WorldWideScience

Sample records for chondrogenesis

  1. Insulin is essential for in vitro chondrogenesis of mesenchymal progenitor cells and influences chondrogenesis in a dose-dependent manner.

    Science.gov (United States)

    Mueller, Michael B; Blunk, Torsten; Appel, Bernhard; Maschke, Angelika; Goepferich, Achim; Zellner, Johannes; Englert, Carsten; Prantl, Lukas; Kujat, Richard; Nerlich, Michael; Angele, Peter

    2013-01-01

    Insulin is a commonly used additive in chondrogenic media for differentiating mesenchymal stem cells (MSCs). The indispensability of other bioactive factors like TGF-β or dexamethasone in these medium formulations has been shown, but the role of insulin is unclear. The purpose of this study was to investigate whether insulin is essential for MSC chondrogenesis and if there is a dose-dependent effect of insulin on MSC chondrogenesis. We cultivated human MSCs in pellet culture in serum-free chondrogenic medium with insulin concentrations between 0 and 50 μg/ml and assessed the grade of chondrogenic differentiation by histological evaluation and determination of glycosaminoglycan (GAG), total collagen and DNA content. We further tested whether insulin can be delivered in an amount sufficient for MSC chondrogenesis via a drug delivery system in insulin-free medium. Chondrogenesis was not induced by standard chondrogenic medium without insulin and the expression of cartilage differentiation markers was dose-dependent at insulin concentrations between 0 and 10 μg/ml. An insulin concentration of 50 μg/ml had no additional effect compared with 10 μg/ml. Insulin was delivered by a release system into the cell culture under insulin-free conditions in an amount sufficient to induce chondrogenesis. Insulin is essential for MSC chondrogenesis in this system and chondrogenic differentiation is influenced by insulin in a dose-dependent manner. Insulin can be provided in a sufficient amount by a drug delivery system. Therefore, insulin is a suitable and inexpensive indicator substance for testing drug release systems in vitro.

  2. Osmolyte Type and the Osmolarity Level Affect Chondrogenesis of Mesenchymal Stem Cells.

    Science.gov (United States)

    Ahmadyan, Sorour; Kabiri, Mahboubeh; Hanaee-Ahvaz, Hana; Farazmand, Ali

    2017-11-10

    The inductive effects of increased osmolarity on chondrogenesis are well approved. However, the effects of the osmolyte agent invoked to induce hyperosmolarity are largely neglected. Herein, we scrutinized how hyperosmotic conditions acquired by addition of different osmolytes would impact chondrogenesis. We briefly assessed whether such conditions would differentially affect hypertrophy and angiogenesis during MSC chondrogenesis. Chondrogenic and hypertrophic marker expression along with VEGF secretion during adipose-derived (AD)-MSC chondrogenesis under three osmolarity levels (350, 450, and 550 mOsm) using three different osmolytes (NaCl, sorbitol, and PEG) were assessed. MTT assay, qRT-PCR, immunocytochemistry, Alcian Blue staining, ELISA, and ALP assays proved osmolyte-type dependent effects of hyperosmolarity on chondrogenesis, hypertrophy, and angiogenesis. At same osmolarity level, PEG had least cytotoxic/cytostatic effect and most prohibitive effects on angiogenesis. As expected, all hyperosmolar conditions led to enhanced chondrogenesis with slightly varying degrees. PEG and sorbitol had higher chondro-promotive and hypertrophy-suppressive effects compared to NaCl, while NaCl had exacerbated hypertrophy. We observed that TonEBP was involved in osmoadaptation of all treatments in varying degrees. Of importance, we highlighted differential effects of hyperosmolarity obtained by different osmolytes on the efficacy of chondrogenesis and more remarkably on the induction/suppression of cartilage pathologic markers. Our study underlies the need for a more vigilant exploitation of physicobiochemical inducers in order to maximize chondrogenesis while restraining unwanted hypertrophy and angiogenesis.

  3. Catabolic factors and osteoarthritis-conditioned medium inhibit chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Heldens, Genoveva T H; Blaney Davidson, Esmeralda N; Vitters, Elly L; Schreurs, B Willem; Piek, Ester; van den Berg, Wim B; van der Kraan, Peter M

    2012-01-01

    Articular cartilage has a very limited intrinsic repair capacity leading to progressive joint damage. Therapies involving tissue engineering depend on chondrogenic differentiation of progenitor cells. This chondrogenic differentiation will have to survive in a diseased joint. We postulate that catabolic factors in this environment inhibit chondrogenesis of progenitor cells. We investigated the effect of a catabolic environment on chondrogenesis in pellet cultures of human mesenchymal stem cells (hMSCs). We exposed chondrogenically differentiated hMSC pellets, to interleukin (IL)-1α, tumor necrosis factor (TNF)-α or conditioned medium derived from osteoarthritic synovium (CM-OAS). IL-1α and TNF-α in CM-OAS were blocked with IL-1Ra or Enbrel, respectively. Chondrogenesis was determined by chondrogenic markers collagen type II, aggrecan, and the hypertrophy marker collagen type X on mRNA. Proteoglycan deposition was analyzed by safranin o staining on histology. IL-1α and TNF-α dose-dependently inhibited chondrogenesis when added at onset or during progression of differentiation, IL-1α being more potent than TNF-α. CM-OAS inhibited chondrogenesis on mRNA and protein level but varied in extent between patients. Inhibition of IL-1α partially overcame the inhibitory effect of the CM-OAS on chondrogenesis whereas the TNF-α contribution was negligible. We show that hMSC chondrogenesis is blocked by either IL-1α or TNF-α alone, but that there are additional factors present in CM-OAS that contribute to inhibition of chondrogenesis, demonstrating that catabolic factors present in OA joints inhibit chondrogenesis, thereby impairing successful tissue engineering.

  4. Rac1 promotes chondrogenesis by regulating STAT3 signaling pathway.

    Science.gov (United States)

    Kim, Hyoin; Sonn, Jong Kyung

    2016-09-01

    The small GTPase protein Rac1 is involved in a wide range of biological processes including cell differentiation. Previously, Rac1 was shown to promote chondrogenesis in micromass cultures of limb mesenchyme. However, the pathways mediating Rac1's role in chondrogenesis are not fully understood. This study aimed to explore the molecular mechanisms by which Rac1 regulates chondrogenic differentiation. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was increased as chondrogenesis proceeded in micromass cultures of chick wing bud mesenchyme. Inhibition of Rac1 with NSC23766, janus kinase 2 (JAK2) with AG490, or STAT3 with stattic inhibited chondrogenesis and reduced phosphorylation of STAT3. Conversely, overexpression of constitutively active Rac1 (Rac L61) increased phosphorylation of STAT3. Rac L61 expression resulted in increased expression of interleukin 6 (IL-6), and treatment with IL-6 increased phosphorylation of STAT3. NSC23766, AG490, and stattic prohibited cell aggregation, whereas expression of Rac L61 increased cell aggregation, which was reduced by stattic treatment. Our studies indicate that Rac1 induces STAT3 activation through expression and action of IL-6. Overexpression of Rac L61 increased expression of bone morphogenic protein 4 (BMP4). BMP4 promoted chondrogenesis, which was inhibited by K02288, an activin receptor-like kinase-2 inhibitor, and increased phosphorylation of p38 MAP kinase. Overexpression of Rac L61 also increased phosphorylation of p38 MAPK, which was reduced by K02288. These results suggest that Rac1 activates STAT3 by expression of IL-6, which in turn increases expression and activity of BMP4, leading to the promotion of chondrogenesis. © 2016 International Federation for Cell Biology.

  5. Enhance and Maintain Chondrogenesis of Synovial Fibroblasts by Cartilage Extracellular Matrix Protein Matrilins

    Science.gov (United States)

    Pei, Ming; Luo, Junming; Chen, Qian

    2008-01-01

    Summary Objective Cartilage-specific extracellular matrix (ECM) proteins have been proposed to play key roles in modulating cellular phenotypes during chondrogenesis of mesenchymal stem cells. Matrilin (MATN) 1 and 3 are among the most up-regulated ECM proteins during chondrogenesis. The aim of this study was to analyze their roles in chondrogenesis of mesenchymal fibroblasts from synovium. Methods Primary synovial fibroblasts (SFBs) were purified from porcine synovium and incubated in pellet culture for 18 days. Chondrogenesis of SFB was analyzed by histological staining with safranin-O/fast green, and by quantifying glycosaminoglycans with dimethylmethylene blue assay. The mRNA levels of chondrogenic markers including collagen II, aggrecan, and Sox 9 were quantified by real-time RT-PCR, while the protein levels of Col II and matrilins were determined by western blot analysis. Results SFBs underwent chondrogenesis after incubation with TGF-β1 for three days; however, this process was attenuated during the subsequent incubation period. Expression of a MATN1 or 3 cDNA maintained and further enhanced chondrogenesis of SFBs as shown by increased cartilaginous matrix areas, elevated amount of glycosaminoglycans, and stimulated expression of chondrogenic markers. Conclusion Our findings suggest a novel function for MATN1 and 3 to maintain and enhance chondrogenesis of mesenchymal fibroblasts initiated by TGF-β. Our results also support a critical role of cartilage-specific ECM proteins to modulate cellular phenotypes in the microenvironment during chondrogenic differentiation. PMID:18282772

  6. Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins.

    Science.gov (United States)

    Pei, M; Luo, J; Chen, Q

    2008-09-01

    Cartilage-specific extracellular matrix (ECM) proteins have been proposed to play key roles in modulating cellular phenotypes during chondrogenesis of mesenchymal stem cells. Matrilin (MATN)1 and MATN3 are among the most up-regulated ECM proteins during chondrogenesis. The aim of this study was to analyze their roles in chondrogenesis of mesenchymal fibroblasts from synovium. Primary synovial fibroblasts (SFBs) were purified from porcine synovium and incubated in pellet culture for 18 days. Chondrogenesis of SFB was analyzed by histological staining with safranin-O/fast green, and by quantifying glycosaminoglycans (GAG) with dimethylmethylene blue assay. The mRNA levels of chondrogenic markers including collagen II, aggrecan, and Sox 9 were quantified by real-time reverse transcription polymerase chain reaction, while the protein levels of Col II and MATNs were determined by western blot analysis. SFBs underwent chondrogenesis after incubation with transforming growth factor-beta1 (TGF-beta1) for 3 days; however, this process was attenuated during the subsequent incubation period. Expression of a Matn1 or Matn3 cDNA maintained and further enhanced chondrogenesis of SFBs as shown by increased cartilaginous matrix areas, elevated amount of GAG, and stimulated expression of chondrogenic markers. Our findings suggest a novel function for MATN1 and MATN3 to maintain and enhance chondrogenesis of mesenchymal fibroblasts initiated by TGF-beta. Our results also support a critical role of cartilage-specific ECM proteins to modulate cellular phenotypes in the microenvironment during chondrogenic differentiation.

  7. Evaluation of Insulin Medium or Chondrogenic Medium on Proliferation and Chondrogenesis of ATDC5 Cells

    OpenAIRE

    Yao, Yongchang; Zhai, Zhichen; Wang, Yingjun

    2014-01-01

    Background. The ATDC5 cell line is regarded as an excellent cell model for chondrogenesis. In most studies with ATDC5 cells, insulin medium (IM) was used to induce chondrogenesis while chondrogenic medium (CM), which was usually applied in chondrogenesis of mesenchymal stem cells (MSCs), was rarely used for ATDC5 cells. This study was mainly designed to investigate the effect of IM, CM, and growth medium (GM) on chondrogenesis of ATDC5 cells. Methods. ATDC5 cells were, respectively, cultured ...

  8. Morphological evaluation during in vitro chondrogenesis of dental pulp stromal cells

    Directory of Open Access Journals (Sweden)

    Choo-Ryung Chung

    2012-02-01

    Full Text Available Objectives The aim was to confirm the stem cell-like properties of the dental pulp stromal cells and to evaluate the morphologic changes during in vitro chondrogenesis. Materials and Methods Stromal cells were outgrown from the dental pulp tissue of the premolars. Surface markers were investigated and cell proliferation rate was compared to other mesenchymal stem cells. Multipotency of the pulp cells was confirmed by inducing osteogenesis, adipogenesis and chondrogenesis. The morphologic changes in the chondrogenic pellet during the 21 day of induction were evaluated under light microscope and transmission electron microscope. TUNEL assay was used to evaluate apoptosis within the chondrogenic pellets. Results Pulp cells were CD90, 105 positive and CD31, 34 negative. They showed similar proliferation rate to other stem cells. Pulp cells differentiated to osteogenic, adipogenic and chondrogenic tissues. During chondrogenesis, 3-dimensional pellet was created with multi-layers, hypertrophic chondrocyte-like cells and cartilage-like extracellular matrix. However, cell morphology became irregular and apoptotic cells were increased after 7 day of chondrogenic induction. Conclusions Pulp cells indicated mesenchymal stem cell-like characteristics. During the in vitro chondrogenesis, cellular activity was superior during the earlier phase (within 7 day of differentiation.

  9. TGFb signalling inhibits DLK1 expression during chondrogenesis in vitro

    DEFF Research Database (Denmark)

    Harkness, Linda; Taipaleenmaki, Hanna; Saamanen, Anna-Marja

    2011-01-01

    the effect of a number of signalling molecules on DLK1 expression during in vitro chondrogenic differentiation in mouse embryonic limb bud mesenchymal micromass cultures and mouse embryonic fibroblast (MEF) pellet cultures. Dlk1 was initially expressed during mesenchymal condensation and chondrocyte...... proliferation, in parallel with expression of Sox9 and Col2a1, and was down-regulated upon expression of Col10a1 by hypertrophic chondrocytes. Among a number of molecules that affected chondrogenesis, TGF-b signalling regulated Dlk1expression. TGF-b1-induced chondrogenesis was associated with decreased Dlk1...... expression and these effects were abolished by the TGF-b signalling inhibitor SB4311542 suggesting an involvement of DLK1/FA1 in mediating the function of TGF-b1 signalling in chondrogenesis. In support of this hypothesis, we found that TGF-b1 enhanced chondrocyte differentiation in dlk1-/- MEF compared...

  10. Chondrogenesis on sulfonate-coated hydrogels is regulated by their mechanical properties.

    Science.gov (United States)

    Kwon, Hyuck Joon; Yasuda, Kazunori

    2013-01-01

    Many studies have demonstrated that sulfur-containing acidic groups induce chondrogenesis in vitro and in vivo. Recently, it is increasingly clear that mechanical properties of cell substrates largely influence cell differentiation. Thus, the present study investigated how mechanical properties of sulfonate-coated hydrogels influences chondrogenesis of mesenchymal stem cells (MSCs). Sulfonate-coated polyacrylamide gels (S-PAAm gels) which have the elastic modulus, E, of about 1, 15 and 150 kPa, were used in this study. MSCs cultured on the high stiffness S-PAAm gels (E=∼150 kPa) spread out with strong expression of stress fibers, while MSCs cultured on the low stiffness S-PAAm gels (E=∼1 kPa) had round shapes with less stress fibers but more cortical actins. Importantly, even in the absence of differentiation supplements, the lower stiffness S-PAAm gels led to the higher mRNA levels of chondrogenic markers such as Col2a1, Agc and Sox9 and the lower mRNA levels of an undifferentiation marker Sca1, indicating that the mechanical properties of S-PAAm gels strongly influence chondrogenesis. Blebbistatin which blocks myosin II-mediated mechanical sensing suppressed chondrogenesis induced by the low stiffness S-PAAm gels. The present study demonstrates that the soft S-PAAm gels effectively drive MSC chondrogenesis even in the absence of soluble differentiation factors and thus suggests that sulfonate-containing hydrogels with low stiffness could be a powerful tool for cartilage regeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Comparison of Simulated Microgravity and Hydrostatic Pressure for Chondrogenesis of hASC.

    Science.gov (United States)

    Mellor, Liliana F; Steward, Andrew J; Nordberg, Rachel C; Taylor, Michael A; Loboa, Elizabeth G

    2017-04-01

    Cartilage tissue engineering is a growing field due to the lack of regenerative capacity of native tissue. The use of bioreactors for cartilage tissue engineering is common, but the results are controversial. Some studies suggest that microgravity bioreactors are ideal for chondrogenesis, while others show that mimicking hydrostatic pressure is crucial for cartilage formation. A parallel study comparing the effects of loading and unloading on chondrogenesis has not been performed. The goal of this study was to evaluate chondrogenesis of human adipose-derived stem cells (hASC) under two different mechanical stimuli relative to static culture: microgravity and cyclic hydrostatic pressure (CHP). Pellets of hASC were cultured for 14 d under simulated microgravity using a rotating wall vessel bioreactor or under CHP (7.5 MPa, 1 Hz, 4 h · d-1) using a hydrostatic pressure vessel. We found that CHP increased mRNA expression of Aggrecan, Sox9, and Collagen II, caused a threefold increase in sulfated glycosaminoglycan production, and resulted in stronger vimentin staining intensity and organization relative to microgravity. In addition, Wnt-signaling patterns were altered in a manner that suggests that simulated microgravity decreases chondrogenic differentiation when compared to CHP. Our goal was to compare chondrogenic differentiation of hASC using a microgravity bioreactor and a hydrostatic pressure vessel, two commonly used bioreactors in cartilage tissue engineering. Our results indicate that CHP promotes hASC chondrogenesis and that microgravity may inhibit hASC chondrogenesis. Our findings further suggest that cartilage formation and regeneration might be compromised in space due to the lack of mechanical loading.Mellor LF, Steward AJ, Nordberg RC, Taylor MA, Loboa EG. Comparison of simulated microgravity and hydrostatic pressure for chondrogenesis of hASC. Aerosp Med Hum Perform. 2017; 88(4):377-384.

  12. Endogenously produced Indian Hedgehog regulates TGFβ-driven chondrogenesis of human bone marrow stromal/stem cells.

    Science.gov (United States)

    Handorf, Andrew M; Chamberlain, Connie S; Li, Wan-Ju

    2015-04-15

    Human bone marrow stromal/stem cells (hBMSCs) have an inherent tendency to undergo hypertrophy when induced into the chondrogenic lineage using transforming growth factor-beta 1 (TGFβ) in vitro, reminiscent of what occurs during endochondral ossification. Surprisingly, Indian Hedgehog (IHH) has received little attention for its role during hBMSC chondrogenesis despite being considered a master regulator of endochondral ossification. In this study, we investigated the role that endogenously produced IHH plays during hBMSC chondrogenesis. We began by analyzing the expression of IHH throughout differentiation using quantitative polymerase chain reaction and found that IHH expression was upregulated dramatically upon chondrogenic induction and peaked from days 9 to 12 of differentiation, which coincided with a concomitant increase in the expression of chondrogenesis- and hypertrophy-related markers, suggesting a potential role for endogenously produced IHH in driving hBMSC chondrogenesis. More importantly, pharmacological inhibition of Hedgehog signaling with cyclopamine or knockdown of IHH almost completely blocked TGFβ1-induced chondrogenesis in hBMSCs, demonstrating that endogenously produced IHH is necessary for hBMSC chondrogenesis. Furthermore, overexpression of IHH was sufficient to drive chondrogenic differentiation, even when TGFβ signaling was inhibited. Finally, stimulation with TGFβ1 induced a significant and sustained upregulation of IHH expression within 3 h that preceded an upregulation in all cartilage-related genes analyzed, and knockdown of IHH blocked the effects of TGFβ1 entirely, suggesting that the effects of TGFβ1 are being mediated through endogenously produced IHH. Together, our findings demonstrate that endogenously produced IHH is playing a critical role in regulating hBMSC chondrogenesis.

  13. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates.

    Science.gov (United States)

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-04-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Evaluation of insulin medium or chondrogenic medium on proliferation and chondrogenesis of ATDC5 cells.

    Science.gov (United States)

    Yao, Yongchang; Zhai, Zhichen; Wang, Yingjun

    2014-01-01

    The ATDC5 cell line is regarded as an excellent cell model for chondrogenesis. In most studies with ATDC5 cells, insulin medium (IM) was used to induce chondrogenesis while chondrogenic medium (CM), which was usually applied in chondrogenesis of mesenchymal stem cells (MSCs), was rarely used for ATDC5 cells. This study was mainly designed to investigate the effect of IM, CM, and growth medium (GM) on chondrogenesis of ATDC5 cells. ATDC5 cells were, respectively, cultured in IM, CM, and GM for a certain time. Then the proliferation and the chondrogenesis progress of cells in these groups were analyzed. Compared with CM and GM, IM promoted the proliferation of cells significantly. CM was effective for enhancement of cartilage specific markers, while IM induced the cells to express endochondral ossification related genes. Although GAG deposition per cell in CM group was significantly higher than that in IM and GM groups, the total GAG contents in IM group were the most. This study demonstrated that CM focused on induction of chondrogenic differentiation while IM was in favor of promoting proliferation and expression of endochondral ossification related genes. Combinational use of these two media would be more beneficial to bone/cartilage repair.

  15. Evaluation of Insulin Medium or Chondrogenic Medium on Proliferation and Chondrogenesis of ATDC5 Cells

    Directory of Open Access Journals (Sweden)

    Yongchang Yao

    2014-01-01

    Full Text Available Background. The ATDC5 cell line is regarded as an excellent cell model for chondrogenesis. In most studies with ATDC5 cells, insulin medium (IM was used to induce chondrogenesis while chondrogenic medium (CM, which was usually applied in chondrogenesis of mesenchymal stem cells (MSCs, was rarely used for ATDC5 cells. This study was mainly designed to investigate the effect of IM, CM, and growth medium (GM on chondrogenesis of ATDC5 cells. Methods. ATDC5 cells were, respectively, cultured in IM, CM, and GM for a certain time. Then the proliferation and the chondrogenesis progress of cells in these groups were analyzed. Results. Compared with CM and GM, IM promoted the proliferation of cells significantly. CM was effective for enhancement of cartilage specific markers, while IM induced the cells to express endochondral ossification related genes. Although GAG deposition per cell in CM group was significantly higher than that in IM and GM groups, the total GAG contents in IM group were the most. Conclusion. This study demonstrated that CM focused on induction of chondrogenic differentiation while IM was in favor of promoting proliferation and expression of endochondral ossification related genes. Combinational use of these two media would be more beneficial to bone/cartilage repair.

  16. Methylation-mediated silencing of miR-124 facilitates chondrogenesis by targeting NFATc1 under hypoxic conditions.

    Science.gov (United States)

    Gong, Ming; Liang, Tangzhao; Jin, Song; Dai, Xuejun; Zhou, Zhiyu; Gao, Manman; Huang, Sheng; Luo, Jiaquan; Zou, Lijin; Zou, Xuenong

    2017-01-01

    Chondrogenic differentiation of mesenchymal stem cells is regulated by many different pathways. Recent studies have established that hypoxia and epigenetic alterations potently affect expression of chondrogenesis marker genes. Sox9 is generally regarded as a master regulator of chondrogenesis and microRNA-124 (miRNA-124) regulates gene expression in murine bone marrow-derived mesenchymal stem cells. Therefore, in this study we investigated whether epigenetic regulation of miRNA-124 could affect the expression of Sox9 and thereby regulate chondrogenesis. A cell pellet culture model was used to induce chondrogenesis in C3H10T1/2 cells under hypoxic conditions (2% O 2 ) to determine the effects of hypoxia on miR-124 expression and DNA methylation. The expression of miR-124 was significantly downregulated under hypoxic conditions compared to normoxic conditions (21% O 2 ). The expression of chondrogenesis marker genes was significantly increased under hypoxic conditions. Bisulfite sequencing of the CpG islands in the promoter region of miR-124-3 showed that CpG methylation was significantly increased under hypoxic conditions. Treating the cells with the DNA demethylating agent 5'-AZA significantly increased miR-124 expression and decreased expression of markers of chondrogenesis. Overexpressing miR-124 under hypoxic conditions inhibited NFATc1 reporter activity. NFATc1 was shown to bind to the promoter region of Sox9. Taken together, our data provide evidence that miR-124 acts as an inhibitor of NFATc1. Under hypoxic conditions when miR-124 is downregulated by methylation of CpG islands in the promoter, NFATc1 can bind to the Sox9 promoter and induce the expression of Sox9 leading to chondrogenesis. These results support the role of epigenetic regulation in establishing and maintaining a chondrogenic phenotype.

  17. Synthetic triterpenoids, CDDO-Imidazolide and CDDO-Ethyl amide, induce chondrogenesis.

    Science.gov (United States)

    Suh, N; Paul, S; Lee, H J; Yoon, T; Shah, N; Son, A I; Reddi, A H; Medici, D; Sporn, M B

    2012-05-01

    Novel methods for inducing chondrogenesis are critical for cartilage tissue engineering and regeneration. Here we show that the synthetic oleanane triterpenoids, CDDO-Imidazolide (CDDO-Im) and CDDO-Ethyl amide (CDDO-EA), at concentrations as low as 200 nM, induce chondrogenesis in organ cultures of newborn mouse calvaria. The cartilage phenotype was measured histologically with metachromatic toluidine blue staining for proteoglycans and by immunohistochemical staining for type II collagen. Furthermore, real-time polymerase chain reaction (PCR) analysis using mRNA from calvaria after 7-day treatment with CDDO-Im and CDDO-EA showed up-regulation of the chondrocyte markers SOX9 and type II collagen (alpha1). In addition, TGF-β; BMPs 2 and 4; Smads 3, 4, 6, and 7; and TIMPs-1 and -2 were increased. In contrast, MMP-9 was strongly down-regulated. Treatment of human bone marrow-derived mesenchymal stem cells with CDDO-Im and CDDO-EA (100 nM) induced expression of SOX9, collagen IIα1, and aggrecan, as well as BMP-2 and phospho-Smad5, confirming that the above triterpenoids induce chondrogenic differentiation. This is the first report of the use of these drugs for induction of chondrogenesis. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. Midazolam inhibits chondrogenesis via peripheral benzodiazepine receptor in human mesenchymal stem cells.

    Science.gov (United States)

    Chen, Yung-Ching; Wu, King-Chuen; Huang, Bu-Miin; So, Edmund Cheung; Wang, Yang-Kao

    2018-05-01

    Midazolam, a benzodiazepine derivative, is widely used for sedation and surgery. However, previous studies have demonstrated that Midazolam is associated with increased risks of congenital malformations, such as dwarfism, when used during early pregnancy. Recent studies have also demonstrated that Midazolam suppresses osteogenesis of mesenchymal stem cells (MSCs). Given that hypertrophic chondrocytes can differentiate into osteoblast and osteocytes and contribute to endochondral bone formation, the effect of Midazolam on chondrogenesis remains unclear. In this study, we applied a human MSC line, the KP cell, to serve as an in vitro model to study the effect of Midazolam on chondrogenesis. We first successfully established an in vitro chondrogenic model in a micromass culture or a 2D high-density culture performed with TGF-β-driven chondrogenic induction medium. Treatment of the Midazolam dose-dependently inhibited chondrogenesis, examined using Alcian blue-stained glycosaminoglycans and the expression of chondrogenic markers, such as SOX9 and type II collagen. Inhibition of Midazolam by peripheral benzodiazepine receptor (PBR) antagonist PK11195 or small interfering RNA rescued the inhibitory effects of Midazolam on chondrogenesis. In addition, Midazolam suppressed transforming growth factor-β-induced Smad3 phosphorylation, and this inhibitory effect could be rescued using PBR antagonist PK11195. This study provides a possible explanation for Midazolam-induced congenital malformations of the musculoskeletal system through PBR. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  19. The Cross-talk Between TGF-β1 and Dlk1 Mediates Early Chondrogenesis During Embryonic Endochondral Ossification

    DEFF Research Database (Denmark)

    Taipaleenmaki, Hanna; M, Linda; Chen, Li

    2012-01-01

    Dlkl/Pref-1/FA1 (delta like-1/preadipocyte factor-1/Fetal Antigen-1) is a novel surface marker for embryonic chondroprogenitor cells undergoing lineage progression from proliferation to prehypertrophic stages. However, mechanisms mediating control of its expression during chondrogenesis...... during mesenchymal condensation and chondrocyte proliferation, in parallel with expression of Sox9 and Col2a1, and was down-regulated upon the expression of Col10a1 by hypertrophic chondrocytes. Among a number of molecules that affected chondrogenesis, TGF-β1-induced proliferation of chondroprogenitors...... was associated with decreased Dlk1 expression. This effect was abolished by TGF-β signalling inhibitor SB431542, suggesting regulation of Dlk1/FA1 by TGF-β1 signalling in chondrogenesis. TGF-β1-induced Smad phosphorylation and chondrogenesis were significantly increased in Dlk1 (-/-) MEF, while they were blocked...

  20. Effect of Fibroblast Growth Factor 2 on Equine Synovial Fluid Chondroprogenitor Expansion and Chondrogenesis

    OpenAIRE

    Bianchessi, Marta; Chen, Yuwen; Durgam, Sushmitha; Pondenis, Holly; Stewart, Matthew

    2015-01-01

    Mesenchymal stem cells have been identified in the synovial fluid of several species. This study was conducted to characterize chondroprogenitor (CP) cells in equine synovial fluid (SF) and to determine the effect of fibroblast growth factor 2 (FGF-2) on SF-CP monolayer proliferation and subsequent chondrogenesis. We hypothesized that FGF-2 would stimulate SF-CP proliferation and postexpansion chondrogenesis. SF aspirates were collected from adult equine joints. Colony-forming unit (CFU) assa...

  1. Molecular mechanism of hypoxia-induced chondrogenesis and its application in in vivo cartilage tissue engineering.

    Science.gov (United States)

    Duval, Elise; Baugé, Catherine; Andriamanalijaona, Rina; Bénateau, Hervé; Leclercq, Sylvain; Dutoit, Soizic; Poulain, Laurent; Galéra, Philippe; Boumédiene, Karim

    2012-09-01

    Cartilage engineering is one of the most challenging issue in regenerative medicine, due to its limited self-ability to repair. Here, we assessed engineering of cartilage tissue starting from human bone marrow (hBM) stem cells under hypoxic environment and delineated the mechanism whereby chondrogenesis could be conducted without addition of exogenous growth factors. hBM stem cells were cultured in alginate beads and chondrogenesis was monitored by chondrocyte phenotypic markers. Activities and roles of Sox and HIF-1α transcription factors were investigated with complementary approaches of gain and loss of function and provided evidences that HIF-1α is essential for hypoxic induction of chondrogenesis. Thereafter, hBM cells and human articular chondrocytes (HAC) underwent chondrogenesis by 3D and hypoxic culture for 7 days or by ectopic expression of HIF-1α. After subcutaneous implantation of 3 weeks into athymic mice, tissue analysis showed that hypoxia or HIF-1α overexpression is effective and sufficient to induce chondrocyte phenotype in hBM cells, without use of exogenous growth factors. Therefore, this study brings interesting data for a simple and affordable system in biotechnology of cartilage engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Lead induces chondrogenesis and alters transforming growth factor-beta and bone morphogenetic protein signaling in mesenchymal cell populations.

    Science.gov (United States)

    Zuscik, Michael J; Ma, Lin; Buckley, Taylor; Puzas, J Edward; Drissi, Hicham; Schwarz, Edward M; O'Keefe, Regis J

    2007-09-01

    It has been established that skeletal growth is stunted in lead-exposed children. Because chondrogenesis is a seminal step during skeletal development, elucidating the impact of Pb on this process is the first step toward understanding the mechanism of Pb toxicity in the skeleton. The aim of this study was to test the hypothesis that Pb alters chondrogenic commitment of mesenchymal cells and to assess the effects of Pb on various signaling pathways. We assessed the influence of Pb on chondrogenesis in murine limb bud mesenchymal cells (MSCs) using nodule formation assays and gene analyses. The effects of Pb on transforming growth factor-beta (TGF-beta) and bone morphogenetic protein (BMP) signaling was studied using luciferase-based reporters and Western analyses, and luciferase-based assays were used to study cyclic adenosine monophosphate response element binding protein (CREB), beta-catenin, AP-1, and nuclear factor-kappa B (NF-kappaB) signaling. We also used an ectopic bone formation assay to determine how Pb affects chondrogenesis in vivo. Pb-exposed MSCs showed enhanced basal and TGF-beta/BMP induction of chondrogenesis, evidenced by enhanced nodule formation and up-regulation of Sox-9, type 2 collagen, and aggrecan, all key markers of chondrogenesis. We observed enhanced chondrogenesis during ectopic bone formation in mice preexposed to Pb via drinking water. In MSCs, Pb enhanced TGF-beta but inhibited BMP-2 signaling, as measured by luciferase reporter assays and Western analyses of Smad phosphorylation. Although Pb had no effect on basal CREB or Wnt/beta-catenin pathway activity, it induced NFkappaB signaling and inhibited AP-1 signaling. The in vitro and in vivo induction of chondrogenesis by Pb likely involves modulation and integration of multiple signaling pathways including TGF-beta, BMP, AP-1, and NFkappaB.

  3. Phosphate regulates chondrogenesis in a biphasic and maturation-dependent manner.

    Science.gov (United States)

    Wu, Biming; Durisin, Emily K; Decker, Joseph T; Ural, Evran E; Shea, Lonnie D; Coleman, Rhima M

    Inorganic phosphate (Pi) has been recognized as an important signaling molecule that modulates chondrocyte maturation and cartilage mineralization. However, conclusive experimental evidence for its involvement in early chondrogenesis is still lacking. Here, using high-density monolayer (2D) and pellet (3D) culture models of chondrogenic ATDC5 cells, we demonstrate that the cell response to Pi does not correlate with the Pi concentration in the culture medium but is better predicted by the availability of Pi on a per cell basis (Pi abundance). Both culture models were treated with ITS+, 10mM β-glycerophosphate (βGP), or ITS+/10mM βGP, which resulted in three levels of Pi abundance in cultures: basal (Pi/DNA 60ng/µg). In chondrogenic medium alone, the abundance levels were at the basal level in 2D culture and moderate in 3D cultures. The addition of 10mM βGP resulted in moderate abundance in 2D and high abundance in 3D cultures. Moderate Pi abundance enhanced early chondrogenesis and production of aggrecan and type II collagen whereas high Pi abundance inhibited chondrogenic differentiation and induced rapid mineralization. Inhibition of sodium phosphate transporters reduced phosphate-induced expression of chondrogenic markers. When 3D ITS+/βGP cultures were treated with levamisole to reduce ALP activity, Pi abundance was decreased to moderate levels, which resulted in significant upregulation of chondrogenic markers, similar to the response in 2D cultures. Delay of phosphate delivery until after early chondrogenesis occurs (7 days) no longer enhanced chondrogenesis, but instead accelerated hypertrophy and mineralization. Together, our data highlights the dependence of chondroprogenitor cell response to Pi on its availability to individual cells and the chondrogenic maturation stage of these cells and suggest that appropriate temporal delivery of phosphate to ATDC5 cells in 3D cultures represents a rapid model for mechanistic studies into the effects of

  4. Effects of solid acellular type-I/III collagen biomaterials on in vitro and in vivo chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Gao, Liang; Orth, Patrick; Cucchiarini, Magali; Madry, Henning

    2017-09-01

    Type-I/III collagen membranes are advocated for clinical use in articular cartilage repair as being able of inducing chondrogenesis, a technique termed autologous matrix-induced chondrogenesis (AMIC). Area covered: The current in vitro and translational in vivo evidence for chondrogenic effects of solid acellular type-I/III collagen biomaterials. Expert commentary: In vitro, mesenchymal stem cells (MSCs) adhere to the fibers of the type-I/III collagen membrane. No in vitro study provides evidence that a type-I/III collagen matrix alone may induce chondrogenesis. Few in vitro studies compare the effects of type-I and type-II collagen scaffolds on chondrogenesis. Recent investigations suggest better chondrogenesis with type-II collagen scaffolds. A systematic review of the translational in vivo data identified one long-term study showing that covering of cartilage defects treated by microfracture with a type-I/III collagen membrane significantly enhanced the repair tissue volume compared with microfracture alone. Other in vivo evidence is lacking to suggest either improved histological structure or biomechanical function of the repair tissue. Taken together, there is a paucity of in vitro and preclinical in vivo evidence supporting the concept that solid acellular type-I/III collagen scaffolds may be superior to classical approaches to induce in vitro or in vivo chondrogenesis of MSCs.

  5. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors

    OpenAIRE

    Hyuck Joon Kwon; Gyu Seok Lee; Honggu Chun

    2016-01-01

    Electrical stimulation (ES) is known to guide the development and regeneration of many tissues. However, although preclinical and clinical studies have demonstrated superior effects of ES on cartilage repair, the effects of ES on chondrogenesis remain elusive. Since mesenchyme stem cells (MSCs) have high therapeutic potential for cartilage regeneration, we investigated the actions of ES during chondrogenesis of MSCs. Herein, we demonstrate for the first time that ES enhances expression levels...

  6. Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis.

    Science.gov (United States)

    Chung, Cindy; Burdick, Jason A

    2009-02-01

    Mesenchymal stem cells (MSCs) are multipotent progenitor cells whose plasticity and self-renewal capacity have generated significant interest for applications in tissue engineering. The objective of this study was to investigate MSC chondrogenesis in photo-cross-linked hyaluronic acid (HA) hydrogels. Because HA is a native component of cartilage, and MSCs may interact with HA via cell surface receptors, these hydrogels could influence stem cell differentiation. In vitro and in vivo cultures of MSC-laden HA hydrogels permitted chondrogenesis, measured by the early gene expression and production of cartilage-specific matrix proteins. For in vivo culture, MSCs were encapsulated with and without transforming growth factor beta-3 (TGF-beta3) or pre-cultured for 2 weeks in chondrogenic medium before implantation. Up-regulation of type II collagen, aggrecan, and sox 9 was observed for all groups over MSCs at the time of encapsulation, and the addition of TGF-beta3 further enhanced the expression of these genes. To assess the influence of scaffold chemistry on chondrogenesis, HA hydrogels were compared with relatively inert poly(ethylene glycol) (PEG) hydrogels and showed enhanced expression of cartilage-specific markers. Differences between HA and PEG hydrogels in vivo were most noticeable for MSCs and polymer alone, indicating that hydrogel chemistry influences the commitment of MSCs to undergo chondrogenesis (e.g., approximately 43-fold up-regulation of type II collagen of MSCs in HA over PEG hydrogels). Although this study investigated only early markers of tissue regeneration, these results emphasize the importance of material cues in MSC differentiation microenvironments, potentially through interactions between scaffold materials and cell surface receptors.

  7. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors

    Science.gov (United States)

    Kwon, Hyuck Joon; Lee, Gyu Seok; Chun, Honggu

    2016-01-01

    Electrical stimulation (ES) is known to guide the development and regeneration of many tissues. However, although preclinical and clinical studies have demonstrated superior effects of ES on cartilage repair, the effects of ES on chondrogenesis remain elusive. Since mesenchyme stem cells (MSCs) have high therapeutic potential for cartilage regeneration, we investigated the actions of ES during chondrogenesis of MSCs. Herein, we demonstrate for the first time that ES enhances expression levels of chondrogenic markers, such as type II collagen, aggrecan, and Sox9, and decreases type I collagen levels, thereby inducing differentiation of MSCs into hyaline chondrogenic cells without the addition of exogenous growth factors. ES also induced MSC condensation and subsequent chondrogenesis by driving Ca2+/ATP oscillations, which are known to be essential for prechondrogenic condensation. In subsequent experiments, the effects of ES on ATP oscillations and chondrogenesis were dependent on extracellular ATP signaling via P2X4 receptors, and ES induced significant increases in TGF-β1 and BMP2 expression. However, the inhibition of TGF-β signaling blocked ES-driven condensation, whereas the inhibition of BMP signaling did not, indicating that TGF-β signaling but not BMP signaling mediates ES-driven condensation. These findings may contribute to the development of electrotherapeutic strategies for cartilage repair using MSCs. PMID:28004813

  8. Arterial injury promotes medial chondrogenesis in Sm22 knockout mice.

    Science.gov (United States)

    Shen, Jianbin; Yang, Maozhou; Jiang, Hong; Ju, Donghong; Zheng, Jian-Pu; Xu, Zhonghui; Liao, Tang-Dong; Li, Li

    2011-04-01

    Expression of SM22 (also known as SM22alpha and transgelin), a vascular smooth muscle cells (VSMCs) marker, is down-regulated in arterial diseases involving medial osteochondrogenesis. We investigated the effect of SM22 deficiency in a mouse artery injury model to determine the role of SM22 in arterial chondrogenesis. Sm22 knockout (Sm22(-/-)) mice developed prominent medial chondrogenesis 2 weeks after carotid denudation as evidenced by the enhanced expression of chondrogenic markers including type II collagen, aggrecan, osteopontin, bone morphogenetic protein 2, and SRY-box containing gene 9 (SOX9). This was concomitant with suppression of VSMC key transcription factor myocardin and of VSMC markers such as SM α-actin and myosin heavy chain. The conversion tendency from myogenesis to chondrogenesis was also observed in primary Sm22(-/-) VSMCs and in a VSMC line after Sm22 knockdown: SM22 deficiency altered VSMC morphology with compromised stress fibre formation and increased actin dynamics. Meanwhile, the expression level of Sox9 mRNA was up-regulated while the mRNA levels of myocardin and VSMC markers were down-regulated, indicating a pro-chondrogenic transcriptional switch in SM22-deficient VSMCs. Furthermore, the increased expression of SOX9 was mediated by enhanced reactive oxygen species production and nuclear factor-κB pathway activation. These findings suggest that disruption of SM22 alters the actin cytoskeleton and promotes chondrogenic conversion of VSMCs.

  9. Molecular mechanism of hypoxia-induced chondrogenesis and its application in in vivo cartilage tissue engineering.

    OpenAIRE

    Duval , Elise; Baugé , Catherine; Andriamanalijaona , Rina; Bénateau , Hervé; Leclercq , Sylvain; Dutoit , Soizic; Poulain , Laurent; Galéra , Philippe; Boumédiene , Karim

    2012-01-01

    International audience; Cartilage engineering is one of the most challenging issue in regenerative medicine, due to its limited self-ability to repair. Here, we assessed engineering of cartilage tissue starting from human bone marrow (hBM) stem cells under hypoxic environment and delineated the mechanism whereby chondrogenesis could be conducted without addition of exogenous growth factors. hBM stem cells were cultured in alginate beads and chondrogenesis was monitored by chondrocyte phenotyp...

  10. Incorporation of hyaluronic acid into collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tang Shunqing [Department of Biomedical Engineering, Jinan University, Guangzhou 510632 (China); Spector, Myron [Tissue Engineering, VA Boston Healthcare System, Boston, MA 02130 (United States)

    2007-09-15

    Hyaluronic acid (HA), a principal matrix molecule in many tissues, is present in high amounts in articular cartilage. HA contributes in unique ways to the physical behavior of the tissue, and has been shown to have beneficial effects on chondrocyte activity. The goal of this study was to incorporate graduated amounts of HA into type I collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis in vitro. The results demonstrated that the amount of contraction of HA/collagen scaffolds by adult canine articular chondrocytes increased with the HA content of the scaffolds. The greatest amount of chondrogenesis after two weeks was found in the scaffolds which had undergone the most contraction. HA can play a useful role in adjusting the mechanical behavior of tissue engineering scaffolds and chondrogenesis in chondrocyte-seeded scaffolds.

  11. Leptin differentially regulates chondrogenesis in mouse vertebral and tibial growth plates.

    Science.gov (United States)

    Yu, Bo; Jiang, Kaibiao; Chen, Bin; Wang, Hantao; Li, Xinfeng; Liu, Zude

    2017-05-31

    Leptin plays an important role in mediating chondrogenesis of limb growth plate. Previous studies suggest that bone structures and development of spine and limb are different. The expression of Ob-Rb, the gene that encodes leptin receptors, is vertebral and appendicular region-specific, suggesting the regulation of leptin on VGP and TGP chondrogenesis may be very different. The aim of the present study was to investigate the differential regulation of leptin on the chondrogenesis of vertebral growth plate (VGP) and tibial growth plate (TGP). We compared the VGP and TGP from wild type (C57BL/6) and leptin-deficient (ob/ob) mice. We then generated primary cultures of TGP and VGP chondrocytes. By treating the primary cells with different concentrations of leptin in vitro, we analyzed proliferation and apoptosis of the primary chondrocytes from TGP and VGP. We further measured expression of chondrogenic-related genes in these cells that had been incubated with different doses of leptin. Leptin-deficient mice of 8-week-old had shorter tibial and longer vertebral lengths than the wide type mice. Disturbed columnar structure was observed for TGP but not for VGP. In primary chondrocyte cultures, leptin inhibited VGP chondrocyte proliferation but promoted their apoptosis. Collagen IIA and aggrecan mRNA, and the protein levels of proliferation- and chondrogenesis-related markers, including PCNA, Sox9, and Smad4, were downregulated by leptin in a dose-dependent manner. In contrast, leptin stimulated the proliferation and chondrogenic differentiation of TGP chondrocytes at physiological levels (i.e., 10 and 50 ng/mL) but not at high levels (i.e., 100 and 1000 ng/mL). Leptin exerts a stimulatory effect on the proliferation and chondrogenic differentiation of the long bone growth plate but an inhibitory effect on the spine growth plate. The ongoing study will shed light on the regulatory mechanisms of leptin in bone development and metabolism.

  12. Matrilin-3 chondrodysplasia mutations cause attenuated chondrogenesis, premature hypertrophy and aberrant response to TGF-β in chondroprogenitor cells.

    Science.gov (United States)

    Jayasuriya, Chathuraka T; Zhou, Fiona H; Pei, Ming; Wang, Zhengke; Lemme, Nicholas J; Haines, Paul; Chen, Qian

    2014-08-21

    Studies have shown that mutations in the matrilin-3 gene (MATN3) are associated with multiple epiphyseal dysplasia (MED) and spondyloepimetaphyseal dysplasia (SEMD). We tested whether MATN3 mutations affect the differentiation of chondroprogenitor and/or mesenchymal stem cells, which are precursors to chondrocytes. ATDC5 chondroprogenitors stably expressing wild-type (WT) MATN3 underwent spontaneous chondrogenesis. Expression of chondrogenic markers collagen II and aggrecan was inhibited in chondroprogenitors carrying the MED or SEMD MATN3 mutations. Hypertrophic marker collagen X remained attenuated in WT MATN3 chondroprogenitors, whereas its expression was elevated in chondroprogenitors expressing the MED or SEMD mutant MATN3 gene suggesting that these mutations inhibit chondrogenesis but promote hypertrophy. TGF-β treatment failed to rescue chondrogenesis markers but dramatically increased collagen X mRNA expression in mutant MATN3 expressing chondroprogenitors. Synovium derived mesenchymal stem cells harboring the SEMD mutation exhibited lower glycosaminoglycan content than those of WT MATN3 in response to TGF-β. Our results suggest that the properties of progenitor cells harboring MATN3 chondrodysplasia mutations were altered, as evidenced by attenuated chondrogenesis and premature hypertrophy. TGF-β treatment failed to completely rescue chondrogenesis but instead induced hypertrophy in mutant MATN3 chondroprogenitors. Our data suggest that chondroprogenitor cells should be considered as a potential target of chondrodysplasia therapy.

  13. Matrilin-3 Chondrodysplasia Mutations Cause Attenuated Chondrogenesis, Premature Hypertrophy and Aberrant Response to TGF-β in Chondroprogenitor Cells

    Directory of Open Access Journals (Sweden)

    Chathuraka T. Jayasuriya

    2014-08-01

    Full Text Available Studies have shown that mutations in the matrilin-3 gene (MATN3 are associated with multiple epiphyseal dysplasia (MED and spondyloepimetaphyseal dysplasia (SEMD. We tested whether MATN3 mutations affect the differentiation of chondroprogenitor and/or mesenchymal stem cells, which are precursors to chondrocytes. ATDC5 chondroprogenitors stably expressing wild-type (WT MATN3 underwent spontaneous chondrogenesis. Expression of chondrogenic markers collagen II and aggrecan was inhibited in chondroprogenitors carrying the MED or SEMD MATN3 mutations. Hypertrophic marker collagen X remained attenuated in WT MATN3 chondroprogenitors, whereas its expression was elevated in chondroprogenitors expressing the MED or SEMD mutant MATN3 gene suggesting that these mutations inhibit chondrogenesis but promote hypertrophy. TGF-β treatment failed to rescue chondrogenesis markers but dramatically increased collagen X mRNA expression in mutant MATN3 expressing chondroprogenitors. Synovium derived mesenchymal stem cells harboring the SEMD mutation exhibited lower glycosaminoglycan content than those of WT MATN3 in response to TGF-β. Our results suggest that the properties of progenitor cells harboring MATN3 chondrodysplasia mutations were altered, as evidenced by attenuated chondrogenesis and premature hypertrophy. TGF-β treatment failed to completely rescue chondrogenesis but instead induced hypertrophy in mutant MATN3 chondroprogenitors. Our data suggest that chondroprogenitor cells should be considered as a potential target of chondrodysplasia therapy.

  14. Ihh and Runx2/Runx3 signaling interact to coordinate early chondrogenesis: a mouse model.

    Directory of Open Access Journals (Sweden)

    Eun-Jung Kim

    Full Text Available Endochondral bone formation begins with the development of a cartilage intermediate that is subsequently replaced by calcified bone. The mechanisms occurring during early chondrogenesis that control both mesenchymal cell differentiation into chondrocytes and cell proliferation are not clearly understood in vertebrates. Indian hedgehog (Ihh, one of the hedgehog signaling molecules, is known to control both the hypertrophy of chondrocytes and bone replacement; these processes are particularly important in postnatal endochondral bone formation rather than in early chondrogenesis. In this study, we utilized the maternal transfer of 5E1 to E12.5 in mouse embryos, a process that leads to an attenuation of Ihh activity. As a result, mouse limb bud chondrogenesis was inhibited, and an exogenous recombinant IHH protein enhanced the proliferation and differentiation of mesenchymal cells. Analysis of the genetic relationships in the limb buds suggested a more extensive role for Ihh and Runx genes in early chondrogenesis. The transfer of 5E1 decreased the expression of Runx2 and Runx3, whereas an exogenous recombinant IHH protein increased Runx2 and Runx3 expression. Moreover, a transcription factor Gli1 in hedgehog pathway enhances the direct induction of both Runx2 and Runx3 transcription. These findings suggested that Ihh signaling plays an important role in chondrocyte proliferation and differentiation via interactions with Runx2 and Runx3.

  15. Ihh and Runx2/Runx3 signaling interact to coordinate early chondrogenesis: a mouse model.

    Science.gov (United States)

    Kim, Eun-Jung; Cho, Sung-Won; Shin, Jeong-Oh; Lee, Min-Jung; Kim, Kye-Seong; Jung, Han-Sung

    2013-01-01

    Endochondral bone formation begins with the development of a cartilage intermediate that is subsequently replaced by calcified bone. The mechanisms occurring during early chondrogenesis that control both mesenchymal cell differentiation into chondrocytes and cell proliferation are not clearly understood in vertebrates. Indian hedgehog (Ihh), one of the hedgehog signaling molecules, is known to control both the hypertrophy of chondrocytes and bone replacement; these processes are particularly important in postnatal endochondral bone formation rather than in early chondrogenesis. In this study, we utilized the maternal transfer of 5E1 to E12.5 in mouse embryos, a process that leads to an attenuation of Ihh activity. As a result, mouse limb bud chondrogenesis was inhibited, and an exogenous recombinant IHH protein enhanced the proliferation and differentiation of mesenchymal cells. Analysis of the genetic relationships in the limb buds suggested a more extensive role for Ihh and Runx genes in early chondrogenesis. The transfer of 5E1 decreased the expression of Runx2 and Runx3, whereas an exogenous recombinant IHH protein increased Runx2 and Runx3 expression. Moreover, a transcription factor Gli1 in hedgehog pathway enhances the direct induction of both Runx2 and Runx3 transcription. These findings suggested that Ihh signaling plays an important role in chondrocyte proliferation and differentiation via interactions with Runx2 and Runx3.

  16. Optimizing a novel method for low intensity ultrasound in chondrogenesis induction

    Directory of Open Access Journals (Sweden)

    Hajar Shafaei

    2013-01-01

    Conclusion: Using LIUS resulted in early chondrogenesis in comparison with terminally differentiated chondrocytes by TGFβ. Therefore, LIUS might provide an applicable, safe, efficient, and cheap tool for chondrogenic differentiation of ASCs in cartilage tissue engineering.

  17. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis.

    Science.gov (United States)

    Shanmugasundaram, Shobana; Chaudhry, Hans; Arinzeh, Treena Livingston

    2011-03-01

    Nanofiber scaffolds, produced by the electrospinning technique, have gained widespread attention in tissue engineering due to their morphological similarities to the native extracellular matrix. For cartilage repair, studies have examined their feasibility; however these studies have been limited, excluding the influence of other scaffold design features. This study evaluated the effect of scaffold design, specifically examining a range of nano to micron-sized fibers and resulting pore size and mechanical properties, on human mesenchymal stem cells (MSCs) derived from the adult bone marrow during chondrogenesis. MSC differentiation was examined on these scaffolds with an emphasis on temporal gene expression of chondrogenic markers and the pluripotent gene, Sox2, which has yet to be explored for MSCs during chondrogenesis and in combination with tissue engineering scaffolds. Chondrogenic markers of aggrecan, chondroadherin, sox9, and collagen type II were highest for cells on micron-sized fibers (5 and 9 μm) with pore sizes of 27 and 29 μm, respectively, in comparison to cells on nano-sized fibers (300 nm and 600 to 1400 nm) having pore sizes of 2 and 3 μm, respectively. Undifferentiated MSCs expressed high levels of the Sox2 gene but displayed negligible levels on all scaffolds with or without the presence of inductive factors, suggesting that the physical features of the scaffold play an important role in differentiation. Micron-sized fibers with large pore structures and mechanical properties comparable to the cartilage ECM enhanced chondrogenesis, demonstrating architectural features as well as mechanical properties of electrospun fibrous scaffolds enhance differentiation.

  18. Norepinephrine inhibition of mesenchymal stem cell and chondrogenic progenitor cell chondrogenesis and acceleration of chondrogenic hypertrophy.

    Science.gov (United States)

    Jenei-Lanzl, Zsuzsa; Grässel, Susanne; Pongratz, Georg; Kees, Frieder; Miosge, Nicolai; Angele, Peter; Straub, Rainer H

    2014-09-01

    Mesenchymal progenitor cell chondrogenesis is the biologic platform for the generation or regeneration of cartilage, but the external influence of the sympathetic nervous system on this process is not yet known. Sympathetic nerve fibers are present in articular tissue, and the sympathetic nervous system influences the musculoskeletal system by, for example, increasing osteoclastogenesis. This study was initiated to explore the role of the sympathetic neurotransmitter norepinephrine (NE) in mesenchymal stem cell (MSC)-dependent and cartilage progenitor cell (CPC)-dependent chondrogenesis. Using human MSCs or CPCs, chondrogenic differentiation was induced in the presence of NE, the specific β-adrenergic receptor (β-AR) agonist isoproterenol, and the specific β-AR antagonist nadolol. We studied sympathetic nerve fibers, tyrosine hydroxylase (TH) expression, catecholamine biosynthesis, and synovial fluid levels in human joints, as well as cartilage-specific matrix deposition during differentiation. TH+ sympathetic nerve fibers were present in the synovial tissue, meniscus, and subchondral bone marrow. In addition, synovial fluid from patients with knee trauma demonstrated high concentrations of NE. During MSC or CPC chondrogenesis, β-AR were expressed. Chondrogenic aggregates treated with NE or isoproterenol synthesized lower amounts of type II collagen and glycosaminoglycans. NE and isoproterenol treatment dose-dependently increased the levels of cartilage hypertrophy markers (type X collagen and matrix metalloproteinase 13). Nadolol reversed the inhibition of chondrogenesis and the up-regulation of cartilage hypertrophy. Our findings demonstrate NE-dependent inhibition of chondrogenesis and acceleration of hypertrophic differentiation. By inhibiting cartilage repair, these sympathetic influences can be important after joint trauma. These findings may be a basis for novel neurochondrogenic therapeutic options. Copyright © 2014 by the American College of

  19. MED and PSACH COMP mutations affect chondrogenesis in chicken limb bud micromass cultures.

    Science.gov (United States)

    Roman-Blas, J; Dion, A S; Seghatoleslami, M R; Giunta, K; Oca, P; Jimenez, S A; Williams, C J

    2010-09-01

    Mutations in cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). We studied the effects of over-expression of wild type and mutant COMP on early stages of chondrogenesis in chicken limb bud micromass cultures. Cells were transduced with RCAS virus harboring wild type or mutant (C328R, PSACH; T585R, MED) COMP cDNAs and cultured for 3, 4, and 5 days. The effect of COMP constructs on chondrogenesis was assessed by analyzing mRNA and protein expression of several COMP binding partners. Cell viability was assayed, and evaluation of apoptosis was performed by monitoring caspase 3 processing. Over-expression of COMP, and especially expression of COMP mutants, had a profound affect on the expression of syndecan 3 and tenascin C, early markers of chondrogenesis. Over-expression of COMP did not affect levels of type II collagen or matrilin-3; however, there were increases in type IX collagen expression and sulfated proteoglycan synthesis, particularly at day 5 of harvest. In contrast to cells over-expressing COMP, cells with mutant COMP showed reduction in type IX collagen expression and increased matrilin 3 expression. Finally, reduction in cell viability, and increased activity of caspase 3, at days 4 and 5, were observed in cultures expressing either wild type or mutant COMP. MED, and PSACH mutations, despite displaying phenotypic differences, demonstrated only subtle differences in their cellular viability and mRNA and protein expression of components of the extracellular matrix, including those that interact with COMP. These results suggest that COMP mutations, by disrupting normal interactions between COMP and its binding partners, significantly affect chondrogenesis. (c) 2010 Wiley-Liss, Inc.

  20. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells☆

    Science.gov (United States)

    Nalluri, Sandeep M.; Krishnan, G. Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A.; Yang, Shuying; Sarkar, Debanjan

    2016-01-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell–matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell–cell and cell–matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell–matrix interaction, and cell–cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. PMID:26046282

  1. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan

    2015-09-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Concave microwell plate facilitates chondrogenesis from mesenchymal stem cells.

    Science.gov (United States)

    Ko, Ji-Yun; Im, Gun-Il

    2016-11-01

    To compare in vitro chondrogenesis from bone marrow-derived mesenchymal stem cells using concave microwell plates with those obtained using culture tubes. Pellets cultured in concave microwell plates had a significantly higher level of GAG per DNA content and greater proteoglycan content than those cultured in tubes at day 7 and 14. Three chondrogenic markers, SOX-9, COL2A1 and aggrecan, showed significantly higher expression in pellets cultured in concave microwell plates than those cultured in tubes at day 7 and 14. At day 21, there was not a significant difference in the expression of these markers. COL10A1, the typical hypertrophy marker, was significantly lower in concave microwell plates during the whole culture period. Runx-2, a marker of hypertrophy and osteogenesis, was significantly lower at day 7 in pellets cultured in concave microwell plates than those cultured in tubes. Concave microwell plates provide a convenient and effective tool for the study of in vitro chondrogenesis and may replace the use of propylene culture tube.

  3. Cellular ATP synthesis mediated by type III sodium-dependent phosphate transporter Pit-1 is critical to chondrogenesis.

    Science.gov (United States)

    Sugita, Atsushi; Kawai, Shinji; Hayashibara, Tetsuyuki; Amano, Atsuo; Ooshima, Takashi; Michigami, Toshimi; Yoshikawa, Hideki; Yoneda, Toshiyuki

    2011-01-28

    Disturbed endochondral ossification in X-linked hypophosphatemia indicates an involvement of P(i) in chondrogenesis. We studied the role of the sodium-dependent P(i) cotransporters (NPT), which are a widely recognized regulator of cellular P(i) homeostasis, and the downstream events in chondrogenesis using Hyp mice, the murine homolog of human X-linked hypophosphatemia. Hyp mice showed reduced apoptosis and mineralization in hypertrophic cartilage. Hyp chondrocytes in culture displayed decreased apoptosis and mineralization compared with WT chondrocytes, whereas glycosaminoglycan synthesis, an early event in chondrogenesis, was not altered. Expression of the type III NPT Pit-1 and P(i) uptake were diminished, and intracellular ATP levels were also reduced in parallel with decreased caspase-9 and caspase-3 activity in Hyp chondrocytes. The competitive NPT inhibitor phosphonoformic acid and ATP synthesis inhibitor 3-bromopyruvate disturbed endochondral ossification with reduced apoptosis in vivo and suppressed apoptosis and mineralization in conjunction with reduced P(i) uptake and ATP synthesis in WT chondrocytes. Overexpression of Pit-1 in Hyp chondrocytes reversed P(i) uptake and ATP synthesis and restored apoptosis and mineralization. Our results suggest that cellular ATP synthesis consequent to P(i) uptake via Pit-1 plays an important role in chondrocyte apoptosis and mineralization, and that chondrogenesis is ATP-dependent.

  4. Differentiation of stem cells from human infrapatellar fat pad: characterization of cells undergoing chondrogenesis.

    Science.gov (United States)

    Felimban, Raed; Ye, Ken; Traianedes, Kathy; Di Bella, Claudia; Crook, Jeremy; Wallace, Gordon G; Quigley, Anita; Choong, Peter F M; Myers, Damian E

    2014-08-01

    Hyaline cartilage repair is a significant challenge in orthopedics and current techniques result in formation of fibrocartilage. Human infrapatellar fat pad (hIPFP)-derived mesenchymal stem cells (MSCs) are capable of differentiation into multiple tissue lineages, including cartilage and bone. Chondrogenesis is a crucial part of normal skeletal development but the molecular mechanisms are yet to be completely defined. In this study we sourced hIPFP-derived MSCs utilizing chondrogenic growth factors, transforming growth factor beta-3, and bone morphogenetic protein-6, to form hyaline-like cartilage in micromass cultures and we studied chondrogenic development of 7, 14, and 28 days. The purpose of this study was (1) to characterize chondrogenesis from MSCs derived from hIPFP tissue by conventional techniques and (2) to characterize temporal changes of key molecular components during chondrogenesis using microarray gene expression. Endpoints included histology, immunohistochemistry (IHC), gene expression profiles using a microarray technique, and changes in expression of specific genes using quantitative real-time polymerase chain reaction. Over 14-28 days, clusters of encapsulated chondrocytes formed surrounded by collagen type II and aggrecan in the extracellular matrix (ECM). Collagen type II and aggrecan production was confirmed using IHC and chondrogenic lineage markers were studied; SRY-related transcription factor (SOX9), collagen type II alpha 1 (COL2A1), and aggrecan gene expression increased significantly over the time course. Normalized microarray highlighted 608 differentially expressed genes; 10 chondrogenic genes were upregulated (2- to 87-fold), including COL2A1, COL10A1, COL9A1, COL11A1, COL9A2, COL11A2, COL1A1, COMP, SOX9, and COL3A1. We found that the upregulated genes (twofold or greater) represent significant level of expression (enrichment score) for the ECM structural constituent of the molecular functional at days 7, 14, and 28 during

  5. Steric Interference of Adhesion Supports In-Vitro Chondrogenesis of Mesenchymal Stem Cells on Hydrogels for Cartilage Repair

    OpenAIRE

    Goldshmid, Revital; Cohen, Shlomit; Shachaf, Yonatan; Kupershmit, Ilana; Sarig-Nadir, Offra; Seliktar, Dror; Wechsler, Roni

    2015-01-01

    Recent studies suggest the presence of cell adhesion motifs found in structural proteins can inhibit chondrogenesis. In this context, the current study aims to determine if a polyethylene glycol (PEG)-modified fibrinogen matrix could support better chondrogenesis of human bone marrow mesenchymal stem cells (BM-MSC) based on steric interference of adhesion, when compared to a natural fibrin matrix. Hydrogels used as substrates for two-dimensional (2D) BM-MSC cultures under chondrogenic conditi...

  6. Apoptosis in chondrogenesis of human mesenchymal stem cells: effect of serum and medium supplements.

    Science.gov (United States)

    Wang, Chien-Yuan; Chen, Ling-Lan; Kuo, Pei-Yin; Chang, Jia-Ling; Wang, Yng-Jiin; Hung, Shih-Chieh

    2010-04-01

    Apoptosis is an inevitable process during development and is evident in the formation of articular cartilage and endochondral ossification of growth plate. Mesenchymal stem cells (MSCs) can serve as alternative sources for cell therapy in focal chondral lesions or diffuse osteoarthritis. But there are few, if any, studies investigating apoptosis during chondrogenesis by MSCs. The aim of this study was to find the better condition to prevent apoptosis during chondrogenesis by MSCs. Apoptosis were evaluated in MSCs induced in different chondrogenic media by the use of Annexin V, TUNEL staining, lysosomal labeling with lysotracker and immunostaining of apoptotic markers. We found apparent apoptosis was demonstrated by Annexin V, TUNEL staining and lysosomal labeling during chondrogenesis. Meanwhile, the degree of apoptosis was related to the reagents of the defined chondrogenic medium. Adding serum in medium increased apoptosis, however, TGF-beta1 inhibited apoptosis. The apoptosis was associated with the activation of caspase-3, the increase in the Bax/Bcl-2 ratio, the loss of lysosomal integrity, and the increase of PARP-cleavage. Pro-inflammatory cytokines, IL-1alpha, IL-1beta and TNFalpha did not induce any increase in apoptosis. Interestingly, the inhibition of apoptosis by serum free medium supplemented with ITS was also associated with an increase in the expression of type II collagen, and a decrease in the expression of type X collagen, Runx2, and other osteogenic genes, while TGF-beta1 increased the expression of Sox9, type II and type X collagen and decreased the expression of osteogenic genes. These data suggest apoptosis occurs during chondrogenesis by MSCs by cell death intrinsic pathway activation and this process may be modulated by culture conditions.

  7. Cartilage oligomeric matrix protein enhances matrix assembly during chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S; Chen, Faye H

    2012-04-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention.

  8. CARTILAGE OLIGOMERIC MATRIX PROTEIN ENHANCES MATRIX ASSEMBLY DURING CHONDROGENESIS OF HUMAN MESENCHYMAL STEM CELLS

    Science.gov (United States)

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S.; Chen, Faye H.

    2011-01-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate-hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention. PMID:22095699

  9. Chondrogenesis of the branchial skeleton in embryonic sea lamprey, Petromyzon marinus.

    Science.gov (United States)

    Morrison, S L; Campbell, C K; Wright, G M

    2000-11-01

    This study provides concise temporal and spatial characteristics of branchial chondrogenesis in embryonic sea lamprey, Petromyzon marinus, using high resolution light microscopy, transmission electron, and immunoelectron microscopy. Prechondrogenic condensations representing the first branchial arch appeared first in the mid-region of the third pharyngeal arch at 13 days post-fertilization (pf). Cartilage differentiation, defined by the presence of the unique, fibrillar, non-collagenous matrix protein characteristic of branchial cartilage, was first observed at 14 days pf. Development of lamprey branchial cartilage appeared unusual compared to that in jawed fishes, in that precartilage condensations appear as a one-cell wide orderly stack of flattened cells that extend by the addition of one dorsal and one ventral condensation. Development of lamprey gill arches from three condensations that fuse to form a single skeletal element differs from the developing gill arches of jawed fishes, where more than one skeletal element forms from a single condensation. The initial orderly arrangement of cells in the lamprey branchial prechondrogenic condensations remains throughout development. Once chondrification of the condensations begins, the branchial arches start to grow. Initially, growth occurs as a result of matrix secretion and cell migration. Later in development, the arches grow mainly by cell proliferation and enlargement. This study defines the morphology and timing of lamprey branchial chondrogenesis. Studies of lamprey chondrogenesis provide not only insight into the developmental biology of a unique non-collagenous cartilage in a primitive vertebrate but also into the general evolution of the skeletal system in vertebrates. Copyright 2000 Wiley-Liss, Inc.

  10. Histone deacetylase 4 promotes TGF-beta1-induced synovium-derived stem cell chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy.

    Science.gov (United States)

    Pei, Ming; Chen, Demeng; Li, Jingting; Wei, Lei

    2009-12-01

    The transforming growth factor-beta (TGF-beta) superfamily members play diverse roles in cartilage development and maintenance. TGF-beta up-regulates chondrogenic gene expression by enhancing transcription factor SRY (sex determining region Y)-box 9 (Sox9) and inhibits osteoblast differentiation by repressing runt-related transcription factor 2 (Runx2). Recently, histone deacetylases (HDACs) were reported to act as negative regulators of chondrocyte hypertrophy. It was speculated that HDAC4 may promote TGF-beta1-induced MSC chondrogenesis. In this study, the adenovirus-mediated HDAC4 gene (Ad.HDAC4) was utilized to infect synovium-derived stem cells (SDSCs). Adenovirus-mediated LacZ (Ad.LacZ) served as a control. The infected cells were centrifuged to form SDSC pellets followed by incubation in a serum-free chondrogenic medium for 15 days with or without 10ng/mL TGF-beta1. Transfection efficiency was determined in SDSCs using Ad.LacZ. Cytotoxicity was measured using lactate dehydrogenase assay. Histology, immunostaining, biochemical analysis, and real-time polymerase chain reaction were performed to assess chondrogenesis at protein and mRNA levels in infected SDSCs. Our data demonstrated that supplementation with TGF-beta1 could initiate and promote SDSC chondrogenesis; however, TGF-beta1 alone was insufficient to fully differentiate SDSCs into chondrocytes. Ad.HDAC4 could be efficiently transfected into SDSCs. Without TGF-beta1 treatment, HDAC4 had no effect on SDSC chondrogenesis; however, in the presence of TGF-beta1, HDAC4 could speed up and maintain a high level of chondrogenesis while down-regulating the hypertrophic marker - type X collagen expression. This study is the first report showing that HDAC4 overexpression promotes TGF-beta1-induced SDSC chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy. The mechanism underlying this process needs further investigation.

  11. Quantitative transcriptional profiling of ATDC5 mouse progenitor cells during chondrogenesis

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Zhang, Xiao-Yan

    2005-01-01

    During the differentiation of a mouse chondroprogenitor cell line, ATDC5, an analysis of the transcription cartilage-related genes was carried out using real-time RT-PCR in a semiquantitative fashion. A total number of 104 genes both previously linked to chondrogenesis and hitherto not associated...

  12. Metabolomic Analysis of Differential Changes in Metabolites during ATP Oscillations in Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Hyuck Joon Kwon

    2013-01-01

    Full Text Available Prechondrogenic condensation is a critical step for skeletal pattern formation. Recent studies reported that ATP oscillations play an essential role in prechondrogenic condensation. However, the molecular mechanism to underlie ATP oscillations remains poorly understood. In the present study, it was investigated how changes in metabolites are implicated in ATP oscillations during chondrogenesis by using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS. CE-TOF-MS detected 93 cationic and 109 anionic compounds derived from known metabolic pathways. 15 cationic and 18 anionic compounds revealed significant change between peak and trough of ATP oscillations. These results implicate that glycolysis, mitochondrial respiration and uronic acid pathway oscillate in phase with ATP oscillations, while PPRP and nucleotides synthesis pathways oscillate in antiphase with ATP oscillations. This suggests that the ATP-producing glycolysis and mitochondrial respiration oscillate in antiphase with the ATP-consuming PPRP/nucleotide synthesis pathway during chondrogenesis.

  13. Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis.

    Science.gov (United States)

    Occhetta, Paola; Pigeot, Sebastien; Rasponi, Marco; Dasen, Boris; Mehrkens, Arne; Ullrich, Thomas; Kramer, Ina; Guth-Gundel, Sabine; Barbero, Andrea; Martin, Ivan

    2018-05-01

    It is generally accepted that adult human bone marrow-derived mesenchymal stromal cells (hMSCs) are default committed toward osteogenesis. Even when induced to chondrogenesis, hMSCs typically form hypertrophic cartilage that undergoes endochondral ossification. Because embryonic mesenchyme is obviously competent to generate phenotypically stable cartilage, it is questioned whether there is a correspondence between mesenchymal progenitor compartments during development and in adulthood. Here we tested whether forcing specific early events of articular cartilage development can program hMSC fate toward stable chondrogenesis. Inspired by recent findings that spatial restriction of bone morphogenetic protein (BMP) signaling guides embryonic progenitors toward articular cartilage formation, we hypothesized that selective inhibition of BMP drives the phenotypic stability of hMSC-derived chondrocytes. Two BMP type I receptor-biased kinase inhibitors were screened in a microfluidic platform for their time- and dose-dependent effect on hMSC chondrogenesis. The different receptor selectivity profile of tested compounds allowed demonstration that transient blockade of both ALK2 and ALK3 receptors, while permissive to hMSC cartilage formation, is necessary and sufficient to maintain a stable chondrocyte phenotype. Remarkably, even upon compound removal, hMSCs were no longer competent to undergo hypertrophy in vitro and endochondral ossification in vivo, indicating the onset of a constitutive change. Our findings demonstrate that adult hMSCs effectively share properties of embryonic mesenchyme in the formation of transient but also of stable cartilage. This opens potential pharmacological strategies to articular cartilage regeneration and more broadly indicates the relevance of developmentally inspired protocols to control the fate of adult progenitor cell systems.

  14. The ERK5 and ERK1/2 signaling pathways play opposing regulatory roles during chondrogenesis of adult human bone marrow-derived multipotent progenitor cells.

    Science.gov (United States)

    Bobick, Brent E; Matsche, Alexander I; Chen, Faye H; Tuan, Rocky S

    2010-07-01

    Adult human bone marrow-derived multipotent progenitor cells (MPCs) are able to differentiate into a variety of specialized cell types, including chondrocytes, and are considered a promising candidate cell source for use in cartilage tissue engineering. In this study, we examined the regulation of MPC chondrogenesis by mitogen-activated protein kinases in an attempt to better understand how to generate hyaline cartilage in the laboratory that more closely resembles native tissue. Specifically, we employed the high-density pellet culture model system to assess the roles of ERK5 and ERK1/2 pathway signaling in MPC chondrogenesis. Western blotting revealed that high levels of ERK5 phosphorylation correlate with low levels of MPC chondrogenesis and that as TGF-beta 3-enhanced MPC chondrogenesis proceeds, phospho-ERK5 levels steadily decline. Conversely, levels of phospho-ERK1/2 paralleled the progression of MPC chondrogenesis. siRNA-mediated knockdown of ERK5 pathway components MEK5 and ERK5 resulted in increased MPC pellet mRNA transcript levels of the cartilage-characteristic marker genes SOX9, COL2A1, AGC, L-SOX5, and SOX6, as well as enhanced accumulation of SOX9 protein, collagen type II protein, and Alcian blue-stainable proteoglycan. In contrast, knockdown of ERK1/2 pathway members MEK1 and ERK1 decreased expression of all chondrogenic markers tested. Finally, overexpression of MEK5 and ERK5 also depressed MPC chondrogenesis, as indicated by diminished activity of a co-transfected collagen II promoter-luciferase reporter construct. In conclusion, our results suggest a novel role for the ERK5 pathway as an important negative regulator of adult human MPC chondrogenesis and illustrate that the ERK5 and ERK1/2 kinase cascades play opposing roles regulating MPC cartilage formation. (c) 2010 Wiley-Liss, Inc.

  15. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor

    Science.gov (United States)

    Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju

    2016-01-01

    Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone–related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo. In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.—Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. PMID:27075243

  16. The infrapatellar fat pad from diseased joints inhibits chondrogenesis of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    W Wei

    2015-12-01

    Full Text Available Cartilage repair by bone marrow derived mesenchymal stem cells (MSCs can be influenced by inflammation in the knee. Next to synovium, the infrapatellar fat pad (IPFP has been described as a source for inflammatory factors. Here, we investigated whether factors secreted by the IPFP affect chondrogenesis of MSCs and whether this is influenced by different joint pathologies or obesity. Furthermore, we examined the role of IPFP resident macrophages. First, we made conditioned medium from IPFP obtained from osteoarthritic joints, IPFP from traumatically injured joints during anterior cruciate ligament reconstruction, and subcutaneous adipose tissue. Additionally, we made conditioned medium of macrophages isolated from osteoarthritic IPFP and of polarised monocytes from peripheral blood. We evaluated the effect of different types of conditioned medium on MSC chondrogenesis. Conditioned medium from IPFP decreased collagen 2 and aggrecan gene expression as well as thionin and collagen type 2 staining. This anti-chondrogenic effect was the same for conditioned medium from IPFP of osteoarthritic and traumatically injured joints. Furthermore, IPFP from obese (Body Mass Index >30 donors did not inhibit chondrogenesis more than that of lean (Body Mass Index <25 donors. Finally, conditioned medium from macrophages isolated from IPFP decreased the expression of hyaline cartilage genes, as did peripheral blood monocytes stimulated with pro-inflammatory cytokines. The IPFP and the resident pro-inflammatory macrophages could therefore be targets for therapies to improve MSC-based cartilage repair.

  17. Chondroblastoma and chondromyxoid fibroma : disentangling the neoplastic chondrogenesis of two rare cartilaginous tumours

    NARCIS (Netherlands)

    Romeo, Salvatore

    2010-01-01

    The scope of this study was to disentangle neoplastic chondrogenesis in two rare cartilaginous tumours: chondroblastoma and chondromyxoid fibroma. It was addressed: 1 The spectrum of phenotypic differentiation in chondroblastoma and chondromyxoid fibroma, 2 The signalling pathways driving

  18. Creation of an in vitro microenvironment to enhance human fetal synovium-derived stem cell chondrogenesis.

    Science.gov (United States)

    Li, Jingting; He, Fan; Pei, Ming

    2011-09-01

    Our aim was to assess the feasibility of the sequential application of extracellular matrix (ECM) and low oxygen to enhance chondrogenesis in human fetal synovium-derived stem cells (hfSDSCs). Human fetal synovial fibroblasts (hfSFs) were characterized and found to include hfSDSCs, as evidenced by their multi-differentiation capacity and the surface phenotype markers typical of mesenchymal stem cells. Passage-7 hfSFs were plated on either conventional plastic flasks (P) or ECM deposited by hfSFs (E) for one passage. Passage-8 hfSFs were then reseeded for an additional passage on either P or E. The pellets from expanded hfSFs were incubated in a serum-free chondrogenic medium supplemented with 10 ng/ml transforming growth factor-β3 under either normoxia (21% O(2); 21) or hypoxia (5% O(2); 5) for 14 days. Pellets were collected for evaluation of the treatments (EE21, EE5, EP21, EP5, PE21, PE5, PP21, and PP5) on expanded hfSF chondrogenesis by using histology, immunostaining, biochemistry, and real-time polymerase chain reaction. Our data suggest that, compared with seeding on conventional plastic flasks, hfSFs expanded on ECM exhibit a lower expression of senescence-associated β-galactosidase and an enhanced level of stage-specific embryonic antigen-4. ECM-expanded hfSFs also show increased cell numbers and an enhanced chondrogenic potential. Low oxygen (5% O(2)) during pellet culture enhances hfSF chondrogenesis. Thus, we demonstrate, for the first time, the presence of stem cells in hfSFs, and that modulation of the in vitro microenvironment can enhance hfSDSC chondrogenesis. hfSDSCs might represent a promising cell source for cartilage tissue engineering and regeneration.

  19. β1 integrins regulate chondrogenesis and rock signaling in adipose stem cells

    NARCIS (Netherlands)

    Lu, Z.F.; Doulabi, B.Z.; Huang, C.L.; Bank, R.A.; Helder, M.N.

    2008-01-01

    β1 integrins play a controversial role during chondrogenesis. Since the maturation of chondrocytes relies on a signaling switch from cell-cell to cell-matrix interactions, we hypothesized that β1 integrins play a different role at the earlier (mainly cell-cell interaction) from the later stage

  20. Effect of Fibroblast Growth Factor 2 on Equine Synovial Fluid Chondroprogenitor Expansion and Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Marta Bianchessi

    2016-01-01

    Full Text Available Mesenchymal stem cells have been identified in the synovial fluid of several species. This study was conducted to characterize chondroprogenitor (CP cells in equine synovial fluid (SF and to determine the effect of fibroblast growth factor 2 (FGF-2 on SF-CP monolayer proliferation and subsequent chondrogenesis. We hypothesized that FGF-2 would stimulate SF-CP proliferation and postexpansion chondrogenesis. SF aspirates were collected from adult equine joints. Colony-forming unit (CFU assays were performed during primary cultures. At first passage, SF-cells were seeded at low density, with or without FGF-2. Following monolayer expansion and serial immunophenotyping, cells were transferred to chondrogenic pellet cultures. Pellets were analyzed for chondrogenic mRNA expression and cartilage matrix secretion. There was a mean of 59.2 CFU/mL of SF. FGF-2 increased the number of population doublings during two monolayer passages and halved the population doubling times. FGF-2 did not alter the immunophenotype of SF-CPs during monolayer expansion, nor did FGF-2 compromise chondrogenesis. Hypertrophic phenotypic markers were not expressed in control or FGF-2 groups. FGF-2 did prevent the development of a “fibroblastic” cell layer around pellet periphery. FGF-2 significantly accelerates in vitro SF-CP expansion, the major hurdle to clinical application of this cell population, without detrimentally affecting subsequent chondrogenic capacity.

  1. Limitations of using aggrecan and type X collagen as markers of chondrogenesis in mesenchymal stem cell differentiation.

    Science.gov (United States)

    Mwale, Fackson; Stachura, Dorothy; Roughley, Peter; Antoniou, John

    2006-08-01

    The study was initially designed to differentiate human bone marrow-derived mesenchymal stem cells (MSC) into chondrocyte-like cells, for use in tissue engineering. We cultured MSCs in defined chondrogenic medium as pellet cultures supplemented with transforming growth factor (TGF)-beta1 or -beta3 and dexamethazone, as they are commonly used to promote in vitro chondrogenesis. Markers of chondrogenesis used were type II collagen and aggrecan, with type X collagen being used as a marker of late-stage chondrocyte hypertrophy (associated with endochondral ossification). Our results show that aggrecan is constitutively expressed by MSCs and that type X collagen is expressed as an early event. Furthermore, we found that type X collagen was expressed before type II collagen in some cases. This is surprising because it is understood that stem cells have to be differentiated into chondrocytes before they can become hypertrophic. Thus, caution must be exercised when using aggrecan and type X collagen as markers for chondrogenesis and chondrocyte hypertrophy, respectively, in association with stem cell differentiation from this source.

