Encryption in Chaotic Systems with Sinusoidal Excitations
G. Obregón-Pulido
2014-01-01
Full Text Available In this contribution an encryption method using a chaotic oscillator, excited by “n” sinusoidal signals, is presented. The chaotic oscillator is excited by a sum of “n” sinusoidal signals and a message. The objective is to encrypt such a message using the chaotic behavior and transmit it, and, as the chaotic system is perturbed by the sinusoidal signal, the transmission security could be increased due to the effect of such a perturbation. The procedure is based on the regulation theory and consider that the receiver knows the frequencies of the perturbing signal, with this considerations the algorithm estimates the excitation in such a way that the receiver can cancel out the perturbation and all the undesirable dynamics in order to produce only the message. In this way we consider that the security level is increased.
Selective image encryption using a spatiotemporal chaotic system.
Xiang, Tao; Wong, Kwok-wo; Liao, Xiaofeng
2007-06-01
A universal selective image encryption algorithm, in which the spatiotemporal chaotic system is utilized, is proposed to encrypt gray-level images. In order to resolve the tradeoff between security and performance, the effectiveness of selective encryption is discussed based on simulation results. The scheme is then extended to encrypt RGB color images. Security analyses for both scenarios show that the proposed schemes achieve high security and efficiency. PMID:17614669
Problems with a probabilistic encryption scheme based on chaotic systems
Li, SJ; Mou, XQ; Yang, BL; Ji, Z.; Zhang, JH
2003-01-01
Recently S. Papadimitriou et al. have proposed a new probabilistic encryption scheme based on chaotic systems. In this letter, we point out some problems with Papadimitriou et al.'s chaotic cryptosystem: (1) the size of the ciphertext and the plaintext cannot simultaneously ensure practical implementation and high security; (2) the estimated number of all possible virtual states is wrong; (3) the practical security to exhaustive attack is overestimated; (4) the fast encryption speed is depend...
System for Information Encryption Implementing Several Chaotic Orbits
Jiménez-Rodríguez Maricela
2015-07-01
Full Text Available This article proposes a symmetric encryption algorithm that takes, as input value, the original information of length L, that when encoded, generates the ciphertext of greater length LM. A chaotic discrete system (logistic map is implemented to generate 3 different orbits: the first is used for applying a diffusion technique in order to mix the original data, the second orbit is combined with the mixed information and increases the length of L to LM, and with the third orbit, the confusion technique is implemented. The encryption algorithm was applied to encode an image which is then totally recovered by the keys used to encrypt and his respective, decrypt algorithm. The algorithm can encode any information, just dividing into 8 bits, it can cover the requirements for high level security, it uses 7 keys to encrypt and provides good encryption speed
System for Information Encryption Implementing Several Chaotic Orbits
Jiménez-Rodríguez Maricela; Flores-Siordia Octavio; González-Novoa María Guadalupe
2015-01-01
This article proposes a symmetric encryption algorithm that takes, as input value, the original information of length L, that when encoded, generates the ciphertext of greater length LM. A chaotic discrete system (logistic map) is implemented to generate 3 different orbits: the first is used for applying a diffusion technique in order to mix the original data, the second orbit is combined with the mixed information and increases the length of L to LM, and with the third orbit, ...
A New Study in Encryption Based on Fractional Order Chaotic System
Ming Yin; Li-Wei Wang
2008-01-01
In this paper, we introduce a novel approach to achieve the data encryption. The fractional order Lorenz chaotic system is used to generate the chaotic sequence and the characteristics of the chaotic sequence are studied. Some examples concerned with text and image encryption are also presented in the paper, which show exciting results by the approach weintroduced.
Image encryption using high-dimension chaotic system
Sun Fu-Yan; Liu Shu-Tang; Lü Zong-Wang
2007-01-01
In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a new approach for image encryption based on a highdimensional chaotic map. The new scheme employs the Cat map to shuffle the positions, then to confuse the relationship between the cipher-image and the plain-image using the high-dimensional Lorenz chaotic map preprocessed. The results of experimental, statistical analysis and key space analysis show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.
An Anti-Cheating Visual Cryptography Scheme Based on Chaotic Encryption System
Han, Yanyan; Xu, Zhuolin; Ge, Xiaonan; He, Wencai
By chaotic encryption system and introducing the trusted third party (TTP), in this paper, an anti-cheating visual cryptography scheme (VCS) is proposed. The scheme solved the problem of dishonest participants and improved the security of chaotic encryption system. Simulation results and analysis show that the recovery image is acceptable, the system can detect the cheating in participants effectively and with high security.
Data transmission system with encryption by chaotic sequences
Politans’kyy R. L.
2014-06-01
Full Text Available Protection of transferable information in the telecommunication systems is possible by its imposition of coding sequence on a plaintext. Encryption of pseudorandom sequences can be performed by using generation algorithms which are implemented on the basis of the phenomenon of dynamical chaos, which is sensitive to changes in the initial conditions. One of the major problems encountered in the construction of secure communication systems is to provide synchronization between the receiving and transmitting parties of communication systems. Improvement of methods of hidden data transfer based on the systems with chaotic synchronization is the important task of research in the field of information and telecommunication systems based on chaos. This article shows an implementation of a data transmission system, encrypted by sequences, generated on the basis of one-dimensional discrete chaotic maps with ensuring synchronization of the transmitting and receiving sides of the system. In this system realization of synchronization is offered by a transmission through certain time domains of current value of xn generated by a logistic reflection. Xn transmission period depends on computer speed and distance between subscribers of the system. Its value is determined by transmitting a test message before the session. Infallible reception of test message indicates the optimal choice of a transmission period of the current value of xn. Selection period is done at the program level. For the construction of communication network modern software was used, in particular programming language Delphi 7.0. The work of the system is shown on the example of information transmission between the users of the system. The system operates in real time full duplex mode at any hardware implementation of Internet access. It is enough for the users of the system to specify IP address only.
