Spin, charge, and orbital orderings in iron-based superconductors
Jiang Qing; Kang Yao-Tai; Yao Dao-Xin
2013-01-01
In this article,we briefly review spin,charge,and orbital orderings in iron-based superconductors,as well as the multi-orbital models.The interplay of spin,charge,and orbital orderings is a key to understand the high temperature superconductivity.As an illustration,we use the two-orbital model to show the spin and charge orderings in iron-based superconductors based on the mean-field approximation in real space.The typical spin and charge orderings are shown by choosing appropriate parameters,which are in good agreement with experiments.We also show the effect of Fe vacancies,which can introduce the nematic phase and interesting magnetic ground states.The orbital ordering is also discussed in iron-based superconductors.It is found that disorder may play a role to produce the superconductivity.
Charge Order Induced in an Orbital Density-Wave State
Singh, Dheeraj Kumar; Takimoto, Tetsuya
2016-04-01
Motivated by recent angle resolved photoemission measurements [D. V. Evtushinsky et al., Phys. Rev. Lett. 105, 147201 (2010)] and evidence of the density-wave state for the charge and orbital ordering [J. García et al., Phys. Rev. Lett. 109, 107202 (2012)] in La0.5Sr1.5MnO4, the issue of charge and orbital ordering in a two-orbital tight-binding model for layered manganite near half doping is revisited. We find that the charge order with the ordering wavevector 2{Q} = (π ,π ) is induced by the orbital order of d-/d+-type having B1g representation with a different ordering wavevector Q, where the orbital order as the primary order results from the strong Fermi-surface nesting. It is shown that the induced charge order parameter develops according to TCO - T by decreasing the temperature below the orbital ordering temperature TCO, in addition to the usual mean-field behavior of the orbital order parameter. Moreover, the same orbital order is found to stabilize the CE-type spin arrangement observed experimentally below TCE < TCO.
Charge-ordering cascade with spin-orbit Mott dimer states in metallic iridium ditelluride.
Ko, K-T; Lee, H-H; Kim, D-H; Yang, J-J; Cheong, S-W; Eom, M J; Kim, J S; Gammag, R; Kim, K-S; Kim, H-S; Kim, T-H; Yeom, H-W; Koo, T-Y; Kim, H-D; Park, J-H
2015-01-01
Spin-orbit coupling results in technologically-crucial phenomena underlying magnetic devices like magnetic memories and energy-efficient motors. In heavy element materials, the strength of spin-orbit coupling becomes large to affect the overall electronic nature and induces novel states such as topological insulators and spin-orbit-integrated Mott states. Here we report an unprecedented charge-ordering cascade in IrTe2 without the loss of metallicity, which involves localized spin-orbit Mott states with diamagnetic Ir(4+)-Ir(4+) dimers. The cascade in cooling, uncompensated in heating, consists of first order-type consecutive transitions from a pure Ir(3+) phase to Ir(3+)-Ir(4+) charge-ordered phases, which originate from Ir 5d to Te 5p charge transfer involving anionic polymeric bond breaking. Considering that the system exhibits superconductivity with suppression of the charge order by doping, analogously to cuprates, these results provide a new electronic paradigm of localized charge-ordered states interacting with itinerant electrons through large spin-orbit coupling. PMID:26059464
Charge order from orbital-dependent coupling evidenced by NbSe2.
Flicker, Felix; van Wezel, Jasper
2015-01-01
Niobium diselenide has long served as a prototype of two-dimensional charge ordering, believed to arise from an instability of the electronic structure analogous to the one-dimensional Peierls mechanism. Despite this, various anomalous properties have recently been identified experimentally, which cannot be explained by Peierls-like weak-coupling theories. Here, we consider instead a model with strong electron-phonon coupling, taking into account both the full momentum and orbital dependence of the coupling matrix elements. We show that both are necessary for a consistent description of the full range of experimental observations. We argue that NbSe2 is typical in this sense, and that any charge-ordered material in more than one dimension will generically be shaped by the momentum and orbital dependence of its electron-phonon coupling as well as its electronic structure. The consequences will be observable in many charge-ordered materials, including cuprate superconductors. PMID:25948390
Staircase effect in metamagnetic transitions of charge and orbitally ordered manganites
This paper reports on peculiar metamagnetic transitions which take place in antiferromagnetic, charge and orbitally ordered manganites. At very low temperatures, the virgin magnetization curves of some of these compounds exhibit several, sharp steps giving rise to a staircase-like shape. This staircase effect is shown to be sensitive to various experimental parameters. Several potential interpretations of the staircase effect are discussed in relation to this set of results. A martensitic-like scenario, involving a leading role of the structural distortions associated to the collapse of the orbital ordering, is found to be the most plausible interpretation
RESONANT X-RAY SCATTERING AS A PROBE OF ORBITAL AND CHARGE ORDERING
Resonant x-ray scattering is a powerful experimental technique for probing orbital and charge ordering. It involves tuning the incident photon energy to an absorption edge of the relevant ion and observing scattering at previously 'forbidden' Bragg peaks, and it allows high-resolution, quantitative studies of orbital and charge order--even from small samples. Further, resonant x-ray scattering from orbitally ordered systems exhibits polarization- and azimuthal-dependent properties that provide additional information about the details of the orbital order that is difficult, or impossible, to obtain with any other technique. In the manganites, the sensitivity to charge and orbital ordering is enhanced when the incident photon energy is tuned near the Mn K absorption edge (6.539 keV), which is the lowest energy at which a 1s electron can be excited into an unoccupied state. In this process, the core electron is promoted to an intermediate excited state, which decays with the emission of a photon. The sensitivity to charge ordering is believed to be due to the small difference in K absorption edges of the Mn3+ and Mn4+ sites. For orbital ordering, the sensitivity arises from a splitting--or difference in the weight of the density of states [239]--of the orbitals occupied by the excited electron in the intermediate state. In the absence of such a splitting, there is no resonant enhancement of the scattering intensity. In principle, other absorption edges in which the intermediate state is anisotropic could be utilized, but the strong dipole transition to the Mn 4p levels--and their convenient energies for x-ray diffraction--make the K edge well-suited to studies of manganites. The Mn 4p levels are affected by the symmetry of the orbital ordering, which makes the technique sensitive to the orbital degree of freedom. Therefore resonant x-ray scattering can be used to obtain important quantitative information concerning the details of this electronic order. Two mechanisms
Intramolecular charge ordering in the multi molecular orbital system (TTM-TTP)I3
Bonnet, Marie-Laure; Robert, Vincent; Tsuchiizu, Masahisa; Omori, Yukiko; Suzumura, Yoshikazu
2010-06-01
Starting from the structure of the (TTM-TTP)I3 molecular-based material, we examine the characteristics of frontier molecular orbitals using ab initio (CASSCF/CASPT2) configurations interaction calculations. It is shown that the singly occupied and second-highest-occupied molecular orbitals are close to each other, i.e., this compound should be regarded as a two-orbital system. By dividing virtually the [TTM-TTP] molecule into three fragments, an effective model is constructed to rationalize the origin of this picture. In order to investigate the low-temperature, symmetry breaking experimentally observed in the crystal, the electronic distribution in a pair of [TTM-TTP] molecules is analyzed from CASPT2 calculations. Our inspection supports and explains the speculated intramolecular charge ordering which is likely to give rise to low-energy magnetic properties.
SHVETS, IGOR
2013-01-01
PUBLISHED Charge-orbital ordering is commonly present in complex transition metal oxides and offers interesting opportunities for novel electronic devices. In this work, we demonstrate for the first time that the magnetization states of the spin valve can be directly manipulated by charge-orbital ordering. We investigate the interlayer exchange coupling (IEC) between two epitaxial magnetite layers separated by a nonmagnetic epitaxial MgO dielectric. We find that the state of the charge-orb...
Charge, spin and orbital order in the candidate multiferroic material LuFe2O4
This thesis is a detailed study of the magnetic, structural and orbital order parameters of the candidate multiferroic material LuFe2O4. Multiferroic oxides with a strong magnetoelectric coupling are of high interest for potential information technology applications, but they are rare because the traditional mechanism of ferroelectricity is incompatible with magnetism. Consequently, much attention is focused on various unconventional mechanisms of ferroelectricity. Of these, ferroelectricity originating from charge ordering (CO) is particularly intriguing because it potentially combines large electric polarizations with strong magneto-electric coupling. However, examples of oxides where this mechanism occurs are exceedingly rare and none is really well understood. LuFe2O4 is often cited as the prototypical example of CO-based ferroelectricity. In this material, the order of Fe valences has been proposed to render the triangular Fe/O bilayers polar by making one of the two layers rich in Fe2+ and the other rich in Fe3+, allowing for a possible ferroelectric stacking of the individual bilayers. Because of this new mechanism for ferroelectricity, and also because of the high transition temperatures of charge order (TCO ∝320K) and ferro magnetism (TN∝240 K) LuFe2O4 has recently attracted increasing attention. Although these polar bilayers are generally accepted in the literature for LuFe2O4, direct proof is lacking. An assumption-free experimental determination of whether or not the CO in the Fe/O bilayers is polar would be crucial, given the dependence of the proposed mechanism of ferroelectricity from CO in LuFe2O4 on polar bilayers. This thesis starts with a detailed characterization of the macroscopic magnetic properties, where growing ferrimagnetic contributions observed in magnetization could be ascribed to increasing oxygen off-stoichiometry. The main focus is on samples exhibiting a sharp magnetic transition to long-range spin order at TN∝240 K
Charge, orbital and magnetic ordering in La0.4Sr1.6MnO4
The coupled ordering of charge orbital and spin (COS) degrees of freedom in the manganites constitutes a key element to understand the mechanism of CMR. 214 manganites are well-suited to study the COS state. The COS state of the half-doped layered material La0.5Sr1.5MnO4 can be described by the Goodenough model. The over-doped La0.4Sr1.6MnO4 consists of 60% Mn4+ ions and 40% Mn3+ ions. Consequently there is no optimal checkerboard charge ordering possible. We suggest to put these excess of Mn4+ ions into stripes cutting the zig-zag chains. Investigations by neutron scattering emphasize this idea as incommensurable superstructure reflections of charges and orbitals could be found. The reflections of the magnetic ordering of Mn3+ are incommensurable as well, while the magnetic ordering of Mn4+ yields scattering at commensurable positions. Stripe-like arrangement of Mn4+ ions are similar to the stripe phases in nickelates and cuprates. The order, however, is quite complex involving incommensurate ordering of orbitals, charges and Mn3+-magnetic moments.
Uchida, M; Akahoshi, D; Kumai, R; Tomioka, Y; Tokura, Y; Arima, T H
2002-01-01
In an A-site ordered perovskite manganite Sm sub 1 sub / sub 2 Ba sub 1 sub / sub 2 MnO sub 3 , a new charge/orbital ordering pattern was found at room temperature. Electron diffraction studies revealed a series of superlattice reflections with modulation vectors at q sub 2 =(1/2, 1/2, 1/2) as well as at q sub 1 =(1/4, 1/4, 0) in the tetragonal setting (a sub p x a sub p x 2a sub p , a sub p being the cubic perovskite lattice parameter). Together with the results of the resonant X-ray scattering and the charge-transport and magnetization measurements, a new model for the three-dimensional charge/orbital ordering in the ordered perovskite is proposed. (author)
Re-examination of charge and orbital ordering in lightly doped La1-xSrxMnO3 by X-ray scattering
We report on the new synchrotron X-ray scattering results from the re-investigation of charge and orbital ordering in lightly doped La1-xSrxMnO3. The resonant X-ray scattering from forbidden Bragg reflections was observed not only in the ferromagnetic insulating phase, but also in strongly Jahn-Teller distorted regime. Some of characteristic superstructure reflections were also found to show a clear resonant behavior at the Mn K absorption edge. It can be argued that the exact pattern of charge and orbital ordering should be much more complicated
Kuepper, K.; Raekers, M.; Taubitz, C.; Prinz, M.; Derks, C.; Neumann, M.; Postnikov, A. V.; de Groot, F. M. F.; Piamonteze, C.; Prabhakaran, D.; Blundell, S. J.
2009-01-01
Electronic and magnetic properties of the charge ordered phase of LuFe2O4 are investigated by means of x-ray spectroscopic and theoretical electronic structure approaches. LuFe2O4 is a compound showing fascinating magnetoelectric coupling via charge ordering. Here, we identify the spin ground state
Charge, spin and orbital order in the candidate multiferroic material LuFe{sub 2}O{sub 4}
Groot, Joost de
2012-06-28
This thesis is a detailed study of the magnetic, structural and orbital order parameters of the candidate multiferroic material LuFe{sub 2}O{sub 4}. Multiferroic oxides with a strong magnetoelectric coupling are of high interest for potential information technology applications, but they are rare because the traditional mechanism of ferroelectricity is incompatible with magnetism. Consequently, much attention is focused on various unconventional mechanisms of ferroelectricity. Of these, ferroelectricity originating from charge ordering (CO) is particularly intriguing because it potentially combines large electric polarizations with strong magneto-electric coupling. However, examples of oxides where this mechanism occurs are exceedingly rare and none is really well understood. LuFe{sub 2}O{sub 4} is often cited as the prototypical example of CO-based ferroelectricity. In this material, the order of Fe valences has been proposed to render the triangular Fe/O bilayers polar by making one of the two layers rich in Fe{sup 2+} and the other rich in Fe{sup 3+}, allowing for a possible ferroelectric stacking of the individual bilayers. Because of this new mechanism for ferroelectricity, and also because of the high transition temperatures of charge order (T{sub CO} {proportional_to}320K) and ferro magnetism (T{sub N}{proportional_to}240 K) LuFe{sub 2}O{sub 4} has recently attracted increasing attention. Although these polar bilayers are generally accepted in the literature for LuFe{sub 2}O{sub 4}, direct proof is lacking. An assumption-free experimental determination of whether or not the CO in the Fe/O bilayers is polar would be crucial, given the dependence of the proposed mechanism of ferroelectricity from CO in LuFe{sub 2}O{sub 4} on polar bilayers. This thesis starts with a detailed characterization of the macroscopic magnetic properties, where growing ferrimagnetic contributions observed in magnetization could be ascribed to increasing oxygen off-stoichiometry. The
Epitaxial-strain effect on charge/orbital order in Pr0.5Ca0.5MnO3 films
Okuyama, D.; Nakamura, M.; Wakabayashi, Y.; Itoh, H.; Kumai, R.; Yamada, H.; TAGUCHI, Y.; Arima, T.; M. Kawasaki; Tokura, Y.
2009-01-01
Effect of growth orientation on charge- and orbital-ordering (CO-OO) phenomena has been studied for Pr0.5Ca0.5MnO3 epitaxial thin films fabricated on (LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7 (LSAT) substrates by means of resistivity, synchrotron x-ray diffraction, and polarized optical microscopy measurements. CO-OO transition is observed around 220 K for a film grown on an LSAT (011) substrate ((011)-film), similarly to a bulk sample, while a film grown on a (001) plane of LSAT ((001)-film) shows muc...
Charge states of ions, and mechanisms of charge ordering transitions
To gain insight into the mechanism of charge ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2Mn+→M(n+1)+ + M(n−1)+, we (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO2 and the dual charge state insulator AgO, and (3) analyze the cationic occupations of the actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, and hence no charge ordering), and that the experimental data used to support charge ordering can be accounted for within density functional-based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least in many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians isdiscussed. (paper)
Rational Orbits around Charged Black Holes
Misra, Vedant
2010-01-01
We show that all eccentric timelike orbits in Reissner-Nordstr\\"{o}m spacetime can be classified using a taxonomy that draws upon an isomorphism between periodic orbits and the set of rational numbers. By virtue of the fact that the rationals are dense, the taxonomy can be used to approximate aperiodic orbits with periodic orbits. This may help reduce computational overhead for calculations in gravitational wave astronomy. Our dynamical systems approach enables us to study orbits for both charged and uncharged particles in spite of the fact that charged particle orbits around a charged black hole do not admit a simple one-dimensional effective potential description. Finally, we show that comparing periodic orbits in the RN and Schwarzschild geometries enables us to distinguish charged and uncharged spacetimes by looking only at the orbital dynamics.
Engineering charge ordering into multiferroicity
He, Xu; Jin, Kui-juan
2016-01-01
Multiferroic materials have attracted great interests but are rare in nature. In many transitional metal oxides, charge ordering and magnetic ordering coexist, so that a method of engineering charge-ordered materials into ferroelectric materials would lead to a large class of multiferroic materials. We propose a strategy for designing new ferroelectric or even multiferroic materials by inserting a spacing layer into each two layers of charge-ordered materials and artificially making a superla...
Su, Y. E-mail: y.su@fz-juelich.de; Istomin, K.; Wermeille, D.; Fattah, A.; Foucart, P.; Meuffels, P.; Hupfeld, D.; Brueckel, Th
2004-05-01
We report on the new synchrotron X-ray scattering results from the re-investigation of charge and orbital ordering in lightly doped La{sub 1-x}Sr{sub x}MnO{sub 3}. The resonant X-ray scattering from forbidden Bragg reflections was observed not only in the ferromagnetic insulating phase, but also in strongly Jahn-Teller distorted regime. Some of characteristic superstructure reflections were also found to show a clear resonant behavior at the Mn K absorption edge. It can be argued that the exact pattern of charge and orbital ordering should be much more complicated.
Symmetry of charge order in cuprates
Comin, R.; Sutarto, R.; He, F.; da Silva Neto, E. H.; Chauviere, L.; Fraño, A.; Liang, R.; Hardy, W. N.; Bonn, D. A.; Yoshida, Y.; Eisaki, H.; Achkar, A. J.; Hawthorn, D. G.; Keimer, B.; Sawatzky, G. A.; Damascelli, A.
2015-08-01
Charge-ordered ground states permeate the phenomenology of 3d-based transition metal oxides, and more generally represent a distinctive hallmark of strongly correlated states of matter. The recent discovery of charge order in various cuprate families has fuelled new interest into the role played by this incipient broken symmetry within the complex phase diagram of high-Tc superconductors. Here, we use resonant X-ray scattering to resolve the main characteristics of the charge-modulated state in two cuprate families: Bi2Sr2-xLaxCuO6+δ (Bi2201) and YBa2Cu3O6+y (YBCO). We detect no signatures of spatial modulations along the nodal direction in Bi2201, thus clarifying the inter-unit-cell momentum structure of charge order. We also resolve the intra-unit-cell symmetry of the charge-ordered state, which is revealed to be best represented by a bond order with modulated charges on the O-2p orbitals and a prominent d-wave character. These results provide insights into the origin and microscopic description of charge order in cuprates, and its interplay with superconductivity.
Engineering charge ordering into multiferroicity
He, Xu; Jin, Kui-juan
2016-04-01
Multiferroic materials have attracted great interest but are rare in nature. In many transition-metal oxides, charge ordering and magnetic ordering coexist, so that a method of engineering charge-ordered materials into ferroelectric materials would lead to a large class of multiferroic materials. We propose a strategy for designing new ferroelectric or even multiferroic materials by inserting a spacing layer into each two layers of charge-ordered materials and artificially making a superlattice. One example of the model demonstrated here is the perovskite (LaFeO3)2/LaTiO3 (111) superlattice, in which the LaTiO3 layer acts as the donor and the spacing layer, and the LaFeO3 layer is half doped and performs charge ordering. The collaboration of the charge ordering and the spacing layer breaks the space inversion symmetry, resulting in a large ferroelectric polarization. As the charge ordering also leads to a ferrimagnetic structure, (LaFeO3)2/LaTiO3 is multiferroic. It is expected that this work can encourage the designing and experimental implementation of a large class of multiferroic structures with novel properties.
Orbital symmetry of charge-density-wave order in La1.875Ba0.125CuO4 and YBa2Cu3O6.67
Achkar, A. J.; He, F.; Sutarto, R.; McMahon, Christopher; Zwiebler, M.; Hücker, M.; Gu, G. D.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Geck, J.; Hawthorn, D. G.
2016-06-01
Recent theories of charge-density-wave (CDW) order in high-temperature superconductors have predicted a primarily d CDW orbital symmetry. Here, we report on the orbital symmetry of CDW order in the canonical cuprate superconductors La1.875Ba0.125CuO4 (LBCO) and YBa2Cu3O6.67 (YBCO), using resonant soft X-ray scattering and a model mapped to the CDW orbital symmetry. From measurements sensitive to the O sublattice, we conclude that LBCO has predominantly s' CDW orbital symmetry, in contrast to the d orbital symmetry recently reported in other cuprates. Furthermore, we show for YBCO that the CDW orbital symmetry differs along the a and b crystal axes and that these both differ from LBCO. This work highlights CDW orbital symmetry as an additional key property that distinguishes the different cuprate families. We discuss how the CDW symmetry may be related to the `1/8-anomaly’ and to static spin ordering.
Electromagnetic effects on the orbital motion of a charged spacecraft
Abdel-Aziz, Yehia Ahmed; Khalil, Khalil Ibrahim
2014-05-01
This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft. The electrostatic charge which a spacecraft generates on its surface in the Earth's magnetic field will be subject to a perturbative Lorentz force. A model incorporating all Lorentz forces as a function of orbital elements has been developed on the basis of magnetic and electric fields. This Lorentz force can be used to modify or perturb the spacecraft's orbits. Lagrange's planetary equations in the Gauss variational form are derived using the Lorentz force as a perturbation to a Keplerian orbit. Our approach incorporates orbital inclination and the true anomaly. The numerical results of Lagrange's planetary equations for some operational satellites show that the perturbation in the orbital elements of the spacecraft is a second order perturbation for a certain value of charge. The effect of the Lorentz force due to its magnetic component is three times that of the Lorentz force due to its electric component. In addition, the numerical results confirm that the strong effects are due to the Lorentz force in a polar orbit, which is consistent with realistic physical phenomena that occur in polar orbits. The results confirm that the magnitude of the Lorentz force depends on the amount of charge. This means that we can use artificial charging to create a force to control the attitude and orbital motion of a spacecraft.
Electromagnetic effects on the orbital motion of a charged spacecraft
This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft. The electrostatic charge which a spacecraft generates on its surface in the Earth's magnetic field will be subject to a perturbative Lorentz force. A model incorporating all Lorentz forces as a function of orbital elements has been developed on the basis of magnetic and electric fields. This Lorentz force can be used to modify or perturb the spacecraft's orbits. Lagrange's planetary equations in the Gauss variational form are derived using the Lorentz force as a perturbation to a Keplerian orbit. Our approach incorporates orbital inclination and the true anomaly. The numerical results of Lagrange's planetary equations for some operational satellites show that the perturbation in the orbital elements of the spacecraft is a second order perturbation for a certain value of charge. The effect of the Lorentz force due to its magnetic component is three times that of the Lorentz force due to its electric component. In addition, the numerical results confirm that the strong effects are due to the Lorentz force in a polar orbit, which is consistent with realistic physical phenomena that occur in polar orbits. The results confirm that the magnitude of the Lorentz force depends on the amount of charge. This means that we can use artificial charging to create a force to control the attitude and orbital motion of a spacecraft
Two-Centered Magical Charge Orbits
Andrianopoli, Laura; Ferrara, Sergio; Marrani, Alessio; Trigiante, Mario
2011-01-01
We determine the two-centered generic charge orbits of magical N = 2 and maximal N = 8 supergravity theories in four dimensions. These orbits are classified by seven U-duality invariant polynomials, which group together into four invariants under the horizontal symmetry group SL(2,R). These latter are expected to disentangle different physical properties of the two-centered black-hole system. The invariant with the lowest degree in charges is the symplectic product (Q1,Q2), known to control the mutual non-locality of the two centers.
Orbital Ordering Induced by Direct Coulomb Repulsion
HUANG Yuan-Yie; ZHANG Yu-Heng
2011-01-01
We consider the covalence characters of the 3d electron with the eg orbital freedoms and put forward a new mechanism of the orbital ordering (OO) based on the direct coulomb repulsion in this article. The results show that the orbital-orbital interaction (OO-I) between the adjacent ions in 180-degree configuration is dominated by the superexchange energy accompanied by a weak orbital-spin coupling, and the OO-I in 90-degree configuration is monitored by the oxygen on-site coulomb repulsion. The ferro-OO is the stable ground state for the one-dimensional chain in the case of the 90-degree configuration.
Charge order and phase segregation in overdoped bilayer manganites
Maitra, T [Institut fuer Theoretische Physik, J W Goethe Universitaet, Max-von-Laue-Strasse 1, 60438 Frankfurt (Germany); Taraphder, A [Department of Physics and Meteorology and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302 (India); Beck, H [Institute of Physics, University of Neuchatel, rue de Breguet 1, CH-2000 (Switzerland)
2005-07-13
There have been recent reports of charge ordering around x = 0.5 in the bilayer manganites like La{sub 2-2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7}. At x = 0.5, there appears to be a coexistence region of layered A-type antiferromagnetic order and charge order. There are also reports of orbital order in this region without any Jahn-Teller effect. Based on physical grounds, this region is investigated from a model that incorporates the two e{sub g} orbitals at each Mn site and a near-neighbour Coulomb repulsion. It is shown that there indeed both charge and orbital order close to the half-doped region coincident with a layered magnetic structure. Although the orbital order is known to drive the magnetic order, the layered magnetic structure is also favoured in this system by the lack of coherent transport across the planes and the reduced dimensionality of the lattice. The anisotropic hopping across the e{sub g} orbitals and the underlying layered structure largely determine the orbital arrangements in this region, while the charge order is primarily due to the long-range interactions.
The Orbit of Water Droplets around Charged Rod
Ferstl, Andrew; Burns, Andrew
2013-01-01
The motion of charges around a centrally charged object is often compared to gravitational orbits (such as satellites around planets). Recently, a video taken by astronaut Don Pettit onboard the International Space Station shows water droplets orbiting a charged knitting needle. Here we attempt to model this motion and estimate the charges on the…
Zhao, Y. Y.; Wang, J.; Hu, F. X.; Kuang, H.; Wu, R. R.; Zheng, X. Q.; Sun, J. R.; Shen, B. G.
2014-05-01
The static and dynamic lattice strain effects on the competition between ferromagnetic and charge/orbital ordering (COO) phase, phase separation (PS) and transport properties were studied in Pr0.7(Ca0.6Sr0.4)0.3MnO3 (PCSMO) films. It is found that the tensile strained films show pronounced percolative transport behaviors with increased hysteresis, indicating that the stability of the long-range COO is enhanced by the tensile strain. On the other hand, a nearly reversible insulator-metal transition was observed in the compressive strained films, suggesting a strong suppression of the long-range COO. The experiment of dynamic strain effect induced by the bias electric field further verifies the conclusion. Moreover, coactions of the ferroelectric polarization of the substrate and the dynamic strain effect on the PS were found in present PCSMO/PMN-PT film.