  2. Arid5b facilitates chondrogenesis by recruiting the histone demethylase Phf2 to Sox9-regulated genes

    Science.gov (United States)

    Hata, Kenji; Takashima, Rikako; Amano, Katsuhiko; Ono, Koichiro; Nakanishi, Masako; Yoshida, Michiko; Wakabayashi, Makoto; Matsuda, Akio; Maeda, Yoshinobu; Suzuki, Yutaka; Sugano, Sumio; Whitson, Robert H.; Nishimura, Riko; Yoneda, Toshiyuki

    2013-11-01

    Histone modification, a critical step for epigenetic regulation, is an important modulator of biological events. Sox9 is a transcription factor critical for endochondral ossification; however, proof of its epigenetic regulation remains elusive. Here we identify AT-rich interactive domain 5b (Arid5b) as a transcriptional co-regulator of Sox9. Arid5b physically associates with Sox9 and synergistically induces chondrogenesis. Growth of Arid5b-/- mice is retarded with delayed endochondral ossification. Sox9-dependent chondrogenesis is attenuated in Arid5b-deficient cells. Arid5b recruits Phf2, a histone lysine demethylase, to the promoter region of Sox9 target genes and stimulates H3K9me2 demethylation of these genes. In the promoters of chondrogenic marker genes, H3K9me2 levels are increased in Arid5b-/- chondrocytes. Finally, we show that Phf2 knockdown inhibits Sox9-induced chondrocyte differentiation. Our findings establish an epigenomic mechanism of skeletal development, whereby Arid5b promotes chondrogenesis by facilitating Phf2-mediated histone demethylation of Sox9-regulated chondrogenic gene promoters.

  3. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates

    OpenAIRE

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-01-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-?), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-?. Within a few days of culture on the biomimetic polyacry...

  4. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    Energy Technology Data Exchange (ETDEWEB)

    Kabiri, Azadeh, E-mail: z_kabiri@resident.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esfandiari, Ebrahim, E-mail: esfandiari@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Hashemibeni, Batool, E-mail: hashemibeni@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Kazemi, Mohammad, E-mail: m_kazemi@med.mui.ac.i [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Mardani, Mohammad, E-mail: mardani@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esmaeili, Abolghasem, E-mail: abesmaeili@yahoo.com [Cell, Molecular and Developmental Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  5. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    International Nuclear Information System (INIS)

    Kabiri, Azadeh; Esfandiari, Ebrahim; Hashemibeni, Batool; Kazemi, Mohammad; Mardani, Mohammad; Esmaeili, Abolghasem

    2012-01-01

    Highlights: ► We investigated effects of FGF-2 on hADSCs. ► We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. ► FGF-2 induces chondrogenesis in hADSCs, which •Increasing information will decrease quality if hospital costs are very different. ► The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  6. Chondrogenesis of human infrapatellar fat pad stem cells on acellular dermal matrix

    Directory of Open Access Journals (Sweden)

    Ken eYe

    2016-01-01

    Full Text Available Acellular dermal matrix (ADM has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation and revascularisation, and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6.Human infrapatellar fat pad derived adipose stem cells (IPFP-ASC were cultured with ADM derived from rat dermis under chondrogenic (TGFβ3 and BMP6 in vitro for 2 and 4 weeks. Histology, qPCR and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans. At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially which stained positively for collagen Type II and proteoglycans. Significant cell-matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increases of COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks.We believe the principles which make ADM versatile and successful for tissue regeneration are application to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair.

  7. CD14-negative isolation enhances chondrogenesis in synovial fibroblasts.

    Science.gov (United States)

    Bilgen, Bahar; Ren, Yuexin; Pei, Ming; Aaron, Roy K; Ciombor, Deborah McK

    2009-11-01

    Synovial membrane has been shown to contain mesenchymal stem cells. We hypothesized that an enriched population of synovial fibroblasts would undergo chondrogenic differentiation and secrete cartilage extracellular matrix to a greater extent than would a mixed synovial cell population (MSCP). The optimum doses of transforming growth factor beta 1 (TGF-beta1) and insulin-like growth factor 1 (IGF-1) for chondrogenesis were investigated. CD14-negative isolation was used to obtain a porcine cell population enriched in type-B synovial fibroblasts (SFB) from an MSCP. The positive cell surface markers in SFB were CD90, CD44, and cadherin-11. SFB and MSCP were cultured in the presence of 20 ng/mL TGF-beta1 for 7 days, and SFB were demonstrated to have higher chondrogenic potential. Further dose-response studies were carried out using the SFB cells and several doses of TGF-beta1 (2, 10, 20, and 40 ng/mL) and/or IGF-1 (1, 10, 100, and 500 ng/mL) for 14 days. TGF-beta1 supplementation was essential for chondrogenesis and prevention of cell death, whereas IGF-1 did not have a significant effect on the SFB cell number or glycosaminoglycan production. This study demonstrates that the CD14-negative isolation yields an enhanced cell population SFB that is more potent than MSCP as a cell source for cartilage tissue engineering.

  8. Intermittent PTHrP(1–34) Exposure Augments Chondrogenesis and Reduces Hypertrophy of Mesenchymal Stromal Cells

    Science.gov (United States)

    Fischer, Jennifer; Aulmann, Antje; Dexheimer, Verena; Grossner, Tobias

    2014-01-01

    Phenotype instability and premature hypertrophy prevent the use of human mesenchymal stromal cells (MSCs) for cartilage regeneration. Aim of this study was to investigate whether intermittent supplementation of parathyroid hormone-related protein (PTHrP), as opposed to constant treatment, can beneficially influence MSC chondrogenesis and to explore molecular mechanisms below catabolic and anabolic responses. Human MSCs subjected to chondrogenic induction in high-density culture received PTHrP(1–34), forskolin, dbcAMP, or PTHrP(7–34) either constantly or via 6-h pulses (three times weekly), before proteoglycan, collagen type II, and X deposition; gene expression; and alkaline phosphatase (ALP) activity were assessed. While constant application of PTHrP(1–34) suppressed chondrogenesis of MSCs, pulsed application significantly increased collagen type 2 (COL2A1) gene expression and the collagen type II, proteoglycan, and DNA content of pellets after 6 weeks. Collagen type 10 (COL10A1) gene expression was little affected but Indian hedgehog (IHH) expression and ALP activity were significantly downregulated by pulsed PTHrP. A faster response to PTHrP exposure was recorded for ALP activity over COL2A1 regulation, suggesting that signal duration is critical for catabolic versus anabolic reactions. Stimulation of cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling by forskolin reproduced major effects of both treatment modes, whereas application of PTHrP(7–34) capable of protein kinase C (PKC) signaling was ineffective. Pulsed PTHrP exposure of MSCs stimulated chondrogenesis and reduced endochondral differentiation apparently uncoupling chondrogenic matrix deposition from hypertrophic marker expression. cAMP/PKA was the major signaling pathway triggering the opposing effects of both treatment modes. Intermittent application of PTHrP represents an important novel means to improve chondrogenesis of MSCs and may be considered as a supporting clinical

  9. Role of c-Myb in chondrogenesis.

    Science.gov (United States)

    Oralová, V; Matalová, E; Janečková, E; Drobná Krejčí, E; Knopfová, L; Šnajdr, P; Tucker, A S; Veselá, I; Šmarda, J; Buchtová, M

    2015-07-01

    The Myb locus encodes the c-Myb transcription factor involved in controlling a broad variety of cellular processes. Recently, it has been shown that c-Myb may play a specific role in hard tissue formation; however, all of these results were gathered from an analysis of intramembranous ossification. To investigate a possible role of c-Myb in endochondral ossification, we carried out our study on the long bones of mouse limbs during embryonic development. Firstly, the c-myb expression pattern was analyzed by in situ hybridization during endochondral ossification of long bones. c-myb positive areas were found in proliferating as well as hypertrophic zones of the growth plate. At early embryonic stages, localized expression was also observed in the perichondrium and interdigital areas. The c-Myb protein was found in proliferating chondrocytes and in the perichondrium of the forelimb bones (E14.5-E17.5). Furthermore, protein was detected in pre-hypertrophic as well as hypertrophic chondrocytes. Gain-of-function and loss-of-function approaches were used to test the effect of altered c-myb expression on chondrogenesis in micromass cultures established from forelimb buds of mouse embryos. A loss-of-function approach using c-myb specific siRNA decreased nodule formation, as well as downregulated the level of Sox9 expression, a major marker of chondrogenesis. Transient c-myb overexpression markedly increased the formation of cartilage nodules and the production of extracellular matrix as detected by intense staining with Alcian blue. Moreover, the expression of early chondrogenic genes such as Sox9, Col2a1 and activity of a Col2-LUC reporter were increased in the cells overexpressing c-myb while late chondrogenic markers such as Col10a1 and Mmp13 were not significantly changed or were downregulated. Taken together, the results of this study demonstrate that the c-Myb transcription factor is involved in the regulation and promotion of endochondral bone formation. Copyright

  10. Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng [Department of ENT-Head and Neck Surgery, EENT Hospital, Shanghai 200031 (China); Shanghai Medical School, Fudan University, 210029 (China); Yuan, Yasheng, E-mail: yuanyasheng@163.com [Department of ENT-Head and Neck Surgery, EENT Hospital, Shanghai 200031 (China); Shanghai Medical School, Fudan University, 210029 (China); Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 (United States); Chi, Fanglu [Department of ENT-Head and Neck Surgery, EENT Hospital, Shanghai 200031 (China); Shanghai Medical School, Fudan University, 210029 (China)

    2014-09-01

    We describe the development of alginate/polyacrylamide (ALG/PAAm) porous hydrogels based on interpenetrating polymer network structure for human mesenchymal stem cell proliferation and chondrogenesis. Three ALG/PAAm hydrogels at molar ratios of 10/90, 20/80, and 30/70 were prepared and characterized with enhanced elastic and rubbery mechanical properties, which are similar to native human cartilage tissues. Their elasticity and swelling properties were also studied under different physiological pH conditions. Finally, in vitro tests demonstrated that human mesenchymal stem cells could proliferate on the as-synthesized hydrogels with improved alkaline phosphatase activities. These results suggest that ALG/PAAm hydrogels may be a promising biomaterial for cartilage tissue engineering. - Highlights: • ALG/PAAm hydrogels were prepared at different molar ratios for cartilage tissue engineering. • ALG/PAAm hydrogels feature an interpenetrating polymer network structure. • ALG/PAAm hydrogels demonstrate strengthened elastic and rubbery mechanical properties. • hMSCs could be cultured on the ALG/PAAm hydrogels for proliferation and chondrogenesis.

  11. Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis

    International Nuclear Information System (INIS)

    Guo, Peng; Yuan, Yasheng; Chi, Fanglu

    2014-01-01

    We describe the development of alginate/polyacrylamide (ALG/PAAm) porous hydrogels based on interpenetrating polymer network structure for human mesenchymal stem cell proliferation and chondrogenesis. Three ALG/PAAm hydrogels at molar ratios of 10/90, 20/80, and 30/70 were prepared and characterized with enhanced elastic and rubbery mechanical properties, which are similar to native human cartilage tissues. Their elasticity and swelling properties were also studied under different physiological pH conditions. Finally, in vitro tests demonstrated that human mesenchymal stem cells could proliferate on the as-synthesized hydrogels with improved alkaline phosphatase activities. These results suggest that ALG/PAAm hydrogels may be a promising biomaterial for cartilage tissue engineering. - Highlights: • ALG/PAAm hydrogels were prepared at different molar ratios for cartilage tissue engineering. • ALG/PAAm hydrogels feature an interpenetrating polymer network structure. • ALG/PAAm hydrogels demonstrate strengthened elastic and rubbery mechanical properties. • hMSCs could be cultured on the ALG/PAAm hydrogels for proliferation and chondrogenesis

  12. MiR-193b regulates early chondrogenesis by inhibiting the TGF-beta2 signaling pathway.

    Science.gov (United States)

    Hou, Changhe; Yang, Zibo; Kang, Yan; Zhang, Ziji; Fu, Ming; He, Aishan; Zhang, Zhiqi; Liao, Weiming

    2015-04-13

    Cartilage generation and degradation are regulated by miRNAs. Our previous study has shown altered expression of miR-193b in chondrogenic human adipose-derived mesenchymal stem cells (hADSCs). In the current study, we investigated the role of miR-193b in chondrogenesis and cartilage degradation. Luciferase reporter assays showed that miR-193b targeted seed sequences of the TGFB2 and TGFBR3 3'-UTRs. MiR-193b suppressed the expression of early chondrogenic markers in chondrogenic ATDC5 cells, and TNF-alpha expression in IL-1b-induced PMCs. In conclusion, MiR-193b may inhibit early chondrogenesis by targeting TGFB2 and TGFBR3, and may regulate inflammation by repressing TNF-alpha expression in inflamed chondrocytes. Copyright © 2015. Published by Elsevier B.V.

  13. Glycosylation of DMP1 Is Essential for Chondrogenesis of Condylar Cartilage.

    Science.gov (United States)

    Weng, Y; Liu, Y; Du, H; Li, L; Jing, B; Zhang, Q; Wang, X; Wang, Z; Sun, Y

    2017-12-01

    The mandibular condylar cartilage (MCC) shoulders force for the subchondral bone during mastication. The cartilage matrix contains various large molecules, such as type I, II, and X collagens and proteoglycans (PGs), which jointly play essential roles in maintaining cartilage characteristics. PGs play key roles in maintaining the elasticity of cartilage and providing a cushion against mastication forces. In addition to the well-known PGs, DMP1-PG, which is the PG form of dentin matrix protein 1 (DMP1), is a newly identified PG. DMP1 is proteolytically processed in vivo, and the N-terminus is glycosylated into its PG form-that is, DMP1-PG, which is highly expressed not only in tooth and bone but also in the matrix of the MCC. However, the specific functions of DMP1-PG in the MCC remain unclear. In human temporomandibular joint osteoarthritis and hyperocclusion model rat specimens, PGs are significantly downregulated, and DMP1-PG is the most prominently affected PG. To further investigate the role of DMP1-PG in condylar chondrogenesis, a glycosylation site mutant (S 89 -G 89 ) mouse model was established with knock-in methods. In the MCC of the S89G-DMP1 mice, the glycosylation level of DMP1 was significantly downregulated, and a series of abnormal developmental and pathologic changes could be observed. The morphologic changes included thinner cartilage layers, deformations of the MCC, and disordered arrangements of the chondrocytes, and an earlier onset of temporomandibular joint osteoarthritis-like changes was observed. In addition, markers of chondrogenesis were downregulated, and the matrix of the MCC displayed OA phenotypes in the S89G-DMP1 mice. Further investigations showed that the transforming growth factor β signaling molecules were affected in the MCC after the loss of DMP1-PG. In addition, the loss of DMP1-PG significantly accelerated the progression of cartilage injuries in the hyperocclusion models. Given these findings, we investigated the significant

  14. Microenvironment is involved in cellular response to hydrostatic pressures during chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Ye, Rui; Hao, Jin; Song, Jinlin; Zhao, Zhihe; Fang, Shanbao; Wang, Yating; Li, Juan

    2014-06-01

    Chondrocytes integrate numerous microenvironmental cues to mount physiologically relevant differentiation responses, and the regulation of mechanical signaling in chondrogenic differentiation is now coming into intensive focus. To facilitate tissue-engineered chondrogenesis by mechanical strategy, a thorough understanding about the interactional roles of chemical factors under mechanical stimuli in regulating chondrogenesis is in great need. Therefore, this study attempts to investigate the interaction of rat MSCs with their microenvironment by imposing dynamic and static hydrostatic pressure through modulating gaseous tension above the culture medium. Under dynamic pressure, chemical parameters (pH, pO2, and pCO2) were kept in homeostasis. In contrast, pH was remarkably reduced due to increased pCO2 under static pressure. MSCs under the dynamically pressured microenvironment exhibited a strong accumulation of GAG within and outside the alginate beads, while cells under the statically pressured environment lost newly synthesized GAG into the medium with a speed higher than its production. In addition, the synergic influence on expression of chondrogenic genes was more persistent under dynamic pressure than that under static pressure. This temporal contrast was similar to that of activation of endogenous TGF-β1. Taken altogether, it indicates that a loading strategy which can keep a homeostatic chemical microenvironment is preferred, since it might sustain the stimulatory effects of mechanical stimuli on chondrogenesis via activation of endogenous TGF-β1. © 2013 Wiley Periodicals, Inc.

  15. Regulating Chondrogenesis of Human Mesenchymal Stromal Cells with a Retinoic Acid Receptor-Beta Inhibitor: Differential Sensitivity of Chondral Versus Osteochondral Development

    Directory of Open Access Journals (Sweden)

    Solvig Diederichs

    2014-05-01

    Full Text Available Aim: Main objective was to investigate whether the synthetic retinoic acid receptor (RAR-β antagonist LE135 is able to drive in vitro chondrogenesis of human mesenchymal stromal cells (MSCs or improve differentiation by suppressing hypertrophic chondrocyte development. Methods: Chondrogenesis of human bone marrow and adipose tissue-derived MSCs was induced in micromass pellet culture for six weeks. Effects of LE135 alone and in combinatorial treatment with TGF-β on deposition of cartilaginous matrix including collagen type II and glycosaminoglycans, on deposition of non-hyaline cartilage collagens type I and X, and on hypertrophy markers including alkaline phosphatase (ALP, indian hedghehog (IHH and matrix metalloproteinase (MMP-13 were assessed. Results: LE135 was no inducer of chondrogenesis and failed to stimulate deposition of collagen type II and glycosaminoglycans. Moreover, addition of LE135 to TGF-β-treated pellets inhibited cartilaginous matrix deposition and gene expression of COL2A1. In contrast, non-hyaline cartilage collagens were less sensitive to LE135 and hypertrophy markers remained unaffected. Conclusion: This demonstrates a differential sensitivity of chondral versus endochondral differentiation pathways to RARβ signaling; however, opposite to the desired direction. The relevance of trans-activating versus trans-repressing RAR signaling, including effects on activator protein (AP-1 is discussed and implications for overcoming current limits of hMSC chondrogenesis are considered.

  16. Regulating chondrogenesis of human mesenchymal stromal cells with a retinoic Acid receptor-Beta inhibitor: differential sensitivity of chondral versus osteochondral development.

    Science.gov (United States)

    Diederichs, Solvig; Zachert, Kerstin; Raiss, Patric; Richter, Wiltrud

    2014-01-01

    Main objective was to investigate whether the synthetic retinoic acid receptor (RAR)-β antagonist LE135 is able to drive in vitro chondrogenesis of human mesenchymal stromal cells (MSCs) or improve differentiation by suppressing hypertrophic chondrocyte development. Chondrogenesis of human bone marrow and adipose tissue-derived MSCs was induced in micromass pellet culture for six weeks. Effects of LE135 alone and in combinatorial treatment with TGF-β on deposition of cartilaginous matrix including collagen type II and glycosaminoglycans, on deposition of non-hyaline cartilage collagens type I and X, and on hypertrophy markers including alkaline phosphatase (ALP), indian hedghehog (IHH) and matrix metalloproteinase (MMP)-13 were assessed. LE135 was no inducer of chondrogenesis and failed to stimulate deposition of collagen type II and glycosaminoglycans. Moreover, addition of LE135 to TGF-β-treated pellets inhibited cartilaginous matrix deposition and gene expression of COL2A1. In contrast, non-hyaline cartilage collagens were less sensitive to LE135 and hypertrophy markers remained unaffected. This demonstrates a differential sensitivity of chondral versus endochondral differentiation pathways to RARβ signaling; however, opposite to the desired direction. The relevance of trans-activating versus trans-repressing RAR signaling, including effects on activator protein (AP)-1 is discussed and implications for overcoming current limits of hMSC chondrogenesis are considered. © 2014 S. Karger AG, Basel.

  17. Steric Interference of Adhesion Supports In-Vitro Chondrogenesis of Mesenchymal Stem Cells on Hydrogels for Cartilage Repair.

    Science.gov (United States)

    Goldshmid, Revital; Cohen, Shlomit; Shachaf, Yonatan; Kupershmit, Ilana; Sarig-Nadir, Offra; Seliktar, Dror; Wechsler, Roni

    2015-09-28

    Recent studies suggest the presence of cell adhesion motifs found in structural proteins can inhibit chondrogenesis. In this context, the current study aims to determine if a polyethylene glycol (PEG)-modified fibrinogen matrix could support better chondrogenesis of human bone marrow mesenchymal stem cells (BM-MSC) based on steric interference of adhesion, when compared to a natural fibrin matrix. Hydrogels used as substrates for two-dimensional (2D) BM-MSC cultures under chondrogenic conditions were made from cross-linked PEG-fibrinogen (PF) and compared to thrombin-activated fibrin. Cell morphology, protein expression, DNA and sulfated proteoglycan (GAG) content were correlated to substrate properties such as stiffness and adhesiveness. Cell aggregation and chondrogenic markers, including collagen II and aggrecan, were observed on all PF substrates but not on fibrin. Shielding fibrinogen's adhesion domains and increasing stiffness of the material are likely contributing factors that cause the BM-MSCs to display a more chondrogenic phenotype. One composition of PF corresponding to GelrinC™--a product cleared in the EU for cartilage repair--was found to be optimal for supporting chondrogenic differentiation of BM-MSC while minimizing hypertrophy (collagen X). These findings suggest that semi-synthetic biomaterials based on ECM proteins can be designed to favourably affect BM-MSC towards repair processes involving chondrogenesis.

  18. Chondrogenesis in scleral stem/progenitor cells and its association with form-deprived myopia in mice.

    Science.gov (United States)

    Wu, Pei-Chang; Tsai, Chia-Ling; Gordon, Gabriel M; Jeong, Shinwu; Itakura, Tatsuo; Patel, Nitin; Shi, Songtao; Fini, M Elizabeth

    2015-01-01

    Previously, we demonstrated that scleral stem/progenitor cells (SSPCs) from mice have a chondrogenic differentiation potential, which is stimulated by transforming growth factor-β (TGF-β). In the present study, we hypothesized that chondrogenesis in the sclera could be a possible mechanism in myopia development. Therefore, we investigated the association of form-deprivation myopia (FDM) with expressions in mice sclera representing the chondrogenic phenotype: collagen type II (Col2) and α-smooth muscle actin (α-SMA). The mRNA levels of α-SMA and Col2 in cultured murine SSPCs during chondrogenesis stimulated by TGF-β2 were determined by real-time quantitative RT-PCR (qRT-PCR). The expression patterns of α-SMA and Col2 were assessed by immunohistochemistry in a three dimensional pellet culture. In an FDM mouse model, a western blot analysis and immunofluorescence study were used to detect the changes in the α-SMA and Col2 protein expressions in the sclera. In the RPE-choroid complex, qRT-PCR was used to detect any changes in the TGF-β mRNA expression. The treatment of SSPCs in vitro with TGF-β2 for 24 h at 1 or 10 ng/ml led to increased levels of both the α-SMA and Col2 expressions. In addition, we observed the formation of cartilage-like pellets from TGF-β2-treated SSPCs. Both α-SMA and Col2 were expressed in the pellet. In an in-vivo study, the α-SMA and Col2 protein expressions were significantly increased in the sclera of FDM eyes in comparison to contralateral control eyes. Similarly, the levels of TGF-β in the RPE-choroid complex of an FDM eye were also significantly elevated. Based on the concept of stem cells possessing multipotent differentiation potentials, scleral chondrogenesis induced by SSPCs may play a role in myopia development. The increased expressions of the cartilage-associated proteins Col2 and α-SMA during scleral chondrogenesis may be potential markers for myopia development. In addition, the increased levels of TGF-β mRNA in

  19. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    International Nuclear Information System (INIS)

    Huang, Zhao; Nooeaid, Patcharakamon; Kohl, Benjamin; Roether, Judith A.; Schubert, Dirk W.; Meier, Carola; Boccaccini, Aldo R.; Godkin, Owen; Ertel, Wolfgang; Arens, Stephan; Schulze-Tanzil, Gundula

    2015-01-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  20. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhao [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Nooeaid, Patcharakamon [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Kohl, Benjamin [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Roether, Judith A.; Schubert, Dirk W. [Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Meier, Carola [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Boccaccini, Aldo R. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Godkin, Owen; Ertel, Wolfgang; Arens, Stephan [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Schulze-Tanzil, Gundula, E-mail: gundula.schulze@pmu.ac.at [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Institute of Anatomy, Paracelsus Medical University, Nuremberg (Germany)

    2015-05-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  1. MicroRNAs regulate osteogenesis and chondrogenesis

    International Nuclear Information System (INIS)

    Dong, Shiwu; Yang, Bo; Guo, Hongfeng; Kang, Fei

    2012-01-01

    Highlights: ► To focus on the role of miRNAs in chondrogenesis and osteogenesis. ► Involved in the regulation of miRNAs in osteoarthritis. ► To speculate some therapeutic targets for bone diseases. -- Abstract: MicroRNAs (miRNAs) are a class of small molecules and non-coding single strand RNAs that regulate gene expression at the post-transcriptional level by binding to specific sequences within target genes. miRNAs have been recognized as important regulatory factors in organism development and disease expression. Some miRNAs regulate the proliferation and differentiation of osteoblasts, osteoclasts and chondrocytes, eventually influencing metabolism and bone formation. miRNAs are expected to provide potential gene therapy targets for the clinical treatment of metabolic bone diseases and bone injuries. Here, we review the recent research progress on the regulation of miRNAs in bone biology, with a particular focus on the miRNA-mediated control mechanisms of bone and cartilage formation.

  2. MicroRNAs regulate osteogenesis and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shiwu, E-mail: shiwudong@gmail.com [Laboratory of Biomechanics, Department of Anatomy, The Third Military Medical University, Chongqing (China); Yang, Bo; Guo, Hongfeng; Kang, Fei [Laboratory of Biomechanics, Department of Anatomy, The Third Military Medical University, Chongqing (China)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer To focus on the role of miRNAs in chondrogenesis and osteogenesis. Black-Right-Pointing-Pointer Involved in the regulation of miRNAs in osteoarthritis. Black-Right-Pointing-Pointer To speculate some therapeutic targets for bone diseases. -- Abstract: MicroRNAs (miRNAs) are a class of small molecules and non-coding single strand RNAs that regulate gene expression at the post-transcriptional level by binding to specific sequences within target genes. miRNAs have been recognized as important regulatory factors in organism development and disease expression. Some miRNAs regulate the proliferation and differentiation of osteoblasts, osteoclasts and chondrocytes, eventually influencing metabolism and bone formation. miRNAs are expected to provide potential gene therapy targets for the clinical treatment of metabolic bone diseases and bone injuries. Here, we review the recent research progress on the regulation of miRNAs in bone biology, with a particular focus on the miRNA-mediated control mechanisms of bone and cartilage formation.

  3. Controlled chondrogenesis from adipose-derived stem cells by recombinant transforming growth factor-β3 fusion protein in peptide scaffolds.

    Science.gov (United States)

    Zheng, Dong; Dan, Yang; Yang, Shu-hua; Liu, Guo-hui; Shao, Zeng-wu; Yang, Cao; Xiao, Bao-jun; Liu, Xiangmei; Wu, Shuilin; Zhang, Tainjin; Chu, Paul K

    2015-01-01

    Adipose-derived stem cells (ADSCs) are promising for cartilage repair due to their easy accessibility and chondrogenic potential. Although chondrogenesis of transforming growth factor-β (TGF-β) mediated mesenchymal stem cells (MSCs) is well established in vitro, clinical tissue engineering requires effective and controlled delivery of TGF-β in vivo. In this work, a self-assembled peptide scaffold was employed to construct cartilages in vivo through the chondrogenesis from ADSCs controlled by recombinant fusion protein LAP-MMP-mTGF-β3 that was transfected by lentiviral vectors. During this course, the addition of matrix metalloproteinases (MMPs) can trigger the release of mTGF-β3 from the recombinant fusion protein of LAP-MMP-mTGF-β3 in the combined scaffolds, thus stimulating the differentiation of ADSCs into chondrogenesis. The specific expression of cartilage genes was analyzed by real-time polymerase chain reaction and Western blot. The expression of chondrocytic markers was obviously upregulated to a higher level compared to the one by commonly used TGF-β3 alone. After 3 weeks of in vitro culturing, the hybrids with differentiated chondrogenesis were then injected subcutaneously into nude mice and retrieved after 4 weeks of culturing in vivo. Histological analysis also confirmed that the recombinant fusion protein was more effective for the formation of cartilage matrix than the cases either with TGF-β3 alone or without LAP-MMP-mTGF-β3 (P<0.05). This study demonstrates that controlled local delivery of the LAP-MMP-mTGF-β3 constructs can accelerate differentiation of ADSCs into the cartilage in vivo, which indicates the great potential of this hybrid in rapid therapy of osteoarthritis. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Hypoxic treatment inhibits insulin-induced chondrogenesis of ATDC5 cells despite upregulation of DEC1

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Ebbesen, Peter

    2006-01-01

    Chondrogenesis occurs in vivo in a hypoxic environment, in which the hypoxia inducible factor 1, HIF-1, plays a regulatory role, possibly mediated through the transcription factor DEC1. We have analyzed the effect of hypoxia (1% oxygen) alone and in combination with insulin on the chondrogenic di...

  5. Effect of chondrocyte-derived early extracellular matrix on chondrogenesis of placenta-derived mesenchymal stem cells.

    Science.gov (United States)

    Park, Yong-Beom; Seo, Sinji; Kim, Jin-A; Heo, Jin-Chul; Lim, Young-Cheol; Ha, Chul-Won

    2015-06-24

    The extracellular matrix (ECM) surrounding cells contains a variety of proteins that provide structural support and regulate cellular functions. Previous studies have shown that decellularized ECM isolated from tissues or cultured cells can be used to improve cell differentiation in tissue engineering applications. In this study we evaluated the effect of decellularized chondrocyte-derived ECM (CDECM) on the chondrogenesis of human placenta-derived mesenchymal stem cells (hPDMSCs) in a pellet culture system. After incubation with or without chondrocyte-derived ECM in chondrogenic medium for 1 or 3 weeks, the sizes and wet masses of the cell pellets were compared with untreated controls (hPDMSCs incubated in chondrogenic medium without chondrocyte-derived ECM). In addition, histologic analysis of the cell pellets (Safranin O and collagen type II staining) and quantitative reverse transcription-PCR analysis of chondrogenic markers (aggrecan, collagen type II, and SOX9) were carried out. Our results showed that the sizes and masses of hPDMSC pellets incubated with chondrocyte-derived ECM were significantly higher than those of untreated controls. Differentiation of hPDMSCs (both with and without chondrocyte-derived ECM) was confirmed by Safranin O and collagen type II staining. Chondrogenic marker expression and glycosaminoglycan (GAG) levels were significantly higher in hPDMSC pellets incubated with chondrocyte-derived ECM compared with untreated controls, especially in cells precultured with chondrocyte-derived ECM for 7 d. Taken together, these results demonstrate that chondrocyte-derived ECM enhances the chondrogenesis of hPDMSCs, and this effect is further increased by preculture with chondrocyte-derived ECM. This preculture method for hPDMSC chondrogenesis represents a promising approach for cartilage tissue engineering.

  6. Chondrogenesis and hypertrophy in response to aggregate behaviors of human mesenchymal stem cells on a dendrimer-immobilized surface.

    Science.gov (United States)

    Wongin, Sopita; Ogawa, Yuuki; Kim, Mee-Hae; Viravaidya-Pasuwat, Kwanchanok; Kino-Oka, Masahiro

    2017-08-01

    To investigate the behaviors of aggregates of human mesenchymal stem cells (hMSCs) on chondrogenesis and chondrocyte hypertrophy using spatiotemporal expression patterns of chondrogenic (type II collagen) and hypertrophic (type X collagen) markers during chondrogenesis. hMSCs were cultured on either a polystyrene surface or polyamidoamine dendrimer surface with a fifth generation (G5) dendron structure in chondrogenic medium and growth medium. At day 7, cell aggregates without stress fibers formed on the G5 surface and triggered differentiation of hMSCs toward the chondrogenic fate, as indicated by type II collagen being observed while type X collagen was undetectable. In contrast, immunostaining of hMSCs cultured on polystyrene, which exhibited abundant stress fibers and did not form aggregates, revealed no evidence of either type II and or type X collagen. At day 21, the morphological changes of the cell aggregates formed on the G5 surface were suppressed as a result of stress fiber formation. Type II collagen was observed throughout the aggregates whereas type X collagen was detected only at the basal side of the aggregates. Change of cell aggregate behaviors derived from G5 surface alone regulated chondrogenesis and hypotrophy, and this was enhanced by chondrogenic medium. Incubation of hMSCs affects the expression of type II and X collagens via effects on cell aggregate behavior and stress fiber formation.

  7. The immediate early gene product EGR1 and polycomb group proteins interact in epigenetic programming during chondrogenesis.

    Directory of Open Access Journals (Sweden)

    Frank Spaapen

    Full Text Available Initiation of and progression through chondrogenesis is driven by changes in the cellular microenvironment. At the onset of chondrogenesis, resting mesenchymal stem cells are mobilized in vivo and a complex, step-wise chondrogenic differentiation program is initiated. Differentiation requires coordinated transcriptomic reprogramming and increased progenitor proliferation; both processes require chromatin remodeling. The nature of early molecular responses that relay differentiation signals to chromatin is poorly understood. We here show that immediate early genes are rapidly and transiently induced in response to differentiation stimuli in vitro. Functional ablation of the immediate early factor EGR1 severely deregulates expression of key chondrogenic control genes at the onset of differentiation. In addition, differentiating cells accumulate DNA damage, activate a DNA damage response and undergo a cell cycle arrest and prevent differentiation associated hyper-proliferation. Failed differentiation in the absence of EGR1 affects global acetylation and terminates in overall histone hypermethylation. We report novel molecular connections between EGR1 and Polycomb Group function: Polycomb associated histone H3 lysine27 trimethylation (H3K27me3 blocks chromatin access of EGR1. In addition, EGR1 ablation results in abnormal Ezh2 and Bmi1 expression. Consistent with this functional interaction, we identify a number of co-regulated targets genes in a chondrogenic gene network. We here describe an important role for EGR1 in early chondrogenic epigenetic programming to accommodate early gene-environment interactions in chondrogenesis.

  8. In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold.

    Science.gov (United States)

    Yadav, Vikas; Sun, Lin; Panilaitis, Bruce; Kaplan, David L

    2015-12-01

    A current focus of tissue engineering is the use of adult human mesenchymal stem cells (hMSCs) as an alternative to autologous chondrocytes for cartilage repair. Several natural and synthetic polymers (including cellulose) have been explored as a biomaterial scaffold for cartilage tissue engineering. While bacterial cellulose (BC) has been used in tissue engineering, its lack of degradability in vivo and high crystallinity restricts widespread applications in the field. Recently we reported the formation of a novel bacterial cellulose that is lysozyme-susceptible and -degradable in vivo from metabolically engineered Gluconacetobacter xylinus. Here we report the use of this modified bacterial cellulose (MBC) for cartilage tissue engineering using hMSCs. MBC's glucosaminoglycan-like chemistry, combined with in vivo degradability, suggested opportunities to exploit this novel polymer in cartilage tissue engineering. We have observed that, like BC, MBC scaffolds support cell attachment and proliferation. Chondrogenesis of hMSCs in the MBC scaffolds was demonstrated by real-time RT-PCR analysis for cartilage-specific extracellular matrix (ECM) markers (collagen type II, aggrecan and SOX9) as well as histological and immunohistochemical evaluations of cartilage-specific ECM markers. Further, the attachment, proliferation, and differentiation of hMSCs in MBC showed unique characteristics. For example, after 4 weeks of cultivation, the spatial cell arrangement and collagen type-II and ACAN distribution resembled those in native articular cartilage tissue, suggesting promise for these novel in vivo degradable scaffolds for chondrogenesis. Copyright © 2013 John Wiley & Sons, Ltd.

  9. The enhancement of chondrogenesis of ATDC5 cells in RGD-immobilized microcavitary alginate hydrogels.

    Science.gov (United States)

    Yao, Yongchang; Zeng, Lei; Huang, Yuyang

    2016-07-01

    In our previous work, we have developed an effective microcavitary alginate hydrogel for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we investigated whether microcavitary alginate hydrogel could promote the chondrogenesis of progenitor cells. Moreover, we attempted to further optimize this system by incorporating synthetic Arg-Gly-Asp peptide. ATDC5 cells were seeded into microcavitary alginate hydrogel with or without Arg-Gly-Asp immobilization. Cell Counting Kit-8 and live/dead staining were conducted to analyze cell proliferation. Real-time polymerase chain reaction (RT-PCR), hematoxylin and eosin, and Toluidine blue O staining as well as Western blot assay was performed to evaluate the cartilaginous markers at transcriptional level and at protein level, respectively. The obtained data demonstrated that Arg-Gly-Asp-immobilized microcavitary alginate hydrogel was preferable to promote the cell proliferation. Also, Arg-Gly-Asp-immobilized microcavitary alginate hydrogel improved the expression of chondrocytic genes including Collagen II and Aggrecan when compared with microcavitary alginate hydrogel. The results suggested that microcavitary alginate hydrogel could promote the chondrogenesis. And Arg-Gly-Asp would be promising to ameliorate this culture system for cartilage tissue engineering. © The Author(s) 2016.

  10. THRAP3 interacts with and inhibits the transcriptional activity of SOX9 during chondrogenesis.

    Science.gov (United States)

    Sono, Takashi; Akiyama, Haruhiko; Miura, Shigenori; Deng, Jian Min; Shukunami, Chisa; Hiraki, Yuji; Tsushima, Yu; Azuma, Yoshiaki; Behringer, Richard R; Matsuda, Shuichi

    2018-07-01

    Sex-determining region Y (Sry)-box (Sox)9 is required for chondrogenesis as a transcriptional activator of genes related to chondrocyte proliferation, differentiation, and cartilage-specific extracellular matrix. Although there have been studies investigating the Sox9-dependent transcriptional complexes, not all their components have been identified. In the present study, we demonstrated that thyroid hormone receptor-associated protein (THRAP)3 is a component of a SOX9 transcriptional complex by liquid chromatography mass spectrometric analysis of FLAG-tagged Sox9-binding proteins purified from FLAG-HA-tagged Sox9 knock-in mice. Thrap3 knockdown in ATDC5 chondrogenic cells increased the expression of Collagen type II alpha 1 chain (Col2a1) without affecting Sox9 expression. THRAP3 and SOX9 overexpression reduced Col2a1 levels to a greater degree than overexpression of SOX9 alone. The negative regulation of SOX9 transcriptional activity by THRAP3 was mediated by interaction between the proline-, glutamine-, and serine-rich domain of SOX9 and the innominate domain of THRAP3. These results indicate that THRAP3 negatively regulates SOX9 transcriptional activity as a cofactor of a SOX9 transcriptional complex during chondrogenesis.

  11. Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo.

    Science.gov (United States)

    Sarem, Melika; Arya, Neha; Heizmann, Miriam; Neffe, Axel T; Barbero, Andrea; Gebauer, Tim P; Martin, Ivan; Lendlein, Andreas; Shastri, V Prasad

    2018-03-15

    The limited capacity of cartilage to heal large lesions through endogenous mechanisms has led to extensive effort to develop materials to facilitate chondrogenesis. Although physical-chemical properties of biomaterials have been shown to impact in vitro chondrogenesis, whether these findings are translatable in vivo is subject of debate. Herein, architectured 3D hydrogel scaffolds (ArcGel) (produced by crosslinking gelatin with ethyl lysine diisocyanate (LDI)) were used as a model system to investigate the interplay between scaffold mechanical properties and degradation on matrix deposition by human articular chondrocytes (HAC) from healthy donors in vitro and in vivo. Using ArcGel scaffolds of different tensile and shear modulus, and degradation behavior; in this study, we compared the fate of ex vivo engineered ArcGels-chondrocytes constructs, i.e. the traditional tissue engineering approach, with thede novoformation of cartilaginous tissue in HAC laden ArcGels in an ectopic nude mouse model. While the softer and fast degrading ArcGel (LNCO3) was more efficient at promoting chondrogenic differentiation in vitro, upon ectopic implantation, the stiffer and slow degrading ArcGel (LNCO8) was superior in maintaining chondrogenic phenotype in HAC and retention of cartilaginous matrix. Furthermore, surprisingly the de novo formation of cartilage tissue was promoted only in LNCO8. Since HAC cultured for only three days in the LNCO8 environment showed upregulation of hypoxia-associated genes, this suggests a potential role for hypoxia in the observed in vivo outcomes. In summary, this study sheds light on how immediate environment (in vivo versus in vitro) can significantly impact the outcomes of cell-laden biomaterials. In this study, 3D architectured hydrogels (ArcGels) with different mechanical and biodegradation properties were investigated for their potential to promote formation of cartilaginous matrix by human articular chondrocytes in vitro and in vivo. Two

  12. In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs

    OpenAIRE

    M?ller, Thomas; Amoroso, Matteo; H?gg, Daniel; Brantsing, Camilla; Rotter, Nicole; Apelgren, Peter; Lindahl, Anders; K?lby, Lars; Gatenholm, Paul

    2017-01-01

    Background: The three-dimensional (3D) bioprinting technology allows creation of 3D constructs in a layer-by-layer fashion utilizing biologically relevant materials such as biopolymers and cells. The aim of this study is to investigate the use of 3D bioprinting in a clinically relevant setting to evaluate the potential of this technique for in vivo chondrogenesis. Methods: Thirty-six nude mice (Balb-C, female) received a 5- ? 5- ? 1-mm piece of bioprinted cell-laden nanofibrillated cellulose/...

  13. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes.

    Science.gov (United States)

    Deren, Matthew E; Yang, Xu; Guan, Yingjie; Chen, Qian

    2016-02-04

    Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88) siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation) of ATDC5 cells in three-dimensional (3D) culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II), hypertrophic chondrocyte marker Type X collagen (Col X), and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2). The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  14. Effect of cartilaginous matrix components on the chondrogenesis and hypertrophy of mesenchymal stem cells in hyaluronic acid hydrogels.

    Science.gov (United States)

    Zhu, Meiling; Feng, Qian; Sun, Yuxin; Li, Gang; Bian, Liming

    2017-11-01

    The microenvironment of the extracellular matrix (ECM) plays a key role in directing the viability and subsequent differentiation of the encapsulated stem cells by the specific integration between the hydrated biomolecules and cell surface receptors. Herein, we developed a hydrogel platform based on hyaluronic acid (HA) that presents cartilage ECM molecules as a form of developmental cues. The hybrid hydrogels were generated by coupling photo-cross-linkable methacrylated HA (MeHA) with selected cartilaginous ECM molecules including chondroitin sulfate (CS) and type I collagen (Col I), and we studied the decoupled function of these cues in regulating the initial chondrogenesis, subsequent hypertrophy, and tissue mineralization by hMSCs. The results indicate upregulated mRNA expression of the chondrogenesis markers in the HA hydrogels that contain Col I or CS, and decreased expression of the hypertrophic markers compared with the control MeHA group. The quantification results also show that glycosaminoglycans accumulation increases in the hybrid hydrogels containing cartilaginous ECM molecules, both in vitro and in vivo. We hypothesize that these additional ECM components in the HA hydrogels further regulate the hMSCs chondrogenesis and hypertrophy by coordination. The understanding obtained in this study may guide biomaterial scaffold design, thereby facilitating manipulation of the differentiation and mineralization of induced hMSCs for application in the repair of different musculoskeletal defects. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2292-2300, 2017. © 2016 Wiley Periodicals, Inc.

  15. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Matthew E. Deren

    2016-02-01

    Full Text Available Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88 siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation of ATDC5 cells in three-dimensional (3D culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II, hypertrophic chondrocyte marker Type X collagen (Col X, and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2. The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  16. Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling

    OpenAIRE

    Murtaugh, L. Charles; Chyung, Jay H.; Lassar, Andrew B.

    1999-01-01

    Previous work has indicated that signals from the floor plate and notochord promote chondrogenesis of the somitic mesoderm. These tissues, acting through the secreted signaling molecule Sonic hedgehog (Shh), appear to be critical for the formation of the sclerotome. Later steps in the differentiation of sclerotome into cartilage may be independent of the influence of these axial tissues. Although the signals involved in these later steps have not yet been pinpointed, there is substantial evid...

  17. Co-delivery of Cbfa-1-targeting siRNA and SOX9 protein using PLGA nanoparticles to induce chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Jeon, Su Yeon; Park, Ji Sun; Yang, Han Na; Lim, Hye Jin; Yi, Se Won; Park, Hansoo; Park, Keun-Hong

    2014-09-01

    During stem cell differentiation, various cellular responses occur that are mediated by transcription factors and proteins. This study evaluated the abilities of SOX9, a crucial protein during the early stage of chondrogenesis, and siRNA targeting Cbfa-1, a transcription factor that promotes osteogenesis, to stimulate chondrogenesis. Non-toxic poly-(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. Coomassie blue staining and circular dichroism revealed that the loaded SOX9 protein maintained its stability and bioactivity. These NPs easily entered human mesenchymal stem cells (hMSCs) in vitro and caused them to differentiate into chondrocytes. Markers that are typically expressed in mature chondrocytes were examined. These markers were highly expressed at the mRNA and protein levels in hMSCs treated with PLGA NPs coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. By contrast, these cells did not express osteogenesis-related markers. hMSCs were injected into mice following internalization of PLGA NPs coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. When the injection site was excised, markers of chondrogenesis were found to be highly expressed at the mRNA and protein levels, similar to the in vitro results. When hMSCs internalized these NPs and were then cultured in vitro or injected into mice, chondrogenesis-related extracellular matrix components were highly expressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Optimal construction and delivery of dual-functioning lentiviral vectors for type I collagen-suppressed chondrogenesis in synovium-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Feng; Yao, Yongchang; Zhou, Ruijie; Su, Kai; Citra, Fudiman; Wang, Dong-An

    2011-06-01

    This study aims to deliver both transforming growth factor β3 (TGF-β3) and shRNA targeting type I collagen (Col I) by optimal construction and application of various dual-functioning lentiviral vectors to induce Col I-suppressed chondrogenesis in synovium-derived mesenchymal stem cells (SMSCs). We constructed four lentiviral vectors (LV-1, LV-2, LV-3 and LV-4) with various arrangements of the two expression cassettes in different positions and orientations. Col I inhibition efficiency and chondrogenic markers were assessed with qPCR, ELISA and staining techniques. Among the four vectors, LV-1 has two distant and reversely oriented cassettes, LV-2 has two distant and same-oriented cassettes, LV-3 has two proximal and reversely oriented cassettes, and LV-4 has two proximal and same-oriented cassettes. Col I and chondrogenic markers, including type II collagen (Col II), aggrecan and glycosaminoglycan (GAG), were examined in SMSCs cultured in 3-D alginate hydrogel. All of the four vectors showed distinct effects in Col I level as well as diverse inductive efficiencies in upregulation of the cartilaginous markers. Based on real-time PCR results, LV-1 was optimal towards Col I-suppressed chondrogenesis. LV-1 vector is competent to promote Col I-suppressed chondrogenesis in SMSCs.

  19. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis.

    Science.gov (United States)

    Fischer, J; Dickhut, A; Rickert, M; Richter, W

    2010-09-01

    The use of bone marrow-derived mesenchymal stem cells (MSCs) has shown promise in cell-based cartilage regeneration. A yet-unsolved problem, however, is the unwanted up-regulation of markers of hypertrophy, such as alkaline phosphatase (AP) and type X collagen, during in vitro chondrogenesis and the formation of unstable calcifying cartilage at heterotopic sites. In contrast, articular chondrocytes produce stable, nonmineralizing cartilage. The aim of this study was to address whether coculture of MSCs with human articular chondrocytes (HACs) can suppress the undesired hypertrophy in differentiating MSCs. MSCs were differentiated in chondrogenic medium that had or had not been conditioned by parallel culture with HAC pellets, or MSCs were mixed in the same pellet with the HACs (1:1 or 1:2 ratio) and cultured for 6 weeks. Following in vitro differentiation, the pellets were transplanted into SCID mice. The gene expression ratio of COL10A1 to COL2A1 and of Indian hedgehog (IHH) to COL2A1 was significantly reduced by differentiation in HAC-conditioned medium, and less type X collagen protein was deposited relative to type II collagen. AP activity was significantly lower (P chondrogenesis. The main inhibitory effects seen with HAC-conditioned medium were reproducible by PTHrP supplementation of unconditioned medium. HAC-derived soluble factors and direct coculture are potent means of improving chondrogenesis and suppressing the hypertrophic development of MSCs. PTHrP is an important candidate soluble factor involved in this effect.

  20. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold.

    Science.gov (United States)

    Ye, Ken; Felimban, Raed; Traianedes, Kathy; Moulton, Simon E; Wallace, Gordon G; Chung, Johnson; Quigley, Anita; Choong, Peter F M; Myers, Damian E

    2014-01-01

    Infrapatellar fat pad adipose stem cells (IPFP-ASCs) have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.

  1. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold.

    Directory of Open Access Journals (Sweden)

    Ken Ye

    Full Text Available Infrapatellar fat pad adipose stem cells (IPFP-ASCs have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.

  2. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    International Nuclear Information System (INIS)

    Deng, Yu; Cao, Hong; Cu, Fenglong; Xu, Dan; Lei, Youying; Tan, Yang; Magdalou, Jacques; Wang, Hui; Chen, Liaobin

    2013-01-01

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes

  3. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yu; Cao, Hong; Cu, Fenglong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Lei, Youying [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Tan, Yang [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China)

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  4. In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs.

    Science.gov (United States)

    Möller, Thomas; Amoroso, Matteo; Hägg, Daniel; Brantsing, Camilla; Rotter, Nicole; Apelgren, Peter; Lindahl, Anders; Kölby, Lars; Gatenholm, Paul

    2017-02-01

    The three-dimensional (3D) bioprinting technology allows creation of 3D constructs in a layer-by-layer fashion utilizing biologically relevant materials such as biopolymers and cells. The aim of this study is to investigate the use of 3D bioprinting in a clinically relevant setting to evaluate the potential of this technique for in vivo chondrogenesis. Thirty-six nude mice (Balb-C, female) received a 5- × 5- × 1-mm piece of bioprinted cell-laden nanofibrillated cellulose/alginate construct in a subcutaneous pocket. Four groups of printed constructs were used: (1) human (male) nasal chondrocytes (hNCs), (2) human (female) bone marrow-derived mesenchymal stem cells (hBMSCs), (3) coculture of hNCs and hBMSCs in a 20/80 ratio, and (4) Cell-free scaffolds (blank). After 14, 30, and 60 days, the scaffolds were harvested for histological, immunohistochemical, and mechanical analysis. The constructs had good mechanical properties and keep their structural integrity after 60 days of implantation. For both the hNC constructs and the cocultured constructs, a gradual increase of glycosaminoglycan production and hNC proliferation was observed. However, the cocultured group showed a more pronounced cell proliferation and enhanced deposition of human collagen II demonstrated by immunohistochemical analysis. In vivo chondrogenesis in a 3D bioprinted human cell-laden hydrogel construct has been demonstrated. The trophic role of the hBMSCs in stimulating hNC proliferation and matrix deposition in the coculture group suggests the potential of 3D bioprinting of human cartilage for future application in reconstructive surgery.

  5. Promoted Chondrogenesis of Cocultured Chondrocytes and Mesenchymal Stem Cells under Hypoxia Using In-situ Forming Degradable Hydrogel Scaffolds

    NARCIS (Netherlands)

    Huang, Xiaobin; Hou, Yong; Zhong, Leilei; Huang, Dechun; Qian, Hongliang; Karperien, Marcel; Chen, Wei

    2018-01-01

    We investigated the effects of different oxygen tension (21% and 2.5% O2) on the chondrogenesis of different cell systems cultured in pH-degradable PVA hydrogels, including human articular chondrocytes (hACs), human mesenchymal stem cells (hMSCs), and their cocultures with a hAC/hMSC ratio of 20/80.

  6. Rescue of proinflammatory cytokine-inhibited chondrogenesis by the antiarthritic effect of melatonin in synovium mesenchymal stem cells via suppression of reactive oxygen species and matrix metalloproteinases.

    Science.gov (United States)

    Liu, Xiaozhen; Xu, Yong; Chen, Sijin; Tan, Zifang; Xiong, Ke; Li, Yan; Ye, Yun; Luo, Zong-Ping; He, Fan; Gong, Yihong

    2014-03-01

    Cartilage repair by mesenchymal stem cells (MSCs) often occurs in diseased joints in which the inflamed microenvironment impairs chondrogenic maturation and causes neocartilage degradation. In this environment, melatonin exerts an antioxidant effect by scavenging free radicals. This study aimed to investigate the anti-inflammatory and chondroprotective effects of melatonin on human MSCs in a proinflammatory cytokine-induced arthritic environment. MSCs were induced toward chondrogenesis in the presence of interleukin-1β (IL-1β) or tumor necrosis factor α (TNF-α) with or without melatonin. Levels of intracellular reactive oxygen species (ROS), hydrogen peroxide, antioxidant enzymes, and cell viability were then assessed. Deposition of glycosaminoglycans and collagens was also determined by histological analysis. Gene expression of chondrogenic markers and matrix metalloproteinases (MMPs) was assessed by real-time polymerase chain reaction. In addition, the involvement of the melatonin receptor and superoxide dismutase (SOD) in chondrogenesis was investigated using pharmacologic inhibitors. The results showed that melatonin significantly reduced ROS accumulation and increased SOD expression. Both IL-1β and TNF-α had an inhibitory effect on the chondrogenesis of MSCs, but melatonin successfully restored the low expression of cartilage matrix and chondrogenic genes. Melatonin prevented cartilage degradation by downregulating MMPs. The addition of luzindole and SOD inhibitors abrogated the protective effect of melatonin associated with increased levels of ROS and MMPs. These results demonstrated that proinflammatory cytokines impair the chondrogenesis of MSCs, which was rescued by melatonin treatment. This chondroprotective effect was potentially correlated to decreased ROS, preserved SOD, and suppressed levels of MMPs. Thus, melatonin provides a new strategy for promoting cell-based cartilage regeneration in diseased or injured joints. Copyright © 2013 Elsevier

  7. The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects.

    Science.gov (United States)

    Liu, Ji; Nie, Huarong; Xu, Zhengliang; Niu, Xin; Guo, Shangchun; Yin, Junhui; Guo, Fei; Li, Gang; Wang, Yang; Zhang, Changqing

    2014-01-01

    The discovery of induced pluripotent stem cells (iPSCs) rendered the reprogramming of terminally differentiated cells to primary stem cells with pluripotency possible and provided potential for the regeneration and restoration of cartilage defect. Chondrogenic differentiation of iPSCs is crucial for their application in cartilage tissue engineering. In this study we investigated the effect of 3D nanofibrous scaffolds on the chondrogenesis of iPSCs and articular cartilage defect restoration. Super-hydrophilic and durable mechanic polycaprolactone (PCL)/gelatin scaffolds were fabricated using two separate electrospinning processes. The morphological structure and mechanical properties of the scaffolds were characterized. The chondrogenesis of the iPSCs in vitro and the restoration of the cartilage defect was investigated using scanning electron microscopy (SEM), the Cell Counting Kit-8 (CCK-8), histological observation, RT-qPCR, and western blot analysis. iPSCs on the scaffolds expressed higher levels of chondrogenic markers than the control group. In an animal model, cartilage defects implanted with the scaffold-cell complex exhibited an enhanced gross appearance and histological improvements, higher cartilage-specific gene expression and protein levels, as well as subchondral bone regeneration. Therefore, we showed scaffolds with a 3D nanofibrous structure enhanced the chondrogenesis of iPSCs and that iPSC-containing scaffolds improved the restoration of cartilage defects to a greater degree than did scaffolds alone in vivo.

  8. The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects.

    Directory of Open Access Journals (Sweden)

    Ji Liu

    Full Text Available The discovery of induced pluripotent stem cells (iPSCs rendered the reprogramming of terminally differentiated cells to primary stem cells with pluripotency possible and provided potential for the regeneration and restoration of cartilage defect. Chondrogenic differentiation of iPSCs is crucial for their application in cartilage tissue engineering. In this study we investigated the effect of 3D nanofibrous scaffolds on the chondrogenesis of iPSCs and articular cartilage defect restoration. Super-hydrophilic and durable mechanic polycaprolactone (PCL/gelatin scaffolds were fabricated using two separate electrospinning processes. The morphological structure and mechanical properties of the scaffolds were characterized. The chondrogenesis of the iPSCs in vitro and the restoration of the cartilage defect was investigated using scanning electron microscopy (SEM, the Cell Counting Kit-8 (CCK-8, histological observation, RT-qPCR, and western blot analysis. iPSCs on the scaffolds expressed higher levels of chondrogenic markers than the control group. In an animal model, cartilage defects implanted with the scaffold-cell complex exhibited an enhanced gross appearance and histological improvements, higher cartilage-specific gene expression and protein levels, as well as subchondral bone regeneration. Therefore, we showed scaffolds with a 3D nanofibrous structure enhanced the chondrogenesis of iPSCs and that iPSC-containing scaffolds improved the restoration of cartilage defects to a greater degree than did scaffolds alone in vivo.

  9. The effect of estrogen on the expression of cartilage-specific genes in the chondrogenesis process of adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Farzaneh Sadeghi

    2015-01-01

    Full Text Available Background: During adolescence, sex hormones play an important role in regulating proliferation, differentiation, maturation, and the scheduled death of chondrocytes. Although some studies have reported the regulatory role of estrogen in the development and progression of cartilage, some of the mechanisms still remain unclear, including the role of estrogen in the expression of cartilage-specific genes in chondrogenesis process, which we cover in this study. Materials and Methods: In the present study, we used adipose-derived stem cells (ADSCs to differentiate into cartilage. Differentiated cartilage cells were used in the control (without estrogen E2 in the culture medium and experimental (with estrogen in the culture medium groups to evaluate the expression of type II collagen and aggrecan as chondrogenic genes markers, with -real-time polymerase chain reaction technique. Results: Our results indicated that estrogen leads to inhibition of type II collagen gene expression and reduction of aggrecan gene expression. Conclusion: Therefore, estrogen probably has negative effects on chondrogenesis process of ADSCs.

  10. Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/BMP-2 signaling pathway.

    Science.gov (United States)

    Nepal, Manoj; Li, Liang; Cho, Hyoung Kwon; Park, Jong Kun; Soh, Yunjo

    2013-12-01

    Endochondral bone formation occurs when mesenchymal cells condense to differentiate into chondrocytes, the primary cell types of cartilage. The aim of the present study was to identify novel factors regulating chondrogenesis. We investigated whether kaempferol induces chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Kaempferol treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Kaempferol-treated ATDC5 cells stained more intensely with alcian blue staining than control cells, suggesting greater synthesis of matrix proteoglycans in the kaempferol-treated cells. Similarly, kaempferol induced greater activation of alkaline phosphatase activity than control cells, and it enhanced the expression of chondrogenic marker genes, such as collagen type I, collagen type X, OCN, Runx2, and Sox9. Kaempferol induced an acute activation of extracellular signal-regulated kinase (ERK) but not c-jun N-terminal kinase or p38 MAP kinase. PD98059, an inhibitor of MAPK/ERK, decreased in stained cells treated with kaempferol. Furthermore, kaempferol greatly expressed the protein and mRNA levels of BMP-2, suggesting chondrogenesis was stimulated via a BMP-2 pathway. Taken together, our results suggest that kaempferol has chondromodulating effects via an ERK/BMP-2 signaling pathway and could potentially be used as a therapeutic agent for bone growth disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Role of PTHrP(1-34) Pulse Frequency Versus Pulse Duration to Enhance Mesenchymal Stromal Cell Chondrogenesis.

    Science.gov (United States)

    Fischer, Jennifer; Ortel, Marlen; Hagmann, Sebastien; Hoeflich, Andreas; Richter, Wiltrud

    2016-12-01

    Generation of phenotypically stable, articular chondrocytes from mesenchymal stromal cells (MSCs) is still an unaccomplished task, with formation of abundant, hyaline extracellular matrix, and avoidance of hypertrophy being prime challenges. We recently demonstrated that parathyroid hormone-related protein (PTHrP) is a promising factor to direct chondrogenesis of MSCs towards an articular phenotype, since intermittent PTHrP application stimulated cartilage matrix production and reduced undesired hypertrophy. We here investigated the role of frequency, pulse duration, total exposure time, and underlying mechanisms in order to unlock the full potential of PTHrP actions. Human MSC subjected to in vitro chondrogenesis for six weeks were exposed to 2.5 nM PTHrP(1-34) pulses from days 7 to 42. Application frequency was increased from three times weekly (3 × 6 h/week) to daily maintaining either the duration of individual pulses (6 h/day) or total exposure time (18 h/week; 2.6 h/day). Daily PTHrP treatment significantly increased extracellular matrix deposition regardless of pulse duration and suppressed alkaline-phosphatase activity by 87%. High total exposure time significantly reduced cell proliferation at day 14. Pulse duration was critically important to significantly reduce IHH expression, but irrelevant for PTHrP-induced suppression of the hypertrophic markers MEF2C and IBSP. COL10A1, RUNX2, and MMP13 expression remained unaltered. Decreased IGFBP-2, -3, and -6 expression suggested modulated IGF-I availability in PTHrP groups, while drop of SOX9 protein levels during the PTHrP-pulse may delay chondroblast formation and hypertrophy. Overall, the significantly optimized timing of PTHrP-pulses demonstrated a vast potential to enhance chondrogenesis of MSC and suppress hypertrophy possibly via superior balancing of IGF- and SOX9-related mechanisms. J. Cell. Physiol. 231: 2673-2681, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Effects of platelet rich plasma and chondrocyte co-culture on MSC chondrogenesis, hypertrophy and pathological responses

    OpenAIRE

    Ramezanifard, Rouhallah; Kabiri, Mahboubeh; Hanaee Ahvaz, Hana

    2017-01-01

    Regarding the inadequate healing capability of cartilage tissue, cell-based therapy is making the future of cartilage repair and regeneration. Mesenchymal stem cells (MSC) have shown great promise in cartilage regeneration. However, a yet-unresolved issue is the emergence of hypertrophic and pathologic markers during in vitro MSC chondrogenesis. Articular chondrocytes (AC) can suppress the undesired hypertrophy when co-cultured with MSC. On the other hand, platelet rich plasma (PRP), is consi...

  13. Small molecule-directed specification of sclerotome-like chondroprogenitors and induction of a somitic chondrogenesis program from embryonic stem cells.

    Science.gov (United States)

    Zhao, Jiangang; Li, Songhui; Trilok, Suprita; Tanaka, Makoto; Jokubaitis-Jameson, Vanta; Wang, Bei; Niwa, Hitoshi; Nakayama, Naoki

    2014-10-01

    Pluripotent embryonic stem cells (ESCs) generate rostral paraxial mesoderm-like progeny in 5-6 days of differentiation induced by Wnt3a and Noggin (Nog). We report that canonical Wnt signaling introduced either by forced expression of activated β-catenin, or the small-molecule inhibitor of Gsk3, CHIR99021, satisfied the need for Wnt3a signaling, and that the small-molecule inhibitor of BMP type I receptors, LDN193189, was able to replace Nog. Mesodermal progeny generated using such small molecules were chondrogenic in vitro, and expressed trunk paraxial mesoderm markers such as Tcf15 and Meox1, and somite markers such as Uncx, but failed to express sclerotome markers such as Pax1. Induction of the osteochondrogenically committed sclerotome from somite requires sonic hedgehog and Nog. Consistently, Pax1 and Bapx1 expression was induced when the isolated paraxial mesodermal progeny were treated with SAG1 (a hedgehog receptor agonist) and LDN193189, then Sox9 expression was induced, leading to cartilaginous nodules and particles in the presence of BMP, indicative of chondrogenesis via sclerotome specification. By contrast, treatment with TGFβ also supported chondrogenesis and stimulated Sox9 expression, but failed to induce the expression of Pax1 and Bapx1. On ectopic transplantation to immunocompromised mice, the cartilage particles developed under either condition became similarly mineralized and formed pieces of bone with marrow. Thus, the use of small molecules led to the effective generation from ESCs of paraxial mesodermal progeny, and to their further differentiation in vitro through sclerotome specification into growth plate-like chondrocytes, a mechanism resembling in vivo somitic chondrogenesis that is not recapitulated with TGFβ. © 2014. Published by The Company of Biologists Ltd.

  14. [Molecular cloning, expression of rat Msx-1 and Msx-2 during early embryo genesis and roles for mandibular chondrogenesis].

    Science.gov (United States)

    Ishiguro, S

    1999-03-01

    Quail-chick chimera experiments have shown a contribution of carnial neural crest cells to the craniofacial skeletal elements. Moreover, tissue interactions between epithelial-mesenchymal interaction during early facial process development are required for both skeletal differentiation and morphogenesis. In this study, it was observed that Msx homeobox containing genes expressed in the facial process were important molecules of cartilage morphogenesis. Rat cDNAs were isolated and encoded by Msx-1 and -2, and then the expression patterns using in situ hybridization were investigated during early rat face development. These genes were correlatively expressed in the cranial neural crest forming area (E 9.5 dpc) and the facial process (E 12.5 dpc). Antisence inhibition of Msx genes in the E 12.5 mandibular process exhibited the alteration of their gene expression and cartilage patterns. Antisence inhibition of Msx-1 induced lack of the medial portion of cartilage, and antisence inhibition of Msx-2 enhanced chondrogenesis of mandibular process under the organ culture condition. Thus it was concluded that expression of Msx genes during mandibular process development comprises important signals of chondrogenesis.

  15. Chondrogenesis of synovium-derived mesenchymal stem cells in gene-transferred co-culture system.

    Science.gov (United States)

    Varshney, Rohan R; Zhou, Ruijie; Hao, Jinghua; Yeo, Suan Siong; Chooi, Wai Hon; Fan, Jiabing; Wang, Dong-An

    2010-09-01

    A co-culture strategy has been developed in this study wherein rabbit synovial mesenchymal stem cells (SMSCs) are co-cultured with growth factor (GF) transfected articular chondrocytes. Toward this end, both SMSCs and early passage rabbit articular chondrocytes that had been adenovirally transduced with transforming growth factor-beta 3 (TGF-beta3) gene were separately encapsulated in alginate beads and co-cultured in the same pool of chondrogenic medium. The chondrocytes act as transfected companion cells (TCCs) providing GF supply to induce chondrogenic differentiation of SMSCs that play the role of therapeutic progenitor cells (TPCs). Against the same TCC based TGF-beta3 release profile, the co-culture was started at different time points (Day 0, Day 10 and Day 20) but made to last for identical periods of exposure (30 days) so that the exposure conditions could be optimized in terms of initiation and duration. Transfection of TCCs prevents the stem cell based TPCs from undergoing the invasive procedure. It also prevents unpredictable complications in the TPCs caused by long-term constitutive over-expression of a GF. The adenovirally transfected TCCs exhibit a transient GF expression which results in a timely termination of GF supply to the TPCs. The TCC-sourced transgenic TGF-beta3 successfully induced chondrogenesis in the TPCs. Real-time PCR results show enhanced expression of cartilage markers and immuno/histochemical staining for Glycosaminoglycans (GAG) and Collagen II also shows abundant extracellular matrix (ECM) production and chondrogenic morphogenesis in the co-cultured TPCs. These results confirm the efficacy of directing stem cell differentiation towards chondrogenesis and cartilage tissue formation by co-culturing them with GF transfected chondrocytes.

  16. CCN4/WISP-1 positively regulates chondrogenesis by controlling TGF-β3 function.

    Science.gov (United States)

    Yoshioka, Yuya; Ono, Mitsuaki; Maeda, Azusa; Kilts, Tina M; Hara, Emilio Satoshi; Khattab, Hany; Ueda, Junji; Aoyama, Eriko; Oohashi, Toshitaka; Takigawa, Masaharu; Young, Marian F; Kuboki, Takuo

    2016-02-01

    The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human bone marrow stromal cells (hBMSCs) were transduced with CCN4 adenovirus (adCCN4) or siRNA to CCN4 (siCCN4) in the presence or absence of transforming growth factor-β3 (TGF-β3). Overexpression of CCN4 enhanced TGF-β3-induced SMAD2/3 phosphorylation and chondrogenesis of hBMSCs in an in vitro assay using a micromass culture model. On the other hand, knockdown of CCN4 inhibited the TGF-β3-induced SMAD2/3 phosphorylation and synthesis of cartilage matrix in micromass cultures of hBMSCs. Immunoprecipitation-western blot analysis revealed that CCN4 bound to TGF-β3 and regulated the ability of TGF-β3 to bind to hBMSCs. In vivo analysis confirmed there was a significant decrease in the gene expression levels of chondrocyte markers in cartilage samples from Ccn4-knock out (KO) mice, compared to those from wild type (WT) control. In order to investigate the regenerative properties of the articular cartilage in Ccn4-KO mice, articular cartilage defects were surgically performed in the knee joints of young mice, and the results showed that the cartilage was partially repaired in WT mice, but not in Ccn4-KO mice. In conclusion, these results show, for the first time, that CCN4 has a positive influence on chondrogenic differentiation by modulating the effects of TGF-β3. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Study on the effects of gradient mechanical pressures on the proliferation, apoptosis, chondrogenesis and hypertrophy of mandibular condylar chondrocytes in vitro.

    Science.gov (United States)

    Li, Hui; Huang, Linjian; Xie, Qianyang; Cai, Xieyi; Yang, Chi; Wang, Shaoyi; Zhang, Min

    2017-01-01

    To investigate the effects of gradient mechanical pressure on chondrocyte proliferation, apoptosis, and the expression of markers of chondrogenesis and chondrocyte hypertrophy. Mandibular condylar chondrocytes from 5 rabbits were cultured in vitro, and pressed with static pressures of 50kPa, 100kPa, 150kPa and 200kPa for 3h, respectively. The chondrocytes cultured without pressure (0kPa) were used as control. Cell proliferation, apoptosis, and the expression of aggrecan (AGG), collagen II (COL2), collagen X (COL10), alkaline phosphatase (ALP) were investigated. Ultrastructures of the pressurized chondrocytes under transmission electron microscopy (TEM) were observed. Chondrocyte proliferation increased at 100kPa and decreased at 200kPa. Chondrocyte apoptosis increased with peak pressure at 200kPa in a dose-dependent manner. Chondrocyte necrosis increased at 200kPa. The expression of AGG increased at 200kPa. The expression of COL2 decreased at 50kPa and increased at 150kPa. The expression of COL10 and ALP increased at 150kPa. Ultrastructure of the pressurized chondrocytes under TEM showed: at 100kPa, cells were enlarged with less cellular microvillus and a bigger nucleus; at 200kPa, cells shrank with the sign of apoptosis, and apoptosis cells were found. The mechanical loading of 150kPa is the moderate pressure for chondrocyte: cell proliferation and apoptosis is balanced, necrosis is reduced, and chondrogenesis and chondrocyte hypertrophy are promoted. When the pressure is lower, chondrogenesis and chondrocyte hypertrophy are inhibited. At 200kPa, degeneration of cartilage is implied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Matrilin-3 Chondrodysplasia Mutations Cause Attenuated Chondrogenesis, Premature Hypertrophy and Aberrant Response to TGF-β in Chondroprogenitor Cells

    OpenAIRE

    Chathuraka T. Jayasuriya; Fiona H. Zhou; Ming Pei; Zhengke Wang; Nicholas J. Lemme; Paul Haines; Qian Chen

    2014-01-01

    Studies have shown that mutations in the matrilin-3 gene (MATN3) are associated with multiple epiphyseal dysplasia (MED) and spondyloepimetaphyseal dysplasia (SEMD). We tested whether MATN3 mutations affect the differentiation of chondroprogenitor and/or mesenchymal stem cells, which are precursors to chondrocytes. ATDC5 chondroprogenitors stably expressing wild-type (WT) MATN3 underwent spontaneous chondrogenesis. Expression of chondrogenic markers collagen II and aggrecan was inhibited in c...

  19. p38 MAPK mediated in compressive stress-induced chondrogenesis of rat bone marrow MSCs in 3D alginate scaffolds.

    Science.gov (United States)

    Li, Juan; Zhao, Zhihe; Yang, Jingyuan; Liu, Jun; Wang, Jun; Li, Xiaoyu; Liu, Yurong

    2009-12-01

    Mesenchymal stem cells (MSCs) are well known to have the capability to form bone and cartilage, and chondrogenesis derived from MSCs is reported to be affected by mechanical stimuli. This research was aimed to study the effects of cyclic compressive stress on the chondrogenic differentiation of rat bone marrow-derived MSCs (BMSCs) which were encapsulated in alginate scaffolds and cultured with or without chondrogenic medium, and to investigate the role of p38 MAPK phospho-relay cascade in this process. The results show that the gene expression of chondrocyte-specific markers of Col2alpha1, aggrecan, Sox9, Runx2, and Ihh was upregulated by dynamic compressive stress introduced at the 8th day of chondrogenic differentiation in vitro. The p38 MAPK was activated by chondrogenic cytokines in a slow and lagged way, but activated by cyclic compressive stimulation in a rapid and transient manner. And inhibition of p38 activity with SB203580 suppressed gene expression of chondrocyte-specific genes stimulated by chondrogenic medium and (or) cyclic compressive stress. These findings suggest that p38 MAPK signal acts as an essential mediator in the mechano-biochemical transduction and subsequent transcriptional regulation in the process of chondrogenesis.

  20. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Sawatjui, Nopporn; Damrongrungruang, Teerasak; Leeanansaksiri, Wilairat; Jearanaikoon, Patcharee; Hongeng, Suradej; Limpaiboon, Temduang

    2015-01-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering

  1. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawatjui, Nopporn [Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen 40002 (Thailand); Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Damrongrungruang, Teerasak [Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002 (Thailand); Leeanansaksiri, Wilairat [Stem Cell Therapy and Transplantation Research Group, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); School of Microbiology, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Jearanaikoon, Patcharee [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Hongeng, Suradej [Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400 (Thailand); Limpaiboon, Temduang, E-mail: temduang@kku.ac.th [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2015-07-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering.

  2. Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels

    Directory of Open Access Journals (Sweden)

    JT Connelly

    2011-09-01

    Full Text Available Modification of tissue engineering scaffolds with bioactive molecules is a potential strategy for modulating cell behavior and guiding tissue regeneration. While adhesion to RGD peptides has been shown to inhibit in vitro chondrogenesis, the effects of extracellular matrix (ECM-mimetic ligands with complex secondary and tertiary structures are unknown. This study aimed to determine whether collagen- and fibronectin-mimetic ligands would retain biologic functionality in three-dimensional (3D hydrogels, whether different ECM-mimetic ligands differentially influence in vitro chondrogenesis, and if effects of ligands on differentiation depend on soluble biochemical stimuli. A linear RGD peptide, a recombinant fibronectin fragment containing the seven to ten Type III repeats (FnIII7-10 and a triple helical, collagen mimetic peptide with the GFOGER motif were covalently coupled to agarose gels using the sulfo-SANPAH crosslinker, and bone marrow stromal cells (BMSCs were cultured within the 3D hydrogels. The ligands retained biologic functionality within the agarose gels and promoted density-dependent BMSC spreading. Interactions with all adhesive ligands inhibited stimulation by chondrogenic factors of collagen Type II and aggrecan mRNA levels and deposition of sulfated glycosaminoglycans. In medium containing fetal bovine serum, interactions with the GFOGER peptide enhanced mRNA expression of the osteogenic gene osteocalcin whereas FnIII7-10 inhibited osteocalcin expression. In conclusion, modification of agarose hydrogels with ECM-mimetic ligands can influence the differentiation of BMSCs in a manner that depends strongly on the presence and nature of soluble biochemical stimuli.

  3. Gene Modification of Mesenchymal Stem Cells and Articular Chondrocytes to Enhance Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Saliya Gurusinghe

    2014-01-01

    Full Text Available Current cell based treatment for articular cartilage and osteochondral defects are hampered by issues such as cellular dedifferentiation and hypertrophy of the resident or transplanted cells. The reduced expression of chondrogenic signalling molecules and transcription factors is a major contributing factor to changes in cell phenotype. Gene modification of chondrocytes may be one approach to redirect cells to their primary phenotype and recent advances in nonviral and viral gene delivery technologies have enabled the expression of these lost factors at high efficiency and specificity to regain chondrocyte function. This review focuses on the various candidate genes that encode signalling molecules and transcription factors that are specific for the enhancement of the chondrogenic phenotype and also how epigenetic regulators of chondrogenesis in the form of microRNA may also play an important role.

  4. Pharmacological modulation of human mesenchymal stem cell chondrogenesis by a chemically oversulfated polysaccharide of marine origin: potential application to cartilage regenerative medicine.

    Science.gov (United States)

    Merceron, Christophe; Portron, Sophie; Vignes-Colombeix, Caroline; Rederstorff, Emilie; Masson, Martial; Lesoeur, Julie; Sourice, Sophie; Sinquin, Corinne; Colliec-Jouault, Sylvia; Weiss, Pierre; Vinatier, Claire; Guicheux, Jérôme

    2012-03-01

    Mesenchymal stem cells (MSCs) are considered as an attractive source of cells for cartilage engineering due to their availability and capacity for expansion and multipotency. Differentiation of MSC into chondrocytes is crucial to successful cartilage regeneration and can be induced by various biological agents, including polysaccharides that participate in many biological processes through interactions with growth factors. Here, we hypothesize that growth factor-induced differentiation of MSC can be increased by chemically oversulfated marine polysaccharides. To test our hypothesis, human adipose tissue-derived MSCs (hATSCs) were cultured in pellets with transforming growth factor (TGF)-β1-supplemented chondrogenic medium containing either the polysaccharide GY785 DR or its oversulfated isoform GY785 DRS. Chondrogenesis was monitored by the measurement of pellet volume, quantification of DNA, collagens, glycosaminoglycans (GAGs), and immunohistological staining. Our data revealed an increase in pellet volume, total collagens, and GAG production with GY785 DRS and chondrogenic medium. The enhanced chondrogenic differentiation of hATSC was further demonstrated by the increased expression of several chondrogenic markers by real-time reverse transcription-polymerase chain reaction. In addition, surface plasmon resonance analyses revealed that TGF-β1 bound GY785 DRS with higher affinity compared to GY785 DR. In association with TGF-β1, GY785 DRS was found to upregulate the phosphorylation of extracellular signal-regulated kinase 1/2, indicating that oversulfated polysaccharide affects the mitogen activated protein kinase signaling activity. These results demonstrate the upregulation of TGF-β1-dependent stem cell chondrogenesis by a chemically oversulfated marine polysaccharide. This polysaccharide of marine origin is easily producible and therefore could be considered a promising additive to drive efficient and reliable MSC chondrogenesis for cartilage tissue

  5. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2014-03-01

    Full Text Available Background: Hyaline cartilage defects exhibit a major challenge in the field of orthopedic surgery owing to its limited repair capacity. On the other hand, mesenchymal stem cells (MSCs are regarded as potent cells with a property of cartilage regeneration. We aimed to optimize marrow-derived MSC chondrogenic culture using a small bioactive molecule referred to as BIO. Methods: MSCs from the marrow of NMRI mice were extracted, culture-expanded, and characterized. Micro-mass culture was then established for chondrogenic differentiation (control group. The cultures of MSC in chondrogenic medium supplemented with 0.01, 0.05, 0.1, and 1 µM BIO were taken as the experimental groups. Cartilage differentiation was examined by both histological sections and real-time PCR for Sox9, aggrecan, and collagen II at different time points. Moreover, the involvement of the Wnt pathway was investigated. Results: Based on histological sections, there was seemingly more intense metachromatic matrix produced in the cultures with 0.01 µM BIO. In this experimental group, cartilage-specific genes tended to be upregulated at day 14 compared to day 21 of the control group, indicating the accelerating effect of BIO on cartilage differentiation. Overall, there was statistically a significant increase (P=0.01 in the expression level of cartilage-specific genes in cultures with 0.01 µM BIO (enhancing effects. These upregulations appeared to be mediated through the Wnt pathway evident from the significant upregulation of T-cell factor and beta-catenin molecules (P=0.01. Conclusion: Taken together, BIO at 0.01 µM could accelerate and enhance in vitro chondrogenesis of mouse marrow-derived MSCs. Please cite this article as: Baghaban Eslaminejad MR, Fallah N. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis. Iran J Med Sci. 2014;39(2:107-116.

  6. The Influence of IL-10 and TNFα on Chondrogenesis of Human Mesenchymal Stromal Cells in Three-Dimensional Cultures

    Directory of Open Access Journals (Sweden)

    Michal Jagielski

    2014-09-01

    Full Text Available Chondrogenic differentiated mesenchymal stromal cells (MSCs are a promising cell source for articular cartilage repair. This study was undertaken to determine the effectiveness of two three-dimensional (3D culture systems for chondrogenic MSC differentiation in comparison to primary chondrocytes and to assess the effect of Interleukin (IL-10 and Tumor Necrosis Factor (TNFα on chondrogenesis by MSCs in 3D high-density (H-D culture. MSCs were isolated from femur spongiosa, characterized using a set of typical markers and introduced in scaffold-free H-D cultures or non-woven polyglycolic acid (PGA scaffolds for chondrogenic differentiation. H-D cultures were stimulated with recombinant IL-10, TNFα, TNFα + IL-10 or remained untreated. Gene and protein expression of type II collagen, aggrecan, sox9 and TNFα were examined. MSCs expressed typical cell surface markers and revealed multipotency. Chondrogenic differentiated cells expressed cartilage-specific markers in both culture systems but to a lower extent when compared with articular chondrocytes. Chondrogenesis was more pronounced in PGA compared with H-D culture. IL-10 and/or TNFα did not impair the chondrogenic differentiation of MSCs. Moreover, in most of the investigated samples, despite not reaching significance level, IL-10 had a stimulatory effect on the type II collagen, aggrecan and TNFα expression when compared with the respective controls.