A novel hybrid color image encryption algorithm using two complex chaotic systems
Wang, Leyuan; Song, Hongjun; Liu, Ping
2016-02-01
Based on complex Chen and complex Lorenz systems, a novel color image encryption algorithm is proposed. The larger chaotic ranges and more complex behaviors of complex chaotic systems, which compared with real chaotic systems could additionally enhance the security and enlarge key space of color image encryption. The encryption algorithm is comprised of three step processes. In the permutation process, the pixels of plain image are scrambled via two-dimensional and one-dimensional permutation processes among RGB channels individually. In the diffusion process, the exclusive-or (XOR for short) operation is employed to conceal pixels information. Finally, the mixing RGB channels are used to achieve a multilevel encryption. The security analysis and experimental simulations demonstrate that the proposed algorithm is large enough to resist the brute-force attack and has excellent encryption performance.
Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing
Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong
2016-08-01
Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.
A New Color Image Encryption Scheme Using CML and a Fractional-Order Chaotic System
Wu, Xiangjun; Li, Yang; Kurths, Jürgen
2015-01-01
The chaos-based image cryptosystems have been widely investigated in recent years to provide real-time encryption and transmission. In this paper, a novel color image encryption algorithm by using coupled-map lattices (CML) and a fractional-order chaotic system is proposed to enhance the security and robustness of the encryption algorithms with a permutation-diffusion structure. To make the encryption procedure more confusing and complex, an image division-shuffling process is put forward, where the plain-image is first divided into four sub-images, and then the position of the pixels in the whole image is shuffled. In order to generate initial conditions and parameters of two chaotic systems, a 280-bit long external secret key is employed. The key space analysis, various statistical analysis, information entropy analysis, differential analysis and key sensitivity analysis are introduced to test the security of the new image encryption algorithm. The cryptosystem speed is analyzed and tested as well. Experimental results confirm that, in comparison to other image encryption schemes, the new algorithm has higher security and is fast for practical image encryption. Moreover, an extensive tolerance analysis of some common image processing operations such as noise adding, cropping, JPEG compression, rotation, brightening and darkening, has been performed on the proposed image encryption technique. Corresponding results reveal that the proposed image encryption method has good robustness against some image processing operations and geometric attacks. PMID:25826602
Encrypting three-dimensional information system based on integral imaging and multiple chaotic maps
Xing, Yan; Wang, Qiong-Hua; Xiong, Zhao-Long; Deng, Huan
2016-02-01
An encrypting three-dimensional (3-D) information system based on integral imaging (II) and multiple chaotic maps is proposed. In the encrypting process, the elemental image array (EIA) which represents spatial and angular information of the real 3-D scene is picked up by a microlens array. Subsequently, R, G, and B color components decomposed by the EIA are encrypted using multiple chaotic maps. Finally, these three encrypted components are interwoven to obtain the cipher information. The decryption process implements the reverse operation of the encryption process for retrieving the high-quality 3-D images. Since the encrypted EIA has the data redundancy property due to II, and all parameters of the pickup part are the secret keys of the encrypting system, the system sensitivity on the changes of the plaintext and secret keys can be significantly improved. Moreover, the algorithm based on multiple chaotic maps can effectively enhance the security. A preliminary experiment is carried out, and the experimental results verify the effectiveness, robustness, and security of the proposed system.
DU Mao-Kang; HE Bo; WANG Yong
2011-01-01
Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14(2009)574) proposed a block encryption algorithm based on dynamic sequences of multiple chaotic systems. We analyze the potential Saws in the algorithm. Then, a chosen-plaintext attack is presented. Some remedial measures are suggested to avoid the flaws effectively. Furthermore, an improved encryption algorithm is proposed to resist the attacks and to keep all the merits of the original cryptosystem.
Data transmission system with encryption by chaotic sequences
Politans’kyy R. L.; Shpatar P. M.; Hres A. V.; Verigha A. D.
2014-01-01
Protection of transferable information in the telecommunication systems is possible by its imposition of coding sequence on a plaintext. Encryption of pseudorandom sequences can be performed by using generation algorithms which are implemented on the basis of the phenomenon of dynamical chaos, which is sensitive to changes in the initial conditions. One of the major problems encountered in the construction of secure communication systems is to provide synchronization between the receiving and...
Hanzhong Zheng; Simin Yu; Xiangqian Xu
2014-01-01
A systematic methodology is developed for multi-images encryption and decryption and field programmable gate array (FPGA) embedded implementation by using single discrete time chaotic system. To overcome the traditional limitations that a chaotic system can only encrypt or decrypt one image, this paper initiates a new approach to design n-dimensional (n-D) discrete time chaotic controlled systems via some variables anticontrol, which can achieve multipath drive-response synchronization. To th...