The search for competing charge orders in frustrated ladder systems
A recent study revealed the dynamics of the charge sector of a one-dimensional quarter- filled electronic system with extended Hubbard interactions to be that of an effective pseudospin transverse-field Ising model (TFIM) in the strong coupling limit. With the twin motivations of studying the co-existing charge and spin order found in strongly correlated chain systems and the effects of inter-chain couplings, we investigate the phase diagram of coupled effective (TFIM) systems. A bosonisation and RG analysis for a two-leg TFIM ladder yields a rich phase diagram showing Wigner/Peierls charge order and Neel/dimer spin order. In a broad parameter regime, the orbital antiferromagnetic phase is found to be stable. An intermediate gapless phase of finite width is found to lie in between two charge-ordered gapped phases. Kosterlitz-Thouless transitions are found to lead from the gapless phase to either of the charge-ordered phases. Low energy effective Hamiltonian analyses of a strongly coupled 2-chain ladder system confirm a phase diagram with in-chain CO, rung-dimer, and orbital antiferromagnetic ordered phases with varying interchain couplings as well as superconductivity upon hole-doping. Our work is potentially relevant for a unified description of a class of strongly correlated, quarter-filled chain and ladder systems. (autor)
Charge order, superconducting correlations, and positive muons
Sonier, J.E., E-mail: jsonier@sfu.ca
2015-02-15
The recent discoveries of short-range charge-density wave order in the normal state of several hole-doped cuprate superconductors constitute a significant addition to the known intrinsic properties of these materials. Besides likely being associated with the normal-state pseudogap, the charge-density wave order presumably influences the build-up of known superconducting correlations as the temperature is lowered toward the superconducting state. As a pure magnetic probe, muon spin rotation (μ SR) is not directly sensitive to charge order, but may sense its presence via the effect it has on the magnetic dipolar coupling of the muon with the host nuclei at zero or low magnetic field. At higher field where μ SR is completely blind to the effects of charge order, experiments have revealed a universal inhomogeneous normal-state response extending to temperatures well above T{sub c}. The measured inhomogeneous line broadening has been attributed to regions of superconducting correlations that exhibit varying degrees of fluctuation diamagnetism. Here, the compatibility of these results with other measurements showing charge order correlations or superconducting fluctuations above T{sub c} is discussed. - Highlights: • Superconducting fluctuations in high-T cuprates probed by positive muons are discussed. • Superconducting fluctuations are detected at higher temperatures than by other methods. • The muon experiments indicate that the superconducting fluctuations are inhomogeneous. • The compatibility with short-range charge order in the normal state is considered.
An Investigation of Low Earth Orbit Internal Charging
NeergaardParker, Linda; Minow, Joseph I.; Willis, Emily M.
2014-01-01
Low Earth orbit is usually considered a relatively benign environment for internal charging threats due to the low flux of penetrating electrons with energies of a few MeV that are encountered over an orbit. There are configurations, however, where insulators and ungrounded conductors used on the outside of a spacecraft hull may charge when exposed to much lower energy electrons of some 100's keV in a process that is better characterized as internal charging than surface charging. For example, the minimal radiation shielding afforded by thin thermal control materials such as metalized polymer sheets (e.g., aluminized Kapton or Mylar) and multilayer insulation may allow electrons of 100's of keV to charge underlying materials. Yet these same thermal control materials protect the underlying insulators and ungrounded conductors from surface charging currents due to electrons and ions at energies less than a few keV as well as suppress the photoemission, secondary electron, and backscattered electron processes associated with surface charging. We investigate the conditions required for this low Earth orbit "internal charging" to occur and evaluate the environments for which the process may be a threat to spacecraft. First, we describe a simple one-dimensional internal charging model that is used to compute the charge accumulation on materials under thin shielding. Only the electron flux that penetrates exposed surface shielding material is considered and we treat the charge balance in underlying insulation as a parallel plate capacitor accumulating charge from the penetrating electron flux and losing charge due to conduction to a ground plane. Charge dissipation due to conduction can be neglected to consider the effects of charging an ungrounded conductor. In both cases, the potential and electric field is computed as a function of time. An additional charge loss process is introduced due to an electrostatic discharge current when the electric field reaches a
Charged dust dynamics - Orbital resonance due to planetary shadows
Horanyi, M.; Burns, J. A.
1991-01-01
The dynamics of a weakly charged dust grain orbiting in the equatorial plane of a planet surrounded by a rigidly corotating magnetospehre is examined. It is shown that an introduction of an effectilve 1D potential causes a perturbation due to electrostatic forces, which induces a motion of the pericenter, similar to the effect of the planetary oblateness. A case is examined where the charge varies periodically due to the modulation of the photoelectron current occurring as the grain enters and leaves the planetary shadow, causing the electromagnetic perturbation to resonate with the orbital period and to modify the size and eccentricity of the orbit. This effect is demonstrated both numerically and analytically for small grains comprising the Jovian ring, showing that their resulting changes are periodic, and their amplitude is much larger than that of the periodic changes due to light-pressure perturbation or the secular changes due to resonant charge variations that develop over a comparable time span.
Interaction induced staggered spin-orbit order in two-dimensional electron gas
Das, Tanmoy [Los Alamos National Laboratory
2012-06-05
Decoupling spin and charge transports in solids is among the many prerequisites for realizing spin electronics, spin caloritronics, and spin-Hall effect. Beyond the conventional method of generating and manipulating spin current via magnetic knob, recent advances have expanded the possibility to optical and electrical method which are controllable both internally and externally. Yet, due to the inevitable presence of charge excitations and electrical polarizibility in these methods, the separation between spin and charge degrees of freedom of electrons remains a challenge. Here we propose and formulate an interaction induced staggered spin-orbit order as a new emergent phase of matter. We show that when some form of inherent spin-splitting via Rashba-type spin-orbit coupling renders two helical Fermi surfaces to become significantly nested, a Fermi surface instability arises. To lift this degeneracy, a spontaneous symmetry breaking spin-orbit density wave develops, causing a surprisingly large quasiparticle gapping with chiral electronic states, with no active charge excitations. Since the staggered spin-orbit order is associated with a condensation energy, quantified by the gap value, destroying such spin-orbit interaction costs sufficiently large perturbation field or temperature or de-phasing time. BiAg2 surface state is shown to be a representative system for realizing such novel spin-orbit interaction with tunable and large strength, and the spin-splitting is decoupled from charge excitations.
High-order harmonic generation from eld-distorted orbitals
Spiewanowski, Maciek; Etches, Adam; Madsen, Lars Bojer
We investigate the eect on high-order harmonic generation of the distortion of molecular orbitals by the driving laser eld. Calculations for high-order harmonic generation including orbital distortion are performed for N2 (high polarizability). Our results allow us to suggest that field...
Second order Born calculation for charge transfer
Charge transfer cross sections, from the ground state of the target to the ground state of the projectile, have been computed in a second order Born approximation for protons incident upon hydrogen at energies of 1, 10, and 50 MeV. The exact second order matrix element is evaluated numerically, and the results are compared to a standard peaking approximation (SP), as well as to a new peaking approximation (LP) developed herein. At 50 MeV two distinct second order effects are evident in the differential cross section. For very small (center of mass) scattering angles (THETA approx. = .0320) the second order cross section is smaller than the first order cross section, while at larger angles (THETA approx. = .0540) a second Born peak occurs. This peak can be kinematically associated with a classical two step process which gives rise to the well known dominating v-11 asymptotic velocity dependence of the total cross section. The reduction of the differential cross section at smaller angles serves to decrease the total cross section, as is predicted by the asymptotic expression. At 10 MeV second order effects become less important, and at 1 MeV the kinematic peak has all but disappeared, while the second order cross section has here become larger than the first order cross section. At intermediate energies experimental results indicate that the first order cross section used here is itself too large
Ribeiro, J. L.
2016-07-01
The complex interplay between order parameters of different nature that dominates the physics of colossal magnetoresistance manganites is analysed from a symmetry based perspective. Phenomenological energies are given for the different competing phases. It is shown that the general trends observed in different systems, such as the mutual exclusion of orbital order and A-AFM order and the related stabilization of the CE-AFM order, stem to large extend from the symmetry of the parameters involved. The possible stabilization of complex phases where charge and orbital order coexist with magnetic and ferroelectric states is also anticipated.
In this paper, the quasi-Keplerian parameterization for the case that spins and orbital angular momentum in a compact binary system are aligned or anti-aligned with the orbital angular momentum vector is extended to 3PN point-mass, next-to-next-to-leading order spin–orbit, next-to-next-to-leading order spin(1)–spin(2) and next-to-leading order spin-squared dynamics in the conservative regime. In a further step, we use the expressions for the radiative multipole moments with spin to leading order linear and quadratic in both spins to compute radiation losses of the orbital binding energy and angular momentum. Orbital averaged expressions for the decay of energy and eccentricity are provided. An expression for the last stable circular orbit is given in terms of the angular velocity-type variable x. (paper)
Tessmer, Manuel; Schäfer, Gerhard
2012-01-01
In this article the quasi-Keplerian parameterisation for the case that spins and orbital angular momentum in a compact binary system are aligned or anti-aligned with the orbital angular momentum vector is extended to 3PN point-mass, next-to-next-to-leading order spin-orbit, next-to-next-to-leading order spin(1)-spin(2), and next-to-leading order spin-squared dynamics in the conservative regime. In a further step, we use the expressions for the radiative multipole moments with spin to leading order linear and quadratic in both spins to compute radiation losses of the orbital binding energy and angular momentum. Orbital averaged expressions for the decay of energy and eccentricity are provided. An expression for the last stable circular orbit is given in terms of the angular velocity type variable $x$.
Complex Kepler Orbits and Particle Aggregation in Charged Microscopic Grains
Lee, Victor; Waitukaitis, Scott; Miskin, Marc; Jaeger, Heinrich
2015-03-01
Kepler orbits are usually associated with the motion of astronomical objects such as planets or comets. Here we observe such orbits at the microscale in a system of charged, insulating grains. By letting the grains fall freely under vacuum, we eliminate the effects of air drag and gravity, and by imaging them with a co-falling high-speed camera we track the relative positions of individual particles with high spatial and temporal precision. This makes it possible to investigate the behaviors caused by the combination of long-range electrostatic interactions and short-range, dissipative, contact interactions in unprecedented detail. We make the first direct observations of microscopic elliptical and hyperbolic Kepler orbits, collide-and-capture events between pairs of charged grains, and particle-by-particle aggregation into larger clusters. Our findings provide experimental evidence for electrostatic mechanisms that have been suspected, but not previously observed at the single-event level, as driving the early stages of particle aggregation in systems ranging from fluidized particle bed reactors to interstellar protoplanetary disks. Furthermore, since particles of different net charge and size are seen to aggregate into characteristic spatial configurations, our results suggest new possibilities for the formation of charge-stabilized ``granular molecules''. We can reproduce the observed molecule configurations by taking many-body, dielectric polarization effects into account.
Orbital nematic order and interplay with magnetism in the two-orbital Hubbard model
Motivated by the recent angle-resolved photoemission spectroscopy (ARPES) on FeSe and iron pnictide families of iron-based superconductors, we have studied the orbital nematic order and its interplay with antiferromagnetism within the two-orbital Hubbard model. We used random phase approximation (RPA) to calculate the dependence of the orbital and magnetic susceptibilities on the strength of interactions and electron density (doping). To account for strong electron correlations not captured by RPA, we further employed non-perturbative variational cluster approximation (VCA) capable of capturing symmetry broken magnetic and orbitally ordered phases. Both approaches show that the electron and hole doping affect the two orders differently. While hole doping tends to suppress both magnetism and orbital ordering, the electron doping suppresses magnetism faster. Crucially, we find a realistic parameter regime for moderate electron doping that stabilizes orbital nematicity in the absence of long-range antiferromagnetic order. This is reminiscent of the non-magnetic orbital nematic phase observed recently in FeSe and a number of iron pnictide materials and raises the possibility that at least in some cases, the observed electronic nematicity may be primarily due to orbital rather than magnetic fluctuations. (paper)
Strain-mediated control of orbital ordering planes in heteroepitaxial lanthanum manganite thin films
Kim, Yong-Jin; Lee, Jin Hong; Koo, Tae Yeong; Yang, Chan-Ho
Strain engineering which controls the misfit strain of heteroepitaxial thin films leads to distinctive physical properties in contrast to the intrinsic properties of unstrained bulk materials Perovskite LaMnO3 (LMO) has attracted considerable attention due to strong coupling among the lattice, charge, spin and orbital degrees of freedom. Bulk LMO is known to be an A-type antiferromagnetic (TN~140 K) Mott insulator, and its orbital ordering plane is established due to cooperative Jahn-Teller distortion below ~750 K. Previous studies have focused on the orbital ordering planes of the bulk LMO but not researched on correlation between orbital planes and misfit stain. To figure out the strain dependence of orbital ordering planes, we have grown LMO thin films on four different substrates, i . e . , DyScO3(110), GaScO3(110), SrTiO3(001), and LSAT(001), using the pulsed laser deposition technique. The films have been characterized by atomic force microscopy and x-ray diffraction. We have performed resonant x-ray scattering to identify orbital ordering plane on each film. We have found that orbital ordering planes can be modulated depending on the misfit strain.
Orbital-frustration-induced ordering in semiconductor alloys
Liu, Kai; Yin, Wanjian; Chen, Shiyou; Gong, X. G.; Wei, S.-H.; Xiang, H. J.
2016-05-01
It is well known that ternary zinc-blende semiconductors are always more stable in the chalcopyrite (CH) structure than the Cu-Au (CA) structure because the CH structure has a large Coulomb interaction and a reduced strain energy. Surprisingly, an experimental study showed that the ZnFeS e2 alloy takes the CA order as the ground-state structure, which is consistent with our density functional theory calculations showing that the CA order has lower energy than the CH order for ZnFeS e2 . We reveal that the orbital degree of freedom of a high-spin F e2 + ion (d6) in the tetrahedral crystal field plays a key role in stabilizing the CA order. First, the spin-minority d electron of the F e2 + ion tends to occupy the dx2-y2-like orbital instead of the d3 z2-r2-like orbital because of its large negative Coulomb energy. Second, for a nearest-neighboring F e2 + pair, two spin-minority d electrons with occupied dx2-y2-like orbitals on the plane containing the Fe-Fe bond have lower electronic kinetic energies. Both conditions can be satisfied in the CA ordered ZnFeS e2 alloy, whereas there is an orbital frustration in the CH structure. Our results suggest that the orbital degree of freedom provides a new way to manipulate the structure and properties of alloys.
Particle beams carrying orbital angular momentum, charge, mass and spin
Tijssen, Teuntje; Hayrapetyan, Armen; Goette, Joerg; Dennis, Mark
Electron beams carrying vortices and angular momentum have been of much experimental and theoretical interest in recent years. In addition, optical vortex beams are a well-established field in optics and photonics. In both cases, the orbital angular momentum associated with the beam's axial vortex has effects on the overall spin of the beam, due to spin-orbit interactions. A simple model of these systems are Bessel beam solutions (of either the Dirac equation or Maxwell equations) with a nonzero azimuthal quantum number, which are found by separation in cylindrical coordinates. Here, we generalize this approach, considering the classical field theory of Bessel beams for particles which are either massive or massless, uncharged or charged and of a variety of different spins (0, 1/2, 1, ⋯). We regard the spin and helicity states and different forms of spin-orbit terms that arise. Moreover, we analyse the induced electromagnetic field when the particles carry charge. Most importantly, this unified field theory approach leads to the prediction of effects for vortex beams of neutrons, mesons and neutrinos.
Magnetic ordering in fullerene charge-transfer complexes
Sato, Tohru; Yamabe, Tokio; Tanaka, Kazuyoshi
1997-07-01
We have determined the ground states of the charge-transfer (CT) complexes in which the energy levels of the highest occupied molecular orbital (HOMO) of donors and the lowest unoccupied MO (LUMO) of acceptors are closely located, and examined some fullerene complexes consisting of C60, C70, tetrakis(dimethylamino)ethylene (TDAE), and 1,1',3,3'-tetramethyl-Δ2,2'-bi(imidazolidine) (TMBI). The observed magnetic properties of TDAE-C60, TMBI-C60, and TDAE-C70 can be accounted for by employing realistic parameters. The effective Hamiltonian including up to the fourth-order perturbation has also been derived in the fourfold degenerate model space. The effective Hamiltonian can plausibly reproduce the magnetic phase diagram obtained by the variational treatment of TDAE-C60. It has been shown that the third and the fourth processes contribute to the stabilization of the antiferromagnetic state.
Twist number and order properties of periodic orbits
Petrisor, Emilia
2011-01-01
A less studied numerical characteristic of periodic orbits of area preserving twist maps of the annulus is the twist or torsion number, called initially the amount of rotation [Mather]. It measures the average rotation of tangent vectors under the action of the derivative of the map along that orbit, and characterizes the degree of complexity of the dynamics. The aim of this paper is to give new insights into the definition and properties of the twist number, and to relate its range to the order properties of periodic orbits. We derive an algorithm to deduce the exact value or a demi--unit interval containing the exact value of the twist number. We prove that at a period--doubling bifurcation threshold of a mini-maximizing periodic orbit, the new born doubly periodic orbit has the absolute twist number larger than the absolute twist of the original orbit after bifurcation. We also show that the periodic orbits of absolute twist number at least 1/2, that are born through a saddle--center bifurcation, are badly...
Phase separation, orbital ordering and magnetism in (La0.375Ca0.625)MnO3
Martinelli, A.; Ferretti, M.; Ritter, C.
2016-07-01
At 300 K (La0.375Ca0.625)MnO3 crystallizes in the orthorhombic Pnma space group; on cooling a Pnma → Pnma structural transition occurs due to charge-orbital ordering within the Mn sub-lattice, producing a superstructure consistent with a Wigner-crystal model with a tripling of the cell parameter a. The primary active mode yielding the observed ordered structure corresponds to the irreducible representation labelled Σ3, with wave vector (⅓,0,0). Nevertheless, the disordered polymorph stable at room temperature is retained at low temperature as a secondary phase, coexisting with the charge-orbital ordered structure. These two phases display different spin orderings; the antiferromagnetic structure associated to the charge-orbital ordered phase is characterized by a magnetic propagation wave vector k=(0,0,½), with a canted spin ordering in the ac plane, whereas a Cy-type arrangement develops within the disordered polymorph.
From order to chaos in Earth satellite orbits
Gkolias, Ioannis; Gachet, Fabien; Rosengren, Aaron J
2016-01-01
We consider Earth satellite orbits in the range of semi-major axes where the perturbing effects of Earth's oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees of freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angles-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances which are of first importance to the space debris...
Coherent transfer of optical orbital angular momentum in multi-order Raman sideband generation
Strohaber, J; Sokolov, A V; Kolomenskii, A A; Paulus, G G; Schuessler, H A
2012-01-01
Experimental results from the generation of Raman sidebands using optical vortices are presented. By generating two sets of sidebands originating from different locations in a Raman active crystal, one set containing optical orbital angular momentum and the other serving as a reference, a Young's double slit experiment was simultaneously realized for each sideband. The interference between the two sets of sidebands was used to determine the helicity and topological charge in each order. Topological charges in all orders were found to be discrete and follow selection rules predicted by a cascaded Raman process.
Coherent transfer of optical orbital angular momentum in multi-order Raman sideband generation.
Strohaber, J; Zhi, M; Sokolov, A V; Kolomenskii, A A; Paulus, G G; Schuessler, H A
2012-08-15
Experimental results from the generation of Raman sidebands using optical vortices are presented. By generating two sets of sidebands originating from different locations in a Raman-active crystal, one set containing optical orbital angular momentum and the other serving as a reference, Young's double slit experiment was simultaneously realized for each sideband. The interference between the two sets of sidebands was used to determine the helicity and topological charge in each order. Topological charges in all orders were found to be discrete and follow selection rules predicted by a cascaded Raman process. PMID:23381274
A Duality Between Unidirectional Charge Density Wave Order and Superconductivity
Lee, Dung-Hai
2001-01-01
This paper shows the existence of a duality between an unidirectional charge density wave order and a superconducting order. This duality predicts the existence of charge density wave near a superconducting vortex, and the existence of superconductivity near a charge density wave dislocation.
Charge ordering in perovskite rare-earth titanate compounds
Having a single electron in the 3d shell, the rare-earth (RE) titanates RETiO3 have attracted strong interest to study the complex interplay of charge, orbital and magnetic degrees of freedom. Substituting divalent earth-alkali for the RE, a metal-insulator transition is induced, which in case of Y1-xCaxTiO3 occurs only at rather high doping. We have studied the hole-doped system (Y,Er,Lu)1-xCaxTiO3 by various diffraction techniques, by resistivity and by magnetic susceptibility measurements. This system shows a complex phase diagram of structural distortions accompanied by a metal-insulator transition. We ascribe the complex behavior to the coexistence of an insulating monoclinic phase with a metallic low-temperature orthorhombic phase. Our neutron diffraction data show that charge ordering occurs in the monoclinic phase. Even away from half-doping, we find two distinct Ti sites in a checkerboard arrangement, with significantly different TiO6 coordination
Controlling Charging and Arcing on a Solar Powered Auroral Orbiting Spacecraft
Ferguson, Dale C.; Rhee, Michael S.
2008-01-01
The Global Precipitation Measurement satellite (GPM) will be launched into a high inclination (65 degree) orbit to monitor rainfall on a global scale. Satellites in high inclination orbits have been shown to charge to high negative potentials, with the possibility of arcing on the solar arrays, when three conditions are met: a drop in plasma density below approximately 10,000 cm(exp -3), an injection of energetic electrons of energy more that 7-10 keV, and passage through darkness. Since all of these conditions are expected to obtain for some of the GPM orbits, charging calculations were done using first the Space Environment and Effects (SEE) Program Interactive Spacecraft Charging Handbook, and secondly the NASA Air-force Spacecraft Charging Analyzer Program (NASCAP-2k). The object of the calculations was to determine if charging was likely for the GPM configuration and materials, and specifically to see if choosing a particular type of thermal white paint would help minimize charging. A detailed NASCAP-2k geometrical model of the GPM spacecraft was built, with such a large number of nodes that it challenged the capability of NASCAP-2k to do the calculations. The results of the calculations were that for worst-case auroral charging conditions, charging to levels on the order of -120 to -230 volts could occur on GPM during night-time, with differential voltages on the solar arrays that might lead to solar array arcing. In sunlit conditions, charging did not exceed -20 V under any conditions. The night-time results were sensitive to the spacecraft surface materials chosen. For non-conducting white paints, the charging was severe, and could continue unabated throughout the passage of GPM through the auroral zone. Somewhat conductive (dissipative) white paints minimized the night-time charging to levels of -120 V or less, and thus were recommended for GPM thermal control. It is shown that the choice of thermal control paints is important to prevent arcing on high
Hybrid DFT calculation of Fe57 NMR resonances and orbital order in magnetite
Patterson, C. H.
2014-08-01
The crystal structure and charge and orbital order of magnetite below the Verwey temperature are calculated using a first-principles hybrid density functional theory (DFT) method. The initial atomic positions in the crystal-structure calculation are those recently refined from x-ray diffraction data for the Cc space-group unit cell [Senn, Wright, and Attfield, Nature (London) 481, 173 (2012), 10.1038/nature10704]. Fermi contact and magnetic dipolar contributions to hyperfine fields at Fe57 nuclei obtained from hybrid DFT calculations are used to obtain NMR resonance frequencies for magnetite for a range of external magnetic field directions in a relatively weak field. NMR frequencies from hybrid density functional theory calculations are compared to NMR data [M. Mizoguchi, J. Phys. Soc. Jpn. 70, 2333 (2001), 10.1143/JPSJ.70.2333] for a range of applied magnetic field directions. NMR resonance frequencies of B-site Fe ions show large relative variations with applied field direction owing to anisotropic hyperfine fields from charge and orbital ordered Fe 3d minority-spin electrons at those sites. Good agreement between computed and measured NMR resonance frequencies confirms the pattern of charge and orbital order obtained from calculations. The charge and orbital order of magne-tite in its low-temperature phase obtained from hybrid DFT calculations is analyzed in terms of one-electron bonds between Fe ions. The Verwey transition in magnetite therefore resembles Mott-Peierls transitions in vanadium oxides which undergo symmetry-breaking transitions owing to electron-pair bond formation.
Orbital-motion-limited theory of dust charging and plasma response
The foundational theory for dusty plasmas is the dust charging theory that provides the dust potential and charge arising from the dust interaction with a plasma. The most widely used dust charging theory for negatively charged dust particles is the so-called orbital motion limited (OML) theory, which predicts the dust potential and heat collection accurately for a variety of applications, but was previously found to be incapable of evaluating the dust charge and plasma response in any situation. Here, we report a revised OML formulation that is able to predict the plasma response and hence the dust charge. Numerical solutions of the new OML model show that the widely used Whipple approximation of dust charge-potential relationship agrees with OML theory in the limit of small dust radius compared with plasma Debye length, but incurs large (order-unity) deviation from the OML prediction when the dust size becomes comparable with or larger than plasma Debye length. This latter case is expected for the important application of dust particles in a tokamak plasma
Orbital-motion-limited theory of dust charging and plasma response
Tang, Xian-Zhu, E-mail: xtang@lanl.gov; Luca Delzanno, Gian, E-mail: delzanno@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2014-12-15
The foundational theory for dusty plasmas is the dust charging theory that provides the dust potential and charge arising from the dust interaction with a plasma. The most widely used dust charging theory for negatively charged dust particles is the so-called orbital motion limited (OML) theory, which predicts the dust potential and heat collection accurately for a variety of applications, but was previously found to be incapable of evaluating the dust charge and plasma response in any situation. Here, we report a revised OML formulation that is able to predict the plasma response and hence the dust charge. Numerical solutions of the new OML model show that the widely used Whipple approximation of dust charge-potential relationship agrees with OML theory in the limit of small dust radius compared with plasma Debye length, but incurs large (order-unity) deviation from the OML prediction when the dust size becomes comparable with or larger than plasma Debye length. This latter case is expected for the important application of dust particles in a tokamak plasma.
Orbital-motion-limited theory of dust charging and plasma response
Tang, Xian-Zhu
2015-01-01
The foundational theory for dusty plasmas is the dust charging theory that provides the dust potential and charge arising from the dust interaction with a plasma. The most widely used dust charging theory for negatively charged dust particles is the so-called orbital motion limited (OML) theory, which predicts the dust potential and heat collection accurately for a variety of applications, but was previously found to be incapable of evaluating the dust charge and plasma response in any situation. Here we report a revised OML formulation that is able to predict the plasma response and hence the dust charge. Numerical solutions of the new OML model show that the widely-used Whipple approximation of dust charge-potential relationship agrees with OML theory in the limit of small dust radius compared with plasma Debye length, but incurs large (order-unity) deviation from the OML prediction when the dust size becomes comparable with or larger than plasma Debye length. This latter case is expected for the important ...
Mean-Field Theory of Intra-Molecular Charge Ordering in (TTM--TTP)I3
Omori, Yukiko; Tsuchiizu, Masahisa; Suzumura, Yoshikazu
2011-02-01
We examine an intra-molecular charge-ordered (ICO) state in the multi-orbital molecular compound (TTM--TTP)I3 on the basis of an effective two-orbital model derived from ab initio calculations. Representing the model in terms of the fragment molecular-orbital (MO) picture, the ICO state is described as the charge disproportionation on the left and right fragment MOs. By applying the mean-field theory, the phase diagram of the ground state is obtained as a function of the inter-molecular Coulomb repulsion and the intra-molecular transfer integral. The ICO state is stabilized by large inter-fragment Coulomb interactions, and the small intra-molecular transfer energy between two fragment MOs. Furthermore, we examine the finite-temperature phase diagram. The relevance to the experimental observations in the molecular compound of (TTM--TTP)I3 is also discussed.