  7. The influence of IL-10 and TNFα on chondrogenesis of human mesenchymal stromal cells in three-dimensional cultures.

    Science.gov (United States)

    Jagielski, Michal; Wolf, Johannes; Marzahn, Ulrike; Völker, Anna; Lemke, Marion; Meier, Carola; Ertel, Wolfgang; Godkin, Owen; Arens, Stephan; Schulze-Tanzil, Gundula

    2014-09-09

    Chondrogenic differentiated mesenchymal stromal cells (MSCs) are a promising cell source for articular cartilage repair. This study was undertaken to determine the effectiveness of two three-dimensional (3D) culture systems for chondrogenic MSC differentiation in comparison to primary chondrocytes and to assess the effect of Interleukin (IL)-10 and Tumor Necrosis Factor (TNF)α on chondrogenesis by MSCs in 3D high-density (H-D) culture. MSCs were isolated from femur spongiosa, characterized using a set of typical markers and introduced in scaffold-free H-D cultures or non-woven polyglycolic acid (PGA) scaffolds for chondrogenic differentiation. H-D cultures were stimulated with recombinant IL-10, TNFα, TNFα + IL-10 or remained untreated. Gene and protein expression of type II collagen, aggrecan, sox9 and TNFα were examined. MSCs expressed typical cell surface markers and revealed multipotency. Chondrogenic differentiated cells expressed cartilage-specific markers in both culture systems but to a lower extent when compared with articular chondrocytes. Chondrogenesis was more pronounced in PGA compared with H-D culture. IL-10 and/or TNFα did not impair the chondrogenic differentiation of MSCs. Moreover, in most of the investigated samples, despite not reaching significance level, IL-10 had a stimulatory effect on the type II collagen, aggrecan and TNFα expression when compared with the respective controls.

  8. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds.

    Science.gov (United States)

    Pelaez, Daniel; Huang, Chun-Yuh Charles; Cheung, Herman S

    2009-01-01

    Mechanical loading has long been shown to modulate cartilage-specific extracellular matrix synthesis. With joint motion, cartilage can experience mechanical loading in the form of compressive, tensile or shearing load, and hydrostatic pressure. Recent studies have demonstrated the capacity of unconfined cyclic compression to induce chondrogenic differentiation of human mesenchymal stem cell (hMSC) in agarose culture. However, the use of a nonbiodegradable material such as agarose limits the applicability of these constructs. Of the possible biocompatible materials available for tissue engineering, fibrin is a natural regenerative scaffold, which possesses several desired characteristics including a controllable degradation rate and low immunogenicity. The objective of the present study was to determine the capability of fibrin gels for supporting chondrogenesis of hMSCs under cyclic compression. To optimize the system, three concentrations of fibrin gel (40, 60, and 80 mg/mL) and three different stimulus frequencies (0.1, 0.5, and 1.0 Hz) were used to examine the effects of cyclic compression on viability, proliferation and chondrogenic differentiation of hMSCs. Our results show that cyclic compression (10% strain) at frequencies >0.5 Hz and gel concentration of 40 mg/mL fibrinogen appears to maintain cellular viability within scaffolds. Similarly, variations in gel component concentration and stimulus frequency can be modified such that a significant chondrogenic response can be achieved by hMSC in fibrin constructs after 8 h of compression spread out over 2 days. This study demonstrates the suitability of fibrin gel for supporting the cyclic compression-induced chondrogenesis of mesenchymal stem cells.

  9. A 3D Porous Gelatin-Alginate-Based-IPN Acts as an Efficient Promoter of Chondrogenesis from Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Sorina Dinescu

    2015-01-01

    Full Text Available Cartilage has limited regeneration potential. Thus, there is an imperative need to develop new strategies for cartilage tissue engineering (CTE amenable for clinical use. Recent CTE approaches rely on optimal cell-scaffold interactions, which require a great deal of optimization. In this study we attempt to build a novel gelatin- (G- alginate- (A- polyacrylamide (PAA 3D interpenetrating network (IPN with superior performance in promoting chondrogenesis from human adipose-derived stem cells (hADSCs. We show that our G-A-PAA scaffold is capable of supporting hADSCs proliferation and survival, with no apparent cytotoxic effect. Moreover, we find that after exposure to prochondrogenic conditions a key transcription factor known to induce chondrogenesis, namely, Sox9, is highly expressed in our hADSCs/G-A-PAA bioconstruct, along with cartilage specific markers such as collagen type II, CEP68, and COMP extracellular matrix (ECM components. These data suggest that our G-A-PAA structural properties and formulation might enable hADSCs conversion towards functional chondrocytes. We conclude that our novel G-A-PAA biomatrix is a good candidate for prospective in vivo CTE applications.

  10. Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures.

    Science.gov (United States)

    Kakar, Sanjeev; Einhorn, Thomas A; Vora, Siddharth; Miara, Lincoln J; Hon, Gregory; Wigner, Nathan A; Toben, Daniel; Jacobsen, Kimberly A; Al-Sebaei, Maisa O; Song, Michael; Trackman, Philip C; Morgan, Elise F; Gerstenfeld, Louis C; Barnes, George L

    2007-12-01

    Studies have shown that systemic PTH treatment enhanced the rate of bone repair in rodent models. However, the mechanisms through which PTH affects bone repair have not been elucidated. In these studies we show that PTH primarily enhanced the earliest stages of endochondral bone repair by increasing chondrocyte recruitment and rate of differentiation. In coordination with these cellular events, we observed an increased level of canonical Wnt-signaling in PTH-treated bones at multiple time-points across the time-course of fracture repair, supporting the conclusion that PTH responses are at least in part mediated through Wnt signaling. Since FDA approval of PTH [PTH(1-34); Forteo] as a treatment for osteoporosis, there has been interest in its use in other musculoskeletal conditions. Fracture repair is one area in which PTH may have a significant clinical impact. Multiple animal studies have shown that systemic PTH treatment of healing fractures increased both callus volume and return of mechanical competence in models of fracture healing. Whereas the potential for PTH has been established, the mechanism(s) by which PTH produces these effects remain elusive. Closed femoral fractures were generated in 8-wk-old male C57Bl/6 mice followed by daily systemic injections of either saline (control) or 30 microg/kg PTH(1-34) for 14 days after fracture. Bones were harvested at days 2, 3, 5, 7, 10, 14, 21, and 28 after fracture and analyzed at the tissue level by radiography and histomorphometry and at the molecular and biochemical levels level by RNase protection assay (RPA), real-time PCR, and Western blot analysis. Quantitative muCT analysis showed that PTH treatment induced a larger callus cross-sectional area, length, and total volume compared with controls. Molecular analysis of the expression of extracellular matrix genes associated with chondrogenesis and osteogenesis showed that PTH treated fractures displayed a 3-fold greater increase in chondrogenesis relative to

  11. Analysis of the effects of five factors relevant to in vitro chondrogenesis of human mesenchymal stem cells using factorial design and high throughput mRNA-profiling.

    Science.gov (United States)

    Jakobsen, Rune B; Østrup, Esben; Zhang, Xiaolan; Mikkelsen, Tarjei S; Brinchmann, Jan E

    2014-01-01

    The in vitro process of chondrogenic differentiation of mesenchymal stem cells for tissue engineering has been shown to require three-dimensional culture along with the addition of differentiation factors to the culture medium. In general, this leads to a phenotype lacking some of the cardinal features of native articular chondrocytes and their extracellular matrix. The factors used vary, but regularly include members of the transforming growth factor β superfamily and dexamethasone, sometimes in conjunction with fibroblast growth factor 2 and insulin-like growth factor 1, however the use of soluble factors to induce chondrogenesis has largely been studied on a single factor basis. In the present study we combined a factorial quality-by-design experiment with high-throughput mRNA profiling of a customized chondrogenesis related gene set as a tool to study in vitro chondrogenesis of human bone marrow derived mesenchymal stem cells in alginate. 48 different conditions of transforming growth factor β 1, 2 and 3, bone morphogenetic protein 2, 4 and 6, dexamethasone, insulin-like growth factor 1, fibroblast growth factor 2 and cell seeding density were included in the experiment. The analysis revealed that the best of the tested differentiation cocktails included transforming growth factor β 1 and dexamethasone. Dexamethasone acted in synergy with transforming growth factor β 1 by increasing many chondrogenic markers while directly downregulating expression of the pro-osteogenic gene osteocalcin. However, all factors beneficial to the expression of desirable hyaline cartilage markers also induced undesirable molecules, indicating that perfect chondrogenic differentiation is not achievable with the current differentiation protocols.

  12. Analysis of the Effects of Five Factors Relevant to In Vitro Chondrogenesis of Human Mesenchymal Stem Cells Using Factorial Design and High Throughput mRNA-Profiling

    Science.gov (United States)

    Jakobsen, Rune B.; Østrup, Esben; Zhang, Xiaolan; Mikkelsen, Tarjei S.; Brinchmann, Jan E.

    2014-01-01

    The in vitro process of chondrogenic differentiation of mesenchymal stem cells for tissue engineering has been shown to require three-dimensional culture along with the addition of differentiation factors to the culture medium. In general, this leads to a phenotype lacking some of the cardinal features of native articular chondrocytes and their extracellular matrix. The factors used vary, but regularly include members of the transforming growth factor β superfamily and dexamethasone, sometimes in conjunction with fibroblast growth factor 2 and insulin-like growth factor 1, however the use of soluble factors to induce chondrogenesis has largely been studied on a single factor basis. In the present study we combined a factorial quality-by-design experiment with high-throughput mRNA profiling of a customized chondrogenesis related gene set as a tool to study in vitro chondrogenesis of human bone marrow derived mesenchymal stem cells in alginate. 48 different conditions of transforming growth factor β 1, 2 and 3, bone morphogenetic protein 2, 4 and 6, dexamethasone, insulin-like growth factor 1, fibroblast growth factor 2 and cell seeding density were included in the experiment. The analysis revealed that the best of the tested differentiation cocktails included transforming growth factor β 1 and dexamethasone. Dexamethasone acted in synergy with transforming growth factor β 1 by increasing many chondrogenic markers while directly downregulating expression of the pro-osteogenic gene osteocalcin. However, all factors beneficial to the expression of desirable hyaline cartilage markers also induced undesirable molecules, indicating that perfect chondrogenic differentiation is not achievable with the current differentiation protocols. PMID:24816923

  13. Analysis of the effects of five factors relevant to in vitro chondrogenesis of human mesenchymal stem cells using factorial design and high throughput mRNA-profiling.

    Directory of Open Access Journals (Sweden)

    Rune B Jakobsen

    Full Text Available The in vitro process of chondrogenic differentiation of mesenchymal stem cells for tissue engineering has been shown to require three-dimensional culture along with the addition of differentiation factors to the culture medium. In general, this leads to a phenotype lacking some of the cardinal features of native articular chondrocytes and their extracellular matrix. The factors used vary, but regularly include members of the transforming growth factor β superfamily and dexamethasone, sometimes in conjunction with fibroblast growth factor 2 and insulin-like growth factor 1, however the use of soluble factors to induce chondrogenesis has largely been studied on a single factor basis. In the present study we combined a factorial quality-by-design experiment with high-throughput mRNA profiling of a customized chondrogenesis related gene set as a tool to study in vitro chondrogenesis of human bone marrow derived mesenchymal stem cells in alginate. 48 different conditions of transforming growth factor β 1, 2 and 3, bone morphogenetic protein 2, 4 and 6, dexamethasone, insulin-like growth factor 1, fibroblast growth factor 2 and cell seeding density were included in the experiment. The analysis revealed that the best of the tested differentiation cocktails included transforming growth factor β 1 and dexamethasone. Dexamethasone acted in synergy with transforming growth factor β 1 by increasing many chondrogenic markers while directly downregulating expression of the pro-osteogenic gene osteocalcin. However, all factors beneficial to the expression of desirable hyaline cartilage markers also induced undesirable molecules, indicating that perfect chondrogenic differentiation is not achievable with the current differentiation protocols.

  14. Optimized chondrogenesis of ATCD5 cells through sequential regulation of oxygen conditions

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Ebbesen, Peter

    2006-01-01

    , chondrocyte-specific extracellular matrix (ECM) production was monitored. Furthermore, the transcription of collagen II, an early-phase marker, and collagen X, a marker of hypertrophic conversion, was followed by real-time RT-PCR. Low oxygen concentrations between 1 and 9% inhibited chondrogenic conversion......, as evidenced by reduced glycosaminoglycan deposition in the ECM in a manner proportional to the degree of hypoxia. Cells cultured at oxygen concentrations of 12 and 15% underwent a faster and higher degree of early-phase chondrogenesis when compared to control cells cultured at ambient air (21% O2......). For the hypertrophic conversion of the ATDC5 cells, all degrees of hypoxia inhibited collagen X expression in a dose-dependent manner. Short-term culturing of the ATDC5 cells for 6 to 8 days at 12% oxygen with subsequent culturing at 21% for the remainder of the experiment resulted in maximal production of major ECM...

  15. Retinoic acid modulates chondrogenesis in the developing mouse cranial base.

    Science.gov (United States)

    Kwon, Hyuk-Jae; Shin, Jeong-Oh; Lee, Jong-Min; Cho, Kyoung-Won; Lee, Min-Jung; Cho, Sung-Won; Jung, Han-Sung

    2011-12-15

    The retinoic acid (RA) signaling pathway is known to play important roles during craniofacial development and skeletogenesis. However, the specific mechanism involving RA in cranial base development has not yet been clearly described. This study investigated how RA modulates endochondral bone development of the cranial base by monitoring the RA receptor RARγ, BMP4, and markers of proliferation, programmed cell death, chondrogenesis, and osteogenesis. We first examined the dynamic morphological and molecular changes in the sphenooccipital synchondrosis-forming region in the mouse embryo cranial bases at E12-E16. In vitro organ cultures employing beads soaked in RA and retinoid-signaling inhibitor citral were compared. In the RA study, the sphenooccipital synchondrosis showed reduced cartilage matrix and lower BMP4 expression while hypertrophic chondrocytes were replaced with proliferating chondrocytes. Retardation of chondrocyte hypertrophy was exhibited in citral-treated specimens, while BMP4 expression was slightly increased and programmed cell death was induced within the sphenooccipital synchondrosis. Our results demonstrate that RA modulates chondrocytes to proliferate, differentiate, or undergo programmed cell death during endochondral bone formation in the developing cranial base. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  16. A 3D Porous Gelatin-Alginate-Based-IPN Acts as an Efficient Promoter of Chondrogenesis from Human Adipose-Derived Stem Cells

    OpenAIRE

    Dinescu, Sorina; Galateanu, Bianca; Radu, Eugen; Hermenean, Anca; Lungu, Adriana; Stancu, Izabela Cristina; Jianu, Dana; Tumbar, Tudorita; Costache, Marieta

    2015-01-01

    Cartilage has limited regeneration potential. Thus, there is an imperative need to develop new strategies for cartilage tissue engineering (CTE) amenable for clinical use. Recent CTE approaches rely on optimal cell-scaffold interactions, which require a great deal of optimization. In this study we attempt to build a novel gelatin- (G-) alginate- (A-) polyacrylamide (PAA) 3D interpenetrating network (IPN) with superior performance in promoting chondrogenesis from human adipose-derived stem cel...

  17. The osmolyte type affects cartilage associated pathologic marker expression during in vitro mesenchymal stem cell chondrogenesis under hypertonic conditions.

    Science.gov (United States)

    Ahmadyan, Sorour; Kabiri, Mahboubeh; Tasharofi, Noushin; Hosseinzadeh, Simzar; Kehtari, Mousa; Hajari Zadeh, Athena; Soleimani, Masoud; Farazmand, Ali; Hanaee-Ahvaz, Hana

    2018-02-28

    Stem cells' fate during in vitro differentiation is influenced by biophysicochemical cues. Osmotic stress has proved to enhance chondrocyte marker expression, however its potent negative impacts had never been surveyed. We questioned whether specific osmotic conditions, regarding the osmolyte agent, could benefit chondrogenesis while dampening undesired concomitant hypertrophy and inflammatory responses. To examine the potential side effects of hypertonicity, we assessed cell proliferation as well as chondrogenic and hypertrophic marker expression of human Adipose Derived-MSC after a two week induction in chondrogenic media with either NaCl or Sorbitol, as the osmolyte agent to reach a +100 mOsm hypertonic condition. Calcium deposition and TNF-α secretion as markers associated with hypertrophy and inflammation were then assayed. While both hyperosmotic conditions upregulated chondrogenic markers, sorbitol had a nearly three times higher chondro-promotive effect and a lesser hypertrophic effect compared to NaCl. Also, a significantly lesser calcium deposition was observed in sorbitol hypertonic group. NaCl showed an anti-proinflammatory effect while sorbitol had no effect on inflammatory markers. The ossification potential and cartilage associated pathologic markers were affected differentially by the type of the osmolyte. Thus, a vigilant application of the osmotic agent is inevitable in order to avoid or reduce undesired hypertrophic and inflammatory phenotype acquisition by MSC during chondrogenic differentiation. Our findings are a step towards developing a more reliable chondrogenic regimen using external hypertonic cues for MSC chondrogenesis with potential applications in chondral lesions cell therapy.

  18. Three-dimensional scaffold-free fusion culture: the way to enhance chondrogenesis of in vitro propagated human articular chondrocytes

    Directory of Open Access Journals (Sweden)

    M. Lehmann

    2013-11-01

    Full Text Available Cartilage regeneration based on isolated and culture-expanded chondrocytes has been studied in various in vitro models, but the quality varies with respect to the morphology and the physiology of the synthesized tissues. The aim of our study was to promote in vitro chondrogenesis of human articular chondrocytes using a novel three-dimensional (3-D cultivation system in combination with the chondrogenic differentiation factors transforming growth factor beta 2 (TGF-b2 and L-ascorbic acid. Articular chondrocytes isolated from six elderly patients were expanded in monolayer culture. A single-cell suspension of the dedifferentiated chondrocytes was then added to agar-coated dishes without using any scaffold material, in the presence, or absence of TGF-b2 and/or L-ascorbic acid. Three-dimensional cartilage-like constructs, called single spheroids, and microtissues consisting of several spheroids fused together, named as fusions, were formed. Generated tissues were mainly characterized using histological and immunohistochemical techniques. The morphology of the in vitro tissues shared some similarities to native hyaline cartilage in regard to differentiated S100-positive chondrocytes within a cartilaginous matrix, with strong collagen type II expression and increased synthesis of proteoglycans. Finally, our innovative scaffold-free fusion culture technique supported enhanced chondrogenesis of human articular chondrocytes in vitro. These 3-D hyaline cartilage-like microtissues will be useful for in vitro studies of cartilage differentiation and regeneration, enabling optimization of functional tissue engineering and possibly contributing to the development of new approaches to treat traumatic cartilage defects or osteoarthritis.

  19. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy.

    Science.gov (United States)

    Shintani, Nahoko; Siebenrock, Klaus A; Hunziker, Ernst B

    2013-01-01

    Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2) induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2) and transforming growth factor beta 1 (TGF-ß1) were investigated. Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml) for 4 (or 6) weeks. FGF-2 (10 ng/ml) or TGF-ß1 (10 ng/ml) was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs) only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2), but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the

  20. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy.

    Directory of Open Access Journals (Sweden)

    Nahoko Shintani

    Full Text Available Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2 induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2 and transforming growth factor beta 1 (TGF-ß1 were investigated.Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml for 4 (or 6 weeks. FGF-2 (10 ng/ml or TGF-ß1 (10 ng/ml was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2, but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume.TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the

  1. Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions.

    Science.gov (United States)

    Khan, Wasim S; Adesida, Adetola B; Tew, Simon R; Lowe, Emma T; Hardingham, Timothy E

    2010-06-01

    Bone marrow-derived mesenchymal stem cells are a potential source of cells for the repair of articular cartilage defects. Hypoxia has been shown to improve chondrogenesis in some cells. In this study, bone marrow-derived stem cells were characterized and the effects of hypoxia on chondrogenesis investigated. Adherent bone marrow colony-forming cells were characterized for stem cell surface epitopes, and then cultured as cell aggregates in chondrogenic medium under normoxic (20% oxygen) or hypoxic (5% oxygen) conditions. The cells stained strongly for markers of adult mesenchymal stem cells, and a high number of cells were also positive for the pericyte marker 3G5. The cells showed a chondrogenic response in cell aggregate cultures and, in lowered oxygen, there was increased matrix accumulation of proteoglycan, but less cell proliferation. In hypoxia, there was increased expression of key transcription factor SOX6, and of collagens II and XI, and aggrecan. Pericytes are a candidate stem cell in many tissue, and our results show that bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5. The response to chondrogenic culture in these cells was enhanced by lowered oxygen tension. This has important implications for tissue engineering applications of bone marrow-derived stem cells. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Blocking p38 signalling inhibits chondrogenesis in vitro but not ankylosis in a model of ankylosing spondylitis in vivo.

    Science.gov (United States)

    Braem, Kirsten; Luyten, Frank P; Lories, Rik J U

    2012-05-01

    To investigate p38 mitogen activated protein kinase (MAPK) signalling in an in vitro model of bone morphogenetic protein (BMP) and transforming growth factor β (TGFβ)-induced chondrogenesis and in vivo, with specific attention to its potential role in ankylosing enthesitis. Human periosteum-derived cells (hPDCs) were cultured in pellets and stimulated with BMP2 or TGFβ1 in the presence or absence of a p38 inhibitor SB203580 or proinflammatory cytokines. Chondrogenic differentiation was evaluated using quantitative PCR. Male DBA/1 mice from different litters were caged together at the age of 8 weeks and treated with SB203580 in both a preventive and therapeutic strategy. The mice were evaluated for prospective signs of arthritis and the toe joints were analysed histologically to assess disease severity. p38 inhibition by SB203580 and proinflammatory cytokines downregulated chondrogenic markers in pellet cultures stimulated by BMP2 or TGFβ1. In contrast, the in vivo experiments resulted in an increased clinical incidence of arthritis and pathology severity score, reflecting progression towards ankylosis in mice given SB203580. Inhibition of p38 inhibited chondrogenic differentiation of progenitor cells, showing that not only the SMAD signalling pathways and also alternative activation of MAPKs including p38 contribute to chondrogenesis. Such an inhibitory effect is not found in an in vivo model of joint ankylosis and spondyloarthritis. Increased incidence and severity of disease in preventive experiments and shifts in disease stages in a therapeutic experimental set-up suggest that specific inhibition of p38 may have deleterious rather than beneficial effects.

  3. Effect of parathyroid hormone-related protein in an in vitro hypertrophy model for mesenchymal stem cell chondrogenesis.

    Science.gov (United States)

    Mueller, Michael B; Fischer, Maria; Zellner, Johannes; Berner, Arne; Dienstknecht, Thomas; Kujat, Richard; Prantl, Lukas; Nerlich, Michael; Tuan, Rocky S; Angele, Peter

    2013-05-01

    Mesenchymal stem cells (MSCs) express markers of hypertrophic chondrocytes during chondrogenic differentiation. We tested the suitability of parathyroid hormone-related protein (PTHrP), a regulator of chondrocyte hypertrophy in embryonic cartilage development, for the suppression of hypertrophy in an in vitro hypertrophy model of chondrifying MSCs. Chondrogenesis was induced in human MSCs in pellet culture for two weeks and for an additional two weeks cultures were either maintained in standard chondrogenic medium or transferred to a hypertrophy-enhancing medium. PTHrP(1-40) was added to the medium throughout the culture period at concentrations from 1 to 1,000 pM. Pellets were harvested on days one, 14 and 28 for biochemical and histological analysis. Hypertrophic medium clearly enhanced the hypertrophic phenotype, with increased cell size, and strong alkaline phosphatase (ALP) and type X collagen staining. In chondrogenic medium, 1-100 pM PTHrP(1-40) did not inhibit chondrogenic differentiation, whereas 1,000 pM PTHrP(1-40) significantly reduced chondrogenesis. ALP activity was dose-dependently reduced by PTHrP(1-40) at 10-1,000 pM in chondrogenic conditions. Under hypertrophy-enhancing conditions, PTHrP(1-40) did not inhibit the induction of the hypertrophy. At the highest concentration (1,000 pM) in the hypertrophic group, aggregates were partially dedifferentiated and differentiated areas of these aggregates maintained their hypertrophic appearance. PTHrP(1-40) treatment dose-dependently reduced ALP expression in MSC pellets cultured under standard chondrogenic conditions and is thus beneficial for the maintenance of the chondrogenic phenotype in this medium condition. When cultured under hypertrophy-enhancing conditions, PTHrP(1-40) could not diminish the induced enhancement of hypertrophy in the MSC pellets.

  4. Insulin-Like Growth Factor-Independent Effects of Growth Hormone on Growth Plate Chondrogenesis and Longitudinal Bone Growth.

    Science.gov (United States)

    Wu, Shufang; Yang, Wei; De Luca, Francesco

    2015-07-01

    GH stimulates growth plate chondrogenesis and longitudinal bone growth directly at the growth plate. However, it is not clear yet whether these effects are entirely mediated by the local expression and action of IGF-1 and IGF-2. To determine whether GH has any IGF-independent growth-promoting effects, we generated (TamCart)Igf1r(flox/flox) mice. The systemic injection of tamoxifen in these mice postnatally resulted in the excision of the IGF-1 receptor (Igf1r) gene exclusively in the growth plate. (TamCart)Igf1r(flox/flox) tamoxifen-treated mice [knockout (KO) mice] and their Igf1r(flox/flox) control littermates (C mice) were injected for 4 weeks with GH. At the end of the 4-week period, the tibial growth and growth plate height of GH-treated KO mice were greater than those of untreated C or untreated KO mice. The systemic injection of GH increased the phosphorylation of Janus kinase 2 and signal transducer and activator of transcription 5B in the tibial growth plate of the C and KO mice. In addition, GH increased the mRNA expression of bone morphogenetic protein-2 and the mRNA expression and protein phosphorylation of nuclear factor-κB p65 in both C and KO mice. In cultured chondrocytes transfected with Igf1r small interfering RNA, the addition of GH in the culture medium significantly induced thymidine incorporation and collagen X mRNA expression. In conclusion, our findings demonstrate that GH can promote growth plate chondrogenesis and longitudinal bone growth directly at the growth plate, even when the local effects of IGF-1 and IGF-2 are prevented. Further studies are warranted to elucidate the intracellular molecular mechanisms mediating the IGF-independent, growth-promoting GH effects.

  5. Electroporation-mediated transfer of SOX trio genes (SOX-5, SOX-6, and SOX-9) to enhance the chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Kim, Hye-Joung; Im, Gun-Il

    2011-12-01

    The purpose of this study was to test the hypothesis that the SOX trio genes (SOX-5, SOX-6, and SOX-9) have a lower level of expression during the chondrogenic differentiation of mesenchymal stem cells (MSCs) compared with chondrocytes and that the electroporation-mediated gene transfer of SOX trio promotes chondrogenesis from human MSCs. An in vitro pellet culture was carried out using MSCs or chondrocytes at passage 3 and analyzed after 7 and 21 days. Then, MSCs were transfected with SOX trio genes and analyzed for the expression of chondrogenic markers after 21 days of in vitro culture. Without transforming growth factor-β1, the untransfected MSCs had a lower level of SOX trio gene and protein expression than chondrocytes. However, the level of SOX-9 gene expression increased in MSCs when treated with transforming growth factor-β1. GAG level significantly increased 7-fold in MSCs co-transfected with SOX trio, which was corroborated by Safranin-O staining. SOX trio co-transfection significantly increased COL2A1 gene and protein and decreased COL10A1 protein in MSCs. It is concluded that the SOX trio have a significantly lower expression in human MSCs than in chondrocytes and that the electroporation-mediated co-transfection of SOX trio enhances chondrogenesis and suppresses hypertrophy of human MSCs.

  6. Chloride channels regulate chondrogenesis in chicken mandibular mesenchymal cells.

    Science.gov (United States)

    Tian, Meiyu; Duan, Yinzhong; Duan, Xiaohong

    2010-12-01

    Voltage gated chloride channels (ClCs) play an important role in the regulation of intracellular pH and cell volume homeostasis. Mutations of these genes result in genetic diseases with abnormal bone deformation and body size, indicating that ClCs may have a role in chondrogenesis. In the present study, we isolated chicken mandibular mesenchymal cells (CMMC) from Hamburg-Hamilton (HH) stage 26 chick embryos and induced chondrocyte maturation by using ascorbic acid and β-glycerophosphate (AA-BGP). We also determined the effect of the chloride channel inhibitor NPPB [5-nitro-2-(3-phenylpropylamino) benzoic acid] on regulation of growth, differentiation, and gene expression in these cells using MTT and real-time PCR assays. We found that CLCN1 and CLCN3-7 mRNA were expressed in CMMC and NPPB reduced expression of CLCN3, CLCN5, and CLCN7 mRNA in these cells. At the same time, NPPB inhibited the growth of the CMMC, but had no effect on the mRNA level of cyclin D1 and cyclin E (P>0.05) with/without AA-BGP treatment. AA-BGP increased markers for early chondrocyte differentiation including type II collagen, aggrecan (Ptype X collagen. NPPB antagonized AA-BGP-induced expression of type II collagen and aggrecan (Ptype X collagen (PType X collagen might function as a target of chloride channel inhibitors during the differentiation process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Interaction of TGFβ and BMP signaling pathways during chondrogenesis.

    Directory of Open Access Journals (Sweden)

    Bettina Keller

    2011-01-01

    Full Text Available TGFβ and BMP signaling pathways exhibit antagonistic activities during the development of many tissues. Although the crosstalk between BMP and TGFβ signaling pathways is well established in bone development, the relationship between these two pathways is less well defined during cartilage development and postnatal homeostasis. We generated hypomorphic mouse models of cartilage-specific loss of BMP and TGFβ signaling to assess the interaction of these pathways in postnatal growth plate homeostasis. We further used the chondrogenic ATDC5 cell line to test effects of BMP and TGFβ signaling on each other's downstream targets. We found that conditional deletion of Smad1 in chondrocytes resulted in a shortening of the growth plate. The addition of Smad5 haploinsufficiency led to a more severe phenotype with shorter prehypertrophic and hypertrophic zones and decreased chondrocyte proliferation. The opposite growth plate phenotype was observed in a transgenic mouse model of decreased chondrocytic TGFβ signaling that was generated by expressing a dominant negative form of the TGFβ receptor I (ΔTβRI in cartilage. Histological analysis demonstrated elongated growth plates with enhanced Ihh expression, as well as an increased proliferation rate with altered production of extracellular matrix components. In contrast, in chondrogenic ATDC5 cells, TGFβ was able to enhance BMP signaling, while BMP2 significantly reduces levels of TGF signaling. In summary, our data demonstrate that during endochondral ossification, BMP and TGFβ signaling can have antagonistic effects on chondrocyte proliferation and differentiation in vivo. We also found evidence of direct interaction between the two signaling pathways in a cell model of chondrogenesis in vitro.

  8. Sodium Tungstate for Promoting Mesenchymal Stem Cell Chondrogenesis.

    Science.gov (United States)

    Khader, Ateka; Sherman, Lauren S; Rameshwar, Pranela; Arinzeh, Treena L

    2016-12-15

    Articular cartilage has a limited ability to heal. Mesenchymal stem cells (MSCs) derived from the bone marrow have shown promise as a cell type for cartilage regeneration strategies. In this study, sodium tungstate (Na 2 WO 4 ), which is an insulin mimetic, was evaluated for the first time as an inductive factor to enhance human MSC chondrogenesis. MSCs were seeded onto three-dimensional electrospun scaffolds in growth medium (GM), complete chondrogenic induction medium (CCM) containing insulin, and CCM without insulin. Na 2 WO 4 was added to the media leading to final concentrations of 0, 0.01, 0.1, and 1 mM. Chondrogenic differentiation was assessed by biochemical analyses, immunostaining, and gene expression. Cytotoxicity using human peripheral blood mononuclear cells (PBMCS) was also investigated. The chondrogenic differentiation of MSCs was enhanced in the presence of low concentrations of Na 2 WO 4 compared to control, without Na 2 WO 4 . In the induction medium containing insulin, cells in 0.01 mM Na 2 WO 4 produced significantly higher sulfated glycosaminoglycans, collagen type II, and chondrogenic gene expression than all other groups at day 28. Cells in 0.1 mM Na 2 WO 4 had significantly higher collagen II production and significantly higher sox-9 and aggrecan gene expression compared to control at day 28. Cells in GM and induction medium without insulin containing low concentrations of Na 2 WO 4 also expressed chondrogenic markers. Na 2 WO 4 did not stimulate PBMC proliferation or apoptosis. The results demonstrate that Na 2 WO 4 enhances chondrogenic differentiation of MSCs, does not have a toxic effect, and may be useful for MSC-based approaches for cartilage repair.

  9. Hypoxia impedes hypertrophic chondrogenesis of human multipotent stromal cells.

    Science.gov (United States)

    Gawlitta, Debby; van Rijen, Mattie H P; Schrijver, Edmée J M; Alblas, Jacqueline; Dhert, Wouter J A

    2012-10-01

    as for endochondral bone tissue engineering, as these approaches deal with, respectively, the inhibition or enhancement of hypertrophic chondrogenesis.

  10. Bone morphogenetic protein-7 promotes chondrogenesis in human amniotic epithelial cells.

    Science.gov (United States)

    Zhou, Junjie; Yu, Guangrong; Cao, Chengfu; Pang, Jinhui; Chen, Xianqi

    2011-06-01

    Bone morphogenetic proteins (BMPs) play important roles at multiple stages of chondrogenesis. This study was undertaken to investigate the potential role of bone morphogenetic protein-7 (BMP-7) in the differentiation of chondrocytes using tissue engineering techniques. The impact of BMP-7 on human amniotic epithelial cells (hAECs) was tested. The hAECs were treated either with recombinant human BMP-7 cDNA or with transforming growth factor beta 1 (TGF-β1) as a positive control for three weeks in vitro. Cartilaginous differentiation and proliferation were assayed by quantitative RT-PCR, histology, and in situ hybridization. Our results were such that hAECs treated with either BMP-7 or TGF-β1 expressed cartilage markers (aggrecan, Sox9, CEP-68, and type II and X collagens) within three weeks. Compared with a control vector, BMP-7 induced a decrease in type I collagen expression, while the transcription of the cartilage-specific type II collagen remained stable. In induction experiments, BMP-7 transgenic hAECs exhibited the largest amount of matrix synthesis. In conclusion, these data indicate that BMP-7 plays an important role in inducing the production of cartilage by hAECs in vitro. Cartilage differentiation and matrix maturation can be promoted by BMPs in a cartilage engineering paradigm. These properties make BMPs promising tools in the engineering of cartilaginous joint bio-prostheses and as candidate biological agents or genes for cartilage stabilisation.

  11. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells.

    Science.gov (United States)

    Murphy, Meghan K; Huey, Daniel J; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-03-01

    Replacement of degenerated cartilage with cell-based cartilage products may offer a long-term solution to halt arthritis' degenerative progression. Chondrocytes are frequently used in cell-based FDA-approved cartilage products; yet human marrow-derived stromal cells (hMSCs) show significant translational potential, reducing donor site morbidity and maintaining their undifferentiated phenotype with expansion. This study sought to investigate the effects of transforming growth factor β1 (TGF-β1), growth/differentiation factor 5 (GDF-5), and bone morphogenetic protein 2 (BMP-2) during postexpansion chondrogenesis in human articular chondrocytes (hACs) and to compare chondrogenesis in passaged hACs with that of passaged hMSCs. Through serial expansion, chondrocytes dedifferentiated, decreasing expression of chondrogenic genes while increasing expression of fibroblastic genes. However, following expansion, 10 ng/mL TGF-β1, 100 ng/mL GDF-5, or 100 ng/mL BMP-2 supplementation during three-dimensional aggregate culture each upregulated one or more markers of chondrogenic gene expression in both hACs and hMSCs. Additionally, in both cell types, the combination of TGF-β1, GDF-5, and BMP-2 induced the greatest upregulation of chondrogenic genes, that is, Col2A1, Col2A1/Col1A1 ratio, SOX9, and ACAN, and synthesis of cartilage-specific matrix, that is, glycosaminoglycans (GAGs) and ratio of collagen II/I. Finally, TGF-β1, GDF-5, and BMP-2 stimulation yielded mechanically robust cartilage rich in collagen II and GAGs in both cell types, following 4 weeks maturation. This study illustrates notable success in using the self-assembling method to generate robust, scaffold-free neocartilage constructs using expanded hACs and hMSCs. © 2014 AlphaMed Press.

  12. Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues.

    Science.gov (United States)

    Kim, Iris L; Khetan, Sudhir; Baker, Brendon M; Chen, Christopher S; Burdick, Jason A

    2013-07-01

    Electrospinning has recently gained much interest due to its ability to form scaffolds that mimic the nanofibrous nature of the extracellular matrix, such as the size and depth-dependent alignment of collagen fibers within hyaline cartilage. While much progress has been made in developing bulk, isotropic hydrogels for tissue engineering and understanding how the microenvironment of such scaffolds affects cell response, these effects have not been extensively studied in a nanofibrous system. Here, we show that the mechanics (through intrafiber crosslink density) and adhesivity (through RGD density) of electrospun hyaluronic acid (HA) fibers significantly affect human mesenchymal stem cell (hMSC) interactions and gene expression. Specifically, hMSC spreading, proliferation, and focal adhesion formation were dependent on RGD density, but not on the range of fiber mechanics investigated. Moreover, traction-mediated fiber displacements generally increased with more adhesive fibers. The expression of chondrogenic markers, unlike trends in cell spreading and cytoskeletal organization, was influenced by both fiber mechanics and adhesivity, in which softer fibers and lower RGD densities generally enhanced chondrogenesis. This work not only reveals concurrent effects of mechanics and adhesivity in a fibrous context, but also highlights fibrous HA hydrogels as a promising scaffold for future cartilage repair strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. MEK/ERK and p38 MAPK regulate chondrogenesis of rat bone marrow mesenchymal stem cells through delicate interaction with TGF-beta1/Smads pathway.

    Science.gov (United States)

    Li, J; Zhao, Z; Liu, J; Huang, N; Long, D; Wang, J; Li, X; Liu, Y

    2010-08-01

    This study was carried out to reveal functions and mechanisms of MEK/ERK and p38 pathways in chondrogenesis of rat bone marrow mesenchymal stem cells (BMSCs), and to investigate further any interactions between the mitogen-activated protein kinase (MAPK) and transforming growth factor-beta1 (TGF-beta1)/Smads pathway in the process. Chondrogenic differentiation of rat BMSCs was initiated in micromass culture, in the presence of TGF-beta1, for 2 weeks. ERK1/2 and p38 kinase activities were investigated by Western Blot analysis. Specific MAPK inhibitors PD98059 and SB20350 were employed to investigate regulatory effects of MEK/ERK and p38 signals on gene expression of chondrocyte-specific markers, and TGF-beta1 downstream pathways of Smad2/3. ERK1/2 was phosphorylated in a rapid but transient manner, whereas p38 was activated in a slow and sustained way. The two MAPK subtypes played opposing roles in mediating transcription of cartilage-specific genes for Col2alpha and aggrecan. TGF-beta1-stimulated gene expression of chondrogenic regulators, Sox9, Runx2 and Ihh, was also affected by activity of PD98059 and SB203580, to different degrees. However, influences of MAPK inhibitors on gene expression were relatively minor when not treated with TGF-beta1. In addition, gene transcription of Smad2/3 was significantly upregulated by TGF-beta1, but was regulated more subtly by treatment with MAPK inhibitors. MAPK subtypes seemed to regulate chondrogenesis with a delicate balance, interacting with the TGF-beta1/Smads signalling pathway.

  14. Chondrogenesis of Embryonic Stem Cell-Derived Mesenchymal Stem Cells Induced by TGFβ1 and BMP7 Through Increased TGFβ Receptor Expression and Endogenous TGFβ1 Production.

    Science.gov (United States)

    Lee, Patrick T; Li, Wan-Ju

    2017-01-01

    For decades stem cells have proven to be invaluable to the study of tissue development. More recently, mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) (ESC-MSCs) have emerged as a cell source with great potential for the future of biomedical research due to their enhanced proliferative capability compared to adult tissue-derived MSCs and effectiveness of musculoskeletal lineage-specific cell differentiation compared to ESCs. We have previously compared the properties and differentiation potential of ESC-MSCs to bone marrow-derived MSCs. In this study, we evaluated the potential of TGFβ1 and BMP7 to induce chondrogenic differentiation of ESC-MSCs compared to that of TGFβ1 alone and further investigated the cellular phenotype and intracellular signaling in response to these induction conditions. Our results showed that the expression of cartilage-associated markers in ESC-MSCs induced by the TGFβ1 and BMP7 combination was increased compared to induction with TGFβ1 alone. The TGFβ1 and BMP7 combination upregulated the expression of TGFβ receptor and the production of endogenous TGFβs compared to TGFβ1 induction. The growth factor combination also increasingly activated both of the TGF and BMP signaling pathways, and inhibition of the signaling pathways led to reduced chondrogenesis of ESC-MSCs. Our findings suggest that by adding BMP7 to TGFβ1-supplemented induction medium, ESC-MSC chondrogenesis is upregulated through increased production of endogenous TGFβ and activities of TGFβ and BMP signaling. J. Cell. Biochem. 118: 172-181, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study.

    Science.gov (United States)

    Sha'ban, Munirah; Kim, Soon Hee; Idrus, Ruszymah Bh; Khang, Gilson

    2008-04-25

    Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid) (PLGA) are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 x 10(6) cells/scaffold) and polymerized by dropping thrombin-calcium chloride (CaCl2) solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl)-2-, 5-diphenyltetrazolium-bromide (MTT) assay. Morphological observation, histology, immunohistochemistry (IHC), gene expression and sulphated-glycosaminoglycan (sGAG) analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM). Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG) in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further demonstrated by the expression of genes encoded for

  16. Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures.

    Science.gov (United States)

    Juhász, Tamás; Matta, Csaba; Somogyi, Csilla; Katona, Éva; Takács, Roland; Soha, Rudolf Ferenc; Szabó, István A; Cserháti, Csaba; Sződy, Róbert; Karácsonyi, Zoltán; Bakó, Eva; Gergely, Pál; Zákány, Róza

    2014-03-01

    Biomechanical stimuli play important roles in the formation of articular cartilage during early foetal life, and optimal mechanical load is a crucial regulatory factor of adult chondrocyte metabolism and function. In this study, we undertook to analyse mechanotransduction pathways during in vitro chondrogenesis. Chondroprogenitor cells isolated from limb buds of 4-day-old chicken embryos were cultivated as high density cell cultures for 6 days. Mechanical stimulation was carried out by a self-designed bioreactor that exerted uniaxial intermittent cyclic load transmitted by the culture medium as hydrostatic pressure and fluid shear to differentiating cells. The loading scheme (0.05 Hz, 600 Pa; for 30 min) was applied on culturing days 2 and 3, when final commitment and differentiation of chondroprogenitor cells occurred in this model. The applied mechanical load significantly augmented cartilage matrix production and elevated mRNA expression of several cartilage matrix constituents, including collagen type II and aggrecan core protein, as well as matrix-producing hyaluronan synthases through enhanced expression, phosphorylation and nuclear signals of the main chondrogenic transcription factor Sox9. Along with increased cAMP levels, a significantly enhanced protein kinase A (PKA) activity was also detected and CREB, the archetypal downstream transcription factor of PKA signalling, exhibited elevated phosphorylation levels and stronger nuclear signals in response to mechanical stimuli. All the above effects were diminished by the PKA-inhibitor H89. Inhibition of the PKA-independent cAMP-mediators Epac1 and Epac2 with HJC0197 resulted in enhanced cartilage formation, which was additive to that of the mechanical stimulation, implying that the chondrogenesis-promoting effect of mechanical load was independent of Epac. At the same time, PP2A activity was reduced following mechanical load and treatments with the PP2A-inhibitor okadaic acid were able to mimic the effects of

  17. The Nuclear Factor of Activated T Cells (Nfat) Transcription Factor Nfatp (Nfatc2) Is a Repressor of Chondrogenesis

    Science.gov (United States)

    Ranger, Ann M.; Gerstenfeld, Louis C.; Wang, Jinxi; Kon, Tamiyo; Bae, Hyunsu; Gravallese, Ellen M.; Glimcher, Melvin J.; Glimcher, Laurie H.

    2000-01-01

    Nuclear factor of activated T cells (NFAT) transcription factors regulate gene expression in lymphocytes and control cardiac valve formation. Here, we report that NFATp regulates chondrogenesis in the adult animal. In mice lacking NFATp, resident cells in the extraarticular connective tissues spontaneously differentiate to cartilage. These cartilage cells progressively differentiate and the tissue undergoes endochondral ossification, recapitulating the development of endochondral bone. Proliferation of already existing articular cartilage cells also occurs in some older animals. At both sites, neoplastic changes in the cartilage cells occur. Consistent with these data, NFATp expression is regulated in mesenchymal stem cells induced to differentiate along a chondrogenic pathway. Lack of NFATp in articular cartilage cells results in increased expression of cartilage markers, whereas overexpression of NFATp in cartilage cell lines extinguishes the cartilage phenotype. Thus, NFATp is a repressor of cartilage cell growth and differentiation and also has the properties of a tumor suppressor. PMID:10620601

  18. Sulfoxide stimulation of chondrogenesis in limb mesenchyme is accompanied by an increase in type II collagen enhancer activity

    International Nuclear Information System (INIS)

    Horton, W.E. Jr.; Higginbotham, J.D.

    1991-01-01

    We have utilized a modification of the limb bud mesenchyme micromass culture system to screen compounds that might stimulate chondrogenesis. Two compounds in the sulfoxide family (methylphenylsulfoxide and p-chlorophenyl methyl sulfoxide) were stimulatory at 10(-2) M and 10(-3) M, respectively; whereas other sulfoxides and organic solvents were not active at these concentrations. In addition, specific growth factors (basic FGF, IGF-I, IGF-II) were not chondroinductive at concentrations that are active in other cell systems. Both sulfoxide compounds stimulated cartilage nodule formation, [ 35 S]sulfate incorporation, and activity of the regulatory sequences of the collagen II gene. In contrast, transforming growth factor beta-1 (10 ng/ml) stimulated sulfate incorporation but produced only a diffuse deposition of cartilage matrix and reduced the ability of the cells to utilize the regulatory sequences of the collagen II gene. The sulfoxides appear to promote the differentiation of limb bud cells to chondrocytes and thus exhibit chondroinductive activity

  19. A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model.

    Science.gov (United States)

    Fu, Wei-Li; Zhou, Chun-Yan; Yu, Jia-Kuo

    2014-03-01

    Bone marrow (BM) has been considered as a major source of mesenchymal stem cells (MSCs), but it has many disadvantages in clinical application. However, MSCs from peripheral blood (PB) could be obtained by a less invasive method and be more beneficial for autologous transplantation than BM MSCs, which makes PB a promising source for articular cartilage repair in clinical use. To assess whether MSCs from mobilized PB of New Zealand White rabbits have similar biological characteristics in vitro and chondrogenesis in vivo as BM MSCs. Controlled laboratory study. A combined method of drug administration containing granulocyte colony stimulating factor (G-CSF) plus CXCR4 antagonist AMD3100 was adopted to mobilize the PB stem cells of adult New Zealand White rabbits in vitro. The isolated cells were identified as MSCs by morphological characteristics, surface markers, and differentiation potentials. A comparison between PB MSCs and BM MSCs was made in terms of biological characteristics in vitro and chondrogenesis in vivo. This issue was investigated from the aspects of morphology, immune phenotype, multiple differentiation capacity, expansion potential, antiapoptotic capacity, and ability to repair cartilage defects in vivo of PB MSCs compared with BM MSCs. Peripheral blood MSCs were successfully mobilized by the method of combined drug administration, then isolated, expanded, and identified in vitro. No significant difference was found concerning the morphology, immune phenotype, and antiapoptotic capacity between PB MSCs and BM MSCs. Significantly, MSCs from both sources compounded with decalcified bone matrix showed the same ability to repair cartilage defects in vivo. For multipluripotency, BM MSCs exhibited a more osteogenic potential and higher proliferation capacity than PB MSCs, whereas PB MSCs possessed a stronger adipogenic and chondrogenic differentiation potential than BM MSCs in vitro. Although there are some differences in the proliferation and

  20. Cytomegalovirus induces abnormal chondrogenesis and osteogenesis during embryonic mandibular development

    Directory of Open Access Journals (Sweden)

    Bringas Pablo

    2008-03-01

    Full Text Available Abstract Background Human clinical studies and mouse models clearly demonstrate that cytomegalovirus (CMV disrupts normal organ and tissue development. Although CMV is one of the most common causes of major birth defects in humans, little is presently known about the mechanism(s underlying CMV-induced congenital malformations. Our prior studies have demonstrated that CMV infection of first branchial arch derivatives (salivary glands and teeth induced severely abnormal phenotypes and that CMV has a particular tropism for neural crest-derived mesenchyme (NCM. Since early embryos are barely susceptible to CMV infection, and the extant evidence suggests that the differentiation program needs to be well underway for embryonic tissues to be susceptible to viral infection and viral-induced pathology, the aim of this study was to determine if first branchial arch NCM cells are susceptible to mCMV infection prior to differentiation of NCM derivatives. Results E11 mouse mandibular processes (MANs were infected with mouse CMV (mCMV for up to 16 days in vitro. mCMV infection of undifferentiated embryonic mouse MANs induced micrognathia consequent to decreased Meckel's cartilage chondrogenesis and mandibular osteogenesis. Specifically, mCMV infection resulted in aberrant stromal cellularity, a smaller, misshapen Meckel's cartilage, and mandibular bone and condylar dysmorphogenesis. Analysis of viral distribution indicates that mCMV primarily infects NCM cells and derivatives. Initial localization studies indicate that mCMV infection changed the cell-specific expression of FN, NF-κB2, RelA, RelB, and Shh and Smad7 proteins. Conclusion Our results indicate that mCMV dysregulation of key signaling pathways in primarily NCM cells and their derivatives severely disrupts mandibular morphogenesis and skeletogenesis. The pathogenesis appears to be centered around the canonical and noncanonical NF-κB pathways, and there is unusual juxtaposition of abnormal stromal

  1. Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Sawatjui, Nopporn; Damrongrungruang, Teerasak; Leeanansaksiri, Wilairat; Jearanaikoon, Patcharee; Hongeng, Suradej; Limpaiboon, Temduang

    2015-01-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid (SF-GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF-GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF-GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF-GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Fibrin and poly(lactic-co-glycolic acid hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study

    Directory of Open Access Journals (Sweden)

    Idrus Ruszymah BH

    2008-04-01

    Full Text Available Abstract Background Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid (PLGA are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. Methods PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 × 106cells/scaffold and polymerized by dropping thrombin-calcium chloride (CaCl2 solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl-2-, 5-diphenyltetrazolium-bromide (MTT assay. Morphological observation, histology, immunohistochemistry (IHC, gene expression and sulphated-glycosaminoglycan (sGAG analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM. Results Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further

  3. Influence of oxygen levels on chondrogenesis of porcine mesenchymal stem cells cultured in polycaprolactone scaffolds.

    Science.gov (United States)

    Rodenas-Rochina, Joaquin; Kelly, Daniel J; Gómez Ribelles, Jose Luis; Lebourg, Myriam

    2017-06-01

    Chondrogenesis of mesenchymal stem cells (MSCs) is known to be regulated by a number of environmental factors, including local oxygen levels. The hypothesis of this study is that the response of MSCs to hypoxia is dependent on the physical and chemical characteristics of the substrate used. The objective of this study was to explore how different modifications to polycaprolactone (PCL) scaffolds influenced the response of MSCs to hypoxia. PCL, PCL-hyaluronic acid (HA), and PCL-Bioglass ® (BG) scaffolds were seeded with MSCs derived from bone marrow and cultured for 35 days under normoxic or low oxygen conditions, and the resulting biochemical properties of the MSC laden construct were assessed. Low oxygen tension has a positive effect over cell proliferation and macromolecules biosynthesis. Furthermore, hypoxia enhanced the distribution of collagen and glycosaminoglycans (GAGs) deposition through the scaffold. On the other hand, MSCs displayed certain material dependent responses to hypoxia. Low oxygen tension had a positive effect on cell proliferation in BG and HA scaffolds, but only a positive effect on GAGs synthesis in PCL and HA scaffolds. In conclusion, hypoxia increased cell viability and expression of chondrogenic markers but the cell response was modulated by the type of scaffold used. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1684-1691, 2017. © 2017 Wiley Periodicals, Inc.

  4. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes.

    Science.gov (United States)

    Li, Xingfu; Duan, Li; Liang, Yujie; Zhu, Weimin; Xiong, Jianyi; Wang, Daping

    2016-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs) and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2) and decreased type I collagen (COL1) protein expression levels. SRY-box 9 (SOX9) mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  5. Implantation of Octacalcium Phosphate Stimulates both Chondrogenesis and Osteogenesis in the Tibia, but Only Osteogenesis in the Rat Mandible

    Directory of Open Access Journals (Sweden)

    F. Sargolzaei Aval

    2006-09-01

    Full Text Available Statement of problem: It is not known whether endochondral and intramembranous bones have distinct biological characteristics. Octacalcium Phosphate (OCP, a hydroxyapatite precursor, has been reported to stimulate bone formation after being implanted in parietal bone defects of rats.Purpose: The present study was designed to investigate the response of endochondral and intramembranous bones to OCP implantation and to compare their biological characteristicsMaterials and Methods: Full-thickness standardized trephine defects were made in rat tibiae and mandibles and synthetic OCP was implanted into the defects. The biologic response was examined histologically to identify bone and cartilage formation.Results: Both chondrogenesis and osteogenesis were initiated in the tibia, 1 week after implantation of OCP and most of the cartilage was replaced by bone at week 2.However, the mandible only showed osteogenesis in response to OCP implantation at week 2, and no cartilage formation was associated with the osteogenesis.Conclusions: According to the results obtained in the present study, endochondral and intramembranous bones exhibit different biological responses to OCP implantation in rats.

  6. Conditional Expression of Wnt4 during Chondrogenesis Leads to Dwarfism in Mice

    Science.gov (United States)

    Lee, Hu-Hui; Behringer, Richard R.

    2007-01-01

    Wnts are expressed in the forming long bones, suggesting roles in skeletogenesis. To examine the action of Wnts in skeleton formation, we developed a genetic system to conditionally express Wnt4 in chondrogenic tissues of the mouse. A mouse Wnt4 cDNA was introduced into the ubiquitously expressed Rosa26 (R26) locus by gene targeting in embryonic stem (ES) cells. The expression of Wnt4 from the R26 locus was blocked by a neomycin selection cassette flanked by loxP sites (floxneo) that was positioned between the Rosa26 promoter and the Wnt4 cDNA, creating the allele designated R26floxneoWnt4. Wnt4 expression was activated during chondrogenesis using Col2a1-Cre transgenic mice that express Cre recombinase in differentiating chondrocytes. R26floxneoWnt4; Col2a1-Cre double heterozygous mice exhibited a growth deficiency, beginning approximately 7 to 10 days after birth, that resulted in dwarfism. In addition, they also had craniofacial abnormalities, and delayed ossification of the lumbar vertebrae and pelvic bones. Histological analysis revealed a disruption in the organization of the growth plates and a delay in the onset of the primary and secondary ossification centers. Molecular studies showed that Wnt4 overexpression caused decreased proliferation and altered maturation of chondrocytes. In addition, R26floxneoWnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF). These studies demonstrate that Wnt4 overexpression leads to dwarfism in mice. The data indicate that Wnt4 levels must be regulated in chondrocytes for normal growth plate development and skeletogenesis. Decreased VEGF expression suggests that defects in vascularization may contribute to the dwarf phenotype. PMID:17505543

  7. Conditional expression of Wnt4 during chondrogenesis leads to dwarfism in mice.

    Directory of Open Access Journals (Sweden)

    Hu-Hui Lee

    Full Text Available Wnts are expressed in the forming long bones, suggesting roles in skeletogenesis. To examine the action of Wnts in skeleton formation, we developed a genetic system to conditionally express Wnt4 in chondrogenic tissues of the mouse. A mouse Wnt4 cDNA was introduced into the ubiquitously expressed Rosa26 (R26 locus by gene targeting in embryonic stem (ES cells. The expression of Wnt4 from the R26 locus was blocked by a neomycin selection cassette flanked by loxP sites (floxneo that was positioned between the Rosa26 promoter and the Wnt4 cDNA, creating the allele designated R26(floxneoWnt4. Wnt4 expression was activated during chondrogenesis using Col2a1-Cre transgenic mice that express Cre recombinase in differentiating chondrocytes. R26(floxneoWnt4; Col2a1-Cre double heterozygous mice exhibited a growth deficiency, beginning approximately 7 to 10 days after birth, that resulted in dwarfism. In addition, they also had craniofacial abnormalities, and delayed ossification of the lumbar vertebrae and pelvic bones. Histological analysis revealed a disruption in the organization of the growth plates and a delay in the onset of the primary and secondary ossification centers. Molecular studies showed that Wnt4 overexpression caused decreased proliferation and altered maturation of chondrocytes. In addition, R26(floxneoWnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF. These studies demonstrate that Wnt4 overexpression leads to dwarfism in mice. The data indicate that Wnt4 levels must be regulated in chondrocytes for normal growth plate development and skeletogenesis. Decreased VEGF expression suggests that defects in vascularization may contribute to the dwarf phenotype.

  8. Autologous Matrix-Induced Chondrogenesis: A Systematic Review of the Clinical Evidence.

    Science.gov (United States)

    Gao, Liang; Orth, Patrick; Cucchiarini, Magali; Madry, Henning

    2017-11-01

    The addition of a type I/III collagen membrane in cartilage defects treated with microfracture has been advocated for cartilage repair, termed "autologous matrix-induced chondrogenesis" (AMIC). To examine the current clinical evidence regarding AMIC for focal chondral defects. Systematic review. A systematic review was performed by searching PubMed, ScienceDirect, and Cochrane Library databases. Inclusion criteria were clinical studies of AMIC for articular cartilage repair, written in English. Relative data were extracted and critically analyzed. PRISMA guidelines were applied, the methodological quality of the included studies was assessed by the modified Coleman Methodology Score (CMS), and aggregate data were generated. Twenty-eight clinical articles were included: 12 studies (245 patients) of knee cartilage defects, 12 studies (214 patients) of ankle cartilage defects, and 4 studies (308 patients) of hip cartilage defects. The CMS demonstrated a suboptimal study design in the majority of published studies (knee, 57.8; ankle, 55.3; hip, 57.7). For the knee, 1 study reported significant clinical improvements for AMIC compared with microfracture for medium-sized cartilage defects (mean defect size 3.6 cm 2 ) after 5 years (level of evidence, 1). No study compared AMIC with matrix-assisted autologous chondrocyte implantation (ACI) in the knee. For the ankle, no clinical trial was available comparing AMIC versus microfracture or ACI. In the hip, only one analysis (level of evidence, 3) compared AMIC with microfracture for acetabular lesions. For medium-sized acetabular defects, one study (level of evidence, 3) found no significant differences between AMIC and ACI at 5 years. Specific aspects not appropriately discussed in the currently available literature include patient-related factors, membrane fixation, and defect properties. No treatment-related adverse events were reported. This systematic review reveals a paucity of high-quality, randomized controlled

  9. RhoA/Rho kinase signaling regulates transforming growth factor-β1-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Smad pathway.

    Science.gov (United States)

    Xu, Ting; Wu, Mengjie; Feng, Jianying; Lin, Xinping; Gu, Zhiyuan

    2012-11-01

    Recent studies have suggested that synovium-derived mesenchymal stem cells (SMSCs) may be promising candidates for tissue engineering and play an important role in cartilage regeneration. However, the mechanisms of SMSC chondrogenesis remain to be identified and characterized. The aim of this study was to evaluate the activation of the RhoA/Rho kinase (ROCK) pathway, as well as the manner by which it may contribute to chondrogenesis and the actin cytoskeletal organization of rat temporomandibular SMSCs in response to transforming growth factor-β1 (TGF-β1). Primary isolated SMSCs were treated with TGF-β1, and their actin organization was examined by fluorescein isothiocyanate-phalloidin staining. The specific biochemical inhibitors, C3 transferase, Y27632 and SB431542, were employed to evaluate the function of RhoA/ROCK and Smads. The effect of C3 transferase and Y27632 on the gene expression of chondrocyte-specific markers was evaluated by quantitative real-time polymerase chain reaction. To examine the effect of Y27632 on Smad2/3 phosphorylation induced by TGF-β1, western blot analysis was also performed. The stimulation of TGF-β1 in SMSCs resulted in the activation of the RhoA/ROCK pathway and concomitantly induced cytoskeletal reorganization, which was specifically blocked by C3 transferase and Y27632. The TGF-β-induced gene expression of Sox9, type I collagen, type II collagen and aggrecan was also inhibited by both C3 transferase and Y27632, at different levels. Y27632 treatment reduced the phosphorylation of Smad2/3 in a concentration-dependent manner. These results demonstrate the RhoA/ROCK activation regulates chondrocyte-specific gene transcription and cytoskeletal organization induced by TGF-β1 by interacting with the Smad pathway. This may have significant implications for the successful utilization of SMSCs as a cell source for articular cartilage tissue engineering.

  10. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes

    Directory of Open Access Journals (Sweden)

    Xingfu Li

    2016-01-01

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2 and decreased type I collagen (COL1 protein expression levels. SRY-box 9 (SOX9 mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  11. CD105 promotes chondrogenesis of synovium-derived mesenchymal stem cells through Smad2 signaling.

    Science.gov (United States)

    Fan, Wenshuai; Li, Jinghuan; Wang, Yiming; Pan, Jianfeng; Li, Shuo; Zhu, Liang; Guo, Changan; Yan, Zuoqin

    2016-05-27

    Mesenchymal stem cells (MSCs) are considered to be suitable for cell-based tissue regeneration. Expressions of different cell surface markers confer distinct differentiation potential to different sub-populations of MSCs. Understanding the effect of cell surface markers on MSC differentiation is essential to their targeted application in different tissues. Although CD105 positive MSCs possess strong chondrogenic capacity, the underlying mechanisms are not clear. In this study, we observed a considerable heterogeneity with respect to CD105 expression among MSCs isolated from synovium. The CD105(+) and CD105(-) synovium-derived MSCs (SMSCs) were sorted to compare their differentiation capacities and relative gene expressions. CD105(+) subpopulation had higher gene expressions of AGG, COL II and Sox9, and showed a stronger affinity for Alcian blue and immunofluorescent staining for aggrecan and collagenase II, as compared to those in CD105(-) cells. However, no significant difference was observed with respect to gene expressions of ALP, Runx2, LPL and PPARγ. CD105(+) SMSCs showed increased levels of Smad2 phosphorylation, while total Smad2 levels were similar between the two groups. There was no difference in activation of Smad1/5. These results were further confirmed by CD105-knockdown in SMSCs. Our findings suggest a stronger chondrogenic potential of CD105(+) SMSCs in comparison to that of CD105(-) SMSCs and that CD105 enhances chondrogenesis of SMSCs by regulating TGF-β/Smad2 signaling pathway, but not Smad1/5. Our study provides a better understanding of CD105 with respect to chondrogenic differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Delineation of in vitro chondrogenesis of human synovial stem cells following preconditioning using decellularized matrix

    Science.gov (United States)

    Zhang, Ying; Li, Jingting; Davis, Mary E.; Pei, Ming

    2015-01-01

    As a tissue-specific stem cell for chondrogenesis, synovium-derived stem cells (SDSCs) are a promising cell source for cartilage repair. However, a small biopsy can only provide a limited number of cells. Cell senescence from both in vitro expansion and donor age presents a big challenge for stem cell based cartilage regeneration. Here we found that expansion on decellularized extracellular matrix (dECM) full of three-dimensional nanostructured fibers provided SDSCs with unique surface profiles, low elasticity but large volume as well as fibroblast-like shape. dECM expanded SDSCs yielded larger pellets with intensive staining of type II collagen and sulfated glycosaminoglycans compared to those grown on plastic flasks while SDSCs grown in ECM yielded 28-day pellets with minimal matrix as evidenced by pellet size and chondrogenic marker staining, which was confirmed by both biochemical data and real-time PCR data. Our results also found lower levels of inflammatory genes in dECM expanded SDSCs that might be responsible for enhanced chondrogenic differentiation. Despite an increase in type X collagen in chondrogenically induced cells, dECM expanded cells had significantly lower potential for endochondral bone formation. Wnt and MAPK signals were actively involved in both expansion and chondrogenic induction of dECM expanded cells. Since young and healthy people can be potential donors for this matrix expansion system and decellularization can minimize immune concerns, human SDSCs expanded on this future commercially available dECM could be a potential cell source for autologous cartilage repair. PMID:25861949

  13. Photocrosslinked alginate with hyaluronic acid hydrogels as vehicles for mesenchymal stem cell encapsulation and chondrogenesis.

    Science.gov (United States)

    Coates, Emily E; Riggin, Corinne N; Fisher, John P

    2013-07-01

    Ionic crosslinking of alginate via divalent cations allows for high viability of an encapsulated cell population, and is an effective biomaterial for supporting a spherical chondrocyte morphology. However, such crosslinking chemistry does not allow for injectable and stable hydrogels which are more appropriate for clinical applications. In this study, the addition of methacrylate groups to the alginate polymer chains was utilized so as to allow the free radical polymerization initiated by a photoinitiator during UV light exposure. This approach establishes covalent crosslinks between methacrylate groups instead of the ionic crosslinks formed by the calcium in unmodified alginate. Although this approach has been well described in the literature, there are currently no reports of stem cell differentiation and subsequent chondrocyte gene expression profiles in photocrosslinked alginate. In this study, we demonstrate the utility of photocrosslinked alginate hydrogels containing interpenetrating hyaluronic acid chains to support stem cell chondrogenesis. We report high cell viability and no statistical difference in metabolic activity between mesenchymal stem cells cultured in calcium crosslinked alginate and photocrosslinked alginate for up to 10 days of culture. Furthermore, chondrogenic gene markers are expressed throughout the study, and indicate robust differentiation up to the day 14 time point. At early time points, days 1 and 7, the addition of hyaluronic acid to the photocrosslinked scaffolds upregulates gene markers for both the chondrocyte and the superficial zone chondrocyte phenotype. Taken together, we show that photocrosslinked, injectable alginate shows significant potential as a delivery mechanism for cell-based cartilage repair therapies. Copyright © 2012 Wiley Periodicals, Inc.

  14. Chondroitin sulfate microparticles modulate transforming growth factor-β1-induced chondrogenesis of human mesenchymal stem cell spheroids.

    Science.gov (United States)

    Goude, Melissa C; McDevitt, Todd C; Temenoff, Johnna S

    2014-01-01

    Mesenchymal stem cells (MSCs) have been previously explored as a part of cell-based therapies for the repair of damaged cartilage. Current MSC chondrogenic differentiation strategies employ large pellets; however, we have developed a technique to form small MSC aggregates (500-1,000 cells) that can reduce transport barriers while maintaining a multicellular structure analogous to cartilaginous condensations. The objective of this study was to examine the effects of incorporating chondroitin sulfate methacrylate (CSMA) microparticles (MPs) within small MSC spheroids cultured in the presence of transforming growth factor (TGF)-β1 on chondrogenesis. Spheroids with MPs induced earlier increases in collagen II and aggrecan gene expression (chondrogenic markers) than spheroids without MPs, although no large differences in immunostaining for these matrix molecules were observed by day 21 between these groups. Collagen I and X were also detected in the extracellular matrix (ECM) of all spheroids by immunostaining. Interestingly, histology revealed that CSMA MPs clustered together near the center of the MSC spheroids and induced circumferential alignment of cells and ECM around the material core. This study demonstrates the use of CSMA materials to further examine the effects of matrix molecules on MSC phenotype as well as potentially direct differentiation in a more spatially controlled manner that better mimics the architecture of specific musculoskeletal tissues. © 2014 S. Karger AG, Basel.

  15. Characterization of progenitor cells derived from torn human rotator cuff tendons by gene expression patterns of chondrogenesis, osteogenesis, and adipogenesis.

    Science.gov (United States)

    Nagura, Issei; Kokubu, Takeshi; Mifune, Yutaka; Inui, Atsuyuki; Takase, Fumiaki; Ueda, Yasuhiro; Kataoka, Takeshi; Kurosaka, Masahiro

    2016-03-31

    It is important to regenerate the tendon-to-bone interface after rotator cuff repair to prevent re-tears. The cells from torn human rotator cuff were targeted, and their capacity for multilineage differentiation was investigated. The edges of the rotator cuff were harvested during arthroscopic rotator cuff repair from nine patients, minced into pieces, and cultured on dishes. Adherent cells were cultured, phenotypically characterized. Then expandability, differentiation potential and gene expression were analyzed. Flow cytometry revealed that the mesenchymal stem cells (MSC)-related markers CD29, CD44, CD105, and CD166 were positive. However, CD14, CD34, and CD45 were negative. On RT-PCR analyses, the cells showed osteogenic, adipogenic, and chondrogenic potential after 3 weeks of culture under the respective differentiation conditions. In addition, SOX9, type II collagen, and type X collagen expression patterns during chondrogenesis were similar to those of endochondral ossification at the enthesis. The cells derived from torn human rotator cuff are multipotent mesenchymal stem cells with the ability to undergo multilineage differentiation, suggesting that MSCs form this tissue could be regenerative capacity for potential self-repair.

  16. Thyroid hormone-induced hypertrophy in mesenchymal stem cell chondrogenesis is mediated by bone morphogenetic protein-4.

    Science.gov (United States)

    Karl, Alexandra; Olbrich, Norman; Pfeifer, Christian; Berner, Arne; Zellner, Johannes; Kujat, Richard; Angele, Peter; Nerlich, Michael; Mueller, Michael B

    2014-01-01

    Chondrogenic differentiating mesenchymal stem cells (MSCs) express markers of hypertrophic growth plate chondrocytes. As hypertrophic cartilage undergoes ossification, this is a concern for the application of MSCs in articular cartilage tissue engineering. To identify mechanisms that elicit this phenomenon, we used an in vitro hypertrophy model of chondrifying MSCs for differential gene expression analysis and functional experiments with the focus on bone morphogenetic protein (BMP) signaling. Hypertrophy was induced in chondrogenic MSC pellet cultures by transforming growth factor β (TGFβ) and dexamethasone withdrawal and addition of triiodothyronine. Differential gene expression analysis of BMPs and their receptors was performed. Based on these results, the in vitro hypertrophy model was used to investigate the effect of recombinant BMP4 and the BMP inhibitor Noggin. The enhancement of hypertrophy could be shown clearly by an increased cell size, alkaline phosphatase activity, and collagen type X deposition. Upon induction of hypertrophy, BMP4 and the BMP receptor 1B were upregulated. Addition of BMP4 further enhanced hypertrophy in the absence, but not in the presence of TGFβ and dexamethasone. Thyroid hormone induced hypertrophy by upregulation of BMP4 and this induced enhancement of hypertrophy could be blocked by the BMP antagonist Noggin. BMP signaling is an important modulator of the late differentiation stages in MSC chondrogenesis and the thyroid hormone induces this pathway. As cartilage tissue engineering constructs will be exposed to this factor in vivo, this study provides important insight into the biology of MSC-based cartilage. Furthermore, the possibility to engineer hypertrophic cartilage may be helpful for critical bone defect repair.

  17. Initial boost release of transforming growth factor-β3 and chondrogenesis by freeze-dried bioactive polymer scaffolds.

    Science.gov (United States)

    Krüger, Jan Philipp; Machens, Isabel; Lahner, Matthias; Endres, Michaela; Kaps, Christian

    2014-12-01

    In cartilage regeneration, bio-activated implants are used in stem and progenitor cell-based microfracture cartilage repair procedures. Our aim was to analyze the chondrogenic potential of freeze-dried resorbable polymer-based polyglycolic acid (PGA) scaffolds bio-activated with transforming growth factor-β3 (TGFB3) on human subchondral mesenchymal progenitor cells known from microfracture. Progenitor cells derived from femur heads were cultured in the presence of freeze-dried TGFB3 in high-density pellet culture and in freeze-dried TGFB3-PGA scaffolds for chondrogenic differentiation. Progenitor cell cultures in PGA scaffolds as well as pellet cultures with and without continuous application of TGFB3 served as controls. Release studies showed that freeze-dried TGFB3-PGA scaffolds facilitate a rapid, initial boost-like release of 71.5% of TGFB3 in the first 10 h. Gene expression analysis and histology showed induction of typical chondrogenic markers like type II collagen and formation of cartilaginous tissue in TGFB3-PGA scaffolds seeded with subchondral progenitor cells and in pellet cultures stimulated with freeze-dried TGFB3. Chondrogenic differentiation in freeze-dried TGFB3-PGA scaffolds was comparable to cultures receiving TGFB3 continuously, while non-stimulated controls did not show chondrogenesis during prolonged culture for 14 days. These results suggest that bio-activated, freeze-dried TGFB3-PGA scaffolds have chondrogenic potential and are a promising tool for stem cell-mediated cartilage regeneration.

  18. Restoring the IL-1β/NF-κB-induced impaired chondrogenesis by diallyl disulfide in human adipose-derived mesenchymal stem cells via attenuation of reactive oxygen species and elevation of antioxidant enzymes.

    Science.gov (United States)

    Bahrampour Juybari, Kobra; Kamarul, Tunku; Najafi, Mohammad; Jafari, Davood; Sharifi, Ali Mohammad

    2018-03-26

    Strategies based on mesenchymal stem cell (MSC) therapy for restoring injured articular cartilage are not effective enough in osteoarthritis (OA). Due to the enhanced inflammation and oxidative stress in OA microenvironment, differentiation of MSCs into chondrocytes would be impaired. This study aims to explore the effects of diallyl disulfide (DADS) on IL-1β-mediated inflammation and oxidative stress in human adipose derived mesenchymal stem cells (hADSCs) during chondrogenesis. MTT assay was employed to examine the effects of various concentrations of DADS on the viability of hADSCs at different time scales to obtain non-cytotoxic concentration range of DADS. The effects of DADS on IL-1β-induced intracellular ROS generation and lipid peroxidation were evaluated in hADSCs. Western blotting was used to analyze the protein expression levels of IκBα (np), IκBα (p), NF-κB (np) and NF-κB (p). Furthermore, the gene expression levels of antioxidant enzymes in hADSCs and chondrogenic markers at days 7, 14 and 21 of differentiation were measured using qRT-PCR. The results showed that addition of DADS significantly enhanced the mRNA expression levels of antioxidant enzymes as well as reduced ROS elevation, lipid peroxidation, IκBα activation and NF-κB nuclear translocation in hADSCs treated with IL-1β. In addition, DADS could significantly increase the expression levels of IL-1β-induced impaired chondrogenic marker genes in differentiated hADSCs. Treatment with DADS may provide an effective approach to prevent the pro-inflammatory cytokines and oxidative stress as catabolic causes of chondrocyte cell death and enhance the protective anabolic effects by promoting chondrogenesis associated gene expressions in hADSCs exposed to OA condition.

  19. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells.

    Science.gov (United States)

    Ko, Ji-Yun; Kim, Kyung-Il; Park, Siyeon; Im, Gun-Il

    2014-04-01

    The purpose of this study was to investigate the chondrogenic features of human induced pluripotent stem cells (hiPSCs) and examine the differences in the chondrogenesis between hiPSCs and human bone marrow-derived MSCs (hBMMSCs). Embryoid bodies (EBs) were formed from undifferentiated hiPSCs. After EBs were dissociated into single cells, chondrogenic culture was performed in pellets and alginate hydrogel. Chondro-induced hiPSCs were implanted in osteochondral defects created on the patellar groove of immunosuppressed rats and evaluated after 12 weeks. The ESC markers NANOG, SSEA4 and OCT3/4 disappeared while the mesodermal marker BMP-4 appeared in chondro-induced hiPSCs. After 21 days of culture, greater glycosaminoglycan contents and better chondrocytic features including lacuna and abundant matrix formation were observed from chondro-induced hiPSCs compared to chondro-induced hBMMSCs. The expression of chondrogenic markers including SOX-9, type II collagen, and aggrecan in chondro-induced hiPSCs was comparable to or greater than chondro-induced hBMMSCs. A remarkably low level of hypertrophic and osteogenic markers including type X collagen, type I collagen and Runx-2 was noted in chondro-induced hiPSCs compared to chondro-induced hBMMSCs. hiPSCs had significantly greater methylation of several CpG sites in COL10A1 promoter than hBMMSCs in either undifferentiated or chondro-induced state, suggesting an epigenetic cause of the difference in hypertrophy. The defects implanted with chondro-induced hiPSCs showed a significantly better quality of cartilage repair than the control defects, and the majority of cells in the regenerated cartilage consisted of implanted hiPSCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Platelet lysate 3D scaffold supports mesenchymal stem cell chondrogenesis: an improved approach in cartilage tissue engineering.

    Science.gov (United States)

    Moroz, Andrei; Bittencourt, Renata Aparecida Camargo; Almeida, Renan Padron; Felisbino, Sérgio Luis; Deffune, Elenice

    2013-01-01

    Articular lesions are still a major challenge in orthopedics because of cartilage's poor healing properties. A major improvement in therapeutics was the development of autologous chondrocytes implantation (ACI), a biotechnology-derived technique that delivers healthy autologous chondrocytes after in vitro expansion. To obtain cartilage-like tissue, 3D scaffolds are essential to maintain chondrocyte differentiated status. Currently, bioactive 3D scaffolds are promising as they can deliver growth factors, cytokines, and hormones to the cells, giving them a boost to attach, proliferate, induce protein synthesis, and differentiate. Using mesenchymal stem cells (MSCs) differentiated into chondrocytes, one can avoid cartilage harvesting. Thus, we investigated the potential use of a platelet-lysate-based 3D bioactive scaffold to support chondrogenic differentiation and maintenance of MSCs. The MSCs from adult rabbit bone marrow (n = 5) were cultivated and characterized using three antibodies by flow cytometry. MSCs (1 × 10(5)) were than encapsulated inside 60 µl of a rabbit platelet-lysate clot scaffold and maintained in Dulbecco's Modified Eagle Medium Nutrient Mixture F-12 supplemented with chondrogenic inductors. After 21 days, the MSCs-seeded scaffolds were processed for histological analysis and stained with toluidine blue. This scaffold was able to maintain round-shaped cells, typical chondrocyte metachromatic extracellular matrix deposition, and isogenous group formation. Cells accumulated inside lacunae and cytoplasm lipid droplets were other observed typical chondrocyte features. In conclusion, the usage of a platelet-lysate bioactive scaffold, associated with a suitable chondrogenic culture medium, supports MSCs chondrogenesis. As such, it offers an alternative tool for cartilage engineering research and ACI.

  1. Discovery of novel differentiation markers in the early stage of chondrogenesis by glycoform-focused reverse proteomics and genomics.

    Science.gov (United States)

    Ishihara, Takeshi; Kakiya, Kiyoshi; Takahashi, Koji; Miwa, Hiroto; Rokushima, Masatomo; Yoshinaga, Tomoyo; Tanaka, Yoshikazu; Ito, Takaomi; Togame, Hiroko; Takemoto, Hiroshi; Amano, Maho; Iwasaki, Norimasa; Minami, Akio; Nishimura, Shin-Ichiro

    2014-01-01

    Osteoarthritis (OA) is one of the most common chronic diseases among adults, especially the elderly, which is characterized by destruction of the articular cartilage. Despite affecting more than 100 million individuals all over the world, therapy is currently limited to treating pain, which is a principal symptom of OA. New approaches to the treatment of OA that induce regeneration and repair of cartilage are strongly needed. To discover potent markers for chondrogenic differentiation, glycoform-focused reverse proteomics and genomics were performed on the basis of glycoblotting-based comprehensive approach. Expression levels of high-mannose type N-glycans were up-regulated significantly at the late stage of differentiation of the mouse chondroprogenitor cells. Among 246 glycoproteins carrying this glycotype identified by ConA affinity chromatography and LC/MS, it was demonstrated that 52% are classified as cell surface glycoproteins. Gene expression levels indicated that mRNAs for 15 glycoproteins increased distinctly in the earlier stages during differentiation compared with Type II collagen. The feasibility of mouse chondrocyte markers in human chondrogenesis model was demonstrated by testing gene expression levels of these 15 glycoproteins during differentiation in human mesenchymal stem cells. The results showed clearly an evidence of up-regulation of 5 genes, ectonucleotide pyrophosphatase/phosphodiesterase family member 1, collagen alpha-1(III) chain, collagen alpha-1(XI) chain, aquaporin-1, and netrin receptor UNC5B, in the early stages of differentiation. These cell surface 5 glycoproteins become highly sensitive differentiation markers of human chondrocytes that contribute to regenerative therapies, and development of novel therapeutic reagents. © 2013.

  2. Molecular profile and cellular characterization of human bone marrow mesenchymal stem cells: donor influence on chondrogenesis.

    Science.gov (United States)

    Cicione, Claudia; Díaz-Prado, Silvia; Muiños-López, Emma; Hermida-Gómez, Tamara; Blanco, Francisco J

    2010-01-01

    The use of autologous or allogenic stem cells has recently been suggested as an alternative therapeutic approach for treatment of cartilage defects. Bone marrow mesenchymal stem cells (BM-MSCs) are well-characterized multipotent cells that can differentiate into different cell types. Understanding the potential of these cells and the molecular mechanisms underlying their differentiation should lead to innovative protocols for clinical applications. The aim of this study was to evaluate the usefulness of surface antigen selection of BM-MSCs and to understand the mechanisms underlying their differentiation. MSCs were isolated from BM stroma and expanded. CD105+ subpopulation was isolated using a magnetic separator. We compared culture-expanded selected cells with non-selected cells. We analyzed the phenotypic profiles, the expression of the stem cell marker genes Nanog, Oct3/4, and Sox2 and the multi-lineage differentiation potential (adipogenic, osteogenic, and chondrogenic). The multi-lineage differentiation was confirmed using histochemistry, immunohistochemistry and/or real-time polymerase chain reaction (qPCR) techniques. The selected and non-selected cells displayed similar phenotypes and multi-lineage differentiation potentials. Analyzing each cell source individually, we could divide the six donors into two groups: one with a high percentage of CD29 (β1-integrin) expression (HL); one with a low percentage of CD29 (LL). These two groups had different chondrogenic capacities and different expression levels of the stem cell marker genes. This study showed that phenotypic profiles of donors were related to the chondrogenic potential of human BM-MSCs. The chondrogenic potential of donors was related to CD29 expression levels. The high expression of CD29 antigen seemed necessary for chondrogenic differentiation. Further investigation into the mechanisms responsible for these differences in BM-MSCs chondrogenesis is therefore warranted. Understanding the mechanisms

  3. A comparison of three-dimensional culture systems to evaluate in vitro chondrogenesis of equine bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Watts, Ashlee E; Ackerman-Yost, Jeremy C; Nixon, Alan J

    2013-10-01

    To compare in vitro three-dimensional (3D) culture systems that model chondrogenesis of bone marrow-derived mesenchymal stem cells (MSCs). MSCs from five horses 2-3 years of age were consolidated in fibrin 0.3% alginate, 1.2% alginate, 2.5×10(5) cell pellets, 5×10(5) cell pellets, and 2% agarose, and maintained in chondrogenic medium with supplemental TGF-β1 for 4 weeks. Pellets and media were tested at days 1, 14, and 28 for gene expression of markers of chondrogenic maturation and hypertrophy (ACAN, COL2B, COL10, SOX9, 18S), and evaluated by histology (hematoxylin and eosin, Toluidine Blue) and immunohistochemistry (collagen type II and X). alginate, fibrin alginate (FA), and both pellet culture systems resulted in chondrogenic transformation. Adequate RNA was not obtained from agarose cultures at any time point. There was increased COL2B, ACAN, and SOX9 expression on day 14 from both pellet culture systems. On day 28, increased expression of COL2B was maintained in 5×10(5) cell pellets and there was no difference in ACAN and SOX9 between FA and both pellet cultures. COL10 expression was significantly lower in FA cultures on day 28. Collagen type II was abundantly formed in all culture systems except alginate and collagen type X was least in FA hydrogels. equine MSCs respond to 3D culture in FA blended hydrogel and both pellet culture systems with chondrogenic induction. For prevention of terminal differentiation and hypertrophy, FA culture may be superior to pellet culture systems.

