promoter-associated H3K4me3 mark was found together with a major dip of the repressive H3K9me3 chromatin mark. Similar differences were also found when three control males were compared with three control females. A marked male/female difference was a more open chromatin signature in males starting ~400 kb upstream of SOX9 and increasing toward the SOX9 promoter. In the RevSex duplication-carrier father, two positions of DNA hypomethylation were also found, one corresponding to the H3K4me3 peak mentioned above. Our results suggest that the RevSex duplication could operate by inducing long-range epigenetic changes. Furthermore, the differences in chromatin state maps between males and females suggest that the Y chromosome or X chromosome dosage may affect chromatin conformation, i.e., that sex-dependent gene regulation may take place by chromatin modification.

  14. 4p16.3 microdeletions and microduplications detected by chromosomal microarray analysis: New insights into mechanisms and critical regions.

    Science.gov (United States)

    Bi, Weimin; Cheung, Sau-Wai; Breman, Amy M; Bacino, Carlos A

    2016-10-01

    Deletions in the 4p16.3 region cause Wolf-Hirschhorn syndrome, a well known contiguous microdeletion syndrome with the critical region for common phenotype mapped in WHSCR2. Recently, duplications in 4p16.3 were reported in three patients with developmental delay and dysmorphic features. Through chromosomal microarray analysis, we identified 156 patients with a deletion (n = 109) or duplication (n = 47) in 4p16.3 out of approximately 60,000 patients analyzed by Baylor Miraca Genetics Laboratories. Seventy-five of the postnatally detected deletions encompassed the entire critical region, 32 (43%) of which were associated with other chromosome rearrangements, including six patients (8%) that had a duplication adjacent to the terminal deletion. Our data indicate that Wolf-Hirschhorn syndrome deletions with an adjacent duplication occur at a higher frequency than previously appreciated. Pure deletions (n = 14) or duplications (n = 15) without other copy number changes distal to or inside the WHSCR2 were identified for mapping of critical regions. Our data suggest that deletion of the segment from 0.6 to 0.9 Mb from the terminus of 4p causes a seizure phenotype and duplications of a region distal to the previously defined smallest region of overlap for 4p16.3 microduplication syndrome are associated with neurodevelopmental problems. We detected seven Wolf-Hirschhorn syndrome deletions and one 4p16.3 duplication prenatally; all of the seven are either >8 Mb in size and/or associated with large duplications. In conclusion, our study provides deeper insight into the molecular mechanisms, the critical regions and effective prenatal diagnosis for 4p16.3 deletions/ duplications. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. A family of selfish minicircular chromosomes with jumbled chloroplast gene fragments from a dinoflagellate.

    Science.gov (United States)

    Zhang, Z; Cavalier-Smith, T; Green, B R

    2001-08-01

    Chloroplast genes of several dinoflagellate species are located on unigenic DNA minicircular chromosomes. We have now completely sequenced five aberrant minicircular chromosomes from the dinoflagellate Heterocapsa triquetra. These probably nonfunctional DNA circles lack complete genes, with each being composed of several short fragments of two or three different chloroplast genes and a common conserved region with a tripartite 9G-9A-9G core like the putative replicon origin of functional single-gene circular chloroplast chromosomes. Their sequences imply that all five circles evolved by differential deletions and duplications from common ancestral circles bearing fragments of four genes: psbA, psbC, 16S rRNA, and 23S rRNA. It appears that recombination between separate unigenic chromosomes initially gave intermediate heterodimers, which were subsequently stabilized by deletions that included part or all of one putative replicon origin. We suggest that homologous recombination at the 9G-9A-9G core regions produced a psbA/psbC heterodimer which generated two distinct chimeric circles by differential deletions and duplications. A 23S/16S rRNA heterodimer more likely formed by illegitimate recombination between 16S and 23S rRNA genes. Homologous recombination between the 9G-9A-9G core regions of both heterodimers and additional differential deletions and duplications could then have yielded the other three circles. Near identity of the gene fragments and 9G-9A-9G cores, despite diverging adjacent regions, may be maintained by gene conversion. The conserved organization of the 9G-9A-9G cores alone favors the idea that they are replicon origins and suggests that they may enable the aberrant minicircles to parasitize the chloroplast's replication machinery as selfish circles.

  16. Clonal evolution through loss of chromosomes and subsequent polyploidization in chondrosarcoma.

    Directory of Open Access Journals (Sweden)

    Linda Olsson

    Full Text Available Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events.

  17. Clonal evolution through loss of chromosomes and subsequent polyploidization in chondrosarcoma.

    Science.gov (United States)

    Olsson, Linda; Paulsson, Kajsa; Bovée, Judith V M G; Nord, Karolin H

    2011-01-01

    Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP) array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events.

  18. Neuropeptide Y receptor genes on human chromosome 4q31-q32 map to conserved linkage groups on mouse chromosomes 3 and 8

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, C.M.; Frankel, W.N. [Jackson Lab., Bar Harbor, ME (United States); Richards, J.E. [Univ. of Michigan Medical School, Ann Arbor, MI (United States)] [and others

    1997-05-01

    Npy1r and Npy2r, the genes encoding mouse type 1 and type 2 neuropeptide Y receptors, have been mapped by interspecific backcross analysis. Previous studies have localized the human genes encoding these receptors to chromosome 4q31-q32. We have now assigned Npy1r and Npy2r to conserved linkage groups on mouse Chr 8 and Chr 3, respectively, which correspond to the distal region of human chromosome 4q. Using yeast artificial chromosomes, we have estimated the distance between the human genes to be approximately 6 cM. Although ancient tandem duplication events may account for some closely spaced G-protein-coupled receptor genes, the large genetic distance between the human type 1 and type 2 neuropeptide Y receptor genes raises questions about whether this mechanism accounts for their proximity. 20 refs., 1 fig.

  19. Charcot-Marie-Tooth disease type 1A: morphological phenotype of the 17p duplication versus PMP22 point mutations

    NARCIS (Netherlands)

    Gabreëls-Festen, A. A.; Bolhuis, P. A.; Hoogendijk, J. E.; Valentijn, L. J.; Eshuis, E. J.; Gabreëls, F. J.

    1995-01-01

    Charcot-Marie-Tooth disease type 1A (CMT1A) or hereditary motor and sensory neuropathy type Ia (HMSN type Ia) is an autosomal dominant demyelinating polyneuropathy, which may result from duplications as large as 1.5 Mb on chromosome 17p 11.2-p12 encompassing the gene for the peripheral myelin

  20. A 380-kb Duplication in 7p22.3 Encompassing the LFNG Gene in a Boy with Asperger Syndrome

    NARCIS (Netherlands)

    Vulto-van Silfhout, A.T.; de Brouwer, A.F.; de Leeuw, N.; Obihara, C.C.; Brunner, H.G.; Vries, L.B.A. de

    2012-01-01

    De novo genomic aberrations are considered an important cause of autism spectrum disorders. We describe a de novo 380-kb gain in band p22.3 of chromosome 7 in a patient with Asperger syndrome. This duplicated region contains 9 genes including the LNFG gene that is an important regulator of NOTCH

  1. Duplication and Loss of Function of Genes Encoding RNA Polymerase III Subunit C4 Causes Hybrid Incompatibility in Rice

    Directory of Open Access Journals (Sweden)

    Giao Ngoc Nguyen

    2017-08-01

    Full Text Available Reproductive barriers are commonly observed in both animals and plants, in which they maintain species integrity and contribute to speciation. This report shows that a combination of loss-of-function alleles at two duplicated loci, DUPLICATED GAMETOPHYTIC STERILITY 1 (DGS1 on chromosome 4 and DGS2 on chromosome 7, causes pollen sterility in hybrid progeny derived from an interspecific cross between cultivated rice, Oryza sativa, and an Asian annual wild rice, O. nivara. Male gametes carrying the DGS1 allele from O. nivara (DGS1-nivaras and the DGS2 allele from O. sativa (DGS2-T65s were sterile, but female gametes carrying the same genotype were fertile. We isolated the causal gene, which encodes a protein homologous to DNA-dependent RNA polymerase (RNAP III subunit C4 (RPC4. RPC4 facilitates the transcription of 5S rRNAs and tRNAs. The loss-of-function alleles at DGS1-nivaras and DGS2-T65s were caused by weak or nonexpression of RPC4 and an absence of RPC4, respectively. Phylogenetic analysis demonstrated that gene duplication of RPC4 at DGS1 and DGS2 was a recent event that occurred after divergence of the ancestral population of Oryza from other Poaceae or during diversification of AA-genome species.

  2. A Tandem Duplicate of Anti-Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia, Oreochromis niloticus

    Science.gov (United States)

    Li, Minghui; Sun, Yunlv; Zhao, Jiue; Shi, Hongjuan; Zeng, Sheng; Ye, Kai; Jiang, Dongneng; Zhou, Linyan; Sun, Lina; Tao, Wenjing; Nagahama, Yoshitaka; Kocher, Thomas D.; Wang, Deshou

    2015-01-01

    Variation in the TGF-β signaling pathway is emerging as an important mechanism by which gonadal sex determination is controlled in teleosts. Here we show that amhy, a Y-specific duplicate of the anti-Müllerian hormone (amh) gene, induces male sex determination in Nile tilapia. amhy is a tandem duplicate located immediately downstream of amhΔ-y on the Y chromosome. The coding sequence of amhy was identical to the X-linked amh (amh) except a missense SNP (C/T) which changes an amino acid (Ser/Leu92) in the N-terminal region. amhy lacks 5608 bp of promoter sequence that is found in the X-linked amh homolog. The amhΔ-y contains several insertions and deletions in the promoter region, and even a 5 bp insertion in exonVI that results in a premature stop codon and thus a truncated protein product lacking the TGF-β binding domain. Both amhy and amhΔ-y expression is restricted to XY gonads from 5 days after hatching (dah) onwards. CRISPR/Cas9 knockout of amhy in XY fish resulted in male to female sex reversal, while mutation of amhΔ-y alone could not. In contrast, overexpression of Amhy in XX fish, using a fosmid transgene that carries the amhy/amhΔ-y haplotype or a vector containing amhy ORF under the control of CMV promoter, resulted in female to male sex reversal, while overexpression of AmhΔ-y alone in XX fish could not. Knockout of the anti-Müllerian hormone receptor type II (amhrII) in XY fish also resulted in 100% complete male to female sex reversal. Taken together, these results strongly suggest that the duplicated amhy with a missense SNP is the candidate sex determining gene and amhy/amhrII signal is essential for male sex determination in Nile tilapia. These findings highlight the conserved roles of TGF-β signaling pathway in fish sex determination. PMID:26588702

  3. Array comparative genomic hybridization analysis of a familial duplication of chromosome 13q: A recognizable syndrome

    NARCIS (Netherlands)

    Mathijssen, Inge B.; Hoovers, Jan M. N.; Mul, Adri N. P. M.; Man, Hai-Yen; Ket, Jan L.; Hennekam, Raoul C. M.

    2005-01-01

    We report on a family with six persons in three generations who have mild mental retardation, behavioral problems, seizures, hearing loss, strabismus, dental anomalies, hypermobility, juvenile hallux valgus, and mild dysmorphic features. Classical cytogenetic analysis showed a partial duplication of

  4. First case of a vermiform appendix duplication type A volvulus: A very rare cause of acute abdomen

    Directory of Open Access Journals (Sweden)

    Gustavo H. Peniche González

    2015-09-01

    Full Text Available The duplication of the vermiform appendix is a rare anatomical variant. Most of the cases reported with symptomatology of appendicitis and the finding of a duplication of vermiform appendix. A seven year old female, with abdominal septic shock, plain abdominal radiography with distended transverse intestinal loop with air-fluid levels and absence of air in distal colon and rectal ampula. Emergency laparotomy was performed finding a blind loop with secondary necrosis volvulus, with the torsion being at the base of the duplication, connected at the middle portion of the vermiform appendix; desvolvulus and resection was performed in a block fashion with Parker-Kerr technique using a 4-0 polyglactin suture. There are 100 cases of duplication of appendix reported worldwide. In our case, a duplication of the vermiform appendix type A was presented, shown by the surgical findings and corroborated by pathology samples of intestinal tissue featuring smooth muscle tissue and transmural necrosis and fibrinopurulent exudate in serous.

  5. Chromosomal instability can be induced by the formation of breakage-prone chromosome rearrangement junctions

    International Nuclear Information System (INIS)

    Allen, R.N.; Ritter, L.; Moore, S.R.; Grosovsky, A.J.

    2003-01-01

    Full text: Studies in our lab have led to the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in chromosomal instability acting predominantly in cis. For example, specific breakage of large blocks of centromeric region heterochromatin on chromosome 16q by treatment with 2,6-diaminopurine (DAP) is associated with repeated rearrangement of chromosome 16q during outgrowth of DAP-treated clones, thereby establishing a link between the initial site of damage and the occurrence of persistent chromosomal instability. Similarly, karyotypic analysis of gamma ray induced instability demonstrated that chromosomal rearrangements in sub-clones were significantly clustered near the site of previously identified chromosomal rearrangement junctions in unstable parental clones. This study investigates the hypothesis that integration of transfected sequences into host chromosomes could create breakage-prone junction regions and persistent genomic instability without exposure to DNA-damage agents. These junctions may mimic the unstable chromosomal rearrangements induced by DAP or radiation, and thus provide a test of the broader hypothesis that instability can to some extent be attributed to the formation of novel chromosomal breakage hot spots. These experiments were performed using human-hamster hybrid AL cells containing a single human chromosome 11, which was used to monitor instability in a chromosomal painting assay. AL cells were transfected with a 2.5 Kb fragment containing multiple copies of the 180 bp human alpha heterochromatic repeat, which resulted in chromosomal instability in 41% of the transfected clones. Parallel exposure to gamma-radiation resulted in a similar level of chromosomal instability, although control transfections with plasmid alone did not lead to karyotypic instability. Chromosomal instability induced by integration of alpha heterochromatic repeats was also frequently associated with delayed reproductive

  6. Duplicate editorial on duplicate publication.

    Science.gov (United States)

    Corson, Stephen L; Decherney, Alan H

    2005-04-01

    The authors define and discuss the various forms taken by duplicate publications, and provide suggested remedies to help authors, editors, reviewers, and readers avoid this form of internal plagiarism.

  7. Neurodevelopmental and neurobehavioral characteristics in males and females with CDKL5 duplications.

    Science.gov (United States)

    Szafranski, Przemyslaw; Golla, Sailaja; Jin, Weihong; Fang, Ping; Hixson, Patricia; Matalon, Reuben; Kinney, Daniel; Bock, Hans-Georg; Craigen, William; Smith, Janice L; Bi, Weimin; Patel, Ankita; Wai Cheung, Sau; Bacino, Carlos A; Stankiewicz, Paweł

    2015-07-01

    Point mutations and genomic deletions of the CDKL5 (STK9) gene on chromosome Xp22 have been reported in patients with severe neurodevelopmental abnormalities, including Rett-like disorders. To date, only larger-sized (8-21 Mb) duplications harboring CDKL5 have been described. We report seven females and four males from seven unrelated families with CDKL5 duplications 540-935 kb in size. Three families of different ethnicities had identical 667kb duplications containing only the shorter CDKL5 isoform. Four affected boys, 8-14 years of age, and three affected girls, 6-8 years of age, manifested autistic behavior, developmental delay, language impairment, and hyperactivity. Of note, two boys and one girl had macrocephaly. Two carrier mothers of the affected boys reported a history of problems with learning and mathematics while at school. None of the patients had epilepsy. Similarly to CDKL5 mutations and deletions, the X-inactivation pattern in all six studied females was random. We hypothesize that the increased dosage of CDKL5 might have affected interactions of this kinase with its substrates, leading to perturbation of synaptic plasticity and learning, and resulting in autistic behavior, developmental and speech delay, hyperactivity, and macrocephaly.

  8. Duplication of SOX9 is not a common cause of 46,XX testicular or 46,XX ovotesticular DSD.

    Science.gov (United States)

    Seeherunvong, Tossaporn; Ukarapong, Supamit; McElreavey, Kenneth; Berkovitz, Gary D; Perera, Erasmo M

    2012-01-01

    Translocation of the SRY gene to the paternal X chromosome is the explanation for testis development in the majority of subjects with 46,XX testicular disorder of sexual development (DSD). However, nearly all subjects with 46,XX ovotesticular DSD and up to one third of subjects with 46,XX testicular DSD lack SRY. SRY-independent expression of SOX9 has been implicated in the etiology of testis development in some individuals. We amplified microsatellite markers in the region of SOX9 from a cohort of 30 subjects with either 46,XX testicular or 46,XX ovotesticular DSD to detect SOX9 duplications. Duplication of the SOX9 region in 17q was not detected in any subject. Duplication in the region of 17q that contains SOX9 is not a common cause of testis development in subjects with SRY-negative 46,XX testicular or ovotesticular DSD.

  9. Minimum description length block finder, a method to identify haplotype blocks and to compare the strength of block boundaries.

    Science.gov (United States)

    Mannila, H; Koivisto, M; Perola, M; Varilo, T; Hennah, W; Ekelund, J; Lukk, M; Peltonen, L; Ukkonen, E

    2003-07-01

    We describe a new probabilistic method for finding haplotype blocks that is based on the use of the minimum description length (MDL) principle. We give a rigorous definition of the quality of a segmentation of a genomic region into blocks and describe a dynamic programming algorithm for finding the optimal segmentation with respect to this measure. We also describe a method for finding the probability of a block boundary for each pair of adjacent markers: this gives a tool for evaluating the significance of each block boundary. We have applied the method to the published data of Daly and colleagues. The results expose some problems that exist in the current methods for the evaluation of the significance of predicted block boundaries. Our method, MDL block finder, can be used to compare block borders in different sample sets, and we demonstrate this by applying the MDL-based method to define the block structure in chromosomes from population isolates.

  10. SAS-6 assembly templated by the lumen of cartwheel-less centrioles precedes centriole duplication.

    Science.gov (United States)

    Fong, Chii Shyang; Kim, Minhee; Yang, T Tony; Liao, Jung-Chi; Tsou, Meng-Fu Bryan

    2014-07-28

    Centrioles are 9-fold symmetric structures duplicating once per cell cycle. Duplication involves self-oligomerization of the centriolar protein SAS-6, but how the 9-fold symmetry is invariantly established remains unclear. Here, we found that SAS-6 assembly can be shaped by preexisting (or mother) centrioles. During S phase, SAS-6 molecules are first recruited to the proximal lumen of the mother centriole, adopting a cartwheel-like organization through interactions with the luminal wall, rather than via their self-oligomerization activity. The removal or release of luminal SAS-6 requires Plk4 and the cartwheel protein STIL. Abolishing either the recruitment or the removal of luminal SAS-6 hinders SAS-6 (or centriole) assembly at the outside wall of mother centrioles. After duplication, the lumen of engaged mother centrioles becomes inaccessible to SAS-6, correlating with a block for reduplication. These results lead to a proposed model that centrioles may duplicate via a template-based process to preserve their geometry and copy number. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Comprehensive review of the duplication 3q syndrome and report of a patient with Currarino syndrome and de novo duplication 3q26.32-q27.2.

    Science.gov (United States)

    Dworschak, G C; Crétolle, C; Hilger, A; Engels, H; Korsch, E; Reutter, H; Ludwig, M

    2017-05-01

    Partial duplications of the long arm of chromosome 3, dup(3q), are a rare but well-described condition, sharing features of Cornelia de Lange syndrome. Around two thirds of cases are derived from unbalanced translocations, whereas pure dup(3q) have rarely been reported. Here, we provide an extensive review of the literature on dup(3q). This search revealed several patients with caudal malformations and anomalies, suggesting that caudal malformations or anomalies represent an inherent phenotypic feature of dup(3q). In this context, we report a patient with a pure de novo duplication 3q26.32-q27.2. The patient had the clinical diagnosis of Currarino syndrome (CS) (characterized by the triad of sacral anomalies, anorectal malformations and a presacral mass) and additional features, frequently detected in patients with a dup(3q). Mutations within the MNX1 gene were found to be causative in CS but no MNX1 mutation could be detected in our patient. Our comprehensive search for candidate genes located in the critical region of the duplication 3q syndrome, 3q26.3-q27, revealed a so far neglected phenotypic overlap of dup(3q) and the Pierpont syndrome, associated with a mutation of the TBL1XR1 gene on 3q26.32. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Duplication in DNA Sequences

    Science.gov (United States)

    Ito, Masami; Kari, Lila; Kincaid, Zachary; Seki, Shinnosuke

    The duplication and repeat-deletion operations are the basis of a formal language theoretic model of errors that can occur during DNA replication. During DNA replication, subsequences of a strand of DNA may be copied several times (resulting in duplications) or skipped (resulting in repeat-deletions). As formal language operations, iterated duplication and repeat-deletion of words and languages have been well studied in the literature. However, little is known about single-step duplications and repeat-deletions. In this paper, we investigate several properties of these operations, including closure properties of language families in the Chomsky hierarchy and equations involving these operations. We also make progress toward a characterization of regular languages that are generated by duplicating a regular language.

  13. Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders.

    Directory of Open Access Journals (Sweden)

    Anthony R Isles

    2016-05-01

    Full Text Available Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS region have been associated with developmental delay (DD, autism spectrum disorder (ASD and schizophrenia (SZ. Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA, but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15 or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of

  14. Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders

    Science.gov (United States)

    Isles, Anthony R.; Ingason, Andrés; Lowther, Chelsea; Gawlick, Micha; Stöber, Gerald; Potter, Harry; Georgieva, Lyudmila; Pizzo, Lucilla; Ozaki, Norio; Kushima, Itaru; Ikeda, Masashi; Iwata, Nakao; Levinson, Douglas F.; Gejman, Pablo V.; Shi, Jianxin; Sanders, Alan R.; Duan, Jubao; Sisodiya, Sanjay; Costain, Gregory; Degenhardt, Franziska; Giegling, Ina; Rujescu, Dan; Hreidarsson, Stefan J.; Saemundsen, Evald; Ahn, Joo Wook; Ogilvie, Caroline; Stefansson, Hreinn; Stefansson, Kari; O’Donovan, Michael C.; Owen, Michael J.; Bassett, Anne; Kirov, George

    2016-01-01

    Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally

  15. Nested Inversion Polymorphisms Predispose Chromosome 22q11.2 to Meiotic Rearrangements.

    Science.gov (United States)

    Demaerel, Wolfram; Hestand, Matthew S; Vergaelen, Elfi; Swillen, Ann; López-Sánchez, Marcos; Pérez-Jurado, Luis A; McDonald-McGinn, Donna M; Zackai, Elaine; Emanuel, Beverly S; Morrow, Bernice E; Breckpot, Jeroen; Devriendt, Koenraad; Vermeesch, Joris R

    2017-10-05

    Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have been uncovered as of yet. Using fiber-FISH, we demonstrate that parents transmitting the de novo 3 Mb LCR22A-D 22q11.2 deletion, the reciprocal duplication, and the smaller 1.5 Mb LCR22A-B 22q11.2 deletion carry inversions of LCR22B-D or LCR22C-D. Hence, the inversions predispose chromosome 22q11.2 to meiotic rearrangements and increase the individual risk for transmitting rearrangements. Interestingly, the inversions are nested or flanking rather than coinciding with the deletion or duplication sizes. This finding raises the possibility that inversions are a prerequisite not only for 22q11.2 rearrangements but also for all NAHR-mediated genomic disorders. Copyright © 2017. Published by Elsevier Inc.

  16. Male infertility associated with de novo pericentric inversion of chromosome 1.

    Science.gov (United States)

    Balasar, Özgür; Zamani, Ayşe Gül; Balasar, Mehmet; Acar, Hasan

    2017-12-01

    Inversion occurs after two breaks in a chromosome have happened and the segment rotates 180° before reinserting. Inversion carriers have produced abnormal gametes if there is an odd number crossing- over between the inverted and the normal homologous chromosomes causing a duplication or deletion. Reproductive risks such as infertility, abortion, stillbirth and birth of malformed child would be expected in that case. A 54-year- old male patient was consulted to our clinic for primary infertility. The routine chromosome study were applied using peripheral blood lymphocyte cultures and analyzed by giemsa-trypsin-giemsa (GTG) banding, and centromer banding (C-banding) stains. Y chromosome microdeletions in the azoospermia factor (AZF) regions were analyzed with polymerase chain reaction. Additional test such as fluorescence in situ hybridization (FISH) was used to detect the sex-determining region of the Y chromosome (SRY). Semen analysis showed azoospermia. A large pericentric inversion of chromosome 1 46,XY, inv(1) (p22q32) was found in routine chromosome analysis. No microdeletions were seen in AZF regions. In our patient the presence of SRY region was observed by using FISH technique with SRY-specific probe. Men who have pericentric inversion of chromosome 1, appear to be at risk for infertility brought about by spermatogenic breakdown. The etiopathogenic relationship between azoospermia and pericentric inversion of chromosome 1 is discussed.

  17. Characterization of the past and current duplication activities in the human 22q11.2 region

    Directory of Open Access Journals (Sweden)

    Morrow Bernice

    2011-01-01

    Full Text Available Abstract Background Segmental duplications (SDs on 22q11.2 (LCR22, serve as substrates for meiotic non-allelic homologous recombination (NAHR events resulting in several clinically significant genomic disorders. Results To understand the duplication activity leading to the complicated SD structure of this region, we have applied the A-Bruijn graph algorithm to decompose the 22q11.2 SDs to 523 fundamental duplication sequences, termed subunits. Cross-species syntenic analysis of primate genomes demonstrates that many of these LCR22 subunits emerged very recently, especially those implicated in human genomic disorders. Some subunits have expanded more actively than others, and young Alu SINEs, are associated much more frequently with duplicated sequences that have undergone active expansion, confirming their role in mediating recombination events. Many copy number variations (CNVs exist on 22q11.2, some flanked by SDs. Interestingly, two chromosome breakpoints for 13 CNVs (mean length 65 kb are located in paralogous subunits, providing direct evidence that SD subunits could contribute to CNV formation. Sequence analysis of PACs or BACs identified extra CNVs, specifically, 10 insertions and 18 deletions within 22q11.2; four were more than 10 kb in size and most contained young AluYs at their breakpoints. Conclusions Our study indicates that AluYs are implicated in the past and current duplication events, and moreover suggests that DNA rearrangements in 22q11.2 genomic disorders perhaps do not occur randomly but involve both actively expanded duplication subunits and Alu elements.

  18. Hydrocortisone Increases the Vinblastine-Induced Chromosomal Damages in L929 Cells Investigated by the Micronucleus Assay on Cytokinesis-Blocked Binucleated Cells

    Directory of Open Access Journals (Sweden)

    Tahere Ebrahimipour

    2017-03-01

    Full Text Available Background: Stress may cause damages to DNA or/and change the ability of the cells to overcome these damages. It may also cause irregularities in the cell cycle and induce abnormal cell divisions through glucocorticoid-dependent functions. The abnormal cell divisions, in turn, lead to chromosomal mal-segregation and aneuploidy. In this study, the effects of the stress hormone, hydrocortisone (HYD, were investigated on the induced chromosomal abnormalities by vinblastine (VIN during cell cycle in L929 cells. Methods: This work was performed in winter 2013 at Department of Biology, University of Ferdowsi, Mashhad, Iran. Cultured cells were divided into different groups including control, VIN-treated, HYD treated and VIN+HYD co-treated cells. The induced chromosomal damages were investigated by micronucleus assay in cytokinesis-blocked binucleated cells. Results: Although HYD by itself did not increase the micronuclei (Mn frequency, co-treatment of cells with VIN and HYD led to significant increase (P<0.05 in the frequency of Mn in comparison to control and VIN treated groups. Conclusion: Cells treated with stress hormone are more sensitive to damages induced by VIN. Therefore, stress may not directly result in genetic instability, it can increase the harmful effects associated with other genotoxic agents.

  19. Chromosomal instability in women with primary ovarian insufficiency.

    Science.gov (United States)

    Katari, Sunita; Aarabi, Mahmoud; Kintigh, Angela; Mann, Susan; Yatsenko, Svetlana A; Sanfilippo, Joseph S; Zeleznik, Anthony J; Rajkovic, Aleksandar

    2018-02-07

    What is the prevalence of somatic chromosomal instability among women with idiopathic primary ovarian insufficiency (POI)? A subset of women with idiopathic POI may have functional impairment in DNA repair leading to chromosomal instability in their soma. The formation and repair of DNA double-strand breaks during meiotic recombination are fundamental processes of gametogenesis. Oocytes with compromised DNA integrity are susceptible to apoptosis which could trigger premature ovarian aging and accelerated wastage of the human follicle reserve. Genomewide association studies, as well as whole exome sequencing, have implicated multiple genes involved in DNA damage repair. However, the prevalence of defective DNA damage repair in the soma of women with POI is unknown. In total, 46 women with POI and 15 family members were evaluated for excessive mitomycin-C (MMC)-induced chromosome breakage. Healthy fertile females (n = 20) and two lymphoblastoid cell lines served as negative and as positive controls, respectively. We performed a pilot functional study utilizing MMC to assess chromosomal instability in the peripheral blood of participants. A high-resolution array comparative genomic hybridization (aCGH) was performed on 16 POI patients to identify copy number variations (CNVs) for a set of 341 targeted genes implicated in DNA repair. Array CGH revealed three POI patients (3/16, 18.8%) with pathogenic CNVs. Excessive chromosomal breakage suggestive of a constitutional deficiency in DNA repair was detected in one POI patient with the 16p12.3 duplication. In two patients with negative chromosome breakage analysis, aCGH detected a Xq28 deletion comprising the Centrin EF-hand Protein 2 (CETN2) and HAUS Augmin Like Complex Subunit 7 (HAUS7) genes essential for meiotic DNA repair, and a duplication in the 3p22.2 region comprising a part of the ATPase domain of the MutL Homolog 1 (MLH1) gene. Peripheral lymphocytes, used as a surrogate tissue to quantify induced chromosome

  20. A new case of Beckwith-Wiedemann syndrome with an 11p15 duplication of paternal origin [46,XY,-21,+der(21), t(11;21)(p15.2;q22.3)pat].

    Science.gov (United States)

    Krajewska-Walasek, M; Gutkowska, A; Mospinek-Krasnopolska, M; Chrzanowska, K

    1996-01-01

    We present a new case of 11p15 duplication (trisomy 11p15) in a boy (46,XY,-21,+der(21), t(11;21)(p15.2;q22.3)] suffering from Beckwith-Wiedemann syndrome (BWS), whose phenotypically normal father carries a balanced translocation between chromosomes 11 and 21[46,XY, t(11;21)(p15.2;q22.3)]. The paternal grandmother has the same balanced translocation and is also clinically normal. BWS was suspected when the boy was 6 months old because of gigantism, macroglossia, visceromegaly, ear lobe creases and abdominal distention. Apart from the characteristic BWS phenotype, the boy has other features which are almost exclusively observed in 11p trisomy (high forehead with frontal upsweep of hair, wide central nose bridge, slightly beaked nose, chubby cheeks and severe mental retardation). So far, at least eight cases of 11p15 duplication have been described as patients with BWS. In six of these, the duplication was due to inheritance of a translocated or rearranged paternal chromosome. This was also the case in our patient. In the two other previously published cases, the 11p15 duplications were de novo, but in one of these, DNA analysis has subsequently shown that the duplication was of paternal origin. We discuss our observations in relation to the above-mentioned previous cases of 11p15 duplication and the possible role of genomic imprinting in the etiology of BWS.

  1. Characterization of a de novo duplication of 11p14----p13, using fluorescent in situ hybridization and southern hybridization

    NARCIS (Netherlands)

    Speleman, F.; Mannens, M.; Redeker, B.; Vercruyssen, M.; van Oostveldt, P.; Leroy, J.; Slater, R.

    1991-01-01

    A de novo 11p+ chromosome was found in a child with mild mental retardation but no other remarkable dysmorphic characteristics. Banding studies suggested a duplication of regions 11p13 and 11p14 or regions 11p14 and 11p15. Using fluorescent in situ hybridization and digital imaging microscopy, we

  2. Meiotic UV-sensitive mutant that causes deletion of duplications in neurospora

    International Nuclear Information System (INIS)

    Newmeyer, D.; Galeazzi, D.R.

    1978-01-01

    The meiotic-3 (mei-3) mutant of Neurospora crassa has several effects: (1) when homozygous, it almost completely blocks meiosis and ascospore formation, (2) it is sensitive to uv, (3) its growth is inhibited by histidine, and (4) it increases the instability of nontandem duplications. This was shown for duplications produced by five different rearrangements and was demonstrated by two different criteria. The effects on meiosis and duplication instability are expressed strongly at 25 0 ; the effects on sensitivity to uv and to histidine are expressed strongly at 38.5 0 but only slightly at 25 0 . Nevertheless, all four effects were shown to be due to a single gene. Mei-3 is not allelic with previously reported uv-sensitive mutants. Two other results were obtained that are not necessarily due to mei-3: (1) a cross involving mei-3 produced a new unlinked meiotic mutant, mei-4, which is not sensitive to uv or histidine, and (2) a burst of several new mutants occurred in a different mei-3 stock, including a partial revertant to mei-3. Mei-3 has previously been shown to cause frequent complete loss of a terminal duplicate segment, beginning exactly at the original rearrangement breakpoint. Possible mechanisms are discussed by which a uv-sensitive mutant could cause such precise deletions

  3. Meiotic Studies on Combinations of Chromosomes With Different Sized Centromeres in Maize

    Directory of Open Access Journals (Sweden)

    Fangpu Han

    2018-06-01

    Full Text Available Multiple centromere misdivision derivatives of a translocation between the supernumerary B chromosome and the short arm of chromosome 9 (TB-9Sb permit investigation of how centromeres of different sizes behave in meiosis in opposition or in competition with each other. In the first analysis, heterozygotes were produced between the normal TB-9Sb and derivatives of it that resulted from centromere misdivision that reduced the amounts of centromeric DNA. These heterozygotes could test whether these drastic differences would result in meiotic drive of the larger chromosome in female meiosis. Cytological determinations of the segregation of large and small centromeres among thousands of progeny of four combinations were made. The recovery of the larger centromere was at a few percent higher frequency in two of four combinations. However, examination of phosphorylated histone H2A-Thr133, a characteristic of active centromeres, showed a lack of correlation with the size of the centromeric DNA, suggesting an expansion of the basal protein features of the kinetochore in two of the three cases despite the reduction in the size of the underlying DNA. In the second analysis, plants containing different sizes of the B chromosome centromere were crossed to plants with TB-9Sb with a foldback duplication of 9S (TB-9Sb-Dp9. In the progeny, plants containing large and small versions of the B chromosome centromere were selected by FISH. A meiotic “tug of war” occurred in hybrid combinations by recombination between the normal 9S and the foldback duplication in those cases in which pairing occurred. Such pairing and recombination produce anaphase I bridges but in some cases the large and small centromeres progressed to the same pole. In one combination, new dicentric chromosomes were found in the progeny. Collectively, the results indicate that the size of the underlying DNA of a centromere does not dramatically affect its segregation properties or its ability

  4. 4p16.1-p15.31 duplication and 4p terminal deletion in a 3-years old Chinese girl: Array-CGH, genotype-phenotype and neurological characterization.

    Science.gov (United States)

    Piccione, Maria; Salzano, Emanuela; Vecchio, Davide; Ferrara, Dante; Malacarne, Michela; Pierluigi, Mauro; Ferrara, Ines; Corsello, Giovanni

    2015-07-01

    Microscopically chromosome rearrangements of the short arm of chromosome 4 include the two known clinical entities: partial trisomy 4p and deletions of the Wolf-Hirschhorn critical regions 1 and 2 (WHSCR-1 and WHSCR-2, respectively), which cause cranio-facial anomalies, congenital malformations and developmental delay/intellectual disability. We report on clinical findings detected in a Chinese patient with a de novo 4p16.1-p15.32 duplication in association with a subtle 4p terminal deletion of 6 Mb in size. This unusual chromosome imbalance resulted in WHS classical phenotype, while clinical manifestations of 4p trisomy were practically absent. This observation suggests the hypothesis that haploinsufficiency of sensitive dosage genes with regulatory function placed in WHS critical region, is more pathogenic than concomitant 4p duplicated segment. Additionally clinical findings in our patient confirm a variable penetrance of major malformations and neurological features in Chinese children despite of WHS critical region's deletion. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  5. Chromosome 15q overgrowth syndrome: Prenatal diagnosis, molecular cytogenetic characterization, and perinatal findings in a fetus with dup(15(q26.2q26.3

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2011-09-01

    Conclusion: The present case provides evidence for prenatal overgrowth, craniosynostosis, and characteristic facial dysmorphism in association with a duplication of 15q26.2→q26.3 and a duplication of the IGF1R gene. Prenatal diagnosis of fetal overgrowth should include a differential diagnosis of the chromosome 15q overgrowth syndrome.

  6. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa

    2010-01-01

    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  7. Facial duplication: case, review, and embryogenesis.

    Science.gov (United States)

    Barr, M

    1982-04-01

    The craniofacial anatomy of an infant with facial duplication is described. There were four eyes, two noses, two maxillae, and one mandible. Anterior to the single pituitary the brain was duplicated and there was bilateral arhinencephaly. Portions of the brain were extruded into a large frontal encephalocele. Cases of symmetrical facial duplication reported in the literature range from two complete faces on a single head (diprosopus) to simple nasal duplication. The variety of patterns of duplication suggests that the doubling of facial components arises in several different ways: Forking of the notochord, duplication of the prosencephalon, duplication of the olfactory placodes, and duplication of maxillary and/or mandibular growth centers around the margins of the stomatodeal plate. Among reported cases, the female:male ratio is 2:1.

  8. Salmonid Chromosome Evolution as Revealed by a Novel Method for Comparing RADseq Linkage Maps

    Science.gov (United States)

    Gosselin, Thierry; Normandeau, Eric; Lamothe, Manuel; Isabel, Nathalie; Audet, Céline; Bernatchez, Louis

    2016-01-01

    Whole genome duplication (WGD) can provide material for evolutionary innovation. Family Salmonidae is ideal for studying the effects of WGD as the ancestral salmonid underwent WGD relatively recently, ∼65 Ma, then rediploidized and diversified. Extensive synteny between homologous chromosome arms occurs in extant salmonids, but each species has both conserved and unique chromosome arm fusions and fissions. Assembly of large, outbred eukaryotic genomes can be difficult, but structural rearrangements within such taxa can be investigated using linkage maps. RAD sequencing provides unprecedented ability to generate high-density linkage maps for nonmodel species, but can result in low numbers of homologous markers between species due to phylogenetic distance or differences in library preparation. Here, we generate a high-density linkage map (3,826 markers) for the Salvelinus genera (Brook Charr S. fontinalis), and then identify corresponding chromosome arms among the other available salmonid high-density linkage maps, including six species of Oncorhynchus, and one species for each of Salmo, Coregonus, and the nonduplicated sister group for the salmonids, Northern Pike Esox lucius for identifying post-duplicated homeologs. To facilitate this process, we developed MapComp to identify identical and proximate (i.e. nearby) markers between linkage maps using a reference genome of a related species as an intermediate, increasing the number of comparable markers between linkage maps by 5-fold. This enabled a characterization of the most likely history of retained chromosomal rearrangements post-WGD, and several conserved chromosomal inversions. Analyses of RADseq-based linkage maps from other taxa will also benefit from MapComp, available at: https://github.com/enormandeau/mapcomp/ PMID:28173098

  9. Most ultraviolet irradiation induced mutations in the nematode Caenorhabditis elegans are chromosomal rearrangements

    International Nuclear Information System (INIS)

    Stewart, H.I.; Rosenbluth, R.E.; Baillie, D.L.

    1991-01-01

    In this study the utility of 254-nm ultraviolet light (UV) as a magnetic tool in C.elegans is determined. It is demonstrated that irradiation of adult hermaphrodites provides a simple method for the induction of heritable chromosomal rearrangements. A screening protocol was employed that identifies either recessive lethal mutations in the 40 map unit region balanced by the translocation eT1(III;V), or unc-36(III) duplications. Mutations were recovered in 3% of the chromosomes screened after a dose of 120 J/m 2 . This rate resembles that for 1500 R γ-ray-induced mutations selected in a similar manner. The mutations were classified either as lethals [mapping to Linkage Group (LG)III or LGV] or as putative unc-36 duplications. In contrast to the majority of UV-induced mutations analysed in micro-organisms, a large fraction of the C.elegans UV-induced mutations were found to be not simple intragenic lesions, but deficiencies for more than one adjacent gene or more complex events. Preliminary evidence for this conclusion came from the high frequency of mutations that had a dominant effect causing reduced numbers of adult progeny. Subsequently 6 out of 9 analysed LGV mutations were found to be deficiencies. Other specific rearrangements also identified were: one translocation, sT5(II;III), and two unc-36 duplications, sDp8 and sDp9. It was concluded that UV irradiation can easily be used as an additional tool for the analysis of C.elegans chromosomes, and that C.elegans should prove to be a useful organism in which to study the mechanisms whereby UV acts as a mutagen in cells of complex eukaryotes. (author). 46 refs.; 5 figs.; 4 tabs

  10. De novo unbalanced translocation (4p duplication/8p deletion) in a patient with autism, OCD, and overgrowth syndrome.

    Science.gov (United States)

    Sagar, Angela; Pinto, Dalila; Najjar, Fedra; Guter, Stephen J; Macmillan, Carol; Cook, Edwin H

    2017-06-01

    Chromosomal abnormalities, such as unbalanced translocations and copy number variants (CNVs), are found in autism spectrum disorders (ASDs) [Sanders et al. (2011) Neuron 70: 863-885]. Many chromosomal abnormalities, including sub microscopic genomic deletions and duplications, are missed by G-banded karyotyping or Fragile X screening alone and are picked up by chromosomal microarrays [Shen et al. (2010) Pediatrics 125: e727-735]. Translocations involving chromosomes 4 and 8 are possibly the second most frequent translocation in humans and are often undetected in routine cytogenetics [Giglio et al. (2002) Circulation 102: 432-437]. Deletions of 4p16 have been associated with Wolf-Hirschhorn syndrome while 4p16 duplications have been associated with an overgrowth syndrome and mild to moderate mental retardation [Partington et al. (1997) Journal of Medical Genetics 34: 719-728]. The 8p23.3 region contains the autism candidate gene DLGAP2, which can contribute to autism when disrupted [Marshall et al. (2008) The American Journal of Human Genetics 82: 477-488] . There has been a case report of a family with autism spectrum disorder (ASD), prominent obsessional behavior, and overgrowth in patients with der (8) t (4;8) p (16;23) [Partington et al. (1997)]. This is an independent report of a male patient with autism, obsessive compulsive disorder (OCD), attention-deficit hyperactivity disorder (ADHD), and an overgrowth syndrome, whose de novo unbalanced translocation der (8) t (4;8) p (16.1→ter; 23.1→ter) was initially missed by routine cytogenetics but detected with SNP microarray, allowing higher resolution of translocation breakpoints. © 2017 Wiley Periodicals, Inc.

  11. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    Science.gov (United States)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  12. Telomere maintenance through recruitment of internal genomic regions.

    Science.gov (United States)

    Seo, Beomseok; Kim, Chuna; Hills, Mark; Sung, Sanghyun; Kim, Hyesook; Kim, Eunkyeong; Lim, Daisy S; Oh, Hyun-Seok; Choi, Rachael Mi Jung; Chun, Jongsik; Shim, Jaegal; Lee, Junho

    2015-09-18

    Cells surviving crisis are often tumorigenic and their telomeres are commonly maintained through the reactivation of telomerase. However, surviving cells occasionally activate a recombination-based mechanism called alternative lengthening of telomeres (ALT). Here we establish stably maintained survivors in telomerase-deleted Caenorhabditis elegans that escape from sterility by activating ALT. ALT survivors trans-duplicate an internal genomic region, which is already cis-duplicated to chromosome ends, across the telomeres of all chromosomes. These 'Template for ALT' (TALT) regions consist of a block of genomic DNA flanked by telomere-like sequences, and are different between two genetic background. We establish a model that an ancestral duplication of a donor TALT region to a proximal telomere region forms a genomic reservoir ready to be incorporated into telomeres on ALT activation.