Microscopic analysis of resonant inelastic x-ray scattering in orbital-ordered KCuF3
We analyze resonant inelastic x-ray scattering (RIXS) at the Cu K edge in a typical orbital-ordered compound KCuF3 on the basis of a microscopic theory. Spectral shape and its dependence on polarization direction and momentum transfer of photons are explained consistently with experimental data within our microscopic calculation. According to our microscopic orbital-resolving analysis, high-energy spectral weights (above 5 eV) originate from charge-transfer excitations related to the Cu-dγ orbitals, while the low-energy weights (below 2 eV) originate from the d–d orbital excitations among the five Cu-d orbitals. We assign specifically the RIXS weights to microscopic orbital-excitation processes, beyond the previous phenomenological assignment based on symmetry properties. (author)
Self-Force on a Scalar Charge in Circular Orbit around a Schwarzschild Black Hole
Nakano, Hiroyuki; Mino, Yasushi; Sasaki, Misao
2001-01-01
In an accompanying paper, we have formulated two types of regulariz_ation methods to calculate the scalar self-force on a particle of charge $q$ moving around a black hole of mass $M$, one of which is called the ``power expansion regularization''. In this paper, we analytically evaluate the self-force (which we also call the reaction force) to the third post-Newtonian (3PN) order on the scalar particle in circular orbit around a Schwarzschild black hole by using the power expansion regulariza...
Terao, Jun; Wadahama, Akihisa; Matono, Akitoshi; Tada, Tomofumi; Watanabe, Satoshi; Seki, Shu; Fujihara, Tetsuaki; Tsuji, Yasushi
2013-01-01
The feasibility of using π-conjugated polymers as next-generation electronic materials is extensively studied; however, their charge mobilities are lower than those of inorganic materials. Here we demonstrate a new design principle for increasing the intramolecular charge mobility of π-conjugated polymers by covering the π-conjugated chain with macrocycles and regularly localizing π-molecular orbitals to realize an ideal orbital alignment for charge hopping. Based on theoretical predictions, ...
Tuning the topological charge of laser high-order harmonics
Gauthier, D; Adhikary, G; Camper, A; Chappuis, C; Cucini, R; Dovillaire, G; Géneaux, R; Poletto, L; Ressel, B; Ruchon, T; Spezzani, C; Stupar, M; De Ninno, G
2016-01-01
We report on the generation of optical vortices carrying a controllable amount of orbital angular momentum in laser high-order harmonics in gas. The experiment is based on two-color wave mixing, where a vortex and a Gaussian beam are spatially overlapped in the generation medium. Such a setup allows efficient and robust generation of lower order orbital angular momentum modes. The results constitute the first experimental verification of the conservation rule for orbital angular momentum in high-harmonic generation using two driving beams. Our findings significantly extend the capability of controlling the spatial properties of femtosecond extreme-ultraviolet pulses and could lead to entirely new experiments in the field of light-matter interactions.
Bond centered vs. site-centered charge ordering: ferroelectricity in oxides
We show that in manganites close to half-doping, novel non-bipartite magnetic phases appear due to the interplay between double exchange, superexchange and orbital ordering. In considerable part of the phase diagram the ground state has a magnetic order that is intermediate between the canonical magnetic CE phase and a state that we identify as the recently observed Zener polaron state. The intermediate phase shows a type of charge ordering that breaks inversion symmetry and is therefore predicted to be ferroelectric
Minow, Joseph I.; Coffey, Victoria N.; Parker, Linda N.; Blackwell, William C., Jr.; Jun, Insoo; Garrett, Henry B.
2007-01-01
The NUMIT 1-dimensional bulk charging model is used as a screening to ol for evaluating time-dependent bulk internal or deep dielectric) ch arging of dielectrics exposed to penetrating electron environments. T he code is modified to accept time dependent electron flux time serie s along satellite orbits for the electron environment inputs instead of using the static electron flux environment input originally used b y the code and widely adopted in bulk charging models. Application of the screening technique ts demonstrated for three cases of spacecraf t exposure within the Earth's radiation belts including a geostationa ry transfer orbit and an Earth-Moon transit trajectory for a range of orbit inclinations. Electric fields and charge densities are compute d for dielectric materials with varying electrical properties exposed to relativistic electron environments along the orbits. Our objectiv e is to demonstrate a preliminary application of the time-dependent e nvironments input to the NUMIT code for evaluating charging risks to exposed dielectrics used on spacecraft when exposed to the Earth's ra diation belts. The results demonstrate that the NUMIT electric field values in GTO orbits with multiple encounters with the Earth's radiat ion belts are consistent with previous studies of charging in GTO orb its and that potential threat conditions for electrostatic discharge exist on lunar transit trajectories depending on the electrical proper ties of the materials exposed to the radiation environment.
Dynamics of Charge Transfer in Ordered and Chaotic Nucleotide Sequences
Fialko, N S
2013-01-01
Charge transfer is considered in systems composed of a donor, an acceptor and bridge sites of (AT) nucleotide pairs. For a bridge consisting of 180 (AT) pairs, three cases are dealt with: a uniform case, when all the nucleotides in each strand are identical; an ordered case, when nucleotides in each DNA strand are arranged in an orderly fashion; a chaotic case, when (AT) and (TA) pairs are arranged randomly. It is shown that in all the cases a charge transfer from a donor to an acceptor can take place. All other factors being equal, the transfer is the most efficient in the uniform case, the ordered and chaotic cases are less and the least efficient, accordingly. The results obtained are in agreement with experimental data on long-range charge transfer in DNA.
Superconductivity and spin excitations in orbitally ordered FeSe
Kreisel, Andreas; Mukherjee, Shantanu; Hirschfeld, P. J.; Andersen, B. M.
We provide a band-structure with low-energy properties consistent with recent photoemission and quantum oscillations measurements on the Fe-based superconductor FeSe, including a mean-field like orbital ordering in the dxz /dyz channel, and show that this model also accounts for the temperature dependence of the measured Knight shift and the spin-relaxation rate. An RPA calculation of the dynamical spin susceptibility yields spin excitations which are peaked at wave vector (π , 0) in the 1-Fe Brillouin zone, with a broad maximum at energies of order a few meV. Furthermore, the superconducting gap structure obtained from spin fluctuation theory exhibits nodes on the electron pockets, consistent with the 'V'-shaped density of states measured by tunneling spectroscopy on this material. The redistribution of spectral weight in the superconducting state creates a (π , 0) ''neutron resonance'' as seen in recent experiments. Comparing to various experimental results, we give predictions for further studies A.K. and B.M.A. acknowledge financial support from a Lundbeckfond fellowship (Grant No. A9318). P.J.H. was partially supported by the Department of Energy under Grant No. DE-FG02-05ER46236.
Genesis of charge orders in high temperature superconductors
Tu, Wei-Lin; Lee, Ting-Kuo
2016-01-01
One of the most puzzling facts about cuprate high-temperature superconductors in the lightly doped regime is the coexistence of uniform superconductivity and/or antiferromagnetism with many low-energy charge-ordered states in a unidirectional charge density wave or a bidirectional checkerboard structure. Recent experiments have discovered that these charge density waves exhibit different symmetries in their intra-unit-cell form factors for different cuprate families. Using a renormalized mean-field theory for a well-known, strongly correlated model of cuprates, we obtain a number of charge-ordered states with nearly degenerate energies without invoking special features of the Fermi surface. All of these self-consistent solutions have a pair density wave intertwined with a charge density wave and sometimes a spin density wave. Most of these states vanish in the underdoped regime, except for one with a large d-form factor that vanishes at approximately 19% doping of the holes, as reported by experiments. Furthermore, these states could be modified to have a global superconducting order, with a nodal-like density of states at low energy.
Coexistence of charge and ferromagnetic order in fcc Fe
Hsu, Pin-Jui; Kügel, Jens; Kemmer, Jeannette; Parisen Toldin, Francesco; Mauerer, Tobias; Vogt, Matthias; Assaad, Fakher; Bode, Matthias
2016-01-01
Phase coexistence phenomena have been intensively studied in strongly correlated materials where several ordered states simultaneously occur or compete. Material properties critically depend on external parameters and boundary conditions, where tiny changes result in qualitatively different ground states. However, up to date, phase coexistence phenomena have exclusively been reported for complex compounds composed of multiple elements. Here we show that charge- and magnetically ordered states...
Charge orders, magnetism and pairings in the cuprate superconductors
Kloss, T.; Montiel, X.; de Carvalho, V. S.; Freire, H.; Pépin, C.
2016-08-01
We review the recent developments in the field of cuprate superconductors with special focus on the recently observed charge order in the underdoped compounds. We introduce new theoretical developments following the study of the antiferromagnetic quantum critical point in two dimensions, in which preemptive orders in both charge and superconducting (SC) sectors emerge, that are in turn related by an SU(2) symmetry. We consider the implications of this proliferation of orders in the underdoped region, and provide a study of the type of fluctuations which characterize the SU(2) symmetry. We identify an intermediate energy scale where the SC fluctuations are dominant and argue that they are unstable towards the formation of a resonant excitonic state at the pseudogap temperature T *. We discuss the implications of this scenario for a few key experiments.
Effects of charging and doping on orbital hybridizations and distributions in TiO2 clusters
Zhao, Hong Min; Wu, Miao Miao; Wang, Qian; Jena, Puru
2011-11-01
Charging and doping are two important strategies used in TiO2 quantum dots for photocatalysis and photovoltaics. Using small clusters as the prototypes for quantum dots, we have carried out density functional calculations to study the size-specific effects of charging and doping on geometry, electronic structure, frontier orbital distribution, and orbital hybridization. We find that in neutral (TiO2)n clusters the charge transfer from Ti to O is almost size independent, while for the anionic (TiO2)n clusters the corresponding charge transfer is reduced but it increases with size. When one O atom is substituted with N, the charge transfer is also reduced due to the smaller electron affinity of N. As the cluster size increases, the populations of 3d and 4s orbitals of Ti decrease with size, while the populations of the 4p orbital increase, suggesting size dependence of spd hybridizations. The present study clearly shows that charging and doping are effective ways for tailoring the energy gap, orbital distributions, and hybridizations.
Magnonic charge pumping via spin-orbit coupling
Ciccarelli, C.; Hals, K.M.D.; Irvine, A.; Novák, Vít; Tserkovnyak, Y.; Kurebayashi, H.; Brataas, A.; Ferguson, A.
2015-01-01
Roč. 10, č. 1 (2015), 50-54. ISSN 1748-3387 R&D Projects: GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : spintronics * spin-orbit torque * GaMnAs Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 34.048, year: 2014
Yoshida, M.; Ishii, K.; Naka, M.; Ishihara, S.; Jarrige, I.; Ikeuchi, K.; Murakami, Y.; Kudo, K.; Koike, Y.; Nagata, T.; Fukada, Y.; Ikeda, N.; Mizuki, J.
2016-01-01
In strongly correlated electron systems, enhanced fluctuations in the proximity of the ordered states of electronic degrees of freedom often induce anomalous electronic properties such as unconventional superconductivity. While spin fluctuations in the energy-momentum space have been studied widely using inelastic neutron scattering, other degrees of freedom, i.e., charge and orbital, have hardly been explored thus far. Here, we use resonant inelastic x-ray scattering to observe charge fluctuations proximate to the charge-order phase in transition metal oxides. In the two-leg ladder of Sr14−xCaxCu24O41, charge fluctuations are enhanced at the propagation vector of the charge order (qCO) when the order is melted by raising temperature or by doping holes. In contrast, charge fluctuations are observed not only at qCO but also at other momenta in a geometrically frustrated triangular bilayer lattice of LuFe2O4. The observed charge fluctuations have a high energy (~1 eV), suggesting that the Coulomb repulsion between electrons plays an important role in the formation of the charge order. PMID:27021464
Tursunov, Arman; Stuchlík, Zdeněk; Kološ, Martin
2016-04-01
We study the motion of charged particles in the field of a rotating black hole immersed into an external asymptotically uniform magnetic field, focusing on the epicyclic quasicircular orbits near the equatorial plane. Separating the circular orbits into four qualitatively different classes according to the sign of the canonical angular momentum of the motion and the orientation of the Lorentz force, we analyze the circular orbits using the so-called force formalism. We find the analytical solutions for the radial profiles of velocity, specific angular momentum, and specific energy of the circular orbits in dependence on the black-hole dimensionless spin and the magnetic field strength. The innermost stable circular orbits are determined for all four classes of the circular orbits. The stable circular orbits with an outward-oriented Lorentz force can extend to radii lower than the radius of the corresponding photon circular geodesic. We calculate the frequencies of the harmonic oscillatory motion of the charged particles in the radial and vertical directions related to the equatorial circular orbits and study the radial profiles of the radial, ωr; vertical, ωθ; and orbital, ωϕ, frequencies, finding significant differences in comparison to the epicyclic geodesic circular motion. The most important new phenomenon is the existence of toroidal charged particle epicyclic motion with ωr˜ωθ≫ωϕ that could occur around retrograde circular orbits with an outward-oriented Lorentz force. We demonstrate that for the rapidly rotating black holes the role of the "Wald induced charge" can be relevant.
Perfect optical vortex array with controllable diffraction order and topological charge.
Fu, Shiyao; Wang, Tonglu; Gao, Chunqing
2016-09-01
We have demonstrated a holographic grating, the far-field diffraction pattern of which is a perfect optical vortex (POV) array. The diffraction order, as well as the topological charge of each spot in the array, is controllable. By setting different parameters when designing the hologram, the spot in different diffraction orders will be changed, resulting in the variance of the POV array. During the experiment, we uploaded holograms of different design on a phase-only spatial light modulator. We then observed POV arrays with different dimensions and topological charges using a CCD camera, which fit well with the simulation. This technique provides the possibility to generate multiple POVs simultaneously, and can be used in domains where multiple POVs are of high interest such as orbital angular momentum multiplexed fiber data transmission systems. PMID:27607508
Takubo, K; Mizokawa, T [Department of Physics and Department of Complexity Science and Engineering, University of Tokyo, Kashiwa, Chiba 277-8561 (Japan); Takubo, N; Miyano, K [Research Center for Advanced Science and Technology (RCAST), University of Tokyo, Tokyo 153-8904 (Japan); Matsumoto, N; Nagata, S, E-mail: takubo@sces.k.u-tokyo.ac.j [Department of Materials Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585 Japan (Japan)
2009-02-01
Transition-metal compounds with spin, charge, and orbital degrees of freedom tend to have frustrated electronic states coupled with local lattice distortions and to show drastic response to external stimuli such as photo-excitation. We have studied the charge-orbital states in perovskite-type Pr{sub 0.55}(Ca{sub 1-y}Sr{sub y}){sub 0.45}MnO{sub 3} thin films (PCSMO) and spinel-type CuIr{sub 2}S{sub 4} using photoemission spectroscopy combined with additional laser illumination. PCSMO and CuIr{sub 2}S{sub 4} are clear-cut examples of transition-metal compounds showing photo-induced metallic conductivities but the charge-orbital states in the two systems show contrasting responses to the photo-excitation. The charge-orbital states in PCSMO are stabilized by Jahn-Teller or Breathing-type lattice distortions and can be destroyed by photo-excitation. On the other hand, the charge-orbital states in CuIr{sub 2}S{sub 4} are stabilized by dimer formation and tend to be robust against photo-excitation.
Charge ordering phenomena and superconductivity in underdoped cuprates
In this thesis electronic properties of two prototypical copper-oxygen superconductors were studied with Raman scattering. The underdoped regime including the onset point of superconductivity psc1 was investigated. Evidence of quasi one-dimensional (1D) dynamical stripes was found. The 1D structures have a universal preferential orientation along the diagonals of the CuO2 planes below psc1. At psc1, lattice and electron dynamics change discontinuously. The results show that charge ordering drives the transition at psc1 and that the maximal transition temperature to superconductivity at optimal doping TcMAX depends on the type of ordering at psc1. (orig.)
A review of tracking charged particle motion in an axisymmetric toroidal plasma and of Monte Carlo modelling of particle-background interactions is given. Computational methods for efficient modelling of electron and ion guiding center orbits in tokamaks are described and the Monte Carlo orbit-following code ASCOT is reviewed. The efficiency of the code is based on the use of a coordinate system specifically designed for a toroidal system, on preventing numerical error accumulation, and on accelerating interaction time scales. Solutions for enhancing the computational efficiency of the Monte Carlo operators without deterioration of accuracy are described. Applications of the ASCOT code to studies of reverse runaway electrons, lower hybrid (LH) and ion cyclotron (IC) heating and current drive are presented. Relativistic effects are found to increase the reverse runaway probability of fast electrons during current ramp-up. Collisions, acting to diminish the total energy of the electrons towards thermal energy, have a lesser effect on the velocity of the test electron at relativistic energies. Combined to the effect of pitch collisions which bring the electrons towards the trapping cone, this relativistic effect enables the electrons to reach the trapping cone at a large total velocity, where the trapping cone is wide and the region traversed during trapped orbit motion is larger. This brings forth a notable increase in the reverse runaway probability. In a realistic tokamak configuration with smooth wave diffusion and fusion reactivity profiles, fusion-born alpha particles are found to interact with lower hybrid waves by absorbing energy from the wave. Special absorbing boundary conditions must be applied at the perpendicular energy boundary of the wave region in order to reverse the direction of energy transfer. A parameter study of ion cyclotron heating and current drive indicates that the power efficiency of minority ion current generation by IC waves is optimized
15th order resonance terms using the decaying orbit of TETR-3. [perturbation due to gravitation
Wagner, C. A.; Klosko, S. M.
1975-01-01
Fifteenth-order commensurability of the orbit of TETR-3 (1971-83B) is studied. The study is designed to obtain good discrimination of 15th-order resonances through a better range of inclinations. The first low inclination orbit, 33 deg, is used for this purpose; it is very sensitive to the high degree terms which were rather poorly represented by previously analyzed orbits.
Self-consistent coupling of atomic orbitals to a moving charge
The authors describe the time evolution of hydrogenic orbitals perturbed by a moving charge. Starting with the equation for an atom interacting with a charge, the authors use an eikonal representation of the total wave-function, followed by an eikonal approximation, to derive coupled differential equations for the temporal change of the orbitals and the charge's trajectory. The orbitals are represented by functions with complex exponents changing with time, describing electronic density and flux changes. For each orbital, they solve a set of six coupled differential equations; two of them are derived with a time-dependent variational procedure for the real and imaginary parts of the exponents, and the other four are the Hamilton equations of the positions and momenta of the moving charge. The molecular potentials are derived from the exact expressions for the electronic energies. Results of calculations for 1s and 2s orbitals show large variation of the real exponent parts over time, with respect to asymptotic values, and that imaginary parts remain small
Critical competition between two distinct orbital-spin ordered states in perovskite vanadates
Fujioka, J.; Yasue, T.; Miyasaka, S.; Yamasaki, Y.; Arima, T.; Sagayama, H.; Inami, T.; Ishii, K.; Tokura, Y.
2010-10-01
We have investigated the spin/orbital phase diagram in the perovskite orthovanadate RVO3 ( R=Eu , Y, Dy, and Ho) by measurements of magnetization, dielectric constant, specific heat, Raman scattering spectra, and x-ray diffraction, focusing on the interplay between the V3d spin and the 4f moment of the R ion. The thermally induced phase transition between the C-type spin/G-type orbital ordered state and the G-type spin/C-type orbital ordered state is observed for Eu1-xYxVO3 (x=0-0.52) without 4f moment. By comparing this phase diagram with the spin/orbital ordering in TbVO3 , it is evident that the critical competition between the C-type spin/G-type orbital ordered phase and the G-type spin/C-type orbital ordered one depends not only on the GdFeO3 -type lattice distortion but also on the presence of the 4f moment of the R ion. The magnetic field induced phase transition of the spin/orbital ordering is achieved concomitantly with polarizing R4f moments for DyVO3 and HoVO3 . For DyVO3 , the G-type spin/C-type orbital ordered phase is switched to the C-type spin/G-type orbital ordered one by applying a moderate magnetic field around 3 T. By contrast, the G-type spin/C-type orbital ordering is rather favored under the magnetic field in HoVO3 . The results cannot be uniquely explained in terms of the exchange interaction between the V3d spin and the R -ion 4f moment. The coupling of the R4f moment polarization with the lattice distortion tied with the orbital ordering of the V3d sublattice may also be relevant to this field induced phase transition.
Spin-controlled orbital motion in tightly focused high-order Laguerre-Gaussian beams.
Cao, Yongyin; Zhu, Tongtong; Lv, Haiyi; Ding, Weiqiang
2016-02-22
Spin angular momentum can contribute to both optical force and torque exerted on spheres. Orbit rate of spheres located in tightly focused LG beams with the same azimuthal mode index l is spin-controlled due to spin-orbit coupling. Laguerre-Gaussian beams with high-order azimuthal mode are used here to study the orbit rate of dielectric spheres. Orbit rates of spheres with varying sizes and refravtive indices are investigated as well as optical forces acting on spheres in LG beams with different azimuthal modes. These results would be much helpful to investigation on optical rotation and transfer of spin and orbital angular momentum. PMID:26906996
Photoinduced phase transition in charge order systems. Charge frustration and interplay with lattice
Lattice effects on photoexcited states in an interacting charge-frustrated system are examined. Real-time dynamics in the interacting spinless fermion model on a triangular lattice coupled to lattice vibration are analyzed by applying the exact diagonalization method combined with the classical equation of motion. A photoinduced phase transition from the horizontal stripe-type charge order (CO) to the 3-fold CO occurs through a characteristic intermediate time domain. By analyzing the time evolution in detail, we find that these characteristic dynamics are seen when the electron and lattice sectors are not complementary to each other but show cooperative time evolutions. The dynamics are distinct from those from the vertical stripe-type CO, in which a monotonic CO melting occurs. A scenario of the photoinduced CO phase transition with lattice degree of freedom is presented from the viewpoint of charge frustration. (author)
Orbital angular momentum of the laser beam and the second order intensity moments
无
2000-01-01
From the wave equation of a generalized beam the orbital angular momentum is studied. It is shown that the orbital angular momentum exists not only in the Laguerre_Gaussian beam,but in any beam with an angular_dependent structure. By calculating the second order intensity moments of the beam the relation between the orbital angular momentum and the second order moments 〈xθy〉, 〈yθx〉 is given. As an example the orbital angular momentum of the general astigmatic Gaussian beam is studied.
Orbital angular momentum of the laser beam and the second order intensity moments
高春清[1; 魏光辉[2; HorstWeber[3
2000-01-01
From the wave equation of a generalized beam the orbital angular momentum is studied. It is shown that the orbital angular momentum exists not only in the Laguerre-Gaussian beam, but in any beam with an angular-dependent structure. By calculating the second order intensity moments of the beam the relation between the orbital angular momentum and the second order moments 〈xθy〉, 〈yθx〉 is given. As an example the orbital angular momentum of the general astigmatic Gaussian beam is studied.
Charge ordering phenomena and superconductivity in underdoped cuprates
Tassini, Leonardo [Bayerische Akademie der Wissenschaften, Muenchen (Germany). Lehrstuhl E23 fuer Technische Physik
2008-01-16
In this thesis electronic properties of two prototypical copper-oxygen superconductors were studied with Raman scattering. The underdoped regime including the onset point of superconductivity p{sub sc1} was investigated. Evidence of quasi one-dimensional (1D) dynamical stripes was found. The 1D structures have a universal preferential orientation along the diagonals of the CuO{sub 2} planes below p{sub sc1}. At p{sub sc1}, lattice and electron dynamics change discontinuously. The results show that charge ordering drives the transition at p{sub sc1} and that the maximal transition temperature to superconductivity at optimal doping T{sub c}{sup MAX} depends on the type of ordering at p{sub sc1}. (orig.)
Influence of orbital nematic order on spin responses in Fe-based superconductors
Su, Yuehua; Zhang, Chao; Li, Tao
2016-05-01
Electronic nematicity is ubiquitous in Fe-based superconductors, but what the primary nematic order is and how the various nematic phenomena correlate with each other are still elusive. In this manuscript we study the physical consequence of the orbital nematic order on the spin correlations. We find that the orbital nematic order can drive a significant spin nematicity and can enhance the integrated intensity of the spin fluctuations. Our study shows that the orbital nematic order has strong effect on the spin correlations and it can not be taken as an unimportant secondary effect of the nematic state in Fe-based superconductors.
Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin-Orbit Coupling
ZHANG Xi-Sua; XIONG Shi-Jie
2008-01-01
We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin-orbit coupling and connected asymmetrically to two external leads spanned with angle (φ)0.Because of the asymmetry of the structure and the spin-reflection,the persistent charge and spin currents can be induced.The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov-Casher (AC) phase due to the spin-orbit coupling and the angle spanned by two leads (φ)0.The general dependence of the charge and spin persistent currents on these parameters is obtained.This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and (φ)0,without the electromagnetic flux though the ring.
Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin—Orbit Coupling
We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin—orbit coupling and connected asymmetrically to two external leads spanned with angle φ0. Because of the asymmetry of the structure and the spin-reflection, the persistent charge and spin currents can be induced. The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov–Casher (AC) phase due to the spin—orbit coupling and the angle spanned by two leads φ0. The general dependence of the charge and spin persistent currents on these parameters is obtained. This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and φ0, without the electromagnetic flux though the ring. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Charge ordering in low dimensional organic conductors: Structural aspects
Pouget, Jean-Paul; Foury-Leylekian, Pascale [Laboratoire de Physique des Solides, Universite Paris-sud, CNRS UMR 8502, Batiment 510, 91405 Orsay Cedex (France); Alemany, Pere [Departament de Quimica Fisica and Institut de Quimica Teorica i Computacional (IQTCUB), Universitat de Barcelona, Diagonal 627, 08028 Barcelona (Spain); Canadell, Enric [Institut de Ciencia de Materials de Barcelona, CSIC, Campus UAB, 08193 Bellaterra (Spain)
2012-05-15
The paper points out the importance of the coupling between anions and donors in order to achieve the 4k{sub F} charge localization observed in (TMTTF){sub 2}PF{sub 6}, {delta}-(EDT-TTF-CONMe{sub 2}){sub 2}Br and (o-DMTTF){sub 2}Cl/Br salts, the 2k{sub F} charge density wave (CDW) ground state of {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} and the metal to insulator transition of {alpha}-(BEDT-TTF){sub 2}I{sub 3}. This coupling leads to a cooperative displacement wave of the anions accompanied by a modulation of the density of {pi} holes on the donors. We distinguish two principal anion-donor coupling mechanisms: a direct mechanism via the Hartree anion potential on donor sites and an indirect mechanism via the polarization of {sigma} bonds activated by the modification of the H bonds network. Both kinds of interaction are tuned by the relative displacement of the anions with respect to the donors. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Image-charge-induced localization of molecular orbitals at metal-molecule interfaces
Strange, M.; Thygesen, K. S.