We consider different ways for encryption and decryption of information in communication systems using chaotic signal of a time-delay system as a carrier. A method is proposed for extracting a hidden message in the case when the parameters of the chaotic transmitter are a priori unknown. For different configurations of the transmitter the procedure of information signal extraction from the transmitted signal is demonstrated using numerical data produced by nonlinear mixing of the chaotic signal of the Mackey-Glass system and frequency-modulated harmonic signal
A New Study in Encryption Based on Fractional Order Chaotic System
Ming Yin; Li-Wei Wang
2008-01-01
In this paper, we introduce a novelapproach to achieve the data encryption. The fractionalorder Lorenz chaotic system is used to generate thechaotic sequence and the characteristics of the chaoticsequence are studied. Some examples concerned withtext and image eneryption are also presented in thepaper, which show exciting results by the approach weintroduced.
Image encryption based on a delayed fractional-order chaotic logistic system
Wang Zhen; Huang Xia; Li Ning; Song Xiao-Na
2012-01-01
A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system.In the process of generating a key stream,the time-varying delay and fractional derivative are embedded in the proposed scheme to improve the security.Such a scheme is described in detail with security analyses including correlation analysis,information entropy analysis,run statistic analysis,mean-variance gray value analysis,and key sensitivity analysis.Experimental results show that the newly proposed image encryption scheme possesses high security.
Image encryption based on a delayed fractional-order chaotic logistic system
A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system. In the process of generating a key stream, the time-varying delay and fractional derivative are embedded in the proposed scheme to improve the security. Such a scheme is described in detail with security analyses including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. Experimental results show that the newly proposed image encryption scheme possesses high security. (general)
A fast image encryption system based on chaotic maps with finite precision representation
In this paper, a fast chaos-based image encryption system with stream cipher structure is proposed. In order to achieve a fast throughput and facilitate hardware realization, 32-bit precision representation with fixed point arithmetic is assumed. The major core of the encryption system is a pseudo-random keystream generator based on a cascade of chaotic maps, serving the purpose of sequence generation and random mixing. Unlike the other existing chaos-based pseudo-random number generators, the proposed keystream generator not only achieves a very fast throughput, but also passes the statistical tests of up-to-date test suite even under quantization. The overall design of the image encryption system is to be explained while detail cryptanalysis is given and compared with some existing schemes
Qiu, Junchao; Zhang, Lin; Li, Diyang; Liu, Xingcheng
2016-06-01
Chaotic sequences can be applied to realize multiple user access and improve the system security for a visible light communication (VLC) system. However, since the map patterns of chaotic sequences are usually well known, eavesdroppers can possibly derive the key parameters of chaotic sequences and subsequently retrieve the information. We design an advanced encryption standard (AES) interleaving aided multiple user access scheme to enhance the security of a chaotic code division multiple access-based visible light communication (C-CDMA-VLC) system. We propose to spread the information with chaotic sequences, and then the spread information is interleaved by an AES algorithm and transmitted over VLC channels. Since the computation complexity of performing inverse operations to deinterleave the information is high, the eavesdroppers in a high speed VLC system cannot retrieve the information in real time; thus, the system security will be enhanced. Moreover, we build a mathematical model for the AES-aided VLC system and derive the theoretical information leakage to analyze the system security. The simulations are performed over VLC channels, and the results demonstrate the effectiveness and high security of our presented AES interleaving aided chaotic CDMA-VLC system.
Hanzhong Zheng
2014-01-01
Full Text Available A systematic methodology is developed for multi-images encryption and decryption and field programmable gate array (FPGA embedded implementation by using single discrete time chaotic system. To overcome the traditional limitations that a chaotic system can only encrypt or decrypt one image, this paper initiates a new approach to design n-dimensional (n-D discrete time chaotic controlled systems via some variables anticontrol, which can achieve multipath drive-response synchronization. To that end, the designed n-dimensional discrete time chaotic controlled systems are used for multi-images encryption and decryption. A generalized design principle and the corresponding implementation steps are also given. Based on the FPGA embedded hardware system working platform with XUP Virtex-II type, a chaotic secure communication system for three digital color images encryption and decryption by using a 7D discrete time chaotic system is designed, and the related system design and hardware implementation results are demonstrated, with the related mathematical problems analyzed.
Security of public key encryption technique based on multiple chaotic systems
Recently, a new public key encryption technique based on multiple chaotic systems has been proposed [B. Ranjan, Phys. Rev. Lett. 95 (2005) 098702]. This scheme employs m-chaotic systems and a set of linear functions for key exchange over an insecure channel. Security of the proposed algorithm grows as (NP)m, where N, P are the size of the key and the computational complexity of the linear functions respectively. In this Letter, the fundamental weakness of the cryptosystem is pointed out and a successful attack is described. Given the public keys and the initial vector, one can calculate the secret key based on Parseval's theorem. Both theoretical and experimental results show that the attacker can access to the secret key without difficulty. The lack of security discourages the use of such algorithm for practical applications
A New Loss-Tolerant Image Encryption Scheme Based on Secret Sharing and Two Chaotic Systems
Li Li; Ahmed A. Abd El-Latif; Zhenfeng Shi and Xiamu Niu
2012-01-01
In this study, we propose an efficient loss-tolerant image encryption scheme that protects both confidentiality and loss-tolerance simultaneously in shadow images. In this scheme, we generate the key sequence based on two chaotic maps and then encrypt the image during the sharing phase based on Shamir’s method. Experimental results show a better performance of the proposed scheme for different images than other methods from human vision. Security analysis confirms a high probability to resist...
Video encryption using chaotic masks in joint transform correlator
A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest–Shamir–Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique. (paper)
Digital image encryption with chaotic map lattices
Sun Fu-Yan; Lü Zong-Wang
2011-01-01
This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices.In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image.The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.