  13. Search for copy number variants in chromosomes 15q11-q13 and 22q11.2 in obsessive compulsive disorder

    Directory of Open Access Journals (Sweden)

    Grabe Hans

    2010-06-01

    Full Text Available Abstract Background Obsessive-compulsive disorder (OCD is a clinically and etiologically heterogeneous syndrome. The high frequency of obsessive-compulsive symptoms reported in subjects with the 22q11.2 deletion syndrome (DiGeorge/velocardiofacial syndrome or Prader-Willi syndrome (15q11-13 deletion of the paternally derived chromosome, suggests that gene dosage effects in these chromosomal regions could increase risk for OCD. Therefore, the aim of this study was to search for microrearrangements in these two regions in OCD patients. Methods We screened the 15q11-13 and 22q11.2 chromosomal regions for genomic imbalances in 236 patients with OCD using multiplex ligation-dependent probe amplification (MLPA. Results No deletions or duplications involving 15q11-13 or 22q11.2 were identified in our patients. Conclusions Our results suggest that deletions/duplications of chromosomes 15q11-13 and 22q11.2 are rare in OCD. Despite the negative findings in these two regions, the search for copy number variants in OCD using genome-wide array-based methods is a highly promising approach to identify genes of etiologic importance in the development of OCD.

  14. Chromosomal abnormalities in amenorrhea: a retrospective study and review of 637 patients in South India.

    Science.gov (United States)

    Dutta, Usha R; Ponnala, Rajitha; Pidugu, Vijaya Kumar; Dalal, Ashwin B

    2013-05-01

    The aim of the present study was to investigate the chromosomal abnormalities and to identify the most prevalent or frequent type of chromosomal abnormalities in cases of amenorrhea from the southern region of India. A total of 637 cases with amenorrhea were analyzed using G- banding, C-banding, Silver staining, and fluorescence in situ hybridization was done wherever necessary. Out of the 637 cases involved in our study, 132 abnormalities were detected. The incidence of chromosomal abnormalities in cases with primary and secondary amenorrhea was around 20.7 %. In addition to the numerical anomalies, various structural aberrations of the X chromosome like deletions, isochromosomes, duplications, ring chromosome, and also male karyotype were detected. Review of the literature and overall incidence of chromosomal abnormalities in patients with amenorrhea suggests the need for cytogenetic analysis to be performed in all the cases referred for amenorrhea with or without short stature. Precise identification of chromosomal abnormalities helps in confirming the provisional diagnosis; it helps the secondary amenorrhea patients in assisted reproduction and to understand the clinical heterogeneity involved and in efficient genetic counseling.

  15. Rectal duplication with sciatic hernia.

    Science.gov (United States)

    Nosek, Marzena; Golonka, Anna; Kalińska-Lipert, Anita; Nachulewicz, Paweł

    2015-07-01

    Rectal duplications represent 5% of all duplications in the alimentary tract, and they are very rarely diagnosed during the neonatal period. The authors present the method of investigation and the results of surgical treatment of a full-term neonate with a sciatic hernia containing a rectal duplication. The procedure started with three-port laparoscopy, but excision of the tubular duplication of the rectum was possible only by a transanal endorectal pull-through approach. The sciatic hernia was closed, and plastic sutures on the buttock finished the procedure. The coincidence of sciatic hernia with rectal duplication is extremely rare, and the method of treatment depends exclusively on the anatomical conditions.

  16. Craniofacial duplication: a case report.

    Science.gov (United States)

    Suryawanshi, Pradeep; Deshpande, Mandar; Verma, Nitin; Mahendrakar, Vivek; Mahendrakar, Sandhya

    2013-09-01

    A craniofacial duplication or diprosopus is an unusual variant of conjoined twinning. The reported incidence is one in 180,000-15 million births and 35 cases have been reported till date. The phenotype is wide, with the partial duplication of a few facial structures to complete dicephalus. A complete duplication is associated with a high incidence of anomalies in the central nervous system, cardiovascular system, gastrointestinal system and the respiratory system, whereas no major anomalies are found in the infants with a partial duplication. A term baby with the features of a craniofacial duplication has been described, with the proposed theories on embryogenesis and a brief review of the literature.

  17. Evaluation of contrast in duplicated radiographs

    International Nuclear Information System (INIS)

    Thunthy, K.H.; Weinberg, R.

    1982-01-01

    This investigation evaluated changes in the contrast of duplicated radiographs made at different ultraviolet light exposures. Increasing ultraviolet light exposure had different effects on the duplicates of originals of different background densities. When correctly exposed, a duplicate radiograph enhanced contrast. When originals had the same contrast but different background densities, their duplicates did not have the same contrast. It was not possible to duplicate accurately all the different contrasts measured on an original. It was possible, however, to produce duplicates with all contrasts greater than those of the original

  18. A paternally transmitted complex chromosomal rearrangement (CCR) involving chromosomes 2, 6, and 18 includes eight breakpoints and five insertional translocations (ITs) through three generations.

    Science.gov (United States)

    Gruchy, Nicolas; Barreau, Morgane; Kessler, Ketty; Gourdier, Dominique; Leporrier, Nathalie

    2010-01-01

    Complex chromosomal rearrangements (CCRs) are uncommon and mainly occur de novo. We report here on a familial CCR involving chromosomes 2, 6, and 18. The propositus is a boy first referred because of growth delays, hypotonia, and facial anomalies, suggestive of deletion 18q syndrome. However, a cytogenetic family study disclosed a balanced CCR in three generations, which was detailed by FISH using BAC clones, and consisted of eight breakpoints with five insertional translocations (ITs). The propositus had a cryptic 18q deletion and a 6p duplication. Paternal transmission of this CCR was observed through three generations without meiotic recombination. Our investigation allowed us to provide porosities counseling and management of prenatal diagnosis for propositus cousin who carries this particular CCR.

  19. Two siblings with alternate unbalanced recombinants derived from a large cryptic maternal pericentric inversion of chromosome 20.

    Science.gov (United States)

    Descipio, Cheryl; Morrissette, Jennifer D; Conlin, Laura K; Clark, Dinah; Kaur, Maninder; Coplan, James; Riethman, Harold; Spinner, Nancy B; Krantz, Ian D

    2010-02-01

    Two brothers, with dissimilar clinical features, were each found to have different abnormalities of chromosome 20 by subtelomere fluorescence in situ hybridization (FISH). The proband had deletion of 20p subtelomere and duplication of 20q subtelomere, while his brother was found to have a duplication of 20p subtelomere and deletion of 20q subtelomere. Parental cytogenetic studies were initially thought to be normal, both by G-banding and by subtelomere FISH analysis. Since chromosome 20 is a metacentric chromosome and an inversion was suspected, we used anchored FISH to assist in identifying a possible inversion. This approach employed concomitant hybridization of a FISH probe to the short (p) arm of chromosome 20 with the 20q subtelomere probe. We identified a cytogenetically non-visible, mosaic pericentric inversion of one of the maternal chromosome 20 homologs, providing a mechanistic explanation for the chromosomal abnormalities present in these brothers. Array comparative genomic hybridization (CGH) with both a custom-made BAC and cosmid-based subtelomere specific array (TEL array) and a commercially available SNP-based array confirmed and further characterized these rearrangements, identifying this as the largest pericentric inversion of chromosome 20 described to date. TEL array data indicate that the 20p breakpoint is defined by BAC RP11-978M13, approximately 900 kb from the pter; SNP array data reveal this breakpoint to occur within BAC RP11-978M13. The 20q breakpoint is defined by BAC RP11-93B14, approximately 1.7 Mb from the qter, by TEL array; SNP array data refine this breakpoint to within a gap between BACs on the TEL array (i.e., between RP11-93B14 and proximal BAC RP11-765G16). Copyright 2010 Wiley-Liss, Inc.

  20. A patient with de-novo partial deletion of Xp (p11.4-pter) and partial duplication of 22q (q11.2-qter).

    Science.gov (United States)

    Armour, Christine M; McGowan-Jordan, Jean; Lawrence, Sarah E; Bouchard, Amélie; Basik, Mark; Allanson, Judith E

    2008-01-01

    We report on a girl with partial deletion of Xp and partial duplication of 22q. Family studies demonstrate that both the patient's mother and her nonidentical twin sister carry the corresponding balanced translocation; 46,X,t(X;22)(p11.4;q11.2). This girl has developmental delay, microcephaly, mild dysmorphisms and hearing loss but otherwise shows few of the features described in individuals with duplications of the long arm of chromosome 22. She does manifest characteristics, such as short stature and biochemical evidence of ovarian failure, which are seen in partial or complete Xp deletions and Turner's syndrome.

  1. Complete colonic duplication in children.

    Science.gov (United States)

    Khaleghnejad Tabari, Ahmad; Mirshemirani, Alireza; Khaleghnejad Tabari, Nasibeh

    2012-01-01

    Complete colonic duplication is a very rare congenital anomaly that may have different presentations according to its location and size. Complete colonic duplication can occur in 15% of gastrointestinal duplication. We report two cases of complete colonic duplications, and their characteristics. We present two patients with complete colonic duplication with different types and presentations. Case 1: A 2- year old boy presented to the clinic with abdominal protrusion, difficulty to defecate, chronic constipation and mucosal prolaps covered bulging (rectocele) since he was 6 months old. The patient had palpable pelvic mass with doughy consistency. Rectal exam confirmed perirectal mass with soft consistency. The patient underwent a surgical operation that had total tubular colorectal duplication with one blind end and was treated with simple fenestration of distal end, and was discharged without complication. After two years follow up, he had normal defecation and good weight gain. Case 2: A 2 -day old infant was referred with imperforate anus and complete duplication of recto-sigmoid colon, diphallus, double bladder, and hypospadiasis. After clinical and paraclinical investigations, he underwent operations in several stages in different periods, and was discharged without complications. After four years follow up, he led a normal life. The patients with complete duplication have to be examined carefully because of the high incidence of other systemic anomalies. Treatment includes simple resection of distal common wall, fenestration, and repair other associated anomalies.

  2. Comparative Genomic Hybridization (CGH) reveals a neo-X chromosome and biased gene movement in stalk-eyed flies (genus Teleopsis).

    Science.gov (United States)

    Baker, Richard H; Wilkinson, Gerald S

    2010-09-16

    Chromosomal location has a significant effect on the evolutionary dynamics of genes involved in sexual dimorphism, impacting both the pattern of sex-specific gene expression and the rate of duplication and protein evolution for these genes. For nearly all non-model organisms, however, knowledge of chromosomal gene content is minimal and difficult to obtain on a genomic scale. In this study, we utilized Comparative Genomic Hybridization (CGH), using probes designed from EST sequence, to identify genes located on the X chromosome of four species in the stalk-eyed fly genus Teleopsis. Analysis of log(2) ratio values of female-to-male hybridization intensities from the CGH microarrays for over 3,400 genes reveals a strongly bimodal distribution that clearly differentiates autosomal from X-linked genes for all four species. Genotyping of 33 and linkage mapping of 28 of these genes in Teleopsis dalmanni indicate the CGH results correctly identified chromosomal location in all cases. Syntenic comparison with Drosophila indicates that 90% of the X-linked genes in Teleopsis are homologous to genes located on chromosome 2L in Drosophila melanogaster, suggesting the formation of a nearly complete neo-X chromosome from Muller element B in the dipteran lineage leading to Teleopsis. Analysis of gene movement both relative to Drosophila and within Teleopsis indicates that gene movement is significantly associated with 1) rates of protein evolution, 2) the pattern of gene duplication, and 3) the evolution of eyespan sexual dimorphism. Overall, this study reveals that diopsids are a critical group for understanding the evolution of sex chromosomes within Diptera. In addition, we demonstrate that CGH is a useful technique for identifying chromosomal sex-linkage and should be applicable to other organisms with EST or partial genomic information.

  3. Comparative Genomic Hybridization (CGH reveals a neo-X chromosome and biased gene movement in stalk-eyed flies (genus Teleopsis.

    Directory of Open Access Journals (Sweden)

    Richard H Baker

    2010-09-01

    Full Text Available Chromosomal location has a significant effect on the evolutionary dynamics of genes involved in sexual dimorphism, impacting both the pattern of sex-specific gene expression and the rate of duplication and protein evolution for these genes. For nearly all non-model organisms, however, knowledge of chromosomal gene content is minimal and difficult to obtain on a genomic scale. In this study, we utilized Comparative Genomic Hybridization (CGH, using probes designed from EST sequence, to identify genes located on the X chromosome of four species in the stalk-eyed fly genus Teleopsis. Analysis of log(2 ratio values of female-to-male hybridization intensities from the CGH microarrays for over 3,400 genes reveals a strongly bimodal distribution that clearly differentiates autosomal from X-linked genes for all four species. Genotyping of 33 and linkage mapping of 28 of these genes in Teleopsis dalmanni indicate the CGH results correctly identified chromosomal location in all cases. Syntenic comparison with Drosophila indicates that 90% of the X-linked genes in Teleopsis are homologous to genes located on chromosome 2L in Drosophila melanogaster, suggesting the formation of a nearly complete neo-X chromosome from Muller element B in the dipteran lineage leading to Teleopsis. Analysis of gene movement both relative to Drosophila and within Teleopsis indicates that gene movement is significantly associated with 1 rates of protein evolution, 2 the pattern of gene duplication, and 3 the evolution of eyespan sexual dimorphism. Overall, this study reveals that diopsids are a critical group for understanding the evolution of sex chromosomes within Diptera. In addition, we demonstrate that CGH is a useful technique for identifying chromosomal sex-linkage and should be applicable to other organisms with EST or partial genomic information.

  4. Hypertension and Biliary Ductopenia in a Patient with Duplication of Exon 6 of the Gene

    Directory of Open Access Journals (Sweden)

    J. Uberos

    2012-01-01

    Full Text Available We describe a neonatal patient with biliary ductopenia featuring duplication of exon 6 of the JAG1 gene. Facial alterations were observed, consisting of a prominent forehead, sunken eyes, upward slanting palpebral fissures, hypertelorism, flat nasal root and prominent chin. From birth, these were accompanied by the development of haematuria and renal failure and by renal Doppler findings indicative of peripheral renal artery stenosis. JAG1 gene mutations on chromosome 20 have been associated with various anomalies, including biliary cholestasis, vertebral abnormalities, eye disorders, heart defects and facial dysmorphia. This syndrome, first described by Alagille, is an infrequent congenital disorder caused by a dominant autosomal inheritance with variable expressivity. Anatomopathological effects include the destruction and disappearance of hepatic bile ducts (ductopenia. The duplication of exon 6 of JAG1 has not previously been described as an alteration related to the Alagille syndrome with peripheral renal artery stenosis.

  5. Oligonucleotide PIK3CA/Chromosome 3 Dual in Situ Hybridization Automated Assay with Improved Signals, One-Hour Hybridization, and No Use of Blocking DNA.

    Science.gov (United States)

    Zhang, Wenjun; Hubbard, Antony; Baca-Parkinson, Leslie; Stanislaw, Stacey; Vladich, Frank; Robida, Mark D; Grille, James G; Maxwell, Daniel; Tsao, Tsu-Shuen; Carroll, William; Gardner, Tracie; Clements, June; Singh, Shalini; Tang, Lei

    2015-09-01

    The PIK3CA gene at chromosome 3q26.32 was found to be amplified in up to 45% of patients with squamous cell carcinoma of the lung. The strong correlation between PIK3CA amplification and increased phosphatidylinositol 3-kinase (PI3K) pathway activities suggested that PIK3CA gene copy number is a potential predictive biomarker for PI3K inhibitors. Currently, all microscopic assessments of PIK3CA and chromosome 3 (CHR3) copy numbers use fluorescence in situ hybridization. PIK3CA probes are derived from bacterial artificial chromosomes whereas CHR3 probes are derived mainly from the plasmid pHS05. These manual fluorescence in situ hybridization assays mandate 12- to 18-hour hybridization and use of blocking DNA from human sources. Moreover, fluorescence in situ hybridization studies provide limited morphologic assessment and suffer from signal decay. We developed an oligonucleotide-based bright-field in situ hybridization assay that overcomes these shortcomings. This assay requires only a 1-hour hybridization with no need for blocking DNA followed by indirect chromogenic detection. Oligonucleotide probes produced discrete and uniform CHR3 stains superior to those from the pHS05 plasmid. This assay achieved successful staining in 100% of the 195 lung squamous cell carcinoma resections and in 94% of the 33 fine-needle aspirates. This robust automated bright-field dual in situ hybridization assay for the simultaneous detection of PIK3CA and CHR3 centromere provides a potential clinical diagnostic method to assess PIK3CA gene abnormality in lung tumors. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. Is there a yet unreported unbalanced chromosomal abnormality without phenotypic consequences in proximal 4p?

    Science.gov (United States)

    Liehr, T; Bartels, I; Zoll, B; Ewers, E; Mrasek, K; Kosyakova, N; Merkas, M; Hamid, A B; von Eggeling, F; Posorski, N; Weise, A

    2011-01-01

    Unbalanced chromosomal abnormalities (UBCA) are reported for >50 euchromatic regions of almost all human autosomes. UBCA are comprised of a few megabases of DNA, and carriers are in many cases clinically healthy. Here we report on a partial trisomy of chromosome 4 of the centromere-near region of the short arm of chromosome 4 present as a small supernumerary marker chromosome (sSMC). The sSMC was present in >70% of amnion cells and in 60% of placenta. Further delineation of the size of the duplicated region was done by molecular cytogenetics and array comparative genomic hybridization. Even though the sSMC lead to a partial trisomy of ~9 megabase pairs, a healthy child was born, developing normally at 1 year of age. No comparable cases are available in the literature. Thus, we discuss here the possibility of having found a yet unrecognized chromosomal region subject to UBCA. Copyright © 2010 S. Karger AG, Basel.

  7. Shaping the landscape of the Escherichia coli chromosome: replication-transcription encounters in cells with an ectopic replication origin

    DEFF Research Database (Denmark)

    Ivanova, Darja; Taylor, Toni; Smith, Sarah L

    2015-01-01

    Each cell division requires the unwinding of millions of DNA base pairs to allow chromosome duplication and gene transcription. As DNA replication and transcription share the same template, conflicts between both processes are unavoidable and head-on collisions are thought to be particularly...

  8. Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing’s syndrome

    Science.gov (United States)

    Lecoq, Anne-Lise; Stratakis, Constantine A.; Viengchareun, Say; Chaligné, Ronan; Tosca, Lucie; Hage, Mirella; Berthon, Annabel; Faucz, Fabio R.; Hanna, Patrick; Boyer, Hadrien-Gaël; Servant, Nicolas; Salenave, Sylvie; Tachdjian, Gérard; Adam, Clovis; Benhamo, Vanessa; Clauser, Eric; Guiochon-Mantel, Anne; Young, Jacques; Lombès, Marc; Bourdeau, Isabelle; Maiter, Dominique; Tabarin, Antoine; Bertherat, Jérôme; Lefebvre, Hervé; Louiset, Estelle; Lacroix, André; Bouligand, Jérôme; Kamenický, Peter

    2017-01-01

    GIP-dependent Cushing’s syndrome is caused by ectopic expression of glucose-dependent insulinotropic polypeptide receptor (GIPR) in cortisol-producing adrenal adenomas or in bilateral macronodular adrenal hyperplasias. Molecular mechanisms leading to ectopic GIPR expression in adrenal tissue are not known. Here we performed molecular analyses on adrenocortical adenomas and bilateral macronodular adrenal hyperplasias obtained from 14 patients with GIP-dependent adrenal Cushing’s syndrome and one patient with GIP-dependent aldosteronism. GIPR expression in all adenoma and hyperplasia samples occurred through transcriptional activation of a single allele of the GIPR gene. While no abnormality was detected in proximal GIPR promoter methylation, we identified somatic duplications in chromosome region 19q13.32 containing the GIPR locus in the adrenocortical lesions derived from 3 patients. In 2 adenoma samples, the duplicated 19q13.32 region was rearranged with other chromosome regions, whereas a single tissue sample with hyperplasia had a 19q duplication only. We demonstrated that juxtaposition with cis-acting regulatory sequences such as glucocorticoid response elements in the newly identified genomic environment drives abnormal expression of the translocated GIPR allele in adenoma cells. Altogether, our results provide insight into the molecular pathogenesis of GIP-dependent Cushing’s syndrome, occurring through monoallelic transcriptional activation of GIPR driven in some adrenal lesions by structural variations. PMID:28931750

  9. [Analysis of genetics mechanism for the phenotypic diversity in a patient carrying a rare ring chromosome 9].

    Science.gov (United States)

    Qin, Shengfang; Wang, Xueyan; Li, Yunxing; Wei, Ping; Chen, Chun; Zeng, Lan

    2016-02-01

    To explore the genetics mechanism for the phenotypic variability in a patient carrying a rare ring chromosome 9. The karyotype of the patient was analyzed with cytogenetics method. Presence of sex chromosome was confirmed with fluorescence in situ hybridization. The SRY gene was subjected to PCR amplification and direct sequencing. Potential deletion and duplication were detected with array-based comparative genomic hybridization (array-CGH). The karyotype of the patient has comprised 6 types of cell lines containing a ring chromosome 9. The SRY gene sequence was normal. By array-CGH, the patient has carried a hemizygous deletion at 9p24.3-p23 (174 201-9 721 761) encompassing 30 genes from Online Mendelian Inheritance in Man. The phenotypic variability of the 9p deletion syndrome in conjunct with ring chromosome 9 may be attributable to multiple factors including loss of chromosomal material, insufficient dosage of genes, instability of ring chromosome, and pattern of inheritance.

  10. Chromosome mapping of dragline silk genes in the genomes of widow spiders (Araneae, Theridiidae.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhao

    Full Text Available With its incredible strength and toughness, spider dragline silk is widely lauded for its impressive material properties. Dragline silk is composed of two structural proteins, MaSp1 and MaSp2, which are encoded by members of the spidroin gene family. While previous studies have characterized the genes that encode the constituent proteins of spider silks, nothing is known about the physical location of these genes. We determined karyotypes and sex chromosome organization for the widow spiders, Latrodectus hesperus and L. geometricus (Araneae, Theridiidae. We then used fluorescence in situ hybridization to map the genomic locations of the genes for the silk proteins that compose the remarkable spider dragline. These genes included three loci for the MaSp1 protein and the single locus for the MaSp2 protein. In addition, we mapped a MaSp1 pseudogene. All the MaSp1 gene copies and pseudogene localized to a single chromosomal region while MaSp2 was located on a different chromosome of L. hesperus. Using probes derived from L. hesperus, we comparatively mapped all three MaSp1 loci to a single region of a L. geometricus chromosome. As with L. hesperus, MaSp2 was found on a separate L. geometricus chromosome, thus again unlinked to the MaSp1 loci. These results indicate orthology of the corresponding chromosomal regions in the two widow genomes. Moreover, the occurrence of multiple MaSp1 loci in a conserved gene cluster across species suggests that MaSp1 proliferated by tandem duplication in a common ancestor of L. geometricus and L. hesperus. Unequal crossover events during recombination could have given rise to the gene copies and could also maintain sequence similarity among gene copies over time. Further comparative mapping with taxa of increasing divergence from Latrodectus will pinpoint when the MaSp1 duplication events occurred and the phylogenetic distribution of silk gene linkage patterns.

  11. Intermittency as a universal characteristic of the complete chromosome DNA sequences of eukaryotes: From protozoa to human genomes

    Science.gov (United States)

    Rybalko, S.; Larionov, S.; Poptsova, M.; Loskutov, A.

    2011-10-01

    Large-scale dynamical properties of complete chromosome DNA sequences of eukaryotes are considered. Using the proposed deterministic models with intermittency and symbolic dynamics we describe a wide spectrum of large-scale patterns inherent in these sequences, such as segmental duplications, tandem repeats, and other complex sequence structures. It is shown that the recently discovered gene number balance on the strands is not of a random nature, and certain subsystems of a complete chromosome DNA sequence exhibit the properties of deterministic chaos.

  12. Genome landscape and evolutionary plasticity of chromosomes in malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Ai Xia

    2010-05-01

    Full Text Available Nonrandom distribution of rearrangements is a common feature of eukaryotic chromosomes that is not well understood in terms of genome organization and evolution. In the major African malaria vector Anopheles gambiae, polymorphic inversions are highly nonuniformly distributed among five chromosomal arms and are associated with epidemiologically important adaptations. However, it is not clear whether the genomic content of the chromosomal arms is associated with inversion polymorphism and fixation rates.To better understand the evolutionary dynamics of chromosomal inversions, we created a physical map for an Asian malaria mosquito, Anopheles stephensi, and compared it with the genome of An. gambiae. We also developed and deployed novel Bayesian statistical models to analyze genome landscapes in individual chromosomal arms An. gambiae. Here, we demonstrate that, despite the paucity of inversion polymorphisms on the X chromosome, this chromosome has the fastest rate of inversion fixation and the highest density of transposable elements, simple DNA repeats, and GC content. The highly polymorphic and rapidly evolving autosomal 2R arm had overrepresentation of genes involved in cellular response to stress supporting the role of natural selection in maintaining adaptive polymorphic inversions. In addition, the 2R arm had the highest density of regions involved in segmental duplications that clustered in the breakpoint-rich zone of the arm. In contrast, the slower evolving 2L, 3R, and 3L, arms were enriched with matrix-attachment regions that potentially contribute to chromosome stability in the cell nucleus.These results highlight fundamental differences in evolutionary dynamics of the sex chromosome and autosomes and revealed the strong association between characteristics of the genome landscape and rates of chromosomal evolution. We conclude that a unique combination of various classes of genes and repetitive DNA in each arm, rather than a single type

  13. Analysis of high-identity segmental duplications in the grapevine genome

    Directory of Open Access Journals (Sweden)

    Carelli Francesco N

    2011-08-01

    Full Text Available Abstract Background Segmental duplications (SDs are blocks of genomic sequence of 1-200 kb that map to different loci in a genome and share a sequence identity > 90%. SDs show at the sequence level the same characteristics as other regions of the human genome: they contain both high-copy repeats and gene sequences. SDs play an important role in genome plasticity by creating new genes and modeling genome structure. Although data is plentiful for mammals, not much was known about the representation of SDs in plant genomes. In this regard, we performed a genome-wide analysis of high-identity SDs on the sequenced grapevine (Vitis vinifera genome (PN40024. Results We demonstrate that recent SDs (> 94% identity and >= 10 kb in size are a relevant component of the grapevine genome (85 Mb, 17% of the genome sequence. We detected mitochondrial and plastid DNA and genes (10% of gene annotation in segmentally duplicated regions of the nuclear genome. In particular, the nine highest copy number genes have a copy in either or both organelle genomes. Further we showed that several duplicated genes take part in the biosynthesis of compounds involved in plant response to environmental stress. Conclusions These data show the great influence of SDs and organelle DNA transfers in modeling the Vitis vinifera nuclear DNA structure as well as the impact of SDs in contributing to the adaptive capacity of grapevine and the nutritional content of grape products through genome variation. This study represents a step forward in the full characterization of duplicated genes important for grapevine cultural needs and human health.

  14. An efficient algorithm for sorting by block-interchanges and its application to the evolution of vibrio species.

    Science.gov (United States)

    Lin, Ying Chih; Lu, Chin Lung; Chang, Hwan-You; Tang, Chuan Yi

    2005-01-01

    In the study of genome rearrangement, the block-interchanges have been proposed recently as a new kind of global rearrangement events affecting a genome by swapping two nonintersecting segments of any length. The so-called block-interchange distance problem, which is equivalent to the sorting-by-block-interchange problem, is to find a minimum series of block-interchanges for transforming one chromosome into another. In this paper, we study this problem by considering the circular chromosomes and propose a Omicron(deltan) time algorithm for solving it by making use of permutation groups in algebra, where n is the length of the circular chromosome and delta is the minimum number of block-interchanges required for the transformation, which can be calculated in Omicron(n) time in advance. Moreover, we obtain analogous results by extending our algorithm to linear chromosomes. Finally, we have implemented our algorithm and applied it to the circular genomic sequences of three human vibrio pathogens for predicting their evolutionary relationships. Consequently, our experimental results coincide with the previous ones obtained by others using a different comparative genomics approach, which implies that the block-interchange events seem to play a significant role in the evolution of vibrio species.

  15. B chromosome in the beetle Coprophanaeus cyanescens (Scarabaeidae: emphasis in the organization of repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Gomes de Oliveira Sarah

    2012-11-01

    Full Text Available Abstract Background To contribute to the knowledge of coleopteran cytogenetics, especially with respect to the genomic content of B chromosomes, we analyzed the composition and organization of repetitive DNA sequences in the Coprophanaeus cyanescens karyotype. We used conventional staining and the application of fluorescence in situ hybridization (FISH mapping using as probes C0t-1 DNA fraction, the 18S and 5S rRNA genes, and the LOA-like non-LTR transposable element (TE. Results The conventional analysis detected 3 individuals (among 50 analyzed carrying one small metacentric and mitotically unstable B chromosome. The FISH analysis revealed a pericentromeric block of C0t-1 DNA in the B chromosome but no 18S or 5S rDNA clusters in this extra element. Using the LOA-like TE probe, the FISH analysis revealed large pericentromeric blocks in eight autosomal bivalents and in the B chromosome, and a pericentromeric block extending to the short arm in one autosomal pair. No positive hybridization signal was observed for the LOA-like element in the sex chromosomes. Conclusions The results indicate that the origin of the B chromosome is associated with the autosomal elements, as demonstrated by the hybridization with C0t-1 DNA and the LOA-like TE. The present study is the first report on the cytogenetic mapping of a TE in coleopteran chromosomes. These TEs could have been involved in the origin and evolution of the B chromosome in C. cyanescens.

  16. Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2

    DEFF Research Database (Denmark)

    Dathe, Katarina; Kjaer, Klaus W; Brehm, Anja

    2009-01-01

    Autosomal-dominant brachydactyly type A2 (BDA2), a limb malformation characterized by hypoplastic middle phalanges of the second and fifth fingers, has been shown to be due to mutations in the Bone morphogenetic protein receptor 1B (BMPR1B) or in its ligand Growth and differentiation factor 5 (GDF5......). A linkage analysis performed in a mutation-negative family identified a novel locus for BDA2 on chromosome 20p12.3 that incorporates the gene for Bone morphogenetic protein 2 (BMP2). No point mutation was identified in BMP2, so a high-density array CGH analysis covering the critical interval...... within the identified duplication. Our results reveal an additional functional mechanism for the pathogenesis of BDA2, which is duplication of a regulatory element that affects the expression of BMP2 in the developing limb....

  17. Neocentric X-chromosome in a girl with Turner-like syndrome

    Directory of Open Access Journals (Sweden)

    Hemmat Morteza

    2012-06-01

    Full Text Available Abstract Background Neocentromeres are rare human chromosomal aberrations in which a new centromere has formed in a previously non-centromeric location. We report the finding of a structurally abnormal X chromosome with a neocentromere in a 15-year-old girl with clinical features suggestive of Turner syndrome, including short stature and primary amenorrhea. Result G-banded chromosome analysis revealed a mosaic female karyotype involving two abnormal cell lines. One cell line (84% of analyzed metaphases had a structurally abnormal X chromosome (duplication of the long arm and deletion of the short arm and a normal X chromosome. The other cell line (16% of cells exhibited monosomy X. C-banding studies were negative for the abnormal X chromosome. FISH analysis revealed lack of hybridization of the abnormal X chromosome with both the X centromere-specific probe and the “all human centromeres” probe, a pattern consistent with lack of the X chromosome endogenous centromere. A FISH study using an XIST gene probe revealed the presence of two XIST genes, one on each long arm of the iso(Xq, required for inactivation of the abnormal X chromosome. R-banding also demonstrated inactivation of the abnormal X chromosome. An assay for centromeric protein C (CENP-C was positive on both the normal and the abnormal X chromosomes. The position of CENP-C in the abnormal X chromosome defined a neocentromere, which explains its mitotic stability. The karyotype is thus designated as 46,X,neo(X(qter- > q12::q12- > q21.2- > neo- > q21.2- > qter[42]/45,X[8], which is consistent with stigmata of Turner syndrome. The mother of this patient has a normal karyotype; however, the father was not available for study. Conclusion To our knowledge, this is the first case of mosaic Turner syndrome involving an analphoid iso(Xq chromosome with a proven neocentromere among 90 previously described cases with a proven neocentromere.

  18. Molecular genetic features of polyploidization and aneuploidization reveal unique patterns for genome duplication in diploid Malus.

    Directory of Open Access Journals (Sweden)

    Michael J Considine

    Full Text Available Polyploidization results in genome duplication and is an important step in evolution and speciation. The Malus genome confirmed that this genus was derived through auto-polyploidization, yet the genetic and meiotic mechanisms for polyploidization, particularly for aneuploidization, are unclear in this genus or other woody perennials. In fact the contribution of aneuploidization remains poorly understood throughout Plantae. We add to this knowledge by characterization of eupolyploidization and aneuploidization in 27,542 F₁ seedlings from seven diploid Malus populations using cytology and microsatellite markers. We provide the first evidence that aneuploidy exceeds eupolyploidy in the diploid crosses, suggesting aneuploidization is a leading cause of genome duplication. Gametes from diploid Malus had a unique combinational pattern; ova preserved euploidy exclusively, while spermatozoa presented both euploidy and aneuploidy. All non-reduced gametes were genetically heterozygous, indicating first-division restitution was the exclusive mode for Malus eupolyploidization and aneuploidization. Chromosome segregation pattern among aneuploids was non-uniform, however, certain chromosomes were associated for aneuploidization. This study is the first to provide molecular evidence for the contribution of heterozygous non-reduced gametes to fitness in polyploids and aneuploids. Aneuploidization can increase, while eupolyploidization may decrease genetic diversity in their newly established populations. Auto-triploidization is important for speciation in the extant Malus. The features of Malus polyploidization confer genetic stability and diversity, and present heterozygosity, heterosis and adaptability for evolutionary selection. A protocol using co-dominant markers was proposed for accelerating apple triploid breeding program. A path was postulated for evolution of numerically odd basic chromosomes. The model for Malus derivation was considerably revised

  19. Molecular genetic features of polyploidization and aneuploidization reveal unique patterns for genome duplication in diploid Malus.

    Science.gov (United States)

    Considine, Michael J; Wan, Yizhen; D'Antuono, Mario F; Zhou, Qian; Han, Mingyu; Gao, Hua; Wang, Man

    2012-01-01

    Polyploidization results in genome duplication and is an important step in evolution and speciation. The Malus genome confirmed that this genus was derived through auto-polyploidization, yet the genetic and meiotic mechanisms for polyploidization, particularly for aneuploidization, are unclear in this genus or other woody perennials. In fact the contribution of aneuploidization remains poorly understood throughout Plantae. We add to this knowledge by characterization of eupolyploidization and aneuploidization in 27,542 F₁ seedlings from seven diploid Malus populations using cytology and microsatellite markers. We provide the first evidence that aneuploidy exceeds eupolyploidy in the diploid crosses, suggesting aneuploidization is a leading cause of genome duplication. Gametes from diploid Malus had a unique combinational pattern; ova preserved euploidy exclusively, while spermatozoa presented both euploidy and aneuploidy. All non-reduced gametes were genetically heterozygous, indicating first-division restitution was the exclusive mode for Malus eupolyploidization and aneuploidization. Chromosome segregation pattern among aneuploids was non-uniform, however, certain chromosomes were associated for aneuploidization. This study is the first to provide molecular evidence for the contribution of heterozygous non-reduced gametes to fitness in polyploids and aneuploids. Aneuploidization can increase, while eupolyploidization may decrease genetic diversity in their newly established populations. Auto-triploidization is important for speciation in the extant Malus. The features of Malus polyploidization confer genetic stability and diversity, and present heterozygosity, heterosis and adaptability for evolutionary selection. A protocol using co-dominant markers was proposed for accelerating apple triploid breeding program. A path was postulated for evolution of numerically odd basic chromosomes. The model for Malus derivation was considerably revised. Impacts of

  20. Rectal duplication: a case report.

    Science.gov (United States)

    Didden, K; Masereel, B; Geyskens, P

    2013-01-01

    Gastrointestinal tract duplications are uncommon congenital abnormalities, that may occur anywhere along the alimentary tract. Most frequently they occur at the level of the small bowel tract and are symptomatic before the age of two. In our case we report the history of a 68-years old women with a colon duplication, especially a rectal duplication. This is very exceptional.

  1. The fate of chromosomes and alleles in an allohexaploid Brassica population.

    Science.gov (United States)

    Mason, Annaliese S; Nelson, Matthew N; Takahira, Junko; Cowling, Wallace A; Alves, Gustavo Moreira; Chaudhuri, Arkaprava; Chen, Ning; Ragu, Mohana E; Dalton-Morgan, Jessica; Coriton, Olivier; Huteau, Virginie; Eber, Frédérique; Chèvre, Anne-Marie; Batley, Jacqueline

    2014-05-01

    Production of allohexaploid Brassica (2n = AABBCC) is a promising goal for plant breeders due to the potential for hybrid heterosis and useful allelic contributions from all three of the Brassica genomes present in the cultivated diploid (2n = AA, 2n = BB, 2n = CC) and allotetraploid (2n = AABB, 2n = AACC, and 2n = BBCC) crop species (canola, cabbages, mustards). We used high-throughput SNP molecular marker assays, flow cytometry, and fluorescent in situ hybridization (FISH) to characterize a population of putative allohexaploids derived from self-pollination of a hybrid from the novel cross (B. napus × B. carinata) × B. juncea to investigate whether fertile, stable allohexaploid Brassica can be produced. Allelic segregation in the A and C genomes generally followed Mendelian expectations for an F2 population, with minimal nonhomologous chromosome pairing. However, we detected no strong selection for complete 2n = AABBCC chromosome complements, with weak correlations between DNA content and fertility (r(2) = 0.11) and no correlation between missing chromosomes or chromosome segments and fertility. Investigation of next-generation progeny resulting from one highly fertile F2 plant using FISH revealed general maintenance of high chromosome numbers but severe distortions in karyotype, as evidenced by recombinant chromosomes and putative loss/duplication of A- and C-genome chromosome pairs. Our results show promise for the development of meiotically stable allohexaploid lines, but highlight the necessity of selection for 2n = AABBCC karyotypes.

  2. Restriction of the Patau syndrome to duplication of 13q22{yields}q.32 and possible role of interphase nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    Helali, A.N.; Jafolla, A.K.; Oumsiych, M.B. [Duke Univ. Medical Center, Durham, NC (United States)

    1994-09-01

    A 10-year-old white male presented with mild microcephaly, slight growth and psychomotor retardation, soft fleshy ears, and normal facial features except for thin lips. No other significant anomalies were reported except for tethered cord discovered at age 8 years. The karyotype was found to be 46,XY,der(18)t(13;18)(q32;p11.32)pat. The mild phenotype appears to be primarily due to the duplication of 13q32{yields}qter. None of the cardinal features of trisomy 13 are found in cases of duplication of bands 13q22 to qter. This case shows that Patau syndrome phenotype does not originate by duplication of 13q32{yields}qter and may thus be restricted to 13q22 to 13q32. The variability in phenotypes points to an alternative explanation to the classical one of additive and interactive gene effects. This model involves effects of changes in chromosome position in the interphase nucleus on gene expression.

  3. Rectal duplication.

    Directory of Open Access Journals (Sweden)

    Kulkarni B

    1995-04-01

    Full Text Available Duplications of the alimentary tract are of a great rarity, particularly so in the rectum. Because of its rarity, the difficulty of making a correct diagnosis and of selection of proper approach for treatment, this entity bears a special significance. The present case report deals with a female newborn who presented with imperforate anus and a rectovestibular fistula and a mass prolapsing at the introitus. Complete excision of the mass was carried out through the perineal approach and the child then underwent, a PSARP for the correction of the rectal anomaly. Histology confirmed the mass to be a rectal duplication.

  4. Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans

    Directory of Open Access Journals (Sweden)

    Zhou Qi

    2012-03-01

    Full Text Available Abstract Background Drosophila albomicans is a unique model organism for studying both sex chromosome and B chromosome evolution. A pair of its autosomes comprising roughly 40% of the whole genome has fused to the ancient X and Y chromosomes only about 0.12 million years ago, thereby creating the youngest and most gene-rich neo-sex system reported to date. This species also possesses recently derived B chromosomes that show non-Mendelian inheritance and significantly influence fertility. Methods We sequenced male flies with B chromosomes at 124.5-fold genome coverage using next-generation sequencing. To characterize neo-Y specific changes and B chromosome sequences, we also sequenced inbred female flies derived from the same strain but without B's at 28.5-fold. Results We assembled a female genome and placed 53% of the sequence and 85% of the annotated proteins into specific chromosomes, by comparison with the 12 Drosophila genomes. Despite its very recent origin, the non-recombining neo-Y chromosome shows various signs of degeneration, including a significant enrichment of non-functional genes compared to the neo-X, and an excess of tandem duplications relative to other chromosomes. We also characterized a B-chromosome linked scaffold that contains an actively transcribed unit and shows sequence similarity to the subcentromeric regions of both the ancient X and the neo-X chromosome. Conclusions Our results provide novel insights into the very early stages of sex chromosome evolution and B chromosome origination, and suggest an unprecedented connection between the births of these two systems in D. albomicans.

  5. Chromosome 10q tetrasomy: First reported case

    Energy Technology Data Exchange (ETDEWEB)

    Blackston, R.D.; May, K.M.; Jones, F.D. [Emory Univ., Atlanta, GA (United States)] [and others

    1994-09-01

    While there are several reports of trisomy 10q (at least 35), we are not aware of previous cases of 10q tetrasomy. We present what we believe to be the initial report of such a case. R.J. is a 6 1/2 year old white male who presented with multiple dysmorphic features, marked articulation problems, hyperactivity, and developmental delays. He is the product of a term uncomplicated pregnancy. There was a normal spontaneous vaginal delivery with a birth weight of 6 lbs. 4oz. and length was 19 1/2 inch. Dysmorphic features include small size, an asymmetrically small head, low set ears with overfolded helixes, bilateral ptosis, downslanting eyes, right eye esotropia, prominent nose, asymmetric facies, high palate, mild pectus excavatum deformity of chest, and hyperextensible elbow joints. The patient is in special needs classes for mildly mentally handicapped students. Chromosome analysis at a resolution of 800 bands revealed a complex rearrangement of chromosomes 10 and 11. The segment 10q25.3 to q16.3 appears to be inverted and duplicated within the long arm of chromosome 10 at band q25.3 and the same segment of chromosome 10 is present on the terminal end of the short arm of chromosome 11. There is no visible loss of material from chromosome 11. Fluorescence in situ hybridization was performed with a chromosome 10 specific {open_quotes}paint{close_quotes} to confirm that all of the material on the abnormal 10 and the material on the terminal short arm of 11 was from chromosome 10. Thus, it appears that the segment 10q25.3 to q26.3 is present in four copies. Parental chromosome studies are normal. We compared findings which differ in that the case of 10q tetrasomy did not have prenatal growth deficiency, microphthalmia, cleft palate, digital anomalies, heart, or renal defects. Whereas most cases of 10q trisomy are said to have severe mental deficiency, our case of 10q tetrasomy was only mildly delayed. We report this first apparent cited case of 10q tetrasomy.