2012-01-01
Quasiparticle (QP) wave functions, also known as Dyson orbitals, extend the concept of single-particle states to interacting electron systems. Here we employ many-body perturbation theory in the GW approximation to calculate the QP wave functions for a semiempirical model describing a pi-conjugat......Quasiparticle (QP) wave functions, also known as Dyson orbitals, extend the concept of single-particle states to interacting electron systems. Here we employ many-body perturbation theory in the GW approximation to calculate the QP wave functions for a semiempirical model describing a pi......-conjugated molecular wire in contact with a metal surface. We find that image charge effects pull the frontier molecular orbitals toward the metal surface, while orbitals with higher or lower energy are pushed away. This affects both the size of the energetic image charge shifts and the coupling of the individual...... orbitals to the metal substrate. Full diagonalization of the QP equation and, to some extent, self-consistency in the GW self-energy, is important to describe the effect, which is not captured by standard density functional theory or Hartree-Fock. These results should be important for the understanding and...
Higher order branching of periodic orbits from polynomial isochrones
B. Toni
1999-09-01
Full Text Available We discuss the higher order local bifurcations of limit cycles from polynomial isochrones (linearizable centers when the linearizing transformation is explicitly known and yields a polynomial perturbation one-form. Using a method based on the relative cohomology decomposition of polynomial one-forms complemented with a step reduction process, we give an explicit formula for the overall upper bound of branch points of limit cycles in an arbitrary $n$ degree polynomial perturbation of the linear isochrone, and provide an algorithmic procedure to compute the upper bound at successive orders. We derive a complete analysis of the nonlinear cubic Hamiltonian isochrone and show that at most nine branch points of limit cycles can bifurcate in a cubic polynomial perturbation. Moreover, perturbations with exactly two, three, four, six, and nine local families of limit cycles may be constructed.
Homoclinic orbits at infinity for second-order Hamiltonian systems with fixed energy
Dong-Lun Wu
2015-06-01
Full Text Available We obtain the existence of homoclinic orbits at infinity for a class of second-order Hamiltonian systems with fixed energy. We use the limit for a sequence of approximate solutions which are obtained by variational methods.
Ying Lv
2013-01-01
Full Text Available We investigate the existence and multiplicity of homoclinic orbits for second-order Hamiltonian systems with local superquadratic potential by using the Mountain Pass Theorem and the Fountain Theorem, respectively.
Connection between charge-density-wave order and charge transport in the cuprate superconductors
Tabis, W.; Li, Y; Tacon, M. Le; Braicovich, L.; Kreyssig, A.; Minola, M.; Dellea, G.; Weschke, E.; Veit, M. J.; Ramazanoglu, M.; Goldman, A. I.; T. Schmitt; Ghiringhelli, G.; Barišić, N.; Chan, M. K.
2014-01-01
Charge-density-wave (CDW) correlations within the quintessential CuO$_2$ planes have been argued to either cause [1] or compete with [2] the superconductivity in the cuprates, and they might furthermore drive the Fermi-surface reconstruction in high magnetic fields implied by quantum oscillation (QO) experiments for YBa$_2$Cu$_3$O$_{6+{\\delta}}$ (YBCO) [3] and HgBa$_2$CuO$_{4+{\\delta}}$ (Hg1201) [4]. Consequently, the observation of bulk CDW order in YBCO was a significant development [5,6,7]...
High-order moments of spin-orbit energy in a multielectron configuration.
Na, Xieyu; Poirier, M
2016-07-01
In order to analyze the energy-level distribution in complex ions such as those found in warm dense plasmas, this paper provides values for high-order moments of the spin-orbit energy in a multielectron configuration. Using second-quantization results and standard angular algebra or fully analytical expressions, explicit values are given for moments up to 10th order for the spin-orbit energy. Two analytical methods are proposed, using the uncoupled or coupled orbital and spin angular momenta. The case of multiple open subshells is considered with the help of cumulants. The proposed expressions for spin-orbit energy moments are compared to numerical computations from Cowan's code and agree with them. The convergence of the Gram-Charlier expansion involving these spin-orbit moments is analyzed. While a spectrum with infinitely thin components cannot be adequately represented by such an expansion, a suitable convolution procedure ensures the convergence of the Gram-Charlier series provided high-order terms are accounted for. A corrected analytical formula for the third-order moment involving both spin-orbit and electron-electron interactions turns out to be in fair agreement with Cowan's numerical computations. PMID:27575229
Complex charge ordering in CeRuSn
Feyerherm, Ralf; Dudzik, Esther; Valencia, Sergio [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany); Mydosh, John A. [MPI-CPFS, 01187 Dresden (Germany); Kamerlingh Onnes Laboratory, Leiden University, 2300RA Leiden (Netherlands); Hermes, Wilfried; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, 48149 Muenster (Germany)
2012-07-01
At room temperature (RT), CeRuSn exhibits coexistence of trivalent Ce{sup 3+} and intermediate valent Ce{sup (4-{delta})+} in a metallic environment. Charge ordering produces a doubling of the unit cell along the c-axis with respect to the basic CeCoAl type structure. Below RT, a phase transition with broad hysteresis has been observed in various bulk properties. The present X-ray diffraction results show that at low temperatures the doubling of the CeCoAl type structure is replaced by an ill-defined modulated ground state in which at least three modulation periods compete. The dominant mode is close to a tripling of the basic cell. XANES data suggest that the average Ce valence remains constant. We propose a qualitative structure model with modified stacking sequences of Ce{sup 3+} and Ce{sup (4-{delta})+} layers in the various modulated phases. Surprisingly, far below 100 K the modulated state is sensitive to synchrotron X-ray irradiation. With a photon flux {approx} 10{sup 12} s{sup -1}, the modulated ground state is destroyed on a timescale of minutes and the doubling of the CeCoAl cell observed at room temperature is recovered. The final state is metastable at 10 K. Heating the sample above 60 K again leads to a recovery of the modulated state.
Tursunov, Arman; Kološ, Martin
2016-01-01
We study motion of charged particles in the field of a rotating black hole immersed into an external asymptotically uniform magnetic field, focusing on the epicyclic quasi-circular orbits near the equatorial plane. Separating the circular orbits into four qualitatively different classes according to the sign of the canonical angular momentum of the motion and the orientation of the Lorentz force, we analyse the circular orbits using the so called force formalism. We find the analytical solutions for the radial profiles of velocity, specific angular momentum and specific energy of the circular orbits in dependence on the black hole dimensionless spin and the magnetic field strength. The innermost stable circular orbits are determined for all four classes of the circular orbits. The stable circular orbits with outward oriented Lorentz force can extend to radii lower than the radius of the corresponding photon circular geodesic. We calculate the frequencies of the harmonic oscillatory motion of the charged parti...
Molenkamp, Laurens; Nitta, Junsaku
2009-05-01
As the information and communications technology industries continue to demand smaller and more powerful electronic devices, it is becoming clear that the technologies which we currently rely upon to store, process and encode data are no longer sufficient. Over the past two decades, the field of spintronics has emerged as a promising source of the new technologies that will help to meet these needs. Following the discovery of giant magnetoresistance in the late 1980s research originally focused on achieving larger and larger magnetoresistance effects in metal-based systems. The resulting devices have already found widespread applications (as read heads in hard drives, for example) and more recent developments (spin torque, domain wall effects) demonstrate a similarly large potential. The development of semiconductor spintronic devices, which promise an even more enhanced functionality, has proved a tougher challenge to researchers. While the physics of spin injection in semiconductors is well understood by now, we presently still do not have a reliable and robust means for spin detection. Moreover, while ferromagnetic semiconductors have shown a wealth of novel device physics, the applicability of these concepts is limited because the community still has not found a material that demonstrates robust ferromagnetism at and above room temperature. Because of this, a growing number of researchers has turned to the utilization of spin--orbit interaction as a tool to manipulate spin behaviour within semiconductors. This cluster of articles reflects this trend in spintronics research and the blend of reviews and novel research provides a good overview of the current status of investigation into spin--orbit interaction and its effect on charge transport. The collection includes review papers on the theory of the impact of spin-orbit effects on weak localization in semiconductor heterostructures (Glazov and Golub) and of shot noise in 2DEG devices (Nikolic and Dragomirova
Third-order energy derivative corrections to the Kohn-Sham orbital hardness tensor
Tzonka Mineva
2005-09-01
The third term in the Taylor expansion of the total energy functional around the number of electrons is evaluated as the second-order derivative of orbital Kohn-Sham energies with respect to orbital occupancy. Present approach is an extension of an efficient algorithm to compute densityfunctional based orbital reactivity indices. Various energy derivatives used to approximate orbital reactivity indices are defined within the space spanned by the orbital occupation numbers and the Kohn-Sham one-electron energies. The third-order energy functional derivative has to be considered for singular hardness tensor ([]). On the contrary, this term has negligible influence on the reactivity index values for atomic or molecular systems with positively defined hardness tensors. In this context, stability of a system in equilibrium state estimated through the eigenvalues of [h] is discussed. Numerical illustration of the Kohn-Sham energy functional derivatives in orbital resolution up to the third order is shown for benchmark molecules such as H2O, H2S, and OH-.
EuBaFe2O5+w: Valence mixing and charge ordering are two separate cooperative phenomena
Mixed-valence EuBaFe2O5+w exhibits a robust Verwey-type transition. The trend in the volume change suggests a first-order transition up to the nonstoichiometry level of about w=0.25. 57Fe Mossbauer spectroscopy, differential scanning calorimetry and synchrotron X-ray powder diffraction are used to study the valence mixing and charge ordering in EuBaFe2O5+w as a function of the nonstoichiometry parameter w. 151Eu Mossbauer spectroscopy is used as a selective probe into the ferromagnetic valence-mixing coupling along c above the Verwey transition, and reveals that increasing w destroys this coupling in favor of a G-type magnetic order in parallel with the progressive removal of the valence-mixed iron states accounted for by 57Fe Mossbauer spectroscopy. This removal proceeds according to a probability scheme of mixing between ferromagnetically coupled divalent and trivalent neighbor iron atoms along c across the R layer. In contrast, the concentration decrease of the orbital- and charge-ordered states in EuBaFe2O5+w is found to be a linear function of w. Valence mixing and charge ordering are therefore two separate cooperative phenomena. The enthalpy of the Verwey-type transition between these two cooperative systems is a linear function of w, which suggests that it originates from the latent heat of freezing into the long-range ordered orbital- and charge-ordered state. The enthalpy becomes zero at the nonstoichiometry level of about w=0.25
Abstracts of the workshop on orbital ordering and fluctuations in d- and f-electron systems
Ueda, Kazuo; Hotta, Takashi (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2002-12-01
Strongly correlated f- and d-electron systems including heavy Fermion systems and transition metal oxides are important source of exciting new phenomena in condensed matter physics. Recently it has been recognized in more profound way that the orbital degeneracy of the f- and d-electrons plays very important role underlying those exotic phenomena. The idea of the present workshop is to bring active researchers in the field together and to exchange ideas in informal atmosphere. In the workshop, twenty seven papers were presented and the following subjects were discussed: orbital ordering in transition metal oxides, role of orbital degeneracy in heavy Fermion systems and effect of geometrical frustration on orbital fluctuations. (author)
Abstracts of the workshop on orbital ordering and fluctuations in d- and f-electron systems
Strongly correlated f- and d-electron systems including heavy Fermion systems and transition metal oxides are important source of exciting new phenomena in condensed matter physics. Recently it has been recognized in more profound way that the orbital degeneracy of the f- and d-electrons plays very important role underlying those exotic phenomena. The idea of the present workshop is to bring active researchers in the field together and to exchange ideas in informal atmosphere. In the workshop, twenty seven papers were presented and the following subjects were discussed: orbital ordering in transition metal oxides, role of orbital degeneracy in heavy Fermion systems and effect of geometrical frustration on orbital fluctuations. (author)
On the relation between Jahn-Teller ordering and charge ordering
This thesis compares the structures of KCusup(II)F3 and Cs2Ausup(I)Ausup(III)Cl6. Both compounds have a structure that can be thought to result from a deformation of the cubic perovskite structure. The deformation of KCusup(II)F3 is a result of a cooperative Jahn-Teller effect and the deformation of Cs2Ausup(I)Ausup(III)Cl6 results in two sublattices. The structures of both compounds result from a continuous phase transition from the cubic pervskite structure due to a deformation of symmetry. Using local coordinates and a calculation of the electron-lattice interaction in a static approximation, four structure types were derived. One is the structure of Cs2AuAuCl6 at ambient temperature and pressure and the second contains a group of structures corresponding to the structures found for KCuF3. The third structure type was recently suggested for Cs2AuAuCl6 under pressure and the fourth has not been found experimentally. Two types show a Jahn-Teller ordering and the other two charge ordering (Auth./C.F.)
Villanueva, J R
2015-01-01
Properties of the motion of electrically charged particles in the background of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) black hole is presented in this paper. Radial and angular motion are studied analytically for different values of the fundamental parameter. Therefore, gravitational Rutherford scattering and Keplerian orbits are analysed in detail. Finally, this paper complements previous work by Fernando for null geodesics (Phys. Rev. D 85: 024033, 2012), Olivares & Villanueva (Eur. Phys. J. C 73: 2659, 2013) and Blaga (Automat. Comp. Appl. Math. 22, 41 (2013); Serb. Astron. J. 190, 41 (2015)) for time-like geodesics.
Villanueva, J.R. [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile); Centro de Astrofisica de Valparaiso, Valparaiso (Chile); Olivares, Marco [Universidad Diego Portales, Avenida Ejercito Libertador 441, Facultad de Ingenieria, Santiago (Chile)
2015-11-15
Properties of the motion of electrically charged particles in the background of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole is presented in this paper. Radial and angular motions are studied analytically for different values of the fundamental parameter. Therefore, gravitational Rutherford scattering and Keplerian orbits are analyzed in detail. Finally, this paper complements previous work by Fernando for null geodesics (Phys Rev D 85:024033, 2012), Olivares and Villanueva (Eur Phys J C 73:2659, 2013) and Blaga (Automat Comp Appl Math 22:41-48, 2013; Serb Astron 190:41, 2015) for time-like geodesics. (orig.)
Characterization of topological charge and orbital angular momentum of shaped optical vortices.
Amaral, Anderson M; Falcão-Filho, Edilson L; de Araújo, Cid B
2014-12-01
Optical vortices (OV) are usually associated to cylindrically symmetric light beams. However, they can have more general geometries that extends their applicability. Since the typical experimental characterization methods are not appropriate for OV with arbitrary shapes, we discuss in this work how the definitions of the classical orbital angular momentum and the topological charge can be used to retrieve these informations in the general case. The concepts discussed are experimentally demonstrated and may be specially useful in areas such as optical tweezers and plasmonics. PMID:25606960
Villanueva, J. R.; Olivares, Marco
2015-11-01
Properties of the motion of electrically charged particles in the background of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole is presented in this paper. Radial and angular motions are studied analytically for different values of the fundamental parameter. Therefore, gravitational Rutherford scattering and Keplerian orbits are analyzed in detail. Finally, this paper complements previous work by Fernando for null geodesics (Phys Rev D 85:024033, 2012), Olivares and Villanueva (Eur Phys J C 73:2659, 2013) and Blaga (Automat Comp Appl Math 22:41-48, 2013; Serb Astron 190:41, 2015) for time-like geodesics.
Properties of the motion of electrically charged particles in the background of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole is presented in this paper. Radial and angular motions are studied analytically for different values of the fundamental parameter. Therefore, gravitational Rutherford scattering and Keplerian orbits are analyzed in detail. Finally, this paper complements previous work by Fernando for null geodesics (Phys Rev D 85:024033, 2012), Olivares and Villanueva (Eur Phys J C 73:2659, 2013) and Blaga (Automat Comp Appl Math 22:41-48, 2013; Serb Astron 190:41, 2015) for time-like geodesics. (orig.)
Properties of the motion of electrically charged particles in the background of the Gibbons–Maeda–Garfinkle–Horowitz–Strominger black hole is presented in this paper. Radial and angular motions are studied analytically for different values of the fundamental parameter. Therefore, gravitational Rutherford scattering and Keplerian orbits are analyzed in detail. Finally, this paper complements previous work by Fernando for null geodesics (Phys Rev D 85:024033, 2012), Olivares and Villanueva (Eur Phys J C 73:2659, 2013) and Blaga (Automat Comp Appl Math 22:41–48, 2013; Serb Astron 190:41, 2015) for time-like geodesics
Villanueva, J. R., E-mail: jose.villanuevalob@uv.cl [Instituto de Física y Astronomía, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso (Chile); Centro de Astrofísica de Valparaíso, Gran Bretaña 1111, Playa Ancha, Valparaíso (Chile); Olivares, Marco, E-mail: marco.olivaresr@mail.udp.cl [Facultad de Ingeniería, Universidad Diego Portales, Avenida Ejército Libertador 441, Casilla 298–V, Santiago (Chile)
2015-11-27
Properties of the motion of electrically charged particles in the background of the Gibbons–Maeda–Garfinkle–Horowitz–Strominger black hole is presented in this paper. Radial and angular motions are studied analytically for different values of the fundamental parameter. Therefore, gravitational Rutherford scattering and Keplerian orbits are analyzed in detail. Finally, this paper complements previous work by Fernando for null geodesics (Phys Rev D 85:024033, 2012), Olivares and Villanueva (Eur Phys J C 73:2659, 2013) and Blaga (Automat Comp Appl Math 22:41–48, 2013; Serb Astron 190:41, 2015) for time-like geodesics.
Spin and charge transport in the presence of spin-orbit interaction
T P Pareek; P Bruno
2002-02-01
We present the study of spin and charge transport in nanostructures in the presence of spin-orbit (SO) interaction. Single band tight binding Hamiltonians for Elliot–Yafet and Rashba SO interaction are derived. Using these tight binding Hamiltonians and spin resolved Landauer–Büttiker formula, spin and charge transport is studied. Speciﬁcally numerical results are presented for a new method to perform magnetic scanning tunneling microscopy with non-magnetic tip but in the presence of Elliot–Yafet SO interaction. The spin relaxation phenomena in two-dimensional electron gas in the presence of Rashba SO interaction are studied and contrary to naive expectation, it is shown that disorder helps to reduce spin relaxation.
Metal-insulator and charge ordering transitions in oxide nanostructures
Singh, Sujay Kumar
. First principles calculations show that the destabilization of the insulating phase during the gating arises due to the formation of oxygen vacancies in VO2; the rutile phase is far more amenable to electrochemical reduction as compared to the monoclinic phase, likely due to its higher electrical conductivity. The generation of oxygen vacancies appears thermodynamically favorable if the removed oxygen atoms from VO2 oxidize the anions in the ionic liquid. Finally, electronic properties of single crystalline, individual nanowires of vanadium oxide bronzes (MxVO 2O5) are presented. The intercalation effects of metal cation and the stoichiometry (x) are explored and discussed. These nanowires exhibit thermally and electrically driven charge ordering and metal to insulator transitions. The electrolyte gating measurements show resistance modulations across the phase transition but the effect is not as dramatic as in VO2.
d-Density Wave Scenario Description of the New Hidden Charge Order in Cuprates
Makhfudz, Imam
2016-06-01
In this paper, we show that the theory of high Tc superconductivity based on a microscopic model with d-density wave (DDW) scenario in the pseudogap phase is able to reproduce some of the most important features of the recent experimentally discovered hidden charge order in several families of Cuprates. In particular, by computing and comparing energies of charge orders of different modulation directions derived from a full microscopic theory with d-density wave scenario, the axial charge order ϕX(Y) with wavevector {Q} = (Q0,0)((0,Q0)) is shown to be unambiguously energetically more favorable over the diagonal charge order ϕX±Y with wavevector {Q} = (Q0, ± Q0) at least in commensurate limit, to be expected also to hold even to more general incommensurate case, in agreement with experiment. The two types of axial charge order ϕX and ϕY are degenerate by symmetry. We find that within the superconducting background, biaxial (checkerboard) charge order is energetically more favorable than uniaxial (stripe) charge order, and therefore checkerboard axial charge order should be the one observed in experiments, assuming a single domain of charge ordered state on each CuO2 plane.
Arbitrary Order Charge Approximation Event Driven Phase Lock Loop Model
Daniels, Brian; Farrell, Ronan; Baldwin, Gerard
2004-01-01
An alternative technique for the derivation of an event driven phase lock loop (PLL) model is presented enabling the modelling of higher order PLLs. Event driven models have previously been developed for 2nd, and 3rd order PLLs [1,2,3], however for higher order systems (5th, 6th etc.) the derivation of the loop filter difference equations are not amenable. This paper introduces a technique to model PLLs with arbitrary order filters that removes the restriction on the loop...
Spin-orbit precession for eccentric black hole binaries at first order in the mass ratio
Akcay, Sarp; Dolan, Sam
2016-01-01
We consider spin-orbit ("geodetic") precession for a compact binary in strong-field gravity. Specifically, we compute $\\psi$, the ratio of the accumulated spin-precession and orbital angles over one radial period, for a spinning compact body orbiting a non-rotating black hole. We show that $\\psi$ can be computed for eccentric orbits in both the gravitational self-force and post-Newtonian frameworks, and that the results appear to be consistent. We present a post-Newtonian expansion for $\\psi$ at next-to-next-to-leading order, and a Lorenz-gauge gravitational self-force calculation for $\\psi$ at first order in the mass ratio. The latter provides new numerical data in the strong-field regime to inform the Effective One-Body model of the gravitational two-body problem. We conclude that $\\psi$ complements the Detweiler redshift $z$ as a key invariant quantity characterizing eccentric orbits in the gravitational two-body problem.
Orbital angular momentum of a high-order Bessel light beam
Volke-Sepulveda, K [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51/216, Puebla, Pue., Mexico 72000 (Mexico); Garces-Chavez, V [School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, Scotland (United Kingdom); Chavez-Cerda, S [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51/216, Puebla, Pue., Mexico 72000 (Mexico); Arlt, J [School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, Scotland (United Kingdom); Dholakia, K [School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, Scotland (United Kingdom)
2002-04-01
The orbital angular momentum density of Bessel beams is calculated explicitly within a rigorous vectorial treatment. This allows us to investigate some aspects that have not been analysed previously, such as the angular momentum content of azimuthally and radially polarized beams. Furthermore, we demonstrate experimentally the mechanical transfer of orbital angular momentum to trapped particles in optical tweezers using a high-order Bessel beam. We set transparent particles of known dimensions into rotation, where the sense of rotation can be reversed by changing the sign of the singularity. Quantitative results are obtained for rotation rates. This paper's animations are available from the Multimedia Enhancements page.
Slussarenko S.; Karimi E.; Piccirillo B.; Marrucci L.; Santamato E.
2011-01-01
We present a novel optical device to encode and decode two bits of information into different Orbital Angular Momentum (OAM) states of a paraxial optical beam. Our device generates the four angular momentum states of order $\\pm 2$ and $\\pm4$ by Spin-To-Orbital angular momentum Conversion (STOC) in a triangular optical loop arrangement. The switching among the four OAM states is obtained by changing the polarization state of the circulating beam by two quarter wave plates and the two-bit infor...
Theoretical study of orbital ordering induced structural phase transition in iron pnictides
Jena, Sushree Sangita; Panda, S. K.; Rout, G. C.
2016-05-01
We attribute the structural phase transition (SPT) in the parent compounds of the iron pnictides to orbital ordering. Due to anisotropy of the dxz and dyz orbitals in the xy plane, orbital ordering makes the orthorhombic structure more favorable and thus inducing the SPT. We consider a one band model Hamiltonian consisting of first and second-nearest-neighbor hopping of the electrons. We introduce Jahn-Tellar (JT) distortion in the system arising due to the orbital ordering present in this system. We calculate the electron Green's function by using Zuvareb's Green's function technique and hence calculate an expression for the temperature dependent lattice strain which is computed numerically and self-consistently. The temperature dependent electron specific heat is calculated by minimizing the free energy of the system. The lattice strain is studied by varying the JT coupling and elastic constant of the system. The structural anomaly is studied through the electron occupation number and the specific heat by varying the physical parameters like JT coupling, lattice constant, chemical potential and hopping integrals of the system.
The Orbiting Wide-Angle Light Collectors (OWL) Mission for Charged-Particle Astronomy
Mitchell, John; Krizmanic, J. F.; Stecker, F. W.; Streitmatter, R. E.
2009-01-01
The space-based OWL mission is designed to perform high-statistics measurements of ultra-high-energy cosmic rays (UHECR) using the Earth's atmosphere as a vast particle calorimeter, furthering the field of charged-particle astronomy. OWL has been developed in formal NASA instrument and mission studies and is comprised of two large telescopes separated by approx.600 km in 1000 km, near-equatorial orbits to stereoscopically image the near-UV air fluorescence emitted by UHECR-induced particle cascades. The High Resolution Fly's Eye (HiRes) Collaboration, and subsequently the Pierre Auger Observatory, recently reported confirmation of the expected Greisen-Zatsepin-Kuzmin (GZK) suppression of the UHECR flux above a few times 10(exp 19) eV. This observation is consistent with the majority of UHECR originating in astrophysical objects and reduces the need to invoke exotic physical processes. Particles observed above the GZK threshold energy must have come from sources within about 100 Mpc from the Earth. The small particle deflection angles expected at UHECR energies, with standard assumptions of extragalactic magnetic fields, are on the order of 1 degree. Thus by observing particles above the GZK threshold with sufficient exposure, there is the potential of identifying and characterizing individual UHECR sources. Auger has reported significant anisotropy in the arrival directions of UHECR at energies above about 6 10(exp 19) eV observed in the South, and a correlation to AGN in the 12th VCV catalog, suggesting that the sources of UHECR are traced by the distribution of luminous matter in the Universe. However, with similar statistics and the same event selection criteria, HiRes observations in the North are consistent with isotropy. Extended observations by Auger-South, by Telescope Array in the North, and possibly by the proposed Auger-North, will further these investigations. However, much greater exposures will be required to fully identify individual sources and
An energy decomposition analysis (EDA) of intermolecular interactions is proposed for second-order Møller–Plesset perturbation theory (MP2) based on absolutely localized molecular orbitals (ALMOs), as an extension to a previous ALMO-based EDA for self-consistent field methods. It decomposes the canonical MP2 binding energy by dividing the double excitations that contribute to the MP2 wave function into classes based on how the excitations involve different molecules. The MP2 contribution to the binding energy is decomposed into four components: frozen interaction, polarization, charge transfer, and dispersion. Charge transfer is defined by excitations that change the number of electrons on a molecule, dispersion by intermolecular excitations that do not transfer charge, and polarization and frozen interactions by intra-molecular excitations. The final two are separated by evaluations of the frozen, isolated wave functions in the presence of the other molecules, with adjustments for orbital response. Unlike previous EDAs for electron correlation methods, this one includes components for the electrostatics, which is vital as adjustment to the electrostatic behavior of the system is in some cases the dominant effect of the treatment of electron correlation. The proposed EDA is then applied to a variety of different systems to demonstrate that all proposed components behave correctly. This includes systems with one molecule and an external electric perturbation to test the separation between polarization and frozen interactions and various bimolecular systems in the equilibrium range and beyond to test the rest of the EDA. We find that it performs well on these tests. We then apply the EDA to a halogen bonded system to investigate the nature of the halogen bond
Thirman, Jonathan, E-mail: thirman@berkeley.edu; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720 (United States)
2015-08-28
An energy decomposition analysis (EDA) of intermolecular interactions is proposed for second-order Møller–Plesset perturbation theory (MP2) based on absolutely localized molecular orbitals (ALMOs), as an extension to a previous ALMO-based EDA for self-consistent field methods. It decomposes the canonical MP2 binding energy by dividing the double excitations that contribute to the MP2 wave function into classes based on how the excitations involve different molecules. The MP2 contribution to the binding energy is decomposed into four components: frozen interaction, polarization, charge transfer, and dispersion. Charge transfer is defined by excitations that change the number of electrons on a molecule, dispersion by intermolecular excitations that do not transfer charge, and polarization and frozen interactions by intra-molecular excitations. The final two are separated by evaluations of the frozen, isolated wave functions in the presence of the other molecules, with adjustments for orbital response. Unlike previous EDAs for electron correlation methods, this one includes components for the electrostatics, which is vital as adjustment to the electrostatic behavior of the system is in some cases the dominant effect of the treatment of electron correlation. The proposed EDA is then applied to a variety of different systems to demonstrate that all proposed components behave correctly. This includes systems with one molecule and an external electric perturbation to test the separation between polarization and frozen interactions and various bimolecular systems in the equilibrium range and beyond to test the rest of the EDA. We find that it performs well on these tests. We then apply the EDA to a halogen bonded system to investigate the nature of the halogen bond.