  4. Study of Carbon Nano-Tubes Effects on the Chondrogenesis of Human Adipose Derived Stem Cells in Alginate Scaffold

    Directory of Open Access Journals (Sweden)

    Ali Valiani

    2014-01-01

    Full Text Available Background: Osteoarthritis is one of the most common diseases in middle-aged populations in the World and could become the fourth principal cause of disability by the year 2020. One of the critical properties for cartilage tissue engineering (TE is the ability of scaffolds to closely mimic the extracellular matrix and bond to the host tissue. Therefore, TE has been presented as a technique to introduce the best combination of cells and biomaterial scaffold and to stimulate growth factors to produce a cartilage tissue resembling natural articular cartilage. The aim of study is to improve differentiation of adipose derived stem cells (ADSCs into chondrocytes in order to provide a safe and modern treatment for patients suffering from cartilage damages. Methods: After functionalization, dispersions and sterilizing carbon nano-tubes (CNTs, a new type of nanocomposite gel was prepared from water-soluble CNTs and alginate. ADSCs seeded in 1.5% alginate scaffold and cultured in chondrogenic media with and without transforming growth factor-β1 (TGF-β1 for 7 and 14 days. The genes expression of sex determining region Y-box 9 (SOX9, types II and X collagens was assessed by real-time polymerase chain reaction and the amount of aggrecan (AGC and type I collagen was measured by ELISA. Results: Our findings showed that the expression of essential cartilage markers, SOX9, type II collagen and AGC, in differentiated ADSCs at the concentration of 1 μg/ml CNTs in the presence of TGF-β1 were significantly increased in comparison with the control group (P < 0.001. Meanwhile, type X collagen expression and also type I collagen production were significantly decreased (P < 0.001. Conclusions: The results showed that utilized three-dimensional scaffold had a brilliant effect in promoting gene expression of chondrogenesis.

  5. Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb.

    Science.gov (United States)

    Gamer, L W; Cox, K A; Small, C; Rosen, V

    2001-01-15

    GDF11, a new member of the TGF-beta gene superfamily, regulates anterior/posterior patterning in the axial skeleton during mouse embryogenesis. Gdf11 null mice display skeletal abnormalities that appear to represent anterior homeotic transformations of vertebrae consistent with high levels of Gdf11 expression in the primitive streak, presomitic mesoderm, and tail bud. However, despite strong Gdf11 expression in the limb throughout development, this structure does not appear to be affected in the knockout mice. In order to understand this dichotomy of Gdf11 expression versus Gdf11 function, we identified the chicken Gdf11 gene and studied its role during limb formation. In the early limb bud, Gdf11 transcripts are detected in the subectodermal mesoderm at the distal tip, in a region overlapping the progress zone. At these stages, Gdf11 is excluded from the central core mesenchyme where precartilaginous condensations will form. Later in development, Gdf11 continues to be expressed in the distal most mesenchyme and can also be detected more proximally, in between the forming skeletal elements. When beads incubated in GDF11 protein were implanted into the early wing bud, GDF11 caused severe truncations of the limb that affected both the cartilage elements and the muscle. Limb shortening appeared to be the result of an inhibition of chondrogenesis and myogenesis and using an in vitro micromass assay, we confirmed the negative effects of GDF11 on both myogenic and chondrogenic cell differentiation. Analysis of molecular markers of skeletal patterning revealed that GDF11 induced ectopic expression of Hoxd-11 and Hoxd-13, but not of Hoxa-11, Hoxa-13, or the Msx genes. These data suggest that GDF11 may be involved in controlling the late distal expression of the Hoxd genes during limb development and that misregulation of these Hox genes by excess GDF11 may cause some of the observed alterations in skeletal element shape. In addition, GDF11 induced the expression of its own

  6. Changes in expression of cartilaginous genes during chondrogenesis of Wharton's jelly mesenchymal stem cells on three-dimensional biodegradable poly(L-lactide-co-glycolide) scaffolds.

    Science.gov (United States)

    Paduszyński, Piotr; Aleksander-Konert, Ewelina; Zajdel, Alicja; Wilczok, Adam; Jelonek, Katarzyna; Witek, Andrzej; Dzierżewicz, Zofia

    2016-01-01

    In cartilage tissue regeneration, it is important to develop biodegradable scaffolds that provide a structural and logistic template for three-dimensional cultures of chondrocytes. In this study, we evaluated changes in expression of cartilaginous genes during in vitro chondrogenic differentiation of WJ-MSCs on PLGA scaffolds. The biocompatibility of the PLGA material was investigated using WJ-MSCs by direct and indirect contact methods according to the ISO 10993-5 standard. PLGA scaffolds were fabricated by the solvent casting/salt-leaching technique. We analyzed expression of chondrogenic genes of WJ-MSCs after a 21-day culture. The results showed the biocompatibility of PLGA and confirmed the usefulness of PLGA as material for fabrication of 3D scaffolds that can be applied for WJ-MSC culture. The in vitro penetration and colonization of the scaffolds by WJ-MSCs were assessed by confocal microscopy. The increase in cell number demonstrated that scaffolds made of PLGA copolymers enabled WJ-MSC proliferation. The obtained data showed that as a result of chondrogenesis of WJ-MSCs on the PLGA scaffold the expression of the key markers collagen type II and aggrecan was increased. The observed changes in transcriptional activity of cartilaginous genes suggest that the PLGA scaffolds may be applied for WJ-MSC differentiation. This primary study suggests that chondrogenic capacity of WJ-MSCs cultured on the PLGA scaffolds can be useful for cell therapy of cartilage.

  7. Chondrogenesis of human adipose derived stem cells for future microtia repair using co-culture technique.

    Science.gov (United States)

    Goh, Bee See; Che Omar, Siti Nurhadis; Ubaidah, Muhammad Azhan; Saim, Lokman; Sulaiman, Shamsul; Chua, Kien Hui

    2017-04-01

    In conclusion, these result showed HADSCs could differentiate into chondrocytes-like cells, dependent on signaling induced by TGF-β3 and chondrocytes. This is a promising result and showed that HADSCs is a potential source for future microtia repair. The technique of co-culture is a positive way forward to assist the microtia tissue. Reconstructive surgery for the repair of microtia still remains the greatest challenge among the surgeons. Its repair is associated with donor-site morbidity and the degree of infection is inevitable when using alloplastic prosthesis with uncertain long-term durability. Thus, human adipose derived stem cells (HADSCs) can be an alternative cell source for cartilage regeneration. This study aims to evaluate the chondrogenic potential of HADSCs cultured with transforming growth factor-beta (TGF-β) and interaction of auricular chondrocytes with HADSCs for new cartilage generation. Multi-lineages differentiation features of HADSCs were monitored by Alcian Blue, Alizarin Red, and Oil Red O staining for chondrogenic, adipogenic, and osteogenic differentiation capacity, respectively. Further, HADSCs alone were culture in medium added with TGF-β3; and human auricular chondrocytes were interacted indirectly in the culture with and without TGF-βs for up to 21 days, respectively. Cell morphology and chondrogenesis were monitored by inverted microscope. For cell viability, Alamar Blue assay was used to measure the cell viability and the changes in gene expression of auricular chondrocyte markers were determined by real-time polymerase chain reaction analysis. For the induction of chondrogenic differentiation, HADSCs showed a feature of aggregation and formed a dense matrix of proteoglycans. Staining results from Alizirin Red and Oil Red O indicated the HADSCs also successfully differentiated into adipogenic and osteogenic lineages after 21 days. According to a previous study, HADSCs were strongly positive for the mesenchymal markers CD90, CD73

  8. The changing integrin expression and a role for integrin β8 in the chondrogenic differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Vanessa L S LaPointe

    Full Text Available Many cartilage tissue engineering approaches aim to differentiate human mesenchymal stem cells (hMSCs into chondrocytes and develop cartilage in vitro by targeting cell-matrix interactions. We sought to better inform the design of cartilage tissue engineering scaffolds by understanding how integrin expression changes during chondrogenic differentiation. In three models of in vitro chondrogenesis, we studied the temporal change of cartilage phenotype markers and integrin subunits during the differentiation of hMSCs. We found that transcript expression of most subunits was conserved across the chondrogenesis models, but was significantly affected by the time-course of differentiation. In particular, ITGB8 was up-regulated and its importance in chondrogenesis was further established by a knockdown of integrin β8, which resulted in a non-hyaline cartilage phenotype, with no COL2A1 expression detected. In conclusion, we performed a systematic study of the temporal changes of integrin expression during chondrogenic differentiation in multiple chondrogenesis models, and revealed a role for integrin β8 in chondrogenesis. This work enhances our understanding of the changing adhesion requirements of hMSCs during chondrogenic differentiation and underlines the importance of integrins in establishing a cartilage phenotype.

  9. The Changing Integrin Expression and a Role for Integrin β8 in the Chondrogenic Differentiation of Mesenchymal Stem Cells

    Science.gov (United States)

    LaPointe, Vanessa L. S.; Verpoorte, Amanda; Stevens, Molly M.

    2013-01-01

    Many cartilage tissue engineering approaches aim to differentiate human mesenchymal stem cells (hMSCs) into chondrocytes and develop cartilage in vitro by targeting cell-matrix interactions. We sought to better inform the design of cartilage tissue engineering scaffolds by understanding how integrin expression changes during chondrogenic differentiation. In three models of in vitro chondrogenesis, we studied the temporal change of cartilage phenotype markers and integrin subunits during the differentiation of hMSCs. We found that transcript expression of most subunits was conserved across the chondrogenesis models, but was significantly affected by the time-course of differentiation. In particular, ITGB8 was up-regulated and its importance in chondrogenesis was further established by a knockdown of integrin β8, which resulted in a non-hyaline cartilage phenotype, with no COL2A1 expression detected. In conclusion, we performed a systematic study of the temporal changes of integrin expression during chondrogenic differentiation in multiple chondrogenesis models, and revealed a role for integrin β8 in chondrogenesis. This work enhances our understanding of the changing adhesion requirements of hMSCs during chondrogenic differentiation and underlines the importance of integrins in establishing a cartilage phenotype. PMID:24312400

  10. New PLGA-P188-PLGA matrix enhances TGF-β3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Morille, Marie; Van-Thanh, Tran; Garric, Xavier; Cayon, Jérôme; Coudane, Jean; Noël, Danièle; Venier-Julienne, Marie-Claire; Montero-Menei, Claudia N

    2013-08-28

    The use of injectable scaffolding materials for in vivo tissue regeneration has raised great interest in various clinical applications because it allows cell implantation through minimally invasive surgical procedures. In case of cartilage repair, a tissue engineered construct should provide a support for the cell and allow sustained in situ delivery of bioactive factors capable of inducing cell differentiation into chondrocytes. Pharmacologically active microcarriers (PAMs), made of biodegradable poly(d,l-lactide-co-glycolide acid) (PLGA), are a unique system, which combines these properties in an adaptable and simple microdevice. However, a limitation of such scaffold is low and incomplete protein release that occurs using the hydrophobic PLGA based microspheres. To circumvent this problem, we developed a novel formulation of polymeric PAMs containing a P188 poloxamer, which protects the protein from denaturation and may positively affect chondrogenesis. This poloxamer was added as a free additive for protein complexation and as a component of the scaffold covalently linked to PLGA. This procedure allows getting a more hydrophilic scaffold but also retaining the protective polymer inside the microcarriers during their degradation. The novel PLGA-P188-PLGA PAMs presenting a fibronectin-covered surface allowed enhanced MSC survival and proliferation. When engineered with TGFβ3, they allowed the sustained release of 70% of the incorporated TGF-β3 over time. Importantly, they exerted superior chondrogenic differentiation potential compared to previous FN-PAM-PLGA-TGF-β3, as shown by an increased expression of specific cartilage markers such as cartilage type II, aggrecan and COMP. Therefore, this microdevice represents an efficient easy-to-handle and injectable tool for cartilage repair. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration.

    Directory of Open Access Journals (Sweden)

    Kazumasa Mitogawa

    Full Text Available Axolotls (Ambystoma mexicanum can completely regenerate lost limbs, whereas Xenopus laevis frogs cannot. During limb regeneration, a blastema is first formed at the amputation plane. It is thought that this regeneration blastema forms a limb by mechanisms similar to those of a developing embryonic limb bud. Furthermore, Xenopus laevis frogs can form a blastema after amputation; however, the blastema results in a terminal cone-shaped cartilaginous structure called a "spike." The causes of this patterning defect in Xenopus frog limb regeneration were explored. We hypothesized that differences in chondrogenesis may underlie the patterning defect. Thus, we focused on chondrogenesis. Chondrogenesis marker genes, type I and type II collagen, were compared in regenerative and nonregenerative environments. There were marked differences between axolotls and Xenopus in the expression pattern of these chondrogenesis-associated genes. The relative deficit in the chondrogenic capacity of Xenopus blastema cells may account for the absence of total limb regenerative capacity.

  12. Osteogenesis and chondrogenesis of biomimetic integrated porous PVA/gel/V-n-HA/pa6 scaffolds and BMSCs construct in repair of articular osteochondral defect.

    Science.gov (United States)

    Li, Xiang; Li, Yubao; Zuo, Yi; Qu, Dan; Liu, Yiming; Chen, Tao; Jiang, Nan; Li, Hui; Li, Jihua

    2015-10-01

    A novel bi-layered osteochondral scaffold, including of PVA/Gel/V layer for the cartilage and n-HA/PA6 layer for the subchondral bone, has been proposed to evaluate the potential of the engineered of osteochondral grafts in repairing articular osteochondral defects in rabbits. The two different layers of the scaffolds were seeded with allogenic bone marrow-derived stem cells (BMSCs), which were chondrogenically and osteogenically induced respectively. The critical-size osteochondral defects were created in the knees of adult rabbits. The defects were treated with cell-bi-layered constructs (Group A), bi-layered constructs (Group B) and untreated group C as control group. The adhesion, proliferation and differentiation of BMSCs were demonstrated by immunohistochemical staining and scanning electron microscopy (SEM) in vitro. Cell survival was tracked via fluorescent labeling in vivo. Overall, the porous PVA/Gel/V-n-HA/PA6 scaffold was compatible and had no negative effects on the BMSCs in vitro culture. The cell-bi-layered scaffolds showed superior repair results as compared to the control group using gross examination and histological assessment. With BMSCs implantation, the two different layers of the composite biomimetic scaffolds provided a suitable environment for cells to form respective tissue. Simultaneously, the RT-PCR results confirmed the expression of specific extracellular matrix (ECM) markers for cartilaginous or osteoid tissue. This investigation showed that the porous PVA/Gel/V-n-HA/PA6 scaffold is a potential matrix for treatment of osteochondral defects, and the method of using chondrogenically and osteogenically differentiated BMSCs as seed cells on each layer might be a promising strategy in repair of articular osteochondral defect due to enhanced chondrogenesis and osteogenesis. © 2015 Wiley Periodicals, Inc.

  13. Curcumin inhibits cellular condensation and alters microfilament organization during chondrogenic differentiation of limb bud mesenchymal cells.

    Science.gov (United States)

    Kim, Dong Kyun; Kim, Song Ja; Kang, Shin Sung; Jin, Eun Jung

    2009-09-30

    Curcumin is a well known natural polyphenol product isolated from the rhizome of the plant Curcuma longa, anti-inflammatory agent for arthritis by inhibiting synthesis of inflammatory prostaglandins. However, the mechanisms by which curcumin regulates the functions of chondroprogenitor, such as proliferation, precartilage condensation, cytoskeletal organization or overall chondrogenic behavior, are largely unknown. In the present report, we investigated the effects and signaling mechanism of curcumin on the regulation of chondrogenesis. Treating chick limb bud mesenchymal cells with curcumin suppressed chondrogenesis by stimulating apoptotic cell death. It also inhibited reorganization of the actin cytoskeleton into a cortical pattern concomitant with rounding of chondrogenic competent cells and down-regulation of integrin beta1 and focal adhesion kinase (FAK) phosphorylation. Curcumin suppressed the phosphorylation of Akt leading to Akt inactivation. Activation of Akt by introducing a myristoylated, constitutively active form of Akt reversed the inhibitory actions of curcumin during chondrogenesis. In summary, for the first time, we describe biological properties of curcumin during chondrogenic differentiation of chick limb bud mesenchymal cells. Curcumin suppressed chondrogenesis by stimulating apoptotic cell death and down-regulating integrin-mediated reorganization of actin cytoskeleton via modulation of Akt signaling.

  14. Crystallization and X-ray diffraction analysis of the HMG domain of the chondrogenesis master regulator Sox9 in complex with a ChIP-Seq-identified DNA element

    Energy Technology Data Exchange (ETDEWEB)

    Vivekanandan, Saravanan; Moovarkumudalvan, Balasubramanian; Lescar, Julien; Kolatkar, Prasanna R.

    2015-10-30

    Sox9 is a fundamental sex-determining gene and the master regulator of chondrogenesis, and is involved in the development of various vital organs such as testes, kidney, heart and brain, and in skeletal development. Similar to other known Sox transcription factors, Sox9 recognizes and binds DNA with the consensus sequence C(T/A)TTG(T/A)(T/A) through the highly conserved HMG domain. Nonetheless, the molecular basis of the functional specificity of Sox9 in key developmental processes is still unclear. As an initial step towards a mechanistic understanding of Sox9 transcriptional regulation, the current work describes the details of the purification of the mouse Sox9 HMG domain (mSox9HMG), its crystallization in complex with a ChIP-Seq-identified FOXP2 promoter DNA element and the X-ray diffraction data analysis of this complex. The mSox9HMG–FOXP2 promoter DNA complex was crystallized by the hanging-drop vapour-diffusion method using 20% PEG 3350 in 200 mMsodium/potassium phosphate with 100 mMbis-tris propane at pH 8.5. The crystals diffracted to 2.7 Å resolution and the complex crystallized in the tetragonal space groupP41212, with unit-cell parametersa=b= 99.49,c= 45.89 Å. Crystal-packing parameters revealed that asymmetric unit contained one mSox9HMG–FOXP2 promoter DNA complex with an estimated solvent content of 64%.

  15. The effects of X-irradiation on the chondrogensis of mesenchymal cells

    International Nuclear Information System (INIS)

    Ha, Jong Ryeol

    2002-01-01

    It is well known that X-irradiation affects on maturing process of differentiated chondrocytes. Nevertheless, It has been remained elusively whether X-irradiation affects the process of differentiation of mesenchymal cells which differentiate into chondrocyte, fibroblast, or muscle cells. In this study, we examined the effect of X-irradiation (with 1 to 10 Gy) on chondrogenesis using mesenchymal cells of chick limb bud. Our results show that X-irradiation dose-dependently inhibited chondrogenesis. This result suggests that immature chondroblast-like mesenchymal cells are sensitive to X-irradiation, Moreover, X-irradiation affects not only maturing process of chondrocytes, but also inhibits the chondrogenesis. Taken together, we demonstrate that the whole process of differentiation of mature chondrocytes from mesenchymal cells is affected by X-irradiation and undifferentiated cells were more affected by X-irradiation than mature cells

  16. Sox9-regulated miRNA-574-3p inhibits chondrogenic differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    David Guérit

    Full Text Available The aim of this study was to identify new microRNAs (miRNAs that are modulated during the differentiation of mesenchymal stem cells (MSCs toward chondrocytes. Using large scale miRNA arrays, we compared the expression of miRNAs in MSCs (day 0 and at early time points (day 0.5 and 3 after chondrogenesis induction. Transfection of premiRNA or antagomiRNA was performed on MSCs before chondrogenesis induction and expression of miRNAs and chondrocyte markers was evaluated at different time points during differentiation by RT-qPCR. Among miRNAs that were modulated during chondrogenesis, we identified miR-574-3p as an early up-regulated miRNA. We found that miR-574-3p up-regulation is mediated via direct binding of Sox9 to its promoter region and demonstrated by reporter assay that retinoid X receptor (RXRα is one gene specifically targeted by the miRNA. In vitro transfection of MSCs with premiR-574-3p resulted in the inhibition of chondrogenesis demonstrating its role during the commitment of MSCs towards chondrocytes. In vivo, however, both up- and down-regulation of miR-574-3p expression inhibited differentiation toward cartilage and bone in a model of heterotopic ossification. In conclusion, we demonstrated that Sox9-dependent up-regulation of miR-574-3p results in RXRα down-regulation. Manipulating miR-574-3p levels both in vitro and in vivo inhibited chondrogenesis suggesting that miR-574-3p might be required for chondrocyte lineage maintenance but also that of MSC multipotency.

  17. Characterization of lipidic markers of chondrogenic differentiation using mass spectrometry imaging.

    Science.gov (United States)

    Rocha, Beatriz; Cillero-Pastor, Berta; Eijkel, Gert; Bruinen, Anne L; Ruiz-Romero, Cristina; Heeren, Ron M A; Blanco, Francisco J

    2015-02-01

    Mesenchymal stem cells (MSC) are an interesting alternative for cell-based therapy of cartilage defects attributable to their capacity to differentiate toward chondrocytes in the process termed chondrogenesis. The metabolism of lipids has recently been associated with the modulation of chondrogenesis and also with the development of pathologies related to cartilage degeneration. Information about the distribution and modulation of lipids during chondrogenesis could provide a panel of putative chondrogenic markers. Thus, the discovery of new lipid chondrogenic markers could be highly valuable for improving MSC-based cartilage therapies. In this work, MS imaging was used to characterize the spatial distribution of lipids in human bone marrow MSCs during the first steps of chondrogenic differentiation. The analysis of MSC micromasses at days 2 and 14 of chondrogenesis by MALDI-MSI led to the identification of 20 different lipid species, including fatty acids, sphingolipids, and phospholipids. Phosphocholine, several sphingomyelins, and phosphatidylcholines were found to increase during the undifferentiated chondrogenic stage. A particularly detected lipid profile was verified by TOF secondary ion MS. Using this technology, a higher intensity of phosphocholine-related ions was observed in the peripheral region of the micromasses collected at day 14. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent.

    Directory of Open Access Journals (Sweden)

    Roland Fuhrer

    Full Text Available Movement is a key characteristic of higher organisms. During mammalian embryogenesis fetal movements have been found critical to normal tissue development. On the single cell level, however, our current understanding of stem cell differentiation concentrates on inducing factors through cytokine mediated biochemical signaling. In this study, human mesenchymal stem cells and chondrogenesis were investigated as representative examples. We show that pressureless, soft mechanical stimulation precipitated by the cyclic deformation of soft, magnetic hydrogel scaffolds with an external magnetic field, can induce chondrogenesis in mesenchymal stem cells without any additional chondrogenesis transcription factors (TGF-β1 and dexamethasone. A systematic study on the role of movement frequency revealed a classical dose-response relationship for human mesenchymal stem cells differentiation towards cartilage using mere mechanical stimulation. This effect could even be synergistically amplified when exogenous chondrogenic factors and movement were combined.

  19. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Choi, Bogyu; Kim, Soyon; Lin, Brian; Wu, Benjamin M; Lee, Min

    2014-11-26

    Cartilaginous extracellular matrix (ECM) components such as type-II collagen (Col II) and chondroitin sulfate (CS) play a crucial role in chondrogenesis. However, direct clinical use of natural Col II or CS as scaffolds for cartilage tissue engineering is limited by their instability and rapid enzymatic degradation. Here, we investigate the incorporation of Col II and CS into injectable chitosan hydrogels designed to gel upon initiation by exposure to visible blue light (VBL) in the presence of riboflavin. Unmodified chitosan hydrogel supported proliferation and deposition of cartilaginous ECM by encapsulated chondrocytes and mesenchymal stem cells. The incorporation of native Col II or CS into chitosan hydrogels further increased chondrogenesis. The incorporation of Col II, in particular, was found to be responsible for the enhanced cellular condensation and chondrogenesis observed in modified hydrogels. This was mediated by integrin α10 binding to Col II, increasing cell-matrix adhesion. These findings demonstrate the potential of cartilage ECM-modified chitosan hydrogels as biomaterials to promote cartilage regeneration.

  20. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres.

    Science.gov (United States)

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2016-01-01

    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  1. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs in 3D Collagen Microspheres.

    Directory of Open Access Journals (Sweden)

    Sejin Han

    Full Text Available Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  2. Growth factor combination for chondrogenic induction from human mesenchymal stem cell

    International Nuclear Information System (INIS)

    Indrawattana, Nitaya; Chen Guoping; Tadokoro, Mika; Shann, Linzi H.; Ohgushi, Hajime; Tateishi, Tetsuya; Tanaka, Junzo; Bunyaratvej, Ahnond

    2004-01-01

    During the last decade, many strategies for cartilage engineering have been emerging. Stem cell induction is one of the possible approaches for cartilage engineering. The mesenchymal stem cells (MSCs) with their pluripotency and availability have been demonstrated to be an attractive cell source. It needs the stimulation with cell growth factors to make the multipluripotent MSCs differentiate into chondrogenic lineage. We have shown particular patterns of in vitro chondrogenesis induction on human bone marrow MSCs (hBMSCs) by cycling the growth factors. The pellet cultures of hBMSCs were prepared for chondrogenic induction. Growth factors: TGF-β3, BMP-6, and IGF-1 were used in combination for cell induction. Gene expression, histology, immunohistology, and real-time PCR methods were measured on days 21 after cell induction. As shown by histology and immunohistology, the induced cells have shown the feature of chondrocytes in their morphology and extracellular matrix in both inducing patterns of combination and cycling induction. Moreover, the real-time PCR assay has shown the expression of gene markers of chondrogenesis, collagen type II and aggrecan. This study has demonstrated that cartilage tissue can be created from bone marrow mesenchymal stem cells. Interestingly, the combined growth factors TGF-β3 and BMP-6 or TGF-β3 and IGF-1 were more effective for chondrogenesis induction as shown by the real-time PCR assay. The combination of these growth factors may be the important key for in vitro chondrogenesis induction

  3. Hypoxia Is a Critical Parameter for Chondrogenic Differentiation of Human Umbilical Cord Blood Mesenchymal Stem Cells in Type I/III Collagen Sponges

    Directory of Open Access Journals (Sweden)

    Tangni Gómez-Leduc

    2017-09-01

    Full Text Available Umbilical cord blood (UCB is an attractive alternative to bone marrow for isolation of mesenchymal stem cells (MSCs to treat articular cartilage defects. Here, we set out to determine the growth factors (bone morphogenetic protein 2 (BMP-2 and transforming growth factor-β (TGF-β1 and oxygen tension effects during chondrogenesis of human UCB-MSCs for cartilage engineering. Chondrogenic differentiation was induced using 3D cultures in type I/III collagen sponges with chondrogenic factors in normoxia (21% O2 or hypoxia (<5% O2 for 7, 14 and 21 days. Our results show that UCB-MSCs can be committed to chondrogenesis in the presence of BMP-2+TGF-β1. Normoxia induced the highest levels of chondrocyte-specific markers. However, hypoxia exerted more benefit by decreasing collagen X and matrix metalloproteinase-13 (MMP13 expression, two chondrocyte hypertrophy markers. However, a better chondrogenesis was obtained by switching oxygen conditions, with seven days in normoxia followed by 14 days in hypoxia, since these conditions avoid hypertrophy of hUCB-MSC-derived chondrocytes while maintaining the expression of chondrocyte-specific markers observed in normoxia. Our study demonstrates that oxygen tension is a key factor for chondrogenesis and suggests that UBC-MSCs 3D-culture should begin in normoxia to obtain a more efficient chondrocyte differentiation before placing them in hypoxia for chondrocyte phenotype stabilization. UCB-MSCs are therefore a reliable source for cartilage engineering.

  4. Unphysiologically high magnesium concentrations support chondrocyte proliferation and redifferentiation.

    Science.gov (United States)

    Feyerabend, Frank; Witte, Frank; Kammal, Michael; Willumeit, Regine

    2006-12-01

    The effect of unphysiologically high extracellular magnesium concentrations on chondrocytes, induced by the supplementation of magnesium sulfate, was studied using a 3-phase tissue engineering model. The experiments showed that chondrocyte proliferation and redifferentiation, on the gene and protein expression level, are enhanced. A negative influence was found during chondrogenesis where an inhibition of extracellular matrix formation was observed. In addition, a direct impact on chondrocyte metabolism, elevated magnesium concentrations also affected growth factor effectiveness by consecutive influences during chondrogenesis. All observations were dosage dependent. The results of this study indicate that magnesium may be a useful tool for cartilage tissue engineering.

  5. Delayed gadolinium-enhanced MRI of cartilage of the ankle joint: Results after autologous matrix-induced chondrogenesis (AMIC)-aided reconstruction of osteochondral lesions of the talus

    International Nuclear Information System (INIS)

    Wiewiorski, M.; Miska, M.; Kretzschmar, M.; Studler, U.; Bieri, O.; Valderrabano, V.

    2013-01-01

    Aim: To assess cartilage quality using delayed gadolinium-enhanced magnetic resonance imaging after repair of osteochondral lesions of the talus using autologous matrix-induced chondrogenesis (AMIC). Materials and methods: A three-dimensional (3D) spoiled gradient-echo (SGE) sequence at 3 T was used to obtain quantitative T1 relaxation times before and after Gd-DTPA2 (Magnevist, 0.2 mM/kg bod weight) administration to assess 23 cases of AMIC-aided repair of osteochondral lesions of the talus. Delta relaxation rates (ΔR1) for reference cartilage (RC) and repair tissue (RT), and the relative delta relaxation rate (rΔR1) were calculated. The morphological appearance of the cartilage RT was graded on sagittal dual-echo steady-state (DESS) views according to the “magnetic resonance observation of cartilage repair tissue” (MOCART) protocol. The study was approved by the institutional review board and written consent from each patient was obtained. Results: The AMIC cases had a mean T1 relaxation time of 1.194 s (SD 0.207 s) in RC and 1.470 s (SD 0.384 s) in RT before contrast medium administration. The contrast-enhanced T1 relaxation time decreased to 0.480 s (SD 0.114 s) in RC and 0.411 s (SD 0.096 s) in RT. There was a significant difference (p > 0.05) between the ΔR1 in RC (1.372 × 10 −3 /s, range 0.526–3.201 × 10 −3 /s, SD 0.666 × 10 −3 /s) and RT (1.856 × 10 −3 /s, range 0.93–3.336 × 10 −3 /s, SD 0.609 × 10 −3 /s). The mean rΔR1 was 1.49, SD 0.45). The mean MOCART score at follow-up was 62.6 points (range 30–95, SD 15.3). Conclusion: The results of the present study suggest that repair cartilage resulting from AMIC-aided repair of osteochondral lesions of the talus has a significantly lower glycosaminoglycan (GAG) content than normal hyaline cartilage, but can be regarded as having hyaline-like properties

  6. Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation

    Directory of Open Access Journals (Sweden)

    Carolina M. Medeiros Da Cunha

    2017-11-01

    Full Text Available Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1 or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.

  7. Indian hedgehog gene transfer is a chondrogenic inducer of human mesenchymal stem cells

    Science.gov (United States)

    2012-01-01

    Introduction To date, no single most-appropriate factor or delivery method has been identified for the purpose of mesenchymal stem cell (MSC)-based treatment of cartilage injury. Therefore, in this study we tested whether gene delivery of the growth factor Indian hedgehog (IHH) was able to induce chondrogenesis in human primary MSCs, and whether it was possible by such an approach to modulate the appearance of chondrogenic hypertrophy in pellet cultures in vitro. Methods First-generation adenoviral vectors encoding the cDNA of the human IHH gene were created by cre-lox recombination and used alone or in combination with adenoviral vectors, bone morphogenetic protein-2 (Ad.BMP-2), or transforming growth factor beta-1 (Ad.TGF-β1) to transduce human bone-marrow derived MSCs at 5 × 102 infectious particles/cell. Thereafter, 3 × 105 cells were seeded into aggregates and cultured for 3 weeks in serum-free medium, with untransduced or marker gene transduced cultures as controls. Transgene expressions were determined by ELISA, and aggregates were analysed histologically, immunohistochemically, biochemically and by RT-PCR for chondrogenesis and hypertrophy. Results IHH, TGF-β1 and BMP-2 genes were equipotent inducers of chondrogenesis in primary MSCs, as evidenced by strong staining for proteoglycans, collagen type II, increased levels of glycosaminoglycan synthesis, and expression of mRNAs associated with chondrogenesis. IHH-modified aggregates, alone or in combination, also showed a tendency to progress towards hypertrophy, as judged by the expression of alkaline phosphatase and stainings for collagen type X and Annexin 5. Conclusion As this study provides evidence for chondrogenic induction of MSC aggregates in vitro via IHH gene delivery, this technology may be efficiently employed for generating cartilaginous repair tissues in vivo. PMID:22817660

  8. Cellular anomalies underlying retinoid-induced phocomelia.

    Science.gov (United States)

    Zhou, Jian; Kochhar, Devendra M

    2004-11-01

    The question of how alterations in cell behavior produced by retinoic acid (RA) influenced the development of skeletogenic mesenchyme of the limb bud was examined in this study. Our established model was employed, which involves treatment of pregnant mice with a teratogenic dose of RA (100 mg/kg) on 11 days postcoitum (dpc) resulting in a severe truncation of all long bones of the forelimbs in virtually every exposed fetus. It is shown that RA, administered at a stage to induce phocomelia in virtually all exposed embryos, resulted in immediate appearance of enhanced cell death within the mesenchyme in the central core of the limb bud, an area destined for chondrogenesis. The central core mesenchyme, which in the untreated limb buds experiences a sharp decline in cell proliferation heralding the onset of chondrogenesis, demonstrated a reversal of the process; this mesenchyme maintained a higher rate of cell proliferation upon RA exposure. These events resulted in a truncation and disorganization of the chondrogenic anlage, more pronounced in zeugopodal mesenchyme than in the autopod. We conclude that an inhibition of chondrogenesis was secondary to a disruption in cellular behavior caused by RA, a likely consequence of misregulation in the growth factor signaling cascade.

  9. Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix.

    Science.gov (United States)

    Li, Ang; Wei, Yiyong; Hung, Clark; Vunjak-Novakovic, Gordana

    2018-08-01

    Cartilage extracellular matrix (ECM) has been used for promoting tissue engineering. However, the exact effects of ECM on chondrogenesis and the acting mechanisms are not well understood. In this study, we investigated the chondrogenic effects of cartilage ECM on human mesenchymal stem cells (MSCs) and identified the contributing molecular components. To this end, a preparation of articular cartilage ECM was supplemented to pellets of chondrogenically differentiating MSCs, pellets of human chondrocytes, and bovine articular cartilage explants to evaluate the effects on cell proliferation and the production of cartilaginous matrix. Selective enzymatic digestion and screening of ECM components were conducted to identify matrix molecules with chondrogenic properties. Cartilage ECM promoted MSC proliferation, production of cartilaginous matrix, and maturity of chondrogenic differentiation, and inhibited the hypertrophic differentiation of MSC-derived chondrocytes. Selective digestion of ECM components revealed a contributory role of collagens in promoting chondrogenesis. The screening of various collagen subtypes revealed strong chondrogenic effect of collagen type XI. Finally, collagen XI was found to promote production and inhibit degradation of cartilage matrix in human articular chondrocyte pellets and bovine articular cartilage explants. Our results indicate that cartilage ECM promotes chondrogenesis and inhibits hypertrophic differentiation in MSCs. Collagen type XI is the ECM component that has the strongest effects on enhancing the production and inhibiting the degradation of cartilage matrix. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. IL-17 inhibits chondrogenic differentiation of human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Masahiro Kondo

    Full Text Available OBJECTIVE: Mesenchymal stem cells (MSCs can differentiate into cells of mesenchymal lineages, such as osteoblasts and chondrocytes. Here we investigated the effects of IL-17, a key cytokine in chronic inflammation, on chondrogenic differentiation of human MSCs. METHODS: Human bone marrow MSCs were pellet cultured in chondrogenic induction medium containing TGF-β3. Chondrogenic differentiation was detected by cartilage matrix accumulation and chondrogenic marker gene expression. RESULTS: Over-expression of cartilage matrix and chondrogenic marker genes was noted in chondrogenic cultures, but was inhibited by IL-17 in a dose-dependent manner. Expression and phosphorylation of SOX9, the master transcription factor for chondrogenesis, were induced within 2 days and phosphorylated SOX9 was stably maintained until day 21. IL-17 did not alter total SOX9 expression, but significantly suppressed SOX9 phosphorylation in a dose-dependent manner. At day 7, IL-17 also suppressed the activity of cAMP-dependent protein kinase A (PKA, which is known to phosphorylate SOX9. H89, a selective PKA inhibitor, also suppressed SOX9 phosphorylation, expression of chondrogenic markers and cartilage matrix, and also decreased chondrogenesis. CONCLUSIONS: IL-17 inhibited chondrogenesis of human MSCs through the suppression of PKA activity and SOX9 phosphorylation. These results suggest that chondrogenic differentiation of MSCs can be inhibited by a mechanism triggered by IL-17 under chronic inflammation.

  11. Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel

    Directory of Open Access Journals (Sweden)

    AH Huang

    2010-02-01

    Full Text Available Mesenchymal stem cells (MSCs are an attractive cell source for cartilage tissue engineering given their ability to undergo chondrogenesis in 3D culture systems. Mechanical forces play an important role in regulating both cartilage development and MSC chondrogenic gene expression, however, mechanical stimulation has yet to enhance the mechanical properties of engineered constructs. In this study, we applied long-term dynamic compression to MSC-seeded constructs and assessed whether varying pre-culture duration, loading regimens and inclusion of TGF-beta3 during loading would influence functional outcomes and these phenotypic transitions. Loading initiated before chondrogenesis decreased functional maturation, although chondrogenic gene expression increased. In contrast, loading initiated after chondrogenesis and matrix elaboration further improved the mechanical properties of MSC-based constructs, but only when TGF-beta3 levels were maintained and under specific loading parameters. Although matrix quantity was not affected by dynamic compression, matrix distribution, assessed histologically and by FT-IRIS analysis, was significantly improved on the micro- (pericellular and macro- (construct expanse scales. Further, whole genome expression profiling revealed marked shifts in the molecular topography with dynamic loading. These results demonstrate, for the first time, that dynamic compressive loading initiated after a sufficient period of chondro-induction and with sustained TGF-beta exposure enhances matrix distribution and the mechanical properties of MSC-seeded constructs.

  12. PPAR-δ Agonist With Mesenchymal Stem Cells Induces Type II Collagen-Producing Chondrocytes in Human Arthritic Synovial Fluid.

    Science.gov (United States)

    Heck, Bruce E; Park, Joshua J; Makani, Vishruti; Kim, Eun-Cheol; Kim, Dong Hyun

    2017-08-01

    Osteoarthritis (OA) is an inflammatory joint disease characterized by degeneration of articular cartilage within synovial joints. An estimated 27 million Americans suffer from OA, and the population is expected to reach 67 million in the United States by 2030. Thus, it is urgent to find an effective treatment for OA. Traditional OA treatments have no disease-modifying effect, while regenerative OA therapies such as autologous chondrocyte implantation show some promise. Nonetheless, current regenerative therapies do not overcome synovial inflammation that suppresses the differentiation of mesenchymal stem cells (MSCs) to chondrocytes and the expression of type II collagen, the major constituent of functional cartilage. We discovered a synergistic combination that overcame synovial inflammation to form type II collagen-producing chondrocytes. The combination consists of peroxisome proliferator-activated receptor (PPAR) δ agonist, human bone marrow (hBM)-derived MSCs, and hyaluronic acid (HA) gel. Interestingly, those individual components showed their own strong enhancing effects on chondrogenesis. GW0742, a PPAR-δ agonist, greatly enhanced MSC chondrogenesis and the expression of type II collagen and glycosaminoglycan (GAG) in hBM-MSC-derived chondrocytes. GW0742 also increased the expression of transforming growth factor β that enhances chondrogenesis and suppresses cartilage fibrillation, ossification, and inflammation. HA gel also increased MSC chondrogenesis and GAG production. However, neither GW0742 nor HA gel could enhance the formation of type II collagen-producing chondrocytes from hBM-MSCs within human OA synovial fluid. Our data demonstrated that the combination of hBM-MSCs, PPAR-δ agonist, and HA gel significantly enhanced the formation of type II collagen-producing chondrocytes within OA synovial fluid from 3 different donors. In other words, the novel combination of PPAR-δ agonist, hBM-MSCs, and HA gel can overcome synovial inflammation to form

  13. Identification, molecular characterization, and analysis of the ...

    Indian Academy of Sciences (India)

    Qiyan Du. E-mail: 041019@htu.edu.cn. Abstract. Sox7, Sox17, and Sox18 are members of the ... chondrogenesis, in endoderm development, and in sex determination and ...... Stimulating protein 1, ubiquitous zinc finger transcription factor. +.

  14. The trans-well coculture of human synovial mesenchymal stem cells with chondrocytes leads to self-organization, chondrogenic differentiation, and secretion of TGFβ

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Heidt, Emanuel; Bernstein, Anke

    2016-01-01

    BACKGROUND: Synovial mesenchymal stem cells (SMSC) possess a high chondrogenic differentiation potential, which possibly supports natural and surgically induced healing of cartilage lesions. We hypothesized enhanced chondrogenesis of SMSC caused by the vicinity of chondrocytes (CHDR). METHODS...

  15. PRC1 Prevents Replication Stress during Chondrogenic Transit Amplification

    Directory of Open Access Journals (Sweden)

    Frank Spaapen

    2017-12-01

    Full Text Available Transit amplification (TA, a state of combined, rapid proliferative expansion and differentiation of stem cell-descendants, remains poorly defined at the molecular level. The Polycomb Repressive Complex 1 (PRC1 protein BMI1 has been localized to TA compartments, yet its exact role in TA is unclear. PRC1 proteins control gene expression, cell proliferation and DNA-damage repair. Coordination of such DNA-templated activities during TA is predicted to be crucial to support DNA replication and differentiation-associated transcriptional programming. We here examined whether chondrogenesis provides a relevant biological context for synchronized coordination of these chromatin-based tasks by BMI1. Taking advantage of a prominently featuring TA-phase during chondrogenesis in vitro and in vivo, we here report that TA is completely dependent on intact PRC1 function. BMI1-depleted chondrogenic progenitors rapidly accumulate double strand DNA breaks during DNA replication, present massive non-H3K27me3-directed transcriptional deregulation and fail to undergo chondrogenic TA. Genome-wide accumulation of Topoisomerase 2α and Geminin suggests a model in which PRC1 synchronizes replication and transcription during rapid chondrogenic progenitor expansion. Our combined data reveals for the first time a vital cell-autonomous role for PRC1 during chondrogenesis. We provide evidence that chondrocyte hyper-replication and hypertrophy represent a unique example of programmed senescence in vivo. These findings provide new perspectives on PRC1 function in development and disease.

  16. Significance of soluble growth factors in the chondrogenic response of human umbilical cord matrix stem cells in a porous three dimensional scaffold

    Directory of Open Access Journals (Sweden)

    RS Nirmal

    2013-11-01

    Full Text Available Stem cell based tissue engineering has emerged as a promising strategy for articular cartilage regeneration. Foetal derived mesenchymal stem cells (MSCs with their ease of availability, pluripotency and high expansion potential have been demonstrated to be an attractive cell source over adult MSCs. However, there is a need for optimisation of chondrogenic signals to direct the differentiation of these multipotent MSCs to chondrogenic lineage. In this study we have demonstrated the in vitro chondrogenesis of human umbilical cord matrix MSCs in three dimensional PVA-PCL (polyvinyl alcohol-polycaprolactone scaffolds in the presence of the individual growth factors TGFβ1, TGFβ3, IGF, BMP2 and their combination with BMP2. Gene expression, histology and immunohistology were evaluated after 28 d culture. The induced cells showed the feature of chondrocytes in their morphology and expression of typical chondrogenic extracellular matrix molecules. Moreover, the real-time PCR assay has shown the expression of gene markers of chondrogenesis, SOX9, collagen type II and aggrecan. The expression of collagen type I and collagen type X was also evaluated. This study has demonstrated the successful chondrogenic induction of human umbilical cord MSCs in 3D scaffolds. Interestingly, the growth factor combination of TGF-β3 and BMP-2 was found to be more effective for chondrogenesis as shown by the real-time PCR studies. The findings of this study suggest the importance of using growth factor combinations for successful chondrogenic differentiation of umbilical cord MSCs.

  17. Periodic heat shock accelerated the chondrogenic differentiation of human mesenchymal stem cells in pellet culture.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Osteoarthritis (OA is one of diseases that seriously affect elderly people's quality of life. Human mesenchymal stem cells (hMSCs offer a potential promise for the joint repair in OA patients. However, chondrogenic differentiation from hMSCs in vitro takes a long time (∼ 6 weeks and differentiated cells are still not as functionally mature as primary isolated chondrocytes, though chemical stimulations and mechanical loading have been intensively studied to enhance the hMSC differentiation. On the other hand, thermal stimulations of hMSC chondrogenesis have not been well explored. In this study, the direct effects of mild heat shock (HS on the differentiation of hMSCs into chondrocytes in 3D pellet culture were investigated. Periodic HS at 41 °C for 1 hr significantly increased sulfated glycosaminoglycan in 3D pellet culture at Day 10 of chondrogenesis. Immunohistochemical and Western Blot analyses revealed an increased expression of collagen type II and aggrecan in heat-shocked pellets than non heat-shocked pellets on Day 17 of chondrogenesis. In addition, HS also upregulated the expression of collagen type I and X as well as heat shock protein 70 on Day 17 and 24 of differentiation. These results demonstrate that HS accelerated the chondrogenic differentiation of hMSCs and induced an early maturation of chondrocytes differentiated from hMSCs. The results of this study will guide the design of future protocols using thermal treatments to facilitate cartilage regeneration with human mesenchymal stem cells.

  18. Taurine Promotes the Cartilaginous Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Vitro.

    Science.gov (United States)

    Yao, Xiuhua; Huang, Huiling; Li, Zhou; Liu, Xiaohua; Fan, Weijia; Wang, Xinping; Sun, Xuelian; Zhu, Jianmin; Zhou, Hongrui; Wei, Huaying

    2017-08-01

    Taurine has been reported to influence osteogenic differentiation, but the role of taurine on cartilaginous differentiation using human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) remains unclear. In this study, we investigated the effect of taurine (0, 1, 5 and 10 mM) on the proliferation and chondrogenesis of hUC-MSCs by analyzing cell proliferation, accumulation of glycosaminoglycans and expression of cartilage specific mRNA. The results show though taurine did not affected the proliferation of hUC-MSCs, 5 mM of taurine is sufficient to enhanced the accumulation of glycosaminoglycans and up-regulate cartilage specific mRNA expression, namely collagen type II, aggrecan and SOX9. Taurine also inhibits chondrocyte dedifferentiation by reducing expression of collagen type I mRNA. Taken together, our study reveals that taurine promotes and maintains the chondrogenesis of hUC-MSCs.

  19. Role of c-Myb in chondrogenesis

    Czech Academy of Sciences Publication Activity Database

    Oralová, Veronika; Matalová, Eva; Janečková, Eva; Drobná Krejčí, E.; Knopfová, L.; Šnajdr, P.; Tucker, A. S.; Veselá, I.; Šmarda, J.; Buchtová, Marcela

    2015-01-01

    Roč. 76, č. 1 (2015), s. 97-106 ISSN 8756-3282 R&D Projects: GA ČR GCP302/12/J059; GA ČR GB14-37368G Institutional support: RVO:67985904 Keywords : micromass cultures * mouse limbs * endochondral bone Subject RIV: EA - Cell Biology Impact factor: 3.736, year: 2015

  20. The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs

    NARCIS (Netherlands)

    Malda, J.; Woodfield, T.B.F.; van der Vloodt, F.; Kooy, F.K.; Martens, D.E.; Tramper, J.C.; van Blitterswijk, Clemens; Riesle, J.U.

    2004-01-01

    Repair of articular cartilage defects using tissue engineered constructs composed of a scaffold and cultured autologous cells holds promise for future treatments. However, nutrient limitation (e.g. oxygen) has been suggested as a cause of the onset of chondrogenesis solely within the peripheral

  1. Trophic effects of adipose-tissue-derived and bone-marrow-derived mesenchymal stem cells enhance cartilage generation by chondrocytes in co-culture

    NARCIS (Netherlands)

    Pleumeekers, M.M.; Nimeskern, L.M.; Koevoet, J. L.M.; Karperien, M.; Stok, K.S.; van Osch, G.J.V.M.

    2018-01-01

    Aims Combining mesenchymal stem cells (MSCs) and chondrocytes has great potential for cell-based cartilage repair. However, there is much debate regarding the mechanisms behind this concept. We aimed to clarify the mechanisms that lead to chondrogenesis (chondrocyte driven MSC-differentiation versus

  2. Tuning the differentiation of periosteum-derived cartilage using biochemical and mechanical stimulation

    NARCIS (Netherlands)

    Kock, L.M.; Ravetto, A.; Donkelaar, van C.C.; Foolen, J.; Emans, P.J.; Ito, K.

    2010-01-01

    OBJECTIVE: In this study, we aim at tuning the differentiation of periosteum in an organ culture model towards cartilage, rich in collagen type II, using combinations of biochemical and mechanical stimuli. We hypothesize that addition of TGF-ß will stimulate chondrogenesis, whereas sliding

  3. Chondrogenic differentiation of mesenchymal stem cells in a hydrogel system based on an enzymatically crosslinked tyramine derivative of hyaluronan

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, J.; Kučera, L.; Kučera, J.; Svik, K.; Foglarová, M.; Muthny, T.; Pravda, M.; Němcová, M.; Velebný, V.; Kubala, Lukáš

    2014-01-01

    Roč. 102, č. 10 (2014), s. 3523-3530 ISSN 1549-3296 R&D Projects: GA MŠk(CZ) ED1.100/02/0123 Institutional support: RVO:68081707 Keywords : hyaluronate * tyramine * chondrogenesis Subject RIV: BO - Biophysics Impact factor: 3.369, year: 2014

  4. Effects of long-term use of the preferential COX-2 inhibitor meloxicam on growing pigs

    NARCIS (Netherlands)

    Gorissen, Ben M C|info:eu-repo/dai/nl/372825788; Uilenreef, Joost J|info:eu-repo/dai/nl/30483095X; Bergmann, Willie|info:eu-repo/dai/nl/36275585X; Meijer, Ellen|info:eu-repo/dai/nl/375288015; van Rietbergen, Bert; van der Staay, Franz Josef|info:eu-repo/dai/nl/074262653; Weeren, P René van; Wolschrijn, Claudia F|info:eu-repo/dai/nl/271539496

    2017-01-01

    Meloxicam, a preferential COX-2 inhibitor, is a commonly used NSAID in pigs. Besides having potential side effects on the gastrointestinal tract, this type of drug might potentially affect osteogenesis and chondrogenesis, processes relevant to growing pigs. Therefore, the effects of long-term

  5. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells

    Directory of Open Access Journals (Sweden)

    Jeroen Eyckmans

    2012-08-01

    It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.

  6. Delta-like 1/Fetal Antigen-1 (Dlk1/FA1) Is a Novel Regulator of Chondrogenic Cell Differentiation via Inhibition of the Akt Kinase-dependent Pathway*

    Science.gov (United States)

    Chen, Li; Qanie, Diyako; Jafari, Abbas; Taipaleenmaki, Hanna; Jensen, Charlotte H.; Säämänen, Anna-Marja; Sanz, Maria Luisa Nueda; Laborda, Jorge; Abdallah, Basem M.; Kassem, Moustapha

    2011-01-01

    Delta-like 1 (Dlk1, also known as fetal antigen-1, FA1) is a member of Notch/Delta family that inhibits adipocyte and osteoblast differentiation; however, its role in chondrogenesis is still not clear. Thus, we overexpressed Dlk1/FA1 in mouse embryonic ATDC5 cells and tested its effects on chondrogenic differentiation. Dlk1/FA1 inhibited insulin-induced chondrogenic differentiation as evidenced by reduction of cartilage nodule formation and gene expression of aggrecan, collagen Type II and X. Similar effects were obtained either by using Dlk1/FA1-conditioned medium or by addition of a purified, secreted, form of Dlk1 (FA1) directly to the induction medium. The inhibitory effects of Dlk1/FA1 were dose-dependent and occurred irrespective of the chondrogenic differentiation stage: proliferation, differentiation, maturation, or hypertrophic conversion. Overexpression or addition of the Dlk1/FA1 protein to the medium strongly inhibited the activation of Akt, but not the ERK1/2, or p38 MAPK pathways, and the inhibition of Akt by Dlk1/FA1 was mediated through PI3K activation. Interestingly, inhibition of fibronectin expression by siRNA rescued the Dlk1/FA1-mediated inhibition of Akt, suggesting interaction of Dlk1/FA1 and fibronectin in chondrogenic cells. Our results identify Dlk1/FA1 as a novel regulator of chondrogenesis and suggest Dlk1/FA1 acts as an inhibitor of the PI3K/Akt pathways that leads to its inhibitory effects on chondrogenesis. PMID:21724852

  7. The potential application of LIPUS and PEMF on cartilage and chondrogenic differentiation : An in vitro study

    NARCIS (Netherlands)

    Tan, Lijun

    2016-01-01

    In chapter 2 a review is presented of the scientific literature on the use and mechanism of low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic fields (PEMF) applied on articular cartilage, chondrocytes and chondrogenesis in order to compare these two non-invasive procedures regarding

  8. Effects of long-term use of the preferential COX-2 inhibitor meloxicam on growing pigs

    NARCIS (Netherlands)

    Gorissen, B.M.C.; Uilenreef, J.J.; Bergmann, W.; Meijer, E.; van Rietbergen, B.; van der Staay, F.J.; van Weeren, P.R.; Wolschrijn, C.F.

    2017-01-01

    Meloxicam, a preferential COX-2 inhibitor, is a commonly used nSAID in pigs. Besides having potential side effects on the gastrointestinal tract, this type of drug might potentially affect osteogenesis and chondrogenesis, processes relevant to growing pigs. Therefore, the effects of long-term

  9. Temporal Transcriptome of Mouse ATDC5 Chondroprogenitors Differentiating under Hypoxic Conditions

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Ebbesen, Peter

    2006-01-01

    The formation of cartilage takes place in vivo in an environment of reduced oxygen tension. To study the effect of hypoxia on the process of chondrogenesis, ATDC5 mouse chondroprogenitor cells were induced to differentiate by the addition of insulin and cultured under ambient and hypoxic conditions...

  10. Somite chrondrogenesis: alterations in cyclic AMP levels and proteoglycan synthesis

    International Nuclear Information System (INIS)

    Vasan, Nagaswamistri; Lamb, K.M.; Heick, A.E.

    1985-01-01

    Cyclic AMP (cAMP) levels have been shown to have a positive influence on chondrogenesis in limb buds and pelvic cartilage. In the present study the level of cAMP was measured during somite chondrogenesis in vitro and found to decrease from 1.38 pmol/μg DNA on day 0 to 0.9 pmol/μg DNA on day 6. Inclusion of notochord with somites caused a marked recution, with levels decreasing from 1.41 pmol/μg DNA on day 0 to 0.36 pmol/μg DNA on day 6. Concurrently, the incorporation of radioactive sulfate into sulfated glycosaminoglycans increased from day 3 to day 6 by 38% in somite and 77% in somite-notochord explants. The aggregation of proteoglycans was analyzed by gel chromatography and found to increase with a corresponding decrease in cAMP levels. The result indicate that a decrease in cAMP levels may be necessary for chondrogenic expression in somites. (author)

  11. The ECM-Cell Interaction of Cartilage Extracellular Matrix on Chondrocytes

    Directory of Open Access Journals (Sweden)

    Yue Gao

    2014-01-01

    Full Text Available Cartilage extracellular matrix (ECM is composed primarily of the network type II collagen (COLII and an interlocking mesh of fibrous proteins and proteoglycans (PGs, hyaluronic acid (HA, and chondroitin sulfate (CS. Articular cartilage ECM plays a crucial role in regulating chondrocyte metabolism and functions, such as organized cytoskeleton through integrin-mediated signaling via cell-matrix interaction. Cell signaling through integrins regulates several chondrocyte functions, including differentiation, metabolism, matrix remodeling, responses to mechanical stimulation, and cell survival. The major signaling pathways that regulate chondrogenesis have been identified as wnt signal, nitric oxide (NO signal, protein kinase C (PKC, and retinoic acid (RA signal. Integrins are a large family of molecules that are central regulators in multicellular biology. They orchestrate cell-cell and cell-matrix adhesive interactions from embryonic development to mature tissue function. In this review, we emphasize the signaling molecule effect and the biomechanics effect of cartilage ECM on chondrogenesis.

  12. IHH and FGF8 coregulate elongation of digit primordia.

    Science.gov (United States)

    Zhou, Jian; Meng, Junwei; Guo, Shengzhen; Gao, Bo; Ma, Gang; Zhu, Xuming; Hu, Jianxin; Xiao, Yue; Lin, Chuwen; Wang, Hongsheng; Ding, Lusheng; Feng, Guoyin; Guo, Xizhi; He, Lin

    2007-11-23

    In the developing limb bud, digit pattern arises from anterior-posterior (A-P) positional information which is provided by the concentration gradient of SHH. However, the mechanisms of translating early asymmetry into morphological form are still unclear. Here, we examined the ability of IHH and FGF8 signaling to regulate digital chondrogenesis, by implanting protein-loaded beads in the interdigital space singly and in combination. We found that IHH protein induced an elongated digit and that FGF8 protein blocked the terminal phalange formation. Molecular marker analysis showed that IHH expanded Sox9 expression in mesenchymal cells possibly through up-regulated FGF8 expression. Application of both IHH and FGF8 protein induced a large terminal phalange. These results suggest that both enhanced IHH and FGF8 signaling are required for the development of additional cartilage element in limbs. IHH and FGF8 maybe play different roles and act synergistically to promote chondrogenesis during digit primordia elongation.

  13. Nfatc1 Is a Functional Transcriptional Factor Mediating Nell-1-Induced Runx3 Upregulation in Chondrocytes

    Directory of Open Access Journals (Sweden)

    Chenshuang Li

    2018-01-01

    Full Text Available Neural EGFL like 1 (Nell-1 is essential for chondrogenic differentiation, maturation, and regeneration. Our previous studies have demonstrated that Nell-1’s pro-chondrogenic activities are predominantly reliant upon runt-related transcription factor 3 (Runx3-mediated Indian hedgehog (Ihh signaling. Here, we identify the nuclear factor of activated T-cells 1 (Nfatc1 as the key transcriptional factor mediating the Nell-1 → Runx3 signal transduction in chondrocytes. Using chromatin immunoprecipitation assay, we were able to determine that Nfatc1 binds to the −833–−810 region of the Runx3-promoter in response to Nell-1 treatment. By revealing the Nell-1 → Nfatc1 → Runx3 → Ihh cascade, we demonstrate the involvement of Nfatc1, a nuclear factor of activated T-cells, in chondrogenesis, while providing innovative insights into developing a novel therapeutic strategy for cartilage regeneration and other chondrogenesis-related conditions.

  14. Flow-perfusion interferes with chondrogenic and hypertrophic matrix production by mesenchymal stem cells

    NARCIS (Netherlands)

    Kock, Linda M; Malda, Jos; Dhert, Wouter J A; Ito, Keita; Gawlitta, Debby

    2014-01-01

    Flow-perfusion is being promoted as a way to grow tissue-engineered cartilage in vitro. Yet, there is a concern that flow-perfusion may induce unwanted mechanical effects on chondrogenesis and terminal differentiation. Therefore, the aim of this study is to evaluate the effect of fluid flow on

  15. Human umbilical cord Wharton's jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment.

    Science.gov (United States)

    Fong, Chui-Yee; Subramanian, Arjunan; Gauthaman, Kalamegam; Venugopal, Jayarama; Biswas, Arijit; Ramakrishna, Seeram; Bongso, Ariff

    2012-03-01

    The current treatments used for osteoarthritis from cartilage damage have their disadvantages of donor site morbidity, complicated surgical interventions and risks of infection and graft rejection. Recent advances in tissue engineering have offered much promise in cartilage repair but the best cell source and in vitro system have not as yet been optimised. Human bone marrow mesenchymal stem cells (hBMSCs) have thus far been the cell of choice. However, we derived a unique stem cell from the human umbilical cord Wharton's jelly (hWJSC) that has properties superior to hBMSCs in terms of ready availability, prolonged stemness characteristics in vitro, high proliferation rates, wide multipotency, non-tumorigenicity and tolerance in allogeneic transplantation. We observed enhanced cell attachment, cell proliferation and chondrogenesis of hWJSCs over hBMSCs when grown on PCL/Collagen nanoscaffolds in the presence of a two-stage sequential complex/chondrogenic medium for 21 days. Improvement of these three parameters were confirmed via inverted optics, field emission scanning electron microscopy (FESEM), MTT assay, pellet diameters, Alcian blue histology and staining, glycosaminglycans (GAG) and hyaluronic acid production and expression of key chondrogenic genes (SOX9, Collagen type II, COMP, FMOD) using immunohistochemistry and real-time polymerase chain reaction (qRT-PCR). In separate experiments we demonstrated that the 16 ng/ml of basic fibroblast growth factor (bFGF) present in the complex medium may have contributed to driving chondrogenesis. We conclude that hWJSCs are an attractive stem cell source for inducing chondrogenesis in vitro when grown on nanoscaffolds and exposed sequentially first to complex medium and then followed by chondrogenic medium.

  16. Paracrine and autocrine signals promoting full chondrogenic differentiation of a mesoblastic cell line.

    Science.gov (United States)

    Locker, Morgane; Kellermann, Odile; Boucquey, Marie; Khun, Huot; Huerre, Michel; Poliard, Anne

    2004-01-01

    The pluripotent mesoblastic C1 cell line was used under serum-free culture conditions to investigate how paracrine and autocrine signals cooperate to drive chondrogenesis. Sequential addition of two systemic hormones, dexamethasone and triiodothyronine, permits full chondrogenic differentiation. The cell intrinsic activation of the BMP signaling pathway and Sox9 expression occurring on mesoblastic condensation is insufficient for recruitment of the progenitors. Dexamethasone-dependent Sox9 upregulation is essential for chondrogenesis. Differentiation of lineage stem cells relies on cell autonomous regulations modulated by external signals. We used the pluripotent mesoblastic C1 cell line under serum-free culture conditions to investigate how paracrine and autocrine signals cooperate to induce differentiation of a precursor clone along the chondrogenic lineage. C1 cells, cultured as aggregates, were induced toward chondrogenesis by addition of 10(-7) M dexamethasone in serum-free medium. After 30 days, dexamethasone was replaced by 10 nM triiodothyronine to promote final hypertrophic conversion. Mature and hypertrophic phenotypes were characterized by immunocytochemistry using specific antibodies against types II and X collagens, respectively. Type II collagen, bone morphogenetic proteins (BMPs), BMP receptors, Smads, and Sox9 expression were monitored by reverse transcriptase-polymerase chain reaction (RT-PCR), Northern blot, and/or Western blot analysis. Once C1 cells have formed nodules, sequential addition of two systemic hormones is sufficient to promote full chondrogenic differentiation. In response to dexamethasone, nearly 100% of the C1 precursors engage in chondrogenesis and convert within 30 days into mature chondrocytes, which triggers a typical cartilage matrix. On day 25, a switch in type II procollagen mRNA splicing acted as a limiting step in the acquisition of the mature chondrocyte phenotype. On day 30, substitution of dexamethasone with

  17. Trophic effects of adipose-tissue-derived and bone-marrow-derived mesenchymal stem cells enhance cartilage generation by chondrocytes in co-culture.

    Science.gov (United States)

    Pleumeekers, M M; Nimeskern, L; Koevoet, J L M; Karperien, M; Stok, K S; van Osch, G J V M

    2018-01-01

    Combining mesenchymal stem cells (MSCs) and chondrocytes has great potential for cell-based cartilage repair. However, there is much debate regarding the mechanisms behind this concept. We aimed to clarify the mechanisms that lead to chondrogenesis (chondrocyte driven MSC-differentiation versus MSC driven chondroinduction) and whether their effect was dependent on MSC-origin. Therefore, chondrogenesis of human adipose-tissue-derived MSCs (hAMSCs) and bone-marrow-derived MSCs (hBMSCs) combined with bovine articular chondrocytes (bACs) was compared. hAMSCs or hBMSCs were combined with bACs in alginate and cultured in vitro or implanted subcutaneously in mice. Cartilage formation was evaluated with biochemical, histological and biomechanical analyses. To further investigate the interactions between bACs and hMSCs, (1) co-culture, (2) pellet, (3) Transwell® and (4) conditioned media studies were conducted. The presence of hMSCs-either hAMSCs or hBMSCs-increased chondrogenesis in culture; deposition of GAG was most evidently enhanced in hBMSC/bACs. This effect was similar when hMSCs and bAC were combined in pellet culture, in alginate culture or when conditioned media of hMSCs were used on bAC. Species-specific gene-expression analyses demonstrated that aggrecan was expressed by bACs only, indicating a predominantly trophic role for hMSCs. Collagen-10-gene expression of bACs was not affected by hBMSCs, but slightly enhanced by hAMSCs. After in-vivo implantation, hAMSC/bACs and hBMSC/bACs had similar cartilage matrix production, both appeared stable and did not calcify. This study demonstrates that replacing 80% of bACs by either hAMSCs or hBMSCs does not influence cartilage matrix production or stability. The remaining chondrocytes produce more matrix due to trophic factors produced by hMSCs.

  18. Human immunodeficiency virus type 1 enhancer-binding protein 3 is essential for the expression of asparagine-linked glycosylation 2 in the regulation of osteoblast and chondrocyte differentiation.

    Science.gov (United States)

    Imamura, Katsuyuki; Maeda, Shingo; Kawamura, Ichiro; Matsuyama, Kanehiro; Shinohara, Naohiro; Yahiro, Yuhei; Nagano, Satoshi; Setoguchi, Takao; Yokouchi, Masahiro; Ishidou, Yasuhiro; Komiya, Setsuro

    2014-04-04

    Human immunodeficiency virus type 1 enhancer-binding protein 3 (Hivep3) suppresses osteoblast differentiation by inducing proteasomal degradation of the osteogenesis master regulator Runx2. In this study, we tested the possibility of cooperation of Hivep1, Hivep2, and Hivep3 in osteoblast and/or chondrocyte differentiation. Microarray analyses with ST-2 bone stroma cells demonstrated that expression of any known osteochondrogenesis-related genes was not commonly affected by the three Hivep siRNAs. Only Hivep3 siRNA promoted osteoblast differentiation in ST-2 cells, whereas all three siRNAs cooperatively suppressed differentiation in ATDC5 chondrocytes. We further used microarray analysis to identify genes commonly down-regulated in both MC3T3-E1 osteoblasts and ST-2 cells upon knockdown of Hivep3 and identified asparagine-linked glycosylation 2 (Alg2), which encodes a mannosyltransferase residing on the endoplasmic reticulum. The Hivep3 siRNA-mediated promotion of osteoblast differentiation was negated by forced Alg2 expression. Alg2 suppressed osteoblast differentiation and bone formation in cultured calvarial bone. Alg2 was immunoprecipitated with Runx2, whereas the combined transfection of Runx2 and Alg2 interfered with Runx2 nuclear localization, which resulted in suppression of Runx2 activity. Chondrocyte differentiation was promoted by Hivep3 overexpression, in concert with increased expression of Creb3l2, whose gene product is the endoplasmic reticulum stress transducer crucial for chondrogenesis. Alg2 silencing suppressed Creb3l2 expression and chondrogenesis of ATDC5 cells, whereas infection of Alg2-expressing virus promoted chondrocyte maturation in cultured cartilage rudiments. Thus, Alg2, as a downstream mediator of Hivep3, suppresses osteogenesis, whereas it promotes chondrogenesis. To our knowledge, this study is the first to link a mannosyltransferase gene to osteochondrogenesis.

  19. Hydrostatic pressure acts to stabilise a chondrogenic phenotype in porcine joint tissue derived stem cells

    Directory of Open Access Journals (Sweden)

    T Vinardell

    2012-02-01

    Full Text Available Hydrostatic pressure (HP is a key component of the in vivo joint environment and has been shown to enhance chondrogenesis of stem cells. The objective of this study was to investigate the interaction between HP and TGF-β3 on both the initiation and maintenance of a chondrogenic phenotype for joint tissue derived stem cells. Pellets generated from porcine chondrocytes (CCs, synovial membrane derived stem cells (SDSCs and infrapatellar fat pad derived stem cells (FPSCs were subjected to 10 MPa of cyclic HP (4 h/day and different concentrations of TGF-β3 (0, 1 and 10 ng/mL for 14 days. CCs and stem cells were observed to respond differentially to both HP and TGF-β3 stimulation. HP in the absence of TGF-β3 did not induce robust chondrogenic differentiation of stem cells. At low concentrations of TGF-β3 (1 ng/mL, HP acted to enhance chondrogenesis of both SDSCs and FPSCs, as evident by a 3-fold increase in Sox9 expression and a significant increase in glycosaminoglycan accumulation. In contrast, HP had no effect on cartilage-specific matrix synthesis at higher concentrations of TGF-β3 (10 ng/mL. Critically, HP appears to play a key role in the maintenance of a chondrogenic phenotype, as evident by a down-regulation of the hypertrophic markers type X collagen and Indian hedgehog in SDSCs irrespective of the cytokine concentration. In the context of stem cell based therapies for cartilage repair, this study demonstrates the importance of considering how joint specific environmental factors interact to regulate not only the initiation of chondrogenesis, but also the development of a stable hyaline-like repair tissue.

  20. Expression, function and regulation of Evi-1 during embryonic avian development

    Czech Academy of Sciences Publication Activity Database

    Celá, Petra; Moravcová Balková, Simona; Bryjová, Anna; Horáková, D.; Míšek, Ivan; Richman, J. M.; Buchtová, Marcela

    2013-01-01

    Roč. 13, č. 8 (2013), s. 343-353 ISSN 1567-133X R&D Projects: GA ČR GA304/09/0725 Institutional support: RVO:67985904 ; RVO:68081766 Keywords : ecotropical viral integration site 1 * chondrogenesis * siRNA * limb patterning Subject RIV: EA - Cell Biology; EG - Zoology (UBO-W) Impact factor: 1.356, year: 2013

  1. Poly(dl)lactic acid/polyglycolic acid/iron and poly(dl)lactic acid/polyglycolic acid/samarium cobalt composites for use as a delivery mechanism for magnetically directed chondrogenesis

    Science.gov (United States)

    Oppermann, Dean Alan

    Magnetically directed chondrogenesis (MDC) is a fundamental approach to articular cartilage repair. In MDC a magnet is implanted into the subchondral trabecular bone underlying a cartilage defect and used to attract chondrocytes, magnetically tagged with Fe nanoparticles, to the defect site. Pilot studies by Halpern, Crimp and Grande, using solid neodymium (Nd) magnets, indicated optimistic results by producing a hyaline-like articular cartilage after 8 weeks implantation. Since solid Nd magnets introduce long-term biocompatibility issues, the focus of this dissertation was to develop P(dl)A/PGA/Fe and P(dl)A/PGA/SmCo 5 implants for use in MDC. The effect of implant porosity, implant composition and magnetic material (Fe or SmCo5) on the initial and degraded magnetic properties were evaluated. The biocompatibility of P(dl)A/PGA/Fe implants were investigated by implantation into New Zealand white rabbits for 8 weeks. The effect of hydrogen peroxide (H2O2) and ethylene oxide (EO) sterilization techniques on the molecular weight and chemical structure of P(dl)A/PGA polymers were evaluated using gel permeation chromatography and Fourier transform infrared spectroscopy. The effect of implant morphology, size and number on the von Mises stress in the trabecular bone surrounding the implant was evaluated using a finite element model. In general, SmCo5 implants resulted in higher magnetic fields initially and after 8 weeks of degradation than comparable Fe implants. Increases in magnetic field strength were achieved by increasing the volume fraction of magnetic material and by increasing the PGA concentration. The magnetic field strength degradation rate decreased with increases in volume fraction of magnetic material and increases in PLA concentration. Implantation studies indicated that 50/50 P(dl)A/PGA were more bioactive than 75/25 P(dl)A/PGA with an increased cellular response that is specific to bone growth. The compressive strength and elastic modulus of porous

  2. Caspases and osteogenic markers-in vitro screening of inhibition impact

    Czech Academy of Sciences Publication Activity Database

    Adamová, Eva; Janečková, Eva; Klepárník, Karel; Matalová, Eva

    2016-01-01

    Roč. 52, č. 2 (2016), s. 144-148 ISSN 1071-2690 R&D Projects: GA ČR(CZ) GB14-37368G; GA ČR(CZ) GA14-28254S Institutional support: RVO:67985904 ; RVO:68081715 Keywords : osteogenesis * chondrogenesis * caspases * caspase-3 * gene expression Subject RIV: EA - Cell Biology; CB - Analytical Chemistry, Separation (UIACH-O) Impact factor: 0.897, year: 2016

  3. Overexpression of HMGA2-LPP fusion transcripts promotes expression of the α 2 type XI collagen gene

    International Nuclear Information System (INIS)

    Kubo, Takahiro; Matsui, Yoshito; Goto, Tomohiro; Yukata, Kiminori; Yasui, Natsuo

    2006-01-01

    In a subset of human lipomas, a specific t (3; 12) chromosome translocation gives rise to HMGA2-LPP fusion protein, containing the amino (N)-terminal DNA binding domains of HMGA2 fused to the carboxyl (C)-terminal LIM domains of LPP. In addition to its role in adipogenesis, several observations suggest that HMGA2-LPP is linked to chondrogenesis. Here, we analyzed whether HMGA2-LPP promotes chondrogenic differentiation, a marker of which is transactivation of the α 2 type XI collagen gene (Col11a2). Real-time PCR analysis showed that HMGA2-LPP and COL11A2 were co-expressed. Luciferase assay demonstrated that either of HMGA2-LPP, wild-type HMGA2 or the N-terminal HMGA2 transactivated the Col11a2 promoter in HeLa cells, while the C-terminal LPP did not. RT-PCR analysis revealed that HMGA2-LPP transcripts in lipomas with the fusion were 591-fold of full-length HMGA2 transcripts in lipomas without the fusion. These results indicate that in vivo overexpression of HMGA2-LPP promotes chondrogenesis by upregulating cartilage-specific collagen gene expression through the N-terminal DNA binding domains

  4. Effect of FGFR inhibitors on chicken limb development

    Czech Academy of Sciences Publication Activity Database

    Horáková, D.; Celá, Petra; Krejčí, P.; Balek, L.; Moravcová Balková, Simona; Matalová, Eva; Buchtová, Marcela

    2014-01-01

    Roč. 56, č. 8 (2014), s. 555-572 ISSN 0012-1592 R&D Projects: GA ČR GA304/09/0725; GA ČR(CZ) GA14-31540S Grant - others:GA ČR(CZ) GAP305/11/0752 Program:GA Institutional support: RVO:67985904 Keywords : chondrogenesis * fibroblast growth factor receptor * mesenchymal condensation Subject RIV: EA - Cell Biology Impact factor: 2.420, year: 2014

  5. Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems.

    Science.gov (United States)

    Ito, Akira; Nagai, Momoko; Tajino, Junichi; Yamaguchi, Shoki; Iijima, Hirotaka; Zhang, Xiangkai; Aoyama, Tomoki; Kuroki, Hiroshi

    2015-01-01

    Cell-based therapy has been explored for articular cartilage regeneration. Autologous chondrocyte implantation is a promising cell-based technique for repairing articular cartilage defects. However, there are several issues such as chondrocyte de-differentiation. While numerous studies have been designed to overcome some of these issues, only a few have focused on the thermal environment that can affect chondrocyte metabolism and phenotype. In this study, the effects of different culture temperatures on human chondrocyte metabolism- and phenotype-related gene expression were investigated in 2D and 3D environments. Human chondrocytes were cultured in a monolayer or in a pellet culture system at three different culture temperatures (32°C, 37°C, and 41°C) for 3 days. The results showed that the total RNA level, normalized to the threshold cycle value of internal reference genes, was higher at lower temperatures in both culture systems. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and citrate synthase (CS), which are involved in glycolysis and the citric acid cycle, respectively, were expressed at similar levels at 32°C and 37°C in pellet cultures, but the levels were significantly lower at 41°C. Expression of the chondrogenic markers, collagen type IIA1 (COL2A1) and aggrecan (ACAN), was higher at 37°C than at 32°C and 41°C in both culture systems. However, this phenomenon did not coincide with SRY (sex-determining region Y)-box 9 (SOX9), which is a fundamental transcription factor for chondrogenesis, indicating that a SOX9-independent pathway might be involved in this phenomenon. In conclusion, the expression of chondrocyte metabolism-related genes at 32°C was maintained or enhanced compared to that at 37°C. However, chondrogenesis-related genes were further induced at 37°C in both culture systems. Therefore, manipulating the culture temperature may be an advantageous approach for regulating human chondrocyte metabolic activity and chondrogenesis.

  6. Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, Eamon J.; Buckley, Conor T. [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin 2 (Ireland); Kelly, Daniel J., E-mail: kellyd9@tcd.ie [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin 2 (Ireland)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Expansion in low oxygen enhances MSC proliferation and osteogenesis. Black-Right-Pointing-Pointer Differentiation in low oxygen enhances chondrogenesis and suppresses hypertrophy. Black-Right-Pointing-Pointer Oxygen can regulate the MSC phenotype for use in tissue engineering applications. -- Abstract: The local oxygen tension is a key regulator of the fate of mesenchymal stem cells (MSCs). The objective of this study was to investigate the effect of a low oxygen tension during expansion and differentiation on the proliferation kinetics as well as the subsequent osteogenic and chondrogenic potential of MSCs. We first hypothesised that expansion in a low oxygen tension (5% pO{sub 2}) would improve both the subsequent osteogenic and chondrogenic potential of MSCs compared to expansion in a normoxic environment (20% pO{sub 2}). Furthermore, we hypothesised that chondrogenic differentiation in a low oxygen environment would suppress hypertrophy of MSCs cultured in both pellets and hydrogels used in tissue engineering strategies. MSCs expanded at 5% pO{sub 2} proliferated faster forming larger colonies, resulting in higher cell yields. Expansion at 5% pO{sub 2} also enhanced subsequent osteogenesis of MSCs, whereas differentiation at 5% pO{sub 2} was found to be a more potent promoter of chondrogenesis than expansion at 5% pO{sub 2}. Greater collagen accumulation, and more intense staining for collagen types I and X, was observed in pellets maintained at 20% pO{sub 2} compared to 5% pO{sub 2}. Both pellets and hydrogels stained more intensely for type II collagen when undergoing chondrogenesis in a low oxygen environment. Differentiation at 5% pO{sub 2} also appeared to inhibit hypertrophy in both pellets and hydrogels, as demonstrated by reduced collagen type X and Alizarin Red staining and alkaline phosphatase activity. This study demonstrates that the local oxygen environment can be manipulated in vitro to either stabilise a

  7. Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems.

    Directory of Open Access Journals (Sweden)

    Akira Ito

    Full Text Available Cell-based therapy has been explored for articular cartilage regeneration. Autologous chondrocyte implantation is a promising cell-based technique for repairing articular cartilage defects. However, there are several issues such as chondrocyte de-differentiation. While numerous studies have been designed to overcome some of these issues, only a few have focused on the thermal environment that can affect chondrocyte metabolism and phenotype. In this study, the effects of different culture temperatures on human chondrocyte metabolism- and phenotype-related gene expression were investigated in 2D and 3D environments. Human chondrocytes were cultured in a monolayer or in a pellet culture system at three different culture temperatures (32°C, 37°C, and 41°C for 3 days. The results showed that the total RNA level, normalized to the threshold cycle value of internal reference genes, was higher at lower temperatures in both culture systems. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH and citrate synthase (CS, which are involved in glycolysis and the citric acid cycle, respectively, were expressed at similar levels at 32°C and 37°C in pellet cultures, but the levels were significantly lower at 41°C. Expression of the chondrogenic markers, collagen type IIA1 (COL2A1 and aggrecan (ACAN, was higher at 37°C than at 32°C and 41°C in both culture systems. However, this phenomenon did not coincide with SRY (sex-determining region Y-box 9 (SOX9, which is a fundamental transcription factor for chondrogenesis, indicating that a SOX9-independent pathway might be involved in this phenomenon. In conclusion, the expression of chondrocyte metabolism-related genes at 32°C was maintained or enhanced compared to that at 37°C. However, chondrogenesis-related genes were further induced at 37°C in both culture systems. Therefore, manipulating the culture temperature may be an advantageous approach for regulating human chondrocyte metabolic activity and

  8. Exposure to Excess Phenobarbital Negatively Influences the Osteogenesis of Chick Embryos

    OpenAIRE

    Yan, Yu; Cheng, Xin; Yang, Ren-Hao; Li, He; Chen, Jian-Long; Ma, Zheng-Lai; Wang, Guang; Chuai, Manli; Yang, Xuesong

    2016-01-01

    Phenobarbital is an antiepileptic drug that is widely used to treat epilepsy in a clinical setting. However, a long term of phenobarbital administration in pregnant women may produce side effects on embryonic skeletogenesis. In this study, we aim to investigate the mechanism by which phenobarbital treatment induces developmental defects in long bones. We first determined that phenobarbital treatment decreased chondrogenesis and inhibited the proliferation of chondrocytes in chick embryos. Phe...