  6. Duplication of the oesophagus

    Energy Technology Data Exchange (ETDEWEB)

    Lingg, G; Nebel, G

    1981-08-01

    The article reports on the authors' own observation of a patient with duplication of the oesophagus. Basing on this case, the possibilities of the evolutionary origin are discussed briefly. The significance and decisive importance of X-ray film diagnosis in gastro-intestinal duplications is underlined.

  7. De novo 12q22.q23.3 duplication associated with temporal lobe epilepsy.

    Science.gov (United States)

    Vari, Maria Stella; Traverso, Monica; Bellini, Tommaso; Madia, Francesca; Pinto, Francesca; Minetti, Carlo; Striano, Pasquale; Zara, Federico

    2017-08-01

    Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy and may be associated with acquired central nervous system lesions or could be genetic. Various susceptibility genes and environmental factors are believed to be involved in the aetiology of TLE, which is considered to be a heterogeneous, polygenic, and complex disorder. Rare point mutations in LGI1, DEPDC5, and RELN as well as some copy number variations (CNVs) have been reported in families with TLE patients. We perform a genetic analysis by Array-CGH in a patient with dysmorphic features and temporal lobe epilepsy. We report a de novo duplication of the long arm of chromosome 12. We confirm that 12q22-q23.3 is a candidate locus for familial temporal lobe epilepsy with febrile seizures and highlight the role of chromosomal rearrangements in patients with epilepsy and intellectual disability. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  8. A Rare de novo Interstitial Duplication at 4p15.2 in a Boy with Severe Congenital Heart Defects, Limb Anomalies, Hypogonadism, and Global Developmental Delay.

    Science.gov (United States)

    Liang, Liyang; Xie, Yingjun; Shen, Yiping; Yin, Qibin; Yuan, Haiming

    2016-01-01

    Proximal 4p deletion syndrome is a relatively rare genetic condition characterized by dysmorphic facial features, limb anomalies, minor congenital heart defects, hypogonadism, cafe-au-lait spots, developmental delay, tall and thin habitus, and intellectual disability. At present, over 20 cases of this syndrome have been published. However, duplication of the same region in proximal 4p has never been reported. Here, we describe a 2-year-5-month-old boy with severe congenital heart defects, limb anomalies, hypogonadism, distinctive facial features, pre- and postnatal developmental delay, and mild cognitive impairments. A de novo 4.5-Mb interstitial duplication at 4p15.2p15.1 was detected by chromosomal microarray analysis. Next-generation sequencing was employed and confirmed the duplication, but revealed no additional pathogenic variants. Several candidate genes in this interval responsible for the complex clinical phenotype were identified, such as RBPJ, STIM2, CCKAR, and LGI2. The results suggest a novel contiguous gene duplication syndrome. © 2016 S. Karger AG, Basel.

  9. Duplication of the oesophagus

    International Nuclear Information System (INIS)

    Lingg, G.; Nebel, G.

    1981-01-01

    The article reports on the authors' own observation of a patient with duplication of the oesophagus. Basing on this case, the possibilities of the evolutionary origin are discussed briefly. The significance and decisive importance of X-ray film diagnosis in gastro-intestinal duplications is underlined. (orig.) [de

  10. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Pampalona, J.; Soler, D.; Genesca, A. [Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra E-08193 (Spain); Tusell, L., E-mail: laura.tusell@uab.es [Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra E-08193 (Spain)

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16{sup INK4a} protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and

  11. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies

    International Nuclear Information System (INIS)

    Pampalona, J.; Soler, D.; Genesca, A.; Tusell, L.

    2010-01-01

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16 INK4a protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  12. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies.

    Science.gov (United States)

    Pampalona, J; Soler, D; Genescà, A; Tusell, L

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16(INK4a) protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  13. Cdc14 phosphatase directs centrosome re-duplication at the meiosis I to meiosis II transition in budding yeast [version 2; referees: 3 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Colette Fox

    2017-02-01

    Full Text Available Background Gametes are generated through a specialized cell division called meiosis, in which ploidy is reduced by half because two consecutive rounds of chromosome segregation, meiosis I and meiosis II, occur without intervening DNA replication. This contrasts with the mitotic cell cycle where DNA replication and chromosome segregation alternate to maintain the same ploidy. At the end of mitosis, cyclin-dependent kinases (CDKs are inactivated. This low CDK state in late mitosis/G1 allows for critical preparatory events for DNA replication and centrosome/spindle pole body (SPB duplication. However, their execution is inhibited until S phase, where further preparatory events are also prevented. This “licensing” ensures that both the chromosomes and the centrosomes/SPBs replicate exactly once per cell cycle, thereby maintaining constant ploidy. Crucially, between meiosis I and meiosis II, centrosomes/SPBs must be re-licensed, but DNA re-replication must be avoided. In budding yeast, the Cdc14 protein phosphatase triggers CDK down regulation to promote exit from mitosis. Cdc14 also regulates the meiosis I to meiosis II transition, though its mode of action has remained unclear. Methods Fluorescence and electron microscopy was combined with proteomics to probe SPB duplication in cells with inactive or hyperactive Cdc14. Results We demonstrate that Cdc14 ensures two successive nuclear divisions by re-licensing SPBs at the meiosis I to meiosis II transition. We show that Cdc14 is asymmetrically enriched on a single SPB during anaphase I and provide evidence that this enrichment promotes SPB re-duplication. Cells with impaired Cdc14 activity fail to promote extension of the SPB half-bridge, the initial step in morphogenesis of a new SPB. Conversely, cells with hyper-active Cdc14 duplicate SPBs, but fail to induce their separation. Conclusion Our findings implicate reversal of key CDK-dependent phosphorylations in the differential licensing of

  14. Anterior colorectal duplication presenting as rectal prolapse.

    Science.gov (United States)

    Ramirez-Resendiz, Amador; Asz, Jose; Medina-Vega, F Antonio; Ortega-Salgado, J Arturo

    2007-09-01

    Duplications of the gastrointestinal (GI) tract are rare. Only 5% of them are rectal and there are very few reports of rectal prolapse (RP) caused by a duplication. An 11 month-old female presented with a RP caused by a blind-ended anterior tubular colorectal duplication. The duplication was successfully opened and connected to the normal rectum without complications. Although infrequent, a rectal duplication should be considered in the differential diagnosis of RP.

  15. Clinical spectrum associated with recurrent genomic rearrangements in chromosome 17q12.

    Science.gov (United States)

    Nagamani, Sandesh Chakravarthy Sreenath; Erez, Ayelet; Shen, Joseph; Li, Chumei; Roeder, Elizabeth; Cox, Sarah; Karaviti, Lefkothea; Pearson, Margret; Kang, Sung-Hae L; Sahoo, Trilochan; Lalani, Seema R; Stankiewicz, Pawel; Sutton, V Reid; Cheung, Sau Wai

    2010-03-01

    Deletions in chromosome 17q12 encompassing the HNF1 beta gene cause cystic renal disease and maturity onset diabetes of the young, and have been recently described as the first recurrent genomic deletion leading to diabetes. Earlier reports of patients with this microdeletion syndrome have suggested an absence of cognitive impairment, differentiating it from most other contiguous gene deletion syndromes. The reciprocal duplication of 17q12 is rare and has been hypothesized to be associated with an increased risk of epilepsy and mental retardation. We conducted a detailed clinical and molecular characterization of four patients with a deletion and five patients with a reciprocal duplication of this region. Our patients with deletion of 17q12 presented with cognitive impairment, cystic renal disease, seizures, and structural abnormalities of the brain. Patients with reciprocal duplications manifest with cognitive impairment and behavioral abnormalities, but not with seizures. Our findings expand the phenotypic spectrum associated with rearrangements of 17q12 and show that cognitive impairment is a part of the phenotype of individuals with deletions of 17q12.

  16. Molecular cytogenetic analysis of Inv Dup(15) chromosomes, using probes specific for the Pradar-Willi/Angelman syndrome region: Clinical implications

    Energy Technology Data Exchange (ETDEWEB)

    Leana-Cox, J. (Univ. of Maryland School of Medicine, Baltimore, MD (United States)); Jenkins, L. (Kaiser Permanente Medical Group, San Jose, CA (United States)); Palmer, C.G.; Plattner, R. (Indiana School of Medicine, Indianapolis, IN (United States)); Sheppard, L. (Palo Verde Laboratory, Inc., Chandler, AZ (United States)); Flejter, W.L. (Univ. of Michigan, Ann Arbor, MI (United States)); Zackowski, J. (Univ. of Florida Health Science Center, Gainsville, FL (United States)); Tsien, F. (Tulane Univ. School of Medicine, New Orleans, LA (United States)); Schwartz, S. (Case Western Reserve Univ., Cleveland, OH (United States))

    1994-05-01

    Twenty-seven cases of inverted duplications of chromosome 15 (inv dup[15]) were investigated by FISH with two DNA probes specific for the Prader-Willi syndrome/Angelman syndrome (PWS/AS) region on proximal 15q. Sixteen of the marker chromosomes displayed two copies of each probe, while in the remaining 11 markers no hybridization was observed. A significant association was found between the presence of this region and an abnormal phenotype (P<.01). This is the largest study to date of inv dup(15) chromosomes, that uses molecular cytogenetic methods and is the first to report a significant association between the presence of a specific chromosomal region in such markers and an abnormal phenotype. 30 refs., 1 fig., 4 tabs.

  17. Sox9 duplications are a relevant cause of Sry-negative XX sex reversal dogs.

    Science.gov (United States)

    Rossi, Elena; Radi, Orietta; De Lorenzi, Lisa; Vetro, Annalisa; Groppetti, Debora; Bigliardi, Enrico; Luvoni, Gaia Cecilia; Rota, Ada; Camerino, Giovanna; Zuffardi, Orsetta; Parma, Pietro

    2014-01-01

    Sexual development in mammals is based on a complicated and delicate network of genes and hormones that have to collaborate in a precise manner. The dark side of this pathway is represented by pathological conditions, wherein sexual development does not occur properly either in the XX and the XY background. Among them a conundrum is represented by the XX individuals with at least a partial testis differentiation even in absence of SRY. This particular condition is present in various mammals including the dog. Seven dogs characterized by XX karyotype, absence of SRY gene, and testicular tissue development were analysed by Array-CGH. In two cases the array-CGH analysis detected an interstitial heterozygous duplication of chromosome 9. The duplication contained the SOX9 coding region. In this work we provide for the first time a causative mutation for the XXSR condition in the dog. Moreover this report supports the idea that the dog represents a good animal model for the study of XXSR condition caused by abnormalities in the SOX9 locus.

  18. Sox9 duplications are a relevant cause of Sry-negative XX sex reversal dogs.

    Directory of Open Access Journals (Sweden)

    Elena Rossi

    Full Text Available Sexual development in mammals is based on a complicated and delicate network of genes and hormones that have to collaborate in a precise manner. The dark side of this pathway is represented by pathological conditions, wherein sexual development does not occur properly either in the XX and the XY background. Among them a conundrum is represented by the XX individuals with at least a partial testis differentiation even in absence of SRY. This particular condition is present in various mammals including the dog. Seven dogs characterized by XX karyotype, absence of SRY gene, and testicular tissue development were analysed by Array-CGH. In two cases the array-CGH analysis detected an interstitial heterozygous duplication of chromosome 9. The duplication contained the SOX9 coding region. In this work we provide for the first time a causative mutation for the XXSR condition in the dog. Moreover this report supports the idea that the dog represents a good animal model for the study of XXSR condition caused by abnormalities in the SOX9 locus.

  19. Reciprocal deletion and duplication at 2q23.1 indicates a role for MBD5 in autism spectrum disorder.

    Science.gov (United States)

    Mullegama, Sureni V; Rosenfeld, Jill A; Orellana, Carmen; van Bon, Bregje W M; Halbach, Sara; Repnikova, Elena A; Brick, Lauren; Li, Chumei; Dupuis, Lucie; Rosello, Monica; Aradhya, Swaroop; Stavropoulos, D James; Manickam, Kandamurugu; Mitchell, Elyse; Hodge, Jennelle C; Talkowski, Michael E; Gusella, James F; Keller, Kory; Zonana, Jonathan; Schwartz, Stuart; Pyatt, Robert E; Waggoner, Darrel J; Shaffer, Lisa G; Lin, Angela E; de Vries, Bert B A; Mendoza-Londono, Roberto; Elsea, Sarah H

    2014-01-01

    Copy number variations associated with abnormal gene dosage have an important role in the genetic etiology of many neurodevelopmental disorders, including intellectual disability (ID) and autism. We hypothesize that the chromosome 2q23.1 region encompassing MBD5 is a dosage-dependent region, wherein deletion or duplication results in altered gene dosage. We previously established the 2q23.1 microdeletion syndrome and report herein 23 individuals with 2q23.1 duplications, thus establishing a complementary duplication syndrome. The observed phenotype includes ID, language impairments, infantile hypotonia and gross motor delay, behavioral problems, autistic features, dysmorphic facial features (pinnae anomalies, arched eyebrows, prominent nose, small chin, thin upper lip), and minor digital anomalies (fifth finger clinodactyly and large broad first toe). The microduplication size varies among all cases and ranges from 68 kb to 53.7 Mb, encompassing a region that includes MBD5, an important factor in methylation patterning and epigenetic regulation. We previously reported that haploinsufficiency of MBD5 is the primary causal factor in 2q23.1 microdeletion syndrome and that mutations in MBD5 are associated with autism. In this study, we demonstrate that MBD5 is the only gene in common among all duplication cases and that overexpression of MBD5 is likely responsible for the core clinical features present in 2q23.1 microduplication syndrome. Phenotypic analyses suggest that 2q23.1 duplication results in a slightly less severe phenotype than the reciprocal deletion. The features associated with a deletion, mutation or duplication of MBD5 and the gene expression changes observed support MBD5 as a dosage-sensitive gene critical for normal development.

  20. Sorting cancer karyotypes using double-cut-and-joins, duplications and deletions.

    Science.gov (United States)

    Zeira, Ron; Shamir, Ron

    2018-05-03

    Problems of genome rearrangement are central in both evolution and cancer research. Most genome rearrangement models assume that the genome contains a single copy of each gene and the only changes in the genome are structural, i.e., reordering of segments. In contrast, tumor genomes also undergo numerical changes such as deletions and duplications, and thus the number of copies of genes varies. Dealing with unequal gene content is a very challenging task, addressed by few algorithms to date. More realistic models are needed to help trace genome evolution during tumorigenesis. Here we present a model for the evolution of genomes with multiple gene copies using the operation types double-cut-and-joins, duplications and deletions. The events supported by the model are reversals, translocations, tandem duplications, segmental deletions, and chromosomal amplifications and deletions, covering most types of structural and numerical changes observed in tumor samples. Our goal is to find a series of operations of minimum length that transform one karyotype into the other. We show that the problem is NP-hard and give an integer linear programming formulation that solves the problem exactly under some mild assumptions. We test our method on simulated genomes and on ovarian cancer genomes. Our study advances the state of the art in two ways: It allows a broader set of operations than extant models, thus being more realistic, and it is the first study attempting to reconstruct the full sequence of structural and numerical events during cancer evolution. Code and data are available in https://github.com/Shamir-Lab/Sorting-Cancer-Karyotypes. ronzeira@post.tau.ac.il, rshamir@tau.ac.il. Supplementary data are available at Bioinformatics online.

  1. Tandem duplication of 11p12-p13 in a child with borderline development delay and eye abnormalities: dose effect of the PAX6 gene product?

    NARCIS (Netherlands)

    Aalfs, C. M.; Fantes, J. A.; Wenniger-Prick, L. J.; Sluijter, S.; Hennekam, R. C.; van Heyningen, V.; Hoovers, J. M.

    1997-01-01

    We report on a girl with a duplication of chromosome band 11p12-->13, which includes the Wilms tumor gene (WT1) and the aniridia gene (PAX6). The girl had borderline developmental delay, mild facial anomalies, and eye abnormalities. Eye findings were also present in most of the 11 other published

  2. Incompatibility between X chromosome factor and pericentric heterochromatic region causes lethality in hybrids between Drosophila melanogaster and its sibling species.

    Science.gov (United States)

    Cattani, M Victoria; Presgraves, Daven C

    2012-06-01

    The Dobzhansky-Muller model posits that postzygotic reproductive isolation results from the evolution of incompatible epistatic interactions between species: alleles that function in the genetic background of one species can cause sterility or lethality in the genetic background of another species. Progress in identifying and characterizing factors involved in postzygotic isolation in Drosophila has remained slow, mainly because Drosophila melanogaster, with all of its genetic tools, forms dead or sterile hybrids when crossed to its sister species, D. simulans, D. sechellia, and D. mauritiana. To circumvent this problem, we used chromosome deletions and duplications from D. melanogaster to map two hybrid incompatibility loci in F(1) hybrids with its sister species. We mapped a recessive factor to the pericentromeric heterochromatin of the X chromosome in D. simulans and D. mauritiana, which we call heterochromatin hybrid lethal (hhl), which causes lethality in F(1) hybrid females with D. melanogaster. As F(1) hybrid males hemizygous for a D. mauritiana (or D. simulans) X chromosome are viable, the lethality of deficiency hybrid females implies that a dominant incompatible partner locus exists on the D. melanogaster X. Using small segments of the D. melanogaster X chromosome duplicated onto the Y chromosome, we mapped a dominant factor that causes hybrid lethality to a small 24-gene region of the D. melanogaster X. We provide evidence suggesting that it interacts with hhl(mau). The location of hhl is consistent with the emerging theme that hybrid incompatibilities in Drosophila involve heterochromatic regions and factors that interact with the heterochromatin.

  3. Comparative Chromosome Map and Heterochromatin Features of the Gray Whale Karyotype (Cetacea).

    Science.gov (United States)

    Kulemzina, Anastasia I; Proskuryakova, Anastasia A; Beklemisheva, Violetta R; Lemskaya, Natalia A; Perelman, Polina L; Graphodatsky, Alexander S

    2016-01-01

    Cetacean karyotypes possess exceptionally stable diploid numbers and highly conserved chromosomes. To date, only toothed whales (Odontoceti) have been analyzed by comparative chromosome painting. Here, we studied the karyotype of a representative of baleen whales, the gray whale (Eschrichtius robustus, Mysticeti), by Zoo-FISH with dromedary camel and human chromosome-specific probes. We confirmed a high degree of karyotype conservation and found an identical order of syntenic segments in both branches of cetaceans. Yet, whale chromosomes harbor variable heterochromatic regions constituting up to a third of the genome due to the presence of several types of repeats. To investigate the cause of this variability, several classes of repeated DNA sequences were mapped onto chromosomes of whale species from both Mysticeti and Odontoceti. We uncovered extensive intrapopulation variability in the size of heterochromatic blocks present in homologous chromosomes among 3 individuals of the gray whale by 2-step differential chromosome staining. We show that some of the heteromorphisms observed in the gray whale karyotype are due to distinct amplification of a complex of common cetacean repeat and heavy satellite repeat on homologous autosomes. Furthermore, we demonstrate localization of the telomeric repeat in the heterochromatin of both gray and pilot whale (Globicephala melas, Odontoceti). Heterochromatic blocks in the pilot whale represent a composite of telomeric and common repeats, while heavy satellite repeat is lacking in the toothed whale consistent with previous studies. © 2016 S. Karger AG, Basel.

  4. Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV susceptibility.

    Science.gov (United States)

    Nuttle, Xander; Giannuzzi, Giuliana; Duyzend, Michael H; Schraiber, Joshua G; Narvaiza, Iñigo; Sudmant, Peter H; Penn, Osnat; Chiatante, Giorgia; Malig, Maika; Huddleston, John; Benner, Chris; Camponeschi, Francesca; Ciofi-Baffoni, Simone; Stessman, Holly A F; Marchetto, Maria C N; Denman, Laura; Harshman, Lana; Baker, Carl; Raja, Archana; Penewit, Kelsi; Janke, Nicolette; Tang, W Joyce; Ventura, Mario; Banci, Lucia; Antonacci, Francesca; Akey, Joshua M; Amemiya, Chris T; Gage, Fred H; Reymond, Alexandre; Eichler, Evan E

    2016-08-11

    Genetic differences that specify unique aspects of human evolution have typically been identified by comparative analyses between the genomes of humans and closely related primates, including more recently the genomes of archaic hominins. Not all regions of the genome, however, are equally amenable to such study. Recurrent copy number variation (CNV) at chromosome 16p11.2 accounts for approximately 1% of cases of autism and is mediated by a complex set of segmental duplications, many of which arose recently during human evolution. Here we reconstruct the evolutionary history of the locus and identify bolA family member 2 (BOLA2) as a gene duplicated exclusively in Homo sapiens. We estimate that a 95-kilobase-pair segment containing BOLA2 duplicated across the critical region approximately 282 thousand years ago (ka), one of the latest among a series of genomic changes that dramatically restructured the locus during hominid evolution. All humans examined carried one or more copies of the duplication, which nearly fixed early in the human lineage--a pattern unlikely to have arisen so rapidly in the absence of selection (P sapiens-specific duplication. In summary, the duplicative transposition of BOLA2 at the root of the H. sapiens lineage about 282 ka simultaneously increased copy number of a gene associated with iron homeostasis and predisposed our species to recurrent rearrangements associated with disease.

  5. Clinical spectrum associated with recurrent genomic rearrangements in chromosome 17q12

    OpenAIRE

    Nagamani, Sandesh Chakravarthy Sreenath; Erez, Ayelet; Shen, Joseph; Li, Chumei; Roeder, Elizabeth; Cox, Sarah; Karaviti, Lefkothea; Pearson, Margret; Kang, Sung-Hae L; Sahoo, Trilochan; Lalani, Seema R; Stankiewicz, Pawel; Sutton, V Reid; Cheung, Sau Wai

    2009-01-01

    Deletions in chromosome 17q12 encompassing the HNF1β gene cause cystic renal disease and maturity onset diabetes of the young, and have been recently described as the first recurrent genomic deletion leading to diabetes. Earlier reports of patients with this microdeletion syndrome have suggested an absence of cognitive impairment, differentiating it from most other contiguous gene deletion syndromes. The reciprocal duplication of 17q12 is rare and has been hypothesized to be associated with a...

  6. Biliary tract duplication cyst with gastric heterotopia

    Energy Technology Data Exchange (ETDEWEB)

    Grumbach, K.; Baker, D.H.; Weigert, J.; Altman, R.P.

    1988-05-01

    Cystic duplications of the biliary tract are rare anomalies, easily mistaken for choledochal cysts. Surgical drainage is the preferred therapy for choledochal cyst, but cystic duplication necessitates surgical excision as duplications may contain heterotopic gastric mucosa leading to peptic ulceration of the biliary tract. We report a case of biliary tract duplication cyst containing heterotopic alimentary mucosa which had initially been diagnosed and surgically treated as a choledochal cyst.

  7. Biliary tract duplication cyst with gastric heterotopia

    International Nuclear Information System (INIS)

    Grumbach, K.; Baker, D.H.; Weigert, J.; Altman, R.P.

    1988-01-01

    Cystic duplications of the biliary tract are rare anomalies, easily mistaken for choledochal cysts. Surgical drainage is the preferred therapy for choledochal cyst, but cystic duplication necessitates surgical excision as duplications may contain heterotopic gastric mucosa leading to peptic ulceration of the biliary tract. We report a case of biliary tract duplication cyst containing heterotopic alimentary mucosa which had initially been diagnosed and surgically treated as a choledochal cyst. (orig.)

  8. Constitutional chromosomal events at 22q11 and 15q26 in a child with a pilocytic astrocytoma of the spinal cord.

    Science.gov (United States)

    Mascelli, Samantha; Severino, Mariasavina; Raso, Alessandro; Nozza, Paolo; Tassano, Elisa; Morana, Giovanni; De Marco, Patrizia; Merello, Elisa; Milanaccio, Claudia; Pavanello, Marco; Rossi, Andrea; Cama, Armando; Garrè, Maria Luisa; Capra, Valeria

    2014-01-01

    We report on a 9-years-old patient with mild intellectual disability, facial dimorphisms, bilateral semicircular canal dysplasia, periventricular nodular heterotopias, bilateral hippocampal malrotation and abnormal cerebellar foliation, who developed mild motor impairment and gait disorder due to a pilocytic astrocytoma of the spinal cord. Array-CGH analysis revealed two paternal inherited chromosomal events: a 484.3 Kb duplication on chromosome 15q26.3 and a 247 Kb deletion on 22q11.23. Further, a second de novo 1.5 Mb deletion on 22q11.21 occurred. Chromosome 22 at q11.2 and chromosome 15 at q24q26 are considered unstable regions subjected to copy number variations, i.e. structural alterations of genome, mediated by low copy repeat sequences or segmental duplications. The link between some structural CNVs, which compromise fundamental processes controlling DNA stability, and genomic disorders suggest a plausible scenario for cancer predisposition. Evaluation of the genes at the breakpoints cannot account simultaneously for the phenotype and tumour development in this patient. The two paternal inherited CNVs arguably are not pathogenic and do not contribute to the clinical manifestations. Similarly, although the de novo large deletion at 22q11.21 overlaps with the Di George (DGS) critical region and results in haploinsufficiency of genes compromising critical processes for DNA stability, this case lacks several hallmarks of DGS.

  9. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, J; Gordon, L A; Olsen, A; Terry, A; Schmutz, J; Lamerdin, J; Hellsten, U; Goodstein, D; Couronne, O; Tran-Gyamfi, M

    2004-04-06

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  10. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei

    International Nuclear Information System (INIS)

    Beetstra, Sasja; Thomas, Philip; Salisbury, Carolyn; Turner, Julie; Fenech, Michael

    2005-01-01

    Folic acid deficiency can lead to uracil incorporation into DNA, hypomethylation of DNA, inefficient DNA repair and increase chromosome malsegregation and breakage. Because ionising radiation increases demand for efficient DNA repair and also causes chromosome breaks we hypothesised that folic acid deficiency may increase sensitivity to radiation-induced chromosome breakage. We tested this hypothesis by using the cytokinesis-block micronucleus assay in 10 day WIL2-NS cell cultures at four different folic acid concentrations (0.2, 2, 20, and 200 nM) that span the 'normal' physiological range in humans. The study showed a significant dose-dependent increase in frequency of binucleated cells with micronuclei and/or nucleoplasmic bridges with decreasing folic acid concentration (P < 0.0001, P = 0.028, respectively). These biomarkers of chromosomal instability were also increased in cells irradiated (1.5 Gy γ-rays) on day 9 relative to un-irradiated controls (P < 0.05). Folic acid deficiency and γ-irradiation were shown to have a significant interactive effect on frequency of cells containing micronuclei (two-way ANOVA, interaction P 0.0039) such that the frequency of radiation-induced micronucleated cells (i.e. after subtracting base-line frequency of un-irradiated controls) increased with decreasing folic acid concentration (P-trend < 0.0001). Aneuploidy of chromosome 21, apoptosis and necrosis were increased by folic acid deficiency but not by ionising radiation. The results of this study show that folate status has an important impact on chromosomal stability and is an important modifying factor of cellular sensitivity to radiation-induced genome damage

  11. The centriole duplication cycle

    Science.gov (United States)

    Fırat-Karalar, Elif Nur; Stearns, Tim

    2014-01-01

    Centrosomes are the main microtubule-organizing centre of animal cells and are important for many critical cellular and developmental processes from cell polarization to cell division. At the core of the centrosome are centrioles, which recruit pericentriolar material to form the centrosome and act as basal bodies to nucleate formation of cilia and flagella. Defects in centriole structure, function and number are associated with a variety of human diseases, including cancer, brain diseases and ciliopathies. In this review, we discuss recent advances in our understanding of how new centrioles are assembled and how centriole number is controlled. We propose a general model for centriole duplication control in which cooperative binding of duplication factors defines a centriole ‘origin of duplication’ that initiates duplication, and passage through mitosis effects changes that license the centriole for a new round of duplication in the next cell cycle. We also focus on variations on the general theme in which many centrioles are created in a single cell cycle, including the specialized structures associated with these variations, the deuterosome in animal cells and the blepharoplast in lower plant cells. PMID:25047614

  12. Multigeneration Inheritance through Fertile XX Carriers of an NR0B1 (DAX1 Locus Duplication in a Kindred of Females with Isolated XY Gonadal Dysgenesis

    Directory of Open Access Journals (Sweden)

    Michela Barbaro

    2012-01-01

    Full Text Available A 160 kb minimal common region in Xp21 has been determined as the cause of XY gonadal dysgenesis, if duplicated. The region contains the MAGEB genes and the NR0B1 gene; this is the candidate for gonadal dysgenesis if overexpressed. Most patients present gonadal dysgenesis within a more complex phenotype. However, few independent cases have recently been described presenting with isolated XY gonadal dysgenesis caused by relatively small NR0B1 locus duplications. We have identified another NR0B1 duplication in two sisters with isolated XY gonadal dysgenesis with an X-linked inheritance pattern. We performed X-inactivation studies in three fertile female carriers of three different small NR0B1 locus duplications identified by our group. The carrier mothers did not show obvious skewing of X-chromosome inactivation, suggesting that NR0B1 overexpression does not impair ovarian function. We furthermore emphasize the importance to investigate the NR0B1 locus also in patients with isolated XY gonadal dysgenesis.

  13. Current incidence of duplicate publication in otolaryngology.

    Science.gov (United States)

    Cheung, Veronique Wan Fook; Lam, Gilbert O A; Wang, Yun Fan; Chadha, Neil K

    2014-03-01

    Duplicate publication--deemed highly unethical--is the reproduction of substantial content in another article by the same authors. In 1999, Rosenthal et al. identified an 8.5% incidence of duplicate articles in two otolaryngology journals. We explored the current incidence in three otolaryngology journals in North America and Europe. Retrospective literature review. Index articles in 2008 in Archives of Otolaryngology-Head and Neck Surgery, Laryngoscope, and Clinical Otolaryngology were searched using MEDLINE. Potential duplicate publications in 2006 through 2010 were identified using the first, second, and last authors' names. Three authors independently investigated suspected duplicate publications--classifying them by degree of duplication. Of 358 index articles screened, 75 (20.9%) had 119 potential duplicates from 2006 to 2010. Full review of these 119 potential duplicates revealed a total of 40 articles with some form of redundancy (33.6% of the potential duplicates) involving 27 index articles (7.5% of 358 index articles); one (0.8%) "dual" publication (identical or nearly identical data and conclusions to the index article); three (2.5%) "suspected" dual publications (less than 50% new data and same conclusions); and 36 (30.3%) publications with "salami-slicing" (portion of the index article data repeated) were obtained. Further analysis compared the likelihood of duplicate publication by study source and subspecialty within otolaryngology. The incidence of duplicate publication has not significantly changed over 10 years. "Salami-slicing" was a concerning practice, with no cross-referencing in 61% of these cases. Detecting and eliminating redundant publications is a laborious task, but it is essential in upholding the journal quality and research integrity. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  14. CENP-A regulates chromosome segregation during the first meiosis of mouse oocytes.

    Science.gov (United States)

    Li, Li; Qi, Shu-Tao; Sun, Qing-Yuan; Chen, Shi-Ling

    2017-06-01

    Proper chromosome separation in both mitosis and meiosis depends on the correct connection between kinetochores of chromosomes and spindle microtubules. Kinetochore dysfunction can lead to unequal distribution of chromosomes during cell division and result in aneuploidy, thus kinetochores are critical for faithful segregation of chromosomes. Centromere protein A (CENP-A) is an important component of the inner kinetochore plate. Multiple studies in mitosis have found that deficiencies in CENP-A could result in structural and functional changes of kinetochores, leading to abnormal chromosome segregation, aneuploidy and apoptosis in cells. Here we report the expression and function of CENP-A during mouse oocyte meiosis. Our study found that microinjection of CENP-A blocking antibody resulted in errors of homologous chromosome segregation and caused aneuploidy in eggs. Thus, our findings provide evidence that CENP-A is critical for the faithful chromosome segregation during mammalian oocyte meiosis.

  15. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia.

    Science.gov (United States)

    Li, Yilong; Schwab, Claire; Ryan, Sarra; Papaemmanuil, Elli; Robinson, Hazel M; Jacobs, Patricia; Moorman, Anthony V; Dyer, Sara; Borrow, Julian; Griffiths, Mike; Heerema, Nyla A; Carroll, Andrew J; Talley, Polly; Bown, Nick; Telford, Nick; Ross, Fiona M; Gaunt, Lorraine; McNally, Richard J Q; Young, Bryan D; Sinclair, Paul; Rand, Vikki; Teixeira, Manuel R; Joseph, Olivia; Robinson, Ben; Maddison, Mark; Dastugue, Nicole; Vandenberghe, Peter; Stephens, Philip J; Cheng, Jiqiu; Van Loo, Peter; Stratton, Michael R; Campbell, Peter J; Harrison, Christine J

    2014-04-03

    Changes in gene dosage are a major driver of cancer, known to be caused by a finite, but increasingly well annotated, repertoire of mutational mechanisms. This can potentially generate correlated copy-number alterations across hundreds of linked genes, as exemplified by the 2% of childhood acute lymphoblastic leukaemia (ALL) with recurrent amplification of megabase regions of chromosome 21 (iAMP21). We used genomic, cytogenetic and transcriptional analysis, coupled with novel bioinformatic approaches, to reconstruct the evolution of iAMP21 ALL. Here we show that individuals born with the rare constitutional Robertsonian translocation between chromosomes 15 and 21, rob(15;21)(q10;q10)c, have approximately 2,700-fold increased risk of developing iAMP21 ALL compared to the general population. In such cases, amplification is initiated by a chromothripsis event involving both sister chromatids of the Robertsonian chromosome, a novel mechanism for cancer predisposition. In sporadic iAMP21, breakage-fusion-bridge cycles are typically the initiating event, often followed by chromothripsis. In both sporadic and rob(15;21)c-associated iAMP21, the final stages frequently involve duplications of the entire abnormal chromosome. The end-product is a derivative of chromosome 21 or the rob(15;21)c chromosome with gene dosage optimized for leukaemic potential, showing constrained copy-number levels over multiple linked genes. Thus, dicentric chromosomes may be an important precipitant of chromothripsis, as we show rob(15;21)c to be constitutionally dicentric and breakage-fusion-bridge cycles generate dicentric chromosomes somatically. Furthermore, our data illustrate that several cancer-specific mutational processes, applied sequentially, can coordinate to fashion copy-number profiles over large genomic scales, incrementally refining the fitness benefits of aggregated gene dosage changes.

  16. The formation and recovery of two-break chromosome rearrangements from irradiated spermatozoa of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Leigh, B.

    1978-01-01

    Chromosome and chromatid-type rearrangements can be induced by exposure of spermatozoa of Drosophila to ionising radiation. A model, proposed to explain the formation and recovery of compound autosomes, has been extended to account for the induction of centric fragments capped by a duplication of paternal chromosome material. Three basic assumptions have been used; (1) that the sperm nucleus contains a haploid set of unreplicated chromosomes, (2) that the broken chromosome ends can be joined together before or after replication, and (3) that one of the first two cleavage nuclei may be lost and an adult organism derived from the other. The present paper reports a theoretical application of this combination of aasumptions to the general case of the formation and recovery of two-break rearrangements. This has led to an elucidation of the relation between repeats, compounds, fragments, and deficiencies on the one hand and inversions and translocations on the other hand. Dicentric chromosomes and segmental aneuploidy can be simply explained. A selective screen is formed by the segregation of chromatid rearrangements and the aneuploidy tolerance levels of the early cleavage nuclei. Thus there is an alternative way of explaining observations which might indicate preferential breakage or joining

  17. Different structure of polytene chromosome of phaseolus coccineus suspensors during early embryogenesis

    International Nuclear Information System (INIS)

    Tagliasacchi, A.M.; Forino, L.M.C.; Cionini, P.G.; Cavallini, A.; Durante, M.; Cremonini, R.; Avanzi, S.

    1984-01-01

    Different regions of polytene chromosomes pair VI have been characterized by: 1. morphological observations, 2. incorporation of 3 H-thymidine and 3 H-uridine, 3. cytophotometry of DNA and associated proteins, 4. hybridization with satellite DNA and highly repeated DNA sequences. The collected data indicate that DNA and RNA puffs are organized by heterochromatic segments. DNA puffs show often a clustered pattern of labeling by 3 H-thymidine and RNA puffs are always labeled by 3 H-urindine. Each heterochromatic segment is characterized by a definite ratio between DNA and associated fastgreen stainable proteins. Satellite DNA binds mostly to heterochromatic blocks at centromers, highly repeated DNA sequences bind, with approximately the same frequency, to centromeric heterochromatin and to the main intercalary heterochromatic band. The telomeric portions of euchromatin seem to be also enriched in highly repeated DNA sequences. The results indicate that heterochromatic chromosome segments might be sites of intense localized DNA replication. The same chromosome regions are also engaged in an active transcription process. The response to hybridization suggests that heterochromatic blocks of chromosome pair VI are heterogeneous in nucleotide sequences. The present studies also indicate that DNA and RNA puffs organized by different chromosome sites are specific of particular steps of embryo differentiation. The observed metabolic aspects of the suspensior's polytene chromosomes are discussed in relation to the synthesis of growth regulators which is known to occur in the suspensor. (Author)

  18. Chromosomal analyses in Megalonema platanum (Siluriformes: Pimelodidae, an endangered species from South American rivers

    Directory of Open Access Journals (Sweden)

    Rafael Augusto de Carvalho

    Full Text Available This study presents chromosomal data of Megalonema platanum from rio Tibagi, Paraná, Brazil and from rio Paraná, Argentina. The diploid number was equal 54 with karyotype composition of 24m+16sm+2st+12a in both populations. The AgNOR sites were detected in the terminal position of a submetacentric pair of the two analyzed populations, coinciding with secondary constrictions on the short arm of pair 15. CMA3 and FISH with 18S rDNA probe displayed fluorescent signals that correspond to the AgNOR sites and secondary constriction. The presence of a small acrocentric supernumerary chromosome can be observed in M. platanum from rio Tibagi, with centromeric heterochromatin. Others heterochromatic blocks were evidenced in the terminal position of some chromosome and one metacentric large chromosome pair, probably the first pair, showed an interstitial heterochromatin. In the population of the rio Paraná were still observed heterochromatic blocks in both ends in some chromosomes. This work brings for the first time cytogenetic date of M. platanum, which is a very rare species in the rio Paraná basin and may be endangered.

  19. Human interphase chromosomes: a review of available molecular cytogenetic technologies

    Directory of Open Access Journals (Sweden)

    Yurov Yuri B

    2010-01-01

    Full Text Available Abstract Human karyotype is usually studied by classical cytogenetic (banding techniques. To perform it, one has to obtain metaphase chromosomes of mitotic cells. This leads to the impossibility of analyzing all the cell types, to moderate cell scoring, and to the extrapolation of cytogenetic data retrieved from a couple of tens of mitotic cells to the whole organism, suggesting that all the remaining cells possess these genomes. However, this is far from being the case inasmuch as chromosome abnormalities can occur in any cell along ontogeny. Since somatic cells of eukaryotes are more likely to be in interphase, the solution of the problem concerning studying postmitotic cells and larger cell populations is interphase cytogenetics, which has become more or less applicable for specific biomedical tasks due to achievements in molecular cytogenetics (i.e. developments of fluorescence in situ hybridization -- FISH, and multicolor banding -- MCB. Numerous interphase molecular cytogenetic approaches are restricted to studying specific genomic loci (regions being, however, useful for identification of chromosome abnormalities (aneuploidy, polyploidy, deletions, inversions, duplications, translocations. Moreover, these techniques are the unique possibility to establish biological role and patterns of nuclear genome organization at suprachromosomal level in a given cell. Here, it is to note that this issue is incompletely worked out due to technical limitations. Nonetheless, a number of state-of-the-art molecular cytogenetic techniques (i.e multicolor interphase FISH or interpahase chromosome-specific MCB allow visualization of interphase chromosomes in their integrity at molecular resolutions. Thus, regardless numerous difficulties encountered during studying human interphase chromosomes, molecular cytogenetics does provide for high-resolution single-cell analysis of genome organization, structure and behavior at all stages of cell cycle.

  20. Microsatellite organization in the grasshopper Abracris flavolineata (Orthoptera: Acrididae revealed by FISH mapping: remarkable spreading in the A and B chromosomes.

    Directory of Open Access Journals (Sweden)

    Diogo Milani

    Full Text Available With the aim of acquiring deeper knowledge about repetitive DNAs chromosomal organization in grasshoppers, we used fluorescent in situ hybridization (FISH to map the distribution of 16 microsatellite repeats, including mono-, di-, tri- and tetra-nucleotides, in the chromosomes of the species Abracris flavolineata (Acrididae, which harbors B chromosome. FISH revealed two main patterns: (i exclusively scattered signals, and (ii scattered and specific signals, forming evident blocks. The enrichment was observed in both euchromatic and heterochromatic areas and only the motif (C30 was absent in heterochromatin. The A and B chromosomes were enriched with all the elements that were mapped, being observed in the B chromosome more distinctive blocks for (GA15 and (GAG10. For A complement distinctive blocks were noticed for (A30, (CA15, (CG15, (GA15, (CAC10, (CAA10, (CGG10, (GAA10, (GAC10 and (GATA8. These results revealed an intense spreading of microsatellites in the A. flavolineata genome that was independent of the A+T or G+C enrichment in the repeats. The data indicate that the microsatellites compose the B chromosome and could be involved in the evolution of this element in this species, although no specific relationship with any A chromosome was observed to discuss about its origin. The systematic analysis presented here contributes to the knowledge of repetitive DNA chromosomal organization among grasshoppers including the B chromosomes.

  1. Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation

    Science.gov (United States)

    Shukla, Anil; Kong, Dong; Sharma, Meena; Magidson, Valentin; Loncarek, Jadranka

    2015-01-01

    Centrosome overduplication promotes mitotic abnormalities, invasion and tumorigenesis. Cells regulate the number of centrosomes by limiting centriole duplication to once per cell cycle. The orthogonal orientation between a mother and a daughter centriole, established at the time of centriole duplication, is thought to block further duplication of the mother centriole. Loss of orthogonal orientation (disengagement) between two centrioles during anaphase is considered a licensing event for the next round of centriole duplication. Disengagement requires the activity of Polo-like kinase 1 (Plk1), but how Plk1 drives this process is not clear. Here we employ correlative live/electron microscopy and demonstrate that Plk1 induces maturation and distancing of the daughter centriole, allowing reduplication of the mother centriole even if the original daughter centriole is still orthogonal to it. We find that mother centrioles can undergo reduplication when original daughter centrioles are only ∼80 nm apart, which is the distance centrioles normally reach during prophase. PMID:26293378

  2. Large Scale Chromosome Folding Is Stable against Local Changes in Chromatin Structure.

    Directory of Open Access Journals (Sweden)

    Ana-Maria Florescu

    2016-06-01

    Full Text Available Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 105 basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes.

  3. Decreased exploratory activity in a mouse model of 15q duplication syndrome; implications for disturbance of serotonin signaling.