Surface Ordering of Orbitals at a Higher Temperature in LaCoO3 Thin Film
Yamasaki, Yuichi; Fujioka, Jun; Nakao, Hironori; Okamoto, Jun; Sudayama, Takaaki; Murakami, Youichi; Nakamura, Masao; Kawasaki, Masashi; Arima, Takahisa; Tokura, Yoshinori
2016-02-01
We report on the distinct surface state of electronic orders, including spin, orbital, and spin-state degrees of freedom of Co3+ ion, in an epitaxially strained thin film of LaCoO3 grown on (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT) substrate. The surface ordered state was detected by the grazing-incidence resonant soft x-ray scattering at Co L-edge, where the probing depth is less than the topmost 4 nm of surface. Comparing with the result of bulk sensitive x-ray diffraction, we revealed that the transition temperature of the orbital order (spin order) at the surface region is about 30 K (20 K) higher (lower) than that of the bulk. A novel phenomenon of the surface order and bulk disorder of the orbital degree of freedom can be attributed to its collective and lattice-coupled nature which is strongly affected by the translational/inversion symmetry breaking at the surface.
PITCH ANGLE RESTRICTIONS IN LATE-TYPE SPIRAL GALAXIES BASED ON CHAOTIC AND ORDERED ORBITAL BEHAVIOR
We built models for low bulge mass spiral galaxies (late type as defined by the Hubble classification) using a three-dimensional self-gravitating model for spiral arms, and analyzed the orbital dynamics as a function of pitch angle, ranging from 10° to 60°. Indirectly testing orbital self-consistency, we search for the main periodic orbits and studied the density response. For pitch angles up to approximately ∼20°, the response closely supports the potential readily permitting the presence of long-lasting spiral structures. The density response tends to 'avoid' larger pitch angles in the potential by keeping smaller pitch angles in the corresponding response. Spiral arms with pitch angles larger than ∼20° would not be long-lasting structures but would rather be transient. On the other hand, from an extensive orbital study in phase space, we also find that for late-type galaxies with pitch angles larger than ∼50°, chaos becomes pervasive, destroying the ordered phase space surrounding the main stable periodic orbits and even destroying them. This result is in good agreement with observations of late-type galaxies, where the maximum observed pitch angle is ∼50°.
PITCH ANGLE RESTRICTIONS IN LATE-TYPE SPIRAL GALAXIES BASED ON CHAOTIC AND ORDERED ORBITAL BEHAVIOR
Perez-Villegas, A.; Pichardo, B.; Moreno, E.; Peimbert, A. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, A.P. 70-264, 04510 Mexico D.F. (Mexico); Velazquez, H. M., E-mail: barbara@astroscu.unam.mx [Observatorio Astronomico Nacional, Universidad Nacional Autonoma de Mexico, Apdo. Postal 877, 22800 Ensenada (Mexico)
2012-01-20
We built models for low bulge mass spiral galaxies (late type as defined by the Hubble classification) using a three-dimensional self-gravitating model for spiral arms, and analyzed the orbital dynamics as a function of pitch angle, ranging from 10 Degree-Sign to 60 Degree-Sign . Indirectly testing orbital self-consistency, we search for the main periodic orbits and studied the density response. For pitch angles up to approximately {approx}20 Degree-Sign , the response closely supports the potential readily permitting the presence of long-lasting spiral structures. The density response tends to 'avoid' larger pitch angles in the potential by keeping smaller pitch angles in the corresponding response. Spiral arms with pitch angles larger than {approx}20 Degree-Sign would not be long-lasting structures but would rather be transient. On the other hand, from an extensive orbital study in phase space, we also find that for late-type galaxies with pitch angles larger than {approx}50 Degree-Sign , chaos becomes pervasive, destroying the ordered phase space surrounding the main stable periodic orbits and even destroying them. This result is in good agreement with observations of late-type galaxies, where the maximum observed pitch angle is {approx}50 Degree-Sign .
Bouchard, Frédéric; Schulz, Sebastian A; Upham, Jeremy; Karimi, Ebrahim; Boyd, Robert W
2014-01-01
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded \\qo{space} for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of OAM $\\ell$. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge $q$. When a circularly polarised light beam traverse...
Strong orbital fluctuations in multipolar ordered states of PrV2Al20
Matsumoto, Yosuke; Tsujimoto, Masaki; Tomita, Takahiro; Sakai, Akito; Nakatsuji, Satoru
2016-02-01
PrT2Al20 (T=Ti, V) are ideal systems to study the quadrupole Kondo effect and quantum criticality arising from orbital degrees of freedom. The both systems have the nonmagnetic cubic Γ3 crystal electric field ground doublet with the well separated excited state. In particular, PrV2Al20 exhibits anomalous metallic behavior above and below the multipolar ordering temperatures, reflecting the even stronger hybridization between f and conduction electrons possibly due to a proximity to an orbital quantum critical point. Here we report the anomalous metallic behaviors found in a pure single crystal of PrV2Al20. Our detailed analyses revealed that the resistivity indicates power law temperature dependence proportional to T3. Furthermore, we pointed out that the 4f electron contribution to the specific heat also exhibits power law behavior proportional to T4. Both observations are in a sharp contrast to the gapped behavior found in PrTi2Al20 and indicate the strong c-f hybridization and strong orbital fluctuations in PrV2Al20. In addition, the 4f electron contribution to the entropy in PrV2Al20 reaches only 50% of R ln 2 at an orbital ordering at T=0.75 K, suggesting another 50% of R ln 2 expected for Γ3 doublet is already released at higher temperature possibly due to quadrupole Kondo effect.
Samantaray, B.; Khan, N.; Midya, A.; Ravi, S.; Mandal, P.
2016-01-01
We present results on resistivity (ρ), magnetization (M), thermal conductivity (κ), magnetostriction (\\frac{Δ L}{L(0)}) and specific heat (C p ) of the charge-orbital ordered antiferromagnetic Nd0.8Na0.2MnO3 compound. Magnetic-field-induced antiferromagnetic/charge-orbital ordered insulating to ferromagnetic metallic transition leads to giant magnetothermal conductivity and magnetostriction effect. The low-temperature irreversibility behavior in ρ, M, κ and \\frac{Δ L}{L(0)} due to field cycling together with a striking similarity among the field and temperature dependence of these parameters manifest the presence of a strong and complex spin-charge-lattice coupling in this compound. The giant magnetothermal conductivity is attributed mainly to the suppression of phonon scattering due to the destabilization of spin fluctuations and static/dynamic Jahn-Teller distortion by the application of magnetic field.
Eccentric orbit E/IMRI gravitational wave fluxes to 7PN order
Forseth, Erik; Evans, Charles R.; Hopper, Seth
2016-03-01
Knowledge of gravitational wave fluxes (energy and angular momentum, at both infinity and the horizon) from eccentric-orbit inspirals is extended from 3PN to 7PN order at lowest order in small mass ratio. Previous post-Newtonian eccentric-orbit results up to 3PN relative order are confirmed by our new black hole perturbation calculations. The calculations are based on Mano, Suzuki, and Takasugi (MST) analytic function expansions, and results are computed to 200 decimal places of accuracy using Mathematica. Over 1,700 distinct orbits were computed, each with as many as 7,000 Fourier-harmonic modes. A large number of PN coefficients between 3.5PN and 7PN orders were determined, either in exact analytic form or with accurate numerical values, in expansions in powers of a PN compactness parameter and its logarithm, and powers of eccentricity. We show a parametrization that removes singularities in the fluxes as the eccentricity approaches unity, thus making the expansions more convergent at high eccentricity. We also found (nearly) arbitrarily accurate expansions for the previously discussed 1.5PN, 2.5PN, and 3PN hereditary terms.
Distinguishing Patterns of Charge Order: Stripes or Checkerboards
Robertson, J.A.
2010-04-06
In two dimensions, quenched disorder always rounds transitions involving the breaking of spatial symmetries so, in practice, it can often be difficult to infer what form the symmetry breaking would take in the 'ideal,' zero disorder limit. We discuss methods of data analysis which can be useful for making such inferences, and apply them to the problem of determining whether the preferred order in the cuprates is 'stripes' or 'checkerboards.' In many cases we show that the experiments clearly indicate stripe order, while in others (where the observed correlation length is short), the answer is presently uncertain.
Charge-order driven multiferroic and magneto-dielectric properties of rare earth manganates
Claudy Rayan Serrao; Jyoti Ranjan Sahu; Anirban Ghosh
2010-04-01
Charge-order driven magnetic ferroelectricity is shown to occur in several rare earth manganates of the general formula, Ln1–AMnO3 (Ln = rare earth, A = alkaline earth). Charge-ordered manganates exhibit dielectric constant anomalies around the charge-ordering or the antiferromagnetic transition temperature. Magnetic fields have a marked effect on the dielectric properties of these compounds, indicating the presence of coupling between the magnetic and electrical order parameters. Magneto-dielectric properties are retained in small particles of the manganates. The observation of magneto-ferroelectricity in these manganates is in accordance with theoretical predictions.
Orbital Ordering and Spin-Ladder Formation in La2RuO5
Eyert, V.; Ebbinghaus, S. G.; Kopp, T.
2006-06-01
The semiconductor-semiconductor transition of La2RuO5 is studied by means of augmented spherical wave electronic structure calculations as based on density-functional theory and the local density approximation. This transition has lately been reported to lead to orbital ordering and a quenching of the local spin magnetic moment. Our results hint towards an orbital ordering scenario which, markedly different from the previously proposed scheme, preserves the local S=1 moment at the Ru sites in the low-temperature phase. The unusual magnetic behavior is interpreted by the formation of spin ladders, which result from the structural changes occurring at the transition and are characterized by antiferromagnetic coupling along the rungs.
Higher-order adaptive finite-element methods for orbital-free density functional theory
Motamarri, Phani; Iyer, Mrinal; Knap, Jaroslaw; Gavini, Vikram
2011-01-01
In the present work, we investigate the computational efficiency afforded by higher-order finite-element discretization of the saddle-point formulation of orbital-free density functional theory. We first investigate the robustness of viable solution schemes by analyzing the solvability conditions of the discrete problem. We find that a staggered solution procedure where the potential fields are computed consistently for every trial electron-density is a robust solution procedure for higher-or...
Orbital ordering in {sup 154}SmNiO{sub 3}
Medarde, M.; Rosenkranz, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Rodrigeuez-Carvajal, J. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Lacorre, P. [Lab. Fluorures, LeMans (France); Trounov, V. [PNPI, Gatchina (Russian Federation); Fernandez-Diaz, M.T. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)
1997-09-01
We have investigated the existence of a structural distortion associated to the k = (1/2 0 1/2) orbital ordering recently proposed to explain the magnetic structure of RNiO{sub 3} perovskites (R = rare earth). Our results on a {sup 154}SmNiO{sub 3} powder sample indicate that, if existing, the associated superstructure reflections are as a maximum 10{sup 4} times smaller than the largest nuclear reflection. (author) 2 figs., 3 refs.
Homoclinic Orbits for Second-Order Hamiltonian Systems with Some Twist Condition
Qi Wang
2012-01-01
Full Text Available We study the existence and multiplicity of homoclinic orbits for second-order Hamiltonian systems q¨−L(tq+∇qW(t,q=0, where L(t is unnecessarily positive definite for all t∈ℝ, and ∇qW(t,q is of at most linear growth and satisfies some twist condition between the origin and the infinity.
Photoinduced melting of charge order in quasi-two-dimensional organic conductors
Tanaka, Yasuhiro; Yonemitsu, Kenji, E-mail: yasuhiro@ims.ac.j [Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan)
2009-02-01
Photoinduced melting of charge order in quasi-two-dimensional organic conductors alpha-(ET){sub 2}I{sub 3} (ET=BEDT-TTF) and theta-(ET){sub 2}RbZn(SCN){sub 4} is investigated theoretically. By solving the time-dependent Schroedinger equation numerically within the Hartree-Fock approximation for an extended Peierls-Hubbard model, we study the photoinduced dynamics in each compound. The obtained charge, spin and lattice dynamics are considered to reflect the different natures of charge ordered states in these systems. In particular, the melting of charge order needs more energy for theta-(ET){sub 2}RbZn(SCN){sub 4} than for alpha-(ET){sub 2}I{sub 3}, which is a consequence of large lattice distortion and the essential role of electron-phonon coupling in stabilizing the charge order in theta-(ET){sub 2}RbZn(SCN){sub 4}.
Effect of Lattice Distortion on Charge Order in Manganites at Doping x = 0.5
WANG Hai-Long; TIAN Guang-Shan; LIN Hai-Qing
2005-01-01
In the present paper, we continue our investigation on the antiferromagnetic origin of the charge order observed in the half-doped manganese. By introducing a Su-Schrieffer-Heeger (SSH) type of perturbation interaction to the double-exchange Hamiltonian, we calculate again its ground-state phase diagram at filling x = 0.5 by the unrestricted real-space Hartree-Fock approximation method. We find that, as the SSH electron-phonon interaction increases, the charge order parameter decreases to zero rapidly but the CE-type antiferromagnetic order becomes more stable. In other words, the charge order is much more fragile than the CE-type or the Neel-type antiferromagnetic orders under the electron-phonon perturbation. These results support the proposed theory in the recent publications that the charge order in these systems is induced by the antiferromagnetic correlations.
Cage connectivity and frontier π orbitals govern the relative stability of charged fullerene isomers
Wang, Yang; Díaz-Tendero, Sergio; Alcamí, Manuel; Martín, Fernando
2015-11-01
Fullerene anions and cations have unique structural, electronic, magnetic and chemical properties that make them substantially different from neutral fullerenes. Although much theoretical effort has been devoted to characterizing and predicting their properties, this has been limited to a fraction of isomeric forms, mostly for fullerene anions, and has practically ignored fullerene cations. Here we show that the concepts of cage connectivity and frontier π orbitals allow one to understand the relative stability of charged fullerene isomers without performing elaborate quantum chemistry calculations. The latter is not a trivial matter, as the number of possible isomers for a medium-sized fullerene is many more than 100,000. The model correctly predicts the structures observed experimentally and explains why the isolated pentagon rule is often violated for fullerene anions, but the opposite is found for fullerene cations. These predictions are relevant in fields as diverse as astrophysics, electrochemistry and supramolecular chemistry.
The second-order post-newtonian orbit equation of light
Xiao, Y.; Fei, B. J.; Sun, W. J.; Ji, C. X.
2008-04-01
The photon's orbital equation is often used to discuss the movement of man-made satellite, small planet and photon in the solar system. It is also applied to the studies of astronomical measure such as VLBI, GPS and XNAV etc. In this paper, based on the second-order post-Newtonian approximation under the DSX scheme of GTR, it is educed that the second-order post-Newtonian orbit equation of light in axis-symmetrical stationary space-time using Lagrange equation. From here, the orbit equation and deflection angle of light propagating in equatorial plane are got. The conclusions are consistent with that of Schwarzchild and Kerr metric in the precision of measure. Because the oblateness of star is considered, it is more accurate than that of Kerr metric. The great advantage of the second-order post-Newtonian approximation under the DSX scheme of GTR is satisfy linear superposition. So, the conclusions in the paper can be applied to deal with the motion of light in multiple systems, but in this situation Kerr metric is of no effect.
Non-Gaussian properties of second-order wave orbital velocity
Alberello, Alberto; Gramstad, Odin; Babanin, Alexander V; Toffoli, Alessandro
2015-01-01
A stochastic second-order wave model is applied to assess the statistical properties of wave orbital velocity in random sea states below the water surface. Directional spreading effects as well as the dependency of the water depth are investigated by means of a Monte-Carlo approach. Unlike for the surface elevation, sub-harmonics dominate the second-order contribution to orbital velocity. We show that a notable set-down occurs for the most energetic and steepest groups. This engenders a negative skewness in the temporal evolution of the orbital velocity. A substantial deviation of the upper and lower tails of the probability density function from the Gaussian distribution is noticed, velocities are faster below the wave trough and slower below the wave crest when compared with linear theory predictions. Second-order nonlinearity effects strengthen with reducing the water depth, while weaken with the broadening of the wave spectrum. The results are confirmed by laboratory data. Corresponding experiments have b...
张红; 张继彦; 杨向东; 杨国洪; 郑志坚
2003-01-01
A collisional radiative model based on the spin-orbit-split-arrays is used to determine the charge state distribution of gold plasmas. The ab initio atomic structure code of Cowan and the spin-orbit-split-array model were used to calculate all the emission spectra of the different gold species, and a non-local thermodynamic-equilibrium model was coupled to calculate the ion populations at a given plasma density and electron temperature. The charge state distribution and other plasma parameters were determined by comparing the experimental spectra with the theoretical simulated spectra of gold plasmas.
Pitch Angle Restrictions in Late Type Spiral Galaxies Based on Chaotic and Ordered Orbital Behavior
Perez-Villegas, Angeles; Moreno, Edmundo; Peimbert, Antonio; Velazquez, Hector M
2011-01-01
We built models for low bulge mass spiral galaxies (late type as defined by the Hubble classification) using a 3-D self-gravitating model for spiral arms, and analyzed the orbital dynamics as a function of pitch angle, going from 10$\\deg$ to 60$\\deg$. Testing undirectly orbital self-consistency, we search for the main periodic orbits and studied the density response. For pitch angles up to approximately $\\sim 20\\deg$, the response supports closely the potential permitting readily the presence of long lasting spiral structures. The density response tends to "avoid" larger pitch angles in the potential, by keeping smaller pitch angles in the corresponding response. Spiral arms with pitch angles larger than $\\sim 20\\deg$, would not be long-lasting structures but rather transient. On the other hand, from an extensive orbital study in phase space, we also find that for late type galaxies with pitch angles larger than $\\sim 50\\deg$, chaos becomes pervasive destroying the ordered phase space surrounding the main sta...
Spin correlations in metallic and insulating phases of V2O3 and its derivatives are investigated using magnetic neutron scattering.Metallic samples have incommensurate spin correlations varying little with hole doping. Paramagnetic insulating samples have spin correlations only among near neighbors. The transition from either of these phases into the low temperature insulating antiferromagnetic phase is accompanied by an abrupt change of dynamic magnetic short range order. Our results support the idea that the transition into the antiferromagnetic insulator is also an orbital ordering transition. copyright 1997 The American Physical Society
Photo-induced changes in charge-ordered state of Ti4O7
We have investigated photo-induced effects on the charge-ordered state of Ti4O7 with pump-probe spectroscopy. Reflectivity of the probe light changes after the pulsed pump excitation, and then recovers. The photo-induced effects are observed only when the pump power exceeds a threshold value, indicative of cooperative nature of the formation process, and the recovery rate shows thermally activated behaviour. We propose that the photo-induced state is a metastable charge localized state where charge disorder is induced by a photon-assisted charge transfer process from Ti26+ dimers to the neighbouring Ti4+ions. Moreover, it is found that subsequent cw laser irradiation converts the photo-induced state into the charge-ordered state. We interpret this result in terms of formation of Ti26+ dimers via an inverse charge transfer process assisted by the cw optical excitation.
Comparison of dust charging between orbital-motion-limited theory and particle-in-cell simulations
The Orbital-Motion-Limited (OML) theory has been modified to predict the dust charge and the results were contrasted with the Whipple approximation [X. Z. Tang and G. L. Delzanno, Phys. Plasmas 21, 123708 (2014)]. To further establish its regime of applicability, in this paper, the OML predictions (for a non-electron-emitting, spherical dust grain at rest in a collisionless, unmagnetized plasma) are compared with particle-in-cell simulations that retain the absorption radius effect. It is found that for large dust grain radius rd relative to the plasma Debye length λD, the revised OML theory remains a very good approximation as, for the parameters considered (rd/λD ≤ 10, equal electron and ion temperatures), it yields the dust charge to within 20% accuracy. This is a substantial improvement over the Whipple approximation. The dust collected currents and energy fluxes, which remain the same in the revised and standard OML theories, are accurate to within 15%–30%
Comparison of dust charging between orbital-motion-limited theory and particle-in-cell simulations
Delzanno, Gian Luca, E-mail: delzanno@lanl.gov; Tang, Xian-Zhu, E-mail: xtang@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2015-11-15
The Orbital-Motion-Limited (OML) theory has been modified to predict the dust charge and the results were contrasted with the Whipple approximation [X. Z. Tang and G. L. Delzanno, Phys. Plasmas 21, 123708 (2014)]. To further establish its regime of applicability, in this paper, the OML predictions (for a non-electron-emitting, spherical dust grain at rest in a collisionless, unmagnetized plasma) are compared with particle-in-cell simulations that retain the absorption radius effect. It is found that for large dust grain radius r{sub d} relative to the plasma Debye length λ{sub D}, the revised OML theory remains a very good approximation as, for the parameters considered (r{sub d}/λ{sub D} ≤ 10, equal electron and ion temperatures), it yields the dust charge to within 20% accuracy. This is a substantial improvement over the Whipple approximation. The dust collected currents and energy fluxes, which remain the same in the revised and standard OML theories, are accurate to within 15%–30%.
Abeykoon, A. M. Milinda; Bozin, Emil S.; Yin, Wei-Guo; Gu, Genda; Hill, John P.; Tranquada, John M.; Billinge, Simon J. L.
2015-03-01
The temperature evolution of structural modulation associated with charge and spin order in La1.67Sr0.33NiO4 has been investigated using neutron powder diffraction. For the first time we report an anomalous shrinking of the c/a lattice parameter ratio that correlates with TCO at the temperature where long-range stacking order of charge stripes disappears. The sign of this change can be explained by the change in interlayer Coulomb energy between the static-stripe-ordered state and the fluctuating-stripe-ordered state or the charge-disordered state. In addition, we identify a contribution to the mean-square displacements of Ni and in-plane O atoms whose width correlates quite well with the size of the pseudogap extracted from the reported optical conductivity, with a non-Debye-like component that persists below and well above TCO. Local structural parameters in the atomic pair distribution function (PDF) well-agree with this result. We infer that dynamic charge-stripe correlations survive to T ~ 2TCO. This work was supported by the DOE Grant, DE- AC02-98CH10886.
Even and Odd Charge Coherent States: Higher-Order Nonclassical Properties and Generation Scheme
Duc, Truong Minh; Dinh, Dang Huu; Dat, Tran Quang
2016-06-01
We examine the higher-order nonclassical properties of the even and odd charge coherent states as well as proposing a scheme to generate these states whose modes can freely travel in open space. We show that the even and odd charge coherent states exhibit both higher-order antibunching and higher-order squeezing. While the two-mode higher-order antibunching occurs in any order and essentially depends on the charge number, the two-mode higher-order squeezing appears only in the even orders. We also prove that these states are genuinely entangled, and they can be generated by means of cross-Kerr media, beam splitters, phase shifts and threshold detectors. We find that the fidelity and the corresponding success probability to generate these states are dependent on the correlative parameters.
We present a time-dependent density functional theory (TDDFT) approach with proper asymptotic long-range potential for nonperturbative treatment of high-order harmonic generation (HHG) of diatomic molecules with their molecular axis parallel to the laser field polarization. A time-dependent two-center generalized pseudospectral method in prolate spheroidal coordinate system is used for accurate and efficient treatment of the TDDFT equations in space and time. The theory is applied to a detailed all-electron nonperturbative investigation of HHG processes of homonuclear (N2 and F2) and heteronuclear (CO, BF, and HF) molecules in intense ultrashort laser pulses with the emphasis on the role of multiple molecular orbitals (MOs). The results reveal intriguing and substantially different nonlinear optical response behaviors for homonuclear and heteronuclear molecules. In particular, we found that the HHG spectrum for homonuclear molecules features a destructive interference of MO contributions while heteronuclear molecules show mostly constructive interference of orbital contributions.
Charge-order domain walls with enhanced conductivity in a layered manganite
Ma, Eric Yue; Bryant, Benjamin; Tokunaga, Yusuke; Aeppli, Gabriel; Tokura, Yoshinori; Shen, Zhi-Xun
2015-07-01
Interfaces and boundaries in condensed-matter systems often have electronic properties distinct from the bulk material and thus have become a topic of both fundamental scientific interest and technological importance. Here we identify, using microwave impedance microscopy, enhanced conductivity of charge-order domain walls in the layered manganite Pr(Sr0.1Ca0.9)2Mn2O7. We obtain a complete mesoscopic map of surface topography, crystalline orientation and electronic phase, and visualize the thermal phase transition between two charge-ordered phases. In both phases, charge-order domains occur with domain walls showing enhanced conductivity likely due to local lifting of the charge order. Finite element analysis shows that the resolved domain walls can be as narrow as few nanometres. The domain walls are stabilized by structural twins and have a strong history dependence, suggesting that they may be manipulated to create novel devices.
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.
Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim, E-mail: ekarimi@uottawa.ca [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Boyd, Robert W. [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)
2014-09-08
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.
Tessmer, M; Hartung, J; Schaefer, G, E-mail: m.tessmer@uni-jena.d [Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany)
2010-08-21
A quasi-Keplerian parameterization for the solutions of second post-Newtonian (PN) accurate equations of motion for spinning compact binaries is obtained including leading order spin-spin and next-to-leading order spin-orbit interactions. Rotational deformation of the compact objects is incorporated. For arbitrary mass ratios the spin orientations are taken to be parallel or anti-parallel to the orbital angular momentum vector. The emitted gravitational wave forms are given in analytic form up to 2PN point particle, 1.5PN spin-orbit and 1PN spin-spin contributions, whereby the spins are assumed to be of 0PN order.
A quasi-Keplerian parameterization for the solutions of second post-Newtonian (PN) accurate equations of motion for spinning compact binaries is obtained including leading order spin-spin and next-to-leading order spin-orbit interactions. Rotational deformation of the compact objects is incorporated. For arbitrary mass ratios the spin orientations are taken to be parallel or anti-parallel to the orbital angular momentum vector. The emitted gravitational wave forms are given in analytic form up to 2PN point particle, 1.5PN spin-orbit and 1PN spin-spin contributions, whereby the spins are assumed to be of 0PN order.