A New Loss-Tolerant Image Encryption Scheme Based on Secret Sharing and Two Chaotic Systems
Li Li
2012-04-01
Full Text Available In this study, we propose an efficient loss-tolerant image encryption scheme that protects both confidentiality and loss-tolerance simultaneously in shadow images. In this scheme, we generate the key sequence based on two chaotic maps and then encrypt the image during the sharing phase based on Shamir’s method. Experimental results show a better performance of the proposed scheme for different images than other methods from human vision. Security analysis confirms a high probability to resist both brute-force and collusion attacks.
Image Encryption Algorithm Based on Chaotic Economic Model
S. S. Askar; Karawia, A. A.; Ahmad Alshamrani
2015-01-01
In literature, chaotic economic systems have got much attention because of their complex dynamic behaviors such as bifurcation and chaos. Recently, a few researches on the usage of these systems in cryptographic algorithms have been conducted. In this paper, a new image encryption algorithm based on a chaotic economic map is proposed. An implementation of the proposed algorithm on a plain image based on the chaotic map is performed. The obtained results show that the proposed algorithm can su...
Image Encryption Algorithm Based on Chaotic Economic Model
S. S. Askar
2015-01-01
Full Text Available In literature, chaotic economic systems have got much attention because of their complex dynamic behaviors such as bifurcation and chaos. Recently, a few researches on the usage of these systems in cryptographic algorithms have been conducted. In this paper, a new image encryption algorithm based on a chaotic economic map is proposed. An implementation of the proposed algorithm on a plain image based on the chaotic map is performed. The obtained results show that the proposed algorithm can successfully encrypt and decrypt the images with the same security keys. The security analysis is encouraging and shows that the encrypted images have good information entropy and very low correlation coefficients and the distribution of the gray values of the encrypted image has random-like behavior.
3D Chaotic Functions for Image Encryption
Pawan N. Khade
2012-05-01
Full Text Available This paper proposes the chaotic encryption algorithm based on 3D logistic map, 3D Chebyshev map, and 3D, 2D Arnolds cat map for color image encryption. Here the 2D Arnolds cat map is used for image pixel scrambling and 3D Arnolds cat map is used for R, G, and B component substitution. 3D Chebyshev map is used for key generation and 3D logistic map is used for image scrambling. The use of 3D chaotic functions in the encryption algorithm provide more security by using the, shuffling and substitution to the encrypted image. The Chebyshev map is used for public key encryption and distribution of generated private keys.
Color image encryption based on Coupled Nonlinear Chaotic Map
Mazloom, Sahar [Faculty of Electrical, Computer and IT Engineering, Qazvin Islamic Azad University, Qazvin (Iran, Islamic Republic of)], E-mail: sahar.mazloom@gmail.com; Eftekhari-Moghadam, Amir Masud [Faculty of Electrical, Computer and IT Engineering, Qazvin Islamic Azad University, Qazvin (Iran, Islamic Republic of)], E-mail: eftekhari@qazviniau.ac.ir
2009-11-15
Image encryption is somehow different from text encryption due to some inherent features of image such as bulk data capacity and high correlation among pixels, which are generally difficult to handle by conventional methods. The desirable cryptographic properties of the chaotic maps such as sensitivity to initial conditions and random-like behavior have attracted the attention of cryptographers to develop new encryption algorithms. Therefore, recent researches of image encryption algorithms have been increasingly based on chaotic systems, though the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. This paper proposes a Coupled Nonlinear Chaotic Map, called CNCM, and a novel chaos-based image encryption algorithm to encrypt color images by using CNCM. The chaotic cryptography technique which used in this paper is a symmetric key cryptography with a stream cipher structure. In order to increase the security of the proposed algorithm, 240 bit-long secret key is used to generate the initial conditions and parameters of the chaotic map by making some algebraic transformations to the key. These transformations as well as the nonlinearity and coupling structure of the CNCM have enhanced the cryptosystem security. For getting higher security and higher complexity, the current paper employs the image size and color components to cryptosystem, thereby significantly increasing the resistance to known/chosen-plaintext attacks. The results of several experimental, statistical analysis and key sensitivity tests show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.
Analyzing and improving a chaotic encryption method
To resist the return map attack [Phys. Rev. Lett. 74 (1995) 1970] presented by Perez and Cerdeira, Shouliang Bu and Bing-Hong Wang proposed a simple method to improve the security of the chaotic encryption by modulating the chaotic carrier with an appropriately chosen scalar signal in [Chaos, Solitons and Fractals 19 (2004) 919]. They maintained that this modulating strategy not only preserved all appropriate information required for synchronizing chaotic systems but also destroyed the possibility of the phase space reconstruction of the sender dynamics such as a return map. However, a critical defect does exist in this scheme. This paper gives a zero-point autocorrelation method, which can recover the parameters of the scalar signal from the modulated signal. Consequently, the messages will be extracted from the demodulated chaotic carrier by using return map. Based on such a fact, an improved scheme is presented to obtain higher security, and the numerical simulation indicates the improvement of the synchronizing performance as well
Analyzing and improving a chaotic encryption method
Wu Xiaogang E-mail: seanwoo@mail.hust.edu.cn; Hu Hanping; Zhang Baoliang
2004-10-01
To resist the return map attack [Phys. Rev. Lett. 74 (1995) 1970] presented by Perez and Cerdeira, Shouliang Bu and Bing-Hong Wang proposed a simple method to improve the security of the chaotic encryption by modulating the chaotic carrier with an appropriately chosen scalar signal in [Chaos, Solitons and Fractals 19 (2004) 919]. They maintained that this modulating strategy not only preserved all appropriate information required for synchronizing chaotic systems but also destroyed the possibility of the phase space reconstruction of the sender dynamics such as a return map. However, a critical defect does exist in this scheme. This paper gives a zero-point autocorrelation method, which can recover the parameters of the scalar signal from the modulated signal. Consequently, the messages will be extracted from the demodulated chaotic carrier by using return map. Based on such a fact, an improved scheme is presented to obtain higher security, and the numerical simulation indicates the improvement of the synchronizing performance as well.