    Directory of Open Access Journals (Sweden)

    Kota Tamada

    Full Text Available Autism spectrum disorders (ASDs have garnered significant attention as an important grouping of developmental brain disorders. Recent genomic studies have revealed that inherited or de novo copy number variations (CNVs are significantly involved in the pathophysiology of ASDs. In a previous report from our laboratory, we generated mice with CNVs as a model of ASDs, with a duplicated mouse chromosome 7C that is orthologous to human chromosome 15q11-13. Behavioral analyses revealed paternally duplicated (patDp/+ mice displayed abnormal behaviors resembling the symptoms of ASDs. In the present study, we extended these findings by performing various behavioral tests with C57BL/6J patDp/+ mice, and comprehensively measuring brain monoamine levels with ex vivo high performance liquid chromatography. Compared with wild-type controls, patDp/+ mice exhibited decreased locomotor and exploratory activities in the open field test, Y-maze test, and fear-conditioning test. Furthermore, their decreased activity levels overcame increased appetite induced by 24 hours of food deprivation in the novelty suppressed feeding test. Serotonin levels in several brain regions of adult patDp/+ mice were lower than those of wild-type control, with no concurrent changes in brain levels of dopamine or norepinephrine. Moreover, analysis of monoamines in postnatal developmental stages demonstrated reduced brain levels of serotonin in young patDp/+ mice. These findings suggest that a disrupted brain serotonergic system, especially during postnatal development, may generate the phenotypes of patDp/+ mice.

  4. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  5. A chromosomal analysis of four species of Chilean Chrysomelinae (Coleoptera, Chrysomelidae).

    Science.gov (United States)

    Petitpierre, Eduard; Elgueta, Mario

    2012-01-01

    Four species of Chilean leaf beetles in the subfamily Chrysomelinae have been cytogenetically analyzed, Blaptea elguetai Petitpierre, 2011, Henicotherus porteri Bréthes, 1929 and Jolivetia obscura (Philippi, 1864) show 2n = 28 chromosomes and a 13 + Xyp male meioformula, and Pataya nitida (Philippi, 1864) has the highest number of 2n = 38 chromosomes. The karyotype of Henicotherus porteri is made of mostly small meta/submetacentric chromosomes, and that of Jolivetia obscura displays striking procentric blocks of heterochromatin at pachytene autosomic bivalents using conventional staining. These findings are discussed in relation to previous cytogenetic data and current taxonomy of the subfamily.

  6. The odds of duplicate gene persistence after polyploidization

    Directory of Open Access Journals (Sweden)

    Chain Frédéric JJ

    2011-12-01

    Full Text Available Abstract Background Gene duplication is an important biological phenomenon associated with genomic redundancy, degeneration, specialization, innovation, and speciation. After duplication, both copies continue functioning when natural selection favors duplicated protein function or expression, or when mutations make them functionally distinct before one copy is silenced. Results Here we quantify the degree to which genetic parameters related to gene expression, molecular evolution, and gene structure in a diploid frog - Silurana tropicalis - influence the odds of functional persistence of orthologous duplicate genes in a closely related tetraploid species - Xenopus laevis. Using public databases and 454 pyrosequencing, we obtained genetic and expression data from S. tropicalis orthologs of 3,387 X. laevis paralogs and 4,746 X. laevis singletons - the most comprehensive dataset for African clawed frogs yet analyzed. Using logistic regression, we demonstrate that the most important predictors of the odds of duplicate gene persistence in the tetraploid species are the total gene expression level and evenness of expression across tissues and development in the diploid species. Slow protein evolution and information density (fewer exons, shorter introns in the diploid are also positively correlated with duplicate gene persistence in the tetraploid. Conclusions Our findings suggest that a combination of factors contribute to duplicate gene persistence following whole genome duplication, but that the total expression level and evenness of expression across tissues and through development before duplication are most important. We speculate that these parameters are useful predictors of duplicate gene longevity after whole genome duplication in other taxa.

  7. Colonic duplication in an adult

    International Nuclear Information System (INIS)

    Baro, P.; Dario Casas, J.; Sanchez, D.

    1988-01-01

    A case of colonic duplication that was diagnosed radiologically in an adult is reported. A long duplicated segment below the normal transverse colon, with a wide anastomosis at the hepatic flexure level, was observed on barium enema. The rarity of this anomaly unassociated with other malformations is emphasized. (orig.)

  8. Clinical Fact of Rectal Duplication with gastric heterotopy | Atmani ...

    African Journals Online (AJOL)

    Enteric duplication could occur through the entire alimentary tract. A case of rectal duplication cyst with heterotopic gastric mucosa in a chid is described. MRI scan is shown useful in the diagnosis of the duplication. The treatment is the complete local resection of the rectal duplication. Keywords: duplication, rectal, MRI, ...

  9. Duplications of the Y-chromosome specific loci P25 and 92R7 and forensic implications

    DEFF Research Database (Denmark)

    Sanchez Sanchez, Juan Jose; Brión, Maria; Parson, Walther

    2004-01-01

    methodologies were used in order to detect the SNP alleles and the PSVs of the loci. All results obtained with the various typing techniques supported the conclusion. The allele distributions of the binary markers were analysed in more than 600 males with seven different haplogroups. For P25, the ancestral...... allele C was found in several samples from different haplogroups. The derived allele A was always present with an additional C variant. Haplogroup P was defined by the derived allele A at the 92R7 locus. However, the ancestral allele G was always associated with an A variant due to the duplication....

  10. Noncommunicating Isolated Enteric Duplication Cyst in the ...

    African Journals Online (AJOL)

    Noncommunicating isolated enteric duplications in the abdomen are an extremely rare variant of enteric duplications with their own blood supply. We report a case of a noncommunicating isolated ileal duplication in a 10-month-old boy. He was admitted because of severe abdominal distension and developed irritability ...

  11. Laparoscopic excision of a newborn rectal duplication cyst.

    Science.gov (United States)

    Hartin, Charles W; Lau, Stanley T; Escobar, Mauricio A; Glick, Philip L

    2008-08-01

    Congenital rectal duplication cyst is a rare entity treated with surgical excision. Without treatment, a rectal duplication cyst may cause a variety of complications, most notably, transforming into a malignancy. We report on a 7-week-old girl who was found to have a rectal duplication cyst. The rectal duplication cyst was successfully excised laparoscopically. Rectal duplication cysts are rare alimentary tract anomalies generally discovered during childhood. Complications include symptoms arising from the cyst and the possibility of malignant degeneration. They are typically managed by surgical excision.

  12. Our experience with unusual gastrointestinal tract duplications in infants

    Directory of Open Access Journals (Sweden)

    Bilal Mirza

    2014-01-01

    Full Text Available Background: Classical duplications may present along any part of gastrointestinal tract (GIT from mouth to anus. Atypical or unusual rare varieties of GIT duplications may also occur, but with different anatomical features. Materials and Methods: We reviewed our 5-year record (February 2008-January 2013 to describe clinical profile of unusual GIT duplications in neonates and small infants. Results: Three patients with atypical variety of GIT duplications were managed in our department during this tenure. Two were females and one male. Age was ranged between 11 days and 2 months. All patients presented with massive abdominal distension causing respiratory embarrassment in two of them. In all patients, the pre-operative differential diagnoses also included GIT duplication cysts. Computerized tomography (CT scan showed single huge cyst in one and multiple cysts in two patients. In one patient the CT scan also depicted a thoracic cyst in relation to posterior mediastinum. At operation, one patient had colonic tubular duplication cyst along with another isolated duplication cyst, the second case had a tubular duplication cyst of ileum with its segmental dilatation, and in the third case two isolated duplications were found. Duplication cysts were excised along with mucosal stripping in one patient, cyst excision and intestinal resection and anastomosis in one patient, and only cysts excision in one. All patients did well post-operatively. Conclusion: We presented unusual GIT duplications. These duplications are managed on similar lines as classical duplications with good prognosis when dealt early.

  13. The idic(X)(q13) in myeloid malignancies: breakpoint clustering in segmental duplications and association with TET2 mutations

    DEFF Research Database (Denmark)

    Paulsson, Kajsa; Haferlach, Claudia; Fonatsch, Christa

    2010-01-01

    Myelodysplastic syndromes and acute myeloid leukemia with an isodicentric X chromosome [idic(X)(q13)] occur in elderly women and frequently display ringed sideroblasts. Because of the rarity of idic(X)(q13), little is known about its formation, whether a fusion gene is generated, and patterns...... of additional aberrations. We here present an SNP array study of 14 idic(X)-positive myeloid malignancies, collected through an international collaborative effort. The breakpoints clustered in two regions of segmental duplications and were not in a gene, making dosage effects from the concurrent gain of Xpter......-q13 and loss of Xq13-qter, rather than a fusion gene, the most likely pathogenetic outcome. Methylation analysis revealed involvement of the inactive X chromosomes in five cases and of the active in two. The ABCB7 gene, mutated in X-linked sideroblastic anemia and spinocerebellar ataxia...

  14. A de novo 1.38 Mb duplication of 1q31.1 in a boy with hemifacial microsomia, anophthalmia, anotia, macrostomia, and cleft lip and palate.

    Science.gov (United States)

    Huang, Xue-shuang; Zhu, Bao; Jiang, Hai-ou; Wu, Su-fan; Zhang, Zai-qi; Xiao, Lin; Yi, Li-lan; Zhang, Jian-xiang

    2013-04-01

    We reported a 2-year-old boy with developmental delay, mild mental retardation, and severe craniofacial malformation, including facial asymmetry with hypoplasia of the left zygoma, maxilla, and mandible, and left anophthalmia and anotia. A genome-wide screen revealed a 1.38 Mb duplication on chromosome 1q31.1, which was absent in his parents and 27 healthy controls. The duplication region contains two Refseq genes, PLA2G4A and C1orf99, which have not been reported to be implicated in craniofacial malformation. Functional studies of these genes and additional clinical analysis are necessary to elucidate the pathogenesis of craniofacial malformation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Fluorescence- and NOR-studies at chromosomes of several vertebrate-species

    International Nuclear Information System (INIS)

    Maurer, F.

    1984-05-01

    In the investigated species of fishes clear-cut Chromomycin-positive blocks were visualised. This holds true as well for Lecaspius delineatus, Gobio gobio, Perca fluciatilis, Cyprinus carpio, Carassius and auratus gibelio. In contrast, DA-DAPI-Fluorescence was homogenous along the entire chromosome. The silver-impregnation-technique proved useful in all investigated species of fisches. In the chicken certain chromosome-districts the Chromomycin-fluorescence was more pronounced than in others; Distamycin-DAPI led to a homogeneous staining along hole the arms. The investigations in mouse-chromosomes revealed an R-banding-pattern. The Distamycin-DAPI-pattern of mouse-chromosomes were complementary to the Chromomycin-pattern and strongly pronounced centromeres. Again Distmycin-DAPI-staining did not allow an unquastinable bandling resolution; simularities to Actimomycin-DAPI-fluorochrome-included patterns were observed. By means of silver-impragnation-techniques the presence of double-point-formed NOR's on more chromosomes were highlighted. However an exact destination of the number was not possible and remains reserved to further investigations. (Author)

  16. Meiotic inheritance of a fungal supernumerary chromosome and its effect on sexual fertility in Nectria haematococca.

    Science.gov (United States)

    Garmaroodi, Hamid S; Taga, Masatoki

    2015-10-01

    PDA1-conditionally dispensable chromosome (CDC) of Nectria haematococca MP VI has long served as a model of supernumerary chromosomes in plant pathogenic fungi because of pathogenicity-related genes located on it. In our previous study, we showed the dosage effects of PDA1-CDC on pathogenicity and homoserine utilization by exploiting tagged PDA1-CDC with a marker gene. CDC content of mating partners and progenies analyzed by PCR, PFGE combined with Southern analysis and chromosome painting via FISH. In this study, we analyzed mode of meiotic inheritance of PDA1-CDC in several mating patterns with regard to CDC content and found a correlation between CDC content of parental strains with fertility of crosses. The results showed non-Mendelian inheritance of this chromosome followed by duplication or loss of the CDC in haploid genome through meiosis that probably were due to premature centromere division, not by nondisjunction as reported for the supernumerary chromosomes in other species. Correlation of CDC with fertility is the first time to be examined in fungi in this study. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  17. Study of duplication 24bp of ARX gene among patients presenting a Mental Retardation with a syndromic and non syndromic forms

    International Nuclear Information System (INIS)

    Essouissi, Imen

    2006-01-01

    Mental Retardation (MR) is the most frequent handicap. It touches 3% of the general population. The genetic causes of this handicap account for 40% of these cases. ARX gene (Aristaless related homeobox gene) belongs to the family of the genes homeobox located in Xp22.1. It is considered as the most frequently muted gene after the FMR1 gene. It is implicated in various forms of syndromic and nonsyndromic MR. Several types of mutation were identified on the level of this gene, including deletions/insertions, duplications, missense and nonsense mutations, responsible for a wide spectrum of phenotypes. The goal of this work is to seek the most frequent change of gene ARX: duplication 24pb (at the origin of an expansion of the field poly has protein ARX in the position 144-155AA) among Tunisian boys presenting in particular family forms of non specific MR, sporadic forms of non specific MR like certain patients presenting a West syndrome.To prove the duplication of 24 Pb, we used in this work the Pcr technique. The change of duplication 24pb was not found in our series, this could be explained by the low number of cases family studied (38 families) and by the absence of connection studies accusing a mode of transmission related to X chromosome in particular for the sporadic cases. (Author)

  18. On Computing Breakpoint Distances for Genomes with Duplicate Genes.

    Science.gov (United States)

    Shao, Mingfu; Moret, Bernard M E

    2017-06-01

    A fundamental problem in comparative genomics is to compute the distance between two genomes in terms of its higher level organization (given by genes or syntenic blocks). For two genomes without duplicate genes, we can easily define (and almost always efficiently compute) a variety of distance measures, but the problem is NP-hard under most models when genomes contain duplicate genes. To tackle duplicate genes, three formulations (exemplar, maximum matching, and any matching) have been proposed, all of which aim to build a matching between homologous genes so as to minimize some distance measure. Of the many distance measures, the breakpoint distance (the number of nonconserved adjacencies) was the first one to be studied and remains of significant interest because of its simplicity and model-free property. The three breakpoint distance problems corresponding to the three formulations have been widely studied. Although we provided last year a solution for the exemplar problem that runs very fast on full genomes, computing optimal solutions for the other two problems has remained challenging. In this article, we describe very fast, exact algorithms for these two problems. Our algorithms rely on a compact integer-linear program that we further simplify by developing an algorithm to remove variables, based on new results on the structure of adjacencies and matchings. Through extensive experiments using both simulations and biological data sets, we show that our algorithms run very fast (in seconds) on mammalian genomes and scale well beyond. We also apply these algorithms (as well as the classic orthology tool MSOAR) to create orthology assignment, then compare their quality in terms of both accuracy and coverage. We find that our algorithm for the "any matching" formulation significantly outperforms other methods in terms of accuracy while achieving nearly maximum coverage.

  19. Duplications created by transformation in Sordaria macrospora are not inactivated during meiosis.

    Science.gov (United States)

    Le Chevanton, L; Leblon, G; Lebilcot, S

    1989-09-01

    We present here the first report of a transformation system developed for the filamentous fungus Sordaria macrospora. Protoplasts from a ura-5 strain were transformed using the cloned Sordaria gene at a frequency of 2 x 10(-5) transformants per viable protoplast (10 per microgram of DNA). Transformation occurred by integration of the donor sequences in the chromosomes of the recipient strain. In 71 cases out of 74, integration occurred outside the ura5 locus; frequently several (two to four) copies were found at a unique integration site. Using the advantage of the spore colour phenotype of the ura5-1 marker, we have shown that the transformed phenotype is stable through mitosis and meiosis in all transformants analysed. No methylation of the duplicated sequences could be observed during meiotic divisions in the transformants.

  20. Perforated ileal duplication cyst with haemorrhagic pseudocyst formation

    International Nuclear Information System (INIS)

    Hwang, Im Kyung; Kim, Bong Soo; Kim, Heung Chul; Lee, In Sun; Hwang, Woo Chul; Namkung, Sook

    2003-01-01

    Duplication cysts of the gastrointestinal tract are rare congenital abnormalities. Ectopic gastric mucosa, which can be found in duplications, may cause peptic ulceration, gastrointestinal bleeding or perforation. We report a 1-year-old boy with a perforated ileal duplication cyst with haemorrhagic pseudocyst formation caused by peptic ulceration of the duplication cyst. It presented a snowman-like appearance consisting of a small, thick-walled, true enteric cyst and a large, thin-walled haemorrhagic pseudocyst on US and CT. It is an unusual manifestation of a duplication cyst, which has not been reported in the English language literature. (orig.)

  1. Increased chromosomal breakage in Tourette syndrome predicts the possibility of variable multiple gene involvement in spectrum phenotypes: Preliminary findings and hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Gericke, G.S.; Simonic, I.; Cloete, E.; Buckle, C. [Univ. of Pretoria (South Africa)] [and others

    1995-10-09

    Increased chromosomal breakage was found in 12 patients with DSM-IV Tourette syndrome (TS) as compared with 10 non-TS control individuals with respect to untreated, modified RPM1-, and BrdU treated lymphocyte cultures (P < 0.001 in each category). A hypothesis is proposed that a major TS gene is probably connected to genetic instability, and associated chromosomal marker sites may be indicative of the localization of secondary genes whose altered expression could be responsible for associated comorbid conditions. This concept implies that genes influencing higher brain functions may be situated at or near highly recombigenic areas allowing enhanced amplification, duplication and recombination following chromosomal strand breakage. Further studies on a larger sample size are required to confirm the findings relating to chromosomal breakage and to analyze the possible implications for a paradigmatic shift in linkage strategy for complex disorders by focusing on areas at or near unstable chromosomal marker sites. 32 refs., 1 tab.

  2. Gallbladder duplication

    Directory of Open Access Journals (Sweden)

    Yagan Pillay

    2015-01-01

    Conclusion: Duplication of the gallbladder is a rare congenital abnormality, which requires special attention to the biliary ductal and arterial anatomy. Laparoscopic cholecystectomy with intraoperative cholangiography is the appropriate treatment in a symptomatic gallbladder. The removal of an asymptomatic double gallbladder remains controversial.

  3. A chromosomal analysis of four species of Chilean Chrysomelinae (Coleoptera, Chrysomelidae

    Directory of Open Access Journals (Sweden)

    Eduard Petitpierre

    2012-10-01

    Full Text Available Four species of Chilean leaf beetles in the subfamily Chrysomelinae have been cytogenetically analyzed, Blaptea elguetai Petitpierre, 2011, Henicotherus porteri Bréthes, 1929 and Jolivetia obscura (Philippi, 1864 show 2n = 28 chromosomes and a 13 + Xyp male meioformula, and Pataya nitida (Philippi, 1864 has the highest number of 2n = 38 chromosomes. The karyotype of H. porteri is made of mostly small meta/submetacentric chromosomes, and that of Jolivetia obscura displays striking procentric blocks of heterochromatin at pachytene autosomic bivalents using conventional staining. These findings are discussed in relation to previous cytogenetic data and current taxonomy of the subfamily.

  4. A chromosomal analysis of four species of Chilean Chrysomelinae (Coleoptera, Chrysomelidae)

    Science.gov (United States)

    Petitpierre, Eduard; Elgueta, Mario

    2012-01-01

    Abstract Four species of Chilean leaf beetles in the subfamily Chrysomelinae have been cytogenetically analyzed, Blaptea elguetai Petitpierre, 2011, Henicotherus porteri Bréthes, 1929 and Jolivetia obscura (Philippi, 1864) show 2n = 28 chromosomes and a 13 + Xyp male meioformula, and Pataya nitida (Philippi, 1864) has the highest number of 2n = 38 chromosomes. The karyotype of Henicotherus porteri is made of mostly small meta/submetacentric chromosomes, and that of Jolivetia obscura displays striking procentric blocks of heterochromatin at pachytene autosomic bivalents using conventional staining. These findings are discussed in relation to previous cytogenetic data and current taxonomy of the subfamily. PMID:24260673

  5. Recombinant chromosome 7 in a mosaic 45,X/47,XXX patient.

    Science.gov (United States)

    Tirado, Carlos A; Gotway, Garrett; Torgbe, Emmanuel; Iyer, Santha; Dallaire, Stephanie; Appleberry, Taylor; Suterwala, Mohamed; Garcia, Rolando; Valdez, Federico; Patel, Sangeeta; Koduru, Prasad

    2012-01-01

    Individuals with pericentric inversions are at risk for producing offspring with chromosomal gains and losses, while those carrying paracentric inversions usually produce unviable gametes [Madan, 1995]. In this current study, we present a newborn with dysmorphic features and malformations, whose karyotype showed an abnormal copy of chromomosome 7 described at first as add(7)(q32) as well as mos 45,X/47,XXX. Array comparative genomic hybridization (CGH) revealed an interstitial deletion in the long arm of chromosome 7 involving bands q35 to q36.3 but retaining the 7q subtelomere. The patient's deletion is believed to be due to meiotic recombination in the inversion loop in the phenotypically normal father who seems to carry two paracentric inversions in the long arm of chromosome 7, which was described as rec(7)(7pter- > q35::q36.3- > 7qter)pat. The abnormal copy of chromosome 7 in the father has been described as: der(7)(7pter- > q22.1::q36.3- > q35::q22.1- > q35::q36.3- > 7qter). This is a unique karyotype that to our knowledge has not been previously reported in the literature and predisposes to meiotic recombination that can result in deletions or duplications of 7q35-36. Copyright © 2011 Wiley Periodicals, Inc.

  6. Presentation and Surgical Management of Duodenal Duplication in Adults

    Directory of Open Access Journals (Sweden)

    Caroline C. Jadlowiec

    2015-01-01

    Full Text Available Duodenal duplications in adults are exceedingly rare and their diagnosis remains difficult as symptoms are largely nonspecific. Clinical presentations include pancreatitis, biliary obstruction, gastrointestinal bleeding from ectopic gastric mucosa, and malignancy. A case of duodenal duplication in a 59-year-old female is presented, and her treatment course is reviewed with description of combined surgical and endoscopic approach to repair, along with a review of historic and current recommendations for management. Traditionally, gastrointestinal duplications have been treated with surgical resection; however, for duodenal duplications, the anatomic proximity to the biliopancreatic ampulla makes surgical management challenging. Recently, advances in endoscopy have improved the clinical success of cystic intraluminal duodenal duplications. Despite these advances, surgical resection is still recommended for extraluminal tubular duplications although combined techniques may be necessary for long tubular duplications. For duodenal duplications, a combined approach of partial excision combined with mucosal stripping may offer advantage.

  7. Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes.

    Science.gov (United States)

    Singh, Nagendra K; Dalal, Vivek; Batra, Kamlesh; Singh, Binay K; Chitra, G; Singh, Archana; Ghazi, Irfan A; Yadav, Mahavir; Pandit, Awadhesh; Dixit, Rekha; Singh, Pradeep K; Singh, Harvinder; Koundal, Kirpa R; Gaikwad, Kishor; Mohapatra, Trilochan; Sharma, Tilak R

    2007-01-01

    The high-quality rice genome sequence is serving as a reference for comparative genome analysis in crop plants, especially cereals. However, early comparisons with bread wheat showed complex patterns of conserved synteny (gene content) and colinearity (gene order). Here, we show the presence of ancient duplicated segments in the progenitor of wheat, which were first identified in the rice genome. We also show that single-copy (SC) rice genes, those representing unique matches with wheat expressed sequence tag (EST) unigene contigs in the whole rice genome, show more than twice the proportion of genes mapping to syntenic wheat chromosome as compared to the multicopy (MC) or duplicated rice genes. While 58.7% of the 1,244 mapped SC rice genes were located in single syntenic wheat chromosome groups, the remaining 41.3% were distributed randomly to the other six non-syntenic wheat groups. This could only be explained by a background dispersal of genes in the genome through transposition or other unknown mechanism. The breakdown of rice-wheat synteny due to such transpositions was much greater near the wheat centromeres. Furthermore, the SC rice genes revealed a conserved primordial gene order that gives clues to the origin of rice and wheat chromosomes from a common ancestor through polyploidy, aneuploidy, centromeric fusions, and translocations. Apart from the bin-mapped wheat EST contigs, we also compared 56,298 predicted rice genes with 39,813 wheat EST contigs assembled from 409,765 EST sequences and identified 7,241 SC rice gene homologs of wheat. Based on the conserved colinearity of 1,063 mapped SC rice genes across the bins of individual wheat chromosomes, we predicted the wheat bin location of 6,178 unmapped SC rice gene homologs and validated the location of 213 of these in the telomeric bins of 21 wheat chromosomes with 35.4% initial success. This opens up the possibility of directed mapping of a large number of conserved SC rice gene homologs in wheat

  8. A scale invariant clustering of genes on human chromosome 7

    Directory of Open Access Journals (Sweden)

    Kendal Wayne S

    2004-01-01

    Full Text Available Abstract Background Vertebrate genes often appear to cluster within the background of nontranscribed genomic DNA. Here an analysis of the physical distribution of gene structures on human chromosome 7 was performed to confirm the presence of clustering, and to elucidate possible underlying statistical and biological mechanisms. Results Clustering of genes was confirmed by virtue of a variance of the number of genes per unit physical length that exceeded the respective mean. Further evidence for clustering came from a power function relationship between the variance and mean that possessed an exponent of 1.51. This power function implied that the spatial distribution of genes on chromosome 7 was scale invariant, and that the underlying statistical distribution had a Poisson-gamma (PG form. A PG distribution for the spatial scattering of genes was validated by stringent comparisons of both the predicted variance to mean power function and its cumulative distribution function to data derived from chromosome 7. Conclusion The PG distribution was consistent with at least two different biological models: In the microrearrangement model, the number of genes per unit length of chromosome represented the contribution of a random number of smaller chromosomal segments that had originated by random breakage and reconstruction of more primitive chromosomes. Each of these smaller segments would have necessarily contained (on average a gamma distributed number of genes. In the gene cluster model, genes would be scattered randomly to begin with. Over evolutionary timescales, tandem duplication, mutation, insertion, deletion and rearrangement could act at these gene sites through a stochastic birth death and immigration process to yield a PG distribution. On the basis of the gene position data alone it was not possible to identify the biological model which best explained the observed clustering. However, the underlying PG statistical model implicated neutral

  9. Rectal Duplication%直肠重复畸形

    Institute of Scientific and Technical Information of China (English)

    张道荣; 牟弦琴; 李振东; 李恭才; 王修忠; 代蕊霜

    1983-01-01

    @@ 我们两院近10年来共收治先天性直肠重复畸形17例(其中河北医学院11例,西安医学院6例).均经手术及病理证实.现总结如下:临床资料本组男性6例,女性11例,最小年龄4天,最大年龄14岁.%This paper reports 17 cases of rectal duplication. There were 6 males and 11rectal duplications were divided into three bordered by a common wall.9 patients in this series were found to have this condition.a rectovestitubular fistula.B.Pararectal duplication.The duplicated bowel lies near elliptical in shape and filled with fluid.In Complicated rectal duplication.The dupticated bowel is located at the perineum near the abnormal anus and is usually associated with hypospadia.Two cases were of this type.between the duplicated bowel and normal rectum must be partially resected at the distal end.The rectovestitubular fistula should be repaired at the same time.Pararectal duplication can be completely resected.resect the duplicated bowel from perineum but leave the genital anomaly for later treatment.

  10. Rectal duplication cyst in a cat.

    Science.gov (United States)

    Kook, Peter H; Hagen, Regine; Willi, Barbara; Ruetten, Maja; Venzin, Claudio

    2010-12-01

    Enteric duplication is a rare developmental malformation in people, dogs and cats. The purpose of the present report is to describe the first case of a rectal duplication cyst in a 7-year-old domestic shorthair cat presenting for acute constipation and tenesmus. On rectal palpation a spherical mass compressing the lumen of the rectum could be felt in the dorsal wall of the rectum. A computed tomography (CT) scan confirmed the presence of a well demarcated cystic lesion in the pelvic canal, dorsal to the rectum. The cyst was surgically removed via a perineal approach. No communication with the rectal lumen could be demonstrated. Histopathological examination was consistent with a rectal duplication cyst. Clinical signs resolved completely after excision of this conjoined non-communicating cystic rectal duplicate. Copyright © 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  11. Effect of Duplicate Genes on Mouse Genetic Robustness: An Update

    Directory of Open Access Journals (Sweden)

    Zhixi Su

    2014-01-01

    Full Text Available In contrast to S. cerevisiae and C. elegans, analyses based on the current knockout (KO mouse phenotypes led to the conclusion that duplicate genes had almost no role in mouse genetic robustness. It has been suggested that the bias of mouse KO database toward ancient duplicates may possibly cause this knockout duplicate puzzle, that is, a very similar proportion of essential genes (PE between duplicate genes and singletons. In this paper, we conducted an extensive and careful analysis for the mouse KO phenotype data and corroborated a strong effect of duplicate genes on mouse genetics robustness. Moreover, the effect of duplicate genes on mouse genetic robustness is duplication-age dependent, which holds after ruling out the potential confounding effect from coding-sequence conservation, protein-protein connectivity, functional bias, or the bias of duplicates generated by whole genome duplication (WGD. Our findings suggest that two factors, the sampling bias toward ancient duplicates and very ancient duplicates with a proportion of essential genes higher than that of singletons, have caused the mouse knockout duplicate puzzle; meanwhile, the effect of genetic buffering may be correlated with sequence conservation as well as protein-protein interactivity.

  12. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jeroen Dobbelaere

    2008-09-01

    Full Text Available Centrosomes comprise a pair of centrioles surrounded by an amorphous pericentriolar material (PCM. Here, we have performed a microscopy-based genome-wide RNA interference (RNAi screen in Drosophila cells to identify proteins required for centriole duplication and mitotic PCM recruitment. We analysed 92% of the Drosophila genome (13,059 genes and identified 32 genes involved in centrosome function. An extensive series of secondary screens classified these genes into four categories: (1 nine are required for centriole duplication, (2 11 are required for centrosome maturation, (3 nine are required for both functions, and (4 three genes regulate centrosome separation. These 32 hits include several new centrosomal components, some of which have human homologs. In addition, we find that the individual depletion of only two proteins, Polo and Centrosomin (Cnn can completely block centrosome maturation. Cnn is phosphorylated during mitosis in a Polo-dependent manner, suggesting that the Polo-dependent phosphorylation of Cnn initiates centrosome maturation in flies.

  13. Automating dicentric chromosome detection from cytogenetic biodosimetry data.

    Science.gov (United States)

    Rogan, Peter K; Li, Yanxin; Wickramasinghe, Asanka; Subasinghe, Akila; Caminsky, Natasha; Khan, Wahab; Samarabandu, Jagath; Wilkins, Ruth; Flegal, Farrah; Knoll, Joan H

    2014-06-01

    We present a prototype software system with sufficient capacity and speed to estimate radiation exposures in a mass casualty event by counting dicentric chromosomes (DCs) in metaphase cells from many individuals. Top-ranked metaphase cell images are segmented by classifying and defining chromosomes with an active contour gradient vector field (GVF) and by determining centromere locations along the centreline. The centreline is extracted by discrete curve evolution (DCE) skeleton branch pruning and curve interpolation. Centromere detection minimises the global width and DAPI-staining intensity profiles along the centreline. A second centromere is identified by reapplying this procedure after masking the first. Dicentrics can be identified from features that capture width and intensity profile characteristics as well as local shape features of the object contour at candidate pixel locations. The correct location of the centromere is also refined in chromosomes with sister chromatid separation. The overall algorithm has both high sensitivity (85 %) and specificity (94 %). Results are independent of the shape and structure of chromosomes in different cells, or the laboratory preparation protocol followed. The prototype software was recoded in C++/OpenCV; image processing was accelerated by data and task parallelisation with Message Passaging Interface and Intel Threading Building Blocks and an asynchronous non-blocking I/O strategy. Relative to a serial process, metaphase ranking, GVF and DCE are, respectively, 100 and 300-fold faster on an 8-core desktop and 64-core cluster computers. The software was then ported to a 1024-core supercomputer, which processed 200 metaphase images each from 1025 specimens in 1.4 h. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Human ETS2 gene on chromosome 21 is not rearranged in Alzheimer disease

    International Nuclear Information System (INIS)

    Sacchi, N.; Nalbantoglu, J.; Sergovich, F.R.; Papas, T.S.

    1988-01-01

    The human ETS2 gene, a member of the ETS gene family, with sequence homology with the retroviral ets sequence of the avian erythroblastosis retrovirus E26 is located on chromosome 21. Molecular genetic analysis of Down syndrome (DS) patients with partial trisomy 21 allowed us to reinforce the supposition that ETS2 may be a gene of the minimal DS genetic region. It was originally proposed that a duplication of a portion of the DS region represents the genetic basis of Alzheimer disease, a condition associated also with DS. No evidence of either rearrangements or duplications of ETS2 could be detected in DNA from fibroblasts and brain tissue of Alzheimer disease patients with either the sporadic or the familiar form of the disease. Thus, an altered ETS2 gene dosage does not seem to be a genetic cause or component of Alzheimer disease

  15. Automating dicentric chromosome detection from cytogenetic bio-dosimetry data

    International Nuclear Information System (INIS)

    Rogan, Peter K.; Li, Yanxin; Wickramasinghe, Asanka; Subasinghe, Akila; Caminsky, Natasha; Khan, Wahab; Samarabandu, Jagath; Knoll, Joan H.; Wilkins, Ruth; Flegal, Farrah

    2014-01-01

    We present a prototype software system with sufficient capacity and speed to estimate radiation exposures in a mass casualty event by counting dicentric chromosomes (DCs) in metaphase cells from many individuals. Top-ranked metaphase cell images are segmented by classifying and defining chromosomes with an active contour gradient vector field (GVF) and by determining centromere locations along the centreline. The centreline is extracted by discrete curve evolution (DCE) skeleton branch pruning and curve interpolation. Centromere detection minimises the global width and DAPI-staining intensity profiles along the centreline. A second centromere is identified by reapplying this procedure after masking the first. Dicentrics can be identified from features that capture width and intensity profile characteristics as well as local shape features of the object contour at candidate pixel locations. The correct location of the centromere is also refined in chromosomes with sister chromatid separation. The overall algorithm has both high sensitivity (85 %) and specificity (94 %). Results are independent of the shape and structure of chromosomes in different cells, or the laboratory preparation protocol followed. The prototype software was re-coded in C++/OpenCV; image processing was accelerated by data and task parallelization with Message Passaging Interface and Intel Threading Building Blocks and an asynchronous non-blocking I/O strategy. Relative to a serial process, metaphase ranking, GVF and DCE are, respectively, 100 and 300-fold faster on an 8-core desktop and 64-core cluster computers. The software was then ported to a 1024-core supercomputer, which processed 200 metaphase images each from 1025 specimens in 1.4 h. (authors)

  16. Homozygous 16p13.11 duplication associated with mild intellectual disability and urinary tract malformations in two siblings born from consanguineous parents.

    Science.gov (United States)

    Houcinat, N; Llanas, B; Moutton, S; Toutain, J; Cailley, D; Arveiler, B; Combe, C; Lacombe, D; Rooryck, C

    2015-11-01

    The use of array-comparative genomic hybridization (array-CGH) in routine clinical work has allowed the identification of many new copy number variations (CNV). The 16p13.11 duplication has been implicated in various congenital anomalies and neurodevelopmental disorders, but it has also been identified in healthy individuals. We report a clinical observation of two brothers from related parents each carrying a homozygous 16p13.11 duplication. The propositus had mild intellectual disability and posterior urethral valves with chronic renal disease. His brother was considered a healthy child with only learning disabilities and poor academic performances. However, a routine medical examination at 25-years-old revealed a mild chronic renal disease and ureteropelvic junction obstruction. Furthermore, the father presented with a unilateral renal agenesis, thus it seemed that a "congenital anomalies of kidney and urinary tract" (CAKUT) phenotype segregated in this family. This may be related to the duplication, but we cannot exclude the involvement of additional genetic or non-genetic factors in the urological phenotype. Several cohort studies showed association between this chromosomal imbalance and different clinical manifestations, but rarely with CAKUT. The duplication reported here was similar to the larger one of 3.4 Mb previously described versus the more common of 1.6 Mb. It encompassed at least 11 known genes, including the five ohnologs previously identified. Our observation, in addition to expanding the clinical spectrum of the duplication provides further support to understanding the underlying pathogenic mechanism. © 2015 Wiley Periodicals, Inc.

  17. Long segment ileal duplication with extensive gastric heterotopia

    Directory of Open Access Journals (Sweden)

    Jacob Sunitha

    2009-07-01

    Full Text Available Duplications of the alimentary tract are rare congenital anomalies which can be found at all levels of the alimentary tract. Majority of the duplications present as spherical cysts and usually range from a few millimeters to less than ten centimeters in size. Duplications produce complications such as intestinal obstruction or hemorrhage. A two-month-old infant presented with recurrent episodes of bleeding per rectum. Laparotomy revealed a giant ileal duplicated bowel segment which exhibited extensive gastric heterotopia with focal ulceration.

  18. Identification of a Basic Helix-Loop-Helix-Type Transcription Regulator Gene in Aspergillus oryzae by Systematically Deleting Large Chromosomal Segments▿ †

    OpenAIRE

    Jin, Feng Jie; Takahashi, Tadashi; Machida, Masayuki; Koyama, Yasuji

    2009-01-01

    We previously developed two methods (loop-out and replacement-type recombination) for generating large-scale chromosomal deletions that can be applied to more effective chromosomal engineering in Aspergillus oryzae. In this study, the replacement-type method is used to systematically delete large chromosomal DNA segments to identify essential and nonessential regions in chromosome 7 (2.93 Mb), which is the smallest A. oryzae chromosome and contains a large number of nonsyntenic blocks. We con...

  19. Finding all sorting tandem duplication random loss operations

    DEFF Research Database (Denmark)

    Bernt, Matthias; Chen, Kuan Yu; Chen, Ming Chiang

    2011-01-01

    A tandem duplication random loss (TDRL) operation duplicates a contiguous segment of genes, followed by the random loss of one copy of each of the duplicated genes. Although the importance of this operation is founded by several recent biological studies, it has been investigated only rarely from...

  20. A worldwide phylogeography for the human X chromosome.

    Directory of Open Access Journals (Sweden)

    Simone S Santos-Lopes

    Full Text Available BACKGROUND: We reasoned that by identifying genetic markers on human X chromosome regions where recombination is rare or absent, we should be able to construct X chromosome genealogies analogous to those based on Y chromosome and mitochondrial DNA polymorphisms, with the advantage of providing information about both male and female components of the population. METHODOLOGY/PRINCIPAL FINDINGS: We identified a 47 Kb interval containing an Alu insertion polymorphism (DXS225 and four microsatellites in complete linkage disequilibrium in a low recombination rate region of the long arm of the human X chromosome. This haplotype block was studied in 667 males from the HGDP-CEPH Human Genome Diversity Panel. The haplotypic diversity was highest in Africa (0.992+/-0.0025 and lowest in the Americas (0.839+/-0.0378, where no insertion alleles of DXS225 were observed. Africa shared few haplotypes with other geographical areas, while those exhibited significant sharing among themselves. Median joining networks revealed that the African haplotypes were numerous, occupied the periphery of the graph and had low frequency, whereas those from the other continents were few, central and had high frequency. Altogether, our data support a single origin of modern man in Africa and migration to occupy the other continents by serial founder effects. Coalescent analysis permitted estimation of the time of the most recent common ancestor as 182,000 years (56,700-479,000 and the estimated time of the DXS225 Alu insertion of 94,400 years (24,300-310,000. These dates are fully compatible with the current widely accepted scenario of the origin of modern mankind in Africa within the last 195,000 years and migration out-of-Africa circa 55,000-65,000 years ago. CONCLUSIONS/SIGNIFICANCE: A haplotypic block combining an Alu insertion polymorphism and four microsatellite markers on the human X chromosome is a useful marker to evaluate genetic diversity of human populations and

  1. Embryonic duplications in sheep.

    Science.gov (United States)

    Dennis, S M

    1975-02-01

    Twenty-seven embryonic duplications were examined during a 3-year investigation into the causes of perinatal lamb mortality. Twenty of the 27 were anomalous twins with 19 being conjoined (diplopagus 9 and heteropagus 10). The various duplications were: haloacardius acephalus 1, diprosopus 2, dicephalus 2, dipypus 3, diprosopus dipygus 1, syncephalus dipygus 1, pygopagus parasiticus 1, heteropagus dipygus 3, melodidymus 6, polyury 4, penile duplication 2, and bilateral otognathia 1. Four lambs were living and the time of death of the others was: parturient 8, and post-parturient 15. Average dry weight of the lambs was 3.35 kg (range 1.59 to 5.45 kg). Breed distribution was: Merino 77.8%, Crossbred 14.8%, Dorset Horn 3.7%, and Corriedale 3.7%. The caudal region was involved in 10 of the conjoined twins (52.6%), anterior region in 7 (36.9%), and both anterior and caudal regions in 2 (10.5%). Associated defects were present in 70.4% of the 27 lambs, the most common being atresia ani.

  2. Mitotic and meiotic chromosomes of a southern Brazilian population of Boophilus microplus (Acari, Ixodidae

    Directory of Open Access Journals (Sweden)

    Rosane Nunes Garcia

    Full Text Available Using conventional staining with acetic orcein and C-banding techniques it was investigated constitutive heterochromatin chromosomal polymorphisms and the mitotic and the meiotic behavior of male and female chromosomes of Boophilus microplus (Canestrini, 1887. Some differences were detected in the population of southern Brazil as compared to the data of other authors for populations in other latitudes. The differences being mainly concerned with the distribution of constitutive centromeric heterochromatin and variation in the length of heterochromatic blocks in the pericentromeric regions of some chromosome pairs.

  3. Major Histocompatibility Complex Genes Map to Two Chromosomes in an Evolutionarily Ancient Reptile, the Tuatara Sphenodon punctatus.

    Science.gov (United States)

    Miller, Hilary C; O'Meally, Denis; Ezaz, Tariq; Amemiya, Chris; Marshall-Graves, Jennifer A; Edwards, Scott

    2015-05-07

    Major histocompatibility complex (MHC) genes are a central component of the vertebrate immune system and usually exist in a single genomic region. However, considerable differences in MHC organization and size exist between different vertebrate lineages. Reptiles occupy a key evolutionary position for understanding how variation in MHC structure evolved in vertebrates, but information on the structure of the MHC region in reptiles is limited. In this study, we investigate the organization and cytogenetic location of MHC genes in the tuatara (Sphenodon punctatus), the sole extant representative of the early-diverging reptilian order Rhynchocephalia. Sequencing and mapping of 12 clones containing class I and II MHC genes from a bacterial artificial chromosome library indicated that the core MHC region is located on chromosome 13q. However, duplication and translocation of MHC genes outside of the core region was evident, because additional class I MHC genes were located on chromosome 4p. We found a total of seven class I sequences and 11 class II β sequences, with evidence for duplication and pseudogenization of genes within the tuatara lineage. The tuatara MHC is characterized by high repeat content and low gene density compared with other species and we found no antigen processing or MHC framework genes on the MHC gene-containing clones. Our findings indicate substantial differences in MHC organization in tuatara compared with mammalian and avian MHCs and highlight the dynamic nature of the MHC. Further sequencing and annotation of tuatara and other reptile MHCs will determine if the tuatara MHC is representative of nonavian reptiles in general. Copyright © 2015 Miller et al.

  4. Prevalence of lower extremity venous duplication

    Directory of Open Access Journals (Sweden)

    Simpson William

    2010-01-01

    Full Text Available Purpose: This retrospective study was performed to determine the prevalence of lower extremity venous duplication using duplex ultrasound in the patient population of a large urban medical center. Materials and Methods: The reports of all lower extremity venous ultrasound examinations performed at our institution between January 1, 2002 and December 31, 2002 were reviewed. Ultrasound examinations that were performed for purposes other than the detection of lower extremity deep vein thrombosis were excluded. The prevalence of duplication and its specific location were recorded. In addition, the prevalence of thrombus and its specific location were also recorded. Results: A total of 3118 exams were performed in 2664 patients. Of the 2664 patients, 2311 had only one examination performed during the study period; 353 patients had more than one examination performed. We found that 10.1% of patients (270/2664 had at least one venous segment duplicated and 5.4% of patients (143/2664 had a thrombus in at least one venous segment. There was a statistically significant difference in the prevalence of both duplication and thrombus with a change in venous segment. Only 0.4% of patients (11/2664 had thrombus within a duplicated segment. Of those who had more than one examination performed, 15.3% (54/353 had the same venous segment(s seen on one examination but not another. Conclusion: Lower extremity venous duplication is a frequent anatomic variant that is seen in 10.1% of patients, but it may not be as common as is generally believed. It can result in a false negative result for deep vein thrombosis.