  9. A Hydrogel Model Incorporating 3D-Plotted Hydroxyapatite for Osteochondral Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Michal Bartnikowski

    2016-04-01

    Full Text Available The concept of biphasic or multi-layered compound scaffolds has been explored within numerous studies in the context of cartilage and osteochondral regeneration. To date, no system has been identified that stands out in terms of superior chondrogenesis, osteogenesis or the formation of a zone of calcified cartilage (ZCC. Herein we present a 3D plotted scaffold, comprising an alginate and hydroxyapatite paste, cast within a photocrosslinkable hydrogel made of gelatin methacrylamide (GelMA, or GelMA with hyaluronic acid methacrylate (HAMA. We hypothesized that this combination of 3D plotting and hydrogel crosslinking would form a high fidelity, cell supporting structure that would allow localization of hydroxyapatite to the deepest regions of the structure whilst taking advantage of hydrogel photocrosslinking. We assessed this preliminary design in terms of chondrogenesis in culture with human articular chondrocytes, and verified whether the inclusion of hydroxyapatite in the form presented had any influence on the formation of the ZCC. Whilst the inclusion of HAMA resulted in a better chondrogenic outcome, the effect of HAP was limited. We overall demonstrated that formation of such compound structures is possible, providing a foundation for future work. The development of cohesive biphasic systems is highly relevant for current and future cartilage tissue engineering.

  10. Bone Marrow Aspirate Concentrate-Enhanced Marrow Stimulation of Chondral Defects

    Science.gov (United States)

    Eichler, Hermann; Orth, Patrick

    2017-01-01

    Mesenchymal stem cells (MSCs) from bone marrow play a critical role in osteochondral repair. A bone marrow clot forms within the cartilage defect either as a result of marrow stimulation or during the course of the spontaneous repair of osteochondral defects. Mobilized pluripotent MSCs from the subchondral bone migrate into the defect filled with the clot, differentiate into chondrocytes and osteoblasts, and form a repair tissue over time. The additional application of a bone marrow aspirate (BMA) to the procedure of marrow stimulation is thought to enhance cartilage repair as it may provide both an additional cell population capable of chondrogenesis and a source of growth factors stimulating cartilage repair. Moreover, the BMA clot provides a three-dimensional environment, possibly further supporting chondrogenesis and protecting the subchondral bone from structural alterations. The purpose of this review is to bridge the gap in our understanding between the basic science knowledge on MSCs and BMA and the clinical and technical aspects of marrow stimulation-based cartilage repair by examining available data on the role and mechanisms of MSCs and BMA in osteochondral repair. Implications of findings from both translational and clinical studies using BMA concentrate-enhanced marrow stimulation are discussed. PMID:28607559

  11. Engineering endostatin-producing cartilaginous constructs for cartilage repair using nonviral transfection of chondrocyte-seeded and mesenchymal-stem-cell-seeded collagen scaffolds.

    Science.gov (United States)

    Jeng, Lily; Olsen, Bjorn R; Spector, Myron

    2010-10-01

    Although there is widespread recognition of the importance of angiogenesis in tissue repair, there is little work on the inhibition of angiogenesis in the context of tissue engineering of naturally avascular tissues, like articular cartilage. The objective was to engineer a collagen-scaffold-based cartilaginous construct overexpressing a potent antiangiogenic factor, endostatin, using nonviral transfection. Endostatin-plasmid-supplemented collagen scaffolds were seeded with mesenchymal stem cells and chondrocytes and cultured for 20–22 days. The effects of the following variables on endostatin expression and chondrogenesis were examined: collagen scaffold material, method of nonviral vector incorporation, plasmid load, culture medium, and oxygen tension. An increase and peak of endostatin protein was observed during the first week of culture, followed by a decrease to low levels, suggesting that overexpression of endostatin could be sustained for several days using the nonviral vector. The amount of endostatin produced was tunable with the external factors. Chondrogenesis was observed in the engineered constructs cultured in chondrogenic medium at the 3-week time point, demonstrating that endostatin did not inhibit the chondrogenic potential of mesenchymal stem cells or the general viability of the cells. The ability to engineer endostatin-expressing cartilaginous constructs will be of value for future work exercising regulatory control of angiogenesis in cartilage repair.

  12. Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response.

    Science.gov (United States)

    Calabrese, Rossella; Raia, Nicole; Huang, Wenwen; Ghezzi, Chiara E; Simon, Marc; Staii, Cristian; Weiss, Anthony S; Kaplan, David L

    2017-09-01

    The response of human bone marrow-derived mesenchymal stem cells (hMSCs) encapsulated in three-dimensional (3D) charged protein hydrogels was studied. Combining silk fibroin (S) with recombinant human tropoelastin (E) or silk ionomers (I) provided protein composite alloys with tunable physicochemical and biological features for regulating the bioactivity of encapsulated hMSCs. The effects of the biomaterial charges on hMSC viability, proliferation and chondrogenic or osteogenic differentiation were assessed. The silk-tropoelastin or silk-ionomers hydrogels supported hMSC viability, proliferation and differentiation. Gene expression of markers for chondrogenesis and osteogenesis, as well as biochemical and histological analysis, showed that hydrogels with different S/E and S/I ratios had different effects on cell fate. The negatively charged hydrogels upregulated hMSC chondrogenesis or osteogenesis, with or without specific differentiation media, and hydrogels with higher tropoelastin content inhibited the differentiation potential even in the presence of the differentiation media. The results provide insight on charge-tunable features of protein-based biomaterials to control hMSC differentiation in 3D hydrogels, as well as providing a new set of hydrogels for the compatible encapsulation and utility for cell functions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges

    International Nuclear Information System (INIS)

    Lu Hongxu; Ko, Young-Gwang; Kawazoe, Naoki; Chen Guoping

    2011-01-01

    Three-dimensional porous scaffolds play an important role in tissue engineering and regenerative medicine. Structurally, these porous scaffolds should have an open and interconnected porous architecture to facilitate a homogeneous cell distribution. Moreover, the scaffolds should be mechanically strong to support new tissue formation. We developed a novel type of funnel-like collagen sponge using embossing ice particulates as a template. The funnel-like collagen sponges could promote the homogeneous cell distribution, ECM production and chondrogenesis. However, the funnel-like collagen sponges deformed during cell culture due to their weak mechanical strength. To solve this problem, we reinforced the funnel-like collagen sponges with a knitted poly(D,L-lactic-co-glycolic acid) (PLGA) mesh by hybridizing these two types of materials. The hybrid scaffolds were used to culture bovine articular chondrocytes. The cell adhesion, distribution, proliferation and chondrogenesis were investigated. The funnel-like structure promoted the even cell distribution and homogeneous ECM production. The PLGA knitted mesh protected the scaffold from deformation during cell culture. Histological and immunohistochemical staining and cartilaginous gene expression analyses revealed the cartilage-like properties of the cell/scaffold constructs after in vivo implantation. The hybrid scaffold, composed of a funnel-like collagen sponge and PLGA mesh, would be a useful tool for cartilage tissue engineering.

  14. Alendronate Can Improve Bone Alterations in Experimental Diabetes by Preventing Antiosteogenic, Antichondrogenic, and Proadipocytic Effects of AGEs on Bone Marrow Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Sara Rocío Chuguransky

    2016-01-01

    Full Text Available Bisphosphonates such as alendronate are antiosteoporotic drugs that inhibit the activity of bone-resorbing osteoclasts and secondarily promote osteoblastic function. Diabetes increases bone-matrix-associated advanced glycation end products (AGEs that impair bone marrow progenitor cell (BMPC osteogenic potential and decrease bone quality. Here we investigated the in vitro effect of alendronate and/or AGEs on the osteoblastogenic, adipogenic, and chondrogenic potential of BMPC isolated from nondiabetic untreated rats. We also evaluated the in vivo effect of alendronate (administered orally to rats with insulin-deficient Diabetes on long-bone microarchitecture and BMPC multilineage potential. In vitro, the osteogenesis (Runx2, alkaline phosphatase, type 1 collagen, and mineralization and chondrogenesis (glycosaminoglycan production of BMPC were both decreased by AGEs, while coincubation with alendronate prevented these effects. The adipogenesis of BMPC (PPARγ, intracellular triglycerides, and lipase was increased by AGEs, and this was prevented by coincubation with alendronate. In vivo, experimental Diabetes (a decreased femoral trabecular bone area, osteocyte density, and osteoclastic TRAP activity; (b increased bone marrow adiposity; and (c deregulated BMPC phenotypic potential (increasing adipogenesis and decreasing osteogenesis and chondrogenesis. Orally administered alendronate prevented all these Diabetes-induced effects on bone. Thus, alendronate could improve bone alterations in diabetic rats by preventing the antiosteogenic, antichondrogenic, and proadipocytic effects of AGEs on BMPC.

  15. Tensile loading modulates bone marrow stromal cell differentiation and the development of engineered fibrocartilage constructs.

    Science.gov (United States)

    Connelly, John T; Vanderploeg, Eric J; Mouw, Janna K; Wilson, Christopher G; Levenston, Marc E

    2010-06-01

    Mesenchymal progenitors such as bone marrow stromal cells (BMSCs) are an attractive cell source for fibrocartilage tissue engineering, but the types or combinations of signals required to promote fibrochondrocyte-specific differentiation remain unclear. The present study investigated the influences of cyclic tensile loading on the chondrogenesis of BMSCs and the development of engineered fibrocartilage. Cyclic tensile displacements (10%, 1 Hz) were applied to BMSC-seeded fibrin constructs for short (24 h) or extended (1-2 weeks) periods using a custom loading system. At early stages of chondrogenesis, 24 h of cyclic tension stimulated both protein and proteoglycan synthesis, but at later stages, tension increased protein synthesis only. One week of intermittent cyclic tension significantly increased the total sulfated glycosaminoglycan and collagen contents in the constructs, but these differences were lost after 2 weeks of loading. Constraining the gels during the extended culture periods prevented contraction of the fibrin matrix, induced collagen fiber alignment, and increased sulfated glycosaminoglycan release to the media. Cyclic tension specifically stimulated collagen I mRNA expression and protein synthesis, but had no effect on collagen II, aggrecan, or osteocalcin mRNA levels. Overall, these studies suggest that the combination of chondrogenic stimuli and tensile loading promotes fibrochondrocyte-like differentiation of BMSCs and has the potential to direct fibrocartilage development in vitro.

  16. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges

    Energy Technology Data Exchange (ETDEWEB)

    Lu Hongxu; Ko, Young-Gwang; Kawazoe, Naoki; Chen Guoping, E-mail: Guoping.Chen@nims.go.jp [Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2011-08-15

    Three-dimensional porous scaffolds play an important role in tissue engineering and regenerative medicine. Structurally, these porous scaffolds should have an open and interconnected porous architecture to facilitate a homogeneous cell distribution. Moreover, the scaffolds should be mechanically strong to support new tissue formation. We developed a novel type of funnel-like collagen sponge using embossing ice particulates as a template. The funnel-like collagen sponges could promote the homogeneous cell distribution, ECM production and chondrogenesis. However, the funnel-like collagen sponges deformed during cell culture due to their weak mechanical strength. To solve this problem, we reinforced the funnel-like collagen sponges with a knitted poly(D,L-lactic-co-glycolic acid) (PLGA) mesh by hybridizing these two types of materials. The hybrid scaffolds were used to culture bovine articular chondrocytes. The cell adhesion, distribution, proliferation and chondrogenesis were investigated. The funnel-like structure promoted the even cell distribution and homogeneous ECM production. The PLGA knitted mesh protected the scaffold from deformation during cell culture. Histological and immunohistochemical staining and cartilaginous gene expression analyses revealed the cartilage-like properties of the cell/scaffold constructs after in vivo implantation. The hybrid scaffold, composed of a funnel-like collagen sponge and PLGA mesh, would be a useful tool for cartilage tissue engineering.

  17. Msx2 Stimulates Chondrocyte Maturation by Controlling Ihh Expression*

    OpenAIRE

    Amano, Katsuhiko; Ichida, Fumitaka; Sugita, Atsushi; Hata, Kenji; Wada, Masahiro; Takigawa, Yoko; Nakanishi, Masako; Kogo, Mikihiko; Nishimura, Riko; Yoneda, Toshiyuki

    2008-01-01

    Several studies indicated that a homeobox gene, Msx2, is implicated in regulation of skeletal development by controlling enchondral ossification as well as membranous ossification. However, the molecular basis by which Msx2 conducts chondrogenesis is currently unclear. In this study, we examined the role of Msx2 in chondrocyte differentiation using mouse primary chondrocytes and embryonic metatarsal explants. Treatment with BMP2 up-regulated the expression of Msx2 mRNA...

  18. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrat...

  19. Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting

    Science.gov (United States)

    Mouser, Vivian H. M.; Melchels, Ferry P.W.; Visser, Jetze; Dhert, Wouter J.A.; Gawlitta, Debby; Malda, Jos

    2016-01-01

    Bioprinting of chondrocyte-laden hydrogels facilitates the fabrication of constructs with controlled organization and shape for e.g. articular cartilage implants. Gelatin-methacryloyl (gelMA) supplemented with gellan gum is a promising bio-ink. However, the rheological properties governing the printing process, and the influence of gellan gum on the mechanical properties and chondrogenesis of the blend, are still unknown. Here, we investigated the suitability of gelMA/gellan for cartilage bioprinting. Multiple concentrations, ranging from 3-25% gelMA with 0-1.5% gellan gum, were evaluated for their printability, defined as the ability to form filaments and to incorporate cells at 15-37°C. To support the printability assessment, yield stress and viscosity of the hydrogels were measured. Stiffness of UV-cured constructs, as well as cartilage-like tissue formation by embedded chondrocytes, were determined in vitro. A large range of gelMA/gellan concentrations were printable with inclusion of cells and formed the bioprinting window. Addition of gellan gum improved filament deposition by inducing yielding behavior, increased construct stiffness, and supported chondrogenesis. High gellan gum concentrations, however, did compromise cartilage matrix production and distribution, and even higher concentrations resulted in too high yield stresses to allow cell encapsulation. This study demonstrates the high potential of gelMA/gellan blends for cartilage bioprinting and identifies yield stress as dominant factor for bioprintability. PMID:27431733

  20. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Cao, Lei; Yang, Fei; Liu, Guangwang; Yu, Degang; Li, Huiwu; Fan, Qiming; Gan, Yaokai; Tang, Tingting; Dai, Kerong

    2011-06-01

    Although Sox9 is essential for chondrogenic differentiation and matrix production, its application in cartilage tissue engineering has been rarely reported. In this study, the chondrogenic effect of Sox9 on bone marrow mesenchymal stem cells (BMSCs) in vitro and its application in articular cartilage repair in vivo were evaluated. Rabbit BMSCs were transduced with adenoviral vector containing Sox9. Toluidine blue, safranin O staining and real-time PCR were performed to check chondrogenic differentiation. The results showed that Sox9 could induce chondrogenesis of BMSCs both in monolayer and on PGA scaffold effectively. The rabbit model with full-thickness cartilage defects was established and then repaired by PGA scaffold and rabbit BMSCs with or without Sox9 transduction. HE, safranin O staining and immunohistochemistry were used to assess the repair of defects by the complex. Better repair, including more newly-formed cartilage tissue and hyaline cartilage-specific extracellular matrix and greater expression of several chondrogenesis marker genes were observed in PGA scaffold and BMSCs with Sox9 transduction, compared to that without transduction. Our findings defined the important role of Sox9 in the repair of cartilage defects in vivo and provided evidence that Sox9 had the potential and advantage in the application of tissue engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhang

    Full Text Available Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9 is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP (scSOX9 to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  2. Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting.

    Science.gov (United States)

    Mouser, Vivian H M; Melchels, Ferry P W; Visser, Jetze; Dhert, Wouter J A; Gawlitta, Debby; Malda, Jos

    2016-07-19

    Bioprinting of chondrocyte-laden hydrogels facilitates the fabrication of constructs with controlled organization and shape e.g. for articular cartilage implants. Gelatin-methacryloyl (gelMA) supplemented with gellan gum is a promising bio-ink. However, the rheological properties governing the printing process, and the influence of gellan gum on the mechanical properties and chondrogenesis of the blend, are still unknown. Here, we investigated the suitability of gelMA/gellan for cartilage bioprinting. Multiple concentrations, ranging from 3% to 20% gelMA with 0%-1.5% gellan gum, were evaluated for their printability, defined as the ability to form filaments and to incorporate cells at 15 °C-37 °C. To support the printability assessment, yield stress and viscosity of the hydrogels were measured. Stiffness of UV-cured constructs, as well as cartilage-like tissue formation by embedded chondrocytes, were determined in vitro. A large range of gelMA/gellan concentrations were printable with inclusion of cells and formed the bioprinting window. The addition of gellan gum improved filament deposition by inducing yielding behavior, increased construct stiffness and supported chondrogenesis. High gellan gum concentrations, however, did compromise cartilage matrix production and distribution, and even higher concentrations resulted in too high yield stresses to allow cell encapsulation. This study demonstrates the high potential of gelMA/gellan blends for cartilage bioprinting and identifies yield stress as a dominant factor for bioprintability.

  3. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  4. Effect of WNT5a on chondrogenesis and limb development

    Czech Academy of Sciences Publication Activity Database

    Killinger, Michael; Veselá, Iva; Buchtová, Marcela

    2015-01-01

    Roč. 159, Suppl 1 (2015), S17-S17 ISSN 1213-8118. [Morphology 2015. International Congress of the Czech Anatomical Society /49./. Lojda Symposium on Histochemistry /52./. 06.09.2015-08.09.2015, Olomouc] R&D Projects: GA ČR(CZ) GA14-31540S Institutional support: RVO:67985904 Keywords : limb development Subject RIV: EA - Cell Biology

  5. Scaffold composition affects cytoskeleton organization, cell-matrix interaction and the cellular fate of human mesenchymal stem cells upon chondrogenic differentiation.

    Science.gov (United States)

    Li, Yuk Yin; Choy, Tze Hang; Ho, Fu Chak; Chan, Pui Barbara

    2015-06-01

    The stem cell niche, or microenvironment, consists of soluble, matrix, cell and mechanical factors that together determine the cellular fates and/or differentiation patterns of stem cells. Collagen and glycosaminoglycans (GAGs) are important scaffolding materials that can mimic the natural matrix niche. Here, we hypothesize that imposing changes in the scaffold composition or, more specifically, incorporating GAGs into the collagen meshwork, will affect the morphology, cytoskeletal organization and integrin expression profiles, and hence the fate of human mesenchymal stem cells (MSCs) upon the induction of differentiation. Using chondrogenesis as an example, we microencapsulated MSCs in three scaffold systems that had varying matrix compositions: collagen alone (C), aminated collagen (AC) and aminated collagen with GAGs (ACG). We then induced the MSCs to differentiate toward a chondrogenic lineage, after which, we characterized the cell viability and morphology, as well as the level of cytoskeletal organization and the integrin expression profile. We also studied the fate of the MSCs by evaluating the major chondrogenic markers at both the gene and protein level. In C, MSC chondrogenesis was successfully induced and MSCs that spread in the scaffolds had a clear actin cytoskeleton; they expressed integrin α2β1, α5 and αv; promoted sox9 nuclear localization transcription activation; and upregulated the expression of chondrogenic matrix markers. In AC, MSC chondrogenesis was completely inhibited but the scaffold still supported cell survival. The MSCs did not spread and they had no actin cytoskeleton; did not express integrin α2 or αv; they failed to differentiate into chondrogenic lineage cells even on chemical induction; and there was little colocalization or functional interaction between integrin α5 and fibronectin. In ACG, although the MSCs did not express integrin α2, they did express integrin αv and there was strong co-localization and hence functional

  6. Chondrogenic potential of human mesenchymal stem cells and expression of Slug transcription factor.

    Science.gov (United States)

    Brini, Anna T; Niada, Stefania; Lambertini, Elisabetta; Torreggiani, Elena; Arrigoni, Elena; Lisignoli, Gina; Piva, Roberta

    2015-06-01

    The scientific literature rarely reports experimental failures or inconsistent outcomes in the induction of cell differentiation; however, researchers commonly experience poor or unsuccessful responses to differentiating agents when culturing stem cells. One way of investigating the underlying reasons for such responses is to look at the basal expression levels of specific genes in multipotent stem cells before the induction of differentiation. In addition to shedding light on the complex properties of stem cells and the molecular modulation of differentiation pathways, this strategy can also lead to the development of important time- and money-saving tools that aid the efficient selection of cellular specimens--in this case, stem cells that are more prone to differentiate towards specific lineages and are therefore more suitable for cell-based therapeutic protocols in regenerative medicine. To address this latter aspect, this study focused on understanding the reasons why some human mesenchymal stem cell (hMSC) samples are less efficient at differentiating towards chondrogenesis. This study shows that analysis of the basal expression levels of Slug, a negative regulator of chondrogenesis in hMSC, provides a rapid and simple tool for distinguishing stem cell samples with the potential to form a cartilage-like matrix, and that are therefore suitable for cartilage tissue engineering. It is shown that high basal levels of Slug prevent the chondrogenic differentiation of hMSCs, even in the presence of transforming growth factor-β and elevated levels of Sox9. Copyright © 2013 John Wiley & Sons, Ltd.

  7. The effect of a chitosan-gelatin matrix and dexamethasone on the behavior of rabbit mesenchymal stem cells

    International Nuclear Information System (INIS)

    Medrado, G C B; Machado, C B; Valerio, P; Sanches, M D; Goes, A M

    2006-01-01

    Cartilage tissue has poor capability of self-repair, especially in the case of severe cartilage damage due to trauma or age-related degeneration. Cell-based tissue engineering using scaffolds has provided an option for the repair of defects in adult cartilage tissue. Mesenchymal stem cells (MSC) and chondrocytes are the two major cell sources for cartilage tissue engineering. The present study combined culture conditions of MSC in a chitosan-gelatin matrix in chondrogenic media to evaluate their effects on MSC viability and chondrogenesis for cartilage tissue engineering. MSC were harvested from rabbit bone marrows and cultured in chondrogenic media supplemented, or not, with dexamethasone in a chitosan-gelatin film (C-GF). The association of C-GF and dexamethasone promoted significant increase in cell adhesivity, viability and proliferation when compared to MCS cultured in media without dexamethasone or C-GF. In addition, dexamethasone promoted increase in the collagen concentration of MSC cultures. A reduction of alkaline phosphatase activity after three weeks of culture in chondrogenic media was verified. No influence of the C-GF or of dexamethasone was observed in this matter. Therefore, it is reasonable to suggest that biomaterial-based chitosan-gelatin and chondrogenic media supplemented with dexamethasone may stimulate the proliferation and differentiation of MSC according to the complex environmental conditions. The information presented here should be useful for the development of biomaterials to regulate the chondrogenesis of MSC suitable for cartilage tissue engineering

  8. Interleukin-6 inhibits early differentiation of ATDC5 chondrogenic progenitor cells.

    Science.gov (United States)

    Nakajima, Shoko; Naruto, Takuya; Miyamae, Takako; Imagawa, Tomoyuki; Mori, Masaaki; Nishimaki, Shigeru; Yokota, Shumpei

    2009-08-01

    Interleukin (IL)-6 is a causative agent of systemic juvenile idiopathic arthritis (sJIA), a chronic inflammatory disease complicated with severe growth impairment. Recent trials of anti-IL-6 receptor monoclonal antibody, tocilizumab, indicated that tocilizumab blocks IL-6/IL-6 receptor-mediated inflammation, and induces catch-up growth in children with sJIA. This study evaluates the effects of IL-6 on chondrogenesis by ATDC5 cells, a clonal murine chondrogenic cell line that provides an excellent model for studying endochondral ossification at growth plate. ATDC5 cells were examined for the expression of IL-6 receptor and gp130 by fluorescence-activated cell sorting analysis. Recombinant murine IL-6 was added to ATDC5 cultures to observe cell differentiation, using a quantitative RT-PCR for the chondrogenic differentiation markers type II collagen, aggrecan, and type X collagen. To block IL-6, the anti-mouse IL-6 receptor monoclonal antibody MR16-1 was added. As a result, the cells expressed IL-6 receptor and gp130. The expression of chondrogenic differentiation marker gene was reduced by IL-6, but this was abrogated by MR16-1. We conclude that IL-6 inhibits early chondrogenesis of ATDC5 cells suggesting that IL-6 may affect committed stem cells at a cellular level during chondrogenic differentiation of growth plate chondrocytes, and that IL-6 may be a cellular-level factor in growth impairment in sJIA.

  9. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro.

    Science.gov (United States)

    Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di

    2003-08-01

    Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.

  10. Clock Genes Influence Gene Expression in Growth Plate and Endochondral Ossification in Mice*

    Science.gov (United States)

    Takarada, Takeshi; Kodama, Ayumi; Hotta, Shogo; Mieda, Michihiro; Shimba, Shigeki; Hinoi, Eiichi; Yoneda, Yukio

    2012-01-01

    We have previously shown transient promotion by parathyroid hormone of Period-1 (Per1) expression in cultured chondrocytes. Here we show the modulation by clock genes of chondrogenic differentiation through gene transactivation of the master regulator of chondrogenesis Indian hedgehog (IHH) in chondrocytes of the growth plate. Several clock genes were expressed with oscillatory rhythmicity in cultured chondrocytes and rib growth plate in mice, whereas chondrogenesis was markedly inhibited in stable transfectants of Per1 in chondrocytic ATDC5 cells and in rib growth plate chondrocytes from mice deficient of brain and muscle aryl hydrocarbon receptor nuclear translocator-like (BMAL1). Ihh promoter activity was regulated by different clock gene products, with clear circadian rhythmicity in expression profiles of Ihh in the growth plate. In BMAL1-null mice, a predominant decrease was seen in Ihh expression in the growth plate with a smaller body size than in wild-type mice. BMAL1 deficit led to disruption of the rhythmic expression profiles of both Per1 and Ihh in the growth plate. A clear rhythmicity was seen with Ihh expression in ATDC5 cells exposed to dexamethasone. In young mice defective of BMAL1 exclusively in chondrocytes, similar abnormalities were found in bone growth and Ihh expression. These results suggest that endochondral ossification is under the regulation of particular clock gene products expressed in chondrocytes during postnatal skeletogenesis through a mechanism relevant to the rhythmic Ihh expression. PMID:22936800

  11. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Kevin Dzobo

    2016-08-01

    Full Text Available Mesenchymal stromal/stem cells (MSCs represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell–matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4, SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures.

  12. First evidence of dinosaurian secondary cartilage in the post-hatching skull of Hypacrosaurus stebingeri (Dinosauria, Ornithischia.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available Bone and calcified cartilage can be fossilized and preserved for hundreds of millions of years. While primary cartilage is fairly well studied in extant and fossilized organisms, nothing is known about secondary cartilage in fossils. In extant birds, secondary cartilage arises after bone formation during embryonic life at articulations, sutures and muscular attachments in order to accommodate mechanical stress. Considering the phylogenetic inclusion of birds within the Dinosauria, we hypothesized a dinosaurian origin for this "avian" tissue. Therefore, histological thin sectioning was used to investigate secondary chondrogenesis in disarticulated craniofacial elements of several post-hatching specimens of the non-avian dinosaur Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. Secondary cartilage was found on three membrane bones directly involved with masticatory function: (1 as nodules on the dorso-caudal face of a surangular; and (2 on the bucco-caudal face of a maxilla; and (3 between teeth as islets in the alveolar processes of a dentary. Secondary chondrogenesis at these sites is consistent with the locations of secondary cartilage in extant birds and with the induction of the cartilage by different mechanical factors - stress generated by the articulation of the quadrate, stress of a ligamentous or muscular insertion, and stress of tooth formation. Thus, our study reveals the first evidence of "avian" secondary cartilage in a non-avian dinosaur. It pushes the origin of this "avian" tissue deep into dinosaurian ancestry, suggesting the creation of the more appropriate term "dinosaurian" secondary cartilage.

  13. The effect of a chitosan-gelatin matrix and dexamethasone on the behavior of rabbit mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Medrado, G C B [Medicine School, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Machado, C B [Biochemistry and Immunology Department, Biological Sciences Institute, UFMG - Federal University of Minas Gerais, mailbox 486, zip code 31270-901, Belo Horizonte, MG (Brazil); Valerio, P [Biochemistry and Immunology Department, Biological Sciences Institute, UFMG - Federal University of Minas Gerais, mailbox 486, zip code 31270-901, Belo Horizonte, MG (Brazil); Sanches, M D [Medicine School, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Goes, A M [Biochemistry and Immunology Department, Biological Sciences Institute, UFMG - Federal University of Minas Gerais, mailbox 486, zip code 31270-901, Belo Horizonte, MG (Brazil)

    2006-09-15

    Cartilage tissue has poor capability of self-repair, especially in the case of severe cartilage damage due to trauma or age-related degeneration. Cell-based tissue engineering using scaffolds has provided an option for the repair of defects in adult cartilage tissue. Mesenchymal stem cells (MSC) and chondrocytes are the two major cell sources for cartilage tissue engineering. The present study combined culture conditions of MSC in a chitosan-gelatin matrix in chondrogenic media to evaluate their effects on MSC viability and chondrogenesis for cartilage tissue engineering. MSC were harvested from rabbit bone marrows and cultured in chondrogenic media supplemented, or not, with dexamethasone in a chitosan-gelatin film (C-GF). The association of C-GF and dexamethasone promoted significant increase in cell adhesivity, viability and proliferation when compared to MCS cultured in media without dexamethasone or C-GF. In addition, dexamethasone promoted increase in the collagen concentration of MSC cultures. A reduction of alkaline phosphatase activity after three weeks of culture in chondrogenic media was verified. No influence of the C-GF or of dexamethasone was observed in this matter. Therefore, it is reasonable to suggest that biomaterial-based chitosan-gelatin and chondrogenic media supplemented with dexamethasone may stimulate the proliferation and differentiation of MSC according to the complex environmental conditions. The information presented here should be useful for the development of biomaterials to regulate the chondrogenesis of MSC suitable for cartilage tissue engineering.

  14. A Joint Less Ordinary: Intriguing Roles for Hedgehog Signalling in the Development of the Temporomandibular Synovial Joint

    Directory of Open Access Journals (Sweden)

    Malgorzata Kubiak

    2016-08-01

    Full Text Available This review highlights the essential role of Hedgehog (Hh signalling in the developmental steps of temporomandibular joint (TMJ formation. We review evidence for intra- and potentially inter-tissue Hh signaling as well as Glioma-Associated Oncogene Homolog (GLI dependent and independent functions. Morphogenesis and maturation of the TMJ’s individual components and the general landscape of Hh signalling is also covered. Comparison of the appendicular knee and axial TMJ also reveals interesting differences and similarities in their mechanisms of development, chondrogenesis and reliance on Hh signalling.

  15. A Joint Less Ordinary: Intriguing Roles for Hedgehog Signalling in the Development of the Temporomandibular Synovial Joint

    Science.gov (United States)

    Kubiak, Malgorzata; Ditzel, Mark

    2016-01-01

    This review highlights the essential role of Hedgehog (Hh) signalling in the developmental steps of temporomandibular joint (TMJ) formation. We review evidence for intra- and potentially inter-tissue Hh signaling as well as Glioma-Associated Oncogene Homolog (GLI) dependent and independent functions. Morphogenesis and maturation of the TMJ’s individual components and the general landscape of Hh signalling is also covered. Comparison of the appendicular knee and axial TMJ also reveals interesting differences and similarities in their mechanisms of development, chondrogenesis and reliance on Hh signalling. PMID:29615589

  16. Snorc is a novel cartilage specific small membrane proteoglycan expressed in differentiating and articular chondrocytes

    DEFF Research Database (Denmark)

    Heinonen, J; Taipaleenmäki, H; Roering, P

    2011-01-01

    OBJECTIVE: Maintenance of chondrocyte phenotype is a major issue in prevention of degeneration and repair of articular cartilage. Although the critical pathways in chondrocyte maturation and homeostasis have been revealed, the in-depth understanding is deficient and novel modifying components...... subgroups. Cartilage specific expression was highest in proliferating and prehypertrophic zones during development, and in adult articular cartilage, expression was restricted to the uncalcified zone, including chondrocyte clusters in human osteoarthritic cartilage. Studies with experimental chondrogenesis...... chondrocytes and adult articular chondrocytes with possible functions associated with development and maintenance of chondrocyte phenotype....

  17. Ultrasound Effect on Gene Expression of Sex Determining Region Y-box 9 (SOX9 and Transforming Growth Factor β Isoforms in Adipose Stem Cells

    Directory of Open Access Journals (Sweden)

    Hajar Shafaei

    2016-04-01

    Full Text Available Background Cartilage tissue engineering is a promising method for repair of cartilage defects. Induction of chondrogenesis in mesenchymal stem cells (MSC is currently used in cartilage tissue engineering. Among growth factors, transforming growth factor β (TGF-β is common chondrogenic inducer but toward hypertrophic chondrocyte. However, mechanical factors such as ultrasound could stimulate chondrogenesis. Objectives We aimed to investigate stimulation of endogenous TGF-β genes expression by low intensity pulsed ultrasound (LIPUS in MSC. Materials and Methods In this experimental study, adipose tissue stem cells (ASC cultures were treated with or without LIPUS (30 mW/cm2, 20 min/day and with or without TGF-β3 (10 ng/mL for 4 or 14 days. Chondrogenic gene expression of SOX9 and members of TGF-β family (β1, β2 and β3 was assessed in ASC cultures at day 4 and 14 by real time PCR. Results The gene expression of SOX9 significantly increased by LIPUS and TGF-β treatment versus control cultures. Exogenous TGF-β3 treatment stimulated endogenous TGF-β1 and β2 gene expressions more than LIPUS treated cultures at day 4. LIPUS, TGF-β and LIPUS plus TGF-β treated cultures expressed same TGF-β3 gene expression at day 4. The expression of TGF-β1 and β2 decreased by LIPUS in comparison to TGF-β treated cultures at day 14. Conclusions Our results suggest that LIPUS might initiate differentiation of ASC without enhancing endogenous TGF-β genes in in-vitro.

  18. TiO2 coating promotes human mesenchymal stem cell proliferation without the loss of their capacity for chondrogenic differentiation

    International Nuclear Information System (INIS)

    Kaitainen, Salla; Lappalainen, Reijo; Mähönen, Anssi J; J Lammi, Mikko; Qu, Chengjuan; Kröger, Heikki

    2013-01-01

    Human mesenchymal stem cells (hMSCs) are used in applications, which may require a large amount of cells; therefore, efficient expansion of the cells is desired. We studied whether TiO 2 coating on plastic cell culture dishes could promote proliferation of hMSCs without adverse effects in chondrogenic differentiation. TiO 2 -films were deposited on polystyrene dishes and glass coverslips using an ultrashort pulsed laser deposition technique. Human MSCs from three donors were expanded on them until 95% confluence, and the cells were evaluated by morphology, immunocytochemistry and quantitative RT-PCR (qRT-PCR). The chondrogenic differentiation in pellets was performed after cultivation on TiO 2 -coated dishes. Chondrogenesis was evaluated by histological staining of proteoglycans and type II collagen, and qRT-PCR. Human MSC-associated markers STRO-1, CD44, CD90 and CD146 did not change after expansion on TiO 2 -coated coverslips. However, the cell number after a 48h-culture period was significantly higher on TiO 2 -coated culture dishes. Importantly, TiO 2 coating caused no significant differences in the proteoglycan and type II collagen staining of the pellets, or the expression of chondrocyte-specific genes in the chondrogenesis assay. Thus, the proliferation of hMSCs could be significantly increased when cultured on TiO 2 -coated dishes without weakening their chondrogenic differentiation capacity. The transparency of TiO 2 -films allows easy monitoring of the cell growth and morphology under a phase-contrast microscope. (paper)

  19. Low-magnitude high-frequency vibration enhances gene expression related to callus formation, mineralization and remodeling during osteoporotic fracture healing in rats.

    Science.gov (United States)

    Chung, Shu-Lu; Leung, Kwok-Sui; Cheung, Wing-Hoi

    2014-12-01

    Low magnitude high frequency vibration (LMHFV) has been shown to improve anabolic and osteogenic responses in osteoporotic intact bones and during osteoporotic fracture healing; however, the molecular response of LMHFV during osteoporotic fracture healing has not been investigated. It was hypothesized that LMHFV could enhance osteoporotic fracture healing by regulating the expression of genes related to chondrogenesis (Col-2), osteogenesis (Col-1) and remodeling (receptor activator for nuclear factor- κ B ligand (RANKL) and osteoproteger (OPG)). In this study, the effects of LMHFV on both osteoporotic and normal bone fracture healing were assessed by endpoint gene expressions, weekly radiographs, and histomorphometry at weeks 2, 4 and 8 post-treatment. LMHFV enhanced osteoporotic fracture healing by up-regulating the expression of chondrogenesis-, osteogenesis- and remodeling-related genes (Col-2 at week 4 (p=0.008), Col-1 at week 2 and 8 (p<0.001 and p=0.008) and RANKL/OPG at week 8 (p=0.045)). Osteoporotic bone had a higher response to LMHFV than normal bone and showed significantly better results as reflected by increased expression of Col-2 and Col-1 at week 2 (p<0.001 for all), larger callus width at week 2 (p=0.001), callus area at week 1 and 5(p<0.05 for all) and greater relative area of osseous tissue (p=0.002) at week 8. This study helps to understand how LMHFV regulates gene expression of callus formation, mineralization and remodeling during osteoporotic fracture healing. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun; Choi, Yun Jin; Kim, Yong Sang [Center for Stem Cell and Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul (Korea, Republic of); Ko, Kinarm [Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 143-701 (Korea, Republic of); Koh, Yong-Gon, E-mail: yonseranglab@daum.net [Center for Stem Cell and Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul (Korea, Republic of)

    2014-08-08

    Highlights: • Continuous TGF-β1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-β1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-β1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs.

  1. Transforming growth factor-β1 regulates fibronectin isoform expression and splicing factor SRp40 expression during ATDC5 chondrogenic maturation

    International Nuclear Information System (INIS)

    Han Fei; Gilbert, James R.; Harrison, Gerald; Adams, Christopher S.; Freeman, Theresa; Tao Zhuliang; Zaka, Raihana; Liang Hongyan; Williams, Charlene; Tuan, Rocky S.; Norton, Pamela A.; Hickok, Noreen J.

    2007-01-01

    Fibronectin (FN) isoform expression is altered during chondrocyte commitment and maturation, with cartilage favoring expression of FN isoforms that includes the type II repeat extra domain B (EDB) but excludes extra domain A (EDA). We and others have hypothesized that the regulated splicing of FN mRNAs is necessary for the progression of chondrogenesis. To test this, we treated the pre-chondrogenic cell line ATDC5 with transforming growth factor-β1, which has been shown to modulate expression of the EDA and EDB exons, as well as the late markers of chondrocyte maturation; it also slightly accelerates the early acquisition of a sulfated proteoglycan matrix without affecting cell proliferation. When chondrocytes are treated with TGF-β1, the EDA exon is preferentially excluded at all times whereas the EDB exon is relatively depleted at early times. This regulated alternative splicing of FN correlates with the regulation of alternative splicing of SRp40, a splicing factor facilitating inclusion of the EDA exon. To determine if overexpression of the SRp40 isoforms altered FN and FN EDA organization, cDNAs encoding these isoforms were overexpressed in ATDC5 cells. Overexpression of the long-form of SRp40 yielded an FN organization similar to TGF-β1 treatment; whereas overexpression of the short form of SRp40 (which facilitates EDA inclusion) increased formation of long-thick FN fibrils. Therefore, we conclude that the effects of TGF-β1 on FN splicing during chondrogenesis may be largely dependent on its effect on SRp40 isoform expression

  2. Mangiferin Reduces the Inhibition of Chondrogenic Differentiation by IL-1β in Mesenchymal Stem Cells from Subchondral Bone and Targets Multiple Aspects of the Smad and SOX9 Pathways

    Directory of Open Access Journals (Sweden)

    Jeong-Eun Huh

    2014-09-01

    Full Text Available Mangiferin is a natural immunomodulator found in plants including mango trees. The effects of mangiferin on chondrogenesis and cartilage repair have not yet been reported. This study was designed to determine the effect of mangiferin on chondrogenic differentiation in IL-1β-stimulated mesenchymal stem cells (MSCs from subchondral bone and to explore the mechanisms underlying these effects. MSCs were isolated from the subchondral bone of rabbit and treated with mangiferin alone and/or interleukin-1β (IL-1β. Mangiferin induced chondrogenic differentiation in MSCs by upregulating transforming growth factor (TGF-β, bone morphogenetic protein (BMP-2, and BMP-4 and several key markers of chondrogenesis, including sex-determining region Y–box (SRY-box containing gene 9 (SOX9, type 2α1 collagen (Col2α1, cartilage link protein, and aggrecan. In IL-1β-stimulated MSCs, mangiferin significantly reversed the production of TGF-β, BMP-2, BMP-4, SOX9, Col2α1, cartilage link protein, and aggrecan, as well as matrix metalloproteinase (MMP-1, MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS5. Mangiferin upregulated the phosphorylation of Smad 2, Smad 3, Smad 1/5/8, and SOX9 in IL-1β-stimulated MSCs. In the presence of mangiferin, SOX9 siRNA suppressed the activation of Smad 2, Smad 3, Smad 1/5/8, aggrecan, and Col2α1 expression. In conclusion, mangiferin exhibits both chondrogenic and chondroprotective effects on damaged MSCs and mediates these effects by targeting multiple aspects of the Smad and SOX9 signaling pathways.

  3. Ultra-structural changes and expression of chondrogenic and hypertrophic genes during chondrogenic differentiation of mesenchymal stromal cells in alginate beads

    Directory of Open Access Journals (Sweden)

    Havva Dashtdar

    2016-03-01

    Full Text Available Chondrogenic differentiation of mesenchymal stromal cells (MSCs in the form of pellet culture and encapsulation in alginate beads has been widely used as conventional model for in vitro chondrogenesis. However, comparative characterization between differentiation, hypertrophic markers, cell adhesion molecule and ultrastructural changes during alginate and pellet culture has not been described. Hence, the present study was conducted comparing MSCs cultured in pellet and alginate beads with monolayer culture. qPCR was performed to assess the expression of chondrogenic, hypertrophic, and cell adhesion molecule genes, whereas transmission electron microscopy (TEM was used to assess the ultrastructural changes. In addition, immunocytochemistry for Collagen type II and aggrecan and glycosaminoglycan (GAG analysis were performed. Our results indicate that pellet and alginate bead cultures were necessary for chondrogenic differentiation of MSC. It also indicates that cultures using alginate bead demonstrated significantly higher (p < 0.05 chondrogenic but lower hypertrophic (p < 0.05 gene expressions as compared with pellet cultures. N-cadherin and N-CAM1 expression were up-regulated in second and third weeks of culture and were comparable between the alginate bead and pellet culture groups, respectively. TEM images demonstrated ultrastructural changes resembling cell death in pellet cultures. Our results indicate that using alginate beads, MSCs express higher chondrogenic but lower hypertrophic gene expression. Enhanced production of extracellular matrix and cell adhesion molecules was also observed in this group. These findings suggest that alginate bead culture may serve as a superior chondrogenic model, whereas pellet culture is more appropriate as a hypertrophic model of chondrogenesis.

  4. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    International Nuclear Information System (INIS)

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun; Choi, Yun Jin; Kim, Yong Sang; Ko, Kinarm; Koh, Yong-Gon

    2014-01-01

    Highlights: • Continuous TGF-β1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-β1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-β1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs

  5. Generating Chondromimetic Mesenchymal Stem Cell Spheroids by Regulating Media Composition and Surface Coating.

    Science.gov (United States)

    Sridharan, BanuPriya; Laflin, Amy D; Detamore, Michael S

    2018-04-01

    Spheroids of mesenchymal stem cells (MSCs) in cartilage tissue engineering have been shown to enhance regenerative potential owing to their 3D structure. In this study, we explored the possibility of priming spheroids under different media to replace the use of inductive surface coatings for chondrogenic differentiation. Rat bone marrow-derived MSCs were organized into cell spheroids by the hanging drop technique and subsequently cultured on hyaluronic acid (HA) coated or non-coated well plates under different cell media conditions. Endpoint analysis included cell viability, DNA and Glycosaminoglycan (GAG) and collagen content, gene expression and immunohistochemistry. For chondrogenic applications, MSC spheroids derived on non-coated surfaces outperformed the spheroids derived from HA-coated surfaces in matrix synthesis and collagen II gene expression. Spheroids on non-coated surfaces gave rise to the highest collagen and GAG when primed with medium containing insulin-like growth factor (IGF) for 1 week during spheroid formation. Spheroids that were grown in chondroinductive raw material-inclusive media such as aggrecan or chondroitin sulfate exhibited the highest Collagen II gene expression in the non-coated surface at 1 week. Media priming by growth factors and raw materials might be a more predictive influencer of chondrogenesis compared to inductive-surfaces. Such tailored bioactivity of the stem cell spheroids in the stage of the spheroid formation may give rise to a platform technology that may eventually produce spheroids capable of chondrogenesis achieved by mere media manipulation, skipping the need for additional culture on a modified surface, that paves the way for cost-effective technologies.

  6. Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro.

    Science.gov (United States)

    Co, C; Vickaryous, M K; Koch, T G

    2014-03-01

    Ongoing research is aimed at increasing cartilage tissue yield and quality from multipotent mesenchymal stromal cells (MSC) for the purpose of treating cartilage damage in horses. Low oxygen culture has been shown to enhance chondrogenesis, and novel membrane culture has been proposed to increase tissue yield and homogeneity. The objective of this study was to evaluate and compare the effect of reduced oxygen and membrane culture during in vitro chondrogenesis of equine cord blood (CB) MSC. CB-MSC (n = 5 foals) were expanded at 21% oxygen prior to 3-week differentiation in membrane or pellet culture at 5% and 21% oxygen. Assessment included histological examination (H&E, toluidine Blue, immunohistochemistry (IHC) for collagen type I and II), protein quantification by hydroxyproline assay and dimethylmethylene assay, and mRNA analysis for collagen IA1, collagen IIA1, collagen XA1, HIF1α and Sox9. Among treatment groups, 5% membrane culture produced neocartilage most closely resembling hyaline cartilage. Membrane culture resulted in increased wet mass, homogenous matrix morphology and an increase in total collagen content, while 5% oxygen culture resulted in higher GAG and type II collagen content. No significant differences were observed for mRNA analysis. Membrane culture at 5% oxygen produces a comparatively larger amount of higher quality neocartilage. Matrix homogeneity is attributed to a uniform diffusion gradient and reduced surface tension. Membrane culture holds promise for scale-up for therapeutic purposes, for cellular preconditioning prior to cytotherapeutic applications, and for modeling system for gas-dependent chondrogenic differentiation studies. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  7. Enhanced chondrogenesis of human nasal septum derived progenitors on nanofibrous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shafiee, Abbas [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD (Australia); Seyedjafari, Ehsan [Department of Biotechnology, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Sadat Taherzadeh, Elham [Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); Dinarvand, Peyman [Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); The Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO (United States); Soleimani, Masoud [Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ai, Jafar, E-mail: jafar_ai@tums.ac.ir [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Brain and Spinal Injury Research Center, Imam Hospital, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-07-01

    Topographical cues can be exploited to regulate stem cell attachment, proliferation, differentiation and function in vitro and in vivo. In this study, we aimed to investigate the influence of different nanofibrous topographies on the chondrogenic differentiation potential of nasal septum derived progenitors (NSP) in vitro. Aligned and randomly oriented Ploy (L-lactide) (PLLA)/Polycaprolactone (PCL) hybrid scaffolds were fabricated via electrospinning. First, scaffolds were fully characterized, and then NSP were seeded on them to study their capacity to support stem cell attachment, proliferation and chondrogenic differentiation. Compared to randomly oriented nanofibers, aligned scaffolds showed a high degree of nanofiber alignment with much better tensile strength properties. Both scaffolds supported NSP adhesion, proliferation and chondrogenic differentiation. Despite the higher rate of cell proliferation on random scaffolds, a better chondrogenic differentiation was observed on aligned nanofibers as deduced from higher expression of chondrogenic markers such as collagen type II and aggrecan on aligned scaffolds. These findings demonstrate that electrospun constructs maintain NSP proliferation and differentiation, and that the aligned nanofibrous scaffolds can significantly enhance chondrogenic differentiation of nasal septum derived progenitors. - Highlights: • Electrospun nanofiber scaffolds with different topographies were fabricated. • Aligned nanofiber scaffolds had better tensile strength properties. • Nasal septum derived progenitors were cultured on nanofibrous scaffolds. • Both topographies support proliferation and chondrogenic differentiation. • Better chondrogenic differentiation was observed on aligned nanofibers.

  8. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis

    Science.gov (United States)

    Ahmed, Maqsood; Ramos, Tiago André Da Silva; Damanik, Febriyani; Quang Le, Bach; Wieringa, Paul; Bennink, Martin; van Blitterswijk, Clemens; de Boer, Jan; Moroni, Lorenzo

    2015-10-01

    The extracellular matrix (ECM) is a three-dimensional (3D) structure composed of proteinaceous fibres that provide physical and biological cues to direct cell behaviour. Here, we build a library of hybrid collagen-polymer fibrous scaffolds with nanoscale dimensions and screen them for their ability to grow chondrocytes for cartilage repair. Poly(lactic acid) and poly (lactic-co-glycolic acid) at two different monomer ratios (85:15 and 50:50) were incrementally blended with collagen. Physical properties (wettability and stiffness) of the scaffolds were characterized and related to biological performance (proliferation, ECM production, and gene expression) and structure-function relationships were developed. We found that soft scaffolds with an intermediate wettability composed of the highly biodegradable PLGA50:50 and collagen, in two ratios (40:60 and 60:40), were optimal for chondrogenic differentiation of ATDC5 cells as determined by increased ECM production and enhanced cartilage specific gene expression. Long-term cultures indicated a stable phenotype with minimal de-differentiation or hypertrophy. The combinatorial methodology applied herein is a promising approach for the design and development of scaffolds for regenerative medicine.

  9. In Vitro Chondrogenesis Transformation Study of Mouse Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Shahrul Hisham Zainal Ariffin

    2012-01-01

    Full Text Available A major challenge in the application of mesenchymal stem cells in cartilage reconstruction is that whether the cells are able to differentiate into fully mature chondrocytes before grafting. The aim of this study was to isolate mouse dental pulp stem cells (DPSC and differentiate them into chondrocytes. For this investigation, morphological, molecular, and biochemical analyses for differentiated cells were used. To induce the chondrocyte differentiation, DPSC were cultured in chondrogenic medium (Zen-Bio, Inc.. Based on morphological analyses using toluidine blue staining, proteoglycan products appear in DPSC after 21 days of chondrocyte induction. Biochemical analyses in differentiated group showed that alkaline phosphatase activity was significantly increased at day 14 as compared to control (P<0.05. Cell viability analyses during the differentiation to chondrocytes also showed that these cells were viable during differentiation. However, after the 14th day of differentiation, there was a significant decrease (P<0.05 in the viability proportion among differentiated cells as compared to the control cells. In RT-PCR molecular analyses, mouse DPSC expressed Cd146 and Cd166 which indicated that these cells belong to mesenchymal stem cells. Coll I and Coll II markers showed high expression after 14 and 21 days, respectively. In conclusion, this study showed that DPSC successfully differentiated into chondrocytes.

  10. Autologous chondrocytes as a novel source for neo-chondrogenesis in haemophiliacs.

    Science.gov (United States)

    Stocco, Elena; Barbon, Silvia; Radossi, Paolo; Rajendran, Senthilkumar; Dalzoppo, Daniele; Bortolami, Marina; Bagno, Andrea; Grandi, Francesca; Gamba, Pier Giorgio; Parnigotto, Pier Paolo; Tagariello, Giuseppe; Grandi, Claudio

    2016-10-01

    Haemophilic arthropathy is the major cause of disability in patients with haemophilia and, despite prophylaxis with coagulation factor concentrates, some patients still develop articular complications. We evaluate the feasibility of a tissue engineering approach to improve current clinical strategies for cartilage regeneration in haemophiliacs by using autologous chondrocytes (haemophilic chondrocytes; HaeCs). Little is known about articular chondrocytes from haemophilic patients and no characterisation has as yet been performed. An investigation into whether blood exposure alters HaeCs should be interesting from the perspective of autologous implants. The typical morphology and expression of specific target genes and surface markers were therefore assessed by optical microscopy, reverse transcription plus the polymerase chain reaction (PCR), real-time PCR and flow-cytometry. We then considered chondrocyte behaviour on a bio-hybrid scaffold (based on polyvinyl alcohol/Wharton's jelly) as an in vitro model of articular cartilage prosthesis. Articular chondrocytes from non-haemophilic donors were used as controls. HaeC morphology and the resulting immunophenotype CD44(+)/CD49c(+)/CD49e(+)/CD151(+)/CD73(+)/CD49f(-)/CD26(-) resembled those of healthy donors. Moreover, HaeCs were active in the transcription of genes involved in the synthesis of the extracellular matrix proteins of the articular cartilage (ACAN, COL1A, COL2A, COL10A, COL9A, COMP, HAS1, SOX9), although the over-expression of COL1A1, COL10A1, COMP and HAS was observed. In parallel, the composite scaffold showed adequate mechanical and biological properties for cartilage tissue engineering, promoting chondrocyte proliferation. Our preliminary evidence contributes to the characterisation of HaeCs, highlighting the opportunity of using them for autologous cartilage implants in patients with haemophilia.

  11. Enhanced chondrogenesis of human nasal septum derived progenitors on nanofibrous scaffolds

    International Nuclear Information System (INIS)

    Shafiee, Abbas; Seyedjafari, Ehsan; Sadat Taherzadeh, Elham; Dinarvand, Peyman; Soleimani, Masoud; Ai, Jafar

    2014-01-01

    Topographical cues can be exploited to regulate stem cell attachment, proliferation, differentiation and function in vitro and in vivo. In this study, we aimed to investigate the influence of different nanofibrous topographies on the chondrogenic differentiation potential of nasal septum derived progenitors (NSP) in vitro. Aligned and randomly oriented Ploy (L-lactide) (PLLA)/Polycaprolactone (PCL) hybrid scaffolds were fabricated via electrospinning. First, scaffolds were fully characterized, and then NSP were seeded on them to study their capacity to support stem cell attachment, proliferation and chondrogenic differentiation. Compared to randomly oriented nanofibers, aligned scaffolds showed a high degree of nanofiber alignment with much better tensile strength properties. Both scaffolds supported NSP adhesion, proliferation and chondrogenic differentiation. Despite the higher rate of cell proliferation on random scaffolds, a better chondrogenic differentiation was observed on aligned nanofibers as deduced from higher expression of chondrogenic markers such as collagen type II and aggrecan on aligned scaffolds. These findings demonstrate that electrospun constructs maintain NSP proliferation and differentiation, and that the aligned nanofibrous scaffolds can significantly enhance chondrogenic differentiation of nasal septum derived progenitors. - Highlights: • Electrospun nanofiber scaffolds with different topographies were fabricated. • Aligned nanofiber scaffolds had better tensile strength properties. • Nasal septum derived progenitors were cultured on nanofibrous scaffolds. • Both topographies support proliferation and chondrogenic differentiation. • Better chondrogenic differentiation was observed on aligned nanofibers

  12. Zebrafish con/disp1 reveals multiple spatiotemporal requirements for Hedgehog-signaling in craniofacial development

    Directory of Open Access Journals (Sweden)

    Schwend Tyler

    2009-11-01

    Full Text Available Abstract Background The vertebrate head skeleton is derived largely from cranial neural crest cells (CNCC. Genetic studies in zebrafish and mice have established that the Hedgehog (Hh-signaling pathway plays a critical role in craniofacial development, partly due to the pathway's role in CNCC development. Disruption of the Hh-signaling pathway in humans can lead to the spectral disorder of Holoprosencephaly (HPE, which is often characterized by a variety of craniofacial defects including midline facial clefting and cyclopia 12. Previous work has uncovered a role for Hh-signaling in zebrafish dorsal neurocranium patterning and chondrogenesis, however Hh-signaling mutants have not been described with respect to the ventral pharyngeal arch (PA skeleton. Lipid-modified Hh-ligands require the transmembrane-spanning receptor Dispatched 1 (Disp1 for proper secretion from Hh-synthesizing cells to the extracellular field where they act on target cells. Here we study chameleon mutants, lacking a functional disp1(con/disp1. Results con/disp1 mutants display reduced and dysmorphic mandibular and hyoid arch cartilages and lack all ceratobranchial cartilage elements. CNCC specification and migration into the PA primorida occurs normally in con/disp1 mutants, however disp1 is necessary for post-migratory CNCC patterning and differentiation. We show that disp1 is required for post-migratory CNCC to become properly patterned within the first arch, while the gene is dispensable for CNCC condensation and patterning in more posterior arches. Upon residing in well-formed pharyngeal epithelium, neural crest condensations in the posterior PA fail to maintain expression of two transcription factors essential for chondrogenesis, sox9a and dlx2a, yet continue to robustly express other neural crest markers. Histology reveals that posterior arch residing-CNCC differentiate into fibrous-connective tissue, rather than becoming chondrocytes. Treatments with Cyclopamine, to

  13. Swim-training changes the spatio-temporal dynamics of skeletogenesis in zebrafish larvae (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Ansa W Fiaz

    Full Text Available Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis.

  14. The role of environmental factors in regulating the development of cartilaginous grafts engineered using osteoarthritic human infrapatellar fat pad-derived stem cells.

    Science.gov (United States)

    Liu, Yurong; Buckley, Conor T; Downey, Richard; Mulhall, Kevin J; Kelly, Daniel J

    2012-08-01

    Engineering functional cartilaginous grafts using stem cells isolated from osteoarthritic human tissue is of fundamental importance if autologous tissue engineering strategies are to be used in the treatment of diseased articular cartilage. It has previously been demonstrated that human infrapatellar fat pad (IFP)-derived stem cells undergo chondrogenesis in pellet culture; however, the ability of such cells to generate functional cartilaginous grafts has not been adequately addressed. The objective of this study was to explore how environmental conditions regulate the functional development of cartilaginous constructs engineered using diseased human IFP-derived stem cells (FPSCs). FPSCs were observed to display a diminished chondrogenic potential upon encapsulation in a three-dimensional hydrogel compared with pellet culture, synthesizing significantly lower levels of glycosaminoglycan and collagen on a per cell basis. To engineer more functional cartilaginous grafts, we next explored whether additional biochemical and biophysical stimulations would enhance chondrogenesis within the hydrogels. Serum stimulation was observed to partially recover the diminished chondrogenic potential within hydrogel culture. Over 42 days, stem cells that had first been expanded in a low-oxygen environment proliferated extensively on the outer surface of the hydrogel in response to serum stimulation, assembling a dense type II collagen-positive cartilaginous tissue resembling that formed in pellet culture. The application of hydrostatic pressure did not further enhance extracellular matrix synthesis within the hydrogels, but did appear to alter the spatial accumulation of extracellular matrix leading to the formation of a more compact tissue with superior mechanically functionality. Further work is required in order to recapitulate the environmental conditions present during pellet culture within scaffolds or hydrogels in order to engineer more functional cartilaginous grafts using

  15. Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues

    International Nuclear Information System (INIS)

    Jaipaew, Jirayut; Wangkulangkul, Piyanun; Meesane, Jirut; Raungrut, Pritsana; Puttawibul, Puttisak

    2016-01-01

    Osteoarthritis is a critical disease that comes from degeneration of cartilage tissue. In severe cases surgery is generally required. Tissue engineering using scaffolds with stem cell transplantation is an attractive approach and a challenge for orthopedic surgery. For sample preparation, silk fibroin (SF)/hyaluronic acid (HA) scaffolds in different ratios of SF/HA (w/w) (i.e., 100:0, 90:10, 80:20, and 70:30) were formed by freeze-drying. The morphological, mechanical, and physical clues were considered in this research. The morphological structure of the scaffolds was observed by scanning electron microscope. The mechanical and physical properties of the scaffolds were analyzed by compressive and swelling ratio testing, respectively. For the cell experiments, scaffolds were seeded and cultured with human umbilical cord-derived mesenchymal stem cells (HUMSCs). The cultured scaffolds were tested for cell viability, histochemistry, immunohistochemistry, and gene expression. The SF with HA scaffolds showed regular porous structures. Those scaffolds had a soft and elastic characteristic with a high swelling ratio and water uptake. The SF/HA scaffolds showed a spheroid structure of the cells in the porous structure particularly in the SF80 and SF70 scaffolds. Cells could express Col2a, Agg, and Sox9 which are markers for chondrogenesis. It could be deduced that SF/HA scaffolds showed significant clues for suitability in cartilage tissue engineering and in surgery for osteoarthritis. - Highlights: • Silk fibroin/Hyaluronic acid was fabricated into mimicked scaffolds. • Mimicked scaffolds were incorporated with stem cells for chondrogenesis. • Mimicked scaffolds showed the clues for chondrogenic regulation. • Mimicked scaffolds had suitable performance for cartilage tissue engineering • Mimicked scaffolds showed promise for osteoarthritis surgery.

  16. MSX2 stimulates chondrocyte maturation by controlling Ihh expression.

    Science.gov (United States)

    Amano, Katsuhiko; Ichida, Fumitaka; Sugita, Atsushi; Hata, Kenji; Wada, Masahiro; Takigawa, Yoko; Nakanishi, Masako; Kogo, Mikihiko; Nishimura, Riko; Yoneda, Toshiyuki

    2008-10-24

    Several studies indicated that a homeobox gene, Msx2, is implicated in regulation of skeletal development by controlling enchondral ossification as well as membranous ossification. However, the molecular basis by which Msx2 conducts chondrogenesis is currently unclear. In this study, we examined the role of Msx2 in chondrocyte differentiation using mouse primary chondrocytes and embryonic metatarsal explants. Treatment with BMP2 up-regulated the expression of Msx2 mRNA along with chondrocyte differentiation in murine primary chondrocytes. Overexpression of wild-type Msx2 stimulated calcification of primary chondrocytes in the presence of BMP2. We also found that constitutively active Msx2 (caMsx2) enhanced BMP2-dependent calcification more efficiently than wild-type Msx2. Consistently, caMsx2 overexpression up-regulated the expression of alkaline phosphatase and collagen type X induced by BMP2. Furthermore, organ culture experiments using mouse embryonic metatarsals indicated that caMsx2 clearly stimulated the maturation of chondrocytes into the prehypertrophic and hypertrophic stages in the presence of BMP2. In contrast, knockdown of Msx2 inhibited maturation of primary chondrocytes. The stimulatory effect of Msx2 on chondrocyte maturation was enhanced by overexpression of Smad1 and Smad4 but inhibited by Smad6, an inhibitory Smad for BMP2 signaling. These data suggest that Msx2 requires BMP2/Smad signaling for its chondrogenic action. In addition, caMsx2 overexpression induced Ihh (Indian hedgehog) expression in mouse primary chondrocytes. Importantly, treatment with cyclopamine, a specific inhibitor for hedgehogs, blocked Msx2-induced chondrogenesis. Collectively, our results indicated that Msx2 promotes the maturation of chondrocytes, at least in part, through up-regulating Ihh expression.

  17. Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues

    Energy Technology Data Exchange (ETDEWEB)

    Jaipaew, Jirayut [Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110 (Thailand); Wangkulangkul, Piyanun [Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110 (Thailand); Department of Surgery, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110 (Thailand); Meesane, Jirut, E-mail: jirutmeesane999@yahoo.co.uk [Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110 (Thailand); Raungrut, Pritsana [Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110 (Thailand); Puttawibul, Puttisak [Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110 (Thailand); Department of Surgery, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110 (Thailand)

    2016-07-01

    Osteoarthritis is a critical disease that comes from degeneration of cartilage tissue. In severe cases surgery is generally required. Tissue engineering using scaffolds with stem cell transplantation is an attractive approach and a challenge for orthopedic surgery. For sample preparation, silk fibroin (SF)/hyaluronic acid (HA) scaffolds in different ratios of SF/HA (w/w) (i.e., 100:0, 90:10, 80:20, and 70:30) were formed by freeze-drying. The morphological, mechanical, and physical clues were considered in this research. The morphological structure of the scaffolds was observed by scanning electron microscope. The mechanical and physical properties of the scaffolds were analyzed by compressive and swelling ratio testing, respectively. For the cell experiments, scaffolds were seeded and cultured with human umbilical cord-derived mesenchymal stem cells (HUMSCs). The cultured scaffolds were tested for cell viability, histochemistry, immunohistochemistry, and gene expression. The SF with HA scaffolds showed regular porous structures. Those scaffolds had a soft and elastic characteristic with a high swelling ratio and water uptake. The SF/HA scaffolds showed a spheroid structure of the cells in the porous structure particularly in the SF80 and SF70 scaffolds. Cells could express Col2a, Agg, and Sox9 which are markers for chondrogenesis. It could be deduced that SF/HA scaffolds showed significant clues for suitability in cartilage tissue engineering and in surgery for osteoarthritis. - Highlights: • Silk fibroin/Hyaluronic acid was fabricated into mimicked scaffolds. • Mimicked scaffolds were incorporated with stem cells for chondrogenesis. • Mimicked scaffolds showed the clues for chondrogenic regulation. • Mimicked scaffolds had suitable performance for cartilage tissue engineering • Mimicked scaffolds showed promise for osteoarthritis surgery.

  18. Utilizing two-photon fluorescence and second harmonic generation microscopy to study human bone marrow mesenchymal stem cell morphogenesis in chitosan scaffold

    Science.gov (United States)

    Su, Ping-Jung; Huang, Chi-Hsiu; Huang, Yi-You; Lee, Hsuan-Sue; Dong, Chen-Yuan

    2008-02-01

    A major goal of tissue engineering is to cultivate the cartilage in vitro. One approach is to implant the human bone marrow mesenchymal stem cells into the three dimensional biocompatible and biodegradable material. Through the action of the chondrogenic factor TGF-β3, the stem cells can be induced to secrete collagen. In this study, mesenchymal stem cells are implanted on the chitosan scaffold and TGF-β3 was added to produce the cartilage tissue and TP autofluorescence and SHG microscopy was used to image the process of chondrogenesis. With additional development, multiphoton microscopy can be developed into an effective tool for evaluating the quality of tissue engineering products.

  19. The initial bearing capacities of subchondral bone replacements considerably contributing to chondrogenesis

    Czech Academy of Sciences Publication Activity Database

    Petrtýl, M.; Danešová, J.; Lísal, J.; Šenolt, L.; Hulejová, H.; Polanská, M.; Bastl, Zdeněk; Kruliš, Zdeněk; Černý, P.

    2010-01-01

    Roč. 12, č. 3 (2010), s. 59-65 ISSN 1509-409X R&D Projects: GA ČR GA106/06/0761 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : biomechanics * osteochondral defects * polymer replacement Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.432, year: 2010

  20. Chondroitin Sulfate Immobilized on a Biomimetic Scaffold Modulates Inflammation While Driving Chondrogenesis.

    Science.gov (United States)

    Corradetti, Bruna; Taraballi, Francesca; Minardi, Silvia; Van Eps, Jeffrey; Cabrera, Fernando; Francis, Lewis W; Gazze, Salvatore A; Ferrari, Mauro; Weiner, Bradley K; Tasciotti, Ennio

    2016-05-01

    Costs associated with degenerative inflammatory conditions of articular cartilage are exponentially increasing in the aging population, and evidence shows a strong clinical need for innovative therapies. Stem cell-based therapies represent a promising strategy for the treatment of innumerable diseases. Their regenerative potential is undeniable, and it has been widely exploited in many tissue-engineering approaches, especially for bone and cartilage repair. Their immune-modulatory capacities in particular make stem cell-based therapeutics an attractive option for treating inflammatory diseases. However, because of their great plasticity, mesenchymal stem cells (MSCs) are susceptible to different external factors. Biomaterials capable of concurrently providing physical support to cells while acting as synthetic extracellular matrix have been established as a valuable strategy in cartilage repair. Here we propose a chondroitin sulfate-based biomimetic scaffold that recapitulates the physicochemical features of the chondrogenic niche and retains MSC immunosuppressive potential in vitro, either in response to a proinflammatory cytokine or in the presence of stimulated peripheral blood mononuclear cells. In both cases, a significant increase in the production of molecules associated with immunosuppression (nitric oxide and prostaglandins), as well as in the expression of their inducible enzymes (iNos, Pges, Cox-2, and Tgf-β). When implanted subcutaneously in rats, our scaffold revealed a reduced infiltration of leukocytes at 24 hours, which correlated with a greater upregulation of genes involved in inflammatory cell apoptotic processes. In support of its effective use in tissue-engineering applications of cartilage repair, the potential of the proposed platform to drive chondrogenic and osteogenic differentiation of MSC was also proven. Recently, increasing clinical evidence has highlighted the important role of proinflammatory mediators and infiltrating inflammatory cell populations inducing chronic inflammation and diseases in damaged cartilage. This work should be of broad interest because it proposes an implantable biomimetic material, which holds the promise for a variety of medical conditions that necessitate the functional restoration of damaged cartilage tissue (such as trauma, diseases, deformities, or cancer). ©AlphaMed Press.

  1. Pleiotrophin commits human bone marrow mesenchymal stromal cells towards hypertrophy during chondrogenesis.

    Science.gov (United States)

    Bouderlique, Thibault; Henault, Emilie; Lebouvier, Angelique; Frescaline, Guilhem; Bierling, Phillipe; Rouard, Helene; Courty, José; Albanese, Patricia; Chevallier, Nathalie

    2014-01-01

    Pleiotrophin (PTN) is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC) are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC) under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC.

  2. Pleiotrophin commits human bone marrow mesenchymal stromal cells towards hypertrophy during chondrogenesis.

    Directory of Open Access Journals (Sweden)

    Thibault Bouderlique

    Full Text Available Pleiotrophin (PTN is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC.

  3. PDK2 promotes chondrogenic differentiation of mesenchymal stem cells by upregulation of Sox6 and activation of JNK/MAPK/ERK pathway

    Directory of Open Access Journals (Sweden)

    H. Wang

    Full Text Available This study was undertaken to clarify the role and mechanism of pyruvate dehydrogenase kinase isoform 2 (PDK2 in chondrogenic differentiation of mesenchymal stem cells (MSCs. MSCs were isolated from femurs and tibias of Sprague-Dawley rats, weighing 300-400 g (5 females and 5 males. Overexpression and knockdown of PDK2 were transfected into MSCs and then cell viability, adhesion and migration were assessed. Additionally, the roles of aberrant PDK2 in chondrogenesis markers SRY-related high mobility group-box 6 (Sox6, type ΙΙ procollagen gene (COL2A1, cartilage oligomeric matrix protein (COMP, aggrecan (AGC1, type ΙX procollagen gene (COL9A2 and collagen type 1 alpha 1 (COL1A1 were measured by quantitative reverse-transcription polymerase chain reaction (qRT-PCR. The expressions of c-Jun N-terminal kinase (JNK, p38 mitogen-activated protein kinase (MAPK and extracellular regulated protein kinase (ERK were measured. Overexpressing PDK2 promoted cell viability, adhesion and inhibited cell migration in MSCs (all P<0.05. qRT-PCR assay showed a potent increase in the mRNA expressions of all chondrogenesis markers in response to overexpressing PDK2 (P<0.01 or P<0.05. PDK2 overexpression also induced a significant accumulation in mRNA and protein expressions of JNK, p38MAPK and ERK in MSCs compared to the control (P<0.01 or P<0.05. Meanwhile, silencing PDK2 exerted the opposite effects on MSCs. This study shows a preliminary positive role and potential mechanisms of PDK2 in chondrogenic differentiation of MSCs. It lays the theoretical groundwork for uncovering the functions of PDK2 and provides a promising basis for repairing cartilage lesions in osteoarthritis.

  4. Isolation of Mesenchymal Stromal Cells (MSCs from Human Adenoid Tissue

    Directory of Open Access Journals (Sweden)

    Yoon Se Lee

    2013-04-01

    Full Text Available Background: Mesenchymal stromal cells (MSCs are multipotent progenitor cells that originally derived from bone marrow. Clinical use of bone marrow-derived MSC is difficult due to morbidity and low MSC abundance and isolation efficiency. Recently, MSCs have been isolated from various adult tissues. Here we report the isolation of adenoid tissue-derived MSCs (A-MSCs and their characteristics. Methods: We compared the surface markers, morphologies, and differentiation and proliferation capacities of previously established tonsil-derived MSCs (T-MSCs and bone marrow-derived MSCs (BM-MSCs with cells isolated from adenoid tissue. The immunophenotype of A-MSCs was investigated upon interferon (IFN-γ stimulation. Results: A-MSCs, T-MSCs, and BM-MSCs showed negative CD45, CD31 HLA-DR, CD34, CD14, CD19 and positive CD 90, CD44, CD73, CD105 expression. A-MSCs were fibroblast-like, spindle-shaped non-adherent cells, similar to T-MSCs and BM-MSCs. Adipogenesis was observed in A-MSCs by the formation of lipid droplets after Oil Red O staining. Osteogenesis was observed by the formation of the matrix mineralization in Alizarin Red staining. Chondrogenesis was observed by the accumulation of sulfated glycosaminoglycan-rich matrix in collagen type II staining. These data were similar to those of T-MSCs and BM-MSCs. Expression of marker genes (i.e., adipogenesis; lipoprotein lipase, proliferator-activator receptor-gamma, osteogenesis; osteocalcin, alkaline phasphatase, chondrogenesis; aggrecan, collagen type II α1 in A-MSCs were not different from those in T-MSCs and BM-MSCs. Conclusions: A-MSCs possess the characteristics of MSCs in terms of morphology, multipotent differentiation capacity, cell surface markers, and immunogeneity. Therefore, A-MSCs fulfill the definition of MSCs and represent an alternate source of MSCs.

  5. Perichondrium phenotype and border function are regulated by Ext1 and heparan sulfate in developing long bones: a mechanism likely deranged in Hereditary Multiple Exostoses.

    Science.gov (United States)

    Huegel, Julianne; Mundy, Christina; Sgariglia, Federica; Nygren, Patrik; Billings, Paul C; Yamaguchi, Yu; Koyama, Eiki; Pacifici, Maurizio

    2013-05-01

    During limb skeletogenesis the cartilaginous long bone anlagen and their growth plates become delimited by perichondrium with which they interact functionally. Yet, little is known about how, despite being so intimately associated with cartilage, perichondrium acquires and maintains its distinct phenotype and exerts its border function. Because perichondrium becomes deranged and interrupted by cartilaginous outgrowths in Hereditary Multiple Exostoses (HME), a pediatric disorder caused by EXT mutations and consequent heparan sulfate (HS) deficiency, we asked whether EXT genes and HS normally have roles in establishing its phenotype and function. Indeed, conditional Ext1 ablation in perichondrium and lateral chondrocytes flanking the epiphyseal region of mouse embryo long bone anlagen - a region encompassing the groove of Ranvier - caused ectopic cartilage formation. A similar response was observed when HS function was disrupted in long bone anlagen explants by genetic, pharmacological or enzymatic means, a response preceded by ectopic BMP signaling within perichondrium. These treatments also triggered excess chondrogenesis and cartilage nodule formation and overexpression of chondrogenic and matrix genes in limb bud mesenchymal cells in micromass culture. Interestingly, the treatments disrupted the peripheral definition and border of the cartilage nodules in such a way that many nodules overgrew and fused with each other into large amorphous cartilaginous masses. Interference with HS function reduced the physical association and interactions of BMP2 with HS and increased the cell responsiveness to endogenous and exogenous BMP proteins. In sum, Ext genes and HS are needed to establish and maintain perichondrium's phenotype and border function, restrain pro-chondrogenic signaling proteins including BMPs, and restrict chondrogenesis. Alterations in these mechanisms may contribute to exostosis formation in HME, particularly at the expense of regions rich in progenitor

  6. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering.

    Science.gov (United States)

    Fahy, Niamh; Alini, Mauro; Stoddart, Martin J

    2018-01-01

    Articular cartilage is a load-bearing tissue playing a crucial mechanical role in diarthrodial joints, facilitating joint articulation, and minimizing wear. The significance of biomechanical stimuli in the development of cartilage and maintenance of chondrocyte phenotype in adult tissues has been well documented. Furthermore, dysregulated loading is associated with cartilage pathology highlighting the importance of mechanical cues in cartilage homeostasis. The repair of damaged articular cartilage resulting from trauma or degenerative joint disease poses a major challenge due to a low intrinsic capacity of cartilage for self-renewal, attributable to its avascular nature. Bone marrow-derived mesenchymal stem cells (MSCs) are considered a promising cell type for cartilage replacement strategies due to their chondrogenic differentiation potential. Chondrogenesis of MSCs is influenced not only by biological factors but also by the environment itself, and various efforts to date have focused on harnessing biomechanics to enhance chondrogenic differentiation of MSCs. Furthermore, recapitulating mechanical cues associated with cartilage development and homeostasis in vivo, may facilitate the development of a cellular phenotype resembling native articular cartilage. The goal of this review is to summarize current literature examining the effect of mechanical cues on cartilage homeostasis, disease, and MSC chondrogenesis. The role of biological factors produced by MSCs in response to mechanical loading will also be examined. An in-depth understanding of the impact of mechanical stimulation on the chondrogenic differentiation of MSCs in terms of endogenous bioactive factor production and signaling pathways involved, may identify therapeutic targets and facilitate the development of more robust strategies for cartilage replacement using MSCs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:52-63, 2018. © 2017 Orthopaedic Research

  7. Characterization and chondrocyte differentiation stage-specific expression of KRAB zinc-finger protein gene ZNF470

    International Nuclear Information System (INIS)

    Hering, Thomas M.; Kazmi, Najam H.; Huynh, Tru D.; Kollar, John; Xu, Laura; Hunyady, Aaron B.; Johnstone, Brian

    2004-01-01

    As part of a study to identify novel transcriptional regulators of chondrogenesis-related gene expression, we have cloned and characterized cDNA for zinc-finger protein 470 (ZNF470), the human ortholog of which encodes a 717 amino acid residue protein containing 17 Cys 2 His 2 zinc-finger domains, as well as KRAB-A and KRAB-B motifs. The cDNA library used to isolate the initial ZNF470 clone was prepared from human bone marrow-derived mesenchymal progenitor cells at an intermediate stage of chondrogenic differentiation. We have determined the intron-exon structure of the human ZNF470 gene, which has been mapped to a zinc-finger cluster in a known imprinted region of human chromosome 19q13.4. ZNF470 is expressed at high levels in human testis and is expressed at low or undetectible levels in other adult tissues. Human ZNF470 expressed in mammalian cells as an EGFP fusion protein localizes predominantly to the nucleus, consistent with a role in transcriptional regulation. ZNF470, analyzed by quantitative real time PCR, was transiently expressed before the maximal expression of COL2A1 during chondrogenic differentiation in vitro. We have also characterized the bovine ortholog of human ZNF470, which encodes a 508 amino acid residue protein having 10 zinc-finger domains. A bovine ZNF470 cDNA clone was used to examine expression of ZNF470 in bovine articular chondrocytes treated with retinoic acid to stimulate dedifferentiation. Bovine ZNF470 expression was undetectable in freshly isolated bovine articular chondrocytes, but was dramatically upregulated in dedifferentiated retinoic acid-treated chondrocytes. These results, in two model systems, suggest a possible role for ZNF470 in the regulation of chondrogenesis-specific gene expression

  8. Effects of strain and age on ear wound healing and regeneration in mice

    Directory of Open Access Journals (Sweden)

    R.A. Costa

    2009-12-01

    Full Text Available Round holes in the ears of MRL mice tend to close with characteristics of regeneration believed to be absent in other mouse strains (e.g., C57BL/6. We evaluated the kinetics and the histopathology of ear wound closure in young (8 weeks old C57BL/6 and BALB/c mice. We also used middle-aged (40 weeks old C57BL/6 mice to evaluate the influence of aging on this process. A circular through-and-through hole was made in the ear, photographs were taken at different times after injury and wound area was measured with digital analysis software. The percentages of closed area measured on day 100 were: 23.57 ± 8.66% for young BALB/c mice, 56.47 ± 7.39% for young C57BL/6 mice, and 75.31 ± 23.65% for middle-aged C57BL/6 mice. Mice were sacrificed on days 1, 3, 5, 25, 44, and 100 for histological evaluation with hematoxylin and eosin, Gomori’s trichrome, periodic acid-Schiff, or picrosirius red staining. In young mice of both strains, healing included re-epithelialization, chondrogenesis, myogenesis, and collagen deposition. Young C57BL/6 and BALB/c mice differed in the organization of collagen fibers visualized using picrosirius-polarization. Sebaceous glands and hair follicles regenerated and chondrogenesis was greater in young C57BL/6 mice. In middle-aged C57BL/6 mice all aspects of regeneration were depressed. The characteristics of regeneration were present during ear wound healing in both young BALB/c and young C57BL/6 mice although they differed in intensity and pattern. Greater ear wound closure in middle-aged C57BL/6 mice was not correlated with regeneration.

  9. In-situ birth of MSCs multicellular spheroids in poly(L-glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration.