PERFORMANCE EVALUATION OF CHAOTIC ENCRYPTION TECHNIQUE
Ancy Mariam Babu
2013-01-01
Full Text Available Drastic growth in multimedia communication resulted to numerous security issues in the transmission of data. Moreover, the network used for the digital communication does not provide much security for the data transfer. During this time, tens of millions people using the internet options for essential communication and is being a tool for commercial field increased, So that security is an enormously important issue to deal with. We need to be protected confidentiality of data and provide secure connections for it. Hence we necessitate recognizing the different aspects of security and their applications. Many of these applications ranging from secure commerce, protecting passwords or pin and payments to private communications. As we know that, Cryptography is now becoming an essential aspect of the secure communication. Cryptography is the science of writing secret code with confident algorithm and key. The basic components of cryptography are encryption and decryption algorithms, digital signature and hashed message authentication code. We know that encryption is the synonym of cryptography. Different kinds of encryption are used in this modern era. Chaotic encryption is the type of the encryption which has adopted the concept of chaos. In this study, we are studying the history of cryptography until chaotic cryptography and analyzing the performance of chaotic encryption technique. The evaluation is performed in terms of encryption speed, the CPU utilization with time and the battery power consumption. The experimental results are specified the efficiency of the algorithms.
Steps towards improving the security of chaotic encryption
We present a method in which a chaotic signal is used to mask a message securely. It depends on separating the two tasks of synchronizing the chaotic oscillators and encrypting the message. A sporadic drive together with a function f of the ciphertext and response system variables is used to make extraction difficult. We give a choice of f that makes the method similar to a one-time pad, with pseudorandom numbers provided by the chaos
Grayscale image encryption algorithm based on chaotic maps
李昌刚; 韩正之
2003-01-01
A new image encryption/decryption algorithm has been designed using discrete chaotic systems as aSP (Substitution and Permutation) network architecture often used in cryptosystems. It is composed of two mainmodules: substitution module and permutation module. Both analyses and numerical results imply that the algo-rithm has the desirable security and efficiency.
Securing Images Using Chaotic-based Image Encryption Cryptosystem
Abdalwhab A. Alkher
2016-03-01
Full Text Available Given the rapid evolution in imaging and communication techniques, images become very important data transmitted over public networks type. Therefore, a fast and secure encryption system for high-resolution images is a tremendous demand. In this paper, a novel encryption system is proposed to secure images on the basis of Arnold Catmap. In the First, Arnold cat map system is used to scramble the positions of image pixels. Then, chaotic map is used to generate pseudorandom image for substitution. The statistical analysis was performed on the proposed encryption algorithm demonstrating superior confusion and deployment of its properties, which strongly resist statistical attacks. Coefficients of correlation between adjacent pixels showed that correlation between pixels of the encrypted image has significantly decreased. It is noted that the number of pixels of the image encoded drops significantly which indicates that the proposed system can thwart correlation attacks.
A fast chaotic encryption scheme based on piecewise nonlinear chaotic maps
In recent years, a growing number of discrete chaotic cryptographic algorithms have been proposed. However, most of them encounter some problems such as the lack of robustness and security. In this Letter, we introduce a new image encryption algorithm based on one-dimensional piecewise nonlinear chaotic maps. The system is a measurable dynamical system with an interesting property of being either ergodic or having stable period-one fixed point. They bifurcate from a stable single periodic state to chaotic one and vice versa without having usual period-doubling or period-n-tippling scenario. Also, we present the KS-entropy of this maps with respect to control parameter. This algorithm tries to improve the problem of failure of encryption such as small key space, encryption speed and level of security
Sui, Liansheng; Liu, Benqing; Wang, Qiang; Li, Ye; Liang, Junli
2015-11-01
A double-image encryption scheme is proposed based on Yang-Gu mixture amplitude-phase retrieval algorithm and high dimension chaotic system in gyrator transform domain, in which three chaotic random sequences are generated by using Chen system. First, an enlarged image constituted with two plaintext images is scrambled by using the first two sequences, and then separated into two new interim images. Second, one interim image is converted to the private phase key with the help of the third sequence, which is modulated by a random phase key generated based on logistic map. Based on this private phase key, another interim image is converted to the ciphertext with white noise distribution in the Yang-Gu amplitude-phase retrieval process. In the process of encryption and decryption, the images both in spatial domain and gyrator domain are nonlinear and disorder by using high dimension chaotic system. Moreover, the ciphertext image is only a real-valued function which is more convenient for storing and transmitting, and the security of the proposed encryption scheme is enhanced greatly because of high sensitivity of initial values of Chen system and rotation angle of gyrator transform. Extensive cryptanalysis and simulation results have demonstrated the security, validity and feasibility of the propose encryption scheme.