Bauer, Johannes; Sachdev, Subir(Department of Physics, Harvard University, Cambridge, MA, 02138, USA)
2015-01-01
We study charge ordered solutions for fermions on a square lattice interacting with dynamic antiferromagnetic fluctuations. Our approach is based on real space Eliashberg equations which are solved self-consistently. We first show that the antiferromagnetic fluctuations can induce arc features in the spectral functions, as spectral weight is suppressed at the hot spots; however, no real pseudogap is generated. At low temperature spontaneous charge order with a $d$-form factor can be stabilize...
Eremin, Ilya; Nogueira, Flavio S.; Tarento, Rene-Jean
2005-01-01
We consider the spin and charge Josephson current between two non-uniform Fulde-Ferrel-Larkin-Ovchinnikov superconductors with helimagnetic order. We demonstrate that the presence of the helimagnetic phase generates a spin Josephson effect and leads to additional contributions to both single-particle and Josephson charge current. It is shown that for such systems the AC effect differs more radically from the DC effect than in the case of a BCS superconductor with helimagnetic order considered...
Orbital ordering in the two-dimensional ferromagnetic semiconductor Rb2CrCl4
Schwingenschlögl, U.; Eyert, V.
2007-05-01
We present the results of electronic structure calculations for the two-dimensional ferromagnet Rb2CrCl4. They are obtained by the augmented spherical wave (ASW) method as based on density functional theory and the local density approximation. In agreement with experimental data, Rb2CrCl4 is found to be semiconducting and displays long-range ferromagnetic order of the localized Cr 3d moments. The magnetic properties are almost independent of the structural modifications arising from the Jahn-Teller instability, which leads from the parent body-centered tetragonal K2NiF4 structure to a side-centered orthorhombic lattice. In contrast, the insulating gap is observed only for the latter structure due to the reduced symmetry. Our results thus suggest to interpret the orbital ordering as a necessary prerequisite for the opening of the gap rather than for the ferromagnetic order.
Self-Deflection of Dark Screening Spatial Solitons Based on Higher-Order Space Charge Field
ZHANG Guang-Yong; LIU Jin-Song; LIU Shi-Xiong; WANG Cheng; ZHANG Hui-Lan
2007-01-01
The effects of higher-order space charge field on the self-deflection of dark screening spatial solitons in biased photorefractive crystals are numerically investigated under steady-state conditions. The expression for an induced space-charge electric field including higher-order space-charge field terms is obtained. Numerical results indicate that dark solitons possess a self-deflection process during propagation, and the solitons always bend in the direction of the c axis of the crystal The self-deflection of dark solitons can experience considerable increase especially in the regime of high bias field strengths.
Higher-order adaptive finite-element methods for orbital-free density functional theory
In the present work, we study various numerical aspects of higher-order finite-element discretizations of the non-linear saddle-point formulation of orbital-free density-functional theory. We first investigate the robustness of viable solution schemes by analyzing the solvability conditions of the discrete problem. We find that a staggered solution procedure where the potential fields are computed consistently for every trial electron-density is a robust solution procedure for higher-order finite-element discretizations. We next study the convergence properties of higher-order finite-element discretizations of orbital-free density functional theory by considering benchmark problems that include calculations involving both pseudopotential as well as Coulomb singular potential fields. Our numerical studies suggest close to optimal rates of convergence on all benchmark problems for various orders of finite-element approximations considered in the present study. We finally investigate the computational efficiency afforded by various higher-order finite-element discretizations, which constitutes the main aspect of the present work, by measuring the CPU time for the solution of discrete equations on benchmark problems that include large Aluminum clusters. In these studies, we use mesh coarse-graining rates that are derived from error estimates and an a priori knowledge of the asymptotic solution of the far-field electronic fields. Our studies reveal a significant 100–1000 fold computational savings afforded by the use of higher-order finite-element discretization, alongside providing the desired chemical accuracy. We consider this study as a step towards developing a robust and computationally efficient discretization of electronic structure calculations using the finite-element basis.
Unraveling Orbital Ordering in La0.5Sr1.5MnO4
Orbital ordering (OO) in the layered perovskite La0.5Sr1.5MnO4 has been investigated using the enhanced sensitivity of soft x-ray resonant diffraction at the Mn L edges. The energy dependence of an OO diffraction peak over the L2,3 edges is compared to ligand-field calculations allowing a distinction between the influences of Jahn-Teller distortions and spin correlations. The energy dependence of the diffraction peak at the Mn L1 edge is remarkably different from that observed at the Mn K edge
Halford, Sarah Juliette
2013-01-01
I always knew I was from another planet. Earth was my home, yes, I liked hamburgers and roller coasters, but there was still an orbit in me that seemed out of place. My imaginative orbit felt like it didn't to spin the "normal" way. As a performer I spent more time alienating myself and judging how different I felt, rather than owning the creative space I lived in and applying it to my craft. My past three years at UC San Diego have been the perfect atmosphere for my artist self. I have been ...
Gate-Tunable Spin-Charge Conversion and the Role of Spin-Orbit Interaction in Graphene
Dushenko, S.; Ago, H.; Kawahara, K.; Tsuda, T.; Kuwabata, S.; Takenobu, T.; Shinjo, T.; Ando, Y.; Shiraishi, M.
2016-04-01
The small spin-orbit interaction of carbon atoms in graphene promises a long spin diffusion length and the potential to create a spin field-effect transistor. However, for this reason, graphene was largely overlooked as a possible spin-charge conversion material. We report electric gate tuning of the spin-charge conversion voltage signal in single-layer graphene. Using spin pumping from an yttrium iron garnet ferrimagnetic insulator and ionic liquid top gate, we determined that the inverse spin Hall effect is the dominant spin-charge conversion mechanism in single-layer graphene. From the gate dependence of the electromotive force we showed the dominance of the intrinsic over Rashba spin-orbit interaction, a long-standing question in graphene research.
Tessmer, Manuel; Schaefer, Gerhard
2010-01-01
A quasi-Keplerian parameterisation for the solutions of second post-Newtonian (PN) accurate equations of motion for spinning compact binaries is obtained including leading order spin-spin and next-to-leading order spin-orbit interactions. Rotational deformation of the compact objects is incorporated. For arbitrary mass ratios the spin orientations are taken to be parallel or anti-parallel to the orbital angular momentum vector. The emitted gravitational wave forms are given in analytic form up to 2PN point particle, 1.5PN spin orbit and 1PN spin-spin contributions, where the spins are counted of 0PN order.
We compute the next-to-next-to-leading order spin–orbit contributions in the total energy flux emitted in gravitational waves by compact binary systems. Such contributions correspond to the post-Newtonian order 3.5PN for maximally spinning compact objects. Continuing our recent work on the next-to-next-to-leading spin–orbit terms at the 3.5PN order in the equations of motion, we obtain the spin–orbit terms in the multipole moments of the compact binary system up to the same order within the multipolar post-Newtonian wave generation formalism. Our calculation of the multipole moments is valid for general orbits and in an arbitrary frame, the moments are then reduced to the center-of-mass frame and the resulting energy flux is specialized to quasi-circular orbits. The test-mass limit of our final result for the flux agrees with the already known Kerr black hole perturbation limit. Furthermore, the various multipole moments of the compact binary reduce in the one-body case to those of a single-boosted Kerr black hole. We briefly discuss the implications of our result for the gravitational wave flux in terms of the binary’s phase evolution, and address its importance for the future detection and parameter estimation of signals in gravitational wave detectors. (paper)
Atomic-orbital close-coupling calculations of neon and argon ions colliding with H(1s) will be presented. The high principal quantum numbers n that need to be included in the expansion of the wavefunction of the active electron in the ion center make very large basis sets necessary. The resulting state resolved charge exchange and ionisation cross sections are of special interest for nuclear fusion research.
Krah, Tim; Ben Amor, Nadia; Maynau, Daniel; Berger, J A; Robert, Vincent
2014-07-01
Based on localized molecular orbitals, the proposed method reduces large configuration interaction (CI) spaces while maintaining agreement with reference values. Our strategy concentrates the numerical effort on physically pertinent CI-contributions and is to be considered as a tool to tackle large systems including numerous open-shells. To show the efficiency of our method we consider two 4-electron parent systems. First, we illustrate our approach by describing the van der Waals interactions in the (H2)2 system. By systematically including local correlation, dispersion and charge transfer mechanisms, we show that 90% of the reference full CI dissociation energy of the H2 dimer is reproduced using only 3% of the full CI space. Second, the conformational cis/trans rotation barrier of the butadiene molecule is remarkably reproduced (97% of the reference value) with less than 1% of the reference space. This work paves the way to numerical strategies which afford the electronic structure determination of large open-shell systems avoiding the exponential limitation. At the same time, a physical analysis of the contents of the wave function is offered. PMID:24935105
Sheikh-Jabbari, M M
2016-01-01
Expanding upon [arXiv:1404.4472, 1511.06079], we provide further detailed analysis of Banados geometries, the most general solutions to the AdS3 Einstein gravity with Brown-Henneaux boundary conditions. We analyze in some detail the causal, horizon and boundary structure, and geodesic motion on these geometries, as well as the two class of symplectic charges one can associate with these geometries: charges associated with the exact symmetries and the Virasoro charges. We elaborate further the one-to-one relation between representations of two copies of Virasoro group (Virasoro coadjoint orbits) and Banados geometries. We discuss that the information about the Banados goemetries fall into two categories: "orbit invariant" information and "Virasoro hairs". The former are geometric quantities while the latter are specified by the non-local surface integrals. We elaborate on multi-BTZ geometries which have some number of disconnected pieces at the horizon bifurcation curve. We study multi-BTZ black hole thermodyn...
Q. Zhang; Singh, K.; Simon, C; Tung, L. D.; Balakrishnan, G.; Hardy, V.
2012-01-01
The orthovanadate DyVO3 crystal, known to exhibit multiple structural, spin and orbital ordering transitions, is presently investigated on the basis of magnetization, heat capacity, resistivity, dielectric and polarization measurements. Our main result is experimental evidence for the existence of multiferroicity below a high TC of 108 K over a wide temperature range including different spin-orbital ordered states. The onset of ferroelectricity is found to coincide with the antiferromagnetic ...
$d$-wave bond-order charge excitations in electron-doped cuprates
Yamase, Hiroyuki; Bejas, Matías; Greco, Andrés
2015-01-01
We study charge excitation spectra in the two-dimensional $t$-$J$ model on a square lattice to explore a charge-order tendency recently found in electron-doped cuprates around the carrier density 0.15. The static susceptibility of $d$-wave charge density, which corresponds to the nematic susceptibility at the momentum transfer ${\\bf q}=(0,0)$, shows two characteristic peaks at momenta of the form ${\\bf q}_{1}=(q',q')$ and ${\\bf q}_{2}=(q,0)$. These two peaks originate from the so-called $2k_{...
Effect of charge order on the plasmon dispersion in transition-metal dichalcogenides
Van Wezel, Jasper; Schuster, Roman; König, Andreas; Knupfer, Martin; Brink, Jeroen van den; Berger, Helmuth; Büchner, Bernd
2012-01-01
We investigate the dispersion of the charge carrier plasmon in the three prototypical charge-density wave bearing transition-metal dichalcogenides 2H-TaSe₂, 2H-TaS₂, and 2H-NbSe₂ employing electron energy-loss spectroscopy. For all three compounds the plasmon dispersion is found to be negative for small momentum transfers. This is in contrast with the generic behavior observed in simple metals as well as the related system 2H-NbS₂, which does not exhibit charge order. We present a semiclassic...
The Effect of Charge Order on the Plasmon Dispersion in Transition-Metal Dichalcogenides
Van Wezel, Jasper; Schuster, Roman; König, Andreas; Knupfer, Martin; Brink, Jeroen van den; Berger, Helmuth; Büchner, Bernd
2011-01-01
We investigate the dispersion of the charge carrier plasmon in the three prototypical charge-density wave bearing transition-metal dichalcogenides 2H-TaSe2, 2H-TaS2 and 2H-NbSe2 employing electron energy-loss spectroscopy. For all three compounds the plasmon dispersion is found to be negative for small momentum transfers. This is in contrast to the generic behavior observed in simple metals as well as the related system 2H-NbS2, which does not exhibit charge order. We present a semiclassical ...
The Bond Order of C2 from a Strictly N-Representable Natural Orbital Energy Functional Perspective.
Piris, Mario; Lopez, Xabier; Ugalde, Jesus M
2016-03-14
The bond order of the ground electronic state of the carbon dimer has been analyzed in the light of natural orbital functional theory calculations carried out with an approximate, albeit strictly N-representable, energy functional. Three distinct solutions have been found from the Euler equations of the minimization of the energy functional with respect to the natural orbitals and their occupation numbers, which expand upon increasing values of the internuclear coordinate. In the close vicinity of the minimum energy region, two of the solutions compete around a discontinuity point. The former, corresponding to the absolute minimum energy, features two valence natural orbitals of each of the following symmetries, σ, σ*, π and π*, and has three bonding interactions and one antibonding interaction, which is very suggestive of a bond order large than two but smaller than three. The latter, features one σ-σ* linked pair of natural orbitals and three degenerate pseudo-bonding like orbitals, paired each with one triply degenerate pseudo-antibonding orbital, which points to a bond order larger than three. When correlation effects, other than Hartree-Fock for example, between the paired natural orbitals are accounted for, this second solution vanishes yielding a smooth continuous dissociation curve. Comparison of the vibrational energies and electron ionization energies, calculated on this curve, with their corresponding experimental marks, lend further support to a bond order for C2 intermediate between acetylene and ethylene. PMID:26822104
Explicitly correlated atomic orbital basis second order Møller-Plesset theory
Hollman, David S.; Wilke, Jeremiah J.; Schaefer, Henry F.
2013-02-01
The scope of problems treatable by ab initio wavefunction methods has expanded greatly through the application of local approximations. In particular, atomic orbital (AO) based wavefunction methods have emerged as powerful techniques for exploiting sparsity and have been applied to biomolecules as large as 1707 atoms [S. A. Maurer, D. S. Lambrecht, D. Flaig, and C. Ochsenfeld, J. Chem. Phys. 136, 144107 (2012)], 10.1063/1.3693908. Correlated wavefunction methods, however, converge notoriously slowly to the basis set limit and, excepting the use of large basis sets, will suffer from a severe basis set incompleteness error (BSIE). The use of larger basis sets is prohibitively expensive for AO basis methods since, for example, second-order Møller-Plesset perturbation theory (MP2) scales linearly with the number of atoms, but still scales as O(N^5) in the number of functions per atom. Explicitly correlated F12 methods have been shown to drastically reduce BSIE for even modestly sized basis sets. In this work, we therefore explore an atomic orbital based formulation of explicitly correlated MP2-F12 theory. We present working equations for the new method, which produce results identical to the widely used molecular orbital (MO) version of MP2-F12 without resorting to a delocalized MO basis. We conclude with a discussion of several possible approaches to a priori screening of contraction terms in our method and the prospects for a linear scaling implementation of AO-MP2-F12. The discussion includes concrete examples involving noble gas dimers and linear alkane chains.
Strong coupling critique of spin fluctuation driven charge order in underdoped cuprates
Mishra, Vivek; Norman, M. R.
2015-08-01
Charge order has emerged as a generic feature of doped cuprates, leading to important questions about its origin and its relation to superconductivity. Recent experiments on two classes of hole doped cuprates indicate a novel d -wave symmetry for the order. These were motivated by earlier spin fluctuation theoretical studies based on an expansion about hot spots in the Brillouin zone that indicated such an order would be competitive with d -wave superconductivity. Here, we reexamine this problem by solving strong coupling equations in the full Brillouin zone for experimentally relevant parameters. We find that bond-oriented order, as seen experimentally, is strongly suppressed. We also include coupling to B1 g phonons and do not see any qualitative change. Our results argue against an itinerant model for the charge order, implying instead that such order is likely due to Coulombic phase separation of the doped holes.
Superconductivity, spin and charge order, and quantum criticality in correlated electron materials
Chu J.-H.; Fisher I. R.; White B. D.; Baumbach R. E.; Janoschek M.; Zocco D. A.; Hamlin J. J.; Maple M. B.
2012-01-01
We describe recent experiments performed in our laboratory that address spin or charge ordered phases in novel rare earth and actinide based materials and phenomena that emerge when these ordered phases are suppressed toward 0 K by varying an external control parameter such as chemical composition, pressure, or magnetic field. Specific examples discussed include magnetic order, heavy fermion behavior, and unconventional quantum criticality in noncentrosymmetric M2T12P7 compounds (M = rare ear...
Subperoxidic O23- charge ordering presents a satisfying basis for a quantitative, conceptually realistic, and unifying understanding of cuprate superconductors. The activity of O- manifests itself in a variety of ways including a universal Tc scaling with O- per total O, or more generally, in the subperoxide radical concentration. Also, a characteristic crystal chemistry of O- placement is indicated. As an example, trends to preferential O- occupation of the apical sites are correlated with c axis and Tc decreases providing a new crystallographic interpretation of the overdoping question. Generally, subperoxides can be created on overoxidation or through various modes of self doping through lattice pressure-related factors. Accordingly, the role of peranion formation is seen as a most general chemical principle for ameliorating stacking mismatch through electronic liquefaction under internal stress . Cases are discussed (e.g., YBa2Cu3O6.5) where the tension on cooling can result in stratified self-doping steps. A variety of experiments indicating charge order properties, such as stripes and slow charge propagation, are interpreted on the anionic model. Subperoxidic pair formation and charge ordering energetics are discussed. Concepts are further generalized for other cases (e.g., carbides or nitrides) of anionic metallicity and superconductivity. Common aspects are mobile, paired charge orders of radicals coupled through bond polarizations
High-resolution x-ray scattering studies of charge ordering in highly correlated electron systems
Ghazi, M E
2002-01-01
addition, another very weak satellites with wavevector (1/2, 1, 1/2) were observed possibly due to spin ordering. two-dimensional in nature both by measurements of their correlation lengths and by measurement of the critical exponents of the charge stripe melting transition with an anomaly at x = 0.25. The results show by decreasing the hole concentration from the x = 0.33 to 0.2, the well-correlated charge stripes change to a glassy state at x = 0.25. The electronic transition into the charge stripe phase is second-order without any corresponding structural transition. Above the second-order transition critical scattering was observed due to fluctuations into the charge stripe phase. In a single-crystal of Nd sub 1 sub / sub 2 Sr sub 1 sub / sub 2 MnO sub 3 a series of phase transitions were observed using high-resolution synchrotron X-ray scattering. Above the charge ordering transition temperature, T sub C sub O , by measuring the peak profiles of Bragg reflections as a function of temperature, it was foun...
Li, Lin-Sen
The influence of the electronic induction drag on the variation of the orbital elements of a charged satellite moving in a magnetic-field-free ionosphere are studied. The theoretical result show that the induction drag results in both the secular and periodic variations of the semi-major axis, however the eccentricity, the argument of perigee and the mean longitude of epoch exhibits no secular variation, but only periodic variation. The inclination and the ascending node remain no variation. As example, the secular effect of the induction drag on the orbital semi-major axis at a supposed satellite is calculated. It can be shown that the semi-major axis is contracted due to the induction drag, if this satellite carries many charges in an ionosphere.
Orbital geometry determined by orthogonal high-order harmonic polarization components
We study the polarization state of high-order harmonics produced by linearly polarized light interacting with two-center molecules. By generating high-harmonic 'polarization maps' from Radon transformations of excited electronic wave functions, we show that the polarization of the harmonic radiation can be linked to the geometry of the molecular orbital. While in the Radon transformation the plane-wave approximation for the rescattered electron is implicitly assumed, numerical solutions of the two-dimensional time-dependent Schro··dinger equation, in which this approximation is not made, confirm the validity of this topological connection. We also find that measuring two orthogonal amplitude components of the harmonics provides a method for quantum tomography that substantially improves the quality of reconstructed molecular states.
Lohr, M E; Payne, S G; West, R G; Wheatley, P J
2015-01-01
Orbital period changes of binary stars may be caused by the presence of a third massive body in the system. Here we have searched the archive of the Wide Angle Search for Planets (SuperWASP) project for evidence of period variations in 13927 eclipsing binary candidates. Sinusoidal period changes, strongly suggestive of third bodies, were detected in 2% of cases; however, linear period changes were observed in a further 22% of systems. We argue on distributional grounds that the majority of these apparently linear changes are likely to reflect longer-term sinusoidal period variations caused by third bodies, and thus estimate a higher-order multiplicity fraction of 24% for SuperWASP binaries, in good agreement with other recent figures for the fraction of triple systems amongst binary stars in general.
Ayuel, K.; de Châtel, P. F.; Amani, Salah
2002-04-01
Charge, current and spin densities are calculated for a two-electron system, maintaining the explicit form of the wave functions, in terms of Slater determinants. The two-electron Russell-Saunders spin-orbit coupled eigenstates | L, S, J, MJ> are expressed as four-component spinors, and the operators of the above densities as 4×4 matrices. The contributions of various one-electron states to these densities are identified.
Burnus, Tobias
2008-01-01
Transition-metal compounds show a wealth of intriguing properties such as superconductivity, piezoelectricity, giant magnetoresistance, spin and metal-insulator transitions, which are governed by the interplay of charge, spin, and orbital degrees of freedom. The knowledge of their electronic structure is crucial for understanding and predicting the fascinating properties of these often strongly correlated materials. In this thesis x-ray absorption spectroscopy including x-ray magnetic circula...
Phase Fluctuations and the Absence of Topological Defects in Photo-excited Charge Ordered Nickelate
Lee, W.S.; Chuang, Y.D.; Moore, R.G.; Zhu, Y.; Patthey, L.; Trigo, M.; Lu, D.H.; Kirchmann, P.S.; Krupin, O.; Yi, M.; Langner, M.; Huse, N.; Robinson, J.S.; Chen, Y.; Zhou, S.Y.; Coslovich, G.; Huber, B.; Reis, D.A.; Kaindl, R.A.; Schoenlein, R.W.; Doering, D.
2012-05-15
The dynamics of an order parameter's amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La{sub 1.75}Sr{sub 0.25}NiO{sub 4} to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameter's amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phase's importance in ordering phenomena of quantum matter.
Phase fluctuations and the absence of topological defects in photo-excited charge ordered nickelate
Lee, W.S.; Chuang, Y.D.; Moore, R.G.; Zhu, Y.; Patthey, L.; Trigo, M.; Lu, D.H.; Kirchmann, P.S.; Krupin, O.; Yi, M.; Langner, M.; Huse, N.; Robinson, J.S.; Chen, Y.; Zhou, S.Y.; Coslovich, G.; Huber, B.; Reis, D.A.; Kaindl, R.A.; Schoenlein, R.W.; Doering, D.; Denes, P.; Schlotter, W.F.; Turner, J.J.; Johnson, S.L.; F& #246; rst, M.; Sasagawa, T.; Kung, Y.F.; Sorini, A.P.; Kemper, A.F.; Moritz, B.; Devereaux, T.P.; Lee, D.-H.; Shen, Z.X.; Hussain, Z.
2012-01-01
The dynamics of an order parameter's amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La1.75Sr0.25NiO4 to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameter's amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phase's importance in ordering phenomena of quantum matter.
Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor
Campi, G.; Bianconi, A.; Poccia, N.; Bianconi, G.; Barba, L.; Arrighetti, G.; Innocenti, D.; Karpinski, J.; Zhigadlo, N. D.; Kazakov, S. M.; Burghammer, M.; Zimmermann, M. V.; Sprung, M.; Ricci, A.
2015-09-01
It has recently been established that the high-transition-temperature (high-Tc) superconducting state coexists with short-range charge-density-wave order and quenched disorder arising from dopants and strain. This complex, multiscale phase separation invites the development of theories of high-temperature superconductivity that include complexity. The nature of the spatial interplay between charge and dopant order that provides a basis for nanoscale phase separation remains a key open question, because experiments have yet to probe the unknown spatial distribution at both the nanoscale and mesoscale (between atomic and macroscopic scale). Here we report micro X-ray diffraction imaging of the spatial distribution of both short-range charge-density-wave `puddles' (domains with only a few wavelengths) and quenched disorder in HgBa2CuO4 + y, the single-layer cuprate with the highest Tc, 95 kelvin (refs 26, 27, 28). We found that the charge-density-wave puddles, like the steam bubbles in boiling water, have a fat-tailed size distribution that is typical of self-organization near a critical point. However, the quenched disorder, which arises from oxygen interstitials, has a distribution that is contrary to the usually assumed random, uncorrelated distribution. The interstitial-oxygen-rich domains are spatially anticorrelated with the charge-density-wave domains, because higher doping does not favour the stripy charge-density-wave puddles, leading to a complex emergent geometry of the spatial landscape for superconductivity.
Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor.
Campi, G; Bianconi, A; Poccia, N; Bianconi, G; Barba, L; Arrighetti, G; Innocenti, D; Karpinski, J; Zhigadlo, N D; Kazakov, S M; Burghammer, M; Zimmermann, M v; Sprung, M; Ricci, A
2015-09-17
It has recently been established that the high-transition-temperature (high-Tc) superconducting state coexists with short-range charge-density-wave order and quenched disorder arising from dopants and strain. This complex, multiscale phase separation invites the development of theories of high-temperature superconductivity that include complexity. The nature of the spatial interplay between charge and dopant order that provides a basis for nanoscale phase separation remains a key open question, because experiments have yet to probe the unknown spatial distribution at both the nanoscale and mesoscale (between atomic and macroscopic scale). Here we report micro X-ray diffraction imaging of the spatial distribution of both short-range charge-density-wave 'puddles' (domains with only a few wavelengths) and quenched disorder in HgBa2CuO4 + y, the single-layer cuprate with the highest Tc, 95 kelvin (refs 26-28). We found that the charge-density-wave puddles, like the steam bubbles in boiling water, have a fat-tailed size distribution that is typical of self-organization near a critical point. However, the quenched disorder, which arises from oxygen interstitials, has a distribution that is contrary to the usually assumed random, uncorrelated distribution. The interstitial-oxygen-rich domains are spatially anticorrelated with the charge-density-wave domains, because higher doping does not favour the stripy charge-density-wave puddles, leading to a complex emergent geometry of the spatial landscape for superconductivity. PMID:26381983
Charge-correlation effects in calculations of atomic short-range order in metallic alloys
Pinski, F.J. [Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Staunton, J.B. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Johnson, D.D. [Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801 (United States)
1998-06-01
The {open_quotes}local{close_quotes} chemical environment that surrounds an atom directly influences its electronic charge density. These atomic charge correlations play an important role in describing the Coulomb and total energies for random substitutional alloys. Although the electronic structure may be well represented by a single-site theory, such as the coherent potential approximation, the electrostatic energy is not as well represented when these charge correlations are ignored. For metals, including the average effect from the charge correlation coming from only the nearest-neighbor shell has been shown to be sufficient to determine accurately the energy of formation. In this paper, we incorporate such charge correlations into the concentration-wave approach for calculating the atomic short-range order in random (substitutional) alloys. We present changes within the formalism, and apply the resulting equations to equiatomic nickel platinum. By including these effects, we obtain significantly better agreement with experimental data. In fact, particular to NiPt, a consequence of the charge correlation is a screening which cancels much of the electrostatic contribution to the energy and thus to the atomic short-range order, resulting in agreement with a picture originally outlined using only {open_quotes}band-energy{close_quotes} contributions. {copyright} {ital 1998} {ital The American Physical Society}
Bond orbital description of the strain-induced second-order optical susceptibility in silicon
Damas, Pedro; Marris-Morini, Delphine; Cassan, Eric; Vivien, Laurent
2016-04-01
We develop a theoretical model, relying on the well established sp3 bond-orbital theory, to describe the strain-induced χ(2 ) in tetrahedrally coordinated centrosymmetric covalent crystals, like silicon. With this approach we are able to describe every component of the χ(2 ) tensor in terms of a linear combination of strain gradients and only two parameters α and β which can be theoretically estimated. The resulting formula can be applied to the simulation of the strain distribution of a practical strained silicon device, providing an extraordinary tool for optimization of its optical nonlinear effects. The application of the first order theory to the photoelastic effect in C, Si, and Ge showed very good phenomenological and numerical agreement, up to 3% in Si. The model was then used to the second-order nonlinear susceptibility, and we were able not only to confirm the main valid claims known about χ(2 ) in strained silicon, but also estimate the order of magnitude of the χ(2 ) generated in that device.