    Science.gov (United States)

    Zhang, Kunxi; Yan, Shifeng; Li, Guifei; Cui, Lei; Yin, Jingbo

    2015-12-01

    The success of mesenchymal stem cells (MSCs) based articular cartilage tissue engineering is limited by the presence of fibrous tissue in generated cartilage, which is associated with the current scaffold strategy that promotes cellular adhesion and spreading. Here we design a non-fouling scaffold based on amide bonded poly(l-glutamic acid) (PLGA) and chitosan (CS) to drive adipose stem cells (ASCs) to aggregate to form multicellular spheroids with diameter of 80-110 μm in-situ. To illustrate the advantage of the present scaffolds, a cellular adhesive scaffold based on the same amide bonded PLGA and CS was created through a combination of air-drying and freeze-drying to limit the hydration effect while also achieving porous structure. Compared to ASCs spreading along the surface of pores within scaffold, the dense mass of aggregated ASCs in PLGA/CS scaffold exhibited enhanced chondrogenic differentiation capacity, as determined by up-regulated GAGs and COL II expression, and greatly decreased COL I deposition during in vitro chondrogenesis. Furthermore, after 12 weeks of implantation, neo-cartilages generated by ASCs adhered on scaffold significantly presented fibrous matrix which was characterized by high levels of COL I deposition. However, neo-cartilage at 12 weeks post-implantation generated by PLGA/CS scaffold carrying ASC spheroids possessed similar high level of GAGs and COL II and low level of COL I as that in normal cartilage. The in vitro and in vivo results indicated the present strategy could not only promote chondrogenesis of ASCs, but also facilitate hyaline-like cartilage regeneration with reduced fibrous tissue formation which may attenuate cartilage degradation in future long-term follow-up. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Cartilage constructs from human cord blood stem cells seeded in structurally-graded polycaprolactone scaffolds

    DEFF Research Database (Denmark)

    Munir, Samir; Koch, Thomas Gadegaard; Foldager, Casper Bindzus

    Cartilage is an avascular tissue incapable of regeneration. Current treatment modalities for joint cartilage injuries are inefficient in regenerating hyaline cartilage and often leads to the formation of fibrocartilage with undesirable mechanical properties. There is an increasing interest...... in investigating alternative treatments such as tissue engineering, which combines stem cells with scaffolds to produce cartilage in vitro for subsequent transplant. Previous studies have shown that chondrogenesis of induced stem cells is influenced by various growth factors, oxygen tensions and mechanical...... this novel SGS-PCL scaffold supports the chondrogenic differentiation of MLPCs will be interesting to evaluate since this scaffold possesses mechanical properties absent from other “soft” scaffolds currently being investigated for cartilage regeneration and implantation....

  11. Recurrent SOX9 deletion campomelic dysplasia due to somatic mosaicism in the father.

    Science.gov (United States)

    Smyk, M; Obersztyn, E; Nowakowska, B; Bocian, E; Cheung, S W; Mazurczak, T; Stankiewicz, P

    2007-04-15

    Haploinsufficiency of SOX9, a master gene in chondrogenesis and testis development, leads to the semi-lethal skeletal malformation syndrome campomelic dysplasia (CD), with or without XY sex reversal. We report on two children with CD and a phenotypically normal father, a carrier of a somatic mosaic SOX9 deletion. This is the first report of a mosaic deletion of SOX9; few familial CD cases with germline and somatic mutation mosaicism have been described. Our findings confirm the utility of aCGH and indicate that for a more accurate estimate of the recurrence risk for a completely penetrant autosomal dominant disorder, parental somatic mosaicism should be considered in healthy parents. Copyright 2007 Wiley-Liss, Inc.

  12. Catabolic factors and osteoarthritis-conditioned medium inhibit chondrogenesis of human mesenchymal stem cells.

    NARCIS (Netherlands)

    Heldens, G.T.H.; Blaney Davidson, E.N.; Vitters, E.L.; Schreurs, B.W.; Piek, E.; Berg, W.B. van den; Kraan, P.M. van der

    2012-01-01

    Articular cartilage has a very limited intrinsic repair capacity leading to progressive joint damage. Therapies involving tissue engineering depend on chondrogenic differentiation of progenitor cells. This chondrogenic differentiation will have to survive in a diseased joint. We postulate that

  13. Sub-NOAEL amounts of vinclozolin and xenoestrogens target rat chondrogenesis in vivo.

    Science.gov (United States)

    Auxietre, Thuy-Anh; Dumontier, Marie-France; Balguy, Irene; Frapart, Yves; Canivenc-Lavier, Marie-Chantal; Berges, Raymond; Boudalia, Sofiane; Auger, Jacques; Corvol, Marie-Therese; Savouret, Jean-François

    2014-04-01

    Several endocrine disrupting compounds (EDC) elicit skeletal dysgenesis at pharmacological doses. We have investigated the impact of doses below the "No Observed Adverse Effect" (NOAEL) for vinclozolin (V), an anti-androgenic fungicide, alone or associated with xenoestrogens (Genistein, G and bisphenol-A, BPA). V, G, BPA and their combinations were administered orally to female Wistar rats during gestation and lactation. F1 and F2 offspring were investigated for skeletal anomalies at post-natal days 30, 110 (d30, d110). Skeletal development was monitored by measuring caudal vertebrae and long bones dimensions by X-ray micro-CT-scan. A significant increase in Inter Transverse Apophysis (ITA) distance at the upper head of caudal vertebrae, associated with a reduction in vertebral body height was observed in treated F1 females, but not males. Histometrical analysis of vertebral body growth plate cartilage was performed on serial sections of caudal vertebrae. F1 females but not males showed a diminution in growth plate thickness, with greater impact on the hypertrophic zone. All effects were maximal at d30. Effects on ITA width persisted until d110 while effects on growth plate disappeared. These effects were essentially vinclozolin or BPA-dependent. F2 animals were not affected. Our data suggest that vinclozolin and xenoestrogens act as cartilage developmental disruptors. We suggest that present NOAEL values for these compounds, and EDC at large, might be reconsidered using gestational exposure models. Finally, micro CT-scan appears a valuable non-invasive technique to detect EDC effects on live fauna. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. The Effects of the WNT-Signaling Modulators BIO and PKF118-310 on the Chondrogenic Differentiation of Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Huang, Xiaobin; Zhong, Leilei; Hendriks, Jan; Post, Janine N; Karperien, Marcel

    2018-02-13

    Mesenchymal stem cells (MSCs) are multipotent cells, mainly from bone marrow, and an ideal source of cells in bone and cartilage tissue engineering. A study of the chondrogenic differentiation of MSCs is of particular interest for MSCs-based cartilage regeneration. In this study, we aimed to optimize the conditions for the chrondogenic differentiation of MSCs by regulating WNT signaling using the small molecule WNT inhibitor PKF118-310 and activator BIO. Human mesenchymal stem cells (hMSCs) were isolated from bone marrow aspirates and cultured in hMSCs proliferation medium. Pellet culture was subsequently established for three-dimensional chondrogenic differentiation of 5 weeks. WNT signaling was increased by the small molecule glycogen synthase kinase-3 inhibitor 6-bromoindirubin-3-oxim (BIO) and decreased by the WNT inhibitor PKF118-310 (PKF). The effects of BIO and PKF on the chondrogenesis of hMSCs was examined by real-time PCR, histological methods, and ELISA. We found that activation of canonical WNT-signaling by BIO significantly downregulated the expression of cartilage-specific genes SOX9 , COL2A1, and ACAN , and matrix metalloproteinase genes MMP1/3/9/13, but increased ADAMTS 4/5 . Inhibition of WNT signaling by PKF increased the expression of SOX9 , COL2A1 , ACAN , and MMP9, but decreased MMP13 and ADAMTS4/5 . In addition, a high level of WNT signaling induced the expression of hypertrophic markers COL10A1, ALPL , and RUNX2, the dedifferentiation marker COL1A1 , and glycolysis genes GULT1 and PGK1 . Deposition of glycosaminoglycan (GAG) and collagen type II in the pellet matrix was significantly lost in the BIO-treated group and increased in the PKF-treated group. The protein level of COL10A1 was also highly induced in the BIO group. Interestingly, BIO decreased the number of apoptotic cells while PKF significantly induced apoptosis during chondrogenesis. The natural WNT antagonist DKK1 and the protein level of MMP1 in the pellet culture medium were

  15. Novel bio-synthetic hybrid materials and coculture systems for musculoskeletal tissue engineering

    Science.gov (United States)

    Lee, Hyeseung Janice

    Tissue Engineering is a truly exciting field of this age, trying to regenerate and repair impaired tissues. Unlike the old artificial implants, tissue engineering aims at making a long-term functional biological replacement. One strategy for such tissue engineering requires the following three components: cells, scaffolds, and soluble factors. Cells are cultured in a three-dimensional (3D) scaffold with medium containing various soluble factors. Once a tissue is developed in vitro, then it is implanted in vivo. The overall goal of this thesis was to develop novel bio-synthetic hybrid scaffolds and coculture system for musculoskeletal tissue engineering. The most abundant cartilage extracellular matrix (ECM) components are collagen and glycosaminoglycan (GAG), which are the natural scaffold for chondrocytes. As two different peptides, collagen mimetic peptide (CMP) and hyaluronic acid binding peptide (HABPep) were previously shown to bind to collagen and hyaluronic acid (HA) of GAG, respectively, it was hypothesized that immobilizing CMP and HABP on 3D scaffold would results in an interaction between ECM components and synthetic scaffolds via peptide-ECM bindings. CMP or HABPep-conjugated photopolymerizable poly(ethylene oxide) diacrylate (PEODA) hydrogels were synthesized and shown to retain encapsulated collagen or HA, respectively. This result supported that conjugated CMP and HABPep can interact with collagen and HA, respectively, and can serve as biological linkers in 3D synthetic hydrogels. When chondrocytes or mesenchymal stem cells (MSCs) were seeded, cells in CMP-conjugated scaffolds produced significantly more amount of type II collagen and GAG, compared to those in control scaffolds. Moreover, MSCs cultured in CMP-conjugated scaffolds exhibited lower level of hypertrophic markers, cbfa-1 and type X collagen. These results demonstrated that enhanced interaction between collagen and scaffold via CMP improves chondrogenesis of chondrocytes and MSCs and

  16. The Effects of the WNT-Signaling Modulators BIO and PKF118-310 on the Chondrogenic Differentiation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Xiaobin Huang

    2018-02-01

    Full Text Available Mesenchymal stem cells (MSCs are multipotent cells, mainly from bone marrow, and an ideal source of cells in bone and cartilage tissue engineering. A study of the chondrogenic differentiation of MSCs is of particular interest for MSCs-based cartilage regeneration. In this study, we aimed to optimize the conditions for the chrondogenic differentiation of MSCs by regulating WNT signaling using the small molecule WNT inhibitor PKF118-310 and activator BIO. Human mesenchymal stem cells (hMSCs were isolated from bone marrow aspirates and cultured in hMSCs proliferation medium. Pellet culture was subsequently established for three-dimensional chondrogenic differentiation of 5 weeks. WNT signaling was increased by the small molecule glycogen synthase kinase-3 inhibitor 6-bromoindirubin-3-oxim (BIO and decreased by the WNT inhibitor PKF118-310 (PKF. The effects of BIO and PKF on the chondrogenesis of hMSCs was examined by real-time PCR, histological methods, and ELISA. We found that activation of canonical WNT-signaling by BIO significantly downregulated the expression of cartilage-specific genes SOX9, COL2A1, and ACAN, and matrix metalloproteinase genes MMP1/3/9/13, but increased ADAMTS 4/5. Inhibition of WNT signaling by PKF increased the expression of SOX9, COL2A1, ACAN, and MMP9, but decreased MMP13 and ADAMTS4/5. In addition, a high level of WNT signaling induced the expression of hypertrophic markers COL10A1, ALPL, and RUNX2, the dedifferentiation marker COL1A1, and glycolysis genes GULT1 and PGK1. Deposition of glycosaminoglycan (GAG and collagen type II in the pellet matrix was significantly lost in the BIO-treated group and increased in the PKF-treated group. The protein level of COL10A1 was also highly induced in the BIO group. Interestingly, BIO decreased the number of apoptotic cells while PKF significantly induced apoptosis during chondrogenesis. The natural WNT antagonist DKK1 and the protein level of MMP1 in the pellet culture medium were

  17. Chondrogenic potential of physically treated bovine cartilage matrix derived porous scaffolds on human dermal fibroblast cells.

    Science.gov (United States)

    Moradi, Ali; Ataollahi, Forough; Sayar, Katayoun; Pramanik, Sumit; Chong, Pan-Pan; Khalil, Alizan Abdul; Kamarul, Tunku; Pingguan-Murphy, Belinda

    2016-01-01

    Extracellular matrices have drawn attention in tissue engineering as potential biomaterials for scaffold fabrication because of their bioactive components. Noninvasive techniques of scaffold fabrication and cross-linking treatments are believed to maintain the integrity of bioactive molecules while providing proper architectural and mechanical properties. Cartilage matrix derived scaffolds are designed to support the maintenance of chondrocytes and provide proper signals for differentiation of chondroinducible cells. Chondroinductive potential of bovine articular cartilage matrix derived porous scaffolds on human dermal fibroblasts and the effect of scaffold shrinkage on chondrogenesis were investigated. An increase in sulfated glycosaminoglycans production along with upregulation of chondrogenic genes confirmed that physically treated cartilage matrix derived scaffolds have chondrogenic potential on human dermal fibroblasts. © 2015 Wiley Periodicals, Inc.

  18. Mechanism of cancer-induced bone destruction: An association of connective tissue growth factor (CTGF/CCN2 in the bone metastasis

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Shimo

    2011-02-01

    Full Text Available Connective tissue growth factor (CTGF/CCN2 is a member of the CCN family, a novel class of extracellular signal modulators. CCN2 is composed of four conserved modules connected in tandem, each of which is rich in cysteines and highly interactive with other molecules. CCN2 has various biological functions, being active in developmental processes including angiogenesis, chondrogenesis, and osteogenesis. Recently CCN2 has gained more clinical interest due to its role in cancer-induced bone destruction. In this article, the role of CCN2 in bone-destroying events as an organizer of the microenvironmental cell society is comprehensively described, and a brief summary of the recent findings on regulatory factors involved in tumor-induced bone disease is given.

  19. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage.

    Science.gov (United States)

    Gaut, Carrie; Sugaya, Kiminobu

    2015-01-01

    Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.

  20. The effects of 1α, 25-dihydroxyvitamin D3 and transforming growth factor-β3 on bone development in an ex vivo organotypic culture system of embryonic chick femora.

    Directory of Open Access Journals (Sweden)

    Emma L Smith

    Full Text Available Transforming growth factor-beta3 (TGF-β3 and 1α,25-dihydroxyvitamin D3 (1α,25 (OH 2D3 are essential factors in chondrogenesis and osteogenesis respectively. These factors also play a fundamental role in the developmental processes and the maintenance of skeletal integrity, but their respective direct effects on these processes are not fully understood. Using an organotypic bone rudiment culture system the current study has examined the direct roles the osteotropic factors 1α,25 (OH2D3 and TGF-β3 exert on the development and modulation of the three dimensional structure of the embryonic femur. Isolated embryonic chick femurs (E11 were organotypically cultured for 10 days in basal media, or basal media supplemented with either 1α,25 (OH 2D3 (25 nM or TGF-β3 (5 ng/mL & 15 ng/mL. Analyses of the femurs were undertaken using micro-computed tomography (μCT, histology and immunohistochemistry. 1α,25 (OH2D3 supplemented cultures enhanced osteogenesis directly in the developing femurs with elevated levels of osteogenic markers such as type 1 collagen. In marked contrast organotypic femur cultures supplemented with TGF-β3 (5 ng/mL & 15 ng/mL demonstrated enhanced chondrogenesis with a reduction in osteogenesis. These studies demonstrate the efficacy of the ex vivo organotypic embryonic femur culture employed to elucidate the direct roles of these molecules, 1α,25 (OH 2D3 and TGF-β3 on the structural development of embryonic bone within a three dimensional framework. We conclude that 1α,25(OH2D and TGF-β3 modify directly the various cell populations in bone rudiment organotypic cultures effecting tissue metabolism resulting in significant changes in embryonic bone growth and modulation. Understanding the roles of osteotropic agents in the process of skeletal development is integral to developing new strategies for the recapitulation of bone tissue in later life.

  1. The importance of connexin hemichannels during chondroprogenitor cell differentiation in hydrogel versus microtissue culture models.

    Science.gov (United States)

    Schrobback, Karsten; Klein, Travis Jacob; Woodfield, Tim B F

    2015-06-01

    Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell-cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell-cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5'-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular

  2. Forelimb-hindlimb developmental timing changes across tetrapod phylogeny

    Directory of Open Access Journals (Sweden)

    Selwood Lynne

    2007-10-01

    Full Text Available Abstract Background Tetrapods exhibit great diversity in limb structures among species and also between forelimbs and hindlimbs within species, diversity which frequently correlates with locomotor modes and life history. We aim to examine the potential relation of changes in developmental timing (heterochrony to the origin of limb morphological diversity in an explicit comparative and quantitative framework. In particular, we studied the relative time sequence of development of the forelimbs versus the hindlimbs in 138 embryos of 14 tetrapod species spanning a diverse taxonomic, ecomorphological and life-history breadth. Whole-mounts and histological sections were used to code the appearance of 10 developmental events comprising landmarks of development from the early bud stage to late chondrogenesis in the forelimb and the corresponding serial homologues in the hindlimb. Results An overall pattern of change across tetrapods can be discerned and appears to be relatively clade-specific. In the primitive condition, as seen in Chondrichthyes and Osteichthyes, the forelimb/pectoral fin develops earlier than the hindlimb/pelvic fin. This pattern is either retained or re-evolved in eulipotyphlan insectivores (= shrews, moles, hedgehogs, and solenodons and taken to its extreme in marsupials. Although exceptions are known, the two anurans we examined reversed the pattern and displayed a significant advance in hindlimb development. All other species examined, including a bat with its greatly enlarged forelimbs modified as wings in the adult, showed near synchrony in the development of the fore and hindlimbs. Conclusion Major heterochronic changes in early limb development and chondrogenesis were absent within major clades except Lissamphibia, and their presence across vertebrate phylogeny are not easily correlated with adaptive phenomena related to morphological differences in the adult fore- and hindlimbs. The apparently conservative nature of this

  3. Differentiation of mesenchymal stem cells for cartilage tissue engineering: Individual and synergetic effects of three-dimensional environment and mechanical loading.

    Science.gov (United States)

    Panadero, J A; Lanceros-Mendez, S; Ribelles, J L Gomez

    2016-03-01

    Chondrogenesis of dedifferentiated chondrocytes and mesenchymal stem cells is influenced not only by soluble molecules like growth factors, but also by the cell environment itself. The latter is achieved through both mechanical cues - which act as stimulation factor and influences nutrient transport - and adhesion to extracellular matrix cues - which determine cell shape. Although the effects of soluble molecules and cell environment have been intensively addressed, few observations and conclusions about the interaction between the two have been achieved. In this work, we review the state of the art on the single effects between mechanical and biochemical cues, as well as on the combination of the two. Furthermore, we provide a discussion on the techniques currently used to determine the mechanical properties of materials and tissues generated in vitro, their limitations and the future research needs to properly address the identified problems. The importance of biomechanical cues in chondrogenesis is well known. This paper reviews the existing literature on the effect of mechanical stimulation on chondrogenic differentiation of mesenchymal stem cells in order to regenerate hyaline cartilage. Contradictory results found with respect to the effect of different modes of external loading can be explained by the different properties of the scaffolding system that holds the cells, which determine cell adhesion and morphology and spatial distribution of cells, as well as the stress transmission to the cells. Thus, this review seeks to provide an insight into the interplay between external loading program and scaffold properties during chondrogenic differentiation. The review of the literature reveals an important gap in the knowledge in this field and encourages new experimental studies. The main issue is that in each of the few cases in which the interplay is investigated, just two groups of scaffolds are compared, leaving intermediate adhesion conditions out of study

  4. Roles of Ihh signaling in chondroprogenitor function in postnatal condylar cartilage.

    Science.gov (United States)

    Kurio, Naito; Saunders, Cheri; Bechtold, Till E; Salhab, Imad; Nah, Hyun-Duck; Sinha, Sayantani; Billings, Paul C; Pacifici, Maurizio; Koyama, Eiki

    2018-04-01

    Condylar articular cartilage in mouse temporomandibular joint develops from progenitor cells near the articulating surface that proliferate, undergo chondrogenesis and mature into hypertrophic chondrocytes. However, it remains unclear how these processes are regulated, particularly postnatally. Here we focused on the apical polymorphic layer rich in progenitors and asked whether the phenotype and fate of the cells require signaling by Indian hedgehog (Ihh) previously studied in developing long bones. In condyles in newborn mice, the apical polymorphic/progenitor cell layer was ~10 cell layer-thick and expressed the articular matrix marker Tenascin-C (Tn-C), and the underlying thick cell layer expressed Tn-C as well as the chondrogenic master regulator Sox9. By 1 month, condylar cartilage had gained its full width, but became thinner along its main longitudinal axis and displayed hypertrophic chondrocytes. By 3 months, articular cartilage consisted of a 2-3 cell layer-thick zone of superficial cells and chondroprogenitors expressing both Tn-C and Sox9 and a bottom zone of chondrocytes displaying vertical matrix septa. EdU cell tracing in juvenile mice revealed that conversion of chondroprogenitors into chondrocytes and hypertrophic chondrocytes required about 48 and 72 h, respectively. Notably, EdU injection in 3 month-old mice labeled both progenitors and maturing chondrocytes by 96 h. Conditional ablation of Ihh in juvenile/early adult mice compromised chondroprogenitor organization and function and led to reduced chondroprogenitor and chondrocyte proliferation. The phenotype of mutant condyles worsened over time as indicated by apoptotic chondrocyte incidence, ectopic chondrocyte hypertrophy, chondrocyte column derangement and subchondral bone deterioration. In micromass cultures of condylar apical cells, hedgehog (Hh) treatment stimulated chondrogenesis and alkaline phosphatase (APase) activity, while treatment with HhAntag inhibited both. Our findings

  5. Connective-Tissue Growth Factor (CTGF/CCN2 Induces Astrogenesis and Fibronectin Expression of Embryonic Neural Cells In Vitro.

    Directory of Open Access Journals (Sweden)

    Fabio A Mendes

    Full Text Available Connective-tissue growth factor (CTGF is a modular secreted protein implicated in multiple cellular events such as chondrogenesis, skeletogenesis, angiogenesis and wound healing. CTGF contains four different structural modules. This modular organization is characteristic of members of the CCN family. The acronym was derived from the first three members discovered, cysteine-rich 61 (CYR61, CTGF and nephroblastoma overexpressed (NOV. CTGF is implicated as a mediator of important cell processes such as adhesion, migration, proliferation and differentiation. Extensive data have shown that CTGF interacts particularly with the TGFβ, WNT and MAPK signaling pathways. The capacity of CTGF to interact with different growth factors lends it an important role during early and late development, especially in the anterior region of the embryo. ctgf knockout mice have several cranio-facial defects, and the skeletal system is also greatly affected due to an impairment of the vascular-system development during chondrogenesis. This study, for the first time, indicated that CTGF is a potent inductor of gliogenesis during development. Our results showed that in vitro addition of recombinant CTGF protein to an embryonic mouse neural precursor cell culture increased the number of GFAP- and GFAP/Nestin-positive cells. Surprisingly, CTGF also increased the number of Sox2-positive cells. Moreover, this induction seemed not to involve cell proliferation. In addition, exogenous CTGF activated p44/42 but not p38 or JNK MAPK signaling, and increased the expression and deposition of the fibronectin extracellular matrix protein. Finally, CTGF was also able to induce GFAP as well as Nestin expression in a human malignant glioma stem cell line, suggesting a possible role in the differentiation process of gliomas. These results implicate ctgf as a key gene for astrogenesis during development, and suggest that its mechanism may involve activation of p44/42 MAPK signaling

  6. SHP2 regulates chondrocyte terminal differentiation, growth plate architecture and skeletal cell fates.

    Directory of Open Access Journals (Sweden)

    Margot E Bowen

    Full Text Available Loss of PTPN11/SHP2 in mice or in human metachondromatosis (MC patients causes benign cartilage tumors on the bone surface (exostoses and within bones (enchondromas. To elucidate the mechanisms underlying cartilage tumor formation, we investigated the role of SHP2 in the specification, maturation and organization of chondrocytes. Firstly, we studied chondrocyte maturation by performing RNA-seq on primary chondrocyte pellet cultures. We found that SHP2 depletion, or inhibition of the ERK1/2 pathway, delays the terminal differentiation of chondrocytes from the early-hypertrophic to the late-hypertrophic stage. Secondly, we studied chondrocyte maturation and organization in mice with a mosaic postnatal inactivation of Ptpn11 in chondrocytes. We found that the vertebral growth plates of these mice have expanded domains of early-hypertrophic chondrocytes that have not yet terminally differentiated, and their enchondroma-like lesions arise from chondrocytes displaced from the growth plate due to a disruption in the organization of maturation and ossification zones. Furthermore, we observed that lesions from human MC patients also display disorganized chondrocyte maturation zones. Next, we found that inactivation of Ptpn11 in Fsp1-Cre-expressing fibroblasts induces exostosis-like outgrowths, suggesting that loss of SHP2 in cells on the bone surface and at bone-ligament attachment sites induces ectopic chondrogenesis. Finally, we performed lineage tracing to show that exostoses and enchondromas in mice likely contain mixtures of wild-type and SHP2-deficient chondrocytes. Together, these data indicate that in patients with MC, who are heterozygous for inherited PTPN11 loss-of-function mutations, second-hit mutations in PTPN11 can induce enchondromas by disrupting the organization and delaying the terminal differentiation of growth plate chondrocytes, and can induce exostoses by causing ectopic chondrogenesis of cells on the bone surface. Furthermore, the

  7. [Current overview of cartilage regeneration procedures].

    Science.gov (United States)

    Schenker, H; Wild, M; Rath, B; Tingart, M; Driessen, A; Quack, V; Betsch, M

    2017-11-01

    Cartilage is an avascular, alymphatic and non-innervated tissue with limited intrinsic repair potential. The high prevalence of cartilage defects and their tremendous clinical importance are a challenge for all treating physicians. This article provides the reader with an overview about current cartilage treatment options and their clinical outcome. Microfracture is still considered the gold standard in the treatment of small cartilage lesions. Small osteochondral defects can be effectively treated with the autologous osteochondral transplantation system. Larger cartilage defects are successfully treated by autologous membrane-induced chondrogenesis (AMIC) or by membrane-assisted autologous chondrocyte implantation (MACI). Despite limitations of current cartilage repair strategies, such procedures can result in short- and mid-term clinical improvement of the patients. Further developments and clinical studies are necessary to improve the long-term outcome following cartilage repair.

  8. PLGA-based microcarriers induce mesenchymal stem cell chondrogenesis and stimulate cartilage repair in osteoarthritis.

    Science.gov (United States)

    Morille, Marie; Toupet, Karine; Montero-Menei, Claudia N; Jorgensen, Christian; Noël, Danièle

    2016-05-01

    In the present study, we aimed at evaluating the ability of novel PLGA-P188-PLGA-based microspheres to induce the differentiation of mesenchymal stem/stromal cells (MSC) into chondrocytes. To this aim, we tested microspheres releasing TGFβ3 (PAM-T) in vitro and in situ, in a pathological osteoarthritic (OA) environment. We first evaluated the chondrogenic differentiation of human MSCs seeded onto PAM-T in vitro and confirmed the up-regulation of chondrogenic markers while the secretome of the cells was not changed by the 3D environment. We then injected human MSC seeded onto PAM-T in the knee joints of mice with collagenase-induced OA. After 6 weeks, histological analysis revealed that formation of a cartilage-like tissue occurred at the vicinity of PAM-T that was not observed when MSCs were seeded onto PAM. We also noticed that the endogenous articular cartilage was less degraded. The extent of cartilage protection was further analysed by confocal laser microscopy. When MSCs seeded onto PAM-T were injected early after OA induction, protection of cartilage against degradation was evidenced and this effect was associated to a higher survival of MSCs in presence of TGFβ3. This study points to the interest of using MSCs seeded onto PAM for cartilage repair and stimulation of endogenous cartilage regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold

    DEFF Research Database (Denmark)

    Mehlhorn, Alexander T; Zwingmann, Jorn; Finkenzeller, Guenter

    2009-01-01

    Adult adipose-derived stem cells (ASCs) are considered to be an alternative cell source for cell-based cartilage repair because of their multiple differentiation potentials. This article addresses the chondrogenic differentiation of ASCs seeded into poly-lactide-co-glycolide (PLGA) scaffolds after...

  10. The role of laminins in cartilaginous tissues: from development to regeneration.

    Science.gov (United States)

    Sun, Y; Wang, T L; Toh, W S; Pei, M

    2017-07-21

    As a key molecule of the extracellular matrix, laminin provides a delicate microenvironment for cell functions. Recent findings suggest that laminins expressed by cartilage-forming cells (chondrocytes, progenitor cells and stem cells) could promote chondrogenesis. However, few papers outline the effect of laminins on providing a favorable matrix microenvironment for cartilage regeneration. In this review, we delineated the expression of laminins in hyaline cartilage, fibrocartilage and cartilage-like tissue (nucleus pulposus) throughout several developmental stages. We also examined the effect of laminins on the biological activities of chondrocytes, including adhesion, migration and survival. Furthermore, we scrutinized the potential influence of various laminin isoforms on cartilage-forming cells' proliferation and chondrogenic differentiation. With this information, we hope to facilitate the understanding of the spatial and temporal interactions between cartilage-forming cells and laminin microenvironment to eventually advance cell-based cartilage engineering and regeneration.

  11. Immortalization of canine adipose-derived mesenchymal stem cells and their seminiferous tubule transplantation.

    Science.gov (United States)

    Fang, Jia; Wei, Yudong; Teng, Xin; Zhao, Shanting; Hua, Jinlian

    2018-04-01

    Adipose-derived mesenchymal stem cells (ADSCs) are proven to provide good effects in numerous tissue engineering application and other cell-based therapies. However, the difficulty in the proliferation of ADSCs, known as the "Hayflick limit" in vitro, limits their clinical application. Here, we immortalized canine ADSCs (cADSCs) with SV40 gene and transplanted them into busulfan-induced seminiferous tubules of infertile mice. The proliferation of these immortalized cells was improved significantly. Then, cellular differentiation assays showed that the immortalized cADSCs could differentiate into three-germ-layer cells, osteogenesis, chondrogenesis, adipogenesis phenotypes, and primordial germ cell-like cells (PGCLCs). In addition, the immortalized cADSCs can proliferate in the busulfan-induced seminiferous tubules of infertile mice. These findings confirmed that the immortalized cADSCs maintain the criteria of cADSCs. © 2017 Wiley Periodicals, Inc.

  12. New chondrosarcoma cell lines and mouse models to study the link between chondrogenesis and chemoresistance.

    Science.gov (United States)

    Monderer, David; Luseau, Alexandrine; Bellec, Amélie; David, Emmanuelle; Ponsolle, Stéphanie; Saiagh, Soraya; Bercegeay, Sylvain; Piloquet, Philippe; Denis, Marc G; Lodé, Laurence; Rédini, Françoise; Biger, Marine; Heymann, Dominique; Heymann, Marie-Françoise; Le Bot, Ronan; Gouin, François; Blanchard, Frédéric

    2013-10-01

    Chondrosarcomas are cartilage-forming, poorly vascularized tumors. They represent the second malignant primary bone tumor of adults after osteosarcoma, but in contrast to osteosarcoma they are resistant to chemotherapy and radiotherapy, surgical excision remaining the only therapeutic option. Few cell lines and animal models are available, and the mechanisms behind their chemoresistance remain largely unknown. Our goal was to establish new cell lines and animal cancer models from human chondrosarcoma biopsies to study their chemoresistance. Between 2007 and 2012, 10 chondrosarcoma biopsies were collected and used for cell culture and transplantation into nude mice. Only one transplanted biopsy and one injected cell line has engrafted successfully leading to conventional central high-grade chondrosarcoma similar to the original biopsies. In culture, two new stable cell lines were obtained, one from a dedifferentiated and one from a grade III conventional central chondrosarcoma biopsy. Their genetic characterization revealed triploid karyotypes, mutations in IDH1, IDH2, and TP53, deletion in CDKN2A and/or MDM2 amplification. These cell lines expressed mesenchymal membrane markers (CD44, 73, 90, 105) and were able to produce a hyaline cartilaginous matrix when cultured in chondrogenic three-dimensional (3D) pellets. Using a high-throughput quantitative RT-PCR approach, we observed that cell lines cultured in monolayer had lost expression of several genes implicated in cartilage development (COL2A1, COMP, ACAN) but restored their expression in 3D cultures. Chondrosarcoma cells in monolayer were sensitive to several conventional chemotherapeutic agents but became resistant to low doses of mafosfamide or doxorubicin when cultured in 3D pellets, in parallel with an altered nucleic accumulation of the drug. Our results indicate that the cartilaginous matrix produced by chondrosarcoma cells may impair diffusion of several drugs and thus contribute to chemoresistance. Therefore, 3D chondrogenic cell pellets constitute a more relevant model to study chondrosarcoma chemoresistance and may be a valuable alternative to animal experimentations.

  13. Effect of Dynamic Culture and Periodic Compression on Human Mesenchymal Stem Cell Proliferation and Chondrogenesis.

    Science.gov (United States)

    Guo, Ting; Yu, Li; Lim, Casey G; Goodley, Addison S; Xiao, Xuan; Placone, Jesse K; Ferlin, Kimberly M; Nguyen, Bao-Ngoc B; Hsieh, Adam H; Fisher, John P

    2016-07-01

    We have recently developed a bioreactor that can apply both shear and compressive forces to engineered tissues in dynamic culture. In our system, alginate hydrogel beads with encapsulated human mesenchymal stem cells (hMSCs) were cultured under different dynamic conditions while subjected to periodic, compressive force. A customized pressure sensor was developed to track the pressure fluctuations when shear forces and compressive forces were applied. Compared to static culture, dynamic culture can maintain a higher cell population throughout the study. With the application of only shear stress, qRT-PCR and immunohistochemistry revealed that hMSCs experienced less chondrogenic differentiation than the static group. The second study showed that chondrogenic differentiation was enhanced by additional mechanical compression. After 14 days, alcian blue staining showed more extracellular matrix formed in the compression group. The upregulation of the positive chondrogenic markers such as Sox 9, aggrecan, and type II collagen were demonstrated by qPCR. Our bioreactor provides a novel approach to apply mechanical forces to engineered cartilage. Results suggest that a combination of dynamic culture with proper mechanical stimulation may promote efficient progenitor cell expansion in vitro, thereby allowing the culture of clinically relevant articular chondrocytes for the treatment of articular cartilage defects.

  14. Effect of Collagen Type I or Type II on Chondrogenesis by Cultured Human Articular Chondrocytes

    NARCIS (Netherlands)

    Rutgers, M.; Saris, Daniël B.F.; Vonk, L.A.; van Rijen, M.H.P.; Akrum, V.; Langeveld, D.; van Boxtel, A.; Dhert, W.J.A.; Creemers, L.B.

    2013-01-01

    Introduction: Current cartilage repair procedures using autologous chondrocytes rely on a variety of carriers for implantation. Collagen types I and II are frequently used and valuable properties of both were shown earlier in vitro, although a preference for either was not demonstrated. Recently,

  15. Collagen type II enhances chondrogenesis in adipose tissue-derived stem cells by affecting cell shape

    NARCIS (Netherlands)

    Lu, Z.; Doulabi, B.Z.; Huang, C.; Bank, R.A.; Helder, M.N.

    2010-01-01

    Ideally, biomaterials have inductive properties, favoring specific lineage differentiation. For chondrogenic induction, these properties have been attributed to collagen type II. However, the underlying mechanisms are largely unknown. This study aimed to investigate whether collagen type II favors

  16. Collagen Type II Enhances Chondrogenesis in Adipose Tissue-Derived Stem Cells by Affecting Cell Shape

    NARCIS (Netherlands)

    Lu, ZuFu; Doulabi, Behrouz Zandieh; Huang, ChunLing; Bank, Ruud A.; Helder, Marco N.

    Ideally, biomaterials have inductive properties, favoring specific lineage differentiation. For chondrogenic induction, these properties have been attributed to collagen type II. However, the underlying mechanisms are largely unknown. This study aimed to investigate whether collagen type II favors

  17. Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis.

    Science.gov (United States)

    Später, Daniela; Hill, Theo P; O'sullivan, Roderick J; Gruber, Michaela; Conner, David A; Hartmann, Christine

    2006-08-01

    Joints, which separate skeleton elements, serve as important signaling centers that regulate the growth of adjacent cartilage elements by controlling proliferation and maturation of chondrocytes. Accurate chondrocyte maturation is crucial for endochondral ossification and for the ultimate size of skeletal elements, as premature or delayed maturation results predominantly in shortened elements. Wnt9a has previously been implicated as being a player in joint induction, based on gain-of function experiments in chicken and mouse. We show that loss of Wnt9a does not affect joint induction, but results to synovial chondroid metaplasia in some joints. This phenotype can be enhanced by removal of an additional Wnt gene, Wnt4, suggesting that Wnts are playing a crucial role in directing bi-potential chondro-synovioprogenitors to become synovial connective tissue, by actively suppressing their chondrogenic potential. Furthermore, we show that Wnt9a is a temporal and spatial regulator of Indian hedgehog (Ihh), a central player of skeletogenesis. Loss of Wnt9a activity results in transient downregulation of Ihh and reduced Ihh-signaling activity at E12.5-E13.5. The canonical Wnt/beta-catenin pathway probably mediates regulation of Ihh expression in prehypertrophic chondrocytes by Wnt9a, because embryos double-heterozygous for Wnt9a and beta-catenin show reduced Ihh expression, and in vivo chromatin immunoprecipitation demonstrates a direct interaction between the beta-catenin/Lef1 complex and the Ihh promoter.

  18. Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes

    International Nuclear Information System (INIS)

    Saha, Sushmita; Kirkham, Jennifer; Wood, David; Curran, Stephen; Yang, Xuebin

    2010-01-01

    Research highlights: → This study has characterised three different cell types under conditions similar to those used for autologous chondrocyte implantation (ACI) for applications in cartilage repair/regeneration. → Compared for the first time the chondrogenic potential of neonatal chondrocytes with human bone marrow stromal cells (HBMSCs) and adult chondrocytes. → Demonstrated that adult chondrocytes hold greatest potential for use in ACI based on their higher proliferation rates, lower alkaline phosphatise activity and enhanced expression of chondrogenic genes. → Demonstrated the need for chondroinduction as a necessary pre-requisite to efficient chondrogenesis in vitro and, by extrapolation, for cell based therapy (e.g. ACI or cartilage tissue engineering). -- Abstract: Cartilage tissue engineering is still a major clinical challenge with optimisation of a suitable source of cells for cartilage repair/regeneration not yet fully addressed. The aims of this study were to compare and contrast the differences in chondrogenic behaviour between human bone marrow stromal cells (HBMSCs), human neonatal and adult chondrocytes to further our understanding of chondroinduction relative to cell maturity and to identify factors that promote chondrogenesis and maintain functional homoeostasis. Cells were cultured in monolayer in either chondrogenic or basal medium, recapitulating procedures used in existing clinical procedures for cell-based therapies. Cell doubling time, morphology and alkaline phosphatase specific activity (ALPSA) were determined at different time points. Expression of chondrogenic markers (SOX9, ACAN and COL2A1) was compared via real time polymerase chain reaction. Amongst the three cell types studied, HBMSCs had the highest ALPSA in basal culture and lowest ALPSA in chondrogenic media. Neonatal chondrocytes were the most proliferative and adult chondrocytes had the lowest ALPSA in basal media. Gene expression analysis revealed a difference in the

  19. Smad2 and Smad3 Regulate Chondrocyte Proliferation and Differentiation in the Growth Plate.

    Directory of Open Access Journals (Sweden)

    Weiguang Wang

    2016-10-01

    Full Text Available TGFβs act through canonical and non-canonical pathways, and canonical signals are transduced via Smad2 and Smad3. However, the contribution of canonical vs. non-canonical pathways in cartilage is unknown because the role of Smad2 in chondrogenesis has not been investigated in vivo. Therefore, we analyzed mice in which Smad2 is deleted in cartilage (Smad2CKO, global Smad3-/- mutants, and crosses of these strains. Growth plates at birth from all mutant strains exhibited expanded columnar and hypertrophic zones, linked to increased proliferation in resting chondrocytes. Defects were more severe in Smad2CKO and Smad2CKO;Smad3-/- (Smad2/3 mutant mice than in Smad3-/- mice, demonstrating that Smad2 plays a role in chondrogenesis. Increased levels of Ihh RNA, a key regulator of chondrocyte proliferation and differentiation, were seen in prehypertrophic chondrocytes in the three mutant strains at birth. In accordance, TGFβ treatment decreased Ihh RNA levels in primary chondrocytes from control (Smad2fx/fx mice, but inhibition was impaired in cells from mutants. Consistent with the skeletal phenotype, the impact on TGFβ-mediated inhibition of Ihh RNA expression was more severe in Smad2CKO than in Smad3-/- cells. Putative Smad2/3 binding elements (SBEs were identified in the proximal Ihh promoter. Mutagenesis demonstrated a role for three of them. ChIP analysis suggested that Smad2 and Smad3 have different affinities for these SBEs, and that the repressors SnoN and Ski were differentially recruited by Smad2 and Smad3, respectively. Furthermore, nuclear localization of the repressor Hdac4 was decreased in growth plates of Smad2CKO and double mutant mice. TGFβ induced association of Hdac4 with Smad2, but not with Smad3, on the Ihh promoter. Overall, these studies revealed that Smad2 plays an essential role in the development of the growth plate, that both Smads 2 and 3 inhibit Ihh expression in the neonatal growth plate, and suggested they accomplish

  20. Smad2 and Smad3 Regulate Chondrocyte Proliferation and Differentiation in the Growth Plate

    Science.gov (United States)

    Wang, Weiguang; Song, Buer; Anbarchian, Teni; Shirazyan, Anna

    2016-01-01

    TGFβs act through canonical and non-canonical pathways, and canonical signals are transduced via Smad2 and Smad3. However, the contribution of canonical vs. non-canonical pathways in cartilage is unknown because the role of Smad2 in chondrogenesis has not been investigated in vivo. Therefore, we analyzed mice in which Smad2 is deleted in cartilage (Smad2CKO), global Smad3-/- mutants, and crosses of these strains. Growth plates at birth from all mutant strains exhibited expanded columnar and hypertrophic zones, linked to increased proliferation in resting chondrocytes. Defects were more severe in Smad2CKO and Smad2CKO;Smad3-/- (Smad2/3) mutant mice than in Smad3-/- mice, demonstrating that Smad2 plays a role in chondrogenesis. Increased levels of Ihh RNA, a key regulator of chondrocyte proliferation and differentiation, were seen in prehypertrophic chondrocytes in the three mutant strains at birth. In accordance, TGFβ treatment decreased Ihh RNA levels in primary chondrocytes from control (Smad2fx/fx) mice, but inhibition was impaired in cells from mutants. Consistent with the skeletal phenotype, the impact on TGFβ-mediated inhibition of Ihh RNA expression was more severe in Smad2CKO than in Smad3-/- cells. Putative Smad2/3 binding elements (SBEs) were identified in the proximal Ihh promoter. Mutagenesis demonstrated a role for three of them. ChIP analysis suggested that Smad2 and Smad3 have different affinities for these SBEs, and that the repressors SnoN and Ski were differentially recruited by Smad2 and Smad3, respectively. Furthermore, nuclear localization of the repressor Hdac4 was decreased in growth plates of Smad2CKO and double mutant mice. TGFβ induced association of Hdac4 with Smad2, but not with Smad3, on the Ihh promoter. Overall, these studies revealed that Smad2 plays an essential role in the development of the growth plate, that both Smads 2 and 3 inhibit Ihh expression in the neonatal growth plate, and suggested they accomplish this by binding to

  1. -5p and -3p strands of miR-145 and miR-140 during mesenchymal stem cell chondrogenic differentiation.

    Science.gov (United States)

    Kenyon, Jonathan D; Sergeeva, Olga; Somoza, Rodrigo A; Li, Ming; Caplan, Arnold I; Khalil, Ahmad M; Lee, Zhenghong

    2018-04-20

    The chondrogenic differentiation of mesenchymal stem cells (MSCs) is mediated by transcription factors and small non-coding RNAs such as micro-RNAs (miRNAs). Each miRNA is initially transcribed as a long transcript, which matures to produce -5p and -3p strands. It is widely believed that the mature and functional miRNA from any given pre-miRNA, usually the -5p strand, is functional, while the opposing -3p strand is degraded. However, recent cartilage literature started to show functional -3p stands for a few miRNAs. This study aimed at examining both -5p and -3p strands of two key miRNAs miR-140 and miR-145 that are known to be involved in the chondrogenic differentiation of MSCs. The level (copy number) of both -5p and -3p strands of miR-145 and miR-140 along the timeline of MSC chondrogenic differentiation was determined by PCR. The gene expression profiles of several genes related to MSC chondrogenesis were compared with these miRNA profiles along the same timeline. While miR-145-3p is declining in step with miR-145-5p in pellet cultures during the process, the -3p strand is only 1% - 2% of the total miR-145 products. In contrast, the mature -3p and -5p products of miR-140 are found to increase with near equal molar expression throughout chondrogenic differentiation. Numerous genes are expressed by cartilage progenitor cells during development. One such target gene, Sox9 is a regulatory target of the dominant miR-145-5p, consistent with the data. Further experimental validations are warranted to confirm that ACAN, FOXO1 and RUNX3 as direct targets of miR-145-5p in the context of MSC chondrogenesis. Similarly, TRSP1 and ACAN are worth further validation as direct targets of miR-145-3p. For miR-140, SOX4 shall be further validated as a direct target of miR-140-5p while KLF4, PTHLH, and WNT5A can be validated as direct targets of miR-140-3p.

  2. Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sushmita [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); Kirkham, Jennifer [Biomineralisation Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Chapel Allerton Hospital, Leeds LS74SA (United Kingdom); Wood, David [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); Curran, Stephen [Smith and Nephew Research Centre, YO105DF (United Kingdom); Yang, Xuebin, E-mail: X.B.Yang@leeds.ac.uk [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Chapel Allerton Hospital, Leeds LS74SA (United Kingdom)

    2010-10-22

    Research highlights: {yields} This study has characterised three different cell types under conditions similar to those used for autologous chondrocyte implantation (ACI) for applications in cartilage repair/regeneration. {yields} Compared for the first time the chondrogenic potential of neonatal chondrocytes with human bone marrow stromal cells (HBMSCs) and adult chondrocytes. {yields} Demonstrated that adult chondrocytes hold greatest potential for use in ACI based on their higher proliferation rates, lower alkaline phosphatise activity and enhanced expression of chondrogenic genes. {yields} Demonstrated the need for chondroinduction as a necessary pre-requisite to efficient chondrogenesis in vitro and, by extrapolation, for cell based therapy (e.g. ACI or cartilage tissue engineering). -- Abstract: Cartilage tissue engineering is still a major clinical challenge with optimisation of a suitable source of cells for cartilage repair/regeneration not yet fully addressed. The aims of this study were to compare and contrast the differences in chondrogenic behaviour between human bone marrow stromal cells (HBMSCs), human neonatal and adult chondrocytes to further our understanding of chondroinduction relative to cell maturity and to identify factors that promote chondrogenesis and maintain functional homoeostasis. Cells were cultured in monolayer in either chondrogenic or basal medium, recapitulating procedures used in existing clinical procedures for cell-based therapies. Cell doubling time, morphology and alkaline phosphatase specific activity (ALPSA) were determined at different time points. Expression of chondrogenic markers (SOX9, ACAN and COL2A1) was compared via real time polymerase chain reaction. Amongst the three cell types studied, HBMSCs had the highest ALPSA in basal culture and lowest ALPSA in chondrogenic media. Neonatal chondrocytes were the most proliferative and adult chondrocytes had the lowest ALPSA in basal media. Gene expression analysis revealed

  3. Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice

    International Nuclear Information System (INIS)

    Colnot, C.; Huang, S.; Helms, J.

    2006-01-01

    The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis

  4. The role of laminins in cartilaginous tissues: from development to regeneration

    Directory of Open Access Journals (Sweden)

    Y Sun

    2017-07-01

    Full Text Available As a key molecule of the extracellular matrix, laminin provides a delicate microenvironment for cell functions. Recent findings suggest that laminins expressed by cartilage-forming cells (chondrocytes, progenitor cells and stem cells could promote chondrogenesis. However, few papers outline the effect of laminins on providing a favorable matrix microenvironment for cartilage regeneration. In this review, we delineated the expression of laminins in hyaline cartilage, fibrocartilage and cartilage-like tissue (nucleus pulposus throughout several developmental stages. We also examined the effect of laminins on the biological activities of chondrocytes, including adhesion, migration and survival. Furthermore, we scrutinized the potential influence of various laminin isoforms on cartilage-forming cells’ proliferation and chondrogenic differentiation. With this information, we hope to facilitate the understanding of the spatial and temporal interactions between cartilage-forming cells and laminin microenvironment to eventually advance cell-based cartilage engineering and regeneration.

  5. Surface Markers for Chondrogenic Determination: A Highlight of Synovium-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Douglas D. Campbell

    2012-11-01

    Full Text Available Cartilage tissue engineering is a promising field in regenerative medicine that can provide substantial relief to people suffering from degenerative cartilage disease. Current research shows the greatest chondrogenic potential for healthy articular cartilage growth with minimal hypertrophic differentiation to be from mesenchymal stem cells (MSCs of synovial origin. These stem cells have the capacity for differentiation into multiple cell lineages related to mesenchymal tissue; however, evidence exists for cell surface markers that specify a greater potential for chondrogenesis than other differentiation fates. This review will examine relevant literature to summarize the chondrogenic differentiation capacities of tested synovium-derived stem cell (SDSC surface markers, along with a discussion about various other markers that may hold potential, yet require further investigation. With this information, a potential clinical benefit exists to develop a screening system for SDSCs that will produce the healthiest articular cartilage possible.

  6. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration.

    Science.gov (United States)

    Jones, Brendan A; Pei, Ming

    2012-08-01

    Articular cartilage is difficult to heal once injury or disease occurs. Autologous chondrocyte transplantation is a biological treatment with good prognosis, but donor site morbidity and limited cell source are disadvantages. Currently, mesenchymal stem cells (MSCs) are a promising approach for cartilage regeneration. Despite there being various sources, the best candidate for cartilage regeneration is the one with the greatest chondrogenic potential and the least hypertrophic differentiation. These properties are able to insure that the regenerated tissue is hyaline cartilage of high quality. This review article will summarize relevant literature to justify synovium-derived stem cells (SDSCs) as a tissue-specific stem cell for chondrogenesis by comparing synovium and cartilage with respect to anatomical location and functional structure, comparing the growth characterization and chondrogenic capacity of SDSCs and MSCs, evaluating the application of SDSCs in regenerative medicine and diseases, and discussing potential future directions.

  7. Delta-like 1/fetal antigen-1 (Dlk1/FA1) is a novel regulator of chondrogenic cell differentiation via inhibition of the Akt kinase-dependent pathway

    DEFF Research Database (Denmark)

    Chen, Li; Qanie, Diyako; Jafari, Abbas

    2011-01-01

    Delta-like 1 (Dlk1, also known as fetal antigen-1, FA1) is a member of Notch/Delta family that inhibits adipocyte and osteoblast differentiation; however, its role in chondrogenesis is still not clear. Thus, we overexpressed Dlk1/FA1 in mouse embryonic ATDC5 cells and tested its effects...... on chondrogenic differentiation. Dlk1/FA1 inhibited insulin-induced chondrogenic differentiation as evidenced by reduction of cartilage nodule formation and gene expression of aggrecan, collagen Type II and X. Similar effects were obtained either by using Dlk1/FA1-conditioned medium or by addition of a purified......, secreted, form of Dlk1 (FA1) directly to the induction medium. The inhibitory effects of Dlk1/FA1 were dose-dependent and occurred irrespective of the chondrogenic differentiation stage: proliferation, differentiation, maturation, or hypertrophic conversion. Overexpression or addition of the Dlk1/FA1...

  8. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Science.gov (United States)

    Salamon, Achim; van Vlierberghe, Sandra; van Nieuwenhove, Ine; Baudisch, Frank; Graulus, Geert-Jan; Benecke, Verena; Alberti, Kristin; Neumann, Hans-Georg; Rychly, Joachim; Martins, José C.; Dubruel, Peter; Peters, Kirsten

    2014-01-01

    Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies. PMID:28788517

  9. Effect of occlusal (mechanical) stimulus on bone remodelling in rat mandibular condyle.

    Science.gov (United States)

    Gazit, D; Ehrlich, J; Kohen, Y; Bab, I

    1987-09-01

    Mechanical load influences the remodelling of skeletal tissues. In the mandibular condyle, occlusal alterations and the consequent mechanical stimulus induce changes in chondrocytes and cartilage mineralization. In the present study we quantified in the mandibular condyle the effect of occlusal interference on remodelling of the subchondral bone. Computerized histomorphometry after 5-21-day exposure to the influence of a unilateral occlusal splint revealed an increased rate of trabecular remodelling, consisting of enhancement in osteoblast and osteoclast numbers and activities. The bone formation parameters reached their high values on Days 5 or 9 and remained stable thereafter. Bone resorption showed a gradual increase throughout the experimental period. These results further characterize the temporomandibular joint reaction to occlusal alterations. It is suggested that the present increase in bone turnover together with the known enhancement in chondrogenesis are part of a process of functional adaptation in response to mechanical stimulus.

  10. GEP, a local growth factor, is critical for odontogenesis and amelogenesis.

    Science.gov (United States)

    Cao, Zhengguo; Jiang, Baichun; Xie, Yixia; Liu, Chuan-ju; Feng, Jian Q

    2010-11-25

    Granulin epithelin precursor (GEP) is a new growth factor that functions in brain development, chondrogenesis, tissue regeneration, tumorigenesis, and inflammation. The goal of this study was to study whether GEP was critical for odontogenesis and amelogenesis both in vivo and in vitro. The in situ hybridization and immunohistochemistry data showed that GEP was expressed in both odontoblast and ameloblast cells postnatally. Knockdown of GEP by crossing U6-ploxPneo-GEP and Sox2-Cre transgenic mice led to a reduction of dentin thickness, an increase in predentin thickness, and a reduction in mineral content in enamel. The in vitro application of recombinant GEP up-regulated molecular markers important for odontogenesis (DMP1, DSPP, and ALP) and amelogenesis (ameloblastin, amelogenin and enamelin). In conclusion, both the in vivo and the in vivo data support an important role of GEP in tooth formation during postnatal development.

  11. Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ϵ-caprolactone) for MSC chondrogenesis

    NARCIS (Netherlands)

    Stichler, Simone; Böck, Thomas; Paxton, Naomi; Bertlein, Sarah; Levato, Riccardo; Schill, Verena; Smolan, Willi; Malda, Jos; Teßmar, Jörg; Blunk, Torsten; Groll, Jürgen

    2017-01-01

    This study investigates the use of allyl-functionalized poly(glycidol)s (P(AGE-co-G)) as a cytocompatible cross-linker for thiol-functionalized hyaluronic acid (HA-SH) and the optimization of this hybrid hydrogel as bioink for 3D bioprinting. The chemical cross-linking of gels with 10 wt.% overall

  12. Effects of CD14 macrophages and proinflammatory cytokines on chondrogenesis in osteoarthritic synovium-derived stem cells.

    Science.gov (United States)

    Han, Sun Ae; Lee, Sahnghoon; Seong, Sang Cheol; Lee, Myung Chul

    2014-10-01

    We investigated the effects of CD14 macrophages and proinflammatory cytokines on chondrogenic differentiation of osteoarthritic synovium-derived stem cells (SDSCs). Osteoarthritic synovial fluid was analyzed for interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6. Levels of stem cell surface markers in osteoarthritic SDSCs were evaluated using flow cytometry. CD14-negative cells were obtained using magnetically activated cell sorting. We compared chondrogenic potentials between whole cells and CD14-negative cells in CD14(low) cells and CD14(high) cells, respectively. To assess whether nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding protein β (C/EBPβ) modulate IL-1β-induced alterations in chondrogenic potential, we performed small interfering RNA transfection. We observed a significant correlation between the CD14 ratio in osteoarthritic SDSCs and IL-1β and TNF-α in osteoarthritic synovial fluid. Phenotypic characterization of whole cells and CD14-negative cells showed no significant differences in levels of stem cell markers. mRNA expression of type II collagen was higher in CD14-negative cell pellets than in whole cell pellets. Immunohistochemical staining indicated higher levels of type II collagen in the CD14-negative cell pellets of CD14(high) cells than in whole cell pellets of CD14(high) cells. As expected, IL-1β and TNF-α significantly inhibited the expression of chondrogenic-related genes in SDSCs, an effect which was antagonized by knockdown of NF-κB and C/EBPβ. Our results suggest that depletion of CD14(+) synovial macrophages leads to improved chondrogenic potential in CD14(high) cell populations in osteoarthritic SDSCs, and that NF-κB (RelA) and C/EBPβ are critical factors mediating IL-1β-induced suppression of the chondrogenic potential of human SDSCs.

  13. The Signaling Pathways Involved in Chondrocyte Differentiation and Hypertrophic Differentiation

    Directory of Open Access Journals (Sweden)

    Jianmei Li

    2016-01-01

    Full Text Available Chondrocytes communicate with each other mainly via diffusible signals rather than direct cell-to-cell contact. The chondrogenic differentiation of mesenchymal stem cells (MSCs is well regulated by the interactions of varieties of growth factors, cytokines, and signaling molecules. A number of critical signaling molecules have been identified to regulate the differentiation of chondrocyte from mesenchymal progenitor cells to their terminal maturation of hypertrophic chondrocytes, including bone morphogenetic proteins (BMPs, SRY-related high-mobility group-box gene 9 (Sox9, parathyroid hormone-related peptide (PTHrP, Indian hedgehog (Ihh, fibroblast growth factor receptor 3 (FGFR3, and β-catenin. Except for these molecules, other factors such as adenosine, O2 tension, and reactive oxygen species (ROS also have a vital role in cartilage formation and chondrocyte maturation. Here, we outlined the complex transcriptional network and the function of key factors in this network that determine and regulate the genetic program of chondrogenesis and chondrocyte differentiation.

  14. Prx1 and Prx2 cooperatively regulate the morphogenesis of the medial region of the mandibular process

    Science.gov (United States)

    Balic, Anamaria; Adams, Douglas; Mina, Mina

    2009-01-01

    Mice lacking both Prx1 and Prx2 display severe abnormalities in the mandible. Our analysis showed that complete loss of Prx gene products leads to growth abnormalities in the mandibular processes evident as early as E10.5 associated with changes in the survival of the mesenchyme in the medial region. Changes in the gene expression in the medial and lateral regions were related to gradual loss of a subpopulation of mesenchyme in the medial region expressing eHand. Our analysis also showed that Prx gene products are required for the initiation and maintenance of chondrogenesis and terminal differentiation of the chondrocytes in the caudal and rostral ends of Meckel’s cartilage. The fusion of the mandibular processes in the Prx1/Prx2 double mutants is caused by accelerated ossification. These observations together show that during mandibular morphogenesis Prx gene products play multiple roles including the cell survival, the region-specific terminal differentiation of Meckelian chondrocytes and osteogenesis. PMID:19777594

  15. A Direct Sulfation Process of a Marine Polysaccharide in Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Nathalie Chopin

    2015-01-01

    Full Text Available GY785 is an exopolysaccharide produced by a mesophilic bacterial strain Alteromonas infernus discovered in the deep-sea hydrothermal vents. GY785 highly sulfated derivative (GY785 DRS was previously demonstrated to be a promising molecule driving the efficient mesenchymal stem cell chondrogenesis for cartilage repair. This glycosaminoglycan- (GAG- like compound was modified in a classical solvent (N,N′-dimethylformamide. However, the use of classical solvents limits the polysaccharide solubility and causes the backbone degradation. In the present study, a one-step efficient sulfation process devoid of side effects (e.g., polysaccharide depolymerization and/or degradation was developed to produce GAG-like derivatives. The sulfation of GY785 derivative (GY785 DR was carried out using ionic liquid as a reaction medium. The successful sulfation of this anionic and highly branched heteropolysaccharide performed in ionic liquid would facilitate the production of new molecules of high specificity for biological targets such as tissue engineering or regenerative medicine.

  16. Mesenchymal stem cells in cartilage regeneration.

    Science.gov (United States)

    Savkovic, Vuk; Li, Hanluo; Seon, Jong-Keun; Hacker, Michael; Franz, Sandra; Simon, Jan-Christoph

    2014-01-01

    Articular cartilage provides life-long weight-bearing and mechanical lubrication with extraordinary biomechanical performance and simple structure. However, articular cartilage is apparently vulnerable to multifactorial damage and insufficient to self-repair, isolated in articular capsule without nerves or blood vessels. Osteoarthritis (OA) is known as a degenerative articular cartilage deficiency progressively affecting large proportion of the world population, and restoration of hyaline cartilage is clinical challenge to repair articular cartilage lesion and recreate normal functionality over long period. Mesenchymal stem cells (MSC) are highly proliferative and multipotent somatic cells that are able to differentiate mesoderm-derived cells including chondrocytes and osteoblasts. Continuous endeavors in basic research and preclinical trial have achieved promising outcomes in cartilage regeneration using MSCs. This review focuses on rationale and technologies of MSC-based hyaline cartilage repair involving tissue engineering, 3D biomaterials and growth factors. By comparing conventional treatment and current research progress, we describe insights of advantage and challenge in translation and application of MSC-based chondrogenesis for OA treatment.

  17. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Achim Salamon

    2014-02-01

    Full Text Available Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies.

  18. Science and animal models of marrow stimulation for cartilage repair.

    Science.gov (United States)

    Fortier, Lisa A; Cole, Brian J; McIlwraith, C Wayne

    2012-03-01

    Microfracture of subchondral bone to enhance cartilage repair is a popular surgical technique used in human and animal patients. Clinical results with resolution or improvement in pain are promising and last on average for 2 to 3 years. Animal studies aimed at understanding microfracture indicate that the repair tissue continues to remodel toward chondrogenesis for at least a year, but longer term results are not available to gain insight into the mechanism of microfracture function or failure over time. Subchondral bone sclerosis and central lesional osteophyte formation following subchondral bone microfracture have been observed in animal models of microfracture, but studies do not provide any insight into the etiology of these pathologies. The continued maturation of microfracture repair tissue over time supports further investigation of microfracture or microfracture-augmented cartilage repair procedures with caution for the investigator and clinician to be observant for conditions that lead to subchondral bone sclerosis or central osteophyte formation, and what affect these boney reactions have on clinical outcome.

  19. ACTIVITY OF CANONICAL WNT SIGNAL SYSTEM IN HYALINE CARTILAGE ARTICULAR CHONDROCYTES IN PROCESS OF SYNOVIAL JOINT DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A.O. Molotkov

    2009-03-01

    Full Text Available Canonical and non-canonical Wnt systems are essential regulators of chondrogenesis and bone development. However, the roles of these systems in synovial joint development are not well studied. To determine if canonical Wnt system is active in developing articular chondrocytes we used immunohistochemistry for в-galactosidase and doublecortin (cell-type specific marker for articular chondrocytes to double label sections through joint regions of E14.5, E18.5, P10 and adult mice. Here the following results are presented. Canonical Wnt signal system does not work in developing articular chondrocytes at early embryonic stages (E14.5; it is active in the articular chondrocytes at late embryonic stages (E16.5-E18.5 and during postnatal development (P7-P10, but is turned off again in the adult articular chondrocytes. These results suggest that canonical Wnt signaling is being regulated during articular chondrocytes differentiation and joint formation.

  20. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.

    Science.gov (United States)

    Yang, Jingzhou; Zhang, Yu Shrike; Yue, Kan; Khademhosseini, Ali

    2017-07-15

    Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue

  1. Reappraisal of mesenchymal chondrosarcoma: novel morphologic observations of the hyaline cartilage and endochondral ossification and beta-catenin, Sox9, and osteocalcin immunostaining of 22 cases.

    Science.gov (United States)

    Fanburg-Smith, Julie C; Auerbach, Aaron; Marwaha, Jayson S; Wang, Zengfeng; Rushing, Elisabeth J

    2010-05-01

    Mesenchymal chondrosarcoma, a rare malignant round cell and hyaline cartilage tumor, is most commonly intraosseous but can occur in extraskeletal sites. We intensively observed the morphology and applied Sox9 (master regulator of chondrogenesis), beta-catenin (involved in bone formation, thought to inhibit chondrogenesis in a Sox9-dependent manner), and osteocalcin (a marker for osteoblastic phenotype) to 22 central nervous system and musculoskeletal mesenchymal chondrosarcoma. Cases of mesenchymal chondrosarcoma were retrieved and reviewed from our files. Immunohistochemistry and follow-up were obtained on mesenchymal chondrosarcoma and tumor controls. Twenty-two mesenchymal chondrosarcomas included 5 central nervous system (all female; mean age, 30.2; mean size, 7.8 cm; in frontal lobe [n = 4] and spinal cord [n = 1]) and 17 musculoskeletal (female-male ratio, 11:6; mean age, 31.1; mean size, 6.2 cm; 3 each of humerus and vertebrae; 2 each of pelvis, rib, tibia, neck soft tissue; one each of femur, unspecified bone, and elbow soft tissue). The hyaline cartilage in most tumors revealed a consistent linear progression of chondrocyte morphology, from resting to proliferating to hypertrophic chondrocytes. Sixty-seven percent of cases demonstrated cell death and acquired osteoblastic phenotype, cells positive for osteocalcin at the site of endochondral ossification. Small round cells of mesenchymal chondrosarcoma were negative for osteocalcin. SOX9 was positive in both components of 21 of 22 cases of mesenchymal chondrosarcoma. beta-Catenin highlighted rare nuclei at the interface between round cells and hyaline cartilage in 35% cases. Control skull and central nervous system cases were compared, including chondrosarcomas and small cell osteosarcoma, the latter positive for osteocalcin in small cells. Mesenchymal chondrosarcoma demonstrates centrally located hyaline cartilage with a linear progression of chondrocytes from resting to proliferative to hypertrophic

  2. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    O Schätti

    2011-10-01

    Full Text Available ere is great interest in how bone marrow derived stem cells make fate decisions. Numerous studies have investigated the role of individual growth factors on mesenchymal stem cell differentiation, leading to protocols for cartilage, bone and adipose tissue. However, these protocols overlook the role of biomechanics on stem cell differentiation. There have been various studies that have applied mechanical stimulation to constructs containing mesenchymal stem cells, with varying degrees of success. One critical fate decision is that between cartilage and bone. Articular motion is a combination of compressive, tensile and shear deformations; therefore, one can presume that compression alone is unlikely to be a sufficient mechanical signal to generate a cartilage-like tissue in vitro. Within this study, we aimed to determine the role of shear on the fate of stem cell differentiation. Specifically, we investigated the potential enhancing effect of surface shear, superimposed on cyclic axial compression, on chondrogenic differentiation of human bone marrow-derived stem cells. Using a custom built loading device we applied compression, shear or a combination of both stimuli onto fibrin/polyurethane composites in which human mesenchymal stem cells were embedded, while no exogenous growth-factors were added to the culture medium. Both compression or shear alone was insufficient for the chondrogenic induction of human mesenchymal stem cells. However, the application of shear superimposed upon dynamic compression led to significant increases in chondrogenic gene expression. Histological analysis detected sulphated glycosaminoglycan and collagen II only in the compression and shear group. The results obtained may provide insight into post-operative care after cell therapy involving mesenchymal stromal cells.

  3. Transcriptional signature of human adipose tissue-derived stem cells (hASCs) preconditioned for chondrogenesis in hypoxic conditions

    International Nuclear Information System (INIS)

    Pilgaard, L.; Lund, P.; Duroux, M.; Lockstone, H.; Taylor, J.; Emmersen, J.; Fink, T.; Ragoussis, J.; Zachar, V.

    2009-01-01

    Hypoxia is an important factor involved in the control of stem cells. To obtain a better insight into the phenotypical changes brought about by hypoxic preconditioning prior to chondrogenic differentiation; we have investigated growth, colony-forming and chondrogenic capacity, and global transcriptional responses of six adipose tissue-derived stem cell lines expanded at oxygen concentrations ranging from ambient to 1%. The assessment of cell proliferation and colony-forming potential revealed that the hypoxic conditions corresponding to 1% oxygen played a major role. The chondrogenic inducibility, examined by high-density pellet model, however, did not improve on hypoxic preconditioning. While the microarray analysis revealed a distinctive inter-donor variability, the exposure to 1% hypoxia superseded the biological variability and produced a specific expression profile with 2581 significantly regulated genes and substantial functional enrichment in the pathways of cell proliferation and apoptosis. Additionally, exposure to 1% oxygen resulted in upregulation of factors related to angiogenesis and cell growth. In particular, leptin (LEP), the key regulator of body weight and food intake was found to be highly upregulated. In conclusion, the results of this investigation demonstrate the significance of donor demographics and the importance of further studies into the use of regulated oxygen tension as a tool for preparation of ASCs in order to exploit their full potential.

  4. microRNA-140 Inhibits Inflammation and Stimulates Chondrogenesis in a Model of Interleukin 1β-induced Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Tommy A Karlsen

    2016-01-01

    Full Text Available Osteoarthritis is a serious disease of articular cartilage. The pathogenic factors contributing to this disorder are inflammation, extracellular matrix degradation and failure to rebuild the articular cartilage. Preclinical studies suggest that microRNA-140 may play a protective role in osteoarthritis development, but little is known about the mechanism by which this occurs. Here we present the results of forced expression of microRNA-140 in an in vitro model of osteoarthritis, evaluated by global proteomics analysis. We show that inflammation was reduced through the altered levels of multiple proteins involved in the nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 pathway. microRNA-140 upregulated many of the components involved in the synthesis of hyaline extracellular matrix and reduced the levels of aggrecanases and syndecan 4, thus potentially both increasing cartilage repair and reducing cartilage breakdown. These results show how forced expression of microRNA-140 is likely to counteract all three pathogenic processes, and support the idea that intra-articular injection of microRNA-140 may benefit patients suffering from early osteoarthritis.

  5. Evaluation of magnesium alloys with alternative surface finishing for the proliferation and chondro-differentiation of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Trinidad, J; Arruebarrena, G; De Argandona, E Saenz; De Eguino, G Ruiz; Infante, A; RodrIguez, C I

    2010-01-01

    Articular cartilage has little capacity for self-repair. As a result, continuous mechanical stress can lead to the degradation of articular cartilage, culminating in progressive damage and joint degeneration. Tissue engineering has arisen as a promising therapeutic approach to cartilage repair. Magnesium alloys are one of the most important metallic biomaterials emerging in this area due to their biocompatibility, bio-absorbability and especially to their mechanical properties. These properties make magnesium alloys a promising biomaterial in the regeneration of cartilage tissue. Objective. This study was undertaken to analyze the influence of surface characteristics of magnesium alloys in the adhesion, proliferation and differentiation of human mesenchymal stem cells (MSCs). Methods. Two commercial magnesium alloys (AZ31B and ZM21) were subjected to different treatments in order to obtain four different surfaces in each alloy. Human MSCs were seeded into the magnesium alloys and analyzed for their proliferation and chondrogenesis differentiation ability. Results. Human MSCs showed a greater proliferation and chondro-differentiation when cultured in the ZM21 magnesium alloy with a surface finishing of fine sanding, polishing, and etching.

  6. Identification of rabbit annulus fibrosus-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Chen Liu

    Full Text Available Annulus fibrosus (AF injuries can lead to substantial deterioration of intervertebral disc (IVD which characterizes degenerative disc disease (DDD. However, treatments for AF repair/regeneration remain challenging due to the intrinsic heterogeneity of AF tissue at cellular, biochemical, and biomechanical levels. In this study, we isolated and characterized a sub-population of cells from rabbit AF tissue which formed colonies in vitro and could self-renew. These cells showed gene expression of typical surface antigen molecules characterizing mesenchymal stem cells (MSCs, including CD29, CD44, and CD166. Meanwhile, they did not express negative markers of MSCs such as CD4, CD8, and CD14. They also expressed Oct-4, nucleostemin, and SSEA-4 proteins. Upon induced differentiation they showed typical osteogenesis, chondrogenesis, and adipogenesis potential. Together, these AF-derived colony-forming cells possessed clonogenicity, self-renewal, and multi-potential differentiation capability, the three criteria characterizing MSCs. Such AF-derived stem cells may potentially be an ideal candidate for DDD treatments using cell therapies or tissue engineering approaches.

  7. Anterior cruciate ligament-derived cells have high chondrogenic potential.

    Science.gov (United States)

    Furumatsu, Takayuki; Hachioji, Motomi; Saiga, Kenta; Takata, Naoki; Yokoyama, Yusuke; Ozaki, Toshifumi

    2010-01-01

    Anterior cruciate ligament (ACL)-derived cells have a character different from medial collateral ligament (MCL)-derived cells. However, the critical difference between ACL and MCL is still unclear in their healing potential and cellular response. The objective of this study was to investigate the mesenchymal differentiation property of each ligament-derived cell. Both ligament-derived cells differentiated into adipogenic, osteogenic, and chondrogenic lineages. In chondrogenesis, ACL-derived cells had the higher chondrogenic property than MCL-derived cells. The chondrogenic marker genes, Sox9 and alpha1(II) collagen (Col2a1), were induced faster in ACL-derived pellets than in MCL-derived pellets. Sox9 expression preceded the increase of Col2a1 in both pellet-cultured cells. However, the expression level of Sox9 and a ligament/tendon transcription factor Scleraxis did not parallel the increase of Col2a1 expression along with chondrogenic induction. The present study demonstrates that the balance between Sox9 and Scleraxis have an important role in the chondrogenic differentiation of ligament-derived cells. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Overexpression of BMP3 in the developing skeleton alters endochondral bone formation resulting in spontaneous rib fractures.

    Science.gov (United States)

    Gamer, Laura W; Cox, Karen; Carlo, Joelle M; Rosen, Vicki

    2009-09-01

    Bone morphogenetic protein-3 (BMP) has been identified as a negative regulator in the skeleton as mice lacking BMP3 have increased bone mass. To further understand how BMP3 mediates bone formation, we created transgenic mice overexpressing BMP3 using the type I collagen promoter. BMP3 transgenic mice displayed spontaneous rib fractures that were first detected at E17.0. The fractures were due to defects in differentiation of the periosteum and late hypertrophic chondrocytes resulting in thinner cortical bone with decreased mineralization. As BMP3 modulates BMP and activin signaling through ActRIIB, we examined the ribs of ActRIIB receptor knockout mice and found they had defects in late chondrogenesis and mineralization similar to BMP3 transgenic mice. These data suggest that BMP3 exerts its effects in the skeleton by altering signaling through ActRIIB in chondrocytes and the periosteum, and this results in defects in bone collar formation and late hypertrophic chondrocyte maturation leading to decreased mineralization and less bone. 2009 Wiley-Liss, Inc.

  9. FGFR3 Deficiency Causes Multiple Chondroma-like Lesions by Upregulating Hedgehog Signaling.

    Directory of Open Access Journals (Sweden)

    Siru Zhou

    2015-06-01

    Full Text Available Most cartilaginous tumors are formed during skeletal development in locations adjacent to growth plates, suggesting that they arise from disordered endochondral bone growth. Fibroblast growth factor receptor (FGFR3 signaling plays essential roles in this process; however, the role of FGFR3 in cartilaginous tumorigenesis is not known. In this study, we found that postnatal chondrocyte-specific Fgfr3 deletion induced multiple chondroma-like lesions, including enchondromas and osteochondromas, adjacent to disordered growth plates. The lesions showed decreased extracellular signal-regulated kinase (ERK activity and increased Indian hedgehog (IHH expression. The same was observed in Fgfr3-deficient primary chondrocytes, in which treatment with a mitogen-activated protein kinase (MEK inhibitor increased Ihh expression. Importantly, treatment with an inhibitor of IHH signaling reduced the occurrence of chondroma-like lesions in Fgfr3-deficient mice. This is the first study reporting that the loss of Fgfr3 function leads to the formation of chondroma-like lesions via downregulation of MEK/ERK signaling and upregulation of IHH, suggesting that FGFR3 has a tumor suppressor-like function in chondrogenesis.

  10. Exposure to excess phenobarbital negatively influences the osteogenesis of chick embryos

    Directory of Open Access Journals (Sweden)

    Yu Yan

    2016-09-01

    Full Text Available Phenobarbital is an antiepileptic drug that is widely used to treat epilepsy in a clinical setting. However, a long term of phenobarbital administration in pregnant women may produce side effects on embryonic skeletogenesis. In this study, we aim to investigate the mechanism by which phenobarbital treatment induces developmental defects in long bones. We first determined that phenobarbital treatment decreased chondrogenesis and inhibited the proliferation of chondrocytes in chick embryos. Phenobarbital treatment also suppressed mineralization in both in vivo and in vitro long bone models. Next, we established that phenobarbital treatment delayed blood vessel invasion in a cartilage template, and this finding was supported by the down-regulation of vascular endothelial growth factor in the hypertrophic zone following phenobarbital treatment. Phenobarbital treatment inhibited tube formation and the migration of human umbilical vein endothelial cells. In addition, it impaired angiogenesis in chick yolk sac membrane model and chorioallantoic membrane model. In summary, phenobarbital exposure led to shortened lengths of long bones during embryogenesis, which might result from inhibiting mesenchyme differentiation, chondrocyte proliferation, and delaying mineralization by impairing vascular invasion.

  11. Efficiency of Human Epiphyseal Chondrocytes with Differential Replication Numbers for Cellular Therapy Products

    Directory of Open Access Journals (Sweden)

    Michiyo Nasu

    2016-01-01

    Full Text Available The cell-based therapy for cartilage or bone requires a large number of cells; serial passages of chondrocytes are, therefore, needed. However, fates of expanded chondrocytes from extra fingers remain unclarified. The chondrocytes from human epiphyses morphologically changed from small polygonal cells to bipolar elongated spindle cells and to large polygonal cells with degeneration at early passages. Gene of type II collagen was expressed in the cells only at a primary culture (Passage 0 and Passage 1 (P1 cells. The nodules by implantation of P0 to P8 cells were composed of cartilage and perichondrium. The cartilage consisted of chondrocytes with round nuclei and type II collagen-positive matrix, and the perichondrium consisted of spindle cells with type I collage-positive matrix. The cartilage and perichondrium developed to bone with marrow cavity through enchondral ossification. Chondrogenesis and osteogenesis by epiphyseal chondrocytes depended on replication number in culture. It is noteworthy to take population doubling level in correlation with pharmaceutical efficacy into consideration when we use chondrocytes for cell-based therapies.

  12. Acquiring Chondrocyte Phenotype from Human Mesenchymal Stem Cells under Inflammatory Conditions

    Directory of Open Access Journals (Sweden)

    Masahiro Kondo

    2014-11-01

    Full Text Available An inflammatory milieu breaks down the cartilage matrix and induces chondrocyte apoptosis, resulting in cartilage destruction in patients with cartilage degenerative diseases, such as rheumatoid arthritis or osteoarthritis. Because of the limited regenerative ability of chondrocytes, defects in cartilage are irreversible and difficult to repair. Mesenchymal stem cells (MSCs are expected to be a new tool for cartilage repair because they are present in the cartilage and are able to differentiate into multiple lineages of cells, including chondrocytes. Although clinical trials using MSCs for patients with cartilage defects have already begun, its efficacy and repair mechanisms remain unknown. A PubMed search conducted in October 2014 using the following medical subject headings (MeSH terms: mesenchymal stromal cells, chondrogenesis, and cytokines resulted in 204 articles. The titles and abstracts were screened and nine articles relevant to “inflammatory” cytokines and “human” MSCs were identified. Herein, we review the cell biology and mechanisms of chondrocyte phenotype acquisition from human MSCs in an inflammatory milieu and discuss the clinical potential of MSCs for cartilage repair.

  13. Expression of interleukin-17B in mouse embryonic limb buds and regulation by BMP-7 and bFGF

    International Nuclear Information System (INIS)

    You Zongbing; DuRaine, Grayson; Tien, Janet Y.L.; Lee, Corinne; Moseley, Timothy A.; Reddi, A. Hari

    2005-01-01

    Interleukin-17B (IL-17B) is a member of interleukin-17 family that displays a variety of proinflammatory and immune modulatory activities. In this study, we found that IL-17B mRNA was maximally expressed in the limb buds of 14.5 days post coitus (dpc) mouse embryo and declined to low level at 19.5 dpc. By immunohistochemical staining, the strongest IL-17B signals were observed in the cells of the bone collar in the primary ossification center. The chondrocytes in the resting and proliferative zones were stained moderately, while little staining was seen in the hypertrophic zone. Furthermore, in both C3H10T1/2 and MC3T3-E1 cells, the IL-17B mRNA was up-regulated by recombinant human bone morphogenetic protein-7, but down-regulated by basic fibroblast growth factor via the extracellular signal-regulated kinase pathway. This study provides the first evidence that IL-17B is expressed in the mouse embryonic limb buds and may play a role in chondrogenesis and osteogenesis

  14. Regulation of the secretion of immunoregulatory factors of mesenchymal stem cells (MSCs) by collagen-based scaffolds during chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jingyu; Chen, Xuening, E-mail: xchen6@scu.edu.cn; Yuan, Tun, E-mail: Stalight@163.com; Yang, Xiao; Fan, Yujiang; Zhang, Xingdong

    2017-01-01

    In the latest decade, mesenchymal stem cells (MSCs) have wildly considered as a source of seeded cells in tissue engineering, not only because of its multi-differentiation potentials, but also due to its immunoregulation ability. The main immunoregulatory features of MSCs could be divided into low self-immunogenicity and secretion of soluble factors. In this study, we explored how scaffold structures modulated the secretion of soluble immunoregulatory factors in MSCs under an allogeneic cartilage tissue engineering background. MSCs were seeded in four different collagen-based scaffolds. Their proliferation, differentiation, and secretion of various soluble factors associated with the immunosuppressive effects were evaluated. In this study, qRT-PCR, ELISA and immunoregulation results showed a great variability of the factor secretion by MSCs seeded in scaffolds with different structures. Compared with two-dimensional (2D) monolayer culture condition, three-dimensional (3D) groups (hydrogels and sponge) could effectively promote the mRNA expression and the protein production of soluble immune-related factors. Also, the supernatants collected from 3D groups obviously showed inhibition on allogeneic lymphocyte activating. These results suggested that scaffold structures might modulate MSCs' secretion of soluble immunoregulatory factors, and our study might enlighten the scaffold designs for desired tissue regeneration to control the host immune rejection through immune-regulation reaction. - Highlights: • 3D collagen-based hydrogels and sponge could promote the chondrogenic differentiation of MSCs in vitro. • In accordance with the tendency of chondrogenic differentiation, MSCs in 3D scaffolds could secrete various immunoregulatory factors. • Scaffold structure could regulate the secretion of soluble immunoregulatory factors to inhibited the activity of allogeneic lymphocytes in a paracrine way. • Scaffolds could modulate the immunological properties of allogeneic MSC-derived engineered tissues.