A novel chaotic encryption scheme based on arithmetic coding
In this paper, under the combination of arithmetic coding and logistic map, a novel chaotic encryption scheme is presented. The plaintexts are encrypted and compressed by using an arithmetic coder whose mapping intervals are changed irregularly according to a keystream derived from chaotic map and plaintext. Performance and security of the scheme are also studied experimentally and theoretically in detail
An Improved Piecewise Linear Chaotic Map Based Image Encryption Algorithm
Hu, Yuping; Wang, Zhijian
2014-01-01
An image encryption algorithm based on improved piecewise linear chaotic map (MPWLCM) model was proposed. The algorithm uses the MPWLCM to permute and diffuse plain image simultaneously. Due to the sensitivity to initial key values, system parameters, and ergodicity in chaotic system, two pseudorandom sequences are designed and used in the processes of permutation and diffusion. The order of processing pixels is not in accordance with the index of pixels, but it is from beginning or end alternately. The cipher feedback was introduced in diffusion process. Test results and security analysis show that not only the scheme can achieve good encryption results but also its key space is large enough to resist against brute attack. PMID:24592159
Symmetric encryption algorithms using chaotic and non-chaotic generators: A review.
Radwan, Ahmed G; AbdElHaleem, Sherif H; Abd-El-Hafiz, Salwa K
2016-03-01
This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold's cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper. PMID:26966561
Symmetric encryption algorithms using chaotic and non-chaotic generators: A review
Radwan, Ahmed G.; AbdElHaleem, Sherif H.; Abd-El-Hafiz, Salwa K.
2015-01-01
This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold’s cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper. PMID:26966561
Ahmad, Musheer; Alsharari, Hamed D.; Nizam, Munazza
2014-01-01
In this paper, we propose to improve the security performance of a recently proposed color image encryption algorithm which is based on multi-chaotic systems. The existing cryptosystem employed a pixel-chaotic-shuffle mechanism to encrypt images, in which the generation of shuffling sequences are independent to the plain-image/cipher-image. As a result, it fails to the chosen-plaintext and known-plaintext attacks. Moreover, the statistical features of the cryptosystem are not up to the standa...
A fast chaotic block cipher for image encryption
Armand Eyebe Fouda, J. S.; Yves Effa, J.; Sabat, Samrat L.; Ali, Maaruf
2014-03-01
Image encryption schemes based on chaos usually involve real number arithmetic operations to generate the chaotic orbits from the chaotic system. These operations are time-consuming and are normally performed with high-end processors. To overcome this drawback, this paper proposes a one round encryption scheme for the fast generation of large permutation and diffusion keys based on the sorting of the solutions of the Linear Diophantine Equation (LDE) whose coefficients are integers and dynamically generated from any type of chaotic systems. The high security and low computational complexity are achieved not only by using large permutation based on the sorting of the solutions of LDE but also by generating only one permutation from the sorting of the solutions of the LDE, then by dynamically updating d number of integers (d>2) in the permutation. The performance of the proposed scheme is evaluated using various types of analysis such as entropy analysis, difference analysis, statistical analysis, key sensitivity analysis, key space analysis and speed analysis. The experimental results indicate that the proposed algorithm is secure and fast as compared to the two round encryption scheme.
IMAGE ENCRYPTION TECHNIQUES USING CHAOTIC SCHEMES: A REVIEW
Monisha Sharma
2010-06-01
Full Text Available Cryptography is about communication in the presence of an adversary. It encompasses many problems like encryption, authentication, and key distribution to name a few. The field of modern cryptography providesa theoretical foundation based on which one can understand what exactly these problems are, how to evaluate protocols that purport to solve them and how to build protocols in whose security one can haveconfidence. Advanced digital technologies have made multimedia data widely available. Recently, multimedia applications become common in practice and thus security of multimedia data has become main concern.The basic issues pertaining to the problem of encryption has been discussed and also a survey on image encryption techniques based on chaotic schemes has been dealt in the present communication.The chaotic image encryption can be developed by using properties of chaos including deterministic dynamics, unpredictable behavior and non-linear transform. This concept leads to techniques that can simultaneously provide security functions and an overall visualcheck, which might be suitable in some applications. Digital images are widely used in various applications, that include military, legal and medical systems and these applications need to control access toimages and provide the means to verify integrity of images.
Digital Image Encryption Based On Multiple Chaotic Maps
Amir Houshang Arab Avval
2016-01-01
Full Text Available A novel and robust chaos-based digital image encryption is proposed. The present paper presents a cipher block image encryption using multiple chaotic maps to lead increased security. An image block is encrypted by the block-based permutation process and cipher block encryption process. In the proposed scheme, secret key includes nineteen control and initial conditions parameter of the four chaotic maps and the calculated key space is 2883. The effectiveness and security of the proposed encryption scheme has been performed using the histograms, correlation coefficients, information entropy, differential analysis, key space analysis, etc. It can be concluded that the proposed image encryption technique is a suitable choice for practical applications.
Chaotic trigonometric Haar wavelet with focus on image encryption
Ahadpour, Sodeif; Sadra, Yaser
2014-01-01
In this paper, after reviewing the main points of Haar wavelet transform and chaotic trigonometric maps, we introduce a new perspective of Haar wavelet transform. The essential idea of the paper is given linearity properties of the scaling function of the Haar wavelet. With regard to applications of Haar wavelet transform in image processing, we introduce chaotic trigonometric Haar wavelet transform to encrypt the plain images. In addition, the encrypted images based on a proposed algorithm w...