Topological charge order and binding in a frustrated XY model and related systems
We prove the existence of a finite temperature Z2 phase transition for the topological charge ordering within the fully frustrated XY model. Our method enables a proof of the topological charge confinement within the conventional XY models from a rather general vista. One of the complications that we face is the non-exact equivalence of the continuous (angular) XY model and its discrete topological charge dual. In reality, the energy spectra of the various topological sectors are highly nested, much unlike that suggested by the discrete dual models. We surmount these difficulties by exploiting the reflection positivity symmetry that this periodic flux phase model possesses. The techniques introduced here may prove binding of topological charges in numerous models and might be applied to examine transitions associated with various topological defects, e.g., the confinement of disclinations in the isotropic to nematic transition. (paper)
Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.; Park, Jaehong; Bergkamp, Jesse J.; Sellinger, Alan; Gust, Devens; Rumbles, Garry
2016-03-23
How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electron acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.
Ultrafast melting of charge ordering in LuFe2O4 probed by terahertz spectroscopy
Ultrafast terahertz response of charge ordering (CO) in LuFe2O4 was investigated by near-infrared-pump (1.55 eV) and terahertz-probe (2–9 meV) spectroscopy. Photoinduced absorption observed immediately (1 ps) after the photoexcitation was attributed to photoinduced melting of the CO. The charge dynamics thereafter can be characterized by subsequent development of the photoinduced conductivity in the low-energy region (2–3 meV), implying the formation of a metallic state. - Highlights: ► We investigated ultrafast optical response of charge ordering (CO) in LuFe2O4. ► Instantaneous photoinduced absorption was ascribed to photoinduced melting of CO. ► Subsequent change in the optical conductivity implies the metallic state formation.
Dielectric anomaly in NaV2O5 : evidence for charge ordering
Smirnov, A.I.; Popova, M.N.; Sushkov, A.B.; Golubchik, S.A.; Khomskii, D.I.; Mostovoy, M.V.; Vasil'ev, A.N.; Isobe, M.; Ueda, Y.
2000-01-01
We found a high-frequency dielectric and magnetic anomaly in NaV2O5 at the phase transition into the spin-gap state. The dielectric constant anomaly is of the antiferroelectric type, which is in agreement with the models assuming the zigzag charge ordering in the ab-plane.
Lara, Martin; Palacian, Jesus F.
2007-01-01
Frozen orbits of the Hill problem are determined in the double averaged problem, where short and long period terms are removed by means of Lie transforms. The computation of initial conditions of corresponding quasi periodic solutions in the non-averaged problem is straightforward for the perturbation method used provides the explicit equations of the transformation that connects the averaged and non-averaged models. A fourth order analytical theory reveals necessary for the accurate computation of quasi periodic, frozen orbits.
The charge ordering in Nd0.5Sr0.5MnO3 (A> = 1.24 A, which occurs on cooling the ferromagnetic metallic ground state, is readily destroyed on application of a magnetic field of 6 T. For Y0.5Ca0.5MnO3 (A> = 1.13 A), for which the ground state is charge ordered, on the other hand, magnetic fields have no effect on the charge ordering. In order to understand such a marked difference in charge-ordering behaviour of the manganates, we have investigated the structure as well as the electrical and magnetic properties of Ln0.5Ca0.5MnO3 compositions (Ln=Nd, Sm, Gd and Dy) wherein A> varies over the range 1.17-1.13 A. The lattice distortion index, D, and charge-ordering transition temperature, TCO, for the manganates increase with the decreasing A>. The charge-ordered state is transformed to a metallic state on applying a magnetic field of 6 T in the case of Nd0.5Ca0.5MnO3 (A>=1.17 A), but this is not the case with the analogous Sm, Gd and Dy manganates with A> less than 1.17 A. In order to explain this behaviour, we have examined the A>-dependence of the Mn-O-Mn bond angle, the average Mn-O distance and the apparent one-electron bandwidth, obtained from these structural parameters. It is suggested that the extraordinary sensitivity of the charge ordering to A> arises from factors other than those based on the Mn-O-Mn bond angle and average Mn-O distances alone. It is possible that the competition between the covalent mixing of the oxygen O: 2pσ orbital with the A-site and B-site cation orbitals plays a crucial role. Strain effects due to size mismatch between A-site cations could also cause considerable changes in TCO. (author)
Matveev, Oleg; Shvaika, Andrij; Devereaux, Thomas; Freericks, James
The charge-density-wave phase of the Falicov-Kimball model displays a number of anomalous behavior including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field. Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for this nonlinear response. We examine both the current and the order parameter of the conduction electrons as the ordered system is driven by a dc electric field. Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, Lviv, Ukraine.
Spin excitations in a model of FeSe with orbital ordering
Kreisel, A.; Mukherjee, Shantanu; Hirschfeld, P. J.; Andersen, Brian M.
2015-12-01
We present a theoretical study of the dynamical spin susceptibility for the intriguing Fe-based superconductor FeSe, based on a tight-binding model developed to account for the temperature-dependent band structure in this system. The model allows for orbital ordering in the dx z/dy z channel below the structural transition and presents a strongly C4-symmetry-broken Fermi surface at low temperatures which accounts for the nematic properties of this material. The calculated spin excitations are peaked at wave vector (π ,0 ) in the 1-Fe Brillouin zone, with a broad maximum at energies of order a few meV. In this range, the occurrence of superconductivity sharpens this peak in energy, creating a (π ,0 ) "neutron resonance" as seen in recent experiments. With the exception of the quite low energy scale of these fluctuations, these results are roughly similar to standard behavior in Fe pnictide systems. At higher energies, however, intensity increases and shifts to wave vectors along the (π ,0 )-(π ,π ) line. We compare with existing inelastic neutron experiments and NMR data, and give predictions for further studies.
Higher-order finite-difference formulation of periodic Orbital-free Density Functional Theory
Ghosh, Swarnava; Suryanarayana, Phanish
2016-02-01
We present a real-space formulation and higher-order finite-difference implementation of periodic Orbital-free Density Functional Theory (OF-DFT). Specifically, utilizing a local reformulation of the electrostatic and kernel terms, we develop a generalized framework for performing OF-DFT simulations with different variants of the electronic kinetic energy. In particular, we propose a self-consistent field (SCF) type fixed-point method for calculations involving linear-response kinetic energy functionals. In this framework, evaluation of both the electronic ground-state and forces on the nuclei are amenable to computations that scale linearly with the number of atoms. We develop a parallel implementation of this formulation using the finite-difference discretization. We demonstrate that higher-order finite-differences can achieve relatively large convergence rates with respect to mesh-size in both the energies and forces. Additionally, we establish that the fixed-point iteration converges rapidly, and that it can be further accelerated using extrapolation techniques like Anderson's mixing. We validate the accuracy of the results by comparing the energies and forces with plane-wave methods for selected examples, including the vacancy formation energy in Aluminum. Overall, the suitability of the proposed formulation for scalable high performance computing makes it an attractive choice for large-scale OF-DFT calculations consisting of thousands of atoms.
Higher-order finite-difference formulation of periodic Orbital-free Density Functional Theory
Ghosh, Swarnava
2014-01-01
We present a real-space formulation and higher-order finite-difference implementation of periodic Orbital-free Density Functional Theory (OF-DFT). Specifically, utilizing a local reformulation of the electrostatic and kernel terms, we develop a generalized framework suitable for performing OF-DFT simulations with different variants of the electronic kinetic energy. In particular, we develop a self-consistent field (SCF) type fixed-point method for calculations involving linear-response kinetic energy functionals. In doing so, we make the calculation of the electronic ground-state and forces on the nuclei amenable to computations that altogether scale linearly with the number of atoms. We develop a parallel implementation of this formulation using the finite-difference discretization, using which we demonstrate that higher-order finite-differences can achieve relatively large convergence rates with respect to mesh-size in both the energies and forces. Additionally, we establish that the fixed-point iteration c...
Spencer, J.; Gajdos, F.; Blumberger, J.
2016-08-01
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.
Tessmer, Manuel; Schäfer, Gerhard
2013-01-01
This publication will deal with an explicit determination of the time evolution of the spin orientation axes and the evolution of the orbital phase in the case of circular orbits under next-to-leading order spin-orbit interactions. We modify the method of Schneider and Cui proposed in ["Theoreme \\"uber Bewegungsintegrale und ihre Anwendungen in Bahntheorien", Verlag der Bayerischen Akademie der Wissenschaften, volume 212, 2005.] to iteratively remove oscillatory terms in the equations of motion for different masses that were not present in the case of equal masses. Our smallness parameter is chosen to be the difference of the symmetric mass ratio to the value 1/4. Before the first Lie transformation, the set of conserved quantities consists of the total angular momentum, the amplitudes of the orbital angular momentum and of the spins, $L, S_1,$ and $S_2$. In contrary, the magnitude of the total spin $S=|S_1+S_2|$ is not conserved and we wish to shift its non-conservation to higher orders of the smallness para...
X-ray absorption measurements of charge-ordered La{sub 0.5}Sr{sub 1.5}MnO{sub 4}
Saitoh, T.; Villella, P.M.; Dessau, D.S. [Univ. of Colorado, Boulder, CO (United States)] [and others
1997-04-01
Perovskite and {open_quotes}layered perovskite{close_quotes}-type manganese oxides show a variety of electronic and magnetic properties such as the colossal magnetoresistance (CMR) or the charge ordering. Among them, La{sub 0.5}Sr{sub 1.5}MnO{sub 4} (K{sub 2}NiF{sub 4} structure) which has 0.5 holes per Mn site (d{sup 3.5}) shows the charge-order transition at {approximately}220 K below which Mn{sup 3+} and Mn{sup 4+} sites are believed to order in the CE-type. Although the charge ordering phenomenon has also been observed in the perovskite manganites Pr{sub 0.5}Sr{sub 1.5}MnO{sub 3} or Pr{sub 0.5}Ca{sub 1.5}MnO{sub 3}, the present system has another advantage that it has a layered structure. This enables the authors to address the issue of the orbital symmetry which should be directly related to the charge ordering. In this report, they present the results of x-ray absorption spectroscopy (XAS) on La{sub 0.5}Sr{sub 1.5}MnO{sub 4}, for two polarization angles and two (above and below the transition temperature T{sub CO}) temperatures.
Positron-impact ionization of highly charged ions in lowest-order QED theory
Lowest-order QED theory using distorted-wave states is applied to the calculation of positron-impact ionization cross sections for highly charged atomic ions. Electron and positron ionization cross sections for atomic ions are predicted to differ by substantial amounts in the threshold region. For highly charged ions like U90+, the smaller positron ionization cross section is more strongly affected by transverse photon interactions than the corresponding electron ionization cross section. At twice the threshold for U90+ ionization, the annihilation terms are found to reduce the positron cross section by about 12%
Soto, C A Téllez; Costa, A C; Versiane, O; Lemma, T; Machado, N C F; Mondragón, M A; Martin, A A
2015-07-01
Theoretical and experimental bands have been assigned to the Fourier Transform Infrared (FT-IR) and FT-Raman spectra of the bis(diethyldithiocarbamate)Cd(II) complex, abbreviated as ([Cd(DDTC)2]). The calculations and spectral interpretation have been based on the DFT/B3LYP method, infrared and Raman second derivative spectra, and band deconvolution analysis to assist in the assignment of observed fundamentals. This study validated the unusual pseudo tetrahedral molecular structure formed around the Cd(II) cation. Surface-enhanced Raman scattering (SERS) was used to determine the interactions of the normal-modes of the diethyldithiocarbamate cadmium (II) complex on nano-structured silver surfaces. Natural bond orbital (NBO) analysis was also carried out to study the Cd(II) hybridization causing the pseudo tetrahedral geometry of the framework of the [Cd(DDTC)2] complex, and to confirm the charge transfer mechanisms through second order perturbation theory analysis of the Fox Matrix. In order to find out the electronic dispersion of the Mulliken atomic charges (MAC) in the normal modes, we calculated the MAC for each normal mode and correlated these values with the SERS effect. Experimental UV-Vis spectra were obtained and charge transfer bands were assigned. Good agreement between the calculated and experimental values for the vibrational and UV-Vis spectra was obtained. PMID:25813176
Téllez Soto, C. A.; Costa, A. C.; Versiane, O.; Lemma, T.; Machado, N. C. F.; Mondragón, M. A.; Martin, A. A.
2015-07-01
Theoretical and experimental bands have been assigned to the Fourier Transform Infrared (FT-IR) and FT-Raman spectra of the bis(diethyldithiocarbamate)Cd(II) complex, abbreviated as ([Cd(DDTC)2]). The calculations and spectral interpretation have been based on the DFT/B3LYP method, infrared and Raman second derivative spectra, and band deconvolution analysis to assist in the assignment of observed fundamentals. This study validated the unusual pseudo tetrahedral molecular structure formed around the Cd(II) cation. Surface-enhanced Raman scattering (SERS) was used to determine the interactions of the normal-modes of the diethyldithiocarbamate cadmium (II) complex on nano-structured silver surfaces. Natural bond orbital (NBO) analysis was also carried out to study the Cd(II) hybridization causing the pseudo tetrahedral geometry of the framework of the [Cd(DDTC)2] complex, and to confirm the charge transfer mechanisms through second order perturbation theory analysis of the Fox Matrix. In order to find out the electronic dispersion of the Mulliken atomic charges (MAC) in the normal modes, we calculated the MAC for each normal mode and correlated these values with the SERS effect. Experimental UV-Vis spectra were obtained and charge transfer bands were assigned. Good agreement between the calculated and experimental values for the vibrational and UV-Vis spectra was obtained.
Ordered charge asphericity around dysprosium and structural deformation in DyB2C2
The oribitally ordered phase of DyB2C2 has been studied by nonresonant x-ray diffraction with high-brilliance synchrotron radiation. From the condition of diffraction, the symmetry property of the charge distribution around dysprosium has been concluded at the quadrupolar level. The quantitative inspection, furthermore, indicates that the observed signals cannot be interpreted as arising only from the 4f electrons of dysprosium responsible for the ordering; instead, the experiment can be described rather well by considering a distortion of the metaloid network concomitant with the ordering
Non-thermal separation of electronic and structural orders in a persisting charge density wave
Porer, M; Ménard, J -M; Dachraoui, H; Mouchliadis, L; Perakis, I E; Heinzmann, U; Demsar, J; Rossnagel, K; Huber, R
2016-01-01
The simultaneous ordering of different degrees of freedom in complex materials undergoing spontaneous symmetry-breaking transitions often involves intricate couplings that have remained elusive in phenomena as wide ranging as stripe formation, unconventional superconductivity or colossal magnetoresistance. Ultrafast optical, x-ray and electron pulses can elucidate the microscopic interplay between these orders by probing the electronic and lattice dynamics separately, but a simultaneous direct observation of multiple orders on the femtosecond scale has been challenging. Here we show that ultrabroadband terahertz pulses can simultaneously trace the ultrafast evolution of coexisting lattice and electronic orders. For the example of a charge-density-wave (CDW) in 1T-TiSe2, we demonstrate that two components of the CDW order parameter - excitonic correlations and a periodic lattice distortion (PLD) - respond very differently to 12-fs optical excitation. Even when the excitonic order of the CDW is quenched, the PL...
ZHANG Jingtao
2015-08-01
Full Text Available High-order harmonics generated from aligned molecules are studied by a nonperturbative QED theory and the effect of the multiple molecular orbits is included.The harmonic spectra generated from single molecular orbit exhibit an interference minimum which is induced by the molecular structure.The location of the spectral minimum shifts with the laser intensity in long laser pulses,but is fixed in ultrashort laser pulses.This difference is owed to the quiver motion of the electron in the laser pulses.The maximal shift of the spectral minimum equals to the increment of the ponderomotive energy and depends linearly on the laser intensity.The interference between the harmonics generated from multiple molecular orbits has two principal effects:one is obscuring the deep minima in the overall harmonic spectrum,the other is manifesting the phase jump in the harmonics generated from single molecular orbit.
Photon Orbital Angular Momentum and Proca effects in rotating and charged spacetimes
Tamburini, F; Thidé, B.
2011-01-01
We analyze the effect of Proca mass and orbital angular momentum of photons imposed by a structured plasma in Kerr-Newman and Reissner-Nordstrom-de Sitter spacetimes. The presence of characteristic lengths in a turbulent plasma converts the virtual Proca photon mass on orbital angular momentum, with the result of decreasing the virtual photon mass. The combination of this plasma effect and that of the gravitational field leads to a new astrophysical phenomenon that imprints a specific distrib...
Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber.
Gregg, P; Mirhosseini, M; Rubano, A; Marrucci, L; Karimi, E; Boyd, R W; Ramachandran, S
2015-04-15
We demonstrate that a |q|=1/2 plate, in conjunction with appropriate polarization optics, can selectively and switchably excite all linear combinations of the first radial mode order |l|=1 orbital angular momentum (OAM) fiber modes. This enables full mapping of free-space polarization states onto fiber vector modes, including the radially (TM) and azimuthally polarized (TE) modes. The setup requires few optical components and can yield mode purities as high as ∼30 dB. Additionally, just as a conventional fiber polarization controller creates arbitrary elliptical polarization states to counteract fiber birefringence and yield desired polarizations at the output of a single-mode fiber, q-plates disentangle degenerate state mixing effects between fiber OAM states to yield pure states, even after long-length fiber propagation. We thus demonstrate the ability to switch dynamically, potentially at ∼GHz rates, between OAM modes, or create desired linear combinations of them. We envision applications in fiber-based lasers employing vector or OAM mode outputs, as well as communications networking schemes exploiting spatial modes for higher dimensional encoding. PMID:25872059
Development of multi-mode diabatic spin-orbit models at arbitrary order
Weike, Thomas; Eisfeld, Wolfgang
2016-03-01
The derivation of diabatic spin-orbit (SO) Hamiltonians is presented, which are expanded in terms of nuclear coordinates to arbitrary order including the treatment of multi-mode systems, having more than one mode of the same symmetry. The derivation is based on the microscopic Breit-Pauli SO operator and the consequent utilization of time reversal and spatial symmetry transformation properties of basis functions and coordinates. The method is demonstrated for a set of 2E and 2A1 states in C3 v ∗ (double group) symmetry, once for a 3D case of one a1 and one e mode and once for a 9D case of three a1 and three e coordinates. It is shown that the general structure of the diabatic SO Hamiltonian only depends on the basis states and is strictly imposed by time reversal symmetry. The resulting matrix can be expressed easily by a power series using six parametrized structure matrices as expansion coefficients multiplied by the associated monomials in terms of symmetrized coordinates. The explicit example presented here provides a full-dimensional diabatic SO model for methyl halide cations, which will be studied in the future.
Understanding the charge transport properties in general of different molecular components in a self-assembled monolayer (SAM) is of importance for the rational design of SAM molecular structures for molecular electronics. In this study, we study an important aspect of the charge transport properties, i.e. the charge transfer (CT) dynamics between the active molecular component (in this case, the ferrocenyl moieties of a ferrocenyl-n-alkanethiol SAM) and the electrode using synchrotron-based core-hole clock (CHC) spectroscopy. The characteristic CT times are found to depend strongly on the character of the ferrocenyl-derived molecular orbitals (MOs) which mediate the CT process. Furthermore, by systemically shifting the position of the ferrocenyl moiety in the SAM, it is found that the CT characteristics of the ferrocenyl MOs display distinct dependence on its distance to the electrode. These results demonstrate experimentally that the efficiency and rate of charge transport through the molecular backbone can be modulated by resonant injection of charge carriers into specific MOs. (paper)
2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion
Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning
2016-08-01
Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.
The single particle orbit code, TIBRO, has been modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications. Many details pertaining to this code are given on microfiche accompanying this report
Long-range charge order on the Fe3 O4 (001) surface
Shvets, I. V.; Mariotto, G.; Jordan, K.; Berdunov, N.; Kantor, R.; Murphy, S.
2004-10-01
The Verwey transition in magnetite is of fundamental importance for the understanding of metal-insulator transitions but, in spite of being the subject of many studies over the last century, its nature is not fully understood. This is even more true in the case of the magnetite surface, where the low dimensionality plays an additional role in the determination of the Verwey transition temperature. We have atomically resolved the (2×2)R45° reconstructed surface by scanning tunneling microscopy and we have modeled our experimental results by density functional theory calculations. We attribute the observed pattern to the charge ordering of Fe2+-Fe2+ and Fe3+-Fe3+ dimers. We propose a mechanism for the formation of this charge ordered surface and provide an explanation for the increase of the Verwey transition temperature at the (001) surface of magnetite.
Measurement of the azimuthal ordering of charged hadrons with the ATLAS detector
Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.
2012-09-01
This paper presents a study of the possible ordering of charged hadrons in the azimuthal angle relative to the beam axis in high-energy proton-proton collisions at the Large Hadron Collider (LHC). A spectral analysis of correlations between longitudinal and transverse components of the momentum of the charged hadrons, driven by the search for phenomena related to the structure of the QCD field, is performed. Data were recorded with the ATLAS detector at center-of-mass energies of s=900GeV and s=7TeV. The correlations measured in a kinematic region dominated by low-pT particles are not well described by conventional models of hadron production. The measured spectra show features consistent with the fragmentation of a QCD string represented by a helixlike ordered gluon chain.
Spin Polarized Photons from Axially Charged Plasma at Weak Coupling: Complete Leading Order
Mamo, Kiminad A
2015-01-01
In the presence of (approximately conserved) axial charge in the QCD plasma at finite temperature, the emitted photons are spin-aligned, which is a unique P- and CP-odd signature of axial charge in the photon emission observables. We compute this "P-odd photon emission rate" in weak coupling regime at high temperature limit to complete leading order in the QCD coupling constant: the leading log as well as the constant under the log. As in the P-even total emission rate in the literature, the computation of P-odd emission rate at leading order consists of three parts: 1) Compton and Pair Annihilation processes with hard momentum exchange, 2) soft t- and u-channel contributions with Hard Thermal Loop re-summation, 3) Landau-Pomeranchuk-Migdal (LPM) re-summation of collinear Bremstrahlung and Pair Annihilation. We present analytical and numerical evaluations of these contributions to our P-odd photon emission rate observable.
Spin polarized photons from an axially charged plasma at weak coupling: Complete leading order
Mamo, Kiminad A.; Yee, Ho-Ung
2016-03-01
In the presence of (approximately conserved) axial charge in the QCD plasma at finite temperature, the emitted photons are spin aligned, which is a unique P - and C P -odd signature of axial charge in the photon emission observables. We compute this "P -odd photon emission rate" in a weak coupling regime at a high temperature limit to complete leading order in the QCD coupling constant: the leading log as well as the constant under the log. As in the P -even total emission rate in the literature, the computation of the P -odd emission rate at leading order consists of three parts: (1) Compton and pair annihilation processes with hard momentum exchange, (2) soft t - and u -channel contributions with hard thermal loop resummation, (3) Landau-Pomeranchuk-Migdal resummation of collinear bremsstrahlung and pair annihilation. We present analytical and numerical evaluations of these contributions to our P -odd photon emission rate observable.
Charge ordering in the electron-doped superconductor Nd(2-x)Ce(x)CuO₄.
da Silva Neto, Eduardo H; Comin, Riccardo; He, Feizhou; Sutarto, Ronny; Jiang, Yeping; Greene, Richard L; Sawatzky, George A; Damascelli, Andrea
2015-01-16
In cuprate high-temperature superconductors, an antiferromagnetic Mott insulating state can be destabilized toward unconventional superconductivity by either hole or electron doping. In hole-doped (p-type) cuprates, a charge ordering (CO) instability competes with superconductivity inside the pseudogap state. We report resonant x-ray scattering measurements that demonstrate the presence of charge ordering in the n-type cuprate Nd(2-x)Ce(x)CuO4 near optimal doping. We find that the CO in Nd(2-x)Ce(x)CuO4 occurs with similar periodicity, and along the same direction, as in p-type cuprates. However, in contrast to the latter, the CO onset in Nd(2-x)Ce(x)CuO4 is higher than the pseudogap temperature, and is in the temperature range where antiferromagnetic fluctuations are first detected. Our discovery opens a parallel path to the study of CO and its relationship to antiferromagnetism and superconductivity. PMID:25593186
Measurement of the azimuthal ordering of charged hadrons with the ATLAS detector
Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin
2012-01-01
This paper presents a measurement of the ordering of charged hadrons in the azimuthal angle relative to the beam axis in high-energy proton-proton collisions at the Large Hadron Collider (LHC). A spectral analysis of correlations between longitudinal and transverse components of the momentum of the charged hadrons, driven by the search for phenomena related to the structure of the QCD field, is performed. Data were recorded with the ATLAS detector at centre-of-mass energies of $\\sqrt{s}$ = 900 GeV and $\\sqrt{s}$ = 7 TeV. The correlations measured in a phase space region dominated by low-pT particles are not well described by conventional models of hadron production. The measured spectra show features consistent with the fragmentation of a QCD string represented by a helix-like ordered gluon chain.
Experimental evidence of orbital order in α-B12 and γ-B28 polymorphs of elemental boron
Mondal, Swastik; van Smaalen, Sander; Parakhonskiy, Gleb; Prathapa, Siriyara Jagannatha; Noohinejad, Leila; Bykova, Elena; Dubrovinskaia, Natalia; Chernyshov, Dmitry; Dubrovinsky, Leonid
2013-07-01
The electron density of the α form of boron has been obtained by multipole refinement against high-resolution, single-crystal x-ray diffraction data measured on a high-quality single crystal at a temperature of 100 K. Topological properties of this density have been used to show that all chemical bonds between B12 clusters in α-B12 are formed due to one orbital on each boron atom that is oriented perpendicular to the surface of the cluster. It is shown that the same orbital order on B12 clusters persists in both α-B12 and γ-B28 polymorphs and in several dodecaboranes, despite the fact that in every case the B12 clusters participate in entirely different kinds of exocluster bonds. It is likely that the same orbital order of B12 clusters can explain bonding in other boron polymorphs and boron-rich solids.