  15. LncRNA-HIT Functions as an Epigenetic Regulator of Chondrogenesis through Its Recruitment of p100/CBP Complexes.

    Science.gov (United States)

    Carlson, Hanqian L; Quinn, Jeffrey J; Yang, Yul W; Thornburg, Chelsea K; Chang, Howard Y; Stadler, H Scott

    2015-12-01

    Gene expression profiling in E 11 mouse embryos identified high expression of the long noncoding RNA (lncRNA), LNCRNA-HIT in the undifferentiated limb mesenchyme, gut, and developing genital tubercle. In the limb mesenchyme, LncRNA-HIT was found to be retained in the nucleus, forming a complex with p100 and CBP. Analysis of the genome-wide distribution of LncRNA-HIT-p100/CBP complexes by ChIRP-seq revealed LncRNA-HIT associated peaks at multiple loci in the murine genome. Ontological analysis of the genes contacted by LncRNA-HIT-p100/CBP complexes indicate a primary role for these loci in chondrogenic differentiation. Functional analysis using siRNA-mediated reductions in LncRNA-HIT or p100 transcripts revealed a significant decrease in expression of many of the LncRNA-HIT-associated loci. LncRNA-HIT siRNA treatments also impacted the ability of the limb mesenchyme to form cartilage, reducing mesenchymal cell condensation and the formation of cartilage nodules. Mechanistically the LncRNA-HIT siRNA treatments impacted pro-chondrogenic gene expression by reducing H3K27ac or p100 activity, confirming that LncRNA-HIT is essential for chondrogenic differentiation in the limb mesenchyme. Taken together, these findings reveal a fundamental epigenetic mechanism functioning during early limb development, using LncRNA-HIT and its associated proteins to promote the expression of multiple genes whose products are necessary for the formation of cartilage.

  16. Using the interplay of magnetic guidance and controlled TGF-β release from protein-based nanocapsules to stimulate chondrogenesis.

    Science.gov (United States)

    Chiang, Chih-Sheng; Chen, Jian-Yi; Chiang, Min-Yu; Hou, Kai-Ting; Li, Wei-Ming; Chang, Shwu-Jen; Chen, San-Yuan

    2018-01-01

    Stimulating the proliferation and differentiation of chondrocytes for the regeneration of articular cartilage is a promising strategy, but it is currently ineffective. Although both physical stimulation and growth factors play important roles in cartilage repair, their interplay remains unclear and requires further investigation. In this study, we aimed to clarify their contribution using a magnetic drug carrier that not only can deliver growth factors but also provide an external stimulation to cells in the two-dimensional environment. We developed a nanocapsule (transforming growth factor-β1 [TGF-β1]-loaded magnetic amphiphilic gelatin nanocapsules [MAGNCs]; TGF-β1@MAGNCs) composed of hexanoic-anhydride-grafted gelatin and iron oxide nanoparticles to provide a combination treatment of TGF-β1 and magnetically induced physical stimuli. With the expression of Arg-Gly-Asp peptide in the gelatin, the TGF-β1@MAGNCs have an inherent affinity for chondrogenic ATDC5 cells. In the absence of TGF-β1, ATDC5 cells treated with a magnetic field show significantly upregulated Col2a1 expression. Moreover, TGF-β1 slowly released from biodegradable TGF-β1@ MAGNCs further improves the differentiation with increased expression of Col2a1 and Aggrecan. Our study shows the time-dependent interplay of physical stimuli and growth factors on chondrogenic regeneration, and demonstrates the promising use of TGF-β1@MAGNCs for articular cartilage repair.

  17. Murine pluripotent stem cells derived scaffold-free cartilage grafts from a micro-cavitary hydrogel platform.

    Science.gov (United States)

    He, Pengfei; Fu, Jiayin; Wang, Dong-An

    2016-04-15

    By means of appropriate cell type and scaffold, tissue-engineering approaches aim to construct grafts for cartilage repair. Pluripotent stem cells especially induced pluripotent stem cells (iPSCs) are of promising cell candidates due to the pluripotent plasticity and abundant cell source. We explored three dimensional (3D) culture and chondrogenesis of murine iPSCs (miPSCs) on an alginate-based micro-cavity hydrogel (MCG) platform in pursuit of fabricating synthetic-scaffold-free cartilage grafts. Murine embryonic stem cells (mESCs) were employed in parallel as the control. Chondrogenesis was fulfilled using a consecutive protocol via mesoderm differentiation followed by chondrogenic differentiation; subsequently, miPSC and mESC-seeded constructs were further respectively cultured in chondrocyte culture (CC) medium. Alginate phase in the constructs was then removed to generate a graft only comprised of induced chondrocytic cells and cartilaginous extracellular matrix (ECMs). We found that from the mESC-seeded constructs, formation of intact grafts could be achieved in greater sizes with relatively fewer chondrocytic cells and abundant ECMs; from miPSC-seeded constructs, relatively smaller sized cartilaginous grafts could be formed by cells with chondrocytic phenotype wrapped by abundant and better assembled collagen type II. This study demonstrated successful creation of pluripotent stem cells-derived cartilage/chondroid graft from a 3D MCG interim platform. By the support of materials and methodologies established from this study, particularly given the autologous availability of iPSCs, engineered autologous cartilage engraftment may be potentially fulfilled without relying on the limited and invasive autologous chondrocytes acquisition. In this study, we explored chondrogenic differentiation of pluripotent stem cells on a 3D micro-cavitary hydrogel interim platform and creation of pluripotent stem cells-derived cartilage/chondroid graft via a consecutive

  18. Connective Tissue Growth Factor Transgenic Mouse Develops Cardiac Hypertrophy, Lean Body Mass and Alopecia.

    Science.gov (United States)

    Nuglozeh, Edem

    2017-07-01

    Connective Tissue Growth Factor (CTGF/CCN2) is one of the six members of cysteine-rich, heparin-binding proteins, secreted as modular protein and recognised to play a major function in cell processes such as adhesion, migration, proliferation and differentiation as well as chondrogenesis, skeletogenesis, angiogenesis and wound healing. The capacity of CTGF to interact with different growth factors lends an important role during early and late development, especially in the anterior region of the embryo. CTGF Knockout (KO) mice have several craniofacial defects and bone miss shaped due to an impairment of the vascular system development during chondrogenesis. The aim of the study was to establish an association between multiple modular functions of CTGF and the phenotype and cardiovascular functions in transgenic mouse. Bicistronic cassette was constructed using pIRES expressing vector (Clontech, Palo Alto, CA). The construct harbours mouse cDNA in tandem with LacZ cDNA as a reporter gene under the control of Cytomegalovirus (CMV) promoter. The plasmid was linearised with NotI restriction enzyme, and 50 ng of linearised plasmid was injected into mouse pronucleus for the chimaera production. Immunohistochemical methods were used to assess the colocalisation renin and CTGF as well as morphology and rheology of the cardiovascular system. The chimeric mice were backcrossed against the wild-type C57BL/6 to generate hemizygous (F1) mouse. Most of the offsprings died as a result of respiratory distress and those that survived have low CTGF gene copy number, approximately 40 molecules per mouse genome. The copy number assessment on the dead pups showed 5×10 3 molecules per mouse genome explaining the threshold of the gene in terms of toxicity. Interestingly, the result of this cross showed 85% of the progenies to be positive deviating from Mendelian first law. All F2 progenies died excluding the possibility of establishing the CTGF transgenic mouse line, situation that

  19. Anatomical region-dependent enhancement of 3-dimensional chondrogenic differentiation of human mesenchymal stem cells by soluble meniscus extracellular matrix.

    Science.gov (United States)

    Rothrauff, Benjamin B; Shimomura, Kazunori; Gottardi, Riccardo; Alexander, Peter G; Tuan, Rocky S

    2017-02-01

    Extracellular matrix (ECM) derived from decellularized tissues has been found to promote tissue neogenesis, most likely mediated by specific biochemical and physical signaling motifs that promote tissue-specific differentiation of progenitor cells. Decellularized ECM has been suggested to be efficacious for the repair of tissue injuries. However, decellularized meniscus contains a dense collagenous structure, which impedes cell seeding and infiltration and is not readily applicable for meniscus repair. In addition, the meniscus consists of two distinct anatomical regions that differ in vascularity and cellular phenotype. The purpose of this study was to explore the region-specific bioactivity of solubilized ECM derived from the inner and outer meniscal regions as determined in 2D and 3D cultures of adult mesenchymal stem cells (MSCs). When added as a medium supplement to 2D cultures of MSCs, urea-extracted fractions of the inner (imECM) and outer meniscal ECM (omECM) enhanced cell proliferation while imECM most strongly upregulated fibrochondrogenic differentiation on the basis of gene expression profiles. When added to 3D cultures of MSCs seeded in photocrosslinked methacrylated gelatin (GelMA) hydrogels, both ECM fractions upregulated chondrogenic differentiation as determined by gene expression and protein analyses, as well as elevated sulfated glycosaminoglycan sGAG content, compared to ECM-free controls. The chondrogenic effect at day 21 was most pronounced with imECM supplementation, but equivalent between ECM groups by day 42. Despite increased cartilage matrix, imECM and omECM constructs possessed compressive moduli similar to controls. In conclusion, soluble meniscal ECM may be considered for use as a tissue-specific reagent to enhance chondrogenesis for MSC-based 3D cartilage tissue engineering. The inner region of the knee meniscus is frequently injured and possesses a poor intrinsic healing capacity. Solubilized extracellular matrix (ECM) derived from

  20. Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell constructs.

    Science.gov (United States)

    Dikina, Anna D; Strobel, Hannah A; Lai, Bradley P; Rolle, Marsha W; Alsberg, Eben

    2015-06-01

    There is a critical need to engineer a neotrachea because currently there are no long-term treatments for tracheal stenoses affecting large portions of the airway. In this work, a modular tracheal tissue replacement strategy was developed. High-cell density, scaffold-free human mesenchymal stem cell-derived cartilaginous rings and tubes were successfully generated through employment of custom designed culture wells and a ring-to-tube assembly system. Furthermore, incorporation of transforming growth factor-β1-delivering gelatin microspheres into the engineered tissues enhanced chondrogenesis with regard to tissue size and matrix production and distribution in the ring- and tube-shaped constructs, as well as luminal rigidity of the tubes. Importantly, all engineered tissues had similar or improved biomechanical properties compared to rat tracheas, which suggests they could be transplanted into a small animal model for airway defects. The modular, bottom up approach used to grow stem cell-based cartilaginous tubes in this report is a promising platform to engineer complex organs (e.g., trachea), with control over tissue size and geometry, and has the potential to be used to generate autologous tissue implants for human clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Telomerase reverse transcriptase mediated immortalization of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Yong Teng

    2014-02-01

    Full Text Available Primary human bone marrow stromal cells (hMSCs were transfected with human telomerase reverse transcriptase (hTERT gene with lipofection method. The hTERT transfected hMSCs of passage 100 underwent chondrogenesis induction with dexamethasone, transforming the growth factor β and vitamin C, osteogenesis induction with dexamethasone, β glycerophosphoric acid and vitamin C, and cardiomyocyte induction with 5-azacytidine. After 7, 14, 21 and 28 days of induction, immunocytochemistry was performed to detect the expressions of type I and II collagen and osteocalcin, and alizarin red staining was performed to detect the bone nodule formation in osteogenesis induction. Immunocytochemistry was carried out to detect the striated muscle actin expression in cardiomyocytes. The hMSCs undergoing successful transfection were positive for the hTERT. The hTERT transfected cells were grown in vitro successfully and passaged for 136 generations. Results showed that these cells could be induced to differentiate into chondrocytes, bone and myocardial cells. Introduction of exogenous hTERT into hMSCs could achieve immortalized hMSCs with the potential of multi-directional differentiation. Thus, these cells could be applied as seed cells in tissue engineering.

  2. Insights from amphioxus into the evolution of vertebrate cartilage.

    Directory of Open Access Journals (Sweden)

    Daniel Meulemans

    2007-08-01

    Full Text Available Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm.

  3. Different Chondrogenic Potential among Human Induced Pluripotent Stem Cells from Diverse Origin Primary Cells

    Directory of Open Access Journals (Sweden)

    Yeri Alice Rim

    2018-01-01

    Full Text Available Scientists have tried to reprogram various origins of primary cells into human induced pluripotent stem cells (hiPSCs. Every somatic cell can theoretically become a hiPSC and give rise to targeted cells of the human body. However, there have been debates on the controversy about the differentiation propensity according to the origin of primary cells. We reprogrammed hiPSCs from four different types of primary cells such as dermal fibroblasts (DF, n=3, peripheral blood mononuclear cells (PBMC, n=3, cord blood mononuclear cells (CBMC, n=3, and osteoarthritis fibroblast-like synoviocytes (OAFLS, n=3. Established hiPSCs were differentiated into chondrogenic pellets. All told, cartilage-specific markers tended to express more by the order of CBMC > DF > PBMC > FLS. Origin of primary cells may influence the reprogramming and differentiation thereafter. In the context of chondrogenic propensity, CBMC-derived hiPSCs can be a fairly good candidate cell source for cartilage regeneration. The differentiation of hiPSCs into chondrocytes may help develop “cartilage in a dish” in the future. Also, the ideal cell source of hiPSC for chondrogenesis may contribute to future application as well.

  4. Nonviral Gene Delivery of Growth and Differentiation Factor 5 to Human Mesenchymal Stem Cells Injected into a 3D Bovine Intervertebral Disc Organ Culture System

    Directory of Open Access Journals (Sweden)

    Christian Bucher

    2013-01-01

    Full Text Available Intervertebral disc (IVD cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5 by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved by in vitro electroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration.

  5. Hydroxylation of methylated DNA by TET1 in chondrocyte differentiation of C3H10T1/2 cells

    Directory of Open Access Journals (Sweden)

    Ryo Ito

    2016-03-01

    Full Text Available DNA methylation is closely involved in the regulation of cellular differentiation, including chondrogenic differentiation of mesenchymal stem cells. Recent studies showed that Ten–eleven translocation (TET family proteins converted 5-methylcytosine (5mC to 5-hydroxymethylcytosine, 5-formylcytosine and 5carboxylcytosine by oxidation. These reactions constitute potential mechanisms for active demethylation of methylated DNA. However, the relationship between the DNA methylation patterns and the effects of TET family proteins in chondrocyte differentiation is still unclear. In this study, we showed that DNA hydroxylation of 5mC was increased during chondrocytic differentiation of C3H10T1/2 cells and that the expression of Tet1 was particularly enhanced. Moreover, knockdown experiments revealed that the downregulation of Tet1 expression caused decreases in chondrogenesis markers such as type 2 and type 10 collagens. Furthermore, we found that TET proteins had a site preference for hydroxylation of 5mC on the Insulin-like growth factor 1 (Igf1 promoter in chondrocytes. Taken together, we showed that the expression of Tet1 was specifically facilitated in chondrocyte differentiation and Tet1 can regulate chondrocyte marker gene expression presumably through its hydroxylation activity for DNA.

  6. The influence of scaffold microstructure on chondrogenic differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Zhang, Jingjing; Ge, Zigang; Wu, Yingnan; Lee, Eng Hin; Thote, Tanushree; Yang, Zheng

    2014-01-01

    Different forms of biomaterials, including microspheres, sponges, hydrogels and nanofibres have been broadly used in cartilage regeneration; however, effects of internal structures of biomaterials on chondrogenesis of mesenchymal stem cells (MSCs) remain largely unexplored. Here we investigated the effect of physical microenvironments of sponges and hydrogels on chondrogenic differentiation of MSCs. MSCs, cultured in these two scaffold systems, were induced with TGF-β 3  in chondrogeneic differentiation medium and the chondrogenic differentiation was evaluated and compared after three weeks. MSCs in the sponges clustered with spindle morphologies, while they distributed homogenously with round morphologies in the hydrogel. The MSCs proliferated faster in the sponge compared to that in the hydrogel. Significantly higher glycosaminoglycan and collagen II were found in the sponges but not in the hydrogels. The different tissue formation ability of MSCs in these two systems could be attributed to the different metabolic requirements and the cellular events prerequisite in the chondrogenic process of MSCs. It is reasonable to conclude that sponges with relatively active microenvironments that facilitate cell–cell contacts and cell–matrix interaction are optimal for early stage of chondrogeneic differentiation. (paper)

  7. hTERT gene immortalized human adipose-derived stem cells and its multiple differentiations: a preliminary investigation.

    Science.gov (United States)

    Wang, L; Song, K; Qu, X; Wang, H; Zhu, H; Xu, X; Zhang, M; Tang, Y; Yang, X

    2013-03-01

    Human adipose-derived adult stem cells (hADSCs) can express human telomerase reverse transcriptase phenotypes under an appropriate culture condition. Because adipose tissue is abundant and easily accessible, hADSCs offer a promising source of stem cells for tissue engineering application and other cell-based therapies. However, the shortage of cells number and the difficulty to proliferate, known as the "Hayflick limit" in vitro, limit their further clinical application. Here, hADSCs were transfected with human telomerase reverse transcriptase (hTERT) gene by the lentiviral vector to prolong the lifespan of stem cells and even immortalize them. Following to this, the cellular properties and functionalities of the transfected cell lines were assayed. The results demonstrated that hADSCs had been successfully transfected with hTERT gene (hTERT-ADSCs). Then, hTERT-ADSCs were initially selected by G418 and subsequently expanded over 20 passages in vitro. Moreover, the qualitative and quantitative differentiation criteria for 20 passages of hTERT-ADSCs also demonstrated that hTERT-ADSCs could differentiate into osteogenesis, chondrogenesis, and adipogenesis phenotypes in lineage-specific differentiation media. These findings confirmed that this transfection could prolong the lifespan of hADSCs.

  8. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    Science.gov (United States)

    Juhász, Tamás; Szentléleky, Eszter; Szűcs Somogyi, Csilla; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load. PMID:26230691

  9. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    Directory of Open Access Journals (Sweden)

    Tamás Juhász

    2015-07-01

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load.

  10. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig.

    Directory of Open Access Journals (Sweden)

    Karsten K H Gundlach

    2011-04-01

    Full Text Available To test the probable osteoinductive properties of NanoBone, a new highly non-sintered porous nano-crystalline hydroxylapatite bone substitute embedded into a silica gel matrix, granules were implanted subcutaneously and intramuscularly into the back region of 18 mini pigs. After periods of 5 and 10 weeks as well as 4 and 8 months, implantation sites were investigated using histological and histomorphometric procedures. Signs of early osteogenesis could already be detected after 5 weeks. The later periods were characterized by increasing membranous osteogenesis in and around the granules leading to the formation of bone-like structures showing periosteal and tendon-like structures with bone marrow and focal chondrogenesis. Bone formation was better in the subcutaneous than in the intramuscular implantation sites. This ectopic osteogenesis is discussed with regard to the nanoporosity and microporosity of the material, physico-chemical interactions at its surface, the differentiation of osteoblasts, the role of angiogenesis and the probable involvement of growth factors. The results of this preliminary study indicate that this biomaterial has osteoinductive potential and induces the formation of bone structures, mainly in subcutaneous adipose tissue in the pig.

  11. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig.

    Science.gov (United States)

    Götz, Werner; Lenz, Solvig; Reichert, Christoph; Henkel, Kai-Olaf; Bienengräber, Volker; Pernicka, Laura; Gundlach, Karsten K H; Gredes, Tomasz; Gerber, Thomas; Gedrange, Tomasz; Heinemann, Friedhelm

    2010-12-01

    To test the probable osteoinductive properties of NanoBone, a new highly non-sintered porous nano-crystalline hydroxylapatite bone substitute embedded into a silica gel matrix, granules were implanted subcutaneously and intramuscularly into the back region of 18 mini pigs. After periods of 5 and 10 weeks as well as 4 and 8 months, implantation sites were investigated using histological and histomorphometric procedures. Signs of early osteogenesis could already be detected after 5 weeks. The later periods were characterized by increasing membranous osteogenesis in and around the granules leading to the formation of bone-like structures showing periosteal and tendon-like structures with bone marrow and focal chondrogenesis. Bone formation was better in the subcutaneous than in the intramuscular implantation sites. This ectopic osteogenesis is discussed with regard to the nanoporosity and microporosity of the material, physico-chemical interactions at its surface, the differentiation of osteoblasts, the role of angiogenesis and the probable involvement of growth factors. The results of this preliminary study indicate that this biomaterial has osteoinductive potential and induces the formation of bone structures, mainly in subcutaneous adipose tissue in the pig.

  12. Articular Cartilage Repair Using Marrow Stimulation Augmented with a Viable Chondral Allograft: 9-Month Postoperative Histological Evaluation

    Directory of Open Access Journals (Sweden)

    James K. Hoffman

    2015-01-01

    Full Text Available Marrow stimulation is frequently employed to treat focal chondral defects of the knee. However, marrow stimulation typically results in fibrocartilage repair tissue rather than healthy hyaline cartilage, which, over time, predisposes the repair to failure. Recently, a cryopreserved viable chondral allograft was developed to augment marrow stimulation. The chondral allograft is comprised of native viable chondrocytes, chondrogenic growth factors, and extracellular matrix proteins within the superficial, transitional, and radial zones of hyaline cartilage. Therefore, host mesenchymal stem cells that infiltrate the graft from the underlying bone marrow following marrow stimulation are provided with the optimal microenvironment to undergo chondrogenesis. The present report describes treatment of a trochlear defect with marrow stimulation augmented with this novel chondral allograft, along with nine month postoperative histological results. At nine months, the patient demonstrated complete resolution of pain and improvement in function, and the repair tissue consisted of 85% hyaline cartilage. For comparison, a biopsy obtained from a patient 8.2 months after treatment with marrow stimulation alone contained only 5% hyaline cartilage. These outcomes suggest that augmenting marrow stimulation with the viable chondral allograft can eliminate pain and improve outcomes, compared with marrow stimulation alone.

  13. Curcumin Inhibits Chondrocyte Hypertrophy of Mesenchymal Stem Cells through IHH and Notch Signaling Pathways.

    Science.gov (United States)

    Cao, Zhen; Dou, Ce; Dong, Shiwu

    2017-01-01

    Using tissue engineering technique to repair cartilage damage caused by osteoarthritis is a promising strategy. However, the regenerated tissue usually is fibrous cartilage, which has poor mechanical characteristics compared to hyaline cartilage. Chondrocyte hypertrophy plays an important role in this process. Thus, it is very important to find out a suitable way to maintain the phenotype of chondrocytes and inhibit chondrocyte hypertrophy. Curcumin deriving from turmeric was reported with anti-inflammatory and anti-tumor pharmacological effects. However, the role of curcumin in metabolism of chondrocytes, especially in the chondrocyte hypertrophy remains unclear. Mesenchymal stem cells (MSCs) are widely used in cartilage tissue engineering as seed cells. So we investigated the effect of curcumin on chondrogenesis and chondrocyte hypertrophy in MSCs through examination of cell viability, glycosaminoglycan synthesis and specific gene expression. We found curcumin had no effect on expression of chondrogenic markers including Sox9 and Col2a1 while hypertrophic markers including Runx2 and Col10a1 were down-regulated. Further exploration showed that curcumin inhibited chondrocyte hypertrophy through Indian hedgehog homolog (IHH) and Notch signalings. Our results indicated curcumin was a potential agent in modulating cartilage homeostasis and maintaining chondrocyte phenotype.

  14. In vivo and in vitro studies of cartilage differentiation in altered gravities

    Science.gov (United States)

    Montufar-Solis, D.; Duke, P. J.; D'Aunno, D.

    The in vivo model our laboratory uses for studies of cartilage differentiation in space is the rat growth plate. Differences between missions, and in rat age and recovery times, provided differing results from each mission. However, in all missions, proliferation and differentiation of chondrocytes in the epiphyseal plate of spaceflown rats was altered as was matrix organization. In vitro systems, necessary complements to in vivo work, provide some advantages over the in vivo situation. In vitro, centrifugation of embryonic limb buds suppressed morphogenesis due to precocious differentiation, and changes in the developmental pattern suggest the involvement of Hox genes. In space, embryonic mouse limb mesenchyme cells differentiating in vitro on IML-1 had smoother membranes and lacked matrix seen in controls. Unusual formations, possibly highly ruffled membranes, were found in flight cultures. These results, coupled with in vivo centrifugation studies, show that in vivo or in vitro, the response of chondrocytes to gravitational changes follows Hert's curve as modified by Simon, i.e. decreased loading decreases differentiation, and increased loading speeds it up, but only to a point. After that, additional increases again slow down chondrogenesis.

  15. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    Science.gov (United States)

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.

  16. The Chondrogenic Induction Potential for Bone Marrow-Derived Stem Cells between Autologous Platelet-Rich Plasma and Common Chondrogenic Induction Agents: A Preliminary Comparative Study

    Directory of Open Access Journals (Sweden)

    Shan-zheng Wang

    2015-01-01

    Full Text Available The interests in platelet-rich plasma (PRP and their application in stem cell therapy have contributed to a better understanding of the basic biology of the prochondrogenesis effect on bone marrow-derived stem cells (BMSCs. We aimed at comparing the effect of autologous PRP with common chondrogenic induction agents (CCIAs on the chondrogenic differentiation of BMSCs. Rabbit BMSCs were isolated and characterized by flow cytometry and differentiated towards adipocytes and osteoblasts. The chondrogenic response of BMSCs to autologous PRP and CCIAs which included transforming growth factor-β1 (TGF-β1, dexamethasone (DEX, and vitamin C (Vc was examined by cell pellet culture. The isolated BMSCs after two passages highly expressed CD29 and CD44 but minimally expressed CD45. The osteogenic and adipogenic differentiation potentials of the isolated BMSCs were also confirmed. Compared with common CCIAs, autologous PRP significantly upregulated the chondrogenic related gene expression, including Col-2, AGC, and Sox-9. Osteogenic related gene expression, including Col-1 and OCN, was not of statistical significance between these two groups. Thus, our data shows that, compared with common chondrogenic induction agents, autologous PRP can be more effective in promoting the chondrogenesis of BMSCs.

  17. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Niemeyer, P; Kaiser, S

    2006-01-01

    Adipose-derived adult stem cells (ADASCs) or bone marrow-derived mesenchymal stem cells (BMSCs) are considered as alternative cell sources for cell-based cartilage repair due to their ability to produce cartilage-specific matrix. This article addresses the differential expression pattern...... chondroinduction. TGF-beta1 induces alternative splicing of the alpha(1)-procollagen type II transcript in BMSCs, but not in ADASCs. These findings may direct the development of a cell-specific culture environment either to prevent hypertrophy in BMSCs or to promote chondrogenic maturation in ADASCs....

  18. The Role of Cyclic AMP and Its Relationship to Parathyroid Hormone Response in an In Vitro Model of Chondrogenesis.

    Science.gov (United States)

    1992-06-01

    factors on bone and cartilage cell equilibria and differentiation will enhance our understanding of bone metabolism in health and disease . A. Parathyroid...1984. Difference between 1-84 parathyroid hormone and the 1-34 fragment on renal tubular calcium transport in the dog . Miner. Electrolyte Metab., ]A...general dentist during a four-year tour. In June 1989, Dr. Semba entered the Postdoctoral Periodontics program at the University of Texas Health Science Center in San Antonio in conjunction with Wilford Hall USAF Medical Center.

  19. Designer Self-Assembling Peptide Nanofiber Scaffolds Containing Link Protein N-Terminal Peptide Induce Chondrogenesis of Rabbit Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Baichuan Wang

    2014-01-01

    Full Text Available Designer self-assembling peptide nanofiber hydrogel scaffolds have been considered as promising biomaterials for tissue engineering because of their excellent biocompatibility and biofunctionality. Our previous studies have shown that a novel designer functionalized self-assembling peptide nanofiber hydrogel scaffold (RLN/RADA16, LN-NS containing N-terminal peptide sequence of link protein (link N can promote nucleus pulposus cells (NPCs adhesion and three-dimensional (3D migration and stimulate biosynthesis of type II collagen and aggrecan by NPCs in vitro. The present study has extended these investigations to determine the effects of this functionalized LN-NS on bone marrow stem cells (BMSCs, a potential cell source for NP regeneration. Although the functionalized LN-NS cannot promote BMSCs proliferation, it significantly promotes BMSCs adhesion compared with that of the pure RADA16 hydrogel scaffold. Moreover, the functionalized LN-NS remarkably stimulates biosynthesis and deposition of type II collagen and aggrecan. These data demonstrate that the functionalized peptide nanofiber hydrogel scaffold containing link N peptide as a potential matrix substrate will be very useful in the NP tissue regeneration.

  20. Pituitary adenylate cyclase activating polypeptide (PACAP signalling exerts chondrogenesis promoting and protecting effects: implication of calcineurin as a downstream target.

    Directory of Open Access Journals (Sweden)

    Tamás Juhász

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is an important neurotrophic factor influencing differentiation of neuronal elements and exerting protecting role during traumatic injuries or inflammatory processes of the central nervous system. Although increasing evidence is available on its presence and protecting function in various peripheral tissues, little is known about the role of PACAP in formation of skeletal components. To this end, we aimed to map elements of PACAP signalling in developing cartilage under physiological conditions and during oxidative stress. mRNAs of PACAP and its receptors (PAC1,VPAC1, VPAC2 were detectable during differentiation of chicken limb bud-derived chondrogenic cells in micromass cell cultures. Expression of PAC1 protein showed a peak on days of final commitment of chondrogenic cells. Administration of either the PAC1 receptor agonist PACAP 1-38, or PACAP 6-38 that is generally used as a PAC1 antagonist, augmented cartilage formation, stimulated cell proliferation and enhanced PAC1 and Sox9 protein expression. Both variants of PACAP elevated the protein expression and activity of the Ca-calmodulin dependent Ser/Thr protein phosphatase calcineurin. Application of PACAPs failed to rescue cartilage formation when the activity of calcineurin was pharmacologically inhibited with cyclosporine A. Moreover, exogenous PACAPs prevented diminishing of cartilage formation and decrease of calcineurin activity during oxidative stress. As an unexpected phenomenon, PACAP 6-38 elicited similar effects to those of PACAP 1-38, although to a different extent. On the basis of the above results, we propose calcineurin as a downstream target of PACAP signalling in differentiating chondrocytes either in normal or pathophysiological conditions. Our observations imply the therapeutical perspective that PACAP can be applied as a natural agent that may have protecting effect during joint inflammation and/or may promote cartilage regeneration during degenerative diseases of articular cartilage.

  1. Expression of TGF-β in Fractures Fixed by Nitinol Swan-like Memory Compressive Connectors

    Science.gov (United States)

    Li, M.; Zhang, C. C.; Xu, S. G.; Fu, Q. G.

    2011-07-01

    In this article, the effect of internal fixation of a Nitinol swan-like memory compressive connector (SMC) on the temporal expression of transforming growth factor-β (TGF-β) at fracture sites is evaluated. Specimens were collected from 35 New Zealand rabbits modeled for bilateral humeral fracture fixed with either SMC or stainless dynamic compression plate (DCP). Five rabbits each were killed at day 1, 3, 7, 14, 21, 28, and 56. The local positive staining potency, positive area ratio, and positive index of TGF-β were measured using an immunohistochemistry approach (EnVision) in combination with a computerized image analysis system. TGF-β staining was seen in mesenchymal cells, osteoblasts, chondrocytes, and in the extracellular matrix of fractures fixed in both the SMC and the DCP samples without a significant difference in staining at both the early stages (days 1 and 3) and day 56. A higher TGF-β content was observed in the fractures fixed with SMC when compared to that of DCP from day 7 to 28. As a conclusion, TGF-β is highly expressed in fractures fixed with SMC during chondrogenesis stage and entochondrostosis stage. Finally, the mechanism of how SMC promoting synthesis and secretion of TGF-β in the process of fracture healing has been discussed.

  2. Roles of Chondrocytes in Endochondral Bone Formation and Fracture Repair

    Science.gov (United States)

    Hinton, R.J.; Jing, Y.; Jing, J.; Feng, J.Q.

    2016-01-01

    The formation of the mandibular condylar cartilage (MCC) and its subchondral bone is an important but understudied topic in dental research. The current concept regarding endochondral bone formation postulates that most hypertrophic chondrocytes undergo programmed cell death prior to bone formation. Under this paradigm, the MCC and its underlying bone are thought to result from 2 closely linked but separate processes: chondrogenesis and osteogenesis. However, recent investigations using cell lineage tracing techniques have demonstrated that many, perhaps the majority, of bone cells are derived via direct transformation from chondrocytes. In this review, the authors will briefly discuss the history of this idea and describe recent studies that clearly demonstrate that the direct transformation of chondrocytes into bone cells is common in both long bone and mandibular condyle development and during bone fracture repair. The authors will also provide new evidence of a distinct difference in ossification orientation in the condylar ramus (1 ossification center) versus long bone ossification formation (2 ossification centers). Based on our recent findings and those of other laboratories, we propose a new model that contrasts the mode of bone formation in much of the mandibular ramus (chondrocyte-derived) with intramembranous bone formation of the mandibular body (non-chondrocyte-derived). PMID:27664203

  3. Directed Differentiation of Human-Induced Pluripotent Stem Cells to Mesenchymal Stem Cells.

    Science.gov (United States)

    Lian, Qizhou; Zhang, Yuelin; Liang, Xiaoting; Gao, Fei; Tse, Hung-Fat

    2016-01-01

    Multipotent stromal cells, also known as mesenchymal stem cells (MSCs), possess great potential to generate a wide range of cell types including endothelial cells, smooth muscle cells, bone, cartilage, and lipid cells. This protocol describes in detail how to perform highly efficient, lineage-specific differentiation of human-induced pluripotent stem cells (iPSCs) with an MSCs fate. The approach uses a clinically compliant protocol with chemically defined media, feeder-free conditions, and a CD105 positive and CD24 negative selection to achieve a single cell-based MSCs derivation from differentiating human pluripotent cells in approximately 20 days. Cells generated with this protocol express typical MSCs surface markers and undergo adipogenesis, osteogenesis, and chondrogenesis similar to adult bone marrow-derived MSCs (BM-MSCs). Nonetheless, compared with adult BM-MSCs, iPSC-MSCs display a higher proliferative capacity, up to 120 passages, without obvious loss of self-renewal potential and constitutively express MSCs surface antigens. MSCs generated with this protocol have numerous applications, including expansion to large scale cell numbers for tissue engineering and the development of cellular therapeutics. This approach has been used to rescue limb ischemia, allergic disorders, and cigarette smoke-induced lung damage and to model mesenchymal and vascular disorders of Hutchinson-Gilford progeria syndrome (HGPS).

  4. Stem cell application for osteoarthritis in the knee joint: A minireview.

    Science.gov (United States)

    Uth, Kristin; Trifonov, Dimitar

    2014-11-26

    Knee osteoarthritis is a chronic, indolent disease that will affect an ever increasing number of patients, especially the elderly and the obese. It is characterized by degeneration of the cartilage substance inside the knee which leads to pain, stiffness and tenderness. By some estimations in 2030, only in the United States, this medical condition will burden 67 million people. While conventional treatments like physiotherapy or drugs offer temporary relief of clinical symptoms, restoration of normal cartilage function has been difficult to achieve. Moreover, in severe cases of knee osteoarthritis total knee replacement may be required. Total knee replacements come together with high effort and costs and are not always successful. The aim of this review is to outline the latest advances in stem cell therapy for knee osteoarthritis as well as highlight some of the advantages of stem cell therapy over traditional approaches aimed at restoration of cartilage function in the knee. In addition to the latest advances in the field, challenges associated with stem cell therapy regarding knee cartilage regeneration and chondrogenesis in vitro and in vivo are also outlined and analyzed. Furthermore, based on their critical assessment of the present academic literature the authors of this review share their vision about the future of stem cell applications in the treatment of knee osteoarthritis.

  5. Macroautophagy and Selective Mitophagy Ameliorate Chondrogenic Differentiation Potential in Adipose Stem Cells of Equine Metabolic Syndrome: New Findings in the Field of Progenitor Cells Differentiation.

    Science.gov (United States)

    Marycz, Krzysztof; Kornicka, Katarzyna; Grzesiak, Jakub; Śmieszek, Agnieszka; Szłapka, Jolanta

    2016-01-01

    Equine metabolic syndrome (EMS) is mainly characterized by insulin resistance, obesity, and local or systemic inflammation. That unfriendly environment of adipose tissue has huge impact on stem cells population (ASC) residing within. In the present study, using molecular biology techniques and multiple imaging techniques (SEM, FIB-SEM, and confocal microscopy), we evaluated the impact of EMS on ASC viability and chondrogenic differentiation. Moreover, we visualized the mitochondrial network and dynamics in ASC CTRL and ASC EMS during control and chondrogenic conditions. In control conditions, ASC EMS were characterized by increased mitochondrial fission in comparison to ASC CTRL . We found that extensive remodeling of mitochondrial network including fusion and fission occurs during early step of differentiation. Moreover, we observed mitochondria morphology deterioration in ASC EMS . These conditions seem to cause autophagic shift in ASC EMS , as we observed increased accumulation of LAMP2 and formation of multiple autophagosomes in those cells, some of which contained dysfunctional mitochondria. "Autophagic" switch may be a rescue mechanism allowing ASC EMS to clear impaired by ROS proteins and mitochondria. Moreover it provides a precursors-to-macromolecules synthesis, especially during chondrogenesis. Our data indicates that autophagy in ASC EMS would be crucial for the quality control mechanisms and maintenance of cellular homeostasis ASC EMS allowing them to be in "stemness" status.

  6. Diverse effects of lead nitrate on the proliferation, differentiation, and gene expression of stem cells isolated from a dental origin.

    Science.gov (United States)

    Abdullah, Mariam; Rahman, Fazliny Abd; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Abu Kasim, Noor Hayaty; Musa, Sabri

    2014-01-01

    Lead (Pb(2+)) exposure continues to be a significant public health problem. Therefore, it is vital to have a continuous epidemiological dataset for a better understanding of Pb(2+) toxicity. In the present study, we have exposed stem cells isolated from deciduous and permanent teeth, periodontal ligament, and bone marrow to five different types of Pb(2+) concentrations (160, 80, 40, 20, and 10 µM) for 24 hours to identify the adverse effects of Pb(2+) on the proliferation, differentiation, and gene expression on these cell lines. We found that Pb(2+) treatment altered the morphology and adhesion of the cells in a dose-dependent manner. There were no significant changes in terms of cell surface phenotypes. Cells exposed to Pb(2+) continued to differentiate into chondrogenesis and adipogenesis, and a severe downregulation was observed in osteogenesis. Gene expression studies revealed a constant expression of key markers associated with stemness (Oct 4, Rex 1) and DNA repair enzyme markers, but downregulation occurred with some ectoderm and endoderm markers, demonstrating an irregular and untimely differentiation trail. Our study revealed for the first time that Pb(2+) exposure not only affects the phenotypic characteristics but also induces significant alteration in the differentiation and gene expression in the cells.

  7. Stem cell application for osteoarthritis in the knee joint: A minireview

    Institute of Scientific and Technical Information of China (English)

    Kristin; Uth; Dimitar; Trifonov

    2014-01-01

    Knee osteoarthritis is a chronic, indolent disease that will affect an ever increasing number of patients, especially the elderly and the obese. It is characterized by degeneration of the cartilage substance inside the knee which leads to pain, stiffness and tenderness. By some estimations in 2030, only in the United States, this medical condition will burden 67 million people. While conventional treatments like physiotherapy or drugs offer temporary relief of clinical symptoms, restoration of normal cartilage function has been difficult to achieve. Moreover, in severe cases of knee osteoarthritis total knee replacement may be required. Total knee replacements come together with high effort and costs and are not always successful. The aim of this review is to outline the latest advances in stem cell therapy for knee osteoarthritis as well as highlight some of the advantages of stem cell therapy over traditional approaches aimed at restoration of cartilage function in the knee. In addition to the latest advances in the field, challenges associated with stem cell therapy regarding knee cartilage regeneration and chondrogenesis in vitro and in vivo are also outlined and analyzed. Furthermore, based on their critical assessment of the present academic literature the authors of this review share their vision about the future of stem cell applications in the treatment of knee osteoarthritis.

  8. Endogenous collagen influences differentiation of human multipotent mesenchymal stromal cells.

    Science.gov (United States)

    Fernandes, Hugo; Mentink, Anouk; Bank, Ruud; Stoop, Reinout; van Blitterswijk, Clemens; de Boer, Jan

    2010-05-01

    Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix mainly composed of collagen type I. Here we assessed the potential role of endogenous collagen synthesis in hMSC differentiation and stem cell maintenance. We observed a sharp reduction in proliferation rate of hMSCs in the absence of ascorbic acid, concomitant with a reduction in osteogenesis in vitro and bone formation in vivo. In line with a positive role for collagen type I in osteogenesis, gene expression profiling of hMSCs cultured in the absence of ascorbic acid demonstrated increased expression of genes involved in adipogenesis and chondrogenesis and a reduction in expression of osteogenic genes. We also observed that matrix remodeling and anti-osteoclastogenic signals were high in the presence of ascorbic acid. The presence of collagen type I during the expansion phase of hMSCs did not affect their osteogenic and adipogenic differentiation potential. In conclusion, the collagenous matrix supports both proliferation and differentiation of osteogenic hMSCs but, on the other hand, presents signals stimulating matrix remodeling and inhibiting osteoclastogenesis.

  9. Induction of systemic bone changes by preconditioning total body irradiation for bone marrow transplantation

    International Nuclear Information System (INIS)

    Miyazaki, Osamu; Okamoto, Reiko; Masaki, Hidekazu; Nishimura, Gen; Kumagai, Masaaki; Shioda, Yoko; Nozawa, Kumiko; Kitoh, Hiroshi

    2009-01-01

    Preconditioning total body irradiation (TBI) prior to bone marrow transplantation (BMT) has been believed to be a safe procedure that does not cause late morbidity; yet, a recent report raises the suspicion that TBI-induced chondroosseous abnormalities do occur. To evaluate the radiological manifestations of TBI-induced skeletal alterations and their orthopaedic morbidity. Subjects included 11 children with TBI-induced skeletal changes, including 9 in our hospital and 2 in other hospitals. The former were selected from 53 children who had undergone TBI with BMT. Radiographic examinations (n=11), MRI (n=3), CT (n=2), and medical records in the 11 children were retrospectively reviewed. The skeletal alterations included abnormal epiphyseal ossification and metaphyseal fraying (8/11), longitudinal metaphyseal striations (8/11), irregular metaphyseal sclerosis (6/11), osteochondromas (4/11), slipped capital femoral epiphysis (2/10), genu valgum (3/10), and platyspondyly (2/3). MRI demonstrated immature primary spongiosa in the metaphysis. Of the 11 children, 9 had clinical symptoms. TBI can induce polyostotic and/or generalized bone changes, mainly affecting the epiphyseal/metaphyseal regions and occasionally the spine. The epi-/metaphyseal abnormalities represent impaired chondrogenesis in the epiphysis and growth plate and abnormal remodelling in the metaphysis. Generalized spine changes may lead to misdiagnosis of a skeletal dysplasia. (orig.)

  10. Cytokine-Like Protein 1(Cytl1: A Potential Molecular Mediator in Embryo Implantation.

    Directory of Open Access Journals (Sweden)

    Zhichao Ai

    Full Text Available Cytokine-like protein 1 (Cytl1, originally described as a protein expressed in CD34+ cells, was recently identified as a functional secreted protein involved in chondrogenesis and cartilage development. However, our knowledge of Cytl1 is still limited. Here, we determined the Cytl1 expression pattern regulated by ovarian hormones at both the mRNA and protein levels. We found that the endometrial expression of Cytl1 in mice was low before or on the first day of gestation, significantly increased during embryo implantation, and then decreased at the end of implantation. We investigated the effects of Cytl1 on endometrial cell proliferation, and the effects on the secretion of leukemia inhibitory factor (LIF and heparin-binding epidermal growth factor (HB-EGF. We also explored the effect of Cytl1 on endometrial adhesion properties in cell-cell adhesion assays. Our findings demonstrated that Cytl1 is an ovarian hormone-dependent protein expressed in the endometrium that enhances the proliferation of HEC-1-A and RL95-2 cells, stimulates endometrial secretion of LIF and HB-EGF, and enhances the adhesion of HEC-1-A and RL95-2 cells to JAR spheroids. This study suggests that Cytl1 plays an active role in the regulation of embryo implantation.

  11. Diverse Effects of Lead Nitrate on the Proliferation, Differentiation, and Gene Expression of Stem Cells Isolated from a Dental Origin

    Directory of Open Access Journals (Sweden)

    Mariam Abdullah

    2014-01-01

    Full Text Available Lead (Pb2+ exposure continues to be a significant public health problem. Therefore, it is vital to have a continuous epidemiological dataset for a better understanding of Pb2+ toxicity. In the present study, we have exposed stem cells isolated from deciduous and permanent teeth, periodontal ligament, and bone marrow to five different types of Pb2+ concentrations (160, 80, 40, 20, and 10 µM for 24 hours to identify the adverse effects of Pb2+ on the proliferation, differentiation, and gene expression on these cell lines. We found that Pb2+ treatment altered the morphology and adhesion of the cells in a dose-dependent manner. There were no significant changes in terms of cell surface phenotypes. Cells exposed to Pb2+ continued to differentiate into chondrogenesis and adipogenesis, and a severe downregulation was observed in osteogenesis. Gene expression studies revealed a constant expression of key markers associated with stemness (Oct 4, Rex 1 and DNA repair enzyme markers, but downregulation occurred with some ectoderm and endoderm markers, demonstrating an irregular and untimely differentiation trail. Our study revealed for the first time that Pb2+ exposure not only affects the phenotypic characteristics but also induces significant alteration in the differentiation and gene expression in the cells.

  12. Unique mutation portraits and frequent COL2A1 gene alteration in chondrosarcoma

    Science.gov (United States)

    Totoki, Yasushi; Yoshida, Akihiko; Hosoda, Fumie; Nakamura, Hiromi; Hama, Natsuko; Ogura, Koichi; Yoshida, Aki; Fujiwara, Tomohiro; Arai, Yasuhito; Toguchida, Junya; Tsuda, Hitoshi; Miyano, Satoru; Kawai, Akira

    2014-01-01

    Chondrosarcoma is the second most frequent malignant bone tumor. However, the etiological background of chondrosarcomagenesis remains largely unknown, along with details on molecular alterations and potential therapeutic targets. Massively parallel paired-end sequencing of whole genomes of 10 primary chondrosarcomas revealed that the process of accumulation of somatic mutations is homogeneous irrespective of the pathological subtype or the presence of IDH1 mutations, is unique among a range of cancer types, and shares significant commonalities with that of prostate cancer. Clusters of structural alterations localized within a single chromosome were observed in four cases. Combined with targeted resequencing of additional cartilaginous tumor cohorts, we identified somatic alterations of the COL2A1 gene, which encodes an essential extracellular matrix protein in chondroskeletal development, in 19.3% of chondrosarcoma and 31.7% of enchondroma cases. Epigenetic regulators (IDH1 and YEATS2) and an activin/BMP signal component (ACVR2A) were recurrently altered. Furthermore, a novel FN1-ACVR2A fusion transcript was observed in both chondrosarcoma and osteochondromatosis cases. With the characteristic accumulative process of somatic changes as a background, molecular defects in chondrogenesis and aberrant epigenetic control are primarily causative of both benign and malignant cartilaginous tumors. PMID:25024164

  13. Effects of Bone Morphogenic Proteins on Engineered Cartilage

    Science.gov (United States)

    Gooch, Keith, J.; Blunk, Torsten; Courter, Donald L.; Sieminski, Alisha; Vunjak-Novakovic, Gordana; Freed, Lisa E.

    2007-01-01

    A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment.

  14. The skeletal phenotype of achondrogenesis type 1A is caused exclusively by cartilage defects.

    Science.gov (United States)

    Bird, Ian M; Kim, Susie H; Schweppe, Devin K; Caetano-Lopes, Joana; Robling, Alexander G; Charles, Julia F; Gygi, Steven P; Warman, Matthew L; Smits, Patrick J

    2018-01-08

    Inactivating mutations in the ubiquitously expressed membrane trafficking component GMAP-210 (encoded by Trip11 ) cause achondrogenesis type 1A (ACG1A). ACG1A is surprisingly tissue specific, mainly affecting cartilage development. Bone development is also abnormal, but as chondrogenesis and osteogenesis are closely coupled, this could be a secondary consequence of the cartilage defect. A possible explanation for the tissue specificity of ACG1A is that cartilage and bone are highly secretory tissues with a high use of the membrane trafficking machinery. The perinatal lethality of ACG1A prevents investigating this hypothesis. We therefore generated mice with conditional Trip11 knockout alleles and inactivated Trip11 in chondrocytes, osteoblasts, osteoclasts and pancreas acinar cells, all highly secretory cell types. We discovered that the ACG1A skeletal phenotype is solely due to absence of GMAP-210 in chondrocytes. Mice lacking GMAP-210 in osteoblasts, osteoclasts and acinar cells were normal. When we inactivated Trip11 in primary chondrocyte cultures, GMAP-210 deficiency affected trafficking of a subset of chondrocyte-expressed proteins rather than globally impairing membrane trafficking. Thus, GMAP-210 is essential for trafficking specific cargoes in chondrocytes but is dispensable in other highly secretory cells. © 2018. Published by The Company of Biologists Ltd.

  15. Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Zhang Lu; Spector, Myron

    2009-01-01

    The objective of this study was to compare the chondrogenesis in type I and II collagen scaffolds seeded with chondrocytes from three types of cartilage, after four weeks of culture: auricular (AU), articular (AR) and meniscal (ME). Related aims were to investigate the expression of a contractile muscle actin isoform, α-smooth muscle actin (SMA), in the cells in the scaffold and to determine the presence of a lubricating glycoprotein, lubricin, in the constructs. Adult goat AU, AR and ME chondrocytes were seeded into two types of collagen scaffolds: type II collagen and type I/III collagen. After four weeks of culture, the constructs were prepared for histochemical and immunohistochemical analysis of the distribution of glycosaminoglycan (GAG), types I and II collagen, elastin, SM and lubricin. AU constructs contained substantially more tissue than the AR and ME samples. The AU constructs exhibited neocartilage, but no elastin. There were no notable differences between the type I and II collagen scaffolds. Novel findings were the expression of SMA by the AU cells in the scaffolds and the presence of lubricin in the AR and AU constructs. AU cells have the capability to produce cartilage in collagen scaffolds under conditions in which there is little histogenesis by AR and ME cells.

  16. Icariin: does it have an osteoinductive potential for bone tissue engineering?

    Science.gov (United States)

    Zhang, Xin; Liu, Tie; Huang, Yuanliang; Wismeijer, Daniel; Liu, Yuelian

    2014-04-01

    Traditional Chinese medicines have been recommended for bone regeneration and repair for thousands of years. Currently, the Herba Epimedii and its multi-component formulation are the attractive native herbs for the treatment of osteoporosis. Icariin, a typical flavonol glycoside, is considered to be the main active ingredient of the Herba Epimedii from which icariin has been successfully extracted. Most interestingly, it has been reported that icariin can be delivered locally by biomaterials and that it has an osteoinductive potential for bone tissue engineering. This review focuses on the performance of icariin in bone tissue engineering and on blending the information from icariin with the current knowledge relevant to molecular mechanisms and signal pathways. The osteoinductive potential of icariin could be attributed to its multiple functions in the musculoskeletal system which is involved in the regulation of multiple signaling pathways in anti-osteoporosis, osteogenesis, anti-osteoclastogenesis, chondrogenesis, angiogenesis, and anti-inflammation. The osteoinductive potential and the low price of icariin make it a very attractive candidate as a substitute of osteoinductive protein-bone morphogenetic proteins (BMPs), or as a promoter for enhancing the therapeutic effects of BMPs. However, the effectiveness of the local delivery of icariin needs to be investigated further. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Enhancement of chondrogenic differentiation of rabbit mesenchymal stem cells by oriented nanofiber yarn-collagen type I/hyaluronate hybrid

    International Nuclear Information System (INIS)

    Zheng, Xianyou; Wang, Wei; Liu, Shen; Wu, Jinglei; Li, Fengfeng; Cao, Lei; Liu, Xu-dong; Mo, Xiumei; Fan, Cunyi

    2016-01-01

    Cartilage defects cause joint pain and loss of mobility. It is crucial to induce the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by both biological and structural signals in cartilage tissue engineering. Sponge-like scaffolds fabricated using native cartilage extracellular matrix components can induce the BMSC differentiation by biological signals and limited structural signals. In this study, an oriented poly(L-lactic acid)-co-poly(ε-caprolactone) P(LLA-CL)/collagen type I (Col-I) nanofiber yarn mesh, fabricated by dynamic liquid electrospinning served as a skeleton for a freeze-dried Col-I/hyaluronate (HA) chondral phase (SPONGE) containing both structural and biological signals to guide BMSC chondrogenic differentiation. In vitro results show that the Yarn Col-I/HA hybrid scaffold (Yarn-CH) promotes orientation, adhesion and proliferation of BMSCs better than SPONGE. Furthermore, BMSCs seeded on the Yarn-CH scaffold demonstrated a large increase in the glycosaminoglycan content and expression of collagen type II following a 21-day culture. - Highlights: • An oriented yarn was used as the skeleton of the sponge-like scaffold. • Both structural and biological signals were given for BMSC chondrogenic differentiation. • Yarn-CH promotes orientation and chondrogenesis differentiation of BMSCs. • Yarn-CH reproduces the superficial zone of the cartilage.

  18. Hedgehog Signaling in Endochondral Ossification

    Directory of Open Access Journals (Sweden)

    Shinsuke Ohba

    2016-06-01

    Full Text Available Hedgehog (Hh signaling plays crucial roles in the patterning and morphogenesis of various organs within the bodies of vertebrates and insects. Endochondral ossification is one of the notable developmental events in which Hh signaling acts as a master regulator. Among three Hh proteins in mammals, Indian hedgehog (Ihh is known to work as a major Hh input that induces biological impact of Hh signaling on the endochondral ossification. Ihh is expressed in prehypertrophic and hypertrophic chondrocytes of developing endochondral bones. Genetic studies so far have demonstrated that the Ihh-mediated activation of Hh signaling synchronizes chondrogenesis and osteogenesis during endochondral ossification by regulating the following processes: (1 chondrocyte differentiation; (2 chondrocyte proliferation; and (3 specification of bone-forming osteoblasts. Ihh not only forms a negative feedback loop with parathyroid hormone-related protein (PTHrP to maintain the growth plate length, but also directly promotes chondrocyte propagation. Ihh input is required for the specification of progenitors into osteoblast precursors. The combinatorial approaches of genome-wide analyses and mouse genetics will facilitate understanding of the regulatory mechanisms underlying the roles of Hh signaling in endochondral ossification, providing genome-level evidence of the potential of Hh signaling for the treatment of skeletal disorders.

  19. Hedgehog Signaling in Endochondral Ossification

    Science.gov (United States)

    Ohba, Shinsuke

    2016-01-01

    Hedgehog (Hh) signaling plays crucial roles in the patterning and morphogenesis of various organs within the bodies of vertebrates and insects. Endochondral ossification is one of the notable developmental events in which Hh signaling acts as a master regulator. Among three Hh proteins in mammals, Indian hedgehog (Ihh) is known to work as a major Hh input that induces biological impact of Hh signaling on the endochondral ossification. Ihh is expressed in prehypertrophic and hypertrophic chondrocytes of developing endochondral bones. Genetic studies so far have demonstrated that the Ihh-mediated activation of Hh signaling synchronizes chondrogenesis and osteogenesis during endochondral ossification by regulating the following processes: (1) chondrocyte differentiation; (2) chondrocyte proliferation; and (3) specification of bone-forming osteoblasts. Ihh not only forms a negative feedback loop with parathyroid hormone-related protein (PTHrP) to maintain the growth plate length, but also directly promotes chondrocyte propagation. Ihh input is required for the specification of progenitors into osteoblast precursors. The combinatorial approaches of genome-wide analyses and mouse genetics will facilitate understanding of the regulatory mechanisms underlying the roles of Hh signaling in endochondral ossification, providing genome-level evidence of the potential of Hh signaling for the treatment of skeletal disorders. PMID:29615586

  20. Enhancing proliferation and optimizing the culture condition for human bone marrow stromal cells using hypoxia and fibroblast growth factor-2

    Directory of Open Access Journals (Sweden)

    Jung-Seok Lee

    2018-04-01

    Full Text Available This study aimed to determine the cellular characteristics and behaviors of human bone marrow stromal cells (hBMSCs expanded in media in a hypoxic or normoxic condition and with or without fibroblast growth factor-2 (FGF-2 treatment. hBMSCs isolated from the vertebral body and expanded in these four groups were evaluated for cellular proliferation/migration, colony-forming units, cell-surface characterization, in vitro differentiation, in vivo transplantation, and gene expression. Culturing hBMSCs using a particular environmental factor (hypoxia and with the addition of FGF-2 increased the cellular proliferation rate while enhancing the regenerative potential, modulated the multipotency-related processes (enhanced chondrogenesis-related processes/osteogenesis, but reduced adipogenesis, and increased cellular migration and collagen formation. The gene expression levels in the experimental samples showed activation of the hypoxia-inducible factor-1 pathway and glycolysis in the hypoxic condition, with this not being affected by the addition of FGF-2. The concurrent application of hypoxia and FGF-2 could provide a favorable condition for culturing hBMSCs to be used in clinical applications associated with bone tissue engineering, due to the enhancement of cellular proliferation and regenerative potential. Keywords: Bone marrow stromal cells, Hypoxia, Fibroblast growth factor, Tissue regeneration, Microenvironment interactions

  1. Translational Application of Microfluidics and Bioprinting for Stem Cell-Based Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Silvia Lopa

    2018-01-01

    Full Text Available Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells. Here, we discuss the use of microfluidics and bioprinting approaches for the translation of stem cell-based therapy for cartilage repair in clinics. In particular, we will focus on the optimization of hydrogel-based materials to mimic the articular cartilage triggered by their use as bioinks in 3D bioprinting applications, on the screening of biochemical and biophysical factors through microfluidic devices to enhance stem cell chondrogenesis, and on the use of microfluidic technology to generate implantable constructs with a complex geometry. Finally, we will describe some new bioprinting applications that pave the way to the clinical use of stem cell-based therapies, such as scaffold-free bioprinting and the development of a 3D handheld device for the in situ repair of cartilage defects.

  2. Translational Application of Microfluidics and Bioprinting for Stem Cell-Based Cartilage Repair

    Science.gov (United States)

    Mondadori, Carlotta; Mainardi, Valerio Luca; Talò, Giuseppe; Candrian, Christian; Święszkowski, Wojciech

    2018-01-01

    Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells. Here, we discuss the use of microfluidics and bioprinting approaches for the translation of stem cell-based therapy for cartilage repair in clinics. In particular, we will focus on the optimization of hydrogel-based materials to mimic the articular cartilage triggered by their use as bioinks in 3D bioprinting applications, on the screening of biochemical and biophysical factors through microfluidic devices to enhance stem cell chondrogenesis, and on the use of microfluidic technology to generate implantable constructs with a complex geometry. Finally, we will describe some new bioprinting applications that pave the way to the clinical use of stem cell-based therapies, such as scaffold-free bioprinting and the development of a 3D handheld device for the in situ repair of cartilage defects. PMID:29535776

  3. High fidelity visualization of cell-to-cell variation and temporal dynamics in nascent extracellular matrix formation.

    Science.gov (United States)

    McLeod, Claire M; Mauck, Robert L

    2016-12-12

    Extracellular matrix dynamics are key to tissue morphogenesis, homeostasis, injury, and repair. The spatiotemporal organization of this matrix has profound biological implications, but is challenging to monitor using standard techniques. Here, we address these challenges by using noncanonical amino acid tagging to fluorescently label extracellular matrix synthesized in the presence of bio-orthogonal methionine analogs. This strategy labels matrix proteins with high resolution, without compromising their distribution or mechanical function. We demonstrate that the organization and temporal dynamics of the proteinaceous matrix depend on the biophysical features of the microenvironment, including the biomaterial scaffold and the niche constructed by cells themselves. Pulse labeling experiments reveal that, in immature constructs, nascent matrix is highly fibrous and interdigitates with pre-existing matrix, while in more developed constructs, nascent matrix lacks fibrous organization and is retained in the immediate pericellular space. Inhibition of collagen crosslinking increases matrix synthesis, but compromises matrix organization. Finally, these data demonstrate marked cell-to-cell heterogeneity amongst both chondrocytes and mesenchymal stem cells undergoing chondrogenesis. Collectively, these results introduce fluorescent noncanonical amino acid tagging as a strategy to investigate spatiotemporal matrix organization, and demonstrate its ability to identify differences in phenotype, microenvironment, and matrix assembly at the single cell level.

  4. Macroautophagy and Selective Mitophagy Ameliorate Chondrogenic Differentiation Potential in Adipose Stem Cells of Equine Metabolic Syndrome: New Findings in the Field of Progenitor Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-01-01

    Full Text Available Equine metabolic syndrome (EMS is mainly characterized by insulin resistance, obesity, and local or systemic inflammation. That unfriendly environment of adipose tissue has huge impact on stem cells population (ASC residing within. In the present study, using molecular biology techniques and multiple imaging techniques (SEM, FIB-SEM, and confocal microscopy, we evaluated the impact of EMS on ASC viability and chondrogenic differentiation. Moreover, we visualized the mitochondrial network and dynamics in ASCCTRL and ASCEMS during control and chondrogenic conditions. In control conditions, ASCEMS were characterized by increased mitochondrial fission in comparison to ASCCTRL. We found that extensive remodeling of mitochondrial network including fusion and fission occurs during early step of differentiation. Moreover, we observed mitochondria morphology deterioration in ASCEMS. These conditions seem to cause autophagic shift in ASCEMS, as we observed increased accumulation of LAMP2 and formation of multiple autophagosomes in those cells, some of which contained dysfunctional mitochondria. “Autophagic” switch may be a rescue mechanism allowing ASCEMS to clear impaired by ROS proteins and mitochondria. Moreover it provides a precursors-to-macromolecules synthesis, especially during chondrogenesis. Our data indicates that autophagy in ASCEMS would be crucial for the quality control mechanisms and maintenance of cellular homeostasis ASCEMS allowing them to be in “stemness” status.

  5. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

    Directory of Open Access Journals (Sweden)

    Ashvin K. Dewan

    2014-01-01

    Full Text Available Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks. Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells and associated scaffolds (natural or synthetic, hydrogels or membranes. ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient’s knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients.

  6. Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lu [Department of Plastic and Reconstructive Surgery, Shanghai Tissue Engineering Center, Shanghai 9th People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Spector, Myron, E-mail: luzhangmd@gmail.co [Tissue Engineering, VA Boston Healthcare System, Boston, MA (United States)

    2009-08-15

    The objective of this study was to compare the chondrogenesis in type I and II collagen scaffolds seeded with chondrocytes from three types of cartilage, after four weeks of culture: auricular (AU), articular (AR) and meniscal (ME). Related aims were to investigate the expression of a contractile muscle actin isoform, alpha-smooth muscle actin (SMA), in the cells in the scaffold and to determine the presence of a lubricating glycoprotein, lubricin, in the constructs. Adult goat AU, AR and ME chondrocytes were seeded into two types of collagen scaffolds: type II collagen and type I/III collagen. After four weeks of culture, the constructs were prepared for histochemical and immunohistochemical analysis of the distribution of glycosaminoglycan (GAG), types I and II collagen, elastin, SM and lubricin. AU constructs contained substantially more tissue than the AR and ME samples. The AU constructs exhibited neocartilage, but no elastin. There were no notable differences between the type I and II collagen scaffolds. Novel findings were the expression of SMA by the AU cells in the scaffolds and the presence of lubricin in the AR and AU constructs. AU cells have the capability to produce cartilage in collagen scaffolds under conditions in which there is little histogenesis by AR and ME cells.

  7. Ascorbate-dependent impact on cell-derived matrix in modulation of stiffness and rejuvenation of infrapatellar fat derived stem cells toward chondrogenesis.

    Science.gov (United States)

    Pizzute, Tyler; Zhang, Ying; He, Fan; Pei, Ming

    2016-08-10

    Developing an in vitro microenvironment using cell-derived decellularized extracellular matrix (dECM) is a promising approach to efficiently expand adult stem cells for cartilage engineering and regeneration. Ascorbic acid serves as a critical stimulus for cells to synthesize collagens, which constitute the major component of dECM. In this study, we hypothesized that optimization of ascorbate treatment would maximize the rejuvenation effect of dECM on expanded stem cells from human infrapatellar fat pad in both proliferation and chondrogenic differentiation. In the duration regimen study, we found that dECM without L-ascorbic acid phosphate (AA) treatment, exhibiting lower stiffness measured by atomic force microscopy, yielded expanded cells with higher proliferation capacity but lower chondrogenic potential when compared to those with varied durations of AA treatment. dECM with 250 µM of AA treatment for 10 d had better rejuvenation in chondrogenic capacity if the deposited cells were from passage 2 rather than passage 5, despite no significant difference in matrix stiffness. In the dose regimen study, we found that dECMs deposited by varied concentrations of AA yielded expanded cells with higher proliferation capacity despite lower expression levels of stem cell related surface markers. Compared to cells expanded on tissue culture polystyrene, those on dECM exhibited greater chondrogenic potential, particularly for the dECMs with 50 µM and 250 µM of AA treatment. With the supplementation of ethyl-3,4-dihydroxybenzoate (EDHB), an inhibitor targeting procollagen synthesis, the dECM with 50 µM of AA treatment exhibited a dramatic decrease in the rejuvenation effect of expanded cell chondrogenic potential at both mRNA and protein levels despite no significant difference in matrix stiffness. Defined AA treatments during matrix preparation will benefit dECM-mediated stem cell engineering and future treatments for cartilage defects.

  8. Arthroscopic treatment of chondral defects in the hip: AMIC, MACI, microfragmented adipose tissue transplantation (MATT and other options

    Directory of Open Access Journals (Sweden)

    Jannelli Eugenio

    2017-01-01

    Full Text Available Chondral lesions are currently considered in the hip as a consequence of trauma, osteonecrosis, dysplasia, labral tears, loose bodies, dislocation, previous slipped capital femoral epiphysis and Femoro-Acetabular-Impingement (FAI. The management of chondral lesions is debated and several techniques are described. The physical examination must be carefully performed, followed by radiographs and magnetic resonance imaging (MRI. Differential diagnosis with other pathologies must be considered. Debridement is indicated in patients younger than 50 years with a chondropathy of 1st or 2nd degree. Microfractures are indicated in patients younger than 50 years with a chondropathy of 3rd or 4th degree less than 2 cm2. Matrix-Induced Autologous Chondrocyte Implantation (MACI and Autologous Matrix-Induced Chondrogenesis (AMIC procedures are indicated in patients with full-thickness symptomatic 3rd–4th degree chondral defects, extended 2 cm2 or more. The AMIC procedure has the advantage of a one-step procedure and much less expense. Microfragmented adipose tissue transplantation (MATT is indicated for the treatment of delamination and 1st and 2nd degree chondral lesions, regardless of the age of the patient. Chondral defects are effective when the joint space is not compromised. When the Tonnis classification is two or greater, treatment of chondral lesions should be considered ineffective.

  9. Effects of Serial Passage on the Characteristics and Chondrogenic Differentiation of Canine Umbilical Cord Matrix Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    K. S. Lee

    2013-04-01

    Full Text Available Mesenchymal stem cells (MSCs are often known to have a therapeutic potential in the cell-mediated repair for fatal or incurable diseases. In this study, canine umbilical cord MSCs (cUC-MSCs were isolated from umbilical cord matrix (n = 3 and subjected to proliferative culture for 5 consecutive passages. The cells at each passage were characterized for multipotent MSC properties such as proliferation kinetics, expression patterns of MSC surface markers and self-renewal associated markers, and chondrogenic differentiation. In results, the proliferation of the cells as determined by the cumulative population doubling level was observed at its peak on passage 3 and stopped after passage 5, whereas cell doubling time dramatically increased after passage 4. Expression of MSC surface markers (CD44, CD54, CD61, CD80, CD90 and Flk-1, molecule (HMGA2 and pluripotent markers (sox2, nanog associated with self-renewal was negatively correlated with the number of passages. However, MSC surface marker (CD105 and pluripotent marker (Oct3/4 decreased with increasing the number of subpassage. cUC-MSCs at passage 1 to 5 underwent chondrogenesis under specific culture conditions, but percentage of chondrogenic differentiation decreased with increasing the number of subpassage. Collectively, the present study suggested that sequential subpassage could affect multipotent properties of cUC-MSCs and needs to be addressed before clinical applications.

  10. 3D printing of composite tissue with complex shape applied to ear regeneration

    International Nuclear Information System (INIS)

    Lee, Jung-Seob; Hong, Jung Min; Jung, Jin Woo; Shim, Jin-Hyung; Cho, Dong-Woo; Oh, Jeong-Hoon

    2014-01-01

    In the ear reconstruction field, tissue engineering enabling the regeneration of the ear's own tissue has been considered to be a promising technology. However, the ear is known to be difficult to regenerate using traditional methods due to its complex shape and composition. In this study, we used three-dimensional (3D) printing technology including a sacrificial layer process to regenerate both the auricular cartilage and fat tissue. The main part was printed with poly-caprolactone (PCL) and cell-laden hydrogel. At the same time, poly-ethylene-glycol (PEG) was also deposited as a sacrificial layer to support the main structure. After complete fabrication, PEG can be easily removed in aqueous solutions, and the procedure for removing PEG has no effect on the cell viability. For fabricating composite tissue, chondrocytes and adipocytes differentiated from adipose-derived stromal cells were encapsulated in hydrogel to dispense into the cartilage and fat regions, respectively, of ear-shaped structures. Finally, we fabricated the composite structure for feasibility testing, satisfying expectations for both the geometry and anatomy of the native ear. We also carried out in vitro assays for evaluating the chondrogenesis and adipogenesis of the cell-printed structure. As a result, the possibility of ear regeneration using 3D printing technology which allowed tissue formation from the separately printed chondrocytes and adipocytes was demonstrated. (paper)

  11. Intra-hydrogel culture prevents transformation of mesenchymal stem cells induced by monolayer expansion.

    Science.gov (United States)

    Jiang, Tongmeng; Liu, Junting; Ouyang, Yiqiang; Wu, Huayu; Zheng, Li; Zhao, Jinmin; Zhang, Xingdong

    2018-05-01

    In this study, we report that the intra-hydrogel culture system mitigates the transformation of mesenchymal stem cells (MSCs) induced by two-dimensional (2D) expansion. MSCs expanded in monolayer culture prior to encapsulation in collagen hydrogels (group eMSCs-CH) featured impaired stemness in chondrogenesis, comparing with the freshly isolated bone marrow mononuclear cells seeded directly in collagen hydrogels (group fMSCs-CH). The molecular mechanism of the in vitro expansion-triggered damage to MSCs was detected through genome-wide microarray analysis. Results indicated that pathways such as proteoglycans in cancer and pathways in cancer expansion were highly enriched in eMSCs-CH. And multiple up-regulated oncoma-associated genes were verified in eMSCs-CH compared with fMSCs-CH, indicating that expansion in vitro triggered cellular transformation was associated with signaling pathways related to tumorigenicity. Besides, focal adhesion (FA) and mitogen-activated protein kinase (MAPK) signaling pathways were also involved in in vitro expansion, indicating restructuring of the cell architecture. Thus, monolayer expansion in vitro may contribute to vulnerability of MSCs through the regulation of FA and MAPK. This study indicates that intra-hydrogel culture can mitigate the monolayer expansion induced transformation of MSCs and maintain the uniformity of the stem cells, which is a viable in vitro culture system for stem cell therapy.

  12. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes

    Science.gov (United States)

    Holmes, Benjamin; Castro, Nathan J.; Li, Jian; Keidar, Michael; Zhang, Lijie Grace

    2013-09-01

    Cartilage tissue is a nanostructured tissue which is notoriously hard to regenerate due to its extremely poor inherent regenerative capacity and complex stratified architecture. Current treatment methods are highly invasive and may have many complications. Thus, the goal of this work is to use nanomaterials and nano/microfabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds to facilitate human bone marrow mesenchymal stem cell (MSC) chondrogenesis. To this end we utilized electrospinning to design and fabricate a series of novel 3D biomimetic nanostructured scaffolds based on hydrogen (H2) treated multi-walled carbon nanotubes (MWCNTs) and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro MSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, the MWCNT embedded scaffolds showed a drastic increase in mechanical strength and a compressive Young’s modulus matching to natural cartilage. Furthermore, our MSC differentiation results demonstrated that incorporation of the H2 treated carbon nanotubes and poly-L-lysine coating can induce more chondrogenic differentiations of MSCs than controls. After two weeks of culture, PLLA scaffolds with H2 treated MWCNTs and poly-L-lysine can achieve the highest glycosaminoglycan synthesis, making them promising for further exploration for cartilage regeneration.

  13. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Holmes, Benjamin; Castro, Nathan J; Li Jian; Keidar, Michael; Zhang, Lijie Grace

    2013-01-01

    Cartilage tissue is a nanostructured tissue which is notoriously hard to regenerate due to its extremely poor inherent regenerative capacity and complex stratified architecture. Current treatment methods are highly invasive and may have many complications. Thus, the goal of this work is to use nanomaterials and nano/microfabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds to facilitate human bone marrow mesenchymal stem cell (MSC) chondrogenesis. To this end we utilized electrospinning to design and fabricate a series of novel 3D biomimetic nanostructured scaffolds based on hydrogen (H 2 ) treated multi-walled carbon nanotubes (MWCNTs) and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro MSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, the MWCNT embedded scaffolds showed a drastic increase in mechanical strength and a compressive Young’s modulus matching to natural cartilage. Furthermore, our MSC differentiation results demonstrated that incorporation of the H 2 treated carbon nanotubes and poly-L-lysine coating can induce more chondrogenic differentiations of MSCs than controls. After two weeks of culture, PLLA scaffolds with H 2 treated MWCNTs and poly-L-lysine can achieve the highest glycosaminoglycan synthesis, making them promising for further exploration for cartilage regeneration. (paper)

  14. Derivation of Mesenchymal Stromal Cells from Canine Induced Pluripotent Stem Cells by Inhibition of the TGFβ/Activin Signaling Pathway

    Science.gov (United States)

    Frith, Jessica E.; Frith, Thomas J.R.; Ovchinnikov, Dmitry A.; Cooper-White, Justin J.; Wolvetang, Ernst J.

    2014-01-01

    In this study we have generated canine mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, from canine induced pluripotent stem cells (ciPSCs) by small-molecule inhibition of the transforming growth factor beta (TGFβ)/activin signaling pathway. These ciPSC-derived MSCs (ciPSC-MSCs) express the MSC markers CD73, CD90, CD105, STRO1, cPDGFRβ and cKDR, in addition to the pluripotency factors OCT4, NANOG and REX1. ciPSC-MSCs lack immunostaining for H3K27me3, suggesting that they possess two active X chromosomes. ciPSC-MSCs are highly proliferative and undergo robust differentiation along the osteo-, chondro- and adipogenic pathways, but do not form teratoma-like tissues in vitro. Of further significance for the translational potential of ciPSC-MSCs, we show that these cells can be encapsulated and maintained within injectable hydrogel matrices that, when functionalized with bound pentosan polysulfate, dramatically enhance chondrogenesis and inhibit osteogenesis. The ability to efficiently derive large numbers of highly proliferative canine MSCs from ciPSCs that can be incorporated into injectable, functionalized hydrogels that enhance their differentiation along a desired lineage constitutes an important milestone towards developing an effective MSC-based therapy for osteoarthritis in dogs, but equally provides a model system for assessing the efficacy and safety of analogous approaches for treating human degenerative joint diseases. PMID:25055193

  15. Dental mesenchymal stem cells encapsulated in alginate hydrogel co-delivery microencapsulation system for cartilage regeneration

    Science.gov (United States)

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-01-01

    Dental-derived MSCs are promising candidates for cartilage regeneration, with high chondrogenic differentiation capacity. This property contributes to making dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating Periodontal Ligament Stem Cells (PDLSCs) or Gingival Mesenchymal Stem Cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs, GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSC) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by toluidine blue and safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (Palginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. PMID:23891740

  16. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Leilei Zhong

    2015-08-01

    Full Text Available Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA. Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP/Transforming growth factor-β (TGFβ, Parathyroid hormone-related peptide (PTHrP, Indian hedgehog (IHH, Fibroblast growth factor (FGF, Insulin like growth factor (IGF and Hypoxia-inducible factor (HIF. This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.

  17. Synthesizing genome-wide association studies and expression microarray reveals novel genes that act in the human growth plate to modulate height.

    Science.gov (United States)

    Lui, Julian C; Nilsson, Ola; Chan, Yingleong; Palmer, Cameron D; Andrade, Anenisia C; Hirschhorn, Joel N; Baron, Jeffrey

    2012-12-01

    Previous meta-analysis of genome-wide association (GWA) studies has identified 180 loci that influence adult height. However, each GWA locus typically comprises a set of contiguous genes, only one of which presumably modulates height. We reasoned that many of the causative genes within these loci influence height because they are expressed in and function in the growth plate, a cartilaginous structure that causes bone elongation and thus determines stature. Therefore, we used expression microarray studies of mouse and rat growth plate, human disease databases and a mouse knockout phenotype database to identify genes within the GWAS loci that are likely required for normal growth plate function. Each of these approaches identified significantly more genes within the GWA height loci than at random genomic locations (P analysis strongly implicates 78 genes in growth plate function, including multiple genes that participate in PTHrP-IHH, BMP and CNP signaling, and many genes that have not previously been implicated in the growth plate. Thus, this analysis reveals a large number of novel genes that regulate human growth plate chondrogenesis and thereby contribute to the normal variations in human adult height. The analytic approach developed for this study may be applied to GWA studies for other common polygenic traits and diseases, thus providing a new general strategy to identify causative genes within GWA loci and to translate genetic associations into mechanistic biological insights.

  18. In vitro analysis of equine, bone marrow-derived mesenchymal stem cells demonstrates differences within age- and gender-matched horses.

    Science.gov (United States)

    Carter-Arnold, J L; Neilsen, N L; Amelse, L L; Odoi, A; Dhar, M S

    2014-09-01

    Stem cell therapies are used routinely in equine practice. Most published reports characterise stem cells derived from younger horses; however, middle-aged horses are often in athletic performance, and experience degenerative medical conditions. Thus, mesenchymal stem cells (MSCs) from this group should be investigated. To describe differences in in vitro adherence, proliferation and potential for differentiation of equine bone marrow-derived MSCs (equine BMMSCs) harvested from middle-aged (10-13 years old) female donors. Descriptive study of stem cell characteristics. Equine BMMSCs from 6 horses were cultured in vitro and evaluated for viability, proliferation, osteogenesis, chondrogenesis, adipogenesis, cluster-of-differentiation markers and gene expression. Equine BMMSCs from all 6 donors demonstrated fibroblastic, cellular morphology, adherence to plastic and expression of cluster-of-differentiation markers. They varied in their rate of proliferation and trilineage differentiation. The equine BMMSCs of one of 6 donors demonstrated a higher rate of proliferation, enhanced ability for cell passaging and a more robust in vitro differentiation. Comparatively, equine BMMSCs from 2 donors demonstrated a lower rate of proliferation and lack of osteogenic and chondrogenic differentiation. The results of this study confirm that donor-to-donor variation in equine BMMSCs exists and this variation can be documented using in vitro assays. Subjective assessment suggests that the rate of proliferation tends to correlate with differentiation potential. © 2013 EVJ Ltd.

  19. A role for hedgehog signaling in the differentiation of the insertion site of the patellar tendon in the mouse.

    Directory of Open Access Journals (Sweden)

    Chia-Feng Liu

    Full Text Available Tendons are typically composed of two histologically different regions: the midsubstance and insertion site. We previously showed that Gli1, a downstream effector of the hedgehog (Hh signaling pathway, is expressed only in the insertion site of the mouse patellar tendon during its differentiation. To test for a functional role of Hh signaling, we targeted the Smoothened (Smo gene in vivo using a Cre/Lox system. Constitutive activation of the Hh pathway in the mid-substance caused molecular markers of the insertion site, e.g. type II collagen, to be ectopically expressed or up-regulated in the midsubstance. This was confirmed using a novel organ culture method in vitro. Conversely, when Smo was excised in the scleraxis-positive cell population, the development of the fibrocartilaginous insertion site was affected. Whole transcriptome analysis revealed that the expression of genes involved in chondrogenesis and mineralization was down-regulated in the insertion site, and expression of insertion site markers was decreased. Biomechanical testing of murine adult patellar tendon, which developed in the absence of Hh signaling, showed impairment of tendon structural properties (lower linear stiffness and greater displacement and material properties (greater strain, although the linear modulus of the mutant group was not significantly lower than controls. These studies provide new insights into the role of Hh signaling during tendon development.

  20. Chondrogenic potential of canine articular cartilage derived cells (cACCs

    Directory of Open Access Journals (Sweden)

    Nowak Urszula

    2016-01-01

    Full Text Available In the present paper, the potential of canine articular cartilage-derived cells (cACCs for chondrogenic differentiation was evaluated. The effectiveness of cACCs’ lineage commitment was analyzed after 14 days of culture in chondorgenic and non-chondrogenic conditions. Formation of proteoglycan-rich extracellular matrix was assessed using histochemical staining – Alcian Blue and Safranin-O, while elemental composition was determined by means of SEM-EDX. Additionally, ultrastructure of cACCs was evaluated using TEM. The expression of genes involved in chondrogenesis was monitored with quantitative Real Time PCR. Results obtained indicate that the potential of cACCs for cartilagous extracellular matrix formation may be maintained only in chondrogenic cultures. The formation of specific chondro-nodules was not observed in a non-chondrogenic culture environment. The analysis of cACCs’ ultrastructure, both in non-chondrogenic and chondrogenic cultures, revealed well-developed rough endoplasmatic reticulum and presence of mitochondria. The cACCs in chondrogenic medium shed an increased number of microvesicles. Furthermore, it was shown that the extracellular matrix of cACCs in chondrogenic cultures is rich in potassium and molybdenum. Additionally, it was determined that gene expression of collagen type II, aggrecan and SOX-9 was significantly increased during chondrogenic differentiation of cACCs. Results obtained indicate that the culture environment may significantly influence the cartilage phenotype of cACCs during long term culture.