  5. Partial AZFc duplications not deletions are associated with male infertility in the Yi population of Yunnan Province, China.

    Science.gov (United States)

    Ye, Jun-jie; Ma, Li; Yang, Li-juan; Wang, Jin-huan; Wang, Yue-li; Guo, Hai; Gong, Ning; Nie, Wen-hui; Zhao, Shu-hua

    2013-09-01

    There are many reports on associations between spermatogenesis and partial azoospermia factor c (AZFc) deletions as well as duplications; however, results are conflicting, possibly due to differences in methodology and ethnic background. The purpose of this study is to investigate the association of AZFc polymorphisms and male infertility in the Yi ethnic population, residents within Yunnan Province, China. A total of 224 infertile patients and 153 fertile subjects were selected in the Yi ethnic population. The study was performed by sequence-tagged site plus/minus (STS+/-) analysis followed by gene dosage and gene copy definition analysis. Y haplotypes of 215 cases and 115 controls were defined by 12 binary markers using single nucleotide polymorphism on Y chromosome (Y-SNP) multiplex assays based on single base primer extension technology. The distribution of Y haplotypes was not significantly different between the case and control groups. The frequencies of both gr/gr (7.6% vs. 8.5%) and b2/b3 (6.3% vs. 8.5%) deletions do not show significant differences. Similarly, single nucleotide variant (SNV) analysis shows no significant difference of gene copy definition between the cases and controls. However, the frequency of partial duplications in the infertile group (4.0%) is significantly higher than that in the control group (0.7%). Further, we found a case with sY1206 deletion which had two CDY1 copies but removed half of DAZ genes. Our results show that male infertility is associated with partial AZFc duplications, but neither gr/gr nor b2/b3 deletions, suggesting that partial AZFc duplications rather than deletions are risk factors for male infertility in Chinese-Yi population.

  6. Complete cloacal duplication imaged before and during pregnancy.

    Science.gov (United States)

    Ragab, Omar; Landay, Melanie; Shriki, Jabi

    2009-01-01

    The authors describe a 31 year-old female who presented emergently with abdominal pain and was found at CT to have complete genitourinary duplication including separate urinary bladders, uteri, cervices, and vaginas, and also duplication of the rectum. No etiology for abdominal pain was identified. The patient was referred to urology for further evaluation, and an intravenous urographic study was obtained, which confirmed complete lower urinary tract duplication. The patient presented emergently 9 months later during a subsequent pregnancy for further evaluation of abdominal pain. A second CT scan was ordered to rule out appendicitis. Findings consistent with cloacal duplication were again noted. There was also dilatation of the urinary collecting systems, more prominently on the right side. A Cesarean section was performed and confirmed total genitourinary and rectal duplication.

  7. An unusual presentation of a rectal duplication cyst.

    Science.gov (United States)

    Jackson, Katharine L; Peche, William J; Rollins, Michael D

    2012-01-01

    Intestinal duplications are rare developmental anomalies that can occur anywhere along the gastrointestinal tract. Rectal duplication cysts account for approximately 4% of all duplication cysts. They usually present in childhood with symptoms of mass effect, local infection or more rarely with rectal bleeding from ectopic gastric mucosa. A 26year old male presented with a history of bright red blood per rectum. On examination a mucosal defect with an associated cavity adjacent to the rectum was identified. This was confirmed with rigid proctoscopy and CT scan imaging. A complete transanal excision was performed. Rectal duplication cysts are more common in pediatric patients. They more frequently present with symptoms of mass effect or local infection than with rectal bleeding. In adult patients they are a rare cause of rectal bleeding. Definitive treatment is with surgical excision. A transanal, transcoccygeal, posterior sagittal or a combined abdominoperineal approach may be used depending on anatomic characteristics of the duplication cyst. We present a rare case of a rectal duplication cyst presenting in adulthood with rectal bleeding, managed with transanal excision. Published by Elsevier Ltd.

  8. [Rectal duplication cyst--case report].

    Science.gov (United States)

    Turyna, R; Horák, L; Kucera, E; Hejda, V; Krofta, L; Feyereisl, J

    2009-06-01

    The authors demonstrate a rare case of duplication anomaly of the rectum. Case report. Institute for the Care of Mother and Child, Prague. We present a rare case of cystic rectal duplication in adult, completely removed and histologically confirmed. A literature review was summarized. The case was complicated by delay in diagnosis, multiple operations, and by the association with endometriosis, as well. Mentioned anomaly is published in the Czech literature for the very first time.

  9. Biparental inheritance of chromosomal abnormalities in male twins with non-syndromic mental retardation

    DEFF Research Database (Denmark)

    Nielsen, Mette Gilling; Lind-Thomsen, Allan; Mang, Yuan

    2011-01-01

    In a monozygotic twin couple with mental retardation (MR), we identified a maternally inherited inversion and a paternally inherited translocation: 46,XY,inv(10)(p11.2q21.2)mat,t(9;18)(p22;q21.1)pat. The maternally inherited inv(10) was a benign variant without any apparent phenotypical...... implications. The translocation breakpoint at 9p was within a cluster of interferon a genes and the 18q21 breakpoint truncated ZBTB7C (zinc finger and BTB containing 7C gene). In addition, analyses with array-CGH revealed a 931 kb maternally inherited deletion on chromosome 8q22 as well as an 875 kb maternally...... inherited duplication on 5p14. The deletion encompasses the RIM2 (Rab3A-interacting molecule 2), FZD6 (Frizzled homolog 6) and BAALC (Brain and Acute Leukemia Gene, Cytoplasmic) genes and the duplication includes the 5' end of the CDH9 (cadherin 9) gene. Exome sequencing did not reveal any additional...

  10. Origin, evolution, and population genetics of the selfish Segregation Distorter gene duplication in European and African populations of Drosophila melanogaster.

    Science.gov (United States)

    Brand, Cara L; Larracuente, Amanda M; Presgraves, Daven C

    2015-05-01

    Meiotic drive elements are a special class of evolutionarily "selfish genes" that subvert Mendelian segregation to gain preferential transmission at the expense of homologous loci. Many drive elements appear to be maintained in populations as stable polymorphisms, their equilibrium frequencies determined by the balance between drive (increasing frequency) and selection (decreasing frequency). Here we show that a classic, seemingly balanced, drive system is instead characterized by frequent evolutionary turnover giving rise to dynamic, rather than stable, equilibrium frequencies. The autosomal Segregation Distorter (SD) system of the fruit fly Drosophila melanogaster is a selfish coadapted meiotic drive gene complex in which the major driver corresponds to a partial duplication of the gene Ran-GTPase activating protein (RanGAP). SD chromosomes segregate at similar, low frequencies of 1-5% in natural populations worldwide, consistent with a balanced polymorphism. Surprisingly, our population genetic analyses reveal evidence for parallel, independent selective sweeps of different SD chromosomes in populations on different continents. These findings suggest that, rather than persisting at a single stable equilibrium, SD chromosomes turn over frequently within populations. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  11. Siblings with opposite chromosome constitutions, dup(2q)/del(7q) and del(2q)/dup(7q).

    Science.gov (United States)

    Shim, Sung Han; Shim, Jae Sun; Min, Kyunghoon; Lee, Hee Song; Park, Ji Eun; Park, Sang Hee; Hwang, Euna; Kim, Minyoung

    2014-01-15

    Chromosome 7q36 microdeletion syndrome is a rare genomic disorder characterized by underdevelopment of the brain, microcephaly, anomalies of the sex organs, and language problems. Developmental delay, intellectual disability, autistic spectrum disorders, BDMR syndrome, and unusual facial morphology are the key features of the chromosome 2q37 microdeletion syndrome. A genetic screening for two brothers with global developmental delay using high-resolution chromosomal analysis and subtelomeric multiplex ligation-dependent probe amplification revealed subtelomeric rearrangements on the same sites of 2q37.2 and 7q35, with reversed deletion and duplication. Both of them showed dysmorphic facial features, severe disability of physical and intellectual development, and abnormal genitalia with differential abnormalities in their phenotypes. The family did not have abnormal genetic phenotypes. According to the genetic analysis of their parents, adjacent-1 segregation from their mother's was suggested as a mechanism of their gene mutation. By comparing the phenotypes of our patients with previous reports on similar patients, we tried to obtain the information of related genes and their chromosomal locations. © 2013.

  12. Cells bearing chromosome aberrations lacking one telomere are selectively blocked at the G2/M checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Pilar [Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Barquinero, Joan Francesc [Unitat d' Antropologia Biologica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Duran, Assumpta [Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Caballin, Maria Rosa [Unitat d' Antropologia Biologica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Ribas, Montserrat [Servei de Radiofisica i Radioproteccio de l' Hospital de la Santa Creu i Sant Pau, 08025 Barcelona (Spain); Barrios, Leonardo, E-mail: Lleonard.Barrios@uab.cat [Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)

    2009-11-02

    Cell cycle checkpoints are part of the cellular mechanisms to maintain genomic integrity. After ionizing radiation exposure, the cells can show delay or arrest in their progression through the cell cycle, as well as an activation of the DNA repair machinery in order to reduce the damage. The G2/M checkpoint prevents G2 cells entering mitosis until the DNA damage has been reduced. The present study evaluates which G0 radiation-induced chromosome aberrations are negatively selected in the G2/M checkpoint. For this purpose, peripheral blood samples were irradiated at 1 and 3 Gy of {gamma}-rays, and lymphocytes were cultured for 48 h. Calyculin-A and Colcemid were used to analyze, in the same slide, cells in G2 and M. Chromosome spreads were consecutively analyzed by solid stain, pancentromeric and pantelomeric FISH and mFISH. The results show that the frequency of incomplete chromosome elements, those lacking a telomeric signal at one end, decreases abruptly from G2 to M. This indicates that cells with incomplete chromosome elements can progress from G0 to G2, but at the G2/M checkpoint suffer a strong negative selection.

  13. Cells bearing chromosome aberrations lacking one telomere are selectively blocked at the G2/M checkpoint

    International Nuclear Information System (INIS)

    Rodriguez, Pilar; Barquinero, Joan Francesc; Duran, Assumpta; Caballin, Maria Rosa; Ribas, Montserrat; Barrios, Leonardo

    2009-01-01

    Cell cycle checkpoints are part of the cellular mechanisms to maintain genomic integrity. After ionizing radiation exposure, the cells can show delay or arrest in their progression through the cell cycle, as well as an activation of the DNA repair machinery in order to reduce the damage. The G2/M checkpoint prevents G2 cells entering mitosis until the DNA damage has been reduced. The present study evaluates which G0 radiation-induced chromosome aberrations are negatively selected in the G2/M checkpoint. For this purpose, peripheral blood samples were irradiated at 1 and 3 Gy of γ-rays, and lymphocytes were cultured for 48 h. Calyculin-A and Colcemid were used to analyze, in the same slide, cells in G2 and M. Chromosome spreads were consecutively analyzed by solid stain, pancentromeric and pantelomeric FISH and mFISH. The results show that the frequency of incomplete chromosome elements, those lacking a telomeric signal at one end, decreases abruptly from G2 to M. This indicates that cells with incomplete chromosome elements can progress from G0 to G2, but at the G2/M checkpoint suffer a strong negative selection.

  14. Duplicate Record Elimination in Large Data Files.

    Science.gov (United States)

    1981-08-01

    UNCLASSIFIJED CSTR -445 NL LmEE~hhE - I1.0 . 111112----5 1.~4 __112 ___IL25_ 1.4 111111.6 EI24 COMPUTER SCIENCES DEPARTMENT oUniversity of Wisconsin...we propose a combinatorial model for the use in the analysis of algorithms for duplicate elimination. We contend that this model can serve as a...duplicates in a multiset of records, knowing the size of the multiset and the number of distinct records in it. 3. Algorithms for Duplicate Elimination

  15. Molecular diagnostic testing for Klinefelter syndrome and other male sex chromosome aneuploidies

    Directory of Open Access Journals (Sweden)

    Hager Karl

    2012-04-01

    Full Text Available Abstract Background Male sex chromosome aneuploidies are underdiagnosed despite concomitant physical and behavioral manifestations. Objective To develop a non-invasive, rapid and high-throughput molecular diagnostic assay for detection of male sex chromosome aneuploidies, including 47,XXY (Klinefelter, 47,XYY, 48,XXYY and 48,XXXY syndromes. Methods The assay utilizes three XYM and four XA markers to interrogate Y:X and X:autosome ratios, respectively. The seven markers were PCR amplified using genomic DNA isolated from a cohort of 323 males with aneuploid (n = 117 and 46,XY (n = 206 karyotypes. The resulting PCR products were subjected to Pyrosequencing, a quantitative DNA sequencing method. Results Receiver operator characteristic (ROC curves were used to establish thresholds for the discrimination of aneuploid from normal samples. The XYM markers permitted the identification of 47,XXY, 48,XXXY and 47,XYY syndromes with 100% sensitivity and specificity in both purified DNA and buccal swab samples. The 48,XXYY karyotype was delineated by XA marker data from 46,XY; an X allele threshold of 43% also permitted detection of 48,XXYY with 100% sensitivity and specificity. Analysis of X chromosome-specific biallelic SNPs demonstrated that 43 of 45 individuals (96% with 48,XXYY karyotype had two distinct X chromosomes, while 2 (4% had a duplicate X, providing evidence that 48,XXYY may result from nondisjunction during early mitotic divisions of a 46,XY embryo. Conclusions Quantitative Pyrosequencing, with high-throughput potential, can detect male sex chromosome aneuploidies with 100% sensitivity.

  16. Genetic control of chromosome instability in Aspergillus nidulans as a means for gene amplification in eukaryotic microorganisms

    International Nuclear Information System (INIS)

    Parag, Y.; Roper, J.A.

    1975-01-01

    A haploid strain of Aspergillus nidulans carrying I-II duplication homozygous for the leaky mutation adE20 shows improved growth on minimal medium. The duplication, though more stable than disomics, still shows instability. Several methods were used for detecting genetic control of improved stability. a) visual selection, using a duplicated strain which is very unstable due to UV sensitivity, (adE20, biAl/dp yA2; uvsB). One stable strain showed a deletion (or a lethal mutation) distal to biA on the segment at the original position (on chromosome I). This deletion reduces crossing-over frequency detween the two homologous segments. As the deletion of the non-translated segment (yellow sectors) must be preceded by crossing-over, the above reduces the frequency of yellow sectors. A deletion of the translocated segment (green sectors) results in non-viability due to the deletion, and such sectors do not appear. The net result is a stable duplication involving only 12 C.O. units carrying the gene in concern. b) Suppressors of UV sensitivity (su-uvsB) were attempted using the above uvs duplicated strain. Phenotypic revertants were easily obtained, but all were back mutations at the uvsB locus. c) Mutations for UV resistance higher than that of the wild type were not obtained, in spite of the strong selective pressure inserted. d) Recombination deficient mutations (rec), six altogether, all uvs + , did not have any effect on stability. (orig.) [de

  17. Evolutionary restoration of fertility in an interspecies hybrid yeast, by whole-genome duplication after a failed mating-type switch.

    Directory of Open Access Journals (Sweden)

    Raúl A Ortiz-Merino

    2017-05-01

    Full Text Available Many interspecies hybrids have been discovered in yeasts, but most of these hybrids are asexual and can replicate only mitotically. Whole-genome duplication has been proposed as a mechanism by which interspecies hybrids can regain fertility, restoring their ability to perform meiosis and sporulate. Here, we show that this process occurred naturally during the evolution of Zygosaccharomyces parabailii, an interspecies hybrid that was formed by mating between 2 parents that differed by 7% in genome sequence and by many interchromosomal rearrangements. Surprisingly, Z. parabailii has a full sexual cycle and is genetically haploid. It goes through mating-type switching and autodiploidization, followed by immediate sporulation. We identified the key evolutionary event that enabled Z. parabailii to regain fertility, which was breakage of 1 of the 2 homeologous copies of the mating-type (MAT locus in the hybrid, resulting in a chromosomal rearrangement and irreparable damage to 1 MAT locus. This rearrangement was caused by HO endonuclease, which normally functions in mating-type switching. With 1 copy of MAT inactivated, the interspecies hybrid now behaves as a haploid. Our results provide the first demonstration that MAT locus damage is a naturally occurring evolutionary mechanism for whole-genome duplication and restoration of fertility to interspecies hybrids. The events that occurred in Z. parabailii strongly resemble those postulated to have caused ancient whole-genome duplication in an ancestor of Saccharomyces cerevisiae.

  18. Chromosomal location of the human gene for DNA polymerase β

    International Nuclear Information System (INIS)

    McBride, O.W.; Zmudzka, B.Z.; Wilson, S.H.

    1987-01-01

    Inhibition studies indicate that DNA polymerase β has a synthetic role in DNA repair after exposure of mammalian cells to some types of DNA-damaging agents. The primary structure of the enzyme is highly conserved in vertebrates, and nearly full-length cDNAs for the enzyme were recently cloned from mammalian cDNA libraries. Southern blot analysis of DNA from a panel of human-rodent somatic cell hybrids, using portions of the cDNA as probe, indicates that the gene for human DNA polymerase β is single copy and located on the short arm or proximal long arm of chromosome 8 (8pter-8q22). A restriction fragment length polymorphism (RFLP) was detected in normal individuals by using a probe from the 5' end of the cDNA, and this RFLP probably is due to an insertion or duplication of DNA in 20-25% of the population. This restriction site can be used as one marker for chromosome 8 genetic linkage studies and for family studies of traits potentially involving this DNA repair gene

  19. A case report of Ileal duplication

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K K; Suh, J H; Choi, B S [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1971-10-15

    Since Frankel reported the congenital anomalous intestinal duplication incidentally during autopsy in 1883, about 228 cases has been reported on the literatures. In our severance hospital, one case of ileal duplication was found, and was confirmed by pathology and surgery. This patient of duplication usually reveals the symptoms of abnormal distension, pain and palpable abdominal mass, and sometimes the symptoms of intestinal obstruction. On x-ray flate abdomen, huge occupying mass displaces intestinal gas pattern to left side. Barium enema study reveals elongation and displacement of ileum by large extrinsic mass. And cecum is also displaced upward. On the IVP, this extrinsic mass is not related to kidneys. Also, the literature was reviewed.

  20. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression.

    Science.gov (United States)

    Karlsson, Asa; Deb-Basu, Debabrita; Cherry, Athena; Turner, Stephanie; Ford, James; Felsher, Dean W

    2003-08-19

    DNA repair mechanisms are essential for the maintenance of genomic integrity. Disruption of gene products responsible for DNA repair can result in chromosomal damage. Improperly repaired chromosomal damage can result in the loss of chromosomes or the generation of chromosomal deletions or translocations, which can lead to tumorigenesis. The MYC protooncogene is a transcription factor whose overexpression is frequently associated with human neoplasia. MYC has not been previously implicated in a role in DNA repair. Here we report that the overexpression of MYC disrupts the repair of double-strand DNA breaks, resulting in a several-magnitude increase in chromosomal breaks and translocations. We found that MYC inhibited the repair of gamma irradiation DNA breaks in normal human cells and blocked the repair of a single double-strand break engineered to occur in an immortal cell line. By spectral karyotypic analysis, we found that MYC even within one cell division cycle resulted in a several-magnitude increase in the frequency of chromosomal breaks and translocations in normal human cells. Hence, MYC overexpression may be a previously undescribed example of a dominant mutator that may fuel tumorigenesis by inducing chromosomal damage.

  1. Single-nucleotide variant in multiple copies of a deleted in azoospermia (DAZ) sequence - a human Y chromosome quantitative polymorphism.

    Science.gov (United States)

    Szmulewicz, Martin N; Ruiz, Luis M; Reategui, Erika P; Hussini, Saeed; Herrera, Rene J

    2002-01-01

    The evolution of the deleted in azoospermia (DAZ) gene family supports prevalent theories on the origin and development of sex chromosomes and sexual dimorphism. The ancestral DAZL gene in human chromosome 3 is known to be involved in germline development of both males and females. The available phylogenetic data suggest that some time after the divergence of the New World and Old World monkey lineages, the DAZL gene, which is found in all mammals, was copied to the Y chromosome of an ancestor to the Old World monkeys, but not New World monkeys. In modern man, the Y-linked DAZ gene complex is located on the distal part of the q arm. It is thought that after being copied to the Y chromosome, and after the divergence of the human and great ape lineages, the DAZ gene in the former underwent internal rearrangements. This included tandem duplications as well as a T > C transition altering an MboI restriction enzyme site in a duplicated sequence. In this study, we report on the ratios of MboI-/MboI+ variant sequences in individuals from seven worldwide human populations (Basque, Benin, Egypt, Formosa, Kungurtug, Oman and Rwanda) in the DAZ complex. The ratio of PCR MboI- and MboI+ amplicons can be used to characterize individuals and populations. Our results show a nonrandom distribution of MboI-/MboI+ sequence ratios in all populations examined, as well as significant differences in ratios between populations when compared pairwise. The multiple ratios imply that there have been more than one recent reorganization events at this locus. Considering the dynamic nature of this locus and its involvement in male fertility, we investigated the extent and distribution of this polymorphism. Copyright 2002 S. Karger AG, Basel

  2. A single enhancer regulating the differential expression of duplicated red-sensitive opsin genes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Taro Tsujimura

    2010-12-01

    Full Text Available A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC clones encompassing the two genes and identified a 0.6-kb "LWS-activating region" (LAR upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.

  3. De novo complex intra chromosomal rearrangement after ICSI: characterisation by BACs micro array-CGH

    Directory of Open Access Journals (Sweden)

    Quimsiyeh Mazin

    2008-12-01

    Full Text Available Abstract Background In routine Assisted Reproductive Technology (ART men with severe oligozoospermia or azoospermia should be informed about the risk of de novo congenital or chromosomal abnormalities in ICSI program. Also the benefits of preimplantation or prenatal genetic diagnosis practice need to be explained to the couple. Methods From a routine ICSI attempt, using ejaculated sperm from male with severe oligozoospermia and having normal karyotype, a 30 years old pregnant woman was referred to prenatal diagnosis in the 17th week for bichorionic biamniotic twin gestation. Amniocentesis was performed because of the detection of an increased foetal nuchal translucency for one of the fetus by the sonographic examination during the 12th week of gestation (WG. Chromosome and DNA studies of the fetus were realized on cultured amniocytes Results Conventional, molecular cytogenetic and microarray CGH experiments allowed us to conclude that the fetus had a de novo pericentromeric inversion associated with a duplication of the 9p22.1-p24 chromosomal region, 46,XY,invdup(9(p22.1p24 [arrCGH 9p22.1p24 (RP11-130C19 → RP11-87O1x3]. As containing the critical 9p22 region, our case is in coincidence with the general phenotype features of the partial trisomy 9p syndrome with major growth retardation, microcephaly and microretrognathia. Conclusion This de novo complex chromosome rearrangement illustrates the possible risk of chromosome or gene defects in ICSI program and the contribution of array-CGH for mapping rapidly de novo chromosomal imbalance.

  4. Genetic control over the processes of postirradiation recovery of a compact chromosome in micrococcus radiodurans

    International Nuclear Information System (INIS)

    Kudryashova, N.Yu.; Groshev, V.V.; Shestakov, S.V.

    1984-01-01

    X-irradiation of Micrococcus radiodurans cells with sublethal doses caused disturbances in the structure of a membrane-bound compact chromosome. Recovery of the compact chromosome occurred during the postirradiation incubation of the wild type cells and cells of the UVS-17 mutant deficient in DNA-polymerase. This process was blocked in cells of rec-30 mutant with the impaired system of genetic recombination: this is indicative of an important role played by rec-30 gene product in the postirradiation recovery of the compact chromosome in M. radiodurans cells

  5. Duplication of Key Frames of Video Streams in Wireless Networks

    OpenAIRE

    Sagatov, Evgeny S.; Sukhov, Andrei M.

    2011-01-01

    In this paper technological solutions for improving the quality of video transfer along wireless networks are investigated. Tools have been developed to allow packets to be duplicated with key frames data. In the paper we tested video streams with duplication of all frames, with duplication of key frames, and without duplication. The experiments showed that the best results are obtained by duplication of packages which contain key frames. The paper also provides an overview of the coefficient...

  6. A 54 Mb 11qter duplication and 0.9 Mb 1q44 deletion in a child with laryngomalacia and agenesis of corpus callosum

    Directory of Open Access Journals (Sweden)

    Lall Meena

    2011-09-01

    Full Text Available Abstract Background Partial Trisomy 11q syndrome (or Duplication 11q has defined clinical features and is documented as a rare syndrome by National Organization of Rare Disorders (NORD. Deletion 1q44 (or Monosomy 1q44 is a well-defined syndrome, but there is controversy about the genes lying in 1q44 region, responsible for agenesis of the corpus callosum. We report a female child with the rare Partial Trisomy 11q syndrome and Deletion 1q44 syndrome. The genomic imbalance in the proband was used for molecular characterization of the critical genes in 1q44 region for agenesis of corpus callosum. Some genes in 11q14q25 may be responsible for laryngomalacia. Results We report a female child with dysmorphic features, microcephaly, growth retardation, seizures, acyanotic heart disease, and hand and foot deformities. She had agenesis of corpus callosum, laryngomalacia, anterior ectopic anus, esophageal reflux and respiratory distress. Chromosome analysis revealed a derivative chromosome 1. Her karyotype was 46,XX,der(1t(1;11(q44;q14pat. The mother had a normal karyotype and the karyotype of the father was 46,XY,t(1;11(q44;q14. SNP array analysis showed that the proband had a 54 Mb duplication of 11q14q25 and a 0.9 Mb deletion of the submicroscopic subtelomeric 1q44 region. Fluorescence Insitu Hybridisation confirmed the duplication of 11qter and deletion of 1qter. Conclusion Laryngomalacia or obstruction of the upper airway is the outcome of increased dosage of some genes due to Partial Trisomy 11q Syndrome. In association with other phenotypic features, agenesis of corpus callosum appears to be a landmark phenotype for Deletion 1q44 syndrome, the critical genes lying proximal to SMYD3 in 1q44 region.

  7. Partial craniofacial duplication: a review of the literature and case report.

    Science.gov (United States)

    Costa, Melinda A; Borzabadi-Farahani, Ali; Lara-Sanchez, Pedro A; Schweitzer, Daniela; Jacobson, Lia; Clarke, Noreen; Hammoudeh, Jeffery; Urata, Mark M; Magee, William P

    2014-06-01

    Diprosopus (Greek; di-, "two" + prosopon, "face"), or craniofacial duplication, is a rare craniofacial anomaly referring to the complete duplication of facial structures. Partial craniofacial duplication describes a broad spectrum of congenital anomalies, including duplications of the oral cavity. This paper describes a 15 month-old female with a duplicated oral cavity, mandible, and maxilla. A Tessier type 7 cleft, midline meningocele, and duplicated hypophysis were also present. The preoperative evaluation, surgical approach, postoperative results, and a review of the literature are presented. The surgical approach was designed to preserve facial nerve innervation to the reconstructed cheek and mouth. The duplicated mandible and maxilla were excised and the remaining left maxilla was bone grafted. Soft tissue repair included closure of the Tessier type VII cleft. Craniofacial duplication remains a rare entity that is more common in females. The pathophysiology remains incompletely characterized, but is postulated to be due to duplication of the notochord, as well as duplication of mandibular growth centres. While diprosopus is a severe deformity often associated with anencephaly, patients with partial duplication typically benefit from surgical treatment. Managing craniofacial duplication requires a detailed preoperative evaluation as well as a comprehensive, staged treatment plan. Long-term follow up is needed appropriately to address ongoing craniofacial deformity. Published by Elsevier Ltd.

  8. Rectal duplication cyst presenting as rectal prolapse in an infant

    Directory of Open Access Journals (Sweden)

    Maher Zaiem

    2018-05-01

    Full Text Available Rectal duplication is a rare variety of gastrointestinal duplication. It accounts 4% of the total gastrointestinal duplications.In this paper, we are reporting a case of an 8 months old male who presented with rectal prolapse. Digital rectal examination revealed a soft mass bulging through the posterior wall of rectum. Computed tomography (CT scan showed a cystic mass compressing the posterior wall of the rectum. The mass was excised using a Muscle Complex Saving Posterior Sagittal approach (MCS-PSA. The pathology report confirmed the diagnosis of the rectal duplication cyst. The postoperative recovery was uneventful. Keywords: Intestinal duplication, Cystic rectal duplication, Rectal prolapse

  9. Next-generation sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications

    Czech Academy of Sciences Publication Activity Database

    Lucas, S. J.; Akpinar, B. A.; Šimková, Hana; Kubaláková, Marie; Doležel, Jaroslav; Budak, H.

    2014-01-01

    Roč. 15, DEC 9 2014 (2014) ISSN 1471-2164 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : Wheat genome * Chromosome sorting * Triticum aestivum Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.986, year: 2014

  10. Domain duplication, divergence, and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers.

    Science.gov (United States)

    Finnerty, John R; Mazza, Maureen E; Jezewski, Peter A

    2009-01-20

    Msx originated early in animal evolution and is implicated in human genetic disorders. To reconstruct the functional evolution of Msx and inform the study of human mutations, we analyzed the phylogeny and synteny of 46 metazoan Msx proteins and tracked the duplication, diversification and loss of conserved motifs. Vertebrate Msx sequences sort into distinct Msx1, Msx2 and Msx3 clades. The sister-group relationship between MSX1 and MSX2 reflects their derivation from the 4p/5q chromosomal paralogon, a derivative of the original "MetaHox" cluster. We demonstrate physical linkage between Msx and other MetaHox genes (Hmx, NK1, Emx) in a cnidarian. Seven conserved domains, including two Groucho repression domains (N- and C-terminal), were present in the ancestral Msx. In cnidarians, the Groucho domains are highly similar. In vertebrate Msx1, the N-terminal Groucho domain is conserved, while the C-terminal domain diverged substantially, implying a novel function. In vertebrate Msx2 and Msx3, the C-terminal domain was lost. MSX1 mutations associated with ectodermal dysplasia or orofacial clefting disorders map to conserved domains in a non-random fashion. Msx originated from a MetaHox ancestor that also gave rise to Tlx, Demox, NK, and possibly EHGbox, Hox and ParaHox genes. Duplication, divergence or loss of domains played a central role in the functional evolution of Msx. Duplicated domains allow pleiotropically expressed proteins to evolve new functions without disrupting existing interaction networks. Human missense sequence variants reside within evolutionarily conserved domains, likely disrupting protein function. This phylogenomic evaluation of candidate disease markers will inform clinical and functional studies.

  11. Domain duplication, divergence, and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers

    Directory of Open Access Journals (Sweden)

    Finnerty John R

    2009-01-01

    Full Text Available Abstract Background Msx originated early in animal evolution and is implicated in human genetic disorders. To reconstruct the functional evolution of Msx and inform the study of human mutations, we analyzed the phylogeny and synteny of 46 metazoan Msx proteins and tracked the duplication, diversification and loss of conserved motifs. Results Vertebrate Msx sequences sort into distinct Msx1, Msx2 and Msx3 clades. The sister-group relationship between MSX1 and MSX2 reflects their derivation from the 4p/5q chromosomal paralogon, a derivative of the original "MetaHox" cluster. We demonstrate physical linkage between Msx and other MetaHox genes (Hmx, NK1, Emx in a cnidarian. Seven conserved domains, including two Groucho repression domains (N- and C-terminal, were present in the ancestral Msx. In cnidarians, the Groucho domains are highly similar. In vertebrate Msx1, the N-terminal Groucho domain is conserved, while the C-terminal domain diverged substantially, implying a novel function. In vertebrate Msx2 and Msx3, the C-terminal domain was lost. MSX1 mutations associated with ectodermal dysplasia or orofacial clefting disorders map to conserved domains in a non-random fashion. Conclusion Msx originated from a MetaHox ancestor that also gave rise to Tlx, Demox, NK, and possibly EHGbox, Hox and ParaHox genes. Duplication, divergence or loss of domains played a central role in the functional evolution of Msx. Duplicated domains allow pleiotropically expressed proteins to evolve new functions without disrupting existing interaction networks. Human missense sequence variants reside within evolutionarily conserved domains, likely disrupting protein function. This phylogenomic evaluation of candidate disease markers will inform clinical and functional studies.

  12. Origin of the duplicated regions in the yeast genomes

    DEFF Research Database (Denmark)

    Piskur, Jure

    2001-01-01

    The genome of Saccharomyces cerevisiae contains several duplicated regions. The recent sequencing results of several yeast species suggest that the duplicated regions found in the modern Saccharomyces species are probably the result of a single gross duplication, as well as a series of sporadic...

  13. Chromosome mapping of repetitive sequences in four Serrasalmidae species (Characiformes

    Directory of Open Access Journals (Sweden)

    Leila Braga Ribeiro

    2014-01-01

    Full Text Available The Serrasalmidae family is composed of a number of commercially interesting species, mainly in the Amazon region where most of these fishes occur. In the present study, we investigated the genomic organization of the 18S and 5S rDNA and telomeric sequences in mitotic chromosomes of four species from the basal clade of the Serrasalmidae family: Colossoma macropomum, Mylossoma aureum, M. duriventre, and Piaractus mesopotamicus, in order to understand the chromosomal evolution in the family. All the species studied had diploid numbers 2n = 54 and exclusively biarmed chromosomes, but variations of the karyotypic formulas were observed. C-banding resulted in similar patterns among the analyzed species, with heterochromatic blocks mainly present in centromeric regions. The 18S rDNA mapping of C. macropomum and P. mesopotamicus revealed multiple sites of this gene; 5S rDNA sites were detected in two chromosome pairs in all species, although not all of them were homeologs. Hybridization with a telomeric probe revealed signals in the terminal portions of chromosomes in all the species and an interstitial signal was observed in one pair of C. macropomum.

  14. X-linked recessive panhypopituitarism associated with a regional duplication in Xq25-q26.

    Science.gov (United States)

    Lagerström-Fermér, M; Sundvall, M; Johnsen, E; Warne, G L; Forrest, S M; Zajac, J D; Rickards, A; Ravine, D; Landegren, U; Pettersson, U

    1997-01-01

    We present a linkage analysis and a clinical update on a previously reported family with X-linked recessive panhypopituitarism, now in its fourth generation. Affected members exhibit variable degrees of hypopituitarism and mental retardation. The markers DXS737 and DXS1187 in the q25-q26 region of the X chromosome showed evidence for linkage with a peak LOD score (Zmax) of 4.12 at zero recombination fraction (theta(max) = 0). An apparent extra copy of the marker DXS102, observed in the region of the disease gene in affected males and heterozygous carrier females, suggests that a segment including this marker is duplicated. The gene causing this disorder appears to code for a dosage-sensitive protein central to development of the pituitary. Images Figure 2 PMID:9106538

  15. Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication

    DEFF Research Database (Denmark)

    Fuchs, J; Nilsson, C; Kachergus, J

    2007-01-01

    complex. The genetic basis for familial parkinsonism is an SNCA-MMRN11 multiplication, but whereas SNCA-MMRN1 duplication in the Swedish proband (Branch J) leads to late-onset autonomic dysfunction and parkinsonism, SNCA-MMRN1 triplication in the Swedish American family (Branch I) leads to early......BACKGROUND: The "Lister family complex," an extensive Swedish family with autosomal dominant Parkinson disease, was first described by Henry Mjönes in 1949. On the basis of clinical, molecular, and genealogic findings on a Swedish and an American family branch, we provide genetic evidence...... that explains the parkinsonism in this extended pedigree. METHODS: Clinical methods included a detailed neurologic exam of the proband of the Swedish family branch, MRI, and ([123]I)-beta-CIT SPECT imaging. Genomic analysis included alpha-synuclein sequencing, SNCA real-time PCR dosage, chromosome 4q21...

  16. [Intestinal volvulus due to yeyunal duplication].

    Science.gov (United States)

    Rodríguez Iglesias, P; Carazo Palacios, M E; Lluna González, J; Ibáñez Pradas, V; Rodríguez Caraballo, L

    2014-10-01

    Duplications of the alimentary tract are congenital malformations. The ileum is the most commonly affected organ. A lot of duplications are incidentally diagnosed but most of patients present a combination of pain or complications such as obstructive symptoms, intestinal intussusception, perforation or volvulus. We report the case of a 6-years-old girl, with intermittent abdominal pain and vomits for two months long. Laboratory work was completely normal and in the radiology analysis (abdominal sonography and magnetic resonance) a cystic image with intestinal volvulus was observed. The patient underwent laparotomy, Ladd's procedure was done and the cyst was resected. In conclusion, if a patient is admitted with abdominal pain and obstructive symptoms, it is important to consider duplication of the alimentary tract as a possible diagnosis.

  17. Surgical management of complete penile duplication accompanied by multiple anomalies.

    Science.gov (United States)

    Karaca, Irfan; Turk, Erdal; Ucan, A Basak; Yayla, Derya; Itirli, Gulcin; Ercal, Derya

    2014-09-01

    Diphallus (penile duplication) is very rare and seen once every 5.5 million births. It can be isolated, but is usually accompanied by other congenital anomalies. Previous studies have reported many concurrent anomalies, such as bladder extrophy, cloacal extrophy, duplicated bladder, scrotal abnormalities, hypospadias, separated symphysis pubis, intestinal anomalies and imperforate anus; no penile duplication case accompanied by omphalocele has been reported. We present the surgical management of a patient with multiple anomalies, including complete penile duplication, hypo-gastric omphalocele and extrophic rectal duplication.

  18. Functional requirements driving the gene duplication in 12 Drosophila species.

    Science.gov (United States)

    Zhong, Yan; Jia, Yanxiao; Gao, Yang; Tian, Dacheng; Yang, Sihai; Zhang, Xiaohui

    2013-08-15

    Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila.

  19. A 1.37-Mb 12p11.22–p11.21 deletion coincident with a 367-kb 22q11.2 duplication detected by array comparative genomic hybridization in an adolescent girl with autism and difficulty in self-care of menstruation

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2014-03-01

    Conclusion: An apparently balanced translocation may be in fact affected by concurrent deletion and duplication in two different chromosomal regions. Our presentation provides information on diagnostic phenotype of 12p11.22–p11.21 microdeletion and 22q11.2 microduplication.

  20. Endoscopic ultrasonography and rectal duplication cyst in an adult.

    Science.gov (United States)

    Castro-Poças, Fernando M; Araújo, Tarcísio P; Silva, Jorge D; Gonçalves, Vicente S

    2017-01-01

    Rectal duplication cysts account for 4% of all duplications of the alimentary tract. Presentation in adulthood is rare. An asymptomatic 54-year-old man was referred for endoscopic colorectal cancer screening. A bulging mass covered by normal mucosa was identified in the rectum. Endoscopic ultrasonography (EUS) with fine needle aspiration (FNA) was made for a diagnosis of rectal duplication cyst. The patient was operated and the diagnosis was confirmed. The diagnosis of the rectal duplication cyst is a challenge. EUS may have a singular role when identifying a muscular layer, because this is the only absolutely necessary criterion for the diagnosis. FNA by EUS may eventually identify colorectal and/or heterotypic epithelium that are the other diagnostic criteria of the duplication cyst.

  1. Global chromosomal structural instability in a subpopulation of starving Escherichia coli cells.

    Directory of Open Access Journals (Sweden)

    Dongxu Lin

    2011-08-01

    Full Text Available Copy-number variations (CNVs constitute very common differences between individual humans and possibly all genomes and may therefore be important fuel for evolution, yet how they form remains elusive. In starving Escherichia coli, gene amplification is induced by stress, controlled by the general stress response. Amplification has been detected only encompassing genes that confer a growth advantage when amplified. We studied the structure of stress-induced gene amplification in starving cells in the Lac assay in Escherichia coli by array comparative genomic hybridization (aCGH, with polymerase chain reaction (pcr and DNA sequencing to establish the structures generated. About 10% of 300 amplified isolates carried other chromosomal structural change in addition to amplification. Most of these were inversions and duplications associated with the amplification event. This complexity supports a mechanism similar to that seen in human non-recurrent copy number variants. We interpret these complex events in terms of repeated template switching during DNA replication. Importantly, we found a significant occurrence (6 out of 300 of chromosomal structural changes that were apparently not involved in the amplification event. These secondary changes were absent from 240 samples derived from starved cells not carrying amplification, suggesting that amplification happens in a differentiated subpopulation of stressed cells licensed for global chromosomal structural change and genomic instability. These data imply that chromosomal structural changes occur in bursts or showers of instability that may have the potential to drive rapid evolution.

  2. Robot system for preparing lymphocyte chromosome

    International Nuclear Information System (INIS)

    Hayata, Isamu; Furukawa, Akira; Yamamoto, Mikio; Sato, Koki; Tabuchi, Hiroyoshi; Okabe, Nobuo.

    1992-01-01

    Towards the automatization of the scoring of chromosome aberrations in radiation dosimetry with the emphasis on the improvement of biological preparations, the conventional culture and harvesting method was modified. Based on this modified method, a culture and harvest robotic system (CHROSY) for preparing lymphocyte chromosome was developed. The targeted points of the modification are as in the preparing lymphocyte chromosome was developed. The targeted points of the modification are as in the following. 1) Starting culture with purified lymphocytes in a fixed cell number. 2) Avoiding the loss of cells in changing the liquids following centrifugalization. 3) Keeping the quantity of the liquids to be applied to the treatments of cells fixed. 4) Building a system even a beginner can handle. System features are as follows. 1) Operation system: Handling robot having 5 degrees of freedom; a rotator incubator with an automatic sliding door; units for setting and removing pipette tips; a centrifuge equipped with a position adjuster and an automatic sliding door; two aluminium block baths; two nozzles as pipettes and aspirators connected to air pumps; a capping unit with a nozzle for CO 2 gas; a compressor; and an air manipulated syringe. 2) Control system; NEC PC-9801RX21 with CRT; and program written in Basic and Assembly languages on MS-DOS. It took this system 2 hours and 25 minutes to harvest 2 cultures. A fairly good chromosome slide was made from the sample harvested by CHROSY automatically. (author)

  3. The ancestral chromosomes of Dromiciops gliroides (Microbiotheridae), and its bearings on the karyotypic evolution of American marsupials.

    Science.gov (United States)

    Suárez-Villota, Elkin Y; Haro, Ronie E; Vargas, Rodrigo A; Gallardo, Milton H

    2016-01-01

    The low-numbered 14-chromosome karyotype of marsupials has falsified the fusion hypothesis claiming ancestrality from a 22-chromosome karyotype. Since the 14-chromosome condition of the relict Dromiciops gliroides is reminecent of ancestrality, its interstitial traces of past putative fusions and heterochromatin banding patterns were studied and added to available marsupials' cytogenetic data. Fluorescent in situ hybridization (FISH) and self-genomic in situ hybridization (self-GISH) were used to detect telomeric and repetitive sequences, respectively. These were complemented with C-, fluorescent banding, and centromere immunodetection over mitotic spreads. The presence of interstitial telomeric sequences (ITS) and diploid numbers were reconstructed and mapped onto the marsupial phylogenetic tree. No interstitial, fluorescent signals, but clearly stained telomeric regions were detected by FISH and self-GISH. Heterochromatin distribution was sparse in the telomeric/subtelomeric regions of large submetacentric chromosomes. Large AT-rich blocks were detected in the long arm of four submetacentrics and CG-rich block in the telomeric regions of all chromosomes. The ancestral reconstructions both ITS presence and diploid numbers suggested that ITS are unrelated to fusion events. Although the lack of interstitial signals in D. gliroides' karyotype does not prove absence of past fusions, our data suggests its non-rearranged plesiomorphic condition.