基于五维混沌系统的图像加密研究%Five-dimensional chaotic system based image encryption algorithm
高亮; 朱博; 孙鸣; 朱建良
2011-01-01
随着计算机技术、信息技术和通讯技术等高科技技术在近年来的迅猛发展,信息加密越来越受到人们的重视,提出了基于五维混沌系统用来实现图像加密的方法,并利用迭代次数和方式作为密码,实现了图像加密和解密,为信息加密提供了一种新方法.%With computer technology, information technology and communications technology, high technology, rapid development in recent years, more and more people pay close attention to information encryption. This paper, based on five-dimensional chaotic system realizes image encryption method, and means of using the number of iterations as the password, to realize the image encryption and decryption,the information provides a new method of encryption.
Plaintext Related Image Encryption Scheme Using Chaotic Map
Yong Zhang
2013-07-01
Full Text Available A plaintext related image blocking encryption algorithm is proposed in this paper, which includes two kinds of operations on inner-block confusion and inter-block diffusion. Firstly, a float-point lookup table need to be generated by iterating chaotic system; Secondly, choose one of the entries in the look-up table as initial value of chaotic system, and iterate it to produce one secret code sequence for inner-block confusion; Thirdly, by using one pixel value of the former block to locate another entry in the look-up table, iterate it to yield another secret code sequence for inter-block diffusion; Finally, through two rounds of the block-by-block processes, the plain-image will be transformed into the cipher-image. The simulation results show that the proposed method has many good characters.
Security analysis of image encryption based on two-dimensional chaotic maps and improved algorithm
Feng HUANG; Yong FENG
2009-01-01
The article proposes a new algorithm to improve the security of image encryption based on two-dimensional chaotic maps.Chaotic maps are often used in encrypting images.However,the encryption has periodic-ity,no diffusion,and at the same time,the real keys space of encryption are fewer than the theoretical keys space,which consequently results in potential security problems.Thus,this article puts forward several ways to solve the problems including adding diffusion mechanism,changing the design of keys and developing a composite encryption system.It designs an algorithm for the version B of the discretized baker map,which is one of the most prevalent chaotic maps,based on which a new image encryption is proposed to avoid the above problems.The simulation results show that the new encryption algorithm is valid and the result can be applied to other two-dimensional chaotic maps,such as the cat map.
An Optimized Multikeying Chaotic Encryption for Real Time Applications
R. Tamijetchelvy
2013-12-01
Full Text Available In recent years, the availability of wireless technologies has become prominent solution for next generation wireless networks (NGWN. Hence the demand for secure communication is an important research issue. Cryptography is recognized as the best method of data protection against active and passive attacks. Therefore a novel chaotic cryptographic scheme is proposed for real time communication. Chaos signals are random behaviour, continuous and sensitive dependence on initial conditions. However, it has been shown that most of these chaotic methods have a low level of security because of single keying concept. In this paper an optimized fast encryption scheme based on chaotic signal with multi key is justified for video frame. Simulation results show that the proposed chaotic encryption scheme outperforms the existing scheme in terms of considerable reduction in encryption and decryption time. The security of the proposed scheme is also analysed by various cryptanalysis attacks.
Image Encryption Based on Diffusion and Multiple Chaotic Maps
Sathishkumar, G A; Sriraam, Dr N; 10.5121/ijnsa.2011.3214
2011-01-01
In the recent world, security is a prime important issue, and encryption is one of the best alternative way to ensure security. More over, there are many image encryption schemes have been proposed, each one of them has its own strength and weakness. This paper presents a new algorithm for the image encryption/decryption scheme. This paper is devoted to provide a secured image encryption technique using multiple chaotic based circular mapping. In this paper, first, a pair of sub keys is given by using chaotic logistic maps. Second, the image is encrypted using logistic map sub key and in its transformation leads to diffusion process. Third, sub keys are generated by four different chaotic maps. Based on the initial conditions, each map may produce various random numbers from various orbits of the maps. Among those random numbers, a particular number and from a particular orbit are selected as a key for the encryption algorithm. Based on the key, a binary sequence is generated to control the encryption algorit...
Improved Cryptanalysis of CMC Chaotic Image Encryption Scheme
Jiansheng Guo
2010-12-01
Full Text Available Recently, chaos has attracted much attention in the field of cryptography. To study the security with a known image of a symmetric image encryption scheme, the attack algorithm of equivalent key is given. We give the known image attacks under different other conditions to obtain the equivalent key. The concrete step and complexity of the attack algorithm is given. So the symmetric image encryption scheme based on 3D chaotic cat maps is not secure.
A Parallel Encryption Algorithm Based on Piecewise Linear Chaotic Map
Xizhong Wang
2013-01-01
Full Text Available We introduce a parallel chaos-based encryption algorithm for taking advantage of multicore processors. The chaotic cryptosystem is generated by the piecewise linear chaotic map (PWLCM. The parallel algorithm is designed with a master/slave communication model with the Message Passing Interface (MPI. The algorithm is suitable not only for multicore processors but also for the single-processor architecture. The experimental results show that the chaos-based cryptosystem possesses good statistical properties. The parallel algorithm provides much better performance than the serial ones and would be useful to apply in encryption/decryption file with large size or multimedia.