  1. Low-frequency, low-magnitude vibrations (LFLM enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-02-01

    Full Text Available The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS, to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2, and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration.

  2. Polymodal Transient Receptor Potential Vanilloid (TRPV Ion Channels in Chondrogenic Cells

    Directory of Open Access Journals (Sweden)

    Csilla Szűcs Somogyi

    2015-08-01

    Full Text Available Mature and developing chondrocytes exist in a microenvironment where mechanical load, changes of temperature, osmolarity and acidic pH may influence cellular metabolism. Polymodal Transient Receptor Potential Vanilloid (TRPV receptors are environmental sensors mediating responses through activation of linked intracellular signalling pathways. In chondrogenic high density cultures established from limb buds of chicken and mouse embryos, we identified TRPV1, TRPV2, TRPV3, TRPV4 and TRPV6 mRNA expression with RT-PCR. In both cultures, a switch in the expression pattern of TRPVs was observed during cartilage formation. The inhibition of TRPVs with the non-selective calcium channel blocker ruthenium red diminished chondrogenesis and caused significant inhibition of proliferation. Incubating cell cultures at 41 °C elevated the expression of TRPV1, and increased cartilage matrix production. When chondrogenic cells were exposed to mechanical load at the time of their differentiation into matrix producing chondrocytes, we detected increased mRNA levels of TRPV3. Our results demonstrate that developing chondrocytes express a full palette of TRPV channels and the switch in the expression pattern suggests differentiation stage-dependent roles of TRPVs during cartilage formation. As TRPV1 and TRPV3 expression was altered by thermal and mechanical stimuli, respectively, these are candidate channels that contribute to the transduction of environmental stimuli in chondrogenic cells.

  3. Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development.

    Science.gov (United States)

    Guan, Yingjie; Yang, Xu; Yang, Wentian; Charbonneau, Cherie; Chen, Qian

    2014-10-01

    Mechanical stress regulates development by modulating cell signaling and gene expression. However, the cytoplasmic components mediating mechanotransduction remain unclear. In this study, elimination of muscle contraction during chicken embryonic development resulted in a reduction in the activity of mammalian target of rapamycin (mTOR) in the cartilaginous growth plate. Inhibition of mTOR activity led to significant inhibition of chondrocyte proliferation, cartilage tissue growth, and expression of chondrogenic genes, including Indian hedgehog (Ihh), a critical mediator of mechanotransduction. Conversely, cyclic loading (1 Hz, 5% matrix deformation) of embryonic chicken growth plate chondrocytes in 3-dimensional (3D) collagen scaffolding induced sustained activation of mTOR. Mechanical activation of mTOR occurred in serum-free medium, indicating that it is independent of growth factor or nutrients. Treatment of chondrocytes with Rapa abolished mechanical activation of cell proliferation and Ihh gene expression. Cyclic loading of chondroprogenitor cells deficient in SH2-containing protein tyrosine phosphatase 2 (Shp2) further enhanced mechanical activation of mTOR, cell proliferation, and chondrogenic gene expression. This result suggests that Shp2 is an antagonist of mechanotransduction through inhibition of mTOR activity. Our data demonstrate that mechanical activation of mTOR is necessary for cell proliferation, chondrogenesis, and cartilage growth during bone development, and that mTOR is an essential mechanotransduction component modulated by Shp2 in the cytoplasm. © FASEB.

  4. One-Step Cartilage Repair Technique as a Next Generation of Cell Therapy for Cartilage Defects: Biological Characteristics, Preclinical Application, Surgical Techniques, and Clinical Developments.

    Science.gov (United States)

    Zhang, Chi; Cai, You-Zhi; Lin, Xiang-Jin

    2016-07-01

    To provide a comprehensive overview of the basic science rationale, surgical technique, and clinical outcomes of 1-step cartilage repair technique used as a treatment strategy for cartilage defects. A systematic review was performed in the main medical databases to evaluate the several studies concerning 1-step procedures for cartilage repair. The characteristics of cell-seed scaffolds, behavior of cells seeded into scaffolds, and surgical techniques were also discussed. Clinical outcomes and quality of repaired tissue were assessed using several standardized outcome assessment tools, magnetic resonance imaging scans, and biopsy histology. One-step cartilage repair could be divided into 2 types: chondrocyte-matrix complex (CMC) and autologous matrix-induced chondrogenesis (AMIC), both of which allow a simplified surgical approach. Studies with Level IV evidence have shown that 1-step cartilage repair techniques could significantly relieve symptoms and improve functional assessment (P studies clearly showed hyaline-like cartilage tissue in biopsy tissues by second-look arthroscopy. The 1-step cartilage repair technique, with its potential for effective, homogeneous distribution of chondrocytes and multipotent stem cells on the surface of the cartilage defect, is able to regenerate hyaline-like cartilage tissue, and it could be applied to cartilage repair by arthroscopy. Level IV, systematic review of Level II and IV studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  5. In vitro investigation of a tissue-engineered cell-tendon complex mimicking the transitional architecture at the ligament-bone interface.

    Science.gov (United States)

    Wang, Zhibing; Zhang, Yuan; Zhu, Jie; Dong, Shiwu; Jiang, Tao; Zhou, Yue; Zhang, Xia

    2015-03-01

    Restoration of the transitional ligament-bone interface is critical for graft-bone integration. We postulated that an allogenic scaffold mimicking the fibrogenic, chondrogenic, and osteogenic transition gradients could physiologically promote ligament-bone incorporation. The aim of this study was to construct and characterize a composite tendon scaffold with a continuous and heterogeneous transition region mimicking a native ligament insertion site. Genetically modified heterogeneous cell populations were seeded within specific regions of decellularized rabbit Achilles tendons to fabricate a stratified scaffold containing three biofunctional regions supporting fibrogenesis, chondrogenesis, and osteogenesis. The observed morphology, architecture, cytocompatibility, and biomechanics of the scaffolds demonstrated their improved bio-physico-chemical properties. The formation of the transitional regions was augmented via enhanced delivery of two transcription factors, sex determining region Y-box 9 and runt-related transcription factor 2, which also triggered early up-regulated expression of cartilage- and bone-relevant markers, according to quantitative PCR and immunoblot analyses. Gradient tissue-specific matrix formation was also confirmed within the predesignated regions via histological staining and immunofluorescence assays. These results suggest that a transitional interface could be replicated on an engineered tendon through stratified tissue integration. The scaffold offers the advantages of a multitissue transition involving controlled cellular interactions and matrix heterogeneity, which can be applied for the regeneration of the ligament-bone interface. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. Mesenchymal stem cells overexpressing Ihh promote bone repair.

    Science.gov (United States)

    Zou, Shasha; Chen, Tingting; Wang, Yanan; Tian, Ruhui; Zhang, Lingling; Song, Pingping; Yang, Shi; Zhu, Yong; Guo, Xizhi; Huang, Yiran; Li, Zheng; Kan, Lixin; Hu, Hongliang

    2014-10-28

    Indian hedgehog (Ihh) signaling pathway is known to play key roles in various aspects of normal endochondral bone development. This study tested the potential roles of high Ihh signaling in the context of injury-induced bone regeneration. A rabbit tibia defect model was established to test the effects of the implant of Ihh/mesenchymal stem cells (MSCs)/scaffold complex. Computed tomography (CT), gross observation, and standard histological and immunohistological techniques were used to evaluate the effectiveness of the treatment. In vitro studies with MSCs and C3H10T1/2 cells were also employed to further understand the cellular and molecular mechanisms. We found that the implanted Ihh/MSCs/scaffold complex promoted bone repair. Consistently, in vitro study found that Ihh induced the upregulation of chondrocytic, osteogenic, and vascular cell markers, both in C3H10T1/2 cells and MSCs. Our study has demonstrated that high Ihh signaling in a complex with MSCs enhanced bone regeneration effectively in a clinically relevant acute injury model. Even though the exact underlying mechanisms are still far from clear, our primary data suggested that enhanced chondrogenesis, osteogenesis, and angiogenesis of MSCs at least partially contribute to the process. This study not only has implications for basic research of MSCs and Ihh signaling pathway but also points to the possibility of direct application of this specific paradigm to clinical bone repair.

  7. Evolutionarily Conserved, Growth Plate Zone-Specific Regulation of the Matrilin-1 Promoter: L-Sox5/Sox6 and Nfi Factors Bound near TATA Finely Tune Activation by Sox9 ▿

    Science.gov (United States)

    Nagy, Andrea; Kénesi, Erzsébet; Rentsendorj, Otgonchimeg; Molnár, Annamária; Szénási, Tibor; Sinkó, Ildikó; Zvara, Ágnes; Thottathil Oommen, Sajit; Barta, Endre; Puskás, László G.; Lefebvre, Veronique; Kiss, Ibolya

    2011-01-01

    To help uncover the mechanisms underlying the staggered expression of cartilage-specific genes in the growth plate, we dissected the transcriptional mechanisms driving expression of the matrilin-1 gene (Matn1). We show that a unique assembly of evolutionarily conserved cis-acting elements in the Matn1 proximal promoter restricts expression to the proliferative and prehypertrophic zones of the growth plate. These elements functionally interact with distal elements and likewise are capable of restricting the domain of activity of a pancartilaginous Col2a1 enhancer. The proximal elements include a Pe1 element binding the chondrogenic L-Sox5, Sox6, and Sox9 proteins, a SI element binding Nfi proteins, and an initiator Ine element binding the Sox trio and other factors. Sox9 binding to Pe1 is indispensable for functional interaction with the distal promoter. Binding of L-Sox5/Sox6 to Ine and Nfib to SI modulates Sox9 transactivation in a protein dose-dependent manner, possibly to enhance Sox9 activity in early stages of chondrogenesis and repress it at later stages. Hence, our data suggest a novel model whereby Sox and Nfi proteins bind to conserved Matn1 proximal elements and functionally interact with each other to finely tune gene expression in specific zones of the cartilage growth plate. PMID:21173167

  8. Indian hedgehog signaling triggers Nkx3.2 protein degradation during chondrocyte maturation

    Science.gov (United States)

    Choi, Seung-Won; Jeong, Da-Un; Kim, Jeong-Ah; Lee, Boyoung; Joeng, Kyu Sang; Long, Fanxin; Kim, Dae-Won

    2015-01-01

    The Indian hedgehog (Ihh) pathway plays an essential role in facilitating chondrocyte hypertrophy and bone formation during skeletal development. Nkx3.2 is initially induced in chondrocyte precursor cells, maintained in early-stage chondrocytes, and down-regulated in terminal-stage chondrocytes. Consistent with these expression patterns, Nkx3.2 has been shown to enhance chondrocyte differentiation and cell survival, while inhibiting chondrocyte hypertrophy and apoptosis. Thus, in this work, we investigate whether Nkx3.2, an early stage chondrogenic factor, can be regulated by Ihh, a key regulator for chondrocyte hypertrophy. Here, we show that Ihh signaling can induce proteasomal degradation of Nkx3.2. In addition, we found that Ihh can suppress levels of Lrp (Wnt co-receptor) and Sfrp (Wnt antagonist) expression, which, in turn, may selectively enhance Lrp-independent non-canonical Wnt pathways in chondrocyte. In agreement with these findings, Ihh-induced Nkx3.2 degradation requires Wnt5a, which is capable of triggering Nkx3.2 degradation. Finally, we found that Nkx3.2 protein levels in chondrocytes are remarkably elevated in mice defective in Ihh signaling by deletion of either Ihh or Smoothened. Thus, these results suggest that Ihh/Wnt5a signaling may play a role in negative regulation of Nkx3.2 for appropriate progression of chondrocyte hypertrophy during chondrogenesis. PMID:22507129

  9. Effects of long-term use of the preferential COX-2 inhibitor meloxicam on growing pigs.

    Science.gov (United States)

    Gorissen, Ben M C; Uilenreef, Joost J; Bergmann, Wilhelmina; Meijer, Ellen; van Rietbergen, Bert; van der Staay, Franz Josef; Weeren, P René van; Wolschrijn, Claudia F

    2017-11-25

    Meloxicam, a preferential COX-2 inhibitor, is a commonly used NSAID in pigs. Besides having potential side effects on the gastrointestinal tract, this type of drug might potentially affect osteogenesis and chondrogenesis, processes relevant to growing pigs. Therefore, the effects of long-term meloxicam treatment on growing pigs were studied. Twelve piglets (n=6 receiving daily meloxicam 0.4 mg/kg orally from 48 until 110 days of age; n=6 receiving only applesauce (vehicle control)) were subjected to visual and objective gait analysis by pressure plate measurements at several time points. Following euthanasia a complete postmortem examination was performed and samples of the talus and distal tibia, including the distal physis, were collected. Trabecular bone microarchitecture was analysed by microCT scanning, bone stiffness by compression testing and growth plate morphology using light microscopy. Animals were not lame and gait patterns did not differ between the groups. Pathological examination revealed no lesions compatible with known side effects of NSAIDs. Trabecular bone microarchitecture and growth plate morphology did not differ between the two groups. The findings of this in vivo study reduce concerns regarding the long-term use of meloxicam in young, growing piglets. © British Veterinary Association (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Pretreatment with platelet derived growth factor-BB modulates the ability of costochondral resting zone chondrocytes incorporated into PLA/PGA scaffolds to form new cartilage in vivo.

    Science.gov (United States)

    Lohmann, C H; Schwartz, Z; Niederauer, G G; Carnes, D L; Dean, D D; Boyan, B D

    2000-01-01

    Optimal repair of chondral defects is likely to require both a suitable population of chondrogenic cells and a biodegradable matrix to provide a space-filling structural support during the early stages of cartilage formation. This study examined the ability of chondrocytes to support cartilage formation when incorporated into biodegradable scaffolds constructed from copolymers (PLG) of polylactic acid (PLA) and polyglycolic acid (PGA) and implanted in the calf muscle of nude mice. Scaffolds were fabricated to be more hydrophilic (PLG-H) or were reinforced with 10% PGA fibers (PLG-FR), increasing the stiffness of the implant by 20-fold. Confluent primary cultures of rat costochondral resting zone chondrocytes (RC) were loaded into PLG-H foams and implanted intramuscularly. To determine if growth factor pretreatment could modulate the ability of the cells to form new cartilage, RC cells were pretreated with recombinant human platelet derived growth factor-BB IPDGF-BB) for 4 or 24 h prior to implantation. To assess whether scaffold material properties could affect the ability of chondrogenic cells to form cartilage, RC cells were also loaded into PLG-FR scaffolds. To determine if the scaffolds or treatment with PDGF-BB affected the rate of chondrogenesis, tissue at the implant site was harvested at four and eight weeks post-operatively, fixed, decalcified and embedded in paraffin. Sections were obtained along the transverse plane of the lower leg, stained with haematoxylin and eosin, and then assessed by morphometric analysis for area of cartilage, area of residual implant, and area of fibrous connective tissue formation (fibrosis). Whether or not the cartilage contained hypertrophic cells was also assessed. The amount of residual implant did not change with time in any of the implanted tissues. The area occupied by PLG-FR implants was greater than that occupied by PLG-H implants at both time points. All implants were surrounded by fibrous connective tissue, whether

  11. Cartilage repair: Generations of autologous chondrocyte transplantation

    International Nuclear Information System (INIS)

    Marlovits, Stefan; Zeller, Philip; Singer, Philipp; Resinger, Christoph; Vecsei, Vilmos

    2006-01-01

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation

  12. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Li, X.L. [Department of Dermatology, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); He, X.J. [Department of Orthopedics, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Wu, B.J.; Xu, M. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Chang, H.M. [Department of Otolaryngology - Head and Neck Surgery, Affiliated Hospital of Xi' an Medical University, Xi' an (China); Zhang, X.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Xing, Z. [Department of Clinical Dentistry, Faculty of Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen (Norway); Jing, X.H.; Kong, D.M.; Kou, X.H.; Yang, Y.Y. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China)

    2014-03-18

    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.

  13. A novel fibrin gel derived from hyaluronic acid-grafted fibrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chiung L; Chen, Hui W; Wang, Tzu C; Wang, Yng J, E-mail: wang@ym.edu.tw [Institute of Biomedical Engineering, National Yang Ming University, No. 155, Sec. 2, Li-Nung St., Shih-Pai, Taipei, Taiwan 112 (China)

    2011-04-15

    Fibrinogen is a major plasma protein that forms a three-dimensional fibrin gel upon being activated by thrombin. In this study, we report the synthesis and potential applications of hybrid molecules composed of fibrinogen coupled to the reducing ends of short-chain hyaluronic acids (sHAs) by reductive amination. The grafting of sHAs to fibrinogen was verified by analyzing particle size, zeta potential and gel-electrophoretic mobility of the hybrid molecules. The sHA-fibrinogen hybrid molecules with graft ratios (sHA/fibrinogen) of up to 6.5 retained the ability to form gels in response to thrombin activation. The sHA-fibrin gels were transparent in appearance and exhibited high water content, which were characteristics distinct from those of gels formed by mixtures of sHAs and fibrinogen. The potential applications of the sHA-fibrin gels were evaluated. The sHA-fibrinogen gel with a graft ratio of 3.6 (S3.6F) was examined for its ability to encapsulate and support the differentiation of ATDC5 chondrocyte-like cells. Compared with the fibrinogen-formed gel, cells cultured in the S3.6F gel exhibited increased lacunae formation; moreover, the abundance of cartilaginous extracellular matrix molecules and the expression of chondrocyte marker genes, such as aggrecan, collagen II and Sox9, were also significantly increased. Our data suggest that the three-dimensional gel formed by the sHA-fibrinogen hybrid is a better support than the fibrin gel for chondrogenesis induction.

  14. Attenuation of chondrogenic transformation in vascular smooth muscle by dietary quercetin in the MGP-deficient mouse model.

    Directory of Open Access Journals (Sweden)

    Kelly E Beazley

    Full Text Available Cartilaginous metaplasia of vascular smooth muscle (VSM is characteristic for arterial calcification in diabetes and uremia and in the background of genetic alterations in matrix Gla protein (MGP. A better understanding of the molecular details of this process is critical for the development of novel therapeutic approaches to VSM transformation and arterial calcification.This study aimed to identify the effects of bioflavonoid quercetin on chondrogenic transformation and calcification of VSM in the MGP-null mouse model and upon TGF-β3 stimulation in vitro, and to characterize the associated alterations in cell signaling.Molecular analysis revealed activation of β-catenin signaling in cartilaginous metaplasia in Mgp-/- aortae in vivo and during chondrogenic transformation of VSMCs in vitro. Quercetin intercepted chondrogenic transformation of VSM and blocked activation of β-catenin both in vivo and in vitro. Although dietary quercetin drastically attenuated calcifying cartilaginous metaplasia in Mgp-/- animals, approximately one-half of total vascular calcium mineral remained as depositions along elastic lamellae.Quercetin is potent in preventing VSM chondrogenic transformation caused by diverse stimuli. Combined with the demonstrated efficiency of dietary quercetin in preventing ectopic chondrogenesis in the MGP-null vasculature, these findings indicate a potentially broad therapeutic applicability of this safe for human consumption bioflavonoid in the therapy of cardiovascular conditions linked to cartilaginous metaplasia of VSM. Elastocalcinosis is a major component of MGP-null vascular disease and is controlled by a mechanism different from chondrogenic transformation of VSM and not sensitive to quercetin.

  15. Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration.

    Science.gov (United States)

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-12-01

    Dental-derived mesenchymal stem cells (MSCs) are promising candidates for cartilage regeneration, with a high capacity for chondrogenic differentiation. This property helps make dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs and GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSCs) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by Toluidine Blue and Safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (palginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. Copyright © 2013 Acta Materialia Inc. All rights reserved.

  16. A novel fibrin gel derived from hyaluronic acid-grafted fibrinogen

    International Nuclear Information System (INIS)

    Yang, Chiung L; Chen, Hui W; Wang, Tzu C; Wang, Yng J

    2011-01-01

    Fibrinogen is a major plasma protein that forms a three-dimensional fibrin gel upon being activated by thrombin. In this study, we report the synthesis and potential applications of hybrid molecules composed of fibrinogen coupled to the reducing ends of short-chain hyaluronic acids (sHAs) by reductive amination. The grafting of sHAs to fibrinogen was verified by analyzing particle size, zeta potential and gel-electrophoretic mobility of the hybrid molecules. The sHA-fibrinogen hybrid molecules with graft ratios (sHA/fibrinogen) of up to 6.5 retained the ability to form gels in response to thrombin activation. The sHA-fibrin gels were transparent in appearance and exhibited high water content, which were characteristics distinct from those of gels formed by mixtures of sHAs and fibrinogen. The potential applications of the sHA-fibrin gels were evaluated. The sHA-fibrinogen gel with a graft ratio of 3.6 (S3.6F) was examined for its ability to encapsulate and support the differentiation of ATDC5 chondrocyte-like cells. Compared with the fibrinogen-formed gel, cells cultured in the S3.6F gel exhibited increased lacunae formation; moreover, the abundance of cartilaginous extracellular matrix molecules and the expression of chondrocyte marker genes, such as aggrecan, collagen II and Sox9, were also significantly increased. Our data suggest that the three-dimensional gel formed by the sHA-fibrinogen hybrid is a better support than the fibrin gel for chondrogenesis induction.

  17. The use of fibrin and poly(lactic-co-glycolic acid hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis

    Directory of Open Access Journals (Sweden)

    S Munirah

    2008-02-01

    Full Text Available Our preliminary results indicated that fibrin and poly(lactic-co-glycolic acid (PLGA hybrid scaffold promoted early chondrogenesis of articular cartilage constructs in vitro. The aim of this study was to evaluate in vivo cartilaginous tissue formation by chondrocyte-seeded fibrin/PLGA hybrid scaffolds. PLGA scaffolds were soaked carefully, in chondrocyte-fibrin suspension, and polymerized by dropping thrombin-calcium chloride (CaCl2 solution. PLGA-seeded chondrocytes were used as a control. Resulting constructs were implanted subcutaneously, at the dorsum of nude mice, for 4 weeks. Macroscopic observation, histological evaluation, gene expression and sulphated-glycosaminoglycan (sGAG analyses were performed at each time point of 1, 2 and 4 weeks post-implantation. Cartilaginous tissue formation in fibrin/PLGA hybrid construct was confirmed by the presence of lacunae and cartilage-isolated cells embedded within basophilic ground substance. Presence of proteoglycan and glycosaminoglycan (GAG in fibrin/PLGA hybrid constructs was confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrices. Chondrogenic properties were further demonstrated by the expression of gene encoded cartilage-specific markers, collagen type II and aggrecan core protein. The sGAG production in fibrin/PLGA hybrid constructs was higher than in the PLGA group. In conclusion, fibrin/PLGA hybrid scaffold promotes cartilaginous tissue formation in vivo and may serve as a potential cell delivery vehicle and a structural basis for articular cartilage tissue-engineering.

  18. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Directory of Open Access Journals (Sweden)

    Z.H. Wang

    2014-04-01

    Full Text Available SRY-related high-mobility-group box 9 (Sox9 gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs. After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.

  19. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    International Nuclear Information System (INIS)

    Wang, Z.H.; Li, X.L.; He, X.J.; Wu, B.J.; Xu, M.; Chang, H.M.; Zhang, X.H.; Xing, Z.; Jing, X.H.; Kong, D.M.; Kou, X.H.; Yang, Y.Y.

    2014-01-01

    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering

  20. Extracellular Matrix (ECM) Multilayer Membrane as a Sustained Releasing Growth Factor Delivery System for rhTGF-β3 in Articular Cartilage Repair

    Science.gov (United States)

    Park, Sang-Hyug; Kim, Moon Suk; Kim, Young Jick; Choi, Byung Hyune; Lee, Chun Tek; Park, So Ra; Min, Byoung-Hyun

    2016-01-01

    Recombinant human transforming growth factor beta-3 (rhTGF-β3) is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-β3 using a multilayered extracellular matrix (ECM) membrane. We hypothesize that the sustained release of rhTGF-β3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS) are investigated using rhTGF-β3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs) using western blot and circular dichroism (CD) analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-β3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-β3-loaded EMLDS ((+) rhTGF-β3 EMLDS) in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair. PMID:27258120

  1. Craniosynostosis of coronal suture in Twist1+/- mice occurs through endochondral ossification recapitulating the physiological closure of posterior frontal suture

    Directory of Open Access Journals (Sweden)

    Bjorn eBehr

    2011-07-01

    Full Text Available Craniosynostosis, the premature closure of cranial suture, is a pathologic condition that affects 1/2000 live births. Saethre-Chotzen syndrome is a genetic condition characterized by craniosynostosis. The Saethre-Chotzen syndrome, which is defined by loss-of-function mutations in the TWIST gene, is the second most prevalent craniosynostosis. Although much of the genetics and phenotypes in craniosynostosis syndromes is understood, less is known about the underlying ossification mechanism during suture closure. We have previously demonstrated that physiological closure of the posterior frontal (PF suture occurs through endochondral ossification. Moreover, we revealed that antagonizing canonical Wnt signaling in the sagittal suture leads to endochondral ossification of the suture mesenchyme and sagittal synostosis, presumably by inhibiting Twist1. Classic Saethre-Chotzen syndrome is characterized by coronal synostosis, and the haploinsufficient Twist1+/- mice represents a suitable model for studying this syndrome. Thus, we seeked to understand the underlying ossification process in coronal craniosynostosis in Twist1+/- mice. Our data indicate that coronal suture closure in Twist1+/- mice occurs between postnatal day 9 to 13 by endochondral ossification, as shown by histology, gene expression analysis and immunohistochemistry. In conclusion, this study reveals that coronal craniosynostosis in Twist1+/- mice occurs through endochondral ossification. Moreover, it suggests that haploinsufficency of Twist1 gene, a target of canonical Wnt-signaling, and inhibitor of chondrogenesis, mimics conditions of inactive canonical Wnt-signaling leading to craniosynostosis.

  2. Spatio-temporal expression patterns of Wnt signaling pathway during the development of temporomandibular condylar cartilage.

    Science.gov (United States)

    Chen, Kan; Quan, Huixin; Chen, Gang; Xiao, Di

    2017-11-01

    There is a growing body of evidence supporting the involvement of the Wnt signaling pathway in various aspects of skeletal and joint development; however, it is unclear whether it is involved in the process of temporomandibular joint development. In order to clarify this issue, we examined the spatio-temporal distribution of mRNAs and proteins of the Wnt family during the formation of the mandibular condylar cartilage at the prenatal and postnatal stages. An in situ hybridization test revealed no mRNAs of β-catenin and Axin2 during early mesenchymal condensation; the ligands surveyed in this study (including Wnt-4, 5a, and 9a) were clearly detected at various ranges of expression, mainly in the condylar blastema and later distinct cartilaginous layers. Apart from β-catenin and Axin2, the Wnt family members surveyed in this study, including Lef-1, were found to be immunopositive during early chondrogenesis in the condylar cartilage at E14.5. After distinct chondrocyte layers were identified within the cartilage at E16.5, the expression of the Wnt signaling members was different and mainly restricted to proliferating cells and mineralized hypertrophic chondrocytes. In the adult mandibular condylar cartilage, the Wnt-4 mRNA, as well as the Wnt-4 and Wnt-9a proteins, was not observed. Our findings demonstrated that the Wnt signaling pathway was associated with the development of mandibular condylar cartilage. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Chondrogenic potential of bone marrow–derived mesenchymal stem cells on a novel, auricular-shaped, nanocomposite scaffold

    Directory of Open Access Journals (Sweden)

    Kavi H Patel

    2013-12-01

    Full Text Available Reconstruction of the human auricle remains a challenge to plastic surgeons, and current approaches are not ideal. Tissue engineering provides a promising alternative. This study aims to evaluate the chondrogenic potential of bone marrow–derived mesenchymal stem cells on a novel, auricular-shaped polymer. The proposed polyhedral oligomeric silsesquioxane-modified poly(hexanolactone/carbonateurethane/urea nanocomposite polymer has already been transplanted in patients as the world’s first synthetic trachea, tear duct and vascular bypass graft. The nanocomposite scaffold was fabricated via a coagulation/salt-leaching method and shaped into an auricle. Adult bone marrow–derived mesenchymal stem cells were isolated, cultured and seeded onto the scaffold. On day 21, samples were sent for scanning electron microscopy, histology and immunofluorescence to assess for neocartilage formation. Cell viability assay confirmed cytocompatability and normal patterns of cellular growth at 7, 14 and 21 days after culture. This study demonstrates the potential of a novel polyhedral oligomeric silsesquioxane-modified poly(hexanolactone/carbonateurethane/urea scaffold for culturing bone marrow–derived mesenchymal stem cells in chondrogenic medium to produce an auricular-shaped construct. This is supported by scanning electron microscopy, histological and immunofluorescence analysis revealing markers of chondrogenesis including collagen type II, SOX-9, glycosaminoglycan and elastin. To the best of our knowledge, this is the first report of stem cell application on an auricular-shaped scaffold for tissue engineering purposes. Although many obstacles remain in producing a functional auricle, this is a promising step forward.

  4. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering.

    Science.gov (United States)

    Choi, Jane Ru; Yong, Kar Wey; Choi, Jean Yu

    2018-03-01

    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair. © 2017 Wiley Periodicals, Inc.

  5. Reduced reactivation from dormancy but maintained lineage choice of human mesenchymal stem cells with donor age.

    Directory of Open Access Journals (Sweden)

    Verena Dexheimer

    Full Text Available UNLABELLED: Mesenchymal stem cells (MSC are promising for cell-based regeneration therapies but up to date it is still controversial whether their function is maintained throughout ageing. Aim of this study was to address whether frequency, activation in vitro, replicative function, and in vitro lineage choice of MSC is maintained throughout ageing to answer the question whether MSC-based regeneration strategies should be restricted to younger individuals. MSC from bone marrow aspirates of 28 donors (5-80 years were characterized regarding colony-forming unit-fibroblast (CFU-F numbers, single cell cloning efficiency (SSCE, osteogenic, adipogenic and chondrogenic differentiation capacity in vitro. Alkaline phosphatase (ALP activity, mineralization, Oil Red O content, proteoglycan- and collagen type II deposition were quantified. While CFU-F frequency was maintained, SSCE and early proliferation rate decreased significantly with advanced donor age. MSC with higher proliferation rate before start of induction showed stronger osteogenic, adipogenic and chondrogenic differentiation. MSC with high osteogenic capacity underwent better chondrogenesis and showed a trend to better adipogenesis. Lineage choice was, however, unaltered with age. CONCLUSION: Ageing influenced activation from dormancy and replicative function of MSC in a way that it may be more demanding to mobilize MSC to fast cell growth at advanced age. Since fast proliferation came along with high multilineage capacity, the proliferation status of expanded MSC rather than donor age may provide an argument to restrict MSC-based therapies to certain individuals.

  6. A Comparison of Bone Marrow and Cord Blood Mesenchymal Stem Cells for Cartilage Self-Assembly.

    Science.gov (United States)

    White, Jamie L; Walker, Naomi J; Hu, Jerry C; Borjesson, Dori L; Athanasiou, Kyriacos A

    2018-04-02

    Joint injury is a common cause of premature retirement for the human and equine athlete alike. Implantation of engineered cartilage offers the potential to increase the success rate of surgical intervention and hasten recovery times. Mesenchymal stem cells (MSCs) are a particularly attractive cell source for cartilage engineering. While bone marrow-derived MSCs (BM-MSCs) have been most extensively characterized for musculoskeletal tissue engineering, studies suggest that cord blood MSCs (CB-MSCs) may elicit a more robust chondrogenic phenotype. The objective of this study was to determine a superior equine MSC source for cartilage engineering. MSCs derived from bone marrow or cord blood were stimulated to undergo chondrogenesis through aggregate redifferentiation and used to generate cartilage through the self-assembling process. The resulting neocartilage produced from either BM-MSCs or CB-MSCs was compared by measuring mechanical, biochemical, and histological properties. We found that while BM constructs possessed higher tensile properties and collagen content, CB constructs had superior compressive properties comparable to that of native tissue and higher GAG content. Moreover, CB constructs had alkaline phosphatase activity, collagen type X, and collagen type II on par with native tissue suggesting a more hyaline cartilage-like phenotype. In conclusion, while both BM-MSCs and CB-MSCs were able to form neocartilage, CB-MSCs resulted in tissue more closely resembling native equine articular cartilage as determined by a quantitative functionality index. Therefore, CB-MSCs are deemed a superior source for the purpose of articular cartilage self-assembly.

  7. Changes in the extracellular matrix and glycosaminoglycan synthesis during the initiation of regeneration in adult newt forelimbs

    International Nuclear Information System (INIS)

    Mescher, A.L.; Munaim, S.I.

    1986-01-01

    The extracellular matrix (ECM) of the distal tissues in a newt limb stump is completely reorganized in the 2-3-week period following amputation. In view of numerous in vitro studies showing that extracellular material influences cellular migration and proliferation, it is likely that the changes in the limb's ECM are important activities in the process leading to regeneration of such limbs. Using biochemical, autoradiographic, and histochemical techniques we studied temporal and spatial differences in the synthesis of glycosaminoglycans (GAGs) during the early, nerve-dependent phase of limb regeneration. Hyaluronic acid synthesis began with the onset of tissue dedifferentiation, became maximal within 1 weeks, and continued throughout the period of active cell proliferation. Chondroitin sulfate synthesis began somewhat later, increased steadily, and reached very high levels during chondrogenesis. During the first 10 days after amputation, distributions of sulfated and nonsulfated GAGs were both uniform throughout dedifferentiating tissues, except for a heavier localization near the bone. Since nerves are necessary to promote the regenerative process, we examined the neural influence on synthesis and accumulation of extracellular GAGs. Denervation decreased GAG production in all parts of the limb stump by approximately 50%. Newt dorsal root ganglia and brain-derived fibroblast growth factor each produced twofold stimulation of GAG synthesis in cultured 7-day regenerates. The latter effect was primarily on synthesis of hyaluronic acid. The results indicate that the trophic action of nerves on amphibian limb regeneration includes a positive influence on synthesis and extracellular accumulation of GAGs

  8. Extracellular Matrix (ECM Multilayer Membrane as a Sustained Releasing Growth Factor Delivery System for rhTGF-β3 in Articular Cartilage Repair.

    Directory of Open Access Journals (Sweden)

    Soon Sim Yang

    Full Text Available Recombinant human transforming growth factor beta-3 (rhTGF-β3 is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-β3 using a multilayered extracellular matrix (ECM membrane. We hypothesize that the sustained release of rhTGF-β3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS are investigated using rhTGF-β3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs using western blot and circular dichroism (CD analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-β3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-β3-loaded EMLDS ((+ rhTGF-β3 EMLDS in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair.

  9. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    International Nuclear Information System (INIS)

    Kretzschmar, M.; Hainc, N.; Studler, U.; Bieri, O.; Miska, M.; Wiewiorski, M.; Valderrabano, V.

    2015-01-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm 2 /ms) was significantly higher compared to normal cartilage (1.46 μm 2 /ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  10. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, M.; Hainc, N.; Studler, U. [University Hospital Basel, Department of Radiology, Basel (Switzerland); Bieri, O. [University Hospital Basel, Division of Radiological Physics, Basel (Switzerland); Miska, M. [University Hospital, Department of Orthopedics, Heidelberg (Germany); Wiewiorski, M.; Valderrabano, V. [University Hospital Basel, Department of Orthopedic Surgery, Basel (Switzerland)

    2015-04-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm{sup 2}/ms) was significantly higher compared to normal cartilage (1.46 μm{sup 2}/ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  11. Comparative Analysis of Osteogenic/Chondrogenic Differentiation Potential in Primary Limb Bud-Derived and C3H10T1/2 Cell Line-Based Mouse Micromass Cultures

    Directory of Open Access Journals (Sweden)

    Róza Zákány

    2013-08-01

    Full Text Available Murine micromass models have been extensively applied to study chondrogenesis and osteogenesis to elucidate pathways of endochondral bone formation. Here we provide a detailed comparative analysis of the differentiation potential of micromass cultures established from either BMP-2 overexpressing C3H10T1/2 cells or mouse embryonic limb bud-derived chondroprogenitor cells, using micromass cultures from untransfected C3H10T1/2 cells as controls. Although the BMP-2 overexpressing C3H10T1/2 cells failed to form chondrogenic nodules, cells of both models expressed mRNA transcripts for major cartilage-specific marker genes including Sox9, Acan, Col2a1, Snorc, and Hapln1 at similar temporal sequence, while notable lubricin expression was only detected in primary cultures. Furthermore, mRNA transcripts for markers of osteogenic differentiation including Runx2, Osterix, alkaline phosphatase, osteopontin and osteocalcin were detected in both models, along with matrix calcification. Although the adipogenic lineage-specific marker gene FABP4 was also expressed in micromass cultures, Oil Red O-positive cells along with PPARγ2 transcripts were only detected in C3H10T1/2-derived micromass cultures. Apart from lineage-specific marker genes, pluripotency factors (Nanog and Sox2 were also expressed in these models, reflecting on the presence of various mesenchymal lineages as well as undifferentiated cells. This cellular heterogeneity has to be taken into consideration for the interpretation of data obtained by using these models.

  12. Cartilage repair: Generations of autologous chondrocyte transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Resinger, Christoph [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Vecsei, Vilmos [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation.

  13. 3D Printed Structures Filled with Carbon Fibers and Functionalized with Mesenchymal Stem Cell Conditioned Media as In Vitro Cell Niches for Promoting Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Josefa Predestinación García-Ruíz

    2017-12-01

    Full Text Available In this study, we present a novel approach towards the straightforward, rapid, and low-cost development of biomimetic composite scaffolds for tissue engineering strategies. The system is based on the additive manufacture of a computer-designed lattice structure or framework, into which carbon fibers are subsequently knitted or incorporated. The 3D-printed lattice structure acts as support and the knitted carbon fibers perform as driving elements for promoting cell colonization of the three-dimensional construct. A human mesenchymal stem cell (h-MSC conditioned medium (CM is also used for improving the scaffold’s response and promoting cell adhesion, proliferation, and viability. Cell culture results—in which scaffolds become buried in collagen type II—provide relevant information regarding the viability of the composite scaffolds used and the prospective applications of the proposed approach. In fact, the advanced composite scaffold developed, together with the conditioned medium functionalization, constitutes a biomimetic stem cell niche with clear potential, not just for tendon and ligament repair, but also for cartilage and endochondral bone formation and regeneration strategies.

  14. Chondrogenic potential of mesenchymal stem cells from patients with rheumatoid arthritis and osteoarthritis: measurements in a microculture system.

    Science.gov (United States)

    Dudics, Valeria; Kunstár, Aliz; Kovács, János; Lakatos, Tamás; Géher, Pál; Gömör, Béla; Monostori, Eva; Uher, Ferenc

    2009-01-01

    Mesenchymal stem cells (MSCs) have the potential to differentiate into distinct mesenchymal tissues; including cartilage and bone, they can be an attractive cell source for cartilage tissue engineering approaches. Our objective here was to compare the in vitro chondrogenic potential of MSCs isolated from patients with rheumatoid arthritis (RA) and osteoarthritis (OA) with cells from normal donors. Marrow samples were removed during bone surgery and adherent cell cultures were established. The cells were then passed into a newly developed microaggregate culture system in a medium containing transforming growth factor beta3, insulin, dexamethasone and/or demineralized bone matrix. In vitro chondrogenic activity was measured as metabolic sulfate incorporation and type II collagen expression in pellet cultures. Culture-expanded MSCs from RA and OA patients did not differ significantly from the normal population with respect to their chondrogenic potential in vitro. Capability of total protein and proteoglycan synthesis as well as collagen II mRNA expression by cell aggregates was similar for all cell preparations in the presence of the appropriate growth and differentiation factors. Chondroprotective drugs such as chondroitin sulfate and glucosamine enhanced, whereas chloroquine inhibited chondrogenesis in normal donor-derived or patient-derived MSC cultures. Galectin-1, a beta-galactoside-binding protein with marked anti-inflammatory activity, stimulated the chondrogenic differentiation of mesenchymal cells in low (<2 microg/ml) concentration. These findings show that MSCs from RA and OA patients possess similar chondrogenic potential as MSCs isolated from healthy donors, therefore these cells may serve as a potential new prospect in cartilage replacement therapy. 2008 S. Karger AG, Basel.

  15. The effect of scaffold pore size in cartilage tissue engineering.

    Science.gov (United States)

    Nava, Michele M; Draghi, Lorenza; Giordano, Carmen; Pietrabissa, Riccardo

    2016-07-26

    The effect of scaffold pore size and interconnectivity is undoubtedly a crucial factor for most tissue engineering applications. The aim of this study was to examine the effect of pore size and porosity on cartilage construct development in different scaffolds seeded with articular chondrocytes. We fabricated poly-L-lactide-co-trimethylene carbonate scaffolds with different pore sizes, using a solvent-casting/particulate-leaching technique. We seeded primary bovine articular chondrocytes on these scaffolds, cultured the constructs for 2 weeks and examined cell proliferation, viability and cell-specific production of cartilaginous extracellular matrix proteins, including GAG and collagen. Cell density significantly increased up to 50% with scaffold pore size and porosity, likely facilitated by cell spreading on the internal surface of bigger pores, and by increased mass transport of gases and nutrients to cells, and catabolite removal from cells, allowed by lower diffusion barriers in scaffolds with a higher porosity. However, both the cell metabolic activity and the synthesis of cartilaginous matrix proteins significantly decreased by up to 40% with pore size. We propose that the association of smaller pore diameters, causing 3-dimensional cell aggregation, to a lower oxygenation caused by a lower porosity, could have been the condition that increased the cell-specific synthesis of cartilaginous matrix proteins in the scaffold with the smallest pores and the lowest porosity among those tested. In the initial steps of in vitro cartilage engineering, the combination of small scaffold pores and low porosity is an effective strategy with regard to the promotion of chondrogenesis.

  16. Time kinetics of bone defect healing in response to BMP-2 and GDF-5 characterised by in vivo biomechanics

    Directory of Open Access Journals (Sweden)

    D Wulsten

    2011-02-01

    Full Text Available This study reports that treatment of osseous defects with different growth factors initiates distinct rates of repair. We developed a new method for monitoring the progression of repair, based upon measuring the in vivo mechanical properties of healing bone. Two different members of the bone morphogenetic protein (BMP family were chosen to initiate defect healing: BMP-2 to induce osteogenesis, and growth-and-differentiation factor (GDF-5 to induce chondrogenesis. To evaluate bone healing, BMPs were implanted into stabilised 5 mm bone defects in rat femurs and compared to controls. During the first two weeks, in vivo biomechanical measurements showed similar values regardless of the treatment used. However, 2 weeks after surgery, the rhBMP-2 group had a substantial increase in stiffness, which was supported by the imaging modalities. Although the rhGDF-5 group showed comparable mechanical properties at 6 weeks as the rhBMP-2 group, the temporal development of regenerating tissues appeared different with rhGDF-5, resulting in a smaller callus and delayed tissue mineralisation. Moreover, histology showed the presence of cartilage in the rhGDF-5 group whereas the rhBMP-2 group had no cartilaginous tissue.Therefore, this study shows that rhBMP-2 and rhGDF-5 treated defects, under the same conditions, use distinct rates of bone healing as shown by the tissue mechanical properties. Furthermore, results showed that in vivo biomechanical method is capable of detecting differences in healing rate by means of change in callus stiffness due to tissue mineralisation.

  17. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation.

    Science.gov (United States)

    Hamid, Adila A; Idrus, Ruszymah Bt Hj; Saim, Aminuddin Bin; Sathappan, Somasumdaram; Chua, Kien-Hui

    2012-01-01

    Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction. Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction. Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN) was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction. Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adipose-derived stem cells was most prominent after one week of chondrogenic induction.

  18. Chondroregulatory action of prolactin on proliferation and differentiation of mouse chondrogenic ATDC5 cells in 3-dimensional micromass cultures

    International Nuclear Information System (INIS)

    Seriwatanachai, Dutmanee; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2012-01-01

    Highlights: ► Mouse chondrogenic ATDC5 cells expressed PRL receptor mRNAs and proteins. ► Low PRL concentration (10 ng/mL) increased chondrocyte viability and differentiation. ► Higher PRL concentrations (⩾100 ng/mL) decreased viability and increased apoptosis. -- Abstract: A recent investigation in lactating rats has provided evidence that the lactogenic hormone prolactin (PRL) increases endochondral bone growth and bone elongation, presumably by accelerating apoptosis of hypertrophic chondrocytes in the growth plate and/or subsequent chondrogenic matrix mineralization. Herein, we demonstrated the direct chondroregulatory action of PRL on proliferation, differentiation and apoptosis of chondrocytes in 3-dimensional micromass culture of mouse chondrogenic ATDC5 cell line. The results showed that ATDC5 cells expressed PRL receptor (PRLR) transcripts, and responded typically to PRL by downregulating PRLR expression. Exposure to a low PRL concentration of 10 ng/mL, comparable to the normal levels in male and non-pregnant female rats, increased chondrocyte viability, differentiation, proteoglycan accumulation, and mRNA expression of several chondrogenic differentiation markers, such as Sox9, ALP and Hspg2. In contrast, high PRL concentrations of ⩾100 ng/mL, comparable to the levels in pregnancy or lactation, decreased chondrocyte viability by inducing apoptosis, with no effect on chondrogenic marker expression. It could be concluded that chondrocytes directly but differentially responded to non-pregnant and pregnant/lactating levels of PRL, thus suggesting the stimulatory effect of PRL on chondrogenesis in young growing individuals, and supporting the hypothesis of hypertrophic chondrocyte apoptosis in the growth plate of lactating rats.

  19. Increased adipogenesis in cultured embryonic chondrocytes and in adult bone marrow of dominant negative Erg transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sébastien Flajollet

    Full Text Available In monolayer culture, primary articular chondrocytes have an intrinsic tendency to lose their phenotype during expansion. The molecular events underlying this chondrocyte dedifferentiation are still largely unknown. Several transcription factors are important for chondrocyte differentiation. The Ets transcription factor family may be involved in skeletal development. One family member, the Erg gene, is mainly expressed during cartilage formation. To further investigate the potential role of Erg in the maintenance of the chondrocyte phenotype, we isolated and cultured chondrocytes from the rib cartilage of embryos of transgenic mice that express a dominant negative form of Erg (DN-Erg during cartilage formation. DN-Erg expression in chondrocytes cultured for up to 20 days did not affect the early dedifferentiation usually observed in cultured chondrocytes. However, lipid droplets accumulated in DN-Erg chondrocytes, suggesting adipocyte emergence. Transcriptomic analysis using a DNA microarray, validated by quantitative RT-PCR, revealed strong differential gene expression, with a decrease in chondrogenesis-related markers and an increase in adipogenesis-related gene expression in cultured DN-Erg chondrocytes. These results indicate that Erg is involved in either maintaining the chondrogenic phenotype in vitro or in cell fate orientation. Along with the in vitro studies, we compared adipocyte presence in wild-type and transgenic mice skeletons. Histological investigations revealed an increase in the number of adipocytes in the bone marrow of adult DN-Erg mice even though no adipocytes were detected in embryonic cartilage or bone. These findings suggest that the Ets transcription factor family may contribute to the homeostatic balance in skeleton cell plasticity.

  20. HIF-1α as a Regulator of BMP2-Induced Chondrogenic Differentiation, Osteogenic Differentiation, and Endochondral Ossification in Stem Cells

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2015-04-01

    Full Text Available Background/Aims: Joint cartilage defects are difficult to treat due to the limited self-repair capacities of cartilage. Cartilage tissue engineering based on stem cells and gene enhancement is a potential alternative for cartilage repair. Bone morphogenetic protein 2 (BMP2 has been shown to induce chondrogenic differentiation in mesenchymal stem cells (MSCs; however, maintaining the phenotypes of MSCs during cartilage repair since differentiation occurs along the endochondral ossification pathway. In this study, hypoxia inducible factor, or (HIF-1α, was determined to be a regulator of BMP2-induced chondrogenic differentiation, osteogenic differentiation, and endochondral bone formation. Methods: BMP2 was used to induce chondrogenic and osteogenic differentiation in stem cells and fetal limb development. After HIF-1α was added to the inducing system, any changes in the differentiation markers were assessed. Results: HIF-1α was found to potentiate BMP2-induced Sox9 and the expression of chondrogenesis by downstream markers, and inhibit Runx2 and the expression of osteogenesis by downstream markers in vitro. In subcutaneous stem cell implantation studies, HIF-1α was shown to potentiate BMP2-induced cartilage formation and inhibit endochondral ossification during ectopic bone/cartilage formation. In the fetal limb culture, HIF-1α and BMP2 synergistically promoted the expansion of the proliferating chondrocyte zone and inhibited chondrocyte hypertrophy and endochondral ossification. Conclusion: The results of this study indicated that, when combined with BMP2, HIF-1α induced MSC differentiation could become a new method of maintaining cartilage phenotypes during cartilage tissue engineering.

  1. Combined influence of basal media and fibroblast growth factor on the expansion and differentiation capabilities of adipose-derived stem cells.

    Science.gov (United States)

    Ahearne, Mark; Lysaght, Joanne; Lynch, Amy P

    2014-01-01

    Interest in adipose-derived stem cells (ASCs) has increased in recent years due to their multi-linage differentiation capabilities. While much work has been done to optimize the differentiation media, few studies have focused on examining the influence of different expansion media on cell behavior. In this study, three basal media (low glucose Dulbecco's modified Eagle's medium (DMEM), high glucose DMEM and DMEM-F12) supplemented with or without fibroblast growth factor 2 (FGF) were examined to assess their suitability for expanding ASCs. Flow cytometry, colony-forming unit assays (CFU-Fs) and differentiation assays were utilized to study cell behavior. High glucose media CFU-Fs produced fewest colonies while the addition of FGF increased colony size. By passage 2, the majority of cells were positive for CD44, 45, 73, 90 and 105 and negative for CD14, 31 and 45, indicating a mesenchymal phenotype. A sub-population of CD34 positive cells was present among passage 2 cells; however, by passage 4 the cells were negative for CD34. FGF has a negative effective on passage 4 ASC adipogenesis and high glucose media plus FGF-enhanced osteogenic capacity of passage 4 ASCs. FGF supplemented basal media were most suitable for chondrogenesis. High glucose media plus FGF appeared to be the most beneficial for priming ASCs to induce a keratocyte phenotype. These findings demonstrate the reciprocal effect FGF and basal media have on ASCs. This research has implications for those interested regenerating bone, cartilage, cornea or adipose tissues.

  2. Priority of surgical treatment techniques of full cartilage defects of knee joint

    Directory of Open Access Journals (Sweden)

    Андрій Вікторович Літовченко

    2015-10-01

    Full Text Available Aim. Surgical treatment of chondromalacia of knee joint cartilage is an actual problem of the modern orthopedics because the means of conservative therapy can be realized at an initial stage only and almost exhausted at the further ones. Imperfections of palliative surgical techniques are the short-term clinical effect and pathogenetic baselessness because surgical procedure is not directed on reparation of cartilaginous tissue. For today there are a lot of transplantation techniques that are used for biological renewal of articular surface with formation of hyaline or at least hyaline-like cartilage. The deep forage of cartilage defect bottom to the medullary canal is a perspective and priority technique.Methods. The results of treatment of 61 patients with chondromalacia of knee joint of 3-4 degree according to R. Outerbridge are the base of the work. 20 patients of every group underwent microfracturization of cartilage defect bottom and subchondral forage of defect zone. 21 patients underwent the deep forage of defect zone of knee joint according to an offered technique.Result. The results of treatment with microfracturization, subchondral forage and deep forage of defect zone indicate the more strong clinical effect especially in the last clinical group where good and satisfactory results ratios in the term of observation 18 and 24 month remain stable.Conclusions. Deep forage of cartilage defects zone is the most adequate reparative technique of the surgical treatment of local knee joint cartilage defects. Owing to this procedure the number of cells of reparative chondrogenesis predecessors is realized

  3. Cell type dependent morphological adaptation in polyelectrolyte hydrogels governs chondrogenic fate.

    Science.gov (United States)

    Raghothaman, Deepak; Leong, Meng Fatt; Lim, Tze Chiun; Wan, Andrew C A; Ser, Zheng; Lee, Eng Hin; Yang, Zheng

    2016-04-04

    Repair of critical-size articular cartilage defects typically involves delivery of cells in biodegradable, 3D matrices. Differences in the developmental status of mesenchymal stem cells (MSCs) and terminally differentiated mature chondrocytes might be a critical factor in engineering appropriate 3D matrices for articular cartilage tissue engineering. This study examined the relationship between material-driven early cell morphological adaptations and chondrogenic outcomes, by studying the influence of aligned collagen type I (Col I) presentation on chondrocytes and MSC in interfacial polyelectrolyte complexation (IPC)-based hydrogels. In the absence of Col I, both chondrocytes and MSCs adopted rounded cell morphology and formed clusters, with chondrocyte clusters favoring the maintenance of hyaline phenotype, while MSC clusters differentiated to fibro-superficial zone-like chondrocytes. Encapsulated chondrocytes in IPC-Col I hydrogel adopted a fibroblastic morphology forming fibro-superficial zone-like phenotype, which could be reversed by inhibiting actin polymerization using cytochalasin D (CytD). In contrast, adoption of fibroblastic morphology by encapsulated MSCs in IPC-Col I facilitated superior chondrogenesis, generating a mature, hyaline neocartilage tissue. CytD treatment abrogated the elongation of MSCs and brought about a single cell-like state, resulting in insignificant chondrogenic differentiation, underscoring the essential requirement of providing matrix environments that are amenable to cell-cell interactions for robust MSC chondrogenic differentiation. Our study demonstrates that MSCs and culture-expanded chondrocytes favour differential microenvironmental niches and emphasizes the importance of designing biomaterials that meet cell type-specific requirements, in adopting chondrocyte or MSC-based approaches for regenerating hyaline, articular cartilage.

  4. Novel and recurrent mutations of WISP3 in two Chinese families with progressive pseudorheumatoid dysplasia.

    Directory of Open Access Journals (Sweden)

    Jing Sun

    Full Text Available BACKGROUND: The WNT1-inducible signaling pathway protein 3 (WISP3, which belongs to the CCN (cysteine-rich protein 61, connective tissue growth factor, nephroblastoma overexpressed family, is a secreted cysteine-rich matricellular protein that is involved in chondrogenesis, osteogenesis and tumorigenesis. WISP3 gene mutations are associated with progressive pseudorheumatoid dysplasia (PPD, OMIM208230, an autosomal recessive genetic disease that is characterized by the swelling of multiple joints and disproportionate dwarfism. METHODOLOGY/PRINCIPAL FINDINGS: Four PPD patients from two unrelated Chinese families were recruited for this study. The clinical diagnosis was confirmed by medical history, physical examinations, laboratory results and radiological abnormalities. WISP3 mutations were detected by direct DNA sequence analysis. In total, four different mutations were identified, which consisted of two missense mutations, one deletion and one insertion that spanned exons 3, 5 and 6 of the WISP3 gene. One of the missense mutations (c.342T>G/p.C114W and a seven-base pair frameshift deletion (c.716_722del/p.E239fs*16 were novel. The other missense mutation (c.1000T>C/p. S334P and the insertion mutation (c.866_867insA/p.Q289fs*31 had previously been identified in Chinese patients. All four cases had a compound heterozygous status, and their parents were heterozygous carriers of these mutations. CONCLUSIONS/SIGNIFICANCE: The results of our study expand the spectrum of WISP3 mutations that are associated with PPD and further elucidate the function of WISP3.

  5. Bone Marrow Aspirate Concentrate for Cartilage Defects of the Knee: From Bench to Bedside Evidence.

    Science.gov (United States)

    Cotter, Eric J; Wang, Kevin C; Yanke, Adam B; Chubinskaya, Susan

    2018-04-01

    Objective To critically evaluate the current basic science, translational, and clinical data regarding bone marrow aspirate concentrate (BMAC) in the setting of focal cartilage defects of the knee and describe clinical indications and future research questions surrounding the clinical utility of BMAC for treatment of these lesions. Design A literature search was performed using the PubMed and Ovid MEDLINE databases for studies in English (1980-2017) using keywords, including ["bone marrow aspirate" and "cartilage"], ["mesenchymal stem cells" and "cartilage"], and ["bone marrow aspirate" and "mesenchymal stem cells" and "orthopedics"]. A total of 1832 articles were reviewed by 2 independent authors and additional literature found through scanning references of cited articles. Results BMAC has demonstrated promising results in the clinical application for repair of chondral defects as an adjuvant procedure or as an independent management technique. A subcomponent of BMAC, bone marrow derived-mesenchymal stem cells (MSCs) possess the ability to differentiate into cells important for osteogenesis and chondrogenesis. Modulation of paracrine signaling is perhaps the most important function of BM-MSCs in this setting. In an effort to increase the cellular yield, authors have shown the ability to expand BM-MSCs in culture while maintaining phenotype. Conclusions Translational studies have demonstrated good clinical efficacy of BMAC both concomitant with cartilage restoration procedures, at defined time points after surgery, and as isolated injections. Early clinical data suggests BMAC may help stimulate a more robust hyaline cartilage repair tissue response. Numerous questions remain regarding BMAC usage, including cell source, cell expansion, optimal pathology, and injection timing and quantity.

  6. Deciphering chondrocyte behaviour in matrix-induced autologous chondrocyte implantation to undergo accurate cartilage repair with hyaline matrix.

    Science.gov (United States)

    Demoor, M; Maneix, L; Ollitrault, D; Legendre, F; Duval, E; Claus, S; Mallein-Gerin, F; Moslemi, S; Boumediene, K; Galera, P

    2012-06-01

    Since the emergence in the 1990s of the autologous chondrocytes transplantation (ACT) in the treatment of cartilage defects, the technique, corresponding initially to implantation of chondrocytes, previously isolated and amplified in vitro, under a periosteal membrane, has greatly evolved. Indeed, the first generations of ACT showed their limits, with in particular the dedifferentiation of chondrocytes during the monolayer culture, inducing the synthesis of fibroblastic collagens, notably type I collagen to the detriment of type II collagen. Beyond the clinical aspect with its encouraging results, new biological substitutes must be tested to obtain a hyaline neocartilage. Therefore, the use of differentiated chondrocytes phenotypically stabilized is essential for the success of ACT at medium and long-term. That is why researchers try now to develop more reliable culture techniques, using among others, new types of biomaterials and molecules known for their chondrogenic activity, giving rise to the 4th generation of ACT. Other sources of cells, being able to follow chondrogenesis program, are also studied. The success of the cartilage regenerative medicine is based on the phenotypic status of the chondrocyte and on one of its essential component of the cartilage, type II collagen, the expression of which should be supported without induction of type I collagen. The knowledge accumulated by the scientific community and the experience of the clinicians will certainly allow to relief this technological challenge, which influence besides, the validation of such biological substitutes by the sanitary authorities. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Transcriptomic insights into the genetic basis of mammalian limb diversity.

    Science.gov (United States)

    Maier, Jennifer A; Rivas-Astroza, Marcelo; Deng, Jenny; Dowling, Anna; Oboikovitz, Paige; Cao, Xiaoyi; Behringer, Richard R; Cretekos, Chris J; Rasweiler, John J; Zhong, Sheng; Sears, Karen E

    2017-03-23

    From bat wings to whale flippers, limb diversification has been crucial to the evolutionary success of mammals. We performed the first transcriptome-wide study of limb development in multiple species to explore the hypothesis that mammalian limb diversification has proceeded through the differential expression of conserved shared genes, rather than by major changes to limb patterning. Specifically, we investigated the manner in which the expression of shared genes has evolved within and among mammalian species. We assembled and compared transcriptomes of bat, mouse, opossum, and pig fore- and hind limbs at the ridge, bud, and paddle stages of development. Results suggest that gene expression patterns exhibit larger variation among species during later than earlier stages of limb development, while within species results are more mixed. Consistent with the former, results also suggest that genes expressed at later developmental stages tend to have a younger evolutionary age than genes expressed at earlier stages. A suite of key limb-patterning genes was identified as being differentially expressed among the homologous limbs of all species. However, only a small subset of shared genes is differentially expressed in the fore- and hind limbs of all examined species. Similarly, a small subset of shared genes is differentially expressed within the fore- and hind limb of a single species and among the forelimbs of different species. Taken together, results of this study do not support the existence of a phylotypic period of limb development ending at chondrogenesis, but do support the hypothesis that the hierarchical nature of development translates into increasing variation among species as development progresses.

  8. Effects of intermittent versus continuous parathyroid hormone administration on condylar chondrocyte proliferation and differentiation

    International Nuclear Information System (INIS)

    Liu, Qi; Wan, Qilong; Yang, Rongtao; Zhou, Haihua; Li, Zubing

    2012-01-01

    Highlights: ► Different PTH administration exerts different effects on condylar chondrocyte. ► Intermittent PTH administration suppresses condylar chondrocyte proliferation. ► Continuous PTH administration maintains condylar chondrocyte proliferating. ► Intermittent PTH administration enhances condylar chondrocyte differentiation. -- Abstract: Endochondral ossification is a complex process involving chondrogenesis and osteogenesis regulated by many hormones and growth factors. Parathyroid hormone (PTH), one of the key hormones regulating bone metabolism, promotes osteoblast differentiation and osteogenesis by intermittent administration, whereas continuous PTH administration inhibits bone formation. However, the effects of PTH on chondrocyte proliferation and differentiation are still unclear. In this study, intermittent PTH administration presented enhanced effects on condylar chondrocyte differentiation and bone formation, as demonstrated by increased mineral nodule formation and alkaline phosphatase (ALP) activity, up-regulated runt-related transcription factor 2 (RUNX2), ALP, collagen type X (COL10a1), collagen type I (COL1a1), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2) and osterix (OSX) mRNA and/or protein expression. On the contrary, continuous PTH administration promoted condylar chondrocyte proliferation and suppressed its differentiation, as demonstrated by up-regulated collagen type II (COL2a1) mRNA expression, reduced mineral nodule formation and down-regulated expression of the mRNAs and/or proteins mentioned above. Our data suggest that PTH can regulate condylar chondrocyte proliferation and differentiation, depending on the type of PTH administration. These results provide new insight into the effects of PTH on condylar chondrocytes and new evidence for using local PTH administration to cure mandibular asymmetry.

  9. Aislamiento y caracterización de células “stem” mesenquimales de médula ósea humana según criterios de la Sociedad Internacional de Terapia Celular

    Directory of Open Access Journals (Sweden)

    Jose Alejandro Aristizabal-Castellanos

    2010-12-01

    Full Text Available Isolation and characterization of mesenchymal stem cells from human bone marrow according to the criteria of the InternationalSociety for Cellular Therapy. Bone marrow (BM is an important source for isolating mesenchymal stem cells (MSC useful inimmunomodulation and tissue regeneration therapies. Objective. To isolate and characterize mesenchymal stem cells obtained from BMmeeting the requirements of the International Society for Cellular Therapy. Materials and methods. BM samples were collected fromvolunteer donors attending the Orthopedics Service of the San Ignacio University Hospital (Bogotá, Colombia. Morphological characteristicswere evaluated by inverted microscopy and the immunophenotype was determined by flow cytometry. Protocols were developed foradipogenic, osteogenic and chondrogenic differentiation using the Oil Red O, alkaline phosphatase and safranin stains, respectively.Results. We collected 24 samples of BM from patients with total hip replacement (volume of BM sample: 5-45 ml. Cells with afibroblastoid morphology were isolated from 21 BM samples (isolation efficiency: 87.5%. No statistical significant differences were foundbetween the hematopoyetic antigens (CD34 and CD45, p>0.05 in the immunophenotypic evaluation (of MSC from BM; on the contrary,there were differences (p=0.006 between the hematopoyetic antigen CD45 and the mesenchymal antigens (CD13, CD44, CD73, CD90,CD105, HLA-I, and HLA-DR. Oil Red O stain revealed the presence of multilocular adipocytes, in the osteogenic induction we observedlocalized mineralization nodules, and chondrogenesis was positive as revealed by the safranin stain. Conclusion. MSC were satisfactorilyisolated from BM and characterized according to the international standards.

  10. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation

    Directory of Open Access Journals (Sweden)

    Adila A Hamid

    2012-01-01

    Full Text Available OBJECTIVES: Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction. MATERIALS AND METHODS: Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction. RESULTS: Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction. CONCLUSION: Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adiposederived stem cells was most prominent after one week of chondrogenic induction.

  11. The transcription factor ATF3 is upregulated during chondrocyte differentiation and represses cyclin D1 and A gene transcription

    Directory of Open Access Journals (Sweden)

    James Claudine G

    2006-09-01

    Full Text Available Abstract Background Coordinated chondrocyte proliferation and differentiation are required for normal endochondral bone growth. Transcription factors binding to the cyclicAMP response element (CRE are known to regulate these processes. One member of this family, Activating Tanscription Factor 3 (ATF3, is expressed during skeletogenesis and acts as a transcriptional repressor, but the function of this protein in chondrogenesis is unknown. Results Here we demonstrate that Atf3 mRNA levels increase during mouse chondrocyte differentiation in vitro and in vivo. In addition, Atf3 mRNA levels are increased in response to cytochalasin D treatment, an inducer of chondrocyte maturation. This is accompanied by increased Atf3 promoter activity in cytochalasin D-treated chondrocytes. We had shown earlier that transcription of the cell cycle genes cyclin D1 and cyclin A in chondrocytes is dependent on CREs. Here we demonstrate that overexpression of ATF3 in primary mouse chondrocytes results in reduced transcription of both genes, as well as decreased activity of a CRE reporter plasmid. Repression of cyclin A transcription by ATF3 required the CRE in the cyclin A promoter. In parallel, ATF3 overexpression reduces the activity of a SOX9-dependent promoter and increases the activity of a RUNX2-dependent promoter. Conclusion Our data suggest that transcriptional induction of the Atf3 gene in maturing chondrocytes results in down-regulation of cyclin D1 and cyclin A expression as well as activation of RUNX2-dependent transcription. Therefore, ATF3 induction appears to facilitate cell cycle exit and terminal differentiation of chondrocytes.

  12. The effects of cyclic hydrostatic pressure on chondrogenesis and viability of human adipose- and bone marrow-derived mesenchymal stem cells in three-dimensional agarose constructs.

    Science.gov (United States)

    Puetzer, Jennifer; Williams, John; Gillies, Allison; Bernacki, Susan; Loboa, Elizabeth G

    2013-01-01

    This study investigates the effects of cyclic hydrostatic pressure (CHP) on chondrogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3-D) agarose constructs maintained in a complete growth medium without soluble chondrogenic inducing factors. hASCs were seeded in 2% agarose hydrogels and exposed to 7.5 MPa CHP for 4 h per day at a frequency of 1 Hz for up to 21 days. On days 0, 7, 14, and 21, the expression levels of collagen II, Sox9, aggrecan, and cartilage oligomeric matrix protein (COMP) were examined by real-time reverse transcriptase-polymerase chain reaction analysis. Gene expression analysis found collagen II mRNA expression in only the CHP-loaded construct at day 14 and at no other time during the study. CHP-loaded hASCs exhibited upregulated mRNA expression of Sox9, aggrecan, and COMP at day 7 relative to unloaded controls, suggesting that CHP initiated chondrogenic differentiation of hASCs in a manner similar to human bone marrow-derived mesenchymal stem cells (hMSC). By day 14, however, loaded hASC constructs exhibited significantly lower mRNA expression of the chondrogenic markers than unloaded controls. Additionally, by day 21, the samples exhibited little measurable mRNA expression at all, suggesting a decreased viability. Histological analysis validated the lack of mRNA expression at day 21 for both the loaded and unloaded control samples with a visible decrease in the cell number and change in morphology. A comparative study with hASCs and hMSCs further examined long-term cell viability in 3-D agarose constructs of both cell types. Decreased cell metabolic activity was observed throughout the 21-day experimental period in both the CHP-loaded and control constructs of both hMSCs and hASCs, suggesting a decrease in cell metabolic activity, alluding to a decrease in cell viability. This suggests that a 2% agarose hydrogel may not optimally support hASC or hMSC viability in a complete growth medium in the absence of soluble chondrogenic inducing factors over long culture durations. This is the first study to examine the ability of mechanical stimuli alone, in the absence of chondrogenic factors transforming growth factor beta (TGF-β)3, TGF-β1 and/or bone morphogenetic protein 6 (BMP6) to induce hASC chondrogenic differentiation. The findings of this study suggest that CHP initiates hASC chondrogenic differentiation, even in the absence of soluble chondrogenic inductive factors, confirming the importance of considering both mechanical stimuli and appropriate 3-D culture for cartilage tissue engineering using hASCs.

  13. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.

    Directory of Open Access Journals (Sweden)

    Darren Paul Burke

    Full Text Available Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.

  14. PRP for Degenerative Cartilage Disease: A Systematic Review of Clinical Studies.

    Science.gov (United States)

    Laver, Lior; Marom, Niv; Dnyanesh, Lad; Mei-Dan, Omer; Espregueira-Mendes, João; Gobbi, Alberto

    2017-10-01

    To explore the utilization of platelet-rich plasma (PRP) for degenerative cartilage processes and evaluate whether there is sufficient evidence to better define its potential effects. Systematic literature reviews were conducted in PubMed/MEDLINE and Cochrane electronic databases till May 2015, using the keywords "platelet-rich plasma OR PRP OR autologous conditioned plasma OR ACP AND cartilage OR chondrocyte OR chondrogenesis OR osteoarthritis (OA) OR arthritis." The final result yielded 29 articles. Twenty-six studies examined PRP administration for knee OA and 3 involved PRP administration for hip OA. The results included 9 prospective randomized controlled trials (RCTs) (8 knee and 1 hip), 4 prospective comparative studies, 14 case series, and 2 retrospective comparative studies. Hyaluronic acid (HA) was used as a control in 11 studies (7 RCTs, 2 prospective comparative studies, and 2 retrospective cohort). Overall, all RCTs reported on improved symptoms compared to baseline scores. Only 2 RCTs-one for knee and one for hip-did not report significant superiority of PRP compared to the control group (HA). Nine out of 11 HA controlled studies showed significant better results in the PRP groups. A trend toward better results for PRP injections in patients with early knee OA and young age was observed; however, lack of uniformity was evident in terms of indications, inclusion criteria, and pathology definitions in the different studies. Current clinical evidence supports the benefit in PRP treatment for knee and hip OA, proven to temporarily relieve pain and improve function of the involved joint with superior results compared with several alternative treatments. Further research to establish the optimal preparation protocol and characteristics of PRP injections for OA is needed.

  15. Developing a Customized Perfusion Bioreactor Prototype with Controlled Positional Variability in Oxygen Partial Pressure for Bone and Cartilage Tissue Engineering.

    Science.gov (United States)

    Lee, Poh Soo; Eckert, Hagen; Hess, Ricarda; Gelinsky, Michael; Rancourt, Derrick; Krawetz, Roman; Cuniberti, Gianaurelio; Scharnweber, Dieter

    2017-05-01

    Skeletal development is a multistep process that involves the complex interplay of multiple cell types at different stages of development. Besides biochemical and physical cues, oxygen tension also plays a pivotal role in influencing cell fate during skeletal development. At physiological conditions, bone cells generally reside in a relatively oxygenated environment whereas chondrocytes reside in a hypoxic environment. However, it is technically challenging to achieve such defined, yet diverse oxygen distribution on traditional in vitro cultivation platforms. Instead, engineered osteochondral constructs are commonly cultivated in a homogeneous, stable environment. In this study, we describe a customized perfusion bioreactor having stable positional variability in oxygen tension at defined regions. Further, engineered collagen constructs were coaxed into adopting the shape and dimensions of defined cultivation platforms that were precasted in 1.5% agarose bedding. After cultivating murine embryonic stem cells that were embedded in collagen constructs for 50 days, mineralized constructs of specific dimensions and a stable structural integrity were achieved. The end-products, specifically constructs cultivated without chondroitin sulfate A (CSA), showed a significant increase in mechanical stiffness compared with their initial gel-like constructs. More importantly, the localization of osteochondral cell types was specific and corresponded to the oxygen tension gradient generated in the bioreactor. In addition, CSA in complementary with low oxygen tension was also found to be a potent inducer of chondrogenesis in this system. In summary, we have demonstrated a customized perfusion bioreactor prototype that is capable of generating a more dynamic, yet specific cultivation environment that could support propagation of multiple osteochondral lineages within a single engineered construct in vitro. Our system opens up new possibilities for in vitro research on human

  16. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold.

    Science.gov (United States)

    Sha'ban, Munirah; Yoon, Sun Jung; Ko, Youn Kyung; Ha, Hyun Jung; Kim, Soon Hee; So, Jung Won; Idrus, Ruszymah Bt Hj; Khang, Gilson

    2008-01-01

    Previously, we have proven that fibrin and poly(lactic-co-glycolic acid) (PLGA) scaffolds facilitate cell proliferation, matrix production and early chondrogenesis of rabbit articular chondrocytes in in vitro and in vivo experiments. In this study, we evaluated the potential of fibrin/PLGA scaffold for intervertebral disc (IVD) tissue engineering using annulus fibrosus (AF) and nucleus pulposus (NP) cells in relation to potential clinical application. PLGA scaffolds were soaked in cells-fibrin suspension and polymerized by dropping thrombin-sodium chloride (CaCl(2)) solution. A PLGA-cell complex without fibrin was used as control. Higher cellular proliferation activity was observed in fibrin/PLGA-seeded AF and NP cells at each time point of 3, 7, 14 and 7 days using the MTT assay. After 3 weeks in vitro incubation, fibrin/PLGA exhibited a firmer gross morphology than PLGA groups. A significant cartilaginous tissue formation was observed in fibrin/PLGA, as proven by the development of cells cluster of various sizes and three-dimensional (3D) cartilaginous histoarchitecture and the presence of proteoglycan-rich matrix and glycosaminoglycan (GAG). The sGAG production measured by 1,9-dimethylmethylene blue (DMMB) assay revealed greater sGAG production in fibrin/PLGA than PLGA group. Immunohistochemical analyses showed expressions of collagen type II, aggrecan core protein and collagen type I genes throughout in vitro culture in both fibrin/PLGA and PLGA. In conclusion, fibrin promotes cell proliferation, stable in vitro tissue morphology, superior cartilaginous tissue formation and sGAG production of AF and NP cells cultured in PLGA scaffold. The 3D porous PLGA scaffold-cell complexes using fibrin can provide a vehicle for delivery of cells to regenerate tissue-engineered IVD tissue.

  17. BMP and TGFbeta pathways in human central chondrosarcoma: enhanced endoglin and Smad 1 signaling in high grade tumors

    International Nuclear Information System (INIS)

    Boeuf, Stephane; Bovée, Judith VMG; Lehner, Burkhard; Akker, Brendy van den; Ruler, Maayke van; Cleton-Jansen, Anne-Marie; Richter, Wiltrud

    2012-01-01

    As major regulators of normal chondrogenesis, the bone morphogenic protein (BMP) and transforming growth factor β (TGFB) signaling pathways may be involved in the development and progression of central chondrosarcoma. In order to uncover their possible implication, the aim of this study was to perform a systematic quantitative study of the expression of BMPs, TGFBs and their receptors and to assess activity of the corresponding pathways in central chondrosarcoma. Gene expression analysis was performed by quantitative RT-PCR in 26 central chondrosarcoma and 6 healthy articular cartilage samples. Expression of endoglin and nuclear localization of phosphorylated Smad1/5/8 and Smad2 was assessed by immunohistochemical analysis. The expression of TGFB3 and of the activin receptor-like kinase ALK2 was found to be significantly higher in grade III compared to grade I chondrosarcoma. Nuclear phosphorylated Smad1/5/8 and Smad2 were found in all tumors analyzed and the activity of both signaling pathways was confirmed by functional reporter assays in 2 chondrosarcoma cell lines. Immunohistochemical analysis furthermore revealed that phosphorylated Smad1/5/8 and endoglin expression were significantly higher in high-grade compared to low-grade chondrosarcoma and correlated to each other. The BMP and TGFβ signaling pathways were found to be active in central chondrosarcoma cells. The correlation of Smad1/5/8 activity to endoglin expression suggests that, as described in other cell types, endoglin could enhance Smad1/5/8 signaling in high-grade chondrosarcoma cells. Endoglin expression coupled to Smad1/5/8 activation could thus represent a functionally important signaling axis for the progression of chondrosarcoma and a regulator of the undifferentiated phenotype of high-grade tumor cells

  18. Immunohistochemistry Evaluation of TGF-β1, SOX-9, Type II Collagen and Aggrecan in Cartilage Lesions Treated with Conditioned Medium of Umbilical Cord Mesencyhmal Stem Cells in Wistar Mice (Rattus novergicus

    Directory of Open Access Journals (Sweden)

    Bintang Soetjahjo

    2018-01-01

    Full Text Available Currently, umbilical cord mesenchymal stem cells have the potential to be used as treatment options for any cartilage lesion. This research aimed to evaluate the effects of conditioned medium from umbilical cord mesenchymal stem cells (UC-MSC on damaged cartilage through the expression of proteins TGF-β1, SOX-9, type II collagen and aggrecan, which are known to be related to chondrogenesis. UC-MSC were isolated from 19-days-pregnant Wistar mice and were cultured using the standard procedure to obtain 80% confluence. Subsequently, the culture was confirmed through a microscopic examination that was driven to be an embryoid body to obtain a pre-condition medium. This research utilized 3-month-old male Wistar mice and was categorized into 6 groups (3 control and 3 treatment groups. Each animal had surgery performed to create a femur condyle cartilage defect. The treatment groups were administered a dose of stem cells at 1 mL/kg. Next, immunohistochemical (IHC staining was performed to examine the expression of TGF-β1, SOX-9, type II collagen and aggrecan in the 2nd, 3rd, and 4th month of evaluation. The results were analyzed statistically using ANOVA test. For each of the treatment groups, there was increased expression (p < 0.05 in all proteins TGF-β1, SOX-9, type II collagen and aggrecan when compared with control groups at the 2nd, 3rd, and 4th month of evaluation. Pre-conditioned medium from UC-MSC potentially increases the expression of TGF-β1, SOX-9, type II collagen and aggrecan in the damaged cartilage of Wistar mice.

  19. Distribution of genes for parathyroid hormone (PTH)-related peptide, Indian hedgehog, PTH receptor and patched in the process of experimental spondylosis in mice.

    Science.gov (United States)

    Nakase, Takanobu; Ariga, Kenta; Meng, Wenxiang; Iwasaki, Motoki; Tomita, Tetsuya; Myoui, Akira; Yonenobu, Kazuo; Yoshikawa, Hideki

    2002-07-01

    Little is known about the molecular mechanisms underlying the process of spondylosis. The authors determined the extent of genetic localization of major regulators of chondrogenesis such as Indian hedgehog (Ihh) and parathyroid hormone (PTH)-related peptide (PTHrP) and their receptors during the development of spondylosis in their previously established experimental mouse model. Experimental spondylosis was induced in 5-week-old ICR mice. The cervical spines were chronologically harvested, and histological sections were prepared. Messenger (m) RNA for PTHrP, Ihh, PTH receptor (PTHR; a receptor for PTHrP), patched (Ptc; a receptor for Ihh), bone morphogenetic protein (BMP)-6, and collagen type X (COL10; a marker for mature chondrocyte) was localized in the tissue sections by performing in situ hybridization. In the early stage, mRNA for COL10, Ihh, and BMP-6 was absent; however, mRNA for PTHrP, PTHR, and Ptc was detected in the anterior margin of the cervical discs. In the late stage, evidence of COL10 mRNA began to be detected, and transcripts for Ihh, PTHrP, and BMP-6 were localized in hypertrophic chondrocytes adjacent to the bone-forming area in osteophyte. Messenger RNA for Ptc and PTHR continued to localize at this stage. In control mice, expression of these genes was absent. The localization of PTHrP, Ihh, BMP-6, and the receptors PTHR and Ptc demonstrated in the present experimental model indicates the possible involvement of molecular signaling by PTHrP (through the PTHR), Ihh (through the Ptc), and BMP-6 in the regulation of chondrocyte maturation leading to endochondral ossification in spondylosis.

  20. Creating an Animal Model of Tendinopathy by Inducing Chondrogenic Differentiation with Kartogenin.

    Science.gov (United States)

    Yuan, Ting; Zhang, Jianying; Zhao, Guangyi; Zhou, Yiqin; Zhang, Chang-Qing; Wang, James H-C

    2016-01-01

    Previous animal studies have shown that long term rat treadmill running induces over-use tendinopathy, which manifests as proteoglycan accumulation and chondrocytes-like cells within the affected tendons. Creating this animal model of tendinopathy by long term treadmill running is however time-consuming, costly and may vary among animals. In this study, we used a new approach to develop an animal model of tendinopathy using kartogenin (KGN), a bio-compound that can stimulate endogenous stem/progenitor cells to differentiate into chondrocytes. KGN-beads were fabricated and implanted into rat Achilles tendons. Five weeks after implantation, chondrocytes and proteoglycan accumulation were found at the KGN implanted site. Vascularity as well as disorganization in collagen fibers were also present in the same site along with increased expression of the chondrocyte specific marker, collagen type II (Col. II). In vitro studies confirmed that KGN was released continuously from KGN-alginate in vivo beads and induced chondrogenic differentiation of tendon stem/progenitor cells (TSCs) suggesting that chondrogenesis after KGN-bead implantation into the rat tendons is likely due to the aberrant differentiation of TSCs into chondrocytes. Taken together, our results showed that KGN-alginate beads can be used to create a rat model of tendinopathy, which, at least in part, reproduces the features of over-use tendinopathy model created by long term treadmill running. This model is mechanistic (stem cell differentiation), highly reproducible and precise in creating localized tendinopathic lesions. It is expected that this model will be useful to evaluate the effects of various topical treatments such as NSAIDs and platelet-rich plasma (PRP) for the treatment of tendinopathy.