  4. Efficient Algorithms for Analyzing Segmental Duplications, Deletions, and Inversions in Genomes

    Science.gov (United States)

    Kahn, Crystal L.; Mozes, Shay; Raphael, Benjamin J.

    Segmental duplications, or low-copy repeats, are common in mammalian genomes. In the human genome, most segmental duplications are mosaics consisting of pieces of multiple other segmental duplications. This complex genomic organization complicates analysis of the evolutionary history of these sequences. Earlier, we introduced a genomic distance, called duplication distance, that computes the most parsimonious way to build a target string by repeatedly copying substrings of a source string. We also showed how to use this distance to describe the formation of segmental duplications according to a two-step model that has been proposed to explain human segmental duplications. Here we describe polynomial-time exact algorithms for several extensions of duplication distance including models that allow certain types of substring deletions and inversions. These extensions will permit more biologically realistic analyses of segmental duplications in genomes.

  5. Comparative genomics analysis of rice and pineapple contributes to understand the chromosome number reduction and genomic changes in grasses

    Directory of Open Access Journals (Sweden)

    Jinpeng Wang

    2016-10-01

    Full Text Available Rice is one of the most researched model plant, and has a genome structure most resembling that of the grass common ancestor after a grass common tetraploidization ~100 million years ago. There has been a standing controversy whether there had been 5 or 7 basic chromosomes, before the tetraploidization, which were tackled but could not be well solved for the lacking of a sequenced and assembled outgroup plant to have a conservative genome structure. Recently, the availability of pineapple genome, which has not been subjected to the grass-common tetraploidization, provides a precious opportunity to solve the above controversy and to research into genome changes of rice and other grasses. Here, we performed a comparative genomics analysis of pineapple and rice, and found solid evidence that grass-common ancestor had 2n =2x =14 basic chromosomes before the tetraploidization and duplicated to 2n = 4x = 28 after the event. Moreover, we proposed that enormous gene missing from duplicated regions in rice should be explained by an allotetraploid produced by prominently divergent parental lines, rather than gene losses after their divergence. This means that genome fractionation might have occurred before the formation of the allotetraploid grass ancestor.

  6. Immunohistochemical findings in rectal duplication mimicking rectal prolapse.

    Science.gov (United States)

    Cortese, M G; Pucci, A; Macchieraldo, R; Sacco Casamassima, M G; Canavese, F

    2008-08-01

    Alimentary tract duplications represent rare anomalies, with only 5 % occurring in the rectum. The variety in clinical presentation may lead to a delay in diagnosis or to incorrect and multiple surgical procedures. We report the clinical, histological and immunohistochemical characteristics of a rectal duplication occurring in a 3-month-old male with an unusual clinical presentation. Using routine histology and immunohistochemistry, the rectal duplication showed the diffuse presence of gastric mucosa with a characteristic immunophenotype (i.e., diffuse cytokeratin 7 positivity and scattered chromogranin immunoreactivity). As far as we know, this is the first report showing an immunohistochemical differentiation pattern of gastric lining in a rectal duplication. Our results, showing the presence of gastric mucosa, are suggestive of a possible origin from the embryonic foregut.

  7. Bilateral duplication of the internal auditory canal

    International Nuclear Information System (INIS)

    Weon, Young Cheol; Kim, Jae Hyoung; Choi, Sung Kyu; Koo, Ja-Won

    2007-01-01

    Duplication of the internal auditory canal is an extremely rare temporal bone anomaly that is believed to result from aplasia or hypoplasia of the vestibulocochlear nerve. We report bilateral duplication of the internal auditory canal in a 28-month-old boy with developmental delay and sensorineural hearing loss. (orig.)

  8. Polo-like kinase 2-dependent phosphorylation of NPM/B23 on serine 4 triggers centriole duplication.

    Directory of Open Access Journals (Sweden)

    Annekatrin Krause

    Full Text Available Duplication of the centrosome is well controlled during faithful cell division while deregulation of this process leads to supernumary centrosomes, chromosome missegregation and aneuploidy, a hallmark of many cancer cells. We previously reported that Polo-like kinase 2 (Plk2 is activated near the G1/S phase transition, and regulates the reproduction of centrosomes. In search for Plk2 interacting proteins we have identified NPM/B23 (Nucleophosmin as a novel Plk2 binding partner. We find that Plk2 and NPM/B23 interact in vitro in a Polo-box dependent manner. An association between both proteins was also observed in vivo. Moreover, we show that Plk2 phosphorylates NPM/B23 on serine 4 in vivo in S-phase. Notably, expression of a non-phosphorylatable NPM/B23 S4A mutant interferes with centriole reduplication in S-phase arrested cells and leads to a dilution of centriole numbers in unperturbed U2OS cells. The corresponding phospho-mimicking mutants have the opposite effect and their expression leads to the accumulation of centrioles. These findings suggest that NPM/B23 is a direct target of Plk2 in the regulation of centriole duplication and that phosphorylation on serine 4 can trigger this process.

  9. [Colonic duplication revealed by intestinal obstruction due to fecal impaction].

    Science.gov (United States)

    Azahouani, A; Hida, M; Benhaddou, H

    2015-12-01

    Colonic duplications are very rare in children. With rectal duplications, they are the rarest locations of alimentary tract duplications, most often diagnosed in the first years of life. We report an unusual case of colic duplication with fecal impaction in a 9-month-old boy revealed by intestinal obstruction. We discuss the main diagnostic and therapeutic aspects of this malformation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Physical Mapping of Bread Wheat Chromosome 5A: An Integrated Approach

    Directory of Open Access Journals (Sweden)

    Delfina Barabaschi

    2015-11-01

    Full Text Available The huge size, redundancy, and highly repetitive nature of the bread wheat [ (L.] genome, makes it among the most difficult species to be sequenced. To overcome these limitations, a strategy based on the separation of individual chromosomes or chromosome arms and the subsequent production of physical maps was established within the frame of the International Wheat Genome Sequence Consortium (IWGSC. A total of 95,812 bacterial artificial chromosome (BAC clones of short-arm chromosome 5A (5AS and long-arm chromosome 5A (5AL arm-specific BAC libraries were fingerprinted and assembled into contigs by complementary analytical approaches based on the FingerPrinted Contig (FPC and Linear Topological Contig (LTC tools. Combined anchoring approaches based on polymerase chain reaction (PCR marker screening, microarray, and sequence homology searches applied to several genomic tools (i.e., genetic maps, deletion bin map, neighbor maps, BAC end sequences (BESs, genome zipper, and chromosome survey sequences allowed the development of a high-quality physical map with an anchored physical coverage of 75% for 5AS and 53% for 5AL with high portions (64 and 48%, respectively of contigs ordered along the chromosome. In the genome of grasses, [ (L. Beauv.], rice ( L., and sorghum [ (L. Moench] homologs of genes on wheat chromosome 5A were separated into syntenic blocks on different chromosomes as a result of translocations and inversions during evolution. The physical map presented represents an essential resource for fine genetic mapping and map-based cloning of agronomically relevant traits and a reference for the 5A sequencing projects.

  11. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms.

    Science.gov (United States)

    Li, Zhen; Defoort, Jonas; Tasdighian, Setareh; Maere, Steven; Van de Peer, Yves; De Smet, Riet

    2016-02-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. © 2016 American Society of Plant Biologists. All rights reserved.

  12. Craniofacial duplication (diprosopus).

    Science.gov (United States)

    Turpin, I M; Furnas, D W; Amlie, R N

    1981-02-01

    No congenital malformation in infants is more profound than anterior craniofacial duplication. The precise term for this rare anomaly is diprosopus, referring to a fetus with a single trunk, normal limbs, and varying degrees of facial duplication. A search of the world literature produced only 16 cases of diprosopus since 1864. Despite the rarity of this anomaly, three such infants were born in the Southern California area during the past year, making this the largest reported series to date. The three infants were born with two distinctly formed faces. Each had four separate eyes, two mouths, two noses, and two ears with a primitive ear or sinus tract at the plane of fusion. In addition, multiple congenital aberrations existed which involved a variety of internal organs. The pathogenesis of diprosopus is not well understood, but environmental stress early in embryologic development has been suggested as a possible factor. The apparent mechanism is a slowing of pregastrulation oxidation with resultant focal developmental arrests.

  13. Chromosome

    Science.gov (United States)

    ... St Louis, MO: Elsevier; 2017:chap 69. Taber's Medical Dictionary Online. Chromosome. www.tabers.com/tabersonline/view/Tabers-Dictionary/753321/all/chromosome?q=Chromosome&ti=0 . Accessed June 11, 2017.

  14. Annelid Distal-less/Dlx duplications reveal varied post-duplication fates

    Directory of Open Access Journals (Sweden)

    Korchagina Natalia

    2011-08-01

    Full Text Available Abstract Background Dlx (Distal-less genes have various developmental roles and are widespread throughout the animal kingdom, usually occurring as single copy genes in non-chordates and as multiple copies in most chordate genomes. While the genomic arrangement and function of these genes is well known in vertebrates and arthropods, information about Dlx genes in other organisms is scarce. We investigate the presence of Dlx genes in several annelid species and examine Dlx gene expression in the polychaete Pomatoceros lamarckii. Results Two Dlx genes are present in P. lamarckii, Capitella teleta and Helobdella robusta. The C. teleta Dlx genes are closely linked in an inverted tail-to-tail orientation, reminiscent of the arrangement of vertebrate Dlx pairs, and gene conversion appears to have had a role in their evolution. The H. robusta Dlx genes, however, are not on the same genomic scaffold and display divergent sequences, while, if the P. lamarckii genes are linked in a tail-to-tail orientation they are a minimum of 41 kilobases apart and show no sign of gene conversion. No expression in P. lamarckii appendage development has been observed, which conflicts with the supposed conserved role of these genes in animal appendage development. These Dlx duplications do not appear to be annelid-wide, as the polychaete Platynereis dumerilii likely possesses only one Dlx gene. Conclusions On the basis of the currently accepted annelid phylogeny, we hypothesise that one Dlx duplication occurred in the annelid lineage after the divergence of P. dumerilii from the other lineages and these duplicates then had varied evolutionary fates in different species. We also propose that the ancestral role of Dlx genes is not related to appendage development.

  15. Comparative sequence analysis of Solanum and Arabidopsis in a hot spot for pathogen resistance on potato chromosome V reveals a patchwork of conserved and rapidly evolving genome segments

    Directory of Open Access Journals (Sweden)

    Bruggmann Rémy

    2007-05-01

    Full Text Available Abstract Background Quantitative phenotypic variation of agronomic characters in crop plants is controlled by environmental and genetic factors (quantitative trait loci = QTL. To understand the molecular basis of such QTL, the identification of the underlying genes is of primary interest and DNA sequence analysis of the genomic regions harboring QTL is a prerequisite for that. QTL mapping in potato (Solanum tuberosum has identified a region on chromosome V tagged by DNA markers GP21 and GP179, which contains a number of important QTL, among others QTL for resistance to late blight caused by the oomycete Phytophthora infestans and to root cyst nematodes. Results To obtain genomic sequence for the targeted region on chromosome V, two local BAC (bacterial artificial chromosome contigs were constructed and sequenced, which corresponded to parts of the homologous chromosomes of the diploid, heterozygous genotype P6/210. Two contiguous sequences of 417,445 and 202,781 base pairs were assembled and annotated. Gene-by-gene co-linearity was disrupted by non-allelic insertions of retrotransposon elements, stretches of diverged intergenic sequences, differences in gene content and gene order. The latter was caused by inversion of a 70 kbp genomic fragment. These features were also found in comparison to orthologous sequence contigs from three homeologous chromosomes of Solanum demissum, a wild tuber bearing species. Functional annotation of the sequence identified 48 putative open reading frames (ORF in one contig and 22 in the other, with an average of one ORF every 9 kbp. Ten ORFs were classified as resistance-gene-like, 11 as F-box-containing genes, 13 as transposable elements and three as transcription factors. Comparing potato to Arabidopsis thaliana annotated proteins revealed five micro-syntenic blocks of three to seven ORFs with A. thaliana chromosomes 1, 3 and 5. Conclusion Comparative sequence analysis revealed highly conserved collinear regions

  16. Duplication of the Portal Vein: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Won; Shin, Hyeong Cheol; Jou, Sung Shick; Han, Jong Kyu; Kim, Il Young [Soonchunhyang University Cheonan Hospital, Cheonan (Korea, Republic of)

    2009-12-15

    The duplication of the portal vein is an uncommon congenital anomaly. To date, only four cases have been reported in the medical literature. This anomaly can cause portal hypertension in pediatric patients. In addition, duplication of the portal vein has various patterns of connection with a splenic vein or mesenteric veins, and it can lie anterior or posterior to the duodenum. We report the MDCT findings of an adult patient with duplication of the portal vein that was found incidentally

  17. 6q16.3q23.3 duplication associated with Prader-Willi-like syndrome.

    Science.gov (United States)

    Desch, Laurent; Marle, Nathalie; Mosca-Boidron, Anne-Laure; Faivre, Laurence; Eliade, Marie; Payet, Muriel; Ragon, Clemence; Thevenon, Julien; Aral, Bernard; Ragot, Sylviane; Ardalan, Azarnouche; Dhouibi, Nabila; Bensignor, Candace; Thauvin-Robinet, Christel; El Chehadeh, Salima; Callier, Patrick

    2015-01-01

    Prader-Willi syndrome (PWS) is characterized by hypotonia, delayed neuropsychomotor development, overeating, obesity and mental deficiency. This phenotype is encountered in other conditions, defining Prader-Willi-like syndrome (PWLS). We report a 14-year-old boy with a complex small supernumerary marker chromosome (sSMC) associated with PWLS. The propositus presents clinical features commonly found in patients with PWLS, including growth hormone deficit. Banding karyotype analysis and fluorescence in situ hybridization (FISH) revealed a marker derived from chromosome 6 and a neocentromere as suspected, but array-CGH enabled us to characterize this marker as a der(10)t(6;10)(6qter → 6q23.3::10p11.1 → 10p11.21)dn. As far as we know, this is the first diagnosed case of PWLS associated with a complex sSMC, involving a 30.9 Mb gain in the 6q16.3q23.3 region and a 3.5 Mb gain in the 10p11.21p11.1 region. Several genes have been mapped to the 6q region including the TCBA1 gene, which is associated with developmental delay and recurrent infections, the ENPP1 gene, associated with insulin resistance and susceptibility to obesity and the BMIQ3 gene, associated with body mass index (BMI). No OMIM gene was found in the smallest 10p11.21p11.1 region. We suggest that the duplicated chromosome segment 6q16.3q23.3 may be responsible for the phenotype of our case and may also be a candidate locus of PWLS.

  18. Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man.

    Science.gov (United States)

    Kulski, Jerzy K; Shiina, Takashi; Anzai, Tatsuya; Kohara, Sakae; Inoko, Hidetoshi

    2002-12-01

    The major histocompatibility complex (MHC) genomic region is composed of a group of linked genes involved functionally with the adaptive and innate immune systems. The class I and class II genes are intrinsic features of the MHC and have been found in all the jawed vertebrates studied so far. The MHC genomic regions of the human and the chicken (B locus) have been fully sequenced and mapped, and the mouse MHC sequence is almost finished. Information on the MHC genomic structures (size, complexity, genic and intergenic composition and organization, gene order and number) of other vertebrates is largely limited or nonexistent. Therefore, we are mapping, sequencing and analyzing the MHC genomic regions of different human haplotypes and at least eight nonhuman species. Here, we review our progress with these sequences and compare the human MHC structure with that of the nonhuman primates (chimpanzee and rhesus macaque), other mammals (pigs, mice and rats) and nonmammalian vertebrates such as birds (chicken and quail), bony fish (medaka, pufferfish and zebrafish) and cartilaginous fish (nurse shark). This comparison reveals a complex MHC structure for mammals and a relatively simpler design for nonmammalian animals with a hypothetical prototypic structure for the shark. In the mammalian MHC, there are two to five different class I duplication blocks embedded within a framework of conserved nonclass I and/or nonclass II genes. With a few exceptions, the class I framework genes are absent from the MHC of birds, bony fish and sharks. Comparative genomics of the MHC reveal a highly plastic region with major structural differences between the mammalian and nonmammalian vertebrates. Additional genomic data are needed on animals of the reptilia, crocodilia and marsupial classes to find the origins of the class I framework genes and examples of structures that may be intermediate between the simple and complex MHC organizations of birds and mammals, respectively.

  19. Chromosomal radiosensitivity of prostate cancer patients

    International Nuclear Information System (INIS)

    McRobbie, M.L.; Riches, A.; Baxby, K.

    2003-01-01

    Full text: Radiosensitivity of peripheral blood lymphocytes from prostate cancer patients is being investigated using the G2 assay and the Cytokinesis Block Micronucleus(CBMN)assay. The G2 assay evaluates chromosomal damage caused by irradiating cells in the G2 phase of the cell cycle. The CBMN assay quantifies the post mitotic micronuclei, which are the expression of damage incurred during G0. An association between hypersensitivity to the chromosome damaging effects of ionising radiation and cancer predispostion has been demonstrated in a number of heritable conditions by using the aforementioned techniques. Recently, increased chromosomal radiosensitivity has been demonstrated in a significant proportion of patients with no obvious family history of malignancy. The aim of this study is to establish whether a group of prostatic carcinoma patients exists and if so whether there are any correlations between their G2 and G0 sensitivities. The study has shown there is no correlation between G2 and G0 sensitivity, confirming the general trend that individuals exhibiting chromosomal radiosensitivity are defective in only one mechanism and G2 and G0 sensitivity are largely independent. Current data indicates that there is an identifiable group of men within the prostate cancer population with increased chromosomal radiosensitivity. Using the G2 assay and the 90th percentile of the controls as a cut off point for sensitivity, no significant difference between the controls and the patient population has been found. However, using the CBMN assay and again the 90th percentile, approximately 11% of the control group are sensitive compared with approximately 40% of the carcinoma cases. The implications of this increased radiosensitivity are as yet unclear, but it is indicative of increased chromosomal fragility and therefore, possibly associated with malignant transformation. Hence, it may prove a useful tool in identifying individuals at increased risk of developing

  20. Typewriting: Toward Duplicating Success

    Science.gov (United States)

    Orsborn, Karen J.

    1977-01-01

    A description of two projects (secretarial handbook and memo pad and personalized stationery) for use in teaching the duplication process that will capture the interests of students in an advanced typewriting class. (HD)

  1. Identification of approximately duplicate material records in ERP systems

    Science.gov (United States)

    Zong, Wei; Wu, Feng; Chu, Lap-Keung; Sculli, Domenic

    2017-03-01

    The quality of master data is crucial for the accurate functioning of the various modules of an enterprise resource planning (ERP) system. This study addresses specific data problems arising from the generation of approximately duplicate material records in ERP databases. Such problems are mainly due to the firm's lack of unique and global identifiers for the material records, and to the arbitrary assignment of alternative names for the same material by various users. Traditional duplicate detection methods are ineffective in identifying such approximately duplicate material records because these methods typically rely on string comparisons of each field. To address this problem, a machine learning-based framework is developed to recognise semantic similarity between strings and to further identify and reunify approximately duplicate material records - a process referred to as de-duplication in this article. First, the keywords of the material records are extracted to form vectors of discriminating words. Second, a machine learning method using a probabilistic neural network is applied to determine the semantic similarity between these material records. The approach was evaluated using data from a real case study. The test results indicate that the proposed method outperforms traditional algorithms in identifying approximately duplicate material records.

  2. G/sub 2/ arrest in mouse zygotes after X-irradiation: reversion by caffeine and influence of chromosome abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Grinfeld, S.; Jacquet, P.

    1988-08-01

    The effect of caffeine was studied on mouse zygotes blocked in the G/sub 2/ phase of the first cell cycle after X-irradiation. Caffeine (2 mM) effectively reversed the G/sub 2/ arrest when zygotes were incubated in its presence at the time when first mitosis normally takes place. This effect of caffeine was inhibited by cycloheximide (5 ..mu..g ml/sup -1/). In embryos escaping the G/sub 2/ arrest the frequencies of chromosome aberrations varied as a function of the time of irradiation, showing a clear relationship with the varying rates of lethality occurring from the morula stage. Blocked zygotes suffered major chromosome damage: however, this did not appear to be the only cause of the G/sub 2/ arrest. Triploid zygotes were preferentially blocked, suggesting that nuclei contain the target for this X-ray effect.

  3. A high resolution radiation hybrid map of bovine chromosome 14 identifies scaffold rearrangement in the latest bovine assembly

    Directory of Open Access Journals (Sweden)

    Wang Zhiquan

    2007-07-01

    Full Text Available Abstract Background Radiation hybrid (RH maps are considered to be a tool of choice for fine mapping closely linked loci, considering that the resolution of linkage maps is determined by the number of informative meiosis and recombination events which may require very large mapping populations. Accurately defining the marker order on chromosomes is crucial for correct identification of quantitative trait loci (QTL, haplotype map construction and refinement of candidate gene searches. Results A 12 k Radiation hybrid map of bovine chromosome 14 was constructed using 843 single nucleotide polymorphism markers. The resulting map was aligned with the latest version of the bovine assembly (Btau_3.1 as well as other previously published RH maps. The resulting map identified distinct regions on Bovine chromosome 14 where discrepancies between this RH map and the bovine assembly occur. A major region of discrepancy was found near the centromere involving the arrangement and order of the scaffolds from the assembly. The map further confirms previously published conserved synteny blocks with human chromosome 8. As well, it identifies an extra breakpoint and conserved synteny block previously undetected due to lower marker density. This conserved synteny block is in a region where markers between the RH map presented here and the latest sequence assembly are in very good agreement. Conclusion The increase of publicly available markers shifts the rate limiting step from marker discovery to the correct identification of their order for further use by the research community. This high resolution map of bovine chromosome 14 will facilitate identification of regions in the sequence assembly where additional information is required to resolve marker ordering.

  4. Cytogenetic and genetic studies of radiation-induced chromosome damage in mouse oocytes. Part 1. Numerical and structural chromosome anomalies in metaphase II oocytes, pre- and post-implantation embryos

    International Nuclear Information System (INIS)

    Tease, Charles; Fisher, Graham

    1996-01-01

    The incidences of X-ray induced numerical and structural chromosome anomalies were screened in a range of developmental stages from metaphase II oocytes through to post-implantation embryos. Following 1 Gy of acute X-rays to immediately preovulatory stage oocytes, the rate of hyperploidy (chromosome gain) was found to be elevated over levels in unirradiated controls, at metaphase II, in 1-cell and 3.5 day pre-implantation embryos but not in 8.5 day post-implantation foetuses. In the latter, however, the frequency of mosaicism was significantly increased. A similar response of an increase in mosaicism but not in hyperploidy in 8.5 day post-implantation embryos was also found after irradiation of dictyate stage oocytes with 4 Gy of acute X-rays. Significantly elevated frequencies of structural chromosome anomalies were present in metaphase II oocytes and pre-implantation embryonic stages, but could not be detected in block-stained chromosome preparations from 8.5 day post-implantation foetuses. However, analysis of chromosome preparations after G-banding showed that almost 14% of 14.5 day foetuses carried a chromosome rearrangement after 1 Gy of X-rays to immediately preovulatory stage oocytes. Overall, our data indicate that the presence of radiation-induced chromosome gains are incompatible with embryonic survival but that a proportion of embryos with structural chromosome damage develop past mid-gestation. These latter embryos are therefore potentially capable of contributing to the genetic burden of the next generation

  5. [Late-replicating regions in salivary gland polytene chromosomes of Drosophila melanogaster].

    Science.gov (United States)

    Kolesnikov, T D; Andreenkova, N G; Beliaeva, E S; Goncharov, F P; Zykova, T Iu; Boldyreva, L V; Pokholkova, g V; Zhimulev, I F

    2013-01-01

    About 240 specific regions that are replicated at the very end of the S-phase have been identified in D. melanogaster polytene chromosomes. These regions have a repressive chromatine state, low gene density, long intergenic distances and are enriched in tissue specific genes. In polytene chromosomes, about a quarter of these regions have no enough time to complete replication. As a result, underreplication zones represented by fewer DNA copy number, appear. We studied 60 chromosome regions that demonstrated the most pronounced under-replication. By comparing the location of these regions on a molecular map with syntenic blocks found earlier for Drosophila species by von Grotthuss et al., 2010, we have shown that across the genus Drosophila, these regions tend to have conserved gene order. This forces us to assume the existence of evolutionary mechanisms aimed at maintaining the integrity of these regions.

  6. Partial duplication of head--a rare congenital anomaly.

    Science.gov (United States)

    Hemachandran, Manikkapurath; Radotra, Bishan Dass

    2004-10-01

    Duplication of notochord results in rare congenital anomalies like double headed monsters, with or without trunk/limb duplication, depending upon the extent of notochordal abnormality. Here we describe the morphological abnormalities in a case of partial duplication of cranial structures with fusion of the two. Autopsy findings suggest that the bifurcation of the neural tube took place around 4th to 6th week of gestation. There are only few reports in English literature describing the autopsy findings of such an anomaly, which is termed as Diprosopus triophthalmus in the modern literature.

  7. Duplication of the Left Vertebral Artery Origin: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Wook; Park, Dong Woo; Park, Choong Ki; Lee, Young Jun [Dept. of Radiology, College of Medicine, Hanyang University, Hanyang University Guri Hospital, Guri (Korea, Republic of)

    2013-01-15

    Duplication of vertebral arteries is a very rare but clinically important condition. A duplicated vertebral artery origin can influence hemodynamics, pathogenesis of vascular lesions and treatment options. In cases of vertebral artery duplication, the vertebral arteries generally enter the transverse foramen higher up than normal. Awareness of these vertebral artery variants before procedures, such as neurointervention or surgery, may be beneficial. Here, we describe a case of a 51-year-old female patient with left vertebral artery duplication which was detected incidentally.

  8. Duplication of the Left Vertebral Artery Origin: A Case Report

    International Nuclear Information System (INIS)

    Shin, Sang Wook; Park, Dong Woo; Park, Choong Ki; Lee, Young Jun

    2013-01-01

    Duplication of vertebral arteries is a very rare but clinically important condition. A duplicated vertebral artery origin can influence hemodynamics, pathogenesis of vascular lesions and treatment options. In cases of vertebral artery duplication, the vertebral arteries generally enter the transverse foramen higher up than normal. Awareness of these vertebral artery variants before procedures, such as neurointervention or surgery, may be beneficial. Here, we describe a case of a 51-year-old female patient with left vertebral artery duplication which was detected incidentally.

  9. The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination.

    Science.gov (United States)

    Delprat, Alejandra; Negre, Bàrbara; Puig, Marta; Ruiz, Alfredo

    2009-11-18

    Transposable elements (TEs) are responsible for the generation of chromosomal inversions in several groups of organisms. However, in Drosophila and other Dipterans, where inversions are abundant both as intraspecific polymorphisms and interspecific fixed differences, the evidence for a role of TEs is scarce. Previous work revealed that the transposon Galileo was involved in the generation of two polymorphic inversions of Drosophila buzzatii. To assess the impact of TEs in Drosophila chromosomal evolution and shed light on the mechanism involved, we isolated and sequenced the two breakpoints of another widespread polymorphic inversion from D. buzzatii, 2z(3). In the non inverted chromosome, the 2z(3) distal breakpoint was located between genes CG2046 and CG10326 whereas the proximal breakpoint lies between two novel genes that we have named Dlh and Mdp. In the inverted chromosome, the analysis of the breakpoint sequences revealed relatively large insertions (2,870-bp and 4,786-bp long) including two copies of the transposon Galileo (subfamily Newton), one at each breakpoint, plus several other TEs. The two Galileo copies: (i) are inserted in opposite orientation; (ii) present exchanged target site duplications; and (iii) are both chimeric. Our observations provide the best evidence gathered so far for the role of TEs in the generation of Drosophila inversions. In addition, they show unequivocally that ectopic recombination is the causative mechanism. The fact that the three polymorphic D. buzzatii inversions investigated so far were generated by the same transposon family is remarkable and is conceivably due to Galileo's unusual structure and current (or recent) transpositional activity.

  10. The chromosomal arrangement of six soybean leghemoglobin genes

    DEFF Research Database (Denmark)

    Bojsen, Kirsten; Abildsten, Dorte; Jensen, Erik Ø

    1983-01-01

    Clones containing six leghemoglobin (Lb) genes have been isolated from two genomic libraries of soybean. They encompass two independent DNA regions: a 40-kb region containing four genes in the order 5' Lba-Lbc(1)-[unk]Lb-Lbc(3) 3' with the same transcriptional polarity, and another 40-kb region...... containing two genes in the order 5' Lbc(4)-Lbc(2) 3' with the same polarity. The order in which the Lb genes are arranged in the soybean genome imply that they are activated in the opposite order to which they are arranged on the chromosome. There is a close similarity between corresponding DNA regions...... differs from that of the Lb genes. The existence of two very similar Lb gene clusters in soybean suggest that soybean may have evolved from an ancestral form by genome duplication. Udgivelsesdato: 1983-null...

  11. Identification of chromosome 7 inversion breakpoints in an autistic family narrows candidate region for autism susceptibility.

    Science.gov (United States)

    Cukier, Holly N; Skaar, David A; Rayner-Evans, Melissa Y; Konidari, Ioanna; Whitehead, Patrice L; Jaworski, James M; Cuccaro, Michael L; Pericak-Vance, Margaret A; Gilbert, John R

    2009-10-01

    Chromosomal breaks and rearrangements have been observed in conjunction with autism and autistic spectrum disorders. A chromosomal inversion has been previously reported in autistic siblings, spanning the region from approximately 7q22.1 to 7q31. This family is distinguished by having multiple individuals with autism and associated disabilities. The region containing the inversion has been strongly implicated in autism by multiple linkage studies, and has been particularly associated with language defects in autism as well as in other disorders with language components. Mapping of the inversion breakpoints by FISH has localized the inversion to the region spanning approximately 99-108.75 Mb of chromosome 7. The proximal breakpoint has the potential to disrupt either the coding sequence or regulatory regions of a number of cytochrome P450 genes while the distal region falls in a relative gene desert. Copy number variant analysis of the breakpoint regions detected no duplication or deletion that could clearly be associated with disease status. Association analysis in our autism data set using single nucleotide polymorphisms located near the breakpoints showed no significant association with proximal breakpoint markers, but has identified markers near the distal breakpoint ( approximately 108-110 Mb) with significant associations to autism. The chromosomal abnormality in this family strengthens the case for an autism susceptibility gene in the chromosome 7q22-31 region and targets a candidate region for further investigation.

  12. A dominant negative mutant of TLK1 causes chromosome missegregation and aneuploidy in normal breast epithelial cells

    Directory of Open Access Journals (Sweden)

    Williams Briana

    2003-10-01

    Full Text Available Abstract Background In Arabidopsis thaliana, the gene Tousled encodes a protein kinase of unknown function, but mutations in the gene lead to flowering and leaf morphology defects. We have recently cloned a mammalian Tousled-Like Kinase (TLK1B and found that it phosphorylates specifically histone H3, in vitro and in vivo. We now report the effects that overexpression of a kinase-dead mutant of TLK1B mediates in a normal diploid cell line. Results Expression of a kinase-dead mutant resulted in reduction of phosphorylated histone H3, which could have consequences in mitotic segregation of chromosomes. When analyzed by FACS and microscopy, these cells displayed high chromosome number instability and aneuploidy. This phenomenon was accompanied by less condensed chromosomes at mitosis; failure of a number of chromosomes to align properly on the metaphase plate; failure of some chromosomes to attach to microtubules; and the occasional presentation of two bipolar spindles. We also used a different method (siRNA to reduce the level of endogenous TLK1, but in this case, the main result was a strong block of cell cycle progression suggesting that TLK1 may also play a role in progression from G1. This block in S phase progression could also offer a different explanation of some of the later mitotic defects. Conclusions TLK1 has a function important for proper chromosome segregation and maintenance of diploid cells at mitosis in mammalian cells that could be mediated by reduced phosphorylation of histone H3 and condensation of chromosomes, although other explanations to the phenotype are possible.

  13. Rectal duplication cyst in adults treated with transanal endoscopic microsurgery.

    Science.gov (United States)

    Ben-Ishay, O; Person, B; Eran, B; Hershkovitz, D; Duek, D Simon

    2011-12-01

    Rectal duplication cyst is a rare entity that accounts for approximately 4% of all alimentary tract duplications. To the best of our knowledge, the presented cases are the first reports in the English literature of rectal duplication cyst resection by transanal endoscopic microsurgery. We present two patients; both are 41-year-old women with a palpable rectal mass. Workup revealed a submucosal posterior mass that was then resected by transanal endoscopic microsurgery. The pathology report described cystic lesions with squamous and columnar epithelium and segments of smooth muscle. These findings were compatible with rectal duplication cyst. Our limited experience showed good results with minimal morbidity and mortality for resection of rectal duplication cysts of limited size with no evidence of malignancy.

  14. Double-blind ureteral duplication: report of two cases

    International Nuclear Information System (INIS)

    Choi, Ja-Young; Kim, Seung Hyup; Kim, Sun Ho

    2002-01-01

    Blind ending of ureteral duplication is one of the most rare anomalies of the upper urinary tract. We report two cases of ureteral duplication with a blind ending both superiorly and inferiorly, and with no definite communication with the urinary tract. (orig.)

  15. Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.

    Directory of Open Access Journals (Sweden)

    Qingyu Chen

    Full Text Available First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases.We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

  16. Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.

    Science.gov (United States)

    Chen, Qingyu; Zobel, Justin; Zhang, Xiuzhen; Verspoor, Karin

    2016-01-01

    First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases. We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

  17. Endoscopic Decompression and Marsupialization of A Duodenal Duplication Cyst

    Directory of Open Access Journals (Sweden)

    Eliza I-Lin Sin

    2018-06-01

    Full Text Available Introduction: Duodenal duplication cysts are rare congenital foregut anomalies, accounting for 2%–12% of all gastrointestinal tract duplications. Surgical excision entails risk of injury to the pancreaticobiliary structures due to proximity or communication with the cyst. We present a case of duodenal duplication cyst in a 3 year-old boy who successfully underwent endoscopic decompression. Case report: AT is a young boy who first presented at 15 months of age with abdominal pain. There was one subsequent episode of pancreatitis. Ultrasonography showed the typical double wall sign of a duplication cyst and magnetic resonance cholangio-pancreatography showed a large 5 cm cyst postero-medial to the second part of the duodenum, communicating with the pancreaticobiliary system and causing dilatation of the proximal duodenum. He subsequently underwent successful endoscopic ultrasound guided decompression at 3 years of age under general anesthesia, and had an uneventful postoperative recovery. Conclusion: Endoscopic ultrasound guided assessment and treatment of gastrointestinal duplication cysts is increasingly reported in adults. To the best of our knowledge, only one case of endoscopic treatment of duodenal duplication cyst, in an older child, has been reported thus far in the paediatric literature. In this paper, we review the current literature and discuss the therapeutic options of this rare condition.

  18. Enteric Duplication Cysts in Children: A Clinicopathological Dilemma.

    Science.gov (United States)

    Sharma, Sonam; Yadav, Amit K; Mandal, Ashish K; Zaheer, Sufian; Yadav, Devendra K; Samie, Amat

    2015-08-01

    Enteric duplication cysts are rare and uncommon congenital malformations formed during the embryonic period of the development of human digestive system and are mainly encountered during infancy or early childhood, but seldom in adults. The clinical presentation is extremely variable depending upon its size, location and type. We present six cases of enteric duplication cysts with diverse clinico-pathological features. This study was carried out in the Department of Pathology and Department of Paediatric Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India for a period of 2 years (January 2013 - December 2014). We retrospectively analyzed six patients of enteric duplication cysts based on data obtained, which consisted of patient's age, sex, clinical presentation, radiological features, operative findings and histopathology report. The data collected was analyzed by descriptive statistics. Six children between age range of 3 days to 10 years had enteric duplication cysts. Two had ileal and one each were of pyloroduodenal, colonic and rectal duplication cyst. In one patient a presumptive diagnosis of enteric duplication cyst was made. Radiology played an important contributory role in diagnosis of these cysts in all the patients but histopathology proved to be gold standard for its confirmation. All these patients were managed by surgical excision. The postoperative and follow up period in all the cases was uneventful. It is important to be aware and make a definitive diagnosis of this rare congenital anomaly as they can present in various clinical forms and can cause significant morbidity and even mortality if left untreated by causing life threatening complications.

  19. COMPARISON OF IMAGE ENHANCEMENT METHODS FOR CHROMOSOME KARYOTYPE IMAGE ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    Dewa Made Sri Arsa

    2017-02-01

    Full Text Available The chromosome is a set of DNA structure that carry information about our life. The information can be obtained through Karyotyping. The process requires a clear image so the chromosome can be evaluate well. Preprocessing have to be done on chromosome images that is image enhancement. The process starts with image background removing. The image will be cleaned background color. The next step is image enhancement. This paper compares several methods for image enhancement. We evaluate some method in image enhancement like Histogram Equalization (HE, Contrast-limiting Adaptive Histogram Equalization (CLAHE, Histogram Equalization with 3D Block Matching (HE+BM3D, and basic image enhancement, unsharp masking. We examine and discuss the best method for enhancing chromosome image. Therefore, to evaluate the methods, the original image was manipulated by the addition of some noise and blur. Peak Signal-to-noise Ratio (PSNR and Structural Similarity Index (SSIM are used to examine method performance. The output of enhancement method will be compared with result of Professional software for karyotyping analysis named Ikaros MetasystemT M . Based on experimental results, HE+BM3D method gets a stable result on both scenario noised and blur image.

  20. Syntenic block overlap multiplicities with a panel of reference genomes provide a signature of ancient polyploidization events.

    Science.gov (United States)

    Zheng, Chunfang; Santos Muñoz, Daniella; Albert, Victor A; Sankoff, David

    2015-01-01

    Following whole genome duplication (WGD), there is a compact distribution of gene similarities within the genome reflecting duplicate pairs of all the genes in the genome. With time, the distribution broadens and loses volume due to variable decay of duplicate gene similarity and to the process of duplicate gene loss. If there are two WGD, the older one becomes so reduced and broad that it merges with the tail of the distributions resulting from more recent events, and it becomes difficult to distinguish them. The goal of this paper is to advance statistical methods of identifying, or at least counting, the WGD events in the lineage of a given genome. For a set of 15 angiosperm genomes, we analyze all 15 × 14 = 210 ordered pairs of target genome versus reference genome, using SynMap to find syntenic blocks. We consider all sets of B ≥ 2 syntenic blocks in the target genome that overlap in the reference genome as evidence of WGD activity in the target, whether it be one event or several. We hypothesize that in fitting an exponential function to the tail of the empirical distribution f (B) of block multiplicities, the size of the exponent will reflect the amount of WGD in the history of the target genome. By amalgamating the results from all reference genomes, a range of values of SynMap parameters, and alternative cutoff points for the tail, we find a clear pattern whereby multiple-WGD core eudicots have the smallest (negative) exponents, followed by core eudicots with only the single "γ" triplication in their history, followed by a non-core eudicot with a single WGD, followed by the monocots, with a basal angiosperm, the WGD-free Amborella having the largest exponent. The hypothesis that the exponent of the fit to the tail of the multiplicity distribution is a signature of the amount of WGD is verified, but there is also a clear complicating factor in the monocot clade, where a history of multiple WGD is not reflected in a small exponent.

  1. Penile Duplication and Two Anal Openings; Report of a Very Rare Case

    OpenAIRE

    Bakheet, Mohamed Abdel Al M.; Refaei, Mohammad

    2012-01-01

    Background Penile duplication (diphallus) is an extremely rare disorder. It is almost always associated with other malformations like double bladder, exstrophy of the cloacae, imperforate anus, duplication of the rectosigmoid and vertebral deformities. Meanwhile anal canal duplication, the most distal and least common duplication of the digestive tube and is a very rare congenital malformation. Case Presentation A 21 days old Egyptian neonate is reported with complete penile duplication and t...

  2. Drosophila duplication hotspots are associated with late-replicating regions of the genome.

    Directory of Open Access Journals (Sweden)

    Margarida Cardoso-Moreira

    2011-11-01

    Full Text Available Duplications play a significant role in both extremes of the phenotypic spectrum of newly arising mutations: they can have severe deleterious effects (e.g. duplications underlie a variety of diseases but can also be highly advantageous. The phenotypic potential of newly arisen duplications has stimulated wide interest in both the mutational and selective processes shaping these variants in the genome. Here we take advantage of the Drosophila simulans-Drosophila melanogaster genetic system to further our understanding of both processes. Regarding mutational processes, the study of two closely related species allows investigation of the potential existence of shared duplication hotspots, and the similarities and differences between the two genomes can be used to dissect its underlying causes. Regarding selection, the difference in the effective population size between the two species can be leveraged to ask questions about the strength of selection acting on different classes of duplications. In this study, we conducted a survey of duplication polymorphisms in 14 different lines of D. simulans using tiling microarrays and combined it with an analogous survey for the D. melanogaster genome. By integrating the two datasets, we identified duplication hotspots conserved between the two species. However, unlike the duplication hotspots identified in mammalian genomes, Drosophila duplication hotspots are not associated with sequences of high sequence identity capable of mediating non-allelic homologous recombination. Instead, Drosophila duplication hotspots are associated with late-replicating regions of the genome, suggesting a link between DNA replication and duplication rates. We also found evidence supporting a higher effectiveness of selection on duplications in D. simulans than in D. melanogaster. This is also true for duplications segregating at high frequency, where we find evidence in D. simulans that a sizeable fraction of these mutations is

  3. Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    van Ommen Gert-Jan B

    2007-07-01

    Full Text Available Abstract Background Antisense-mediated exon skipping is currently one of the most promising therapeutic approaches for Duchenne muscular dystrophy (DMD. Using antisense oligonucleotides (AONs targeting specific exons the DMD reading frame is restored and partially functional dystrophins are produced. Following proof of concept in cultured muscle cells from patients with various deletions and point mutations, we now focus on single and multiple exon duplications. These mutations are in principle ideal targets for this approach since the specific skipping of duplicated exons would generate original, full-length transcripts. Methods Cultured muscle cells from DMD patients carrying duplications were transfected with AONs targeting the duplicated exons, and the dystrophin RNA and protein were analyzed. Results For two brothers with an exon 44 duplication, skipping was, even at suboptimal transfection conditions, so efficient that both exons 44 were skipped, thus generating, once more, an out-of-frame transcript. In such cases, one may resort to multi-exon skipping to restore the reading frame, as is shown here by inducing skipping of exon 43 and both exons 44. By contrast, in cells from a patient with an exon 45 duplication we were able to induce single exon 45 skipping, which allowed restoration of wild type dystrophin. The correction of a larger duplication (involving exons 52 to 62, by combinations of AONs targeting the outer exons, appeared problematic due to inefficient skipping and mistargeting of original instead of duplicated exons. Conclusion The correction of DMD duplications by exon skipping depends on the specific exons targeted. Its options vary from the ideal one, restoring for the first time the true, wild type dystrophin, to requiring more 'classical' skipping strategies, while the correction of multi-exon deletions may need the design of tailored approaches.