Cheng Bitao, E-mail: chengbitao2006@126.com [College of Mathematics and Information Science, Qujing Normal University, Qujing, Yunnan 655011 (China)
2011-10-15
Highlights: > We study a class of second order Hamiltonian systems with superlinear and sublinear nonlinearity. > Some new solvable conditions of periodic orbits for the system are established. > Some new multiplicity results of periodic orbits for the system are obtained via some critical point theorems. > The methods and results are different from the past references. - Abstract: This paper is concerned with a class of second order Hamiltonian systems with superlinear and sublinear nonlinearity (P){l_brace} (table) ) where b(t) is a real function defined on [0, T], {mu} > 2 and H : [0, T] x R{sup N} {yields} R is a Caratheodory function. Some new multiplicity results of periodic orbits for the problem (P) are obtained via some critical point theorems.
Mendoza, J. H.; Díaz, C. F.; Acevedo, C. H.; Torres, Y.
2016-02-01
The orbital angular momentum of light has a big contribution in many engineering applications like optical communications, because this physical property allows eigenstates characteristic of the wavefront rotation when the beam is propagated. The nature of these eigenstates allows that information can be encoded and gives immunity to electromagnetic interference, allowing an increase of bandwidth, cadence and capacity of the communication channel. This work shown the methodology using nanometric thin films like Titanium based (TiO2) grown over strontium titanate (SrTiO3) support, to distinguish and discriminate a well- defined integer value of the topological charge of an OAM beam.
Local Lattice Distortion Caused by Short Range Charge Ordering in LiMn2O4
Kodama, Katsuaki; Igawa, Naoki; Shamoto, Shin-ichi; Ikeda, Kazutaka; Oshita, Hidetoshi; Kaneko, Naokatsu; Otomo, Toshiya; Suzuya, Kentaro
2013-09-01
We have performed powder neutron diffraction on 7Li-enriched sample of LiMn2O4 at 300 K. The crystal structure determined by Rietveld analysis is a cubic spinel with space group of Fd\\bar{3}m in which all Mn atoms are crystallograghically equivalent, consistent with many preceding studies. However, the atomic pair distribution function (PDF) of this compound can not be fitted by the cubic structure with space group of Fd\\bar{3}m satisfactorily, and it can be reproduced by the orthorhombic structure with Fddd. It corresponds with the structure of charge ordered phase below about 260 K, indicating a short range charge ordering. In the local structure determined by PDF analysis, two types of MnO6 octahedra with long and short atomic distances between Mn and O atoms exist and their Mn--O distances are almost consistent with the distances in the charge ordered phase. From these results, valence electrons are localized at Mn sites like a glass even in the cubic phase, resulting in the non-metallic electrical conductivity.
Local lattice distortion caused by short range charge ordering in LiMn2O4
We have performed powder neutron diffraction on 7Li-enriched sample of LiMn2O4 at 300 K. The crystal structure determined by Rietveld analysis is a cubic spinel with space group of Fd3-bar m in which all Mn atoms are crystallograghically equivalent, consistent with many preceding studies. However, the atomic pair distribution function (PDF) of this compound can not be fitted by the cubic structure with space group of Fd3-bar m satisfactorily, and it can be reproduced by the orthorhombic structure with Fddd. It corresponds with the structure of charge ordered phase below about 260 K, indicating a short range charge ordering. In the local structure determined by PDF analysis, two types of MnO6 octahedra with long and short atomic distances between Mn and O atoms exist and their Mn-O distances are almost consistent with the distances in the charge ordered phase. From these results, valence electrons are localized at Mn sites like a glass even in the cubic phase, resulting in the non-metallic electrical conductivity. (author)
Charge and anion ordering phase transitions in (TMTTF){sub 2}X salt conductors
Nad, F. [Centre de Recherches sur les Tres Basses Temperatures, laboratoire associe a l' Universite Joseph Fourier, CNRS, BP 166, Grenoble (France); Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation); Monceau, P. [Centre de Recherches sur les Tres Basses Temperatures, laboratoire associe a l' Universite Joseph Fourier, CNRS, BP 166, Grenoble (France); Carcel, C.; Fabre, J.M. [Heterochimie et Materiaux Organiques, ENSCM/ESA, Montpellier (France)
2001-07-23
We report measurements of the low frequency conductivity and dielectric permittivity of quasi-one-dimensional organic (TMTTF){sub 2}X salts with non-centrosymmetrical anions X=ReO{sub 4} and SCN. We show that the 'structureless transition' at 227.5 K in (TMTTF){sub 2}ReO{sub 4} is due to charge ordering and has a ferroelectric character. The anion ordering transition strongly affects the dielectric response: it suppresses the polarizability in (TMTTF){sub 2}ReO{sub 4} and induces probably an antiferroelectric state in (TMTTF){sub 2}SCN. (author). Letter-to-the-editor.
The correlations between long-wavelength fluctuations of concentration in a liquid binary alloy are determined by a balance between an elastic strain free energy and an Ornstein-Zernike effective interaction. The latter is extracted from thermodynamic data in the case of the Li-Pb system, which is well known to chemically order with stoichiometric composition corresponding to Li4Pb. Strong attractive interactions between concentration fluctuations near the composition of chemical ordering originate from electronic charge transfer, which is estimated from the electron-ion partial structure factors as functions of composition in the liquid alloy. (author). 20 refs, 2 figs
Building on the recently computed next-to-next-to-leading order (NNLO) post-Newtonian spin-orbit Hamiltonian for spinning binaries [J. Hartung and J. Steinhoff, arXiv:1104.3079.] we improve the effective-one-body description of the dynamics of two spinning black holes by including NNLO effects in the spin-orbit interaction. The calculation that is presented extends to NNLO the next-to-leading order spin-orbit Hamiltonian computed in [T. Damour, P. Jaranowski, and G. Schaefer, Phys. Rev. D 78, 024009 (2008).]. The present effective-one-body Hamiltonian reproduces the spin-orbit coupling through NNLO in the test-particle limit case. In addition, in the case of spins parallel or antiparallel to the orbital angular momentum, when circular orbits exist, we find that the inclusion of NNLO spin-orbit terms moderates the effect of the next-to-leading order spin-orbit coupling.
Matsuyama, A.; Yagi, M.; Kagei, Y.; Nakajima, N.
2014-12-01
During major disruptions, an induced loop voltage accelerates runaway electrons (REs) towards high energy, being in the order of 1-100 MeV in present tokamaks and ITER. The stochastization mechanisms of such high-energy RE drift orbits are investigated by three-dimensional (3D) orbit following in tokamak plasmas. Drift resonance is shown to play an important role in determining the onset of stochastic drift orbits for different electron energies, particularly in cases with low-order perturbations that have radially global eigenfunctions of the scale of the plasma minor radius. The drift resonance due to the coupling between the cross-field drift motion with radially global modes yields a secondary island structure in the RE drift orbit, where the width of the secondary drift islands shows a square-root dependence on the relativistic gamma factor γ. Only for highly relativistic REs (γ ≫ 1), the widths of secondary drift islands are comparable with those of magnetic islands due to the primary resonance, thus the stochastic threshold becoming sensitive to the RE energy. Because of poloidal asymmetry due to toroidicity, the threshold becomes sensitive not only to the relative amplitude but also to the phase difference between the modes. In this paper, some examples of 3D orbit-following calculations are presented for analytic models of magnetic perturbations with multiple toroidal mode numbers, for both possibilities that the drift resonance enhances and suppresses the stochastization being illustrated.
During major disruptions, an induced loop voltage accelerates runaway electrons (REs) towards high energy, being in the order of 1–100 MeV in present tokamaks and ITER. The stochastization mechanisms of such high-energy RE drift orbits are investigated by three-dimensional (3D) orbit following in tokamak plasmas. Drift resonance is shown to play an important role in determining the onset of stochastic drift orbits for different electron energies, particularly in cases with low-order perturbations that have radially global eigenfunctions of the scale of the plasma minor radius. The drift resonance due to the coupling between the cross-field drift motion with radially global modes yields a secondary island structure in the RE drift orbit, where the width of the secondary drift islands shows a square-root dependence on the relativistic gamma factor γ. Only for highly relativistic REs (γ ≫ 1), the widths of secondary drift islands are comparable with those of magnetic islands due to the primary resonance, thus the stochastic threshold becoming sensitive to the RE energy. Because of poloidal asymmetry due to toroidicity, the threshold becomes sensitive not only to the relative amplitude but also to the phase difference between the modes. In this paper, some examples of 3D orbit-following calculations are presented for analytic models of magnetic perturbations with multiple toroidal mode numbers, for both possibilities that the drift resonance enhances and suppresses the stochastization being illustrated. (paper)
The stability of steady motion of magnetic domain wall: Role of higher-order spin-orbit torques
He, Peng-Bin, E-mail: hepengbin@hnu.edu.cn; Yan, Han; Cai, Meng-Qiu [School of Physics and Electronics, Hunan University, Changsha 410082 (China); Li, Zai-Dong [Department of Applied Physics, Hebei University of Technology, Tianjin 300401 (China)
2015-12-14
The steady motion of magnetic domain wall driven by spin-orbit torques is investigated analytically in the heavy/ferromagnetic metal nanowires for three cases with a current transverse to the in-plane and perpendicular easy axis, and along the in-plane easy axis. By the stability analysis of Walker wall profile, we find that if including the higher-order spin-orbit torques, the Walker breakdown can be avoided in some parameter regions of spin-orbit torques with a current transverse to or along the in-plane easy axis. However, in the case of perpendicular anisotropy, even considering the higher-order spin-orbit torques, the velocity of domain wall cannot be efficiently enhanced by the current. Furthermore, the direction of wall motion is dependent on the configuration and chirality of domain wall with a current along the in-plane easy axis or transverse to the perpendicular one. Especially, the direction of motion can be controlled by the initial chirality of domain wall. So, if only involving the spin-orbit mechanism, it is preferable to adopt the scheme of a current along the in-plane easy axis for enhancing the velocity and controlling the direction of domain wall.
Martin Lara
2009-01-01
Full Text Available Frozen orbits of the Hill problem are determined in the double-averaged problem, where short and long-period terms are removed by means of Lie transforms. Due to the perturbation method we use, the initial conditions of corresponding quasi-periodic solutions in the nonaveraged problem are computed straightforwardly. Moreover, the method provides the explicit equations of the transformation that connects the averaged and nonaveraged models. A fourth-order analytical theory is necessary for the accurate computation of quasi-periodic frozen orbits.
Li, Xiao-Hong; Mei, Zheng; Zhang, Xian-Zhou
2014-01-01
The vibrational frequencies of acetophenone thiosemicarbazone in the ground state have been calculated using density functional method (B3LYP) with 6-31G(d), 6-31G(d,p) and 6-311++G(d,p) basis sets. The analysis of natural bond orbital was also performed. The IR spectra were obtained and interpreted by means of potential energies distributions (PEDs) using MOLVIB program. In addition, the results show that there exist Nsbnd H…N and Nsbnd H…S hydrogen bonds in the title compound, which play a major role in stabilizing the molecule and are confirmed by the natural bond orbital analysis. The predicted NLO properties show that the title compound is a good candidate as second-order NLO material. In addition, the frontier molecular orbitals were analyzed and the crystal structure obtained by molecular mechanics belongs to the Pbca space group, with lattice parameters Z = 8, a = 16.0735 Å, b = 7.1719 Å, c = 7.8725 Å, ρ = 0.808 g/cm3.
Magnetic compton profile study of orbital ordering state of 3d electrons in YTiO3
Orbital ordering state of 3d electrons in YTiO3 has been studied by magnetic Compton profile (MCP) measurement for crystallographic directions of [100] (a-axis) and [001] (c-axis). The magnetic effect of the observed MCP leads to the spin moment that is equal to the saturated magnetic moment within the estimated errors, which strongly suggests quenching of the orbital moment. Shape of the observed MCPs shows directional anisotropy between the two axes. The MCPs are calculated by using an atomic model wave function of a linear combination of two 3d-t2g orbitals, udyz ± vdzx (u2 + v2=1) for the Ti sites. The observed MCP is best reproduced by the calculated MCP with u=0.84±0.04 and v=0.54±0.04. This value of u is slightly larger than those obtained in the previous studies. (author)
Alieva, Tatiana; Bastiaans, Martin J
2004-07-15
We analyze the evolution of the vortex and the asymmetrical parts of orbital angular momentum during its propagation through separable first-order optical systems. We find that the evolution of the vortex part depends on only parameters a(x), a(y), b(x), and b(y) of the ray transformation matrix and that isotropic systems with the same ratio b/a produce the same change of the vortex part of the orbital angular momentum. Finally, it is shown that, when light propagates through an optical fiber with a quadratic refractive-index profile, the vortex part of the orbital angular momentum cannot change its sign more than four times per period. PMID:15309827
Pound, Adam
2014-01-01
A compact object moving on a quasicircular orbit about a Schwarzschild black hole gradually spirals inward due to the dissipative action of its gravitational self-force. But in addition to driving the inspiral, the self-force has a conservative piece. Within a second-order self-force formalism, I derive a second-order generalization of Detweiler's redshift variable, which provides a gauge-invariant measure of conservative effects on quasicircular orbits. I sketch a frequency-domain numerical scheme for calculating this quantity. Once this scheme has been implemented, its results may be used to determine high-order terms in post-Newtonian theory and parameters in effective-one-body theory.
Nagar, Alessandro
2011-01-01
Building on the recently computed next-to-next-to-leading order (NNLO) post-Newtonian (PN) spin-orbit Hamiltonian for spinning binaries \\cite{Hartung:2011te} we extend the effective-one-body (EOB) description of the dynamics of two spinning black-holes to NNLO in the spin-orbit interaction. The calculation that is presented extends to NNLO the next-to-leading order (NLO) spin-orbit Hamiltonian computed in Ref. \\cite{Damour:2008qf}. The present EOB Hamiltonian reproduces the spin-orbit coupling through NNLO in the test-particle limit case. In addition, in the case of spins parallel or antiparallel to the orbital angular momentum, when circular orbits exist, we find that the inclusion of NNLO spin-orbit terms moderates the effect of the NLO spin-orbit coupling.
Ritter, C.; Ivanov, S. A.; Bazuev, G. V.; Fauth, F.
2016-02-01
The thermal evolution of structural and magnetic details of the orthovanadate TmV O3 , studied in detail by neutron and synchrotron powder diffraction, is reported. Crystallizing in space group Pnma at room temperature, TmV O3 undergoes a first structural phase transition to P 21/a at TOO=180 K , where a G -type orbital ordered state develops. At TS=75 K , a change back to Pnma occurs, and the establishment of C -type orbital order takes place. The V3 + ions order antiferromagnetically with a magnetic propagation vector k =0 below TN 1=105 K , while the T m3 + sublattice orders at TN 2=20 K following the same propagation vector. Between TN 1 and TS, a coexistence of G -type (P 21/a ) and C -type (Pnma) orbital ordered states exists. The P 21/a phase is magnetically separated into two fractions, which adopt a CxCy0 and Gx00 coupling, respectively, while the Pnma volume fraction follows a 0 Gy0 magnetic structure. At TN 2, the appearance of the Tm sublattice magnetization (0 Cy0 ) leads to a spin flop transition of the V sublattice from 0 Gy0 to Gx00 . The results are presented and analyzed in the general context of the series of R V O3 compounds, and they are used to discuss recent magnetization results.
Charge-Insensitive Single-Atom Spin-Orbit Qubit in Silicon
Salfi, Joe; Mol, Jan A.; Culcer, Dimitrie; Rogge, Sven
2016-06-01
High fidelity entanglement of an on-chip array of spin qubits poses many challenges. Spin-orbit coupling (SOC) can ease some of these challenges by enabling long-ranged entanglement via electric dipole-dipole interactions, microwave photons, or phonons. However, SOC exposes conventional spin qubits to decoherence from electrical noise. Here, we propose an acceptor-based spin-orbit qubit in silicon offering long-range entanglement at a sweet spot where the qubit is protected from electrical noise. The qubit relies on quadrupolar SOC with the interface and gate potentials. As required for surface codes, 105 electrically mediated single-qubit and 104 dipole-dipole mediated two-qubit gates are possible in the predicted spin lifetime. Moreover, circuit quantum electrodynamics with single spins is feasible, including dispersive readout, cavity-mediated entanglement, and spin-photon entanglement. An industrially relevant silicon-based platform is employed.
He, Yang; Zhang, Ruili; Wang, Yulei; Liu, Jian; Qin, Hong
2016-01-01
We construct high order symmetric volume-preserving methods for the relativistic dynamics of a charged particle by the splitting technique with processing. Via expanding the phase space to include time $t$, we give a more general construction of volume-preserving methods that can be applied to systems with time-dependent electromagnetic fields. The newly derived methods provide numerical solutions with good accuracy and conservative properties over long time of simulation. Furthermore, because of the use of processing technique the high order methods are explicit, and cost less than the methods derived from standard compositions, thus are more efficient. The results are verified by the numerical experiments. Linear stability analysis of the methods show that the high order processed method allows larger time step size during integration.
Lüdicke, F.; Hussmann, H.; Oberst, J.
2008-09-01
Introduction We developed an orbit simulation tool for BepiColombo scheduled for arrival at Mercury in 2019. The mission will consist of two spacecraft, the MPO (Mercury Planetary Orbiter, ESA) and the MMO (Mercury Magnetospheric Orbiter, JAXA). We simulate the orbit evolutions of the two considering perturbing forces for a time of 2 years from arrival. This study was undertaken for mission planning purposes and estimates of surface coverage for the onboard mapping instruments. Orbit Perturbations Perturbing forces acting on the Keplerian MPO and MMO orbits include Mercury's non-spherical mass distribution parameters, the gravitational force of the sun, and solar radiation pressure (faintest). Because of the perturbing accelerations, semi-major axis, eccentricity, inclination, ascending node, argument of pericenter, show complex variations. The program simulates the evolution of all these elements over a period of 2 years. The software was programmed in FORTRAN, using SPICE subroutines. Numerical Integration Several of the Runge-Kutta methods are implemented in the software for a numerical integration of the equations of motion. Starting from initial values for the state vector (i.e., position and velocity) at time t0 given in [2], we obtain the spacecraft trajectory with an accuracy of the order of 1 m by choosing a stepsize of 50 s [1]. The results of the numerical calculation were checked with the results of a similar Bepi Colombo orbit simulation by ESOC [2] and showed very good agreement. Gravity Field Coefficients The MARINER 10 spacecraft executed 3 flybys of Mercury (1974/75). From spacecraft tracking, a first estimate of the gravity parameter GM and crude limits for J2 could be obtained. Higher-order gravitational coefficients, e.g., C30 and C22 are practically unknown. Results (Examples) Fig. 1 shows the evolution of the pericenter height for the MPO during the 2 mission years using the typical error bounds (6.0 ± 2.0)E-5 [4] for J2 = -C20. In addition
Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals
Sherman, David M.
1987-01-01
A number of mixed valence iron oxides and silicates (e.g., magnetite, ilvaite) exhibit thermally induced electron delocalization between adjacent Fe2+ and Fe3+ ions and optically induced electronic transitions which are assigned to Fe2+→Fe3+ intervalence charge transfer.
Oshima, Y.; Kimata, M.; Kishigi, K.; Ohta, H.; Koyama, K.; Motokawa, M.; Nishikawa, H.; Kikuchi, K.; Ikemoto, I
2004-04-30
Magneto-optical measurements of a quasi-one-dimensional (q1D) organic superconductor (DMET){sub 2}I{sub 3} has been performed by using a cavity perturbation technique. Several resonant absorption lines, which can be attributed to the q1D periodic orbit resonance (q1D POR), as well as the quite unusual high-order q1D POR coming from the corrugated Fermi surface (FS) in the interlayer direction were observed. Moreover, other harmonic resonances are also observed when the AC electric field is applied along the c*-axis. We will also show its estimated q1D FS from the data analysis where the estimated FS clearly shows why there is no spin-density-wave or charge-density-wave transition in (DMET){sub 2}I{sub 3} despite having a q1D FS.
Explicit high-order symplectic integrators for charged particles in general electromagnetic fields
Tao, Molei
2016-01-01
This article considers non-relativistic charged particle dynamics in both static and non-static electromagnetic fields, which are governed by nonseparable, possibly time-dependent Hamiltonians. For the first time, explicit symplectic integrators of arbitrary high-orders are constructed for accurate and efficient simulations of such mechanical systems. Performances superior to the standard non-symplectic method of Runge-Kutta are demonstrated on two examples: the first is on the confined motion of a particle in a static toroidal magnetic field used in tokamak; the second is on how time-periodic perturbations to a magnetic field inject energy into a particle via parametric resonance at a specific frequency.
Yonemitsu, Kenji; Tanaka, Yasuhiro; Miyashita, Satoshi [Institute for Molecular Science, Okazaki 444-8585 (Japan); Maeshima, Nobuya, E-mail: kxy@ims.ac.j [Institute of Materials Science, University of Tsukuba, Tsukuba 305-8573 (Japan)
2009-02-01
Photoinduced charge dynamics in one- and two-dimensional organic conductors are studied theoretically in extended Peierls-Hubbard models. For quasi-one-dimensional (EDO-TTF){sub 2}PF{sub 6}, photoinduced change in the charge order pattern from (0110) to (1010) is accompanied by probe-energy-dependent oscillations of conductivity. This is caused by coexistence of charge order and delocalized electrons. For quasi-two-dimensional alpha-(BEDT-TTF){sub 2}I{sub 3} and theta-(BEDT-TTF){sub 2}RbZn(SCN){sub 4}, photoinduced melting of the horizontal-stripe charge order proceeds easier in the alpha-type salt than in the theta-type salt. This is because the charge order in the theta-type salt is more strongly stabilized by electron-phonon interactions.
Zhang, Q.; Singh, K.; Simon, C.; Tung, L. D.; Balakrishnan, G.; Hardy, V.
2014-07-01
The orthovanadate DyVO3 crystal, known to exhibit multiple structural, spin-, and orbital-ordering transitions, is presently investigated on the basis of magnetization, heat capacity, resistivity, dielectric, and polarization measurements. Our main result is experimental evidence for the existence of multiferroicity below a high TC of 108 K over a wide temperature range including different spin-orbital-ordered states. The onset of ferroelectricity is found to coincide with the antiferromagnetic C-type spin-ordering transition taking place at 108 K, which indicates that DyVO3 belongs to type-II multiferroics exhibiting a coupling between magnetism and ferroelectricity. Some anomalies detected on the temperature dependence of electric polarization are discussed with respect to the nature of the spin-orbital-ordered states of the V sublattice and the degree of spin alignment in the Dy sublattice. The orthovanadates RVO3 (R= rare earth or Y) form an important new category for searching for high-TC multiferroics.
Orbital molecules in electronic materials
Attfield, J. Paul, E-mail: j.p.attfield@ed.ac.uk [Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JZ (United Kingdom)
2015-04-01
Orbital molecules are made up of coupled orbital states on several metal ions within an orbitally ordered (and sometimes also charge-ordered) solid such as a transition metal oxide. Spin-singlet dimers are known in many materials, but recent discoveries of more exotic species such as 18-electron heptamers in AlV{sub 2}O{sub 4} and magnetic 3-atom trimerons in magnetite (Fe{sub 3}O{sub 4}) have shown that orbital molecules constitute a general new class of quantum electronic states in solids.
Popushoi, M.N.
1985-12-01
This paper obtains expressions for recovering the central interaction potential of charged particles in the case when the interaction leads to multiplication of the S matrix defined in the complex plane of the Coulomb coupling constant by a rational S function. A study is made of the influence of the sign of the potential on the position of the poles of the S function and of the behavior of the phase shift.
Itoh, Hirotake, E-mail: hiroitoh@m.tohoku.ac.jp; Iwai, Shinichiro, E-mail: s-iwai@m.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); JST, CREST, Sendai 980-8578 (Japan); Itoh, Keisuke; Goto, Kazuki [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Yamamoto, Kaoru [Department of Applied Physics, Okayama University of Science, Okayama 700-0005 (Japan); Yakushi, Kyuya [Toyota Physical and Chemical Research Institute, Nagakute 480-1192 (Japan)
2014-04-28
Efficient terahertz (THz) wave generation in strongly correlated organic compounds α-(ET){sub 2}I{sub 3} and α′-(ET){sub 2}IBr{sub 2} (ET:bis(ethylenedithio)-tetrathiafulvalene) was demonstrated. The spontaneous polarization induced by charge ordering or electronic ferroelectricity was revealed to trigger the THz-wave generation via optical rectification; the estimated 2nd-order nonlinear optical susceptibility for α-(ET){sub 2}I{sub 3} is over 70 times larger than that for prototypical THz-source ZnTe. Ultrafast (<1 ps) and sensitive (∼40%) photoresponse of the THz wave was observed for α-(ET){sub 2}I{sub 3}, which is attributable to photoinduced quenching of the polarization accompanied by insulator(ferroelectric)-to-metal transition. Modulation of the THz wave was observed for α′-(ET){sub 2}IBr{sub 2} upon the poling procedure, indicating the alignment of polar domains.
Fractional-order modeling and State-of-Charge estimation for ultracapacitors
Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Sun, Fengchun; Dorrell, David G.
2016-05-01
Ultracapacitors (UCs) have been widely recognized as an enabling energy storage technology in various industrial applications. They hold several advantages including high power density and exceptionally long lifespan over the well-adopted battery technology. Accurate modeling and State-of-Charge (SOC) estimation of UCs are essential for reliability, resilience, and safety in UC-powered system operations. In this paper, a novel fractional-order model composed of a series resistor, a constant-phase-element (CPE), and a Walburg-like element, is proposed to emulate the UC dynamics. The Grünald-Letnikov derivative (GLD) is then employed to discretize the continuous-time fractional-order model. The model parameters are optimally extracted using genetic algorithm (GA), based on the time-domain data acquired through the Federal Urban Driving Schedule (FUDS) test. By means of this fractional-order model, a fractional Kalman filter is synthesized to recursively estimate the UC SOC. Validation results prove that the proposed fractional-order modeling and state estimation scheme is accurate and outperforms current practice based on integer-order techniques.
Sandro da Silva Fernandes; Francisco das Chagas Carvalho
2008-01-01
A complete first-order analytical solution, which includes the short periodic terms, for the problem of optimal low-thrust limited-power transfers between arbitrary elliptic coplanar orbits in a Newtonian central gravity field is obtained through canonical transformation theory. The optimization problem is formulated as a Mayer problem of optimal control theory with Cartesian elements—position and velocity vectors—as state variables. After applying the Pontryagin maximum principle and determi...
Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering
Shi, Dong
2016-04-15
We report the crystal structure and hole-transport mechanism in spiro-OMeTAD [2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene], the dominant hole-transporting material in perovskite and solid-state dye-sensitized solar cells. Despite spiro-OMeTAD’s paramount role in such devices, its crystal structure was unknown because of highly disordered solution-processed films; the hole-transport pathways remained ill-defined and the charge carrier mobilities were low, posing a major bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure calculations enabled us to map spiro-OMeTAD’s intermolecular charge-hopping pathways. Promisingly, single-crystal mobilities were found to exceed their thin-film counterparts by three orders of magnitude. Our findings underscore mesoscale ordering as a key strategy to achieving breakthroughs in hole-transport material engineering of solar cells.