  4. 40 CFR 25.13 - Coordination and non-duplication.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Coordination and non-duplication. 25.13 Section 25.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PUBLIC PARTICIPATION IN... ACT § 25.13 Coordination and non-duplication. The public participation activities and materials that...

  5. Insertional translocation leading to a 4q13 duplication including the EPHA5 gene in two siblings with attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Matoso, Eunice; Melo, Joana B; Ferreira, Susana I; Jardim, Ana; Castelo, Teresa M; Weise, Anja; Carreira, Isabel M

    2013-08-01

    An insertional translocation (IT) can result in pure segmental aneusomy for the inserted genomic segment allowing to define a more accurate clinical phenotype. Here, we report on two siblings sharing an unbalanced IT inherited from the mother with a history of learning difficulty. An 8-year-old girl with developmental delay, speech disability, and attention-deficit hyperactivity disorder (ADHD), showed by GTG banding analysis a subtle interstitial alteration in 21q21. Oligonucleotide array comparative genomic hybridization (array-CGH) analysis showed a 4q13.1-q13.3 duplication spanning 8.6 Mb. Fluorescence in situ hybridization (FISH) with bacterial artificial chromosome (BAC) clones confirmed the rearrangement, a der(21)ins(21;4)(q21;q13.1q13.3). The duplication described involves 50 RefSeq genes including the EPHA5 gene that encodes for the EphA5 receptor involved in embryonic development of the brain and also in synaptic remodeling and plasticity thought to underlie learning and memory. The same rearrangement was observed in a younger brother with behavioral problems and also exhibiting ADHD. ADHD is among the most heritable of neuropsychiatric disorders. There are few reports of patients with duplications involving the proximal region of 4q and a mild phenotype. To the best of our knowledge this is the first report of a duplication restricted to band 4q13. This abnormality could be easily missed in children who have nonspecific cognitive impairment. The presence of this behavioral disorder in the two siblings reinforces the hypothesis that the region involved could include genes involved in ADHD. Copyright © 2013 Wiley Periodicals, Inc.

  6. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes.

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C; Fan, Chuanzhu

    2016-09-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. © 2016 American Society of Plant Biologists. All rights reserved.

  7. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes.

    Science.gov (United States)

    Venkatachalam, Ananda B; Parmar, Manoj B; Wright, Jonathan M

    2017-08-01

    Increasing organismal complexity during the evolution of life has been attributed to the duplication of genes and entire genomes. More recently, theoretical models have been proposed that postulate the fate of duplicated genes, among them the duplication-degeneration-complementation (DDC) model. In the DDC model, the common fate of a duplicated gene is lost from the genome owing to nonfunctionalization. Duplicated genes are retained in the genome either by subfunctionalization, where the functions of the ancestral gene are sub-divided between the sister duplicate genes, or by neofunctionalization, where one of the duplicate genes acquires a new function. Both processes occur either by loss or gain of regulatory elements in the promoters of duplicated genes. Here, we review the genomic organization, evolution, and transcriptional regulation of the multigene family of intracellular lipid-binding protein (iLBP) genes from teleost fishes. Teleost fishes possess many copies of iLBP genes owing to a whole genome duplication (WGD) early in the teleost fish radiation. Moreover, the retention of duplicated iLBP genes is substantially higher than the retention of all other genes duplicated in the teleost genome. The fatty acid-binding protein genes, a subfamily of the iLBP multigene family in zebrafish, are differentially regulated by peroxisome proliferator-activated receptor (PPAR) isoforms, which may account for the retention of iLBP genes in the zebrafish genome by the process of subfunctionalization of cis-acting regulatory elements in iLBP gene promoters.

  8. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication.

    Science.gov (United States)

    Moalem, Sharon; Babul-Hirji, Riyana; Stavropolous, Dmitri J; Wherrett, Diane; Bägli, Darius J; Thomas, Paul; Chitayat, David

    2012-07-01

    Differentiation of the bipotential gonad into testis is initiated by the Y chromosome-linked gene SRY (Sex-determining Region Y) through upregulation of its autosomal direct target gene SOX9 (Sry-related HMG box-containing gene 9). Sequence and chromosome homology studies have shown that SRY most probably evolved from SOX3, which in humans is located at Xq27.1. Mutations causing SOX3 loss-of-function do not affect the sex determination in mice or humans. However, transgenic mouse studies have shown that ectopic expression of Sox3 in the bipotential gonad results in upregulation of Sox9, resulting in testicular induction and XX male sex reversal. However, the mechanism by which these rearrangements cause sex reversal and the frequency with which they are associated with disorders of sex development remains unclear. Rearrangements of the SOX3 locus were identified recently in three cases of human XX male sex reversal. We report on a case of XX male sex reversal associated with a novel de novo duplication of the SOX3 gene. These data provide additional evidence that SOX3 gain-of-function in the XX bipotential gonad causes XX male sex reversal and further support the hypothesis that SOX3 is the evolutionary antecedent of SRY. Copyright © 2012 Wiley Periodicals, Inc.

  9. Recombination facilitates neofunctionalization of duplicate genes via originalization

    Directory of Open Access Journals (Sweden)

    Huang Ren

    2010-06-01

    Full Text Available Abstract Background Recently originalization was proposed to be an effective way of duplicate-gene preservation, in which recombination provokes the high frequency of original (or wild-type allele on both duplicated loci. Because the high frequency of wild-type allele might drive the arising and accumulating of advantageous mutation, it is hypothesized that recombination might enlarge the probability of neofunctionalization (Pneo of duplicate genes. In this article this hypothesis has been tested theoretically. Results Results show that through originalization recombination might not only shorten mean time to neofunctionalizaiton, but also enlarge Pneo. Conclusions Therefore, recombination might facilitate neofunctionalization via originalization. Several extensive applications of these results on genomic evolution have been discussed: 1. Time to nonfunctionalization can be much longer than a few million generations expected before; 2. Homogenization on duplicated loci results from not only gene conversion, but also originalization; 3. Although the rate of advantageous mutation is much small compared with that of degenerative mutation, Pneo cannot be expected to be small.

  10. Dose Assessment using Chromosome Aberration Analyses in Human Peripheral Blood Lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin-Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The healthy five donors were recruited to establish the dose-response calibration curve for chromosomal aberrations by ionizing radiation exposure. Our cytogenetic results revealed that the mean frequency of chromosome aberration increased with increasing radiation dose. In this study, dicentric assay and CBMN assay were compared considering the sensitivity and accuracy of dose estimation. Therefore, these chromosome aberration analyses will be the foundation for biological dosimetric analysis with additional research methods such as translocation and PCC assay. The conventional analysis of dicentric chromosomes in HPBL was suggested by Bender and Gooch in 1962. This assay has been for many years, the golden standard and the most specific method for ionizing radiation damage. The dicentric assay technique in HPBL has been shown as the most sensitive biological method and reliable bio-indicator of quantifying the radiation dose. In contrast, the micronucleus assay has advantages over the dicentric assay since it is rapid and requires less specialized expertise, and accordingly it can be applied to monitor a big population. The cytokinesis-block micronucleus (CBMN) assay is a suitable method for micronuceli measurement in cultured human as well as mammalian cells. The aim of our study was to establish the dose response curve of radiation-induced chromosome aberrations in HPBL by analyzing the frequency of dicentrics and micronuclei.

  11. Exploiting a Reference Genome in Terms of Duplications: The Network of Paralogs and Single Copy Genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Mara Sangiovanni

    2013-12-01

    Full Text Available Arabidopsis thaliana became the model organism for plant studies because of its small diploid genome, rapid lifecycle and short adult size. Its genome was the first among plants to be sequenced, becoming the reference in plant genomics. However, the Arabidopsis genome is characterized by an inherently complex organization, since it has undergone ancient whole genome duplications, followed by gene reduction, diploidization events and extended rearrangements, which relocated and split up the retained portions. These events, together with probable chromosome reductions, dramatically increased the genome complexity, limiting its role as a reference. The identification of paralogs and single copy genes within a highly duplicated genome is a prerequisite to understand its organization and evolution and to improve its exploitation in comparative genomics. This is still controversial, even in the widely studied Arabidopsis genome. This is also due to the lack of a reference bioinformatics pipeline that could exhaustively identify paralogs and singleton genes. We describe here a complete computational strategy to detect both duplicated and single copy genes in a genome, discussing all the methodological issues that may strongly affect the results, their quality and their reliability. This approach was used to analyze the organization of Arabidopsis nuclear protein coding genes, and besides classifying computationally defined paralogs into networks and single copy genes into different classes, it unraveled further intriguing aspects concerning the genome annotation and the gene relationships in this reference plant species. Since our results may be useful for comparative genomics and genome functional analyses, we organized a dedicated web interface to make them accessible to the scientific community.

  12. Comparison of C. elegans and C. briggsae genome sequences reveals extensive conservation of chromosome organization and synteny.

    Directory of Open Access Journals (Sweden)

    LaDeana W Hillier

    2007-07-01

    Full Text Available To determine whether the distinctive features of Caenorhabditis elegans chromosomal organization are shared with the C. briggsae genome, we constructed a single nucleotide polymorphism-based genetic map to order and orient the whole genome shotgun assembly along the six C. briggsae chromosomes. Although these species are of the same genus, their most recent common ancestor existed 80-110 million years ago, and thus they are more evolutionarily distant than, for example, human and mouse. We found that, like C. elegans chromosomes, C. briggsae chromosomes exhibit high levels of recombination on the arms along with higher repeat density, a higher fraction of intronic sequence, and a lower fraction of exonic sequence compared with chromosome centers. Despite extensive intrachromosomal rearrangements, 1:1 orthologs tend to remain in the same region of the chromosome, and colinear blocks of orthologs tend to be longer in chromosome centers compared with arms. More strikingly, the two species show an almost complete conservation of synteny, with 1:1 orthologs present on a single chromosome in one species also found on a single chromosome in the other. The conservation of both chromosomal organization and synteny between these two distantly related species suggests roles for chromosome organization in the fitness of an organism that are only poorly understood presently.

  13. Dose response curve for micronucleus of cytokinesis-block method in human lymphocytes after 60Co-gamma ray exposure

    International Nuclear Information System (INIS)

    Gao Jinsheng; Zheng Siying; Cai Feng

    1993-08-01

    The micronucleus technique of cytokines block has been proposed as a new method to measure chromosome damage in cytogenetic. The cytokines is blocked by using cytochalasin B (Cyt-B), and micronuclei are scored in cytokines-blocked (CB) cells. This can easily be done owing to the appearance of binucleate cells and large numbers accumulated by adding 3.0 μg/ml cytochalasin B at 44 hours and scoring at 72 hours. The results show that the optimum concentration of Cyt-B is 3.0 μg/ml. the Cyt-B itself can not induce the increase of micronuclei. The micronucleus frequency of normal individuals in vivo, there is an approximately linear relationship between the frequency of induced micronuclei and irradiation dose. The formula is Y 0.36 D + 2.74 (γ 2 = 0.995 P<0.01). Because the cytokines block method is simple and reliable, it is effective for assaying chromosome damage caused by genetic toxic materials

  14. Effects of X-irradiation on cell-cycle progression, induction of chromosomal aberrations and cell killing in ataxia telangiectasia (AT) fibroblasts

    International Nuclear Information System (INIS)

    Nagasawa, H.; Little, J.B.; Latt, S.A.; Lalande, M.E.

    1985-01-01

    Survival, cumulative labeling indices, chromosomal aberrations and cell-cycle distribution by flow microfluorometry (FMF) were studied in fibroblasts from normal and three ataxia telangiectasia (AT) families after X-irradiation during density-inhibition of growth and immediate release by subculture to low density. Homozygotic AT (proband) fibroblasts were very hypersensitive to cell killing by X-irradiation. Fibroblasts from AT heterozygotes (parents) were minimally hypersensitive, with D 0 's slightly lower than those for normal fibroblasts. There were three different response groups for a G 1 phase block induced by 400 rad of X-rays: (1) minimal or no G 1 block was observed in AT homozygote cell strains; (2) 10-20% of the cells were blocked in G 1 in normal cell strains; and (3) 50% or more of the cells were blocked in AT heterozygote strains. FMF profiles and cumulative labeling indices showed that homozygotic AT cells irradiated in plateau phase moved into the S-phase following subculture with no additional delay over non-irradiated controls. Homozygotic AT cells showed not only a 4-5 times higher frequency of X-ray-induced chromosomal aberrations than normal strains, but approximately 30% of these were of the chromatid-type. There were no differences in the frequency or type of X-ray-induced chromosomal aberrations between normal and heterozygotic AT cells. (orig.)

  15. Female Urethral Duplication: Rare Anomaly with Unusual Presentation

    African Journals Online (AJOL)

    UD is classified according to plane (frontal or sagittal) of duplication into different types: (1) Double urethra and double bladder, (2) double urethra with single bladder,. (3) accessory urethra posterior to the normal channel,. (4) double proximal urethra and single distal urethra, and. (5) single proximal urethra and duplicated ...

  16. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms[OPEN

    Science.gov (United States)

    Li, Zhen; Van de Peer, Yves; De Smet, Riet

    2016-01-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of “gene duplicability” is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. PMID:26744215

  17. The effect of track structure on the induction of chromosomal aberrations in murine cells

    Science.gov (United States)

    Durante, M.; Cella, L.; Furusawa, Y.; George, K.; Gialanella, G.; Grossi, G.; Pugliese, M.; Saito, M.; Yang, T. C.

    1998-01-01

    PURPOSE: To measure chromosome aberrations in C3H 10T1/2 mouse fibroblasts using FISH painting at the first mitosis following exposure to 30 keV/microm hydrogen or neon ions. MATERIALS AND METHODS: Cells in plateau-phase were irradiated with 0.86 MeV protons at the TTT-3 Tandem accelerator in Naples (Italy), or with 400 MeV/n Ne ions at the HIMAC accelerator in Chiba (Japan). Colcemid-blocked cells were harvested at the first mitosis following exposure, and chromosome spreads were hybridized in situ with a fluorescein-labelled composite mouse DNA probe specific for chromosomes 2 and 8. RESULTS: Protons were more efficient than neon ions at the same LET in the induction of chromosome interchanges and breaks. Yields of complex exchanges were similar for both particles at the same dose, but protons produced mostly insertions, while with Ne exposure non-reciprocal exchanges were the most frequent complex-type exchange. CONCLUSIONS: Charged particles with the same LET produce different yields of chromosome aberrations, and some observed differences can be explained based on the available track-structure models.

  18. Duplicate retention in signalling proteins and constraints from network dynamics.

    Science.gov (United States)

    Soyer, O S; Creevey, C J

    2010-11-01

    Duplications are a major driving force behind evolution. Most duplicates are believed to fix through genetic drift, but it is not clear whether this process affects all duplications equally or whether there are certain gene families that are expected to show neutral expansions under certain circumstances. Here, we analyse the neutrality of duplications in different functional classes of signalling proteins based on their effects on response dynamics. We find that duplications involving intermediary proteins in a signalling network are neutral more often than those involving receptors. Although the fraction of neutral duplications in all functional classes increase with decreasing population size and selective pressure on dynamics, this effect is most pronounced for receptors, indicating a possible expansion of receptors in species with small population size. In line with such an expectation, we found a statistically significant increase in the number of receptors as a fraction of genome size in eukaryotes compared with prokaryotes. Although not confirmative, these results indicate that neutral processes can be a significant factor in shaping signalling networks and affect proteins from different functional classes differently. © 2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology.

  19. Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture

    Directory of Open Access Journals (Sweden)

    Matteo Vietri Rudan

    2015-03-01

    Full Text Available Topological domains are key architectural building blocks of chromosomes, but their functional importance and evolutionary dynamics are not well defined. We performed comparative high-throughput chromosome conformation capture (Hi-C in four mammals and characterized the conservation and divergence of chromosomal contact insulation and the resulting domain architectures within distantly related genomes. We show that the modular organization of chromosomes is robustly conserved in syntenic regions and that this is compatible with conservation of the binding landscape of the insulator protein CTCF. Specifically, conserved CTCF sites are co-localized with cohesin, are enriched at strong topological domain borders, and bind to DNA motifs with orientations that define the directionality of CTCF’s long-range interactions. Conversely, divergent CTCF binding between species is correlated with divergence of internal domain structure, likely driven by local CTCF binding sequence changes, demonstrating how genome evolution can be linked to a continuous flux of local conformation changes. We also show that large-scale domains are reorganized during genome evolution as intact modules.

  20. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Science.gov (United States)

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  1. Use of diagnostic imaging in the evaluation of gastrointestinal tract duplications.

    Science.gov (United States)

    Laskowska, Katarzyna; Gałązka, Przemysław; Daniluk-Matraś, Irena; Leszczyński, Waldemar; Serafin, Zbigniew

    2014-01-01

    Gastrointestinal tract duplication is a rare malformation associated with the presence of additional segment of the fetal gut. The aim of this study was to retrospectively review clinical features and imaging findings in intraoperatively confirmed cases of gastrointestinal tract duplication in children. The analysis included own material from the years 2002-2012. The analyzed group included 14 children, among them 8 boys and 6 girls. The youngest patient was diagnosed at the age of three weeks, and the oldest at 12 years of age. The duplication cysts were identified in the esophagus (n=2), stomach (n=5), duodenum (n=1), terminal ileum (n=5), and rectum (n=1). In four cases, the duplication coexisted with other anomalies, such as patent urachus, Meckel's diverticulum, mesenteric cyst, and accessory pancreas. Clinical manifestation of gastrointestinal duplication cysts was variable, and some of them were detected accidently. Thin- or thick-walled cystic structures adjacent to the wall of neighboring gastrointestinal segment were documented on diagnostic imaging. Ultrasound and computed tomography are the methods of choice in the evaluation of gastrointestinal duplication cysts. Apart from the diagnosis of the duplication cyst, an important issue is the detection of concomitant developmental pathologies, including pancreatic heterotopy.

  2. Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations.

    Science.gov (United States)

    Fares, Mario A; Sabater-Muñoz, Beatriz; Toft, Christina

    2017-05-01

    Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker's yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Cholecystitis of a duplicated gallbladder complicated by a cholecystoenteric fistula

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Brady K. [University of Rochester Medical Center, Department of Imaging Sciences, Rochester, NY (United States); Chess, Mitchell A. [University of Rochester Medical Center, Department of Imaging Sciences, Rochester, NY (United States); Advanced Imaging, Batavia, NY (United States)

    2009-04-15

    Gallbladder duplications are uncommon anatomic variants that are sometimes mistaken for other entities on imaging. We present a surgically confirmed case of cholecystitis in a ductular-type duplicated gallbladder complicated by the formation of an inflammatory fistula to the adjacent duodenum. Both US and magnetic resonance cholangiopancreatography were performed preoperatively, in addition to intraoperative cholangiography, which confirmed the presence of a duplicated gallbladder. (orig.)

  4. Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization.

    Science.gov (United States)

    Gout, Jean-Francois; Lynch, Michael

    2015-08-01

    Whole-genome duplications (WGDs) have contributed to gene-repertoire enrichment in many eukaryotic lineages. However, most duplicated genes are eventually lost and it is still unclear why some duplicated genes are evolutionary successful whereas others quickly turn to pseudogenes. Here, we show that dosage constraints are major factors opposing post-WGD gene loss in several Paramecium species that share a common ancestral WGD. We propose a model where a majority of WGD-derived duplicates preserve their ancestral function and are retained to produce enough of the proteins performing this same ancestral function. Under this model, the expression level of individual duplicated genes can evolve neutrally as long as they maintain a roughly constant summed expression, and this allows random genetic drift toward uneven contributions of the two copies to total expression. Our analysis suggests that once a high level of imbalance is reached, which can require substantial lengths of time, the copy with the lowest expression level contributes a small enough fraction of the total expression that selection no longer opposes its loss. Extension of our analysis to yeast species sharing a common ancestral WGD yields similar results, suggesting that duplicated-gene retention for dosage constraints followed by divergence in expression level and eventual deterministic gene loss might be a universal feature of post-WGD evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  6. Preliminary experiments of electronic duplication

    International Nuclear Information System (INIS)

    Fay, Bernard

    1974-01-01

    Systems of electron sputtering (at the unit scale) use as master mask a photocathode with localized emitting zones. Emitted electrons are accelerated and focussed on a silicon substrate covered with an electrosensitive resin. The very high definition associated with electron masking is obtained whatever the complexity of the master mask is, for a printing duration of the order of the minute. This is a duplication method without any contact that prevents the master mask from any mechanical erosion. Alignment of the successive masks is obtained from an electric signal directly usable through an automatic alignment system. Experiments using the apparatus for reproducing masks through an electronic image or ''electronic duplicator'' developed in Thomson-CSF Laboratory at Corbeville, are presented [fr

  7. Construction of a DNA library representing 15q11-13 by subtraction of two flow sorted marker chromosome-specific libraries

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, E.; Werelius, B.; Nordenskjoeld, M. [Karolinska Hospital, Stockholm (Sweden)] [and others

    1994-09-01

    Constitutional extra {open_quotes}marker chromosomes{close_quotes} are found in {approx}0.5/1000 of newborns. Of these, 50% are inverted duplications of the pericentromeric region of chromosome 15, including two variants; (1) inv dup(15)(pter{yields}q11:q11{yields}pter) and (2) inv dup(15) (pter{yields}q12-13::q12-13{yields}pter). Variant (1) is found in phenotypically normal individuals, whereas variant (2) will produce a typical clinical picture including mental retardation, autism, hyperactivity and discrete dysmorphic features. Fluorescence in situ hybridization (FISH) using single copy probes from the Prader-Willi region confirms these observations as well as chromosome painting using a flow-sorted marker chromosome-specific library from a variant (1) marker, hybridized to the chromosomes of a patient with a variant (2) marker chromosome. Followingly, a flow-sorted biotinylated variant (1) library was subtracted from a non-labeled variant (2) library using magnetic beads and subsequent amplification by degenerate oligonucleotide-primed PCR (DOP-PCR). The successful result was demonstrated by using the amplified material for chromosome painting on chromosome slides from variant (1) and variant (2) patients. We have constructed a library from 15q11-13. This region contains genes producing a specific abnormal phenotype when found in a tri- or tetrasomic state. The region also contains the genes responsible for the Prader-Willi and Angelman syndromes when the paternal/maternal copy is missing, respectively. It is therefore a region where parental imprinting plays an important role. The isolated library may be used to isolate single copy clones which will allow further investigations of this region.

  8. Monogenic and chromosomal causes of isolated speech and language impairment.

    Science.gov (United States)

    Barnett, C P; van Bon, B W M

    2015-11-01

    The importance of a precise molecular diagnosis for children with intellectual disability, autism spectrum disorder and epilepsy has become widely accepted and genetic testing is an integral part of the diagnostic evaluation of these children. In contrast, children with an isolated speech or language disorder are not often genetically evaluated, despite recent evidence supporting a role for genetic factors in the aetiology of these disorders. Several chromosomal copy number variants and single gene disorders associated with abnormalities of speech and language have been identified. Individuals without a precise genetic diagnosis will not receive optimal management including interventions such as early testosterone replacement in Klinefelter syndrome, otorhinolaryngological and audiometric evaluation in 22q11.2 deletion syndrome, cardiovascular surveillance in 7q11.23 duplications and early dietary management to prevent obesity in proximal 16p11.2 deletions. This review summarises the clinical features, aetiology and management options of known chromosomal and single gene disorders that are associated with speech and language pathology in the setting of normal or only mildly impaired cognitive function. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Ruptured rectal duplication with urogenital abnormality: Unusual presentation.

    Science.gov (United States)

    Solanki, Shailesh; Babu, M Narendra; Jadhav, Vinay; Shankar, Gowri; Santhanakrishnan, Ramesh

    2015-01-01

    Rectal duplication (RD) accounts for 5% of alimentary tract duplication. A varied presentation and associated anomalies have been described in the literature. Antenatal rupture of the RD is very rare. We present an unusual case of a ruptured RD associated with urogenital abnormalities in newborn male. We are discussing diagnosis, embryology, management and literature review of ruptured RD.

  10. Multisite Semiautomated Clinical Data Repository for Duplication 15q Syndrome: Study Protocol and Early Uses.

    Science.gov (United States)

    Ajayi, Oluwaseun Jessica; Smith, Ebony Jeannae; Viangteeravat, Teeradache; Huang, Eunice Y; Nagisetty, Naga Satya V Rao; Urraca, Nora; Lusk, Laina; Finucane, Brenda; Arkilo, Dimitrios; Young, Jennifer; Jeste, Shafali; Thibert, Ronald; Reiter, Lawrence T

    2017-10-18

    Chromosome 15q11.2-q13.1 duplication syndrome (Dup15q syndrome) is a rare disorder caused by duplications of chromosome 15q11.2-q13.1, resulting in a wide range of developmental disabilities in affected individuals. The Dup15q Alliance is an organization that provides family support and promotes research to improve the quality of life of patients living with Dup15q syndrome. Because of the low prevalence of this condition, the establishment of a single research repository would have been difficult and more time consuming without collaboration across multiple institutions. The goal of this project is to establish a national deidentified database with clinical and survey information on individuals diagnosed with Dup15q syndrome. The development of a multiclinic site repository for clinical and survey data on individuals with Dup15q syndrome was initiated and supported by the Dup15q Alliance. Using collaborative workflows, communication protocols, and stakeholder engagement tools, a comprehensive database of patient-centered information was built. We successfully established a self-report populating, centralized repository for Dup15q syndrome research. This repository also resulted in the development of standardized instruments that can be used for other studies relating to developmental disorders. By standardizing the data collection instruments, it allows us integrate our data with other national databases, such as the National Database for Autism Research. A substantial portion of the data collected from the questionnaires was facilitated through direct engagement of participants and their families. This allowed for a more complete set of information to be collected with a minimal turnaround time. We developed a repository that can efficiently be mined for shared clinical phenotypes observed at multiple clinic sites and used as a springboard for future clinical and basic research studies. ©Oluwaseun Jessica Ajayi, Ebony Jeannae Smith, Teeradache Viangteeravat

  11. The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat.

    Science.gov (United States)

    Hao, Chenyang; Wang, Yuquan; Chao, Shiaoman; Li, Tian; Liu, Hongxia; Wang, Lanfen; Zhang, Xueyong

    2017-01-30

    A Chinese wheat mini core collection was genotyped using the wheat 9 K iSelect SNP array. Total 2420 and 2396 polymorphic SNPs were detected on the A and the B genome chromosomes, which formed 878 haplotype blocks. There were more blocks in the B genome, but the average block size was significantly (P polyploidization of wheat (both tetraploidization and hexaploidization) induced revolutionary changes in both the A and the B genomes, with a greater increase of gene diversity compared to their diploid ancestors. Modern breeding has dramatically increased diversity in the gene coding regions, though obvious blocks were formed on most of the chromosomes in both tetraploid and hexaploid wheats. Tag-SNP markers identified in this study can be used for marker assisted selection using haplotype blocks as a wheat breeding strategy. This strategy can also be employed to facilitate genome selection in other self-pollinating crop species.

  12. Unmasking of a hemizygous WFS1 gene mutation by a chromosome 4p deletion of 8.3 Mb in a patient with Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Flipsen-ten Berg, Klara; van Hasselt, Peter M; Eleveld, Marc J; van der Wijst, Suzanne E; Hol, Frans A; de Vroede, Monique A M; Beemer, Frits A; Hochstenbach, P F Ron; Poot, Martin

    2007-11-01

    The Wolf-Hirschhorn syndrome (WHS (MIM 194190)), which is characterized by growth delay, mental retardation, epilepsy, facial dysmorphisms, and midline fusion defects, shows extensive phenotypic variability. Several of the proposed mutational and epigenetic mechanisms in this and other chromosomal deletion syndromes fail to explain the observed phenotypic variability. To explain the complex phenotype of a patient with WHS and features reminiscent of Wolfram syndrome (WFS (MIM 222300)), we performed extensive clinical evaluation and classical and molecular cytogenetic (GTG banding, FISH and array-CGH) and WFS1 gene mutation analyses. We detected an 8.3 Mb terminal deletion and an adjacent 2.6 Mb inverted duplication in the short arm of chromosome 4, which encompasses a gene associated with WFS (WFS1). In addition, a nonsense mutation in exon 8 of the WFS1 gene was found on the structurally normal chromosome 4. The combination of the 4p deletion with the WFS1 point mutation explains the complex phenotype presented by our patient. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletions represents an additional explanation for the phenotypic variability observed in chromosomal deletion disorders.

  13. Incidence of chromosomal aberrations and micronuclei in cave tour guides.

    Science.gov (United States)

    Bilban, M; Bilban-Jakopin, C; Vrhovec, S

    2001-01-01

    An analysis of structural chromosomal aberrations (SCA) and micronucleus tests (MN) were performed in 38 subjects, cave tour guides and in appropriate control group. The dominant type of chromosomal aberrations in tourist guides were chromosomal breaks (0.013 per cell) and acentric fragments (0.011 per cell). In the control group, these aberrations were present up to 0.008 on cells. Considering the analysed cells of the guides in total (33,556), the incidence of dicentric and rings range is below 0.0008 on cells, even though three dicentric and ring chromosoms were found already in the first 1000 in vitro metaphases of some guides. Only 0.0003 dicentrics and neither other translocations were found in control group (ambiental exposure). The incidence of micronuclei in cytokinesis blocked lymphocytes ranged from 12-32 per 500 CB cells in the cave tour guides and from 4-11 per 500 CB cells in control group. Measurements of radon and its daughters were performed at different locations in the cave. Annual doses from 40-60 mSv were estimated per 2000 work hours for cave guides. The changes found in the genome of somatic cells may be related to the exposure doses of radon and its daughters, although smoking should not be ignored.

  14. Transposition of the great arteries - a phenotype associated with 16p11.2 duplications?

    Science.gov (United States)

    Karunanithi, Zarmiga; Vestergaard, Else Marie; Lauridsen, Mette H

    2017-12-26

    Genetic analyses of patients with transposition of the great arteries have identified rare copy number variations, suggesting that they may be significant to the aetiology of the disease. This paper reports the identification of a 16p11.2 microduplication, a variation that has yet to be reported in association with transposition of the great arteries. The 16p11.2 microduplication is associated with autism spectrum disorder and developmental delay, but with highly variable phenotypic effects. Autism and attention deficit disorders are observed more frequently in children with congenital heart disease than in the general population. Neonatal surgery is proposed as a risk factor, but as yet unidentified genetic abnormalities should also be taken into account. Thus, congenital heart abnormalities may constitute a part of the phenotypic spectrum associated with duplications at 16p11.2. We suggest chromosomal microarray be considered part of the diagnostic work-up in patients with transposition of the great arteries.

  15. Pyrimidine dimers block simian virus 40 replication forks

    International Nuclear Information System (INIS)

    Berger, C.A.; Edenberg, H.J.

    1986-01-01

    UV light produces lesions, predominantly pyrimidine dimers, which inhibit DNA replication in mammalian cells. The mechanism of inhibition is controversial: is synthesis of a daughter strand halted at a lesion while the replication fork moves on and reinitiates downstream, or is fork progression itself blocked for some time at the site of a lesion? We directly addressed this question by using electron microscopy to examine the distances of replication forks from the origin in unirradiated and UV-irradiated simian virus 40 chromosomes. If UV lesions block replication fork progression, the forks should be asymmetrically located in a large fraction of the irradiated molecules; if replication forks move rapidly past lesions, the forks should be symmetrically located. A large fraction of the simian virus 40 replication forks in irradiated molecules were asymmetrically located, demonstrating that UV lesions present at the frequency of pyrimidine dimers block replication forks. As a mechanism for this fork blockage, we propose that polymerization of the leading strand makes a significant contribution to the energetics of fork movement, so any lesion in the template for the leading strand which blocks polymerization should also block fork movement

  16. Ruptured rectal duplication with urogenital abnormality: Unusual presentation

    Directory of Open Access Journals (Sweden)

    Shailesh Solanki

    2015-01-01

    Full Text Available Rectal duplication (RD accounts for 5% of alimentary tract duplication. A varied presentation and associated anomalies have been described in the literature. Antenatal rupture of the RD is very rare. We present an unusual case of a ruptured RD associated with urogenital abnormalities in newborn male. We are discussing diagnosis, embryology, management and literature review of ruptured RD.

  17. Gastric duplication cyst: A cause of rectal bleeding in a young child.

    Science.gov (United States)

    Surridge, Clare A; Goodier, Matthew D

    2014-01-01

    Gastric duplication cysts are an uncommon congenital anomaly and rectal bleeding is a rare presentation of a complicated gastric duplication cyst. This case report describes the radiological findings in a child with a complicated gastric duplication cyst.

  18. Dynamic Delayed Duplicate Detection for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami

    2008-01-01

    Duplicate detection is an expensive operation of disk-based model checkers. It consists of comparing some potentially new states, the candidate states, to previous visited states. We propose a new approach to this technique called dynamic delayed duplicate detection. This one exploits some typical...

  19. Inter-chromosomal heterogeneity in the formation of radiation induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Vermeulen, S.; Boei, J.J.W.A.

    1997-01-01

    It is generally assumed that radiation induced chromosomal lesions are distributed randomly and repaired randomly among the genome. Recent studies using fluorescent in situ hybridization (FISH) and chromosome specific DNA libraries indicate that some chromosomes are more sensitive for radiation induced aberration formation than others. Chromosome No. 4 in human and chromosome No. 8 in Chinese hamster have been found to involve more in exchange aberrations than others, when calculated on the basis of their DNA content. Painting with arm specific chromosome libraries indicate that the frequencies of radiation induced intra-chromosome exchanges (i.e., between the arms of a chromosome, such as centric rings and inversions) are far in excess than one would expect on the basis of the frequencies of observed inter-chromosomal exchanges. The possible factors leading to the observed heterogeneity will be discussed

  20. Transmission of chromosomal and instability via a chromosome irradiated with ionizing radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji; Tanabe, Masateru; Shiraishi, Kazunori; Oshimura, Mitsuo

    2010-01-01

    We examined the stability of the transferred chromosome in 5 and 12 microcell hybrids including unirradiated human chromosomes 6 and 8, respectively, and 6 and 19 microcell hybrids including 4 Gy-irradiated human chromosomes 6 and 8, respectively. The transferred chromosome was structurally stable in most microcell hybrids transferred with the unirradiated chromosomes 6 and 8. In contrast, the 4 Gy-irradiated human chromosomes were unstable in 3 out of 6 hybrids (50%) with chromosome 6 and 3 out of 19 hybrids (16%) with chromosome 8, showing multiple aberrations in high frequencies (35∼98%). To know the cause of delayed chromosomal instability, intrachromosomal rearrangements of the human chromosome is investigated by subtelomere FISH in 17 microcell hybrids transferred with chromosomes 6 and 8. We found frequent intrachromosomal in 7 microcell hybrids (41%). However, no clear correlation was observed between the intrachromosomal rearrangements and the induction of delayed chromosomal instability by ionizing radiation

  1. Spinal Accessory Nerve Duplication: A Case Report and Literature Review

    OpenAIRE

    Papagianni, Eleni; Kosmidou, Panagiota; Fergadaki, Sotiria; Pallantzas, Athanasios; Skandalakis, Panagiotis; Filippou, Dimitrios

    2018-01-01

    Aim of the present study is to expand our knowledge of the anatomy of the 11th cranial nerve and discuss the clinical importance and literature pertaining to accessory nerve duplication. We present one case of duplicated spinal accessory nerve in a patient undergoing neck dissection for oral cavity cancer. The literature review confirms the extremely rare diagnosis of a duplicated accessory nerve. Its clinical implication is of great importance. From this finding, a further extension to our k...

  2. Mitotic chromosome structure

    International Nuclear Information System (INIS)

    Heermann, Dieter W.

    2012-01-01

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  3. Mitotic chromosome structure

    Energy Technology Data Exchange (ETDEWEB)

    Heermann, Dieter W., E-mail: heermann@tphys.uni-heidelberg.de

    2012-07-15

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  4. Gastric duplication cyst: A cause of rectal bleeding in a young child

    Directory of Open Access Journals (Sweden)

    Clare A Surridge

    2014-01-01

    Full Text Available Gastric duplication cysts are an uncommon congenital anomaly and rectal bleeding is a rare presentation of a complicated gastric duplication cyst. This case report describes the radiological findings in a child with a complicated gastric duplication cyst.

  5. Artificial domain duplication replicates evolutionary history of ketol-acid reductoisomerases.

    Science.gov (United States)

    Cahn, Jackson K B; Brinkmann-Chen, Sabine; Buller, Andrew R; Arnold, Frances H

    2016-07-01

    The duplication of protein structural domains has been proposed as a common mechanism for the generation of new protein folds. A particularly interesting case is the class II ketol-acid reductoisomerase (KARI), which putatively arose from an ancestral class I KARI by duplication of the C-terminal domain and corresponding loss of obligate dimerization. As a result, the class II enzymes acquired a deeply embedded figure-of-eight knot. To test this evolutionary hypothesis we constructed a novel class II KARI by duplicating the C-terminal domain of a hyperthermostable class I KARI. The new protein is monomeric, as confirmed by gel filtration and X-ray crystallography, and has the deeply knotted class II KARI fold. Surprisingly, its catalytic activity is nearly unchanged from the parent KARI. This provides strong evidence in support of domain duplication as the mechanism for the evolution of the class II KARI fold and demonstrates the ability of domain duplication to generate topological novelty in a function-neutral manner. © 2015 The Protein Society.

  6. Two Rounds of Whole Genome Duplication in the AncestralVertebrate

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir; Boore, Jeffrey L.

    2005-04-12

    The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish-tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of 4-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage.

  7. Association of anorectal malformation with anal and rectal duplication

    Directory of Open Access Journals (Sweden)

    Karla A. Santos-Jasso

    2014-08-01

    We present three cases of rectal duplications with anorectal malforma- tion with recto-perineal fistula and colonic duplication. Two of them with delayed diagnosis and bowel obstruction, treated with laparotomy, colostomy and side-to-side anastomosis of the proximal colonic duplica- tion; in the third case the diagnosis of the colonic and rectal duplication was made during a colostomy opening. For definitive correction, the three patients underwent abdomino-perineal approach and side-to-side anastomosis of the rectal duplication, placement of the rectum within the muscle complex, and later on colostomy closure. In a fourth patient with anorectal malformation and colostomy after birth, the perineal electro-stimulation showed two muscle complexes. A posterior sagittal approach in both showed two separate blind rectal pouches; an end- to-side anastomosis of the dilated rectum was made, and the muscle complex with stronger contraction was used for the anoplasty. The posterior sagittal approach is the best surgical option to preserve the muscle complex, with a better prognosis for rectal continence.

  8. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome*

    Science.gov (United States)

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-01-01

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  9. 10 CFR 7.21 - Cost of duplication of documents.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Cost of duplication of documents. 7.21 Section 7.21 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.21 Cost of duplication of documents. Copies of the records, reports, transcripts, minutes, appendices, working papers, drafts, studies, agenda, or other...

  10. Evolution of stress-regulated gene expression in duplicate genes of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Cheng Zou

    2009-07-01

    Full Text Available Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time is > approximately 0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments.

  11. Dynamic Delayed Duplicate Detection for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami

    2008-01-01

    Duplicate detection is an expensive operation of disk-based model checkers. It consists of comparing some potentially new states, the candidate states, to previous visited states. We propose a new approach to this technique called dynamic delayed duplicate detection. This one exploits some typica...... significantly better than some previously published algorithms....

  12. Chromosomal aberration

    International Nuclear Information System (INIS)

    Ishii, Yutaka

    1988-01-01

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G 2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G 2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G 2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G 1 phase. (author)

  13. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes1[OPEN

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C.; Fan, Chuanzhu

    2016-01-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella. Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  14. A Novel 2.3 Mb Microduplication of 9q34.3 Inserted into 19q13.4 in a Patient with Learning Disabilities

    Directory of Open Access Journals (Sweden)

    Shalinder Singh

    2012-01-01

    Full Text Available Insertional translocations in which a duplicated region of one chromosome is inserted into another chromosome are very rare. We report a 16.5-year-old girl with a terminal duplication at 9q34.3 of paternal origin inserted into 19q13.4. Chromosomal analysis revealed the karyotype 46,XX,der(19ins(19;9(q13.4;q34.3q34.3pat. Cytogenetic microarray analysis (CMA identified a ~2.3Mb duplication of 9q, which was confirmed by Fluorescence in situ hybridisation (FISH. The duplication at 9q34.3 is the smallest among the cases reported so far. The proband exhibits similar clinical features to those previously reported cases with larger duplication events.

  15. Adenocarcinoma within a rectal duplication cyst: case report and literature review.

    Science.gov (United States)

    Michael, D; Cohen, C R; Northover, J M

    1999-05-01

    Intestinal duplications are uncommon but recognised developmental anomalies. Duplications of the rectum are the most uncommon of these anomalies. They may present with perianal fistulae, bleeding, a pelvic mass or symptoms produced by a mass, or, rarely, malignant change. We present a case of an adenocarcinoma within a rectal duplication cyst which was initially thought to be inoperable but was treated by radical surgery.

  16. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.

    Science.gov (United States)

    Bachtrog, Doris

    2013-02-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.

  17. Chromosomal abnormalities in human glioblastomas: gain in chromosome 7p correlating with loss in chromosome 10q.

    Science.gov (United States)

    Inda, María del Mar; Fan, Xing; Muñoz, Jorge; Perot, Christine; Fauvet, Didier; Danglot, Giselle; Palacio, Ana; Madero, Pilar; Zazpe, Idoya; Portillo, Eduardo; Tuñón, Teresa; Martínez-Peñuela, José María; Alfaro, Jorge; Eiras, José; Bernheim, Alain; Castresana, Javier S

    2003-01-01

    Various genomic alterations have been detected in glioblastoma. Chromosome 7p, with the epidermal growth factor receptor locus, together with chromosome 10q, with the phosphatase and tensin homologue deleted in chromosome 10 and deleted in malignant brain tumors-1 loci, and chromosome 9p, with the cyclin-dependent kinase inhibitor 2A locus, are among the most frequently damaged chromosomal regions in glioblastoma. In this study, we evaluated the genetic status of 32 glioblastomas by comparative genomic hybridization; the sensitivity of comparative genomic hybridization versus differential polymerase chain reaction to detect deletions at the phosphatase and tensin homologue deleted in chromosome 10, deleted in malignant brain tumors-1, and cyclin-dependent kinase inhibitor 2A loci and amplifications at the cyclin-dependent kinase 4 locus; the frequency of genetic lesions (gain or loss) at 16 different selected loci (including oncogenes, tumor-suppressor genes, and proliferation markers) mapping on 13 different chromosomes; and the possible existence of a statistical association between any pair of molecular markers studied, to subdivide the glioblastoma entity molecularly. Comparative genomic hybridization showed that the most frequent region of gain was chromosome 7p, whereas the most frequent losses occurred on chromosomes 10q and 13q. The only statistically significant association was found for 7p gain and 10q loss. Copyright 2002 Wiley-Liss, Inc.

  18. Identification of a duplication of Xq28 associated with bilateral periventricular nodular heterotopia.

    Science.gov (United States)

    Fink, J M; Dobyns, W B; Guerrini, R; Hirsch, B A

    1997-01-01

    Bilateral periventricular nodular heterotopia (BPNH) is a malformation of neuronal migration and is characterized by nodules of heterotopic gray matter lining the lateral ventricles of the brain. The majority of BPNH patients are female and have epilepsy as a sole clinical manifestation of their disease. Familial BPNH has been mapped to Xq28 by linkage analysis. A multiple congenital anomaly-mental retardation syndrome (BPNH/MR) was recently delineated in three unrelated boys with BPNH, cerebellar hypoplasia, severe mental retardation, epilepsy, and syndactyly. High-resolution chromosome analysis revealed a subtle abnormality of Xq28 in one of the boys with BPNH/MR syndrome. FISH with cosmids and YACs from Xq28 further characterized this abnormality as a 2.25-3.25-Mb inverted duplication. No abnormality of Xq28 was detected by G-banding or FISH in the other two boys. These data support the linkage assignment of BPNH to band Xq28 and narrow the critical region to the distal 2.25-3.25 Mb of Xq28. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:9311743

  19. Laparoscopic excision of an ascending colon duplication cyst in an adolescent

    Directory of Open Access Journals (Sweden)

    Heather R. Nolan

    2016-01-01

    Full Text Available Colonic intestinal duplications are infrequent and rarely present past early childhood. We present the case of a large, ascending colon duplication in a 17-year-old boy resected using minimally invasive techniques. This appears to be the first reported case of a laparoscopic en-bloc ascending colon duplication resection in an adolescent. The diagnosis and management of colonic duplications are discussed.

  20. Casein kinase 1 alpha regulates chromosome congression and separation during mouse oocyte meiotic maturation and early embryo development.

    Directory of Open Access Journals (Sweden)

    Lu Wang

    Full Text Available Casein kinase I alpha (CK1α is a member of serine/threonine protein kinase, generally present in all eukaryotes. In mammals, CK1α regulates the transition from interphase to metaphase in mitosis. However, little is known about its role in meiosis. Here we examined Ck1α mRNA and protein expression, as well as its subcellular localization in mouse oocytes from germinal vesicle to the late 1-cell stage. Our results showed that the expression level of CK1α was increased in metaphase. Immunostaining results showed that CK1α colocalized with condensed chromosomes during oocyte meiotic maturation and early embryo development. We used the loss-of-function approach by employing CK1α specific morpholino injection to block the function of CK1α. This functional blocking leads to failure of polar body 1 (PB1 extrusion, chromosome misalignment and MII plate incrassation. We further found that D4476, a specific and efficient CK1 inhibitor, decreased the rate of PB1 extrusion. Moreover, D4476 resulted in giant polar body extrusion, oocyte pro-MI arrest, chromosome congression failure and impairment of embryo developmental potential. In addition, we employed pyrvinium pamoate (PP, an allosteric activator of CK1α, to enhance CK1α activity in oocytes. Supplementation of PP induced oocyte meiotic maturation failure, severe congression abnormalities and misalignment of chromosomes. Taken together, our study for the first time demonstrates that CK1α is required for chromosome alignment and segregation during oocyte meiotic maturation and early embryo development.

  1. Slit scan flow cytometry of isolated chromosomes following fluorescence hybridization: an approach of online screening for specific chromosomes and chromosome translocations

    NARCIS (Netherlands)

    Hausmann, M.; Dudin, G.; Aten, J. A.; Heilig, R.; Diaz, E.; Cremer, C.

    1991-01-01

    The recently developed methods of non radioactive in situ hybridization of chromosomes offer new aspects for chromosome analysis. Fluorescent labelling of hybridized chromosomes or chromosomal subregions allows to facilitate considerably the detection of specific chromosomal abnormalities. For many

  2. Adenocarcinoma arising in rectal duplication cyst: case report and review of the literature.

    Science.gov (United States)

    Shivnani, Anand T; Small, William; Benson, Al; Rao, Sambasiva; Talamonti, Mark S

    2004-11-01

    Duplication cyst of the gastrointestinal (GI) tract is a rare congenital anomaly, and rectal duplication cysts comprise a small fraction these cases. Most patients present for the first time in adulthood, and the origin of rectal duplication cysts is unclear. Prior series document malignant transformation in approximately 20 per cent of cases. The following case report describes a carcinoma arising in a rectal duplication cyst. Given the lack of data demonstrating adequate control for patients with adenocarcinoma arising in a rectal duplication cyst and our experience with this patient, we recommend all patients undergo multidisciplinary evaluation prior to any therapy.

  3. Colonic duplications: Clinical presentation and radiologic features of five cases

    International Nuclear Information System (INIS)

    Blickman, J.G.; Rieu, P.H.M.; Buonomo, C.; Hoogeveen, Y.L.; Boetes, C.

    2006-01-01

    Diagnosis of colonic duplication can pose a potential problem even for those familiar with gastro-intestinal tract duplications in general but unaware of the condition due to its rarity and its apparently bimodal clinical presentation. In this report of five cases of surgically proven pediatric colonic duplication, we illustrate how the condition manifests clinically and describe the imaging features in an attempt to illustrate this bimodal presentation of the condition. The possible etiology, associated congenital anomalies and modes of clinical presentation are reviewed based on literature review as well as on our own experience

  4. Complex chromosome rearrangement in a child with microcephaly, dysmorphic facial features and mosaicism for a terminal deletion del(18(q21.32-qter investigated by FISH and array-CGH: Case report

    Directory of Open Access Journals (Sweden)

    Kokotas Haris

    2008-11-01

    Full Text Available Abstract We report on a 7 years and 4 months old Greek boy with mild microcephaly and dysmorphic facial features. He was a sociable child with maxillary hypoplasia, epicanthal folds, upslanting palpebral fissures with long eyelashes, and hypertelorism. His ears were prominent and dysmorphic, he had a long philtrum and a high arched palate. His weight was 17 kg (25th percentile and his height 120 cm (50th percentile. High resolution chromosome analysis identified in 50% of the cells a normal male karyotype, and in 50% of the cells one chromosome 18 showed a terminal deletion from 18q21.32. Molecular cytogenetic investigation confirmed a del(18(q21.32-qter in the one chromosome 18, but furthermore revealed the presence of a duplication in q21.2 in the other chromosome 18. The case is discussed concerning comparable previously reported cases and the possible mechanisms of formation.

  5. Exposing region duplication through local geometrical color invariant features

    Science.gov (United States)

    Gong, Jiachang; Guo, Jichang

    2015-05-01

    Many advanced image-processing softwares are available for tampering images. How to determine the authenticity of an image has become an urgent problem. Copy-move is one of the most common image forgery operations. Many methods have been proposed for copy-move forgery detection (CMFD). However, most of these methods are designed for grayscale images without any color information used. They are usually not suitable when the duplicated regions have little structure or have undergone various transforms. We propose a CMFD method using local geometrical color invariant features to detect duplicated regions. The method starts by calculating the color gradient of the inspected image. Then, we directly take the color gradient as the input for scale invariant features transform (SIFT) to extract color-SIFT descriptors. Finally, keypoints are matched and clustered before their geometrical relationship is estimated to expose the duplicated regions. We evaluate the detection performance and computational complexity of the proposed method together with several popular CMFD methods on a public database. Experimental results demonstrate the efficacy of the proposed method in detecting duplicated regions with various transforms and poor structure.

  6. Heterochromatin and rDNA sites distribution in the holocentric chromosomes of Cuscuta approximata Bab. (Convolvulaceae).

    Science.gov (United States)

    Guerra, Marcelo; García, Miguel A

    2004-02-01

    Cuscuta is a widely distributed genus of holoparasitic plants. Holocentric chromosomes have been reported only in species of one of its subgenera (Cuscuta subg. Cuscuta). In this work, a representative of this subgenus, Cuscuta approximata, was investigated looking for its mitotic and meiotic chromosome behaviour and the heterochromatin distribution. The mitotic chromosomes showed neither primary constriction nor Rabl orientation whereas the meiotic ones exhibited the typical quadripartite structure characteristic of holocentrics, supporting the assumption of holocentric chromosomes as a synapomorphy of Cuscuta subg. Cuscuta. Chromosomes and interphase nuclei displayed many heterochromatic blocks that stained deeply with hematoxylin, 4',6-diamidino-2-phenylindole (DAPI), or after C banding. The banded karyotype showed terminal or subterminal bands in all chromosomes and central bands in some of them. The single pair of 45S rDNA sites was observed at the end of the largest chromosome pair, close to a DAPI band and a 5S rDNA site. Two other 5S rDNA site pairs were found, both closely associated with DAPI bands. The noteworthy giant nuclei of glandular cells of petals and ovary wall exhibited large chromocentres typical of polytenic nuclei. The chromosomal location of heterochromatin and rDNA sites and the structure of the endoreplicated nuclei of C. approximata seemed to be similar to those known in monocentric nuclei, suggesting that centromeric organization has little or no effect on chromatin organization.

  7. Life-threatening Arrhythmias in a Becker Muscular Dystrophy Family due to the Duplication of Exons 3-4 of the Dystrophin Gene.

    Science.gov (United States)

    Ishizaki, Masatoshi; Fujimoto, Akiko; Ueyama, Hidetsugu; Nishida, Yasuto; Imamura, Shigehiro; Uchino, Makoto; Ando, Yukio

    2015-01-01

    We herein present a report of three patients with Becker muscular dystrophy in the same family who developed complete atrioventricular block or ventricular tachycardia with severe cardiomyopathy. Our cases became unable to walk in their teens, and were introduced to mechanical ventilation due to respiratory muscle weakness in their twenties and thirties. In all three cases, a medical device such as a permanent cardiac pacemaker or an implantable cardiac defibrillator was considered to be necessary. The duplication of exons 3-4 in the dystrophin gene was detected in two of the patients. In patients with Becker muscular dystrophy, complete atrioventricular block or ventricular tachycardia within a family has rarely been reported. Thus attention should be paid to the possibility of severe arrhythmias in the severe phenotype of Becker muscular dystrophy.

  8. Neutral and Non-Neutral Evolution of Duplicated Genes with Gene Conversion

    Directory of Open Access Journals (Sweden)

    Jeffrey A. Fawcett

    2011-02-01

    Full Text Available Gene conversion is one of the major mutational mechanisms involved in the DNA sequence evolution of duplicated genes. It contributes to create unique patters of DNA polymorphism within species and divergence between species. A typical pattern is so-called concerted evolution, in which the divergence between duplicates is maintained low for a long time because of frequent exchanges of DNA fragments. In addition, gene conversion affects the DNA evolution of duplicates in various ways especially when selection operates. Here, we review theoretical models to understand the evolution of duplicates in both neutral and non-neutral cases. We also explain how these theories contribute to interpreting real polymorphism and divergence data by using some intriguing examples.

  9. Penile duplication and two anal openings; report of a very rare case.

    Science.gov (United States)

    Bakheet, Mohamed Abdel Al M; Refaei, Mohammad

    2012-03-01

    Penile duplication (diphallus) is an extremely rare disorder. It is almost always associated with other malformations like double bladder, exstrophy of the cloacae, imperforate anus, duplication of the rectosigmoid and vertebral deformities. Meanwhile anal canal duplication, the most distal and least common duplication of the digestive tube and is a very rare congenital malformation. A 21 days old Egyptian neonate is reported with complete penile duplication and two scrotums with each one carrying two palpable testes. Both penises have normal shaft with normally located meatus. Clear urine voids from both meati spontaneously. The child had also a fold of redundant skin about 4×5 cm at the anal region in which two separate anal openings are present. In rectal examination we found two normal anuses passing stool spontaneously. Ascending (voiding) cystourethrography revealed two penises with two separate meatuses and one bladder from which the two urethras go out separately. Intravenous pyelogram (IVP) revealed two normal kidneys and ureters. Barium study revealed duplication of rectum and colon, otherwise normal GIT. In our review of the literature, we did not come across any other case of this variety of the penile duplication and congenital presence of two anuses. Unfortunately the patient expired before any surgical correction.

  10. Hypospadiac Duplication of Anterior Urethra-a Rare Congenital Anomaly.

    Science.gov (United States)

    Goyal, Bhawana; Gupta, Suresh; Goyal, Parag

    2017-02-01

    Duplication of the urethra is a complex and rarely seen congenital anomaly with three anatomic variants: epispadiac (dorsal), hypospadiac (ventral), and Y-type. We report here a case of hypospadiac duplication of anterior urethra with dorsal blind ending urethra in a 9-year-old boy who presented with complaint of passing urine from the ventral aspect of penis.

  11. Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps.

    Science.gov (United States)

    Schaeffer, Stephen W; Bhutkar, Arjun; McAllister, Bryant F; Matsuda, Muneo; Matzkin, Luciano M; O'Grady, Patrick M; Rohde, Claudia; Valente, Vera L S; Aguadé, Montserrat; Anderson, Wyatt W; Edwards, Kevin; Garcia, Ana C L; Goodman, Josh; Hartigan, James; Kataoka, Eiko; Lapoint, Richard T; Lozovsky, Elena R; Machado, Carlos A; Noor, Mohamed A F; Papaceit, Montserrat; Reed, Laura K; Richards, Stephen; Rieger, Tania T; Russo, Susan M; Sato, Hajime; Segarra, Carmen; Smith, Douglas R; Smith, Temple F; Strelets, Victor; Tobari, Yoshiko N; Tomimura, Yoshihiko; Wasserman, Marvin; Watts, Thomas; Wilson, Robert; Yoshida, Kiyohito; Markow, Therese A; Gelbart, William M; Kaufman, Thomas C

    2008-07-01

    The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events.

  12. Comparing genomes with rearrangements and segmental duplications.

    Science.gov (United States)

    Shao, Mingfu; Moret, Bernard M E

    2015-06-15

    Large-scale evolutionary events such as genomic rearrange.ments and segmental duplications form an important part of the evolution of genomes and are widely studied from both biological and computational perspectives. A basic computational problem is to infer these events in the evolutionary history for given modern genomes, a task for which many algorithms have been proposed under various constraints. Algorithms that can handle both rearrangements and content-modifying events such as duplications and losses remain few and limited in their applicability. We study the comparison of two genomes under a model including general rearrangements (through double-cut-and-join) and segmental duplications. We formulate the comparison as an optimization problem and describe an exact algorithm to solve it by using an integer linear program. We also devise a sufficient condition and an efficient algorithm to identify optimal substructures, which can simplify the problem while preserving optimality. Using the optimal substructures with the integer linear program (ILP) formulation yields a practical and exact algorithm to solve the problem. We then apply our algorithm to assign in-paralogs and orthologs (a necessary step in handling duplications) and compare its performance with that of the state-of-the-art method MSOAR, using both simulations and real data. On simulated datasets, our method outperforms MSOAR by a significant margin, and on five well-annotated species, MSOAR achieves high accuracy, yet our method performs slightly better on each of the 10 pairwise comparisons. http://lcbb.epfl.ch/softwares/coser. © The Author 2015. Published by Oxford University Press.

  13. Gastric Duplication Cyst: A Rare Congenital Disease Often Misdiagnosed in Adults

    Directory of Open Access Journals (Sweden)

    Jessica Falleti

    2013-01-01

    Full Text Available Gastrointestinal duplication is a rare congenital disease which affected more commonly the ileum, while the stomach is rarely involved. Generally diagnosed in paediatric or young age, it could be difficult to suspect a gastrointestinal duplication in adults. Herein, we report a 55-year-old male with a gastric duplication cyst found on routinely checkup for chronic hepatitis and first misdiagnosed as a gastrointestinal stromal tumor (GIST; we also discuss its embryology.

  14. Treatment of Duodenal Duplication by Trans-umbilical Exploratory Minimal Laparotomy

    Directory of Open Access Journals (Sweden)

    Li-Lan Chiang

    2009-08-01

    Full Text Available Duodenal duplication cysts are rare congenital lesions. Their presentation is often non-specific and physical examination and laboratory studies usually reveal no abnormal findings. The diagnosis of duodenal duplication cysts can thus be challenging and relies on ultrasonography, barium swallow, contrast enhanced computed tomography (CT, magnetic resonance imaging (MRI, and magnetic resonance cholangiopancreatography (MRCP. The management of duodenal duplication cyst is surgical. Laparotomy is usually necessary, and complete resection is the management goal. Subtotal excision with stripping of the mucosa due to close involvement of the pancreatobiliary tree, and endoscopic resection have Duodenal duplication cysts are rare congenital lesions usually diagnosed in infancy, although they may present in adulthood. Prenatal diagnosis is difficult, and postnatal diagnosis relies on ultrasonography, barium swallow, contrast-enhanced computerized tomography, magnetic resonance imaging (MRI, and magnetic resonance cholangiopancreatography. A female newborn was diagnosed with an abdominal cyst (size around 6 ×; 5 × 4 cm at gestational age (GA 24 weeks, by regular prenatal examination. After her birth at GA 37 weeks, we performed abdominal ultrasonography and MRI, but there was no definite diagnosis. The usual management of an abdominal cyst involves resection by laparotomy (requiring a large incision or laparoscopy (requiring several small incisions. We performed an exploratory trans-umbilical minimal laparotomy excision for surgery, and the pathology revealed duodenal duplication. In our case, there was no recurrence of the cyst after 18 months follow-up, and the operation scar was almost undetectable. Trans-umbilical minimal laparotomy excision may be considered as an alternative choice for the management of abdominal and duodenal duplication cysts.

  15. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias.

    Science.gov (United States)

    Li, Lin; Briskine, Roman; Schaefer, Robert; Schnable, Patrick S; Myers, Chad L; Flagel, Lex E; Springer, Nathan M; Muehlbauer, Gary J

    2016-11-04

    Gene duplication is prevalent in many species and can result in coding and regulatory divergence. Gene duplications can be classified as whole genome duplication (WGD), tandem and inserted (non-syntenic). In maize, WGD resulted in the subgenomes maize1 and maize2, of which maize1 is considered the dominant subgenome. However, the landscape of co-expression network divergence of duplicate genes in maize is still largely uncharacterized. To address the consequence of gene duplication on co-expression network divergence, we developed a gene co-expression network from RNA-seq data derived from 64 different tissues/stages of the maize reference inbred-B73. WGD, tandem and inserted gene duplications exhibited distinct regulatory divergence. Inserted duplicate genes were more likely to be singletons in the co-expression networks, while WGD duplicate genes were likely to be co-expressed with other genes. Tandem duplicate genes were enriched in the co-expression pattern where co-expressed genes were nearly identical for the duplicates in the network. Older gene duplications exhibit more extensive co-expression variation than younger duplications. Overall, non-syntenic genes primarily from inserted duplications show more co-expression divergence. Also, such enlarged co-expression divergence is significantly related to duplication age. Moreover, subgenome dominance was not observed in the co-expression networks - maize1 and maize2 exhibit similar levels of intra subgenome correlations. Intriguingly, the level of inter subgenome co-expression was similar to the level of intra subgenome correlations, and genes from specific subgenomes were not likely to be the enriched in co-expression network modules and the hub genes were not predominantly from any specific subgenomes in maize. Our work provides a comprehensive analysis of maize co-expression network divergence for three different types of gene duplications and identifies potential relationships between duplication types

  16. A rare case of congenital Y-type urethral duplication

    Directory of Open Access Journals (Sweden)

    Charu Tiwari

    2015-11-01

    Full Text Available Duplication of urethra is a rare congenital anomaly. We report a case of Y-type of urethral duplication with the accessory urethra arising from posterior urethra and opening in the perineum. The orthotopic urethra was normal. The accessory urethral tract was cored, transfixed and divided. At 1 year of follow-up, the patient has no urinary complaints

  17. Centralized Duplicate Removal Video Storage System with Privacy Preservation in IoT

    Directory of Open Access Journals (Sweden)

    Hongyang Yan

    2018-06-01

    Full Text Available In recent years, the Internet of Things (IoT has found wide application and attracted much attention. Since most of the end-terminals in IoT have limited capabilities for storage and computing, it has become a trend to outsource the data from local to cloud computing. To further reduce the communication bandwidth and storage space, data deduplication has been widely adopted to eliminate the redundant data. However, since data collected in IoT are sensitive and closely related to users’ personal information, the privacy protection of users’ information becomes a challenge. As the channels, like the wireless channels between the terminals and the cloud servers in IoT, are public and the cloud servers are not fully trusted, data have to be encrypted before being uploaded to the cloud. However, encryption makes the performance of deduplication by the cloud server difficult because the ciphertext will be different even if the underlying plaintext is identical. In this paper, we build a centralized privacy-preserving duplicate removal storage system, which supports both file-level and block-level deduplication. In order to avoid the leakage of statistical information of data, Intel Software Guard Extensions (SGX technology is utilized to protect the deduplication process on the cloud server. The results of the experimental analysis demonstrate that the new scheme can significantly improve the deduplication efficiency and enhance the security. It is envisioned that the duplicated removal system with privacy preservation will be of great use in the centralized storage environment of IoT.

  18. Centralized Duplicate Removal Video Storage System with Privacy Preservation in IoT.

    Science.gov (United States)

    Yan, Hongyang; Li, Xuan; Wang, Yu; Jia, Chunfu

    2018-06-04

    In recent years, the Internet of Things (IoT) has found wide application and attracted much attention. Since most of the end-terminals in IoT have limited capabilities for storage and computing, it has become a trend to outsource the data from local to cloud computing. To further reduce the communication bandwidth and storage space, data deduplication has been widely adopted to eliminate the redundant data. However, since data collected in IoT are sensitive and closely related to users' personal information, the privacy protection of users' information becomes a challenge. As the channels, like the wireless channels between the terminals and the cloud servers in IoT, are public and the cloud servers are not fully trusted, data have to be encrypted before being uploaded to the cloud. However, encryption makes the performance of deduplication by the cloud server difficult because the ciphertext will be different even if the underlying plaintext is identical. In this paper, we build a centralized privacy-preserving duplicate removal storage system, which supports both file-level and block-level deduplication. In order to avoid the leakage of statistical information of data, Intel Software Guard Extensions (SGX) technology is utilized to protect the deduplication process on the cloud server. The results of the experimental analysis demonstrate that the new scheme can significantly improve the deduplication efficiency and enhance the security. It is envisioned that the duplicated removal system with privacy preservation will be of great use in the centralized storage environment of IoT.

  19. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation

    NARCIS (Netherlands)

    Cuypers, Thomas D; Hogeweg, Paulien; Hogeweg, P.

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes.

  20. Evolution of Cis-Regulatory Elements and Regulatory Networks in Duplicated Genes of Arabidopsis.

    Science.gov (United States)

    Arsovski, Andrej A; Pradinuk, Julian; Guo, Xu Qiu; Wang, Sishuo; Adams, Keith L

    2015-12-01

    Plant genomes contain large numbers of duplicated genes that contribute to the evolution of new functions. Following duplication, genes can exhibit divergence in their coding sequence and their expression patterns. Changes in the cis-regulatory element landscape can result in changes in gene expression patterns. High-throughput methods developed recently can identify potential cis-regulatory elements on a genome-wide scale. Here, we use a recent comprehensive data set of DNase I sequencing-identified cis-regulatory binding sites (footprints) at single-base-pair resolution to compare binding sites and network connectivity in duplicated gene pairs in Arabidopsis (Arabidopsis thaliana). We found that duplicated gene pairs vary greatly in their cis-regulatory element architecture, resulting in changes in regulatory network connectivity. Whole-genome duplicates (WGDs) have approximately twice as many footprints in their promoters left by potential regulatory proteins than do tandem duplicates (TDs). The WGDs have a greater average number of footprint differences between paralogs than TDs. The footprints, in turn, result in more regulatory network connections between WGDs and other genes, forming denser, more complex regulatory networks than shown by TDs. When comparing regulatory connections between duplicates, WGDs had more pairs in which the two genes are either partially or fully diverged in their network connections, but fewer genes with no network connections than the TDs. There is evidence of younger TDs and WGDs having fewer unique connections compared with older duplicates. This study provides insights into cis-regulatory element evolution and network divergence in duplicated genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  1. Rectal duplication cyst: a combined abdominal and endoanal operative approach.

    Science.gov (United States)

    Rees, Clare M; Woodward, Mark; Grier, David; Cusick, Eleri

    2007-04-01

    Rectal duplication cysts are rare, comprising duplications. Early excision is the treatment of choice and a number of surgical approaches have been described. We present a 3-week-old infant with a 3 cm cyst that was excised using a previously unreported combined abdominal and endoanal approach.

  2. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome.

    Science.gov (United States)

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-08-14

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Case Report Duplication Of Gastrointestinal Tract

    African Journals Online (AJOL)

    duplication (Fig 3). A tragic event occurred intra-operatively when ... Brain damage persisted and all modalities of treatment were terminated upon confirmation of brain death. ... compression, epithelial recanalization, and vascular accidents (6) ...

  4. [Partial facial duplication (a rare diprosopus): Case report and review of the literature].

    Science.gov (United States)

    Es-Seddiki, A; Rkain, M; Ayyad, A; Nkhili, H; Amrani, R; Benajiba, N

    2015-12-01

    Diprosopus, or partial facial duplication, is a very rare congenital abnormality. It is a rare form of conjoined twins. Partial facial duplication may be symmetric or not and may involve the nose, the maxilla, the mandible, the palate, the tongue and the mouth. A male newborn springing from inbred parents was admitted at his first day of life for facial deformity. He presented with hypertelorism, 2 eyes, a tendency to nose duplication (flatted large nose, 2 columellae, 2 lateral nostrils separated in the midline by a third deformed hole), two mouths and a duplicated maxilla. Laboratory tests were normal. The cranio-facial CT confirmed the maxillary duplication. This type of cranio-facial duplication is a rare entity with about 35 reported cases in the literature. Our patient was similar to a rare case of living diprosopus reported by Stiehm in 1972. Diprosopus is often associated with abnormalities of the gastrointestinal tract, the central nervous system, the cardiovascular and respiratory systems and with a high incidence of cleft lip and palate. Surgical treatment consists in the resection of the duplicated components. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Delineation and analysis of chromosomal regions specifying Yersinia pestis.

    Science.gov (United States)

    Derbise, Anne; Chenal-Francisque, Viviane; Huon, Christèle; Fayolle, Corinne; Demeure, Christian E; Chane-Woon-Ming, Béatrice; Médigue, Claudine; Hinnebusch, B Joseph; Carniel, Elisabeth

    2010-09-01

    Yersinia pestis, the causative agent of plague, has recently diverged from the less virulent enteropathogen Yersinia pseudotuberculosis. Its emergence has been characterized by massive genetic loss and inactivation and limited gene acquisition. The acquired genes include two plasmids, a filamentous phage, and a few chromosomal loci. The aim of this study was to characterize the chromosomal regions acquired by Y. pestis. Following in silico comparative analysis and PCR screening of 98 strains of Y. pseudotuberculosis and Y. pestis, we found that eight chromosomal loci (six regions [R1pe to R6pe] and two coding sequences [CDS1pe and CDS2pe]) specified Y. pestis. Signatures of integration by site specific or homologous recombination were identified for most of them. These acquisitions and the loss of ancestral DNA sequences were concentrated in a chromosomal region opposite to the origin of replication. The specific regions were acquired very early during Y. pestis evolution and were retained during its microevolution, suggesting that they might bring some selective advantages. Only one region (R3pe), predicted to carry a lambdoid prophage, is most likely no longer functional because of mutations. With the exception of R1pe and R2pe, which have the potential to encode a restriction/modification and a sugar transport system, respectively, no functions could be predicted for the other Y. pestis-specific loci. To determine the role of the eight chromosomal loci in the physiology and pathogenicity of the plague bacillus, each of them was individually deleted from the bacterial chromosome. None of the deletants exhibited defects during growth in vitro. Using the Xenopsylla cheopis flea model, all deletants retained the capacity to produce a stable and persistent infection and to block fleas. Similarly, none of the deletants caused any acute flea toxicity. In the mouse model of infection, all deletants were fully virulent upon subcutaneous or aerosol infections. Therefore

  6. Tail-like Congenital Duplication of Lower Extremity (Extra Leg or ...

    African Journals Online (AJOL)

    2018-01-01

    Jan 1, 2018 ... ABSTRACT. BACKGROUND: Congenital duplication of lower extremity, either complete or incomplete is extremely rare. Only 26 cases had been reported till 2010, of which only 5 cases had feature of complete duplication. Theories have been proposed that the cause of this abnormality includes maternal ...

  7. MLL duplication in a pediatric patient with B-cell lymphoblastic lymphoma.

    Science.gov (United States)

    Mater, David Van; Goodman, Barbara K; Wang, Endi; Gaca, Ana M; Wechsler, Daniel S

    2012-04-01

    Lymphoblastic lymphoma is the second most common type of non-Hodgkin lymphoma seen in children. Approximately, 90% of lymphoblastic lymphomas arise from T cells, with the remaining 10% being B-cell-lineage derived. Although T-cell lymphoblastic lymphoma most frequently occurs in the anterior mediastinum (thymus), B-cell lymphoblastic lymphoma (B-LBL) predominates in extranodal sites such as skin and bone. Here, we describe a pediatric B-LBL patient who presented with extensive abdominal involvement and whose lymphoma cells displayed segmental duplication of the mixed lineage leukemia (MLL) gene. MLL duplication/amplification has been described primarily in acute myeloid leukemia and myelodysplastic syndrome with no published reports of discrete MLL duplication/amplification events in B-LBL. The MLL gene duplication noted in this case may represent a novel mechanism for tumorigenesis in B-LBL.

  8. Malrotation with midgut volvulus associated with perforated ileal duplication

    Directory of Open Access Journals (Sweden)

    Anand Pandey

    2013-01-01

    Full Text Available Duplication of the alimentary tract is an important surgical condition. It may occur anywhere in the gastrointestinal tract. An important complication of this entity is perforation of the normal or abnormal gut. Malrotation with midgut volvulus can be a surgical emergency. We present a patient, who presented as malrotation with midgut volvulus associated with perforated ileal duplication. The patient was successfully managed.

  9. Construction of a tissue microarray with two millimeters cores of endometrioid endometrial cancer: factors affecting the quality of the recipient block.

    Science.gov (United States)

    Gottwald, L; Sęk, P; Piekarski, J; Pasz-Walczak, G; Kubiak, R; Szwalski, J; Spych, M; Suzin, J; Tyliński, W; Topczewska-Tylinska, K; Jeziorski, A

    2012-11-01

    The tissue microarray (TMA) method currently is not used to render a primary diagnosis of cancer, but its scientific value has been proved in studies of various cancer types. TMA technology still is not used often for uterine tumors, however. We investigated the repeatability of histological diagnosis of endometrioid endometrial cancer (EEC) using conventional histology and TMA using 2 mm cores. We examined EEC tissues from 171 patients. Formalin fixed, paraffin embedded tissue donor blocks from EEC specimens were selected and examined histologically. Duplicate 2 mm tissue cores were inserted into a TMA recipient block. EEC tissues were examined as hematoxylin-eosin stained sections from the TMAs. EEC tissue was identified in the TMAs in 158 cases (92.4%) and not found in 13 cases (7.6%). On the TMA slides, both EEC positive cores were identified in 129 cases (75.4%), but only one core in 29 cases (17.0%). Among 342 biopsies of the donor blocks (each case in duplicate), EEC was found in 287 cases (83.9%) using the TMA: 124/146 (84.9%) with superficial infiltration, 153/178 (86.0%) with deep myometrial infiltration, and 10/18 (55.6%) without myometrial infiltration. We concluded that two 2 mm tissue cores from a biopsy of a donor block inserted into a TMA recipient block were sufficient to diagnose EEC in more than 90% of cases. EEC was identified in the TMAs with similar frequency with respect to superficial and deep myometrial infiltration. Cases without myometrial infiltration were identified less often.

  10. Vibrio chromosome-specific families

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2014-01-01

    We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished...... chromosomes, we find a core set of 1269 encoded protein families for chromosome 1, and a core of 252 encoded protein families for chromosome 2. Many of these core proteins are also found in the draft genomes (although which chromosome they are located on is unknown.) Of the chromosome specific core protein...... families, 1169 and 153 are uniquely found in chromosomes 1 and 2, respectively. Gene ontology (GO) terms for each of the protein families were determined, and the different sets for each chromosome were compared. A total of 363 different "Molecular Function" GO categories were found for chromosome 1...

  11. Error analysis of filtering operations in pixel-duplicated images of diabetic retinopathy

    Science.gov (United States)

    Mehrubeoglu, Mehrube; McLauchlan, Lifford

    2010-08-01

    In this paper, diabetic retinopathy is chosen for a sample target image to demonstrate the effectiveness of image enlargement through pixel duplication in identifying regions of interest. Pixel duplication is presented as a simpler alternative to data interpolation techniques for detecting small structures in the images. A comparative analysis is performed on different image processing schemes applied to both original and pixel-duplicated images. Structures of interest are detected and and classification parameters optimized for minimum false positive detection in the original and enlarged retinal pictures. The error analysis demonstrates the advantages as well as shortcomings of pixel duplication in image enhancement when spatial averaging operations (smoothing filters) are also applied.

  12. Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-stranded break repair model for T-DNA integration.

    Science.gov (United States)

    Hu, Yufei; Chen, Zhiyu; Zhuang, Chuxiong; Huang, Jilei

    2017-06-01

    Transferred DNA (T-DNA) from Agrobacterium tumefaciens can be integrated into the plant genome. The double-stranded break repair (DSBR) pathway is a major model for T-DNA integration. From this model, we expect that two ends of a T-DNA molecule would invade into a single DNA double-stranded break (DSB) or independent DSBs in the plant genome. We call the later phenomenon a heterogeneous T-DNA integration, which has never been observed. In this work, we demonstrated it in an Arabidopsis T-DNA insertion mutant seb19. To resolve the chromosomal structural changes caused by T-DNA integration at both the nucleotide and chromosome levels, we performed inverse PCR, genome resequencing, fluorescence in situ hybridization and linkage analysis. We found, in seb19, a single T-DNA connected two different chromosomal loci and caused complex chromosomal rearrangements. The specific break-junction pattern in seb19 is consistent with the result of heterogeneous T-DNA integration but not of recombination between two T-DNA insertions. We demonstrated that, in seb19, heterogeneous T-DNA integration evoked a cascade of incorrect repair of seven DSBs on chromosomes 4 and 5, and then produced translocation, inversion, duplication and deletion. Heterogeneous T-DNA integration supports the DSBR model and suggests that two ends of a T-DNA molecule could be integrated into the plant genome independently. Our results also show a new origin of chromosomal abnormalities. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. Chromosomal characteristics and distribution of rDNA sequences in the brook trout Salvelinus fontinalis (Mitchill, 1814).

    Science.gov (United States)

    Śliwińska-Jewsiewicka, A; Kuciński, M; Kirtiklis, L; Dobosz, S; Ocalewicz, K; Jankun, Malgorzata

    2015-08-01

    Brook trout Salvelinus fontinalis (Mitchill, 1814) chromosomes have been analyzed using conventional and molecular cytogenetic techniques enabling characteristics and chromosomal location of heterochromatin, nucleolus organizer regions (NORs), ribosomal RNA-encoding genes and telomeric DNA sequences. The C-banding and chromosome digestion with the restriction endonucleases demonstrated distribution and heterogeneity of the heterochromatin in the brook trout genome. DNA sequences of the ribosomal RNA genes, namely the nucleolus-forming 28S (major) and non-nucleolus-forming 5S (minor) rDNAs, were physically mapped using fluorescence in situ hybridization (FISH) and primed in situ labelling. The minor rDNA locus was located on the subtelo-acrocentric chromosome pair No. 9, whereas the major rDNA loci were dispersed on 14 chromosome pairs, showing a considerable inter-individual variation in the number and location. The major and minor rDNA loci were located at different chromosomes. Multichromosomal location (3-6 sites) of the NORs was demonstrated by silver nitrate (AgNO3) impregnation. All Ag-positive i.e. active NORs corresponded to the GC-rich blocks of heterochromatin. FISH with telomeric probe showed the presence of the interstitial telomeric site (ITS) adjacent to the NOR/28S rDNA site on the chromosome 11. This ITS was presumably remnant of the chromosome rearrangement(s) leading to the genomic redistribution of the rDNA sequences. Comparative analysis of the cytogenetic data among several related salmonid species confirmed huge variation in the number and the chromosomal location of rRNA gene clusters in the Salvelinus genome.

  14. Scintigraphic detection of 'yo-yo' phenomenon in incomplete ureteric duplication

    International Nuclear Information System (INIS)

    Chu, Winnie C.W.; Chan, Kam-wing; Metreweli, Constantine

    2003-01-01

    'Yo-yo' reflux in an incompletely duplicated renal system was demonstrated on 99m Tc-mercaptoacetyltriglycine (MAG3) renal scintigraphy in a 7-year-old girl presenting with low-grade fever and pyelonephritis. Incomplete duplication and a bifid renal pelvis, which may be seen in up to 4% of the North American population, occasionally causes symptoms because of recurrent urinary tract infection or loin pain. 99m Tc-MAG3 renal scintigraphy can demonstrate 'yo-yo' reflux in patients with incomplete renal duplication and should be considered in cases with unexplained loin pain, even if 99m Tc-dimercaptosuccinic acid (DMSA) renal scintigraphy is normal. (orig.)

  15. A recurrent translocation is mediated by homologous recombination between HERV-H elements

    Directory of Open Access Journals (Sweden)

    Hermetz Karen E

    2012-01-01

    Full Text Available Abstract Background Chromosome rearrangements are caused by many mutational mechanisms; of these, recurrent rearrangements can be particularly informative for teasing apart DNA sequence-specific factors. Some recurrent translocations are mediated by homologous recombination between large blocks of segmental duplications on different chromosomes. Here we describe a recurrent unbalanced translocation casued by recombination between shorter homologous regions on chromosomes 4 and 18 in two unrelated children with intellectual disability. Results Array CGH resolved the breakpoints of the 6.97-Megabase (Mb loss of 18q and the 7.30-Mb gain of 4q. Sequencing across the translocation breakpoints revealed that both translocations occurred between 92%-identical human endogenous retrovirus (HERV elements in the same orientation on chromosomes 4 and 18. In addition, we find sequence variation in the chromosome 4 HERV that makes one allele more like the chromosome 18 HERV. Conclusions Homologous recombination between HERVs on the same chromosome is known to cause chromosome deletions, but this is the first report of interchromosomal HERV-HERV recombination leading to a translocation. It is possible that normal sequence variation in substrates of non-allelic homologous recombination (NAHR affects the alignment of recombining segments and influences the propensity to chromosome rearrangement.

  16. Rectal duplication cyst in an adult: the laparoscopic approach.

    Science.gov (United States)

    Salameh, Jihad R; Votanopoulos, Konstantinos I; Hilal, Raouf E; Essien, Francis A; Williams, Michael D; Barroso, Alberto O; Sweeney, John F; Brunicardi, F Charles

    2002-12-01

    Rectal duplication cyst (RDC) is a rare congenital anomaly representing 1% to 8% of all intestinal duplications. The case presented here is the first report of the laparoscopic resection of an RDC. We report the case of a 49-year-old white woman in whom a retrorectal cystic mass measuring 5 x 5.3 x 6 cm was diagnosed. The mass was completely resected by means of laparoscopic techniques. Pathologic findings revealed a cystic structure partially lined with squamous as well as respiratory- and gastrointestinal-type epithelium. Muscularis propria was identified in the outer portions of the wall of the specimen. No atypia or malignancy was identified. The overall findings were consistent with an RDC. Laparoscopic resection constitutes an excellent and patient-friendly approach to the management of large adult cystic duplication of the rectum.

  17. Giemsa C-banding of Barley Chromosomes. IV. Chromosomal Constitution of Autotetraploid Barley

    DEFF Research Database (Denmark)

    Linde-Laursen, Ib

    1984-01-01

    The progeny of an autotetraploid barley plant (C1) consisted of 45 tetraploids and 33 aneuploids. Giemsa C-banding was used to identify each of the chromosomes in 20 euploid and 31 aneuploid C2--seedlings, and in 11 C3--offspring of aneuploid C2--plants. The euploid C2--seedlings all had four...... homologues of each of the chromosomes. The aneuploid C2--seedlings were fairly equally distributed on hypo-and hyperploids, and on the seven chromosome groups. This suggests that a particular chromosome is lost or gained at random in gametes and embryos. The 11 C3--seedlings comprised seven true euploids......, one seedling with 2n=28 having an extra chromosome 6 and missing one chromosome 3, and three seedlings with 2n=29. The chromosomal composition of aneuploid C3--seedlings did not reflect that of their aneuploid C2--parents with respect to missing or extra chromosomes. Two hypohexaploid C2--seedlings...

  18. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes.

    Directory of Open Access Journals (Sweden)

    Todd J Treangen

    2011-01-01

    Full Text Available Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We analyzed closely related prokaryote strains or species with small genomes (Helicobacter, Neisseria, Streptococcus, Sulfolobus, average-sized genomes (Bacillus, Enterobacteriaceae, and large genomes (Pseudomonas, Bradyrhizobiaceae to untangle the effects of duplication and horizontal transfer. After removing the effects of transposable elements and phages, we show that the vast majority of expansions of protein families are due to transfer, even among large genomes. Transferred genes--xenologs--persist longer in prokaryotic lineages possibly due to a higher/longer adaptive role. On the other hand, duplicated genes--paralogs--are expressed more, and, when persistent, they evolve slower. This suggests that gene transfer and gene duplication have very different roles in shaping the evolution of biological systems: transfer allows the acquisition of new functions and duplication leads to higher gene dosage. Accordingly, we show that paralogs share most protein-protein interactions and genetic regulators, whereas xenologs share very few of them. Prokaryotes invented most of life's biochemical diversity. Therefore, the study of the evolution of biology systems should explicitly account for the predominant role of horizontal gene transfer in the diversification of protein families.

  19. Bias and efficiency loss in regression estimates due to duplicated observations: a Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Francesco Sarracino

    2017-04-01

    Full Text Available Recent studies documented that survey data contain duplicate records. We assess how duplicate records affect regression estimates, and we evaluate the effectiveness of solutions to deal with duplicate records. Results show that the chances of obtaining unbiased estimates when data contain 40 doublets (about 5% of the sample range between 3.5% and 11.5% depending on the distribution of duplicates. If 7 quintuplets are present in the data (2% of the sample, then the probability of obtaining biased estimates ranges between 11% and 20%. Weighting the duplicate records by the inverse of their multiplicity, or dropping superfluous duplicates outperform other solutions in all considered scenarios. Our results illustrate the risk of using data in presence of duplicate records and call for further research on strategies to analyze affected data.

  20. MSOAR 2.0: Incorporating tandem duplications into ortholog assignment based on genome rearrangement

    Directory of Open Access Journals (Sweden)

    Zhang Liqing

    2010-01-01

    Full Text Available Abstract Background Ortholog assignment is a critical and fundamental problem in comparative genomics, since orthologs are considered to be functional counterparts in different species and can be used to infer molecular functions of one species from those of other species. MSOAR is a recently developed high-throughput system for assigning one-to-one orthologs between closely related species on a genome scale. It attempts to reconstruct the evolutionary history of input genomes in terms of genome rearrangement and gene duplication events. It assumes that a gene duplication event inserts a duplicated gene into the genome of interest at a random location (i.e., the random duplication model. However, in practice, biologists believe that genes are often duplicated by tandem duplications, where a duplicated gene is located next to the original copy (i.e., the tandem duplication model. Results In this paper, we develop MSOAR 2.0, an improved system for one-to-one ortholog assignment. For a pair of input genomes, the system first focuses on the tandemly duplicated genes of each genome and tries to identify among them those that were duplicated after the speciation (i.e., the so-called inparalogs, using a simple phylogenetic tree reconciliation method. For each such set of tandemly duplicated inparalogs, all but one gene will be deleted from the concerned genome (because they cannot possibly appear in any one-to-one ortholog pairs, and MSOAR is invoked. Using both simulated and real data experiments, we show that MSOAR 2.0 is able to achieve a better sensitivity and specificity than MSOAR. In comparison with the well-known genome-scale ortholog assignment tool InParanoid, Ensembl ortholog database, and the orthology information extracted from the well-known whole-genome multiple alignment program MultiZ, MSOAR 2.0 shows the highest sensitivity. Although the specificity of MSOAR 2.0 is slightly worse than that of InParanoid in the real data experiments