A novel chaotic encryption scheme based on pseudorandom bit padding
Sadra, Yaser; Fard, Zahra Arasteh
2012-01-01
Cryptography is always very important in data origin authentications, entity authentication, data integrity and confidentiality. In recent years, a variety of chaotic cryptographic schemes have been proposed. These schemes has typical structure which performed the permutation and the diffusion stages, alternatively. The random number generators are intransitive in cryptographic schemes and be used in the diffusion functions of the image encryption for diffused pixels of plain image. In this paper, we propose a chaotic encryption scheme based on pseudorandom bit padding that the bits be generated by a novel logistic pseudorandom image algorithm. To evaluate the security of the cipher image of this scheme, the key space analysis, the correlation of two adjacent pixels and differential attack were performed. This scheme tries to improve the problem of failure of encryption such as small key space and level of security.
A novel chaotic encryption scheme based on pseudorandom bit padding
Sodeif Ahadpour
2012-01-01
Full Text Available Cryptography is always very important in data origin authentications, entity authentication, data integrity and confidentiality. In recent years, a variety of chaotic cryptographic schemes have been proposed. These schemes has typical structure which performed the permutation and the diffusion stages, alternatively. The random number generators are intransitive in cryptographic schemes and be used in the diffusion functions of the image encryption for diffused pixels of plain image. In this paper, we propose a chaotic encryption scheme based on pseudorandom bit padding that the bits be generated by a novel logistic pseudorandom image algorithm. To evaluate the security of the cipher image of this scheme, the key space analysis, the correlation of two adjacent pixels and differential attack were performed. This scheme tries to improve the problem of failure of encryption such as small key space and level of security.
Čelikovský, Sergej; Lynnyk, Volodymyr; Šebek, Michael
San Diego: Omnipress, 2006, s. 3783-3788. ISBN 1-4244-0171-2. [IEEE Conference on Decision and Control /45./. San Diego (US), 13.12.2006-15.12.2006] R&D Projects: GA ČR GA102/05/0011 Institutional research plan: CEZ:AV0Z10750506 Keywords : nonlinear systems * chaotic systems Subject RIV: BC - Control Systems Theory http://www.ieeecss.org/CAB/conferences/cdc2006/index.php
A novel chaotic image encryption scheme using DNA sequence operations
Wang, Xing-Yuan; Zhang, Ying-Qian; Bao, Xue-Mei
2015-10-01
In this paper, we propose a novel image encryption scheme based on DNA (Deoxyribonucleic acid) sequence operations and chaotic system. Firstly, we perform bitwise exclusive OR operation on the pixels of the plain image using the pseudorandom sequences produced by the spatiotemporal chaos system, i.e., CML (coupled map lattice). Secondly, a DNA matrix is obtained by encoding the confused image using a kind of DNA encoding rule. Then we generate the new initial conditions of the CML according to this DNA matrix and the previous initial conditions, which can make the encryption result closely depend on every pixel of the plain image. Thirdly, the rows and columns of the DNA matrix are permuted. Then, the permuted DNA matrix is confused once again. At last, after decoding the confused DNA matrix using a kind of DNA decoding rule, we obtain the ciphered image. Experimental results and theoretical analysis show that the scheme is able to resist various attacks, so it has extraordinarily high security.
Application of the Chaotic Ergodicity of Standard Map in Image Encryption and Watermarking
Ruisong Ye; Huiqing Huang
2010-01-01
Thanks to the exceptionally good properties in chaotic systems, such as sensitivity to initial conditions and control parameters, pseudo-randomness and ergodicity, chaos-based image encryption algorithms have been widely studied and developed in recent years. Standard map is chaotic so that it can be employed to shuffle the positions of image pixels to get a totally visual difference from the original images. This paper proposes two novel schemes to shuffle digital images. Different from the ...
A novel algorithm for image encryption based on mixture of chaotic maps
Behnia, S. [Department of Physics, IAU, Urmia (Iran, Islamic Republic of)], E-mail: s.behnia@iaurmia.ac.ir; Akhshani, A.; Mahmodi, H. [Department of Physics, IAU, Urmia (Iran, Islamic Republic of); Akhavan, A. [Department of Engineering, IAU, Urmia (Iran, Islamic Republic of)
2008-01-15
Chaos-based encryption appeared recently in the early 1990s as an original application of nonlinear dynamics in the chaotic regime. In this paper, an implementation of digital image encryption scheme based on the mixture of chaotic systems is reported. The chaotic cryptography technique used in this paper is a symmetric key cryptography. In this algorithm, a typical coupled map was mixed with a one-dimensional chaotic map and used for high degree security image encryption while its speed is acceptable. The proposed algorithm is described in detail, along with its security analysis and implementation. The experimental results based on mixture of chaotic maps approves the effectiveness of the proposed method and the implementation of the algorithm. This mixture application of chaotic maps shows advantages of large key space and high-level security. The ciphertext generated by this method is the same size as the plaintext and is suitable for practical use in the secure transmission of confidential information over the Internet.
Image Encryption Based On Diffusion And Multiple Chaotic Maps
G.A.Sathishkumar
2011-03-01
Full Text Available In the recent world, security is a prime important issue, and encryption is one of the best alternative wayto ensure security. More over, there are many image encryption schemes have been proposed, each one ofthem has its own strength and weakness. This paper presents a new algorithm for the imageencryption/decryption scheme. This paper is devoted to provide a secured image encryption techniqueusing multiple chaotic based circular mapping. In this paper, first, a pair of sub keys is given by usingchaotic logistic maps. Second, the image is encrypted using logistic map sub key and in its transformationleads to diffusion process. Third, sub keys are generated by four different chaotic maps. Based on theinitial conditions, each map may produce various random numbers from various orbits of the maps.Among those random numbers, a particular number and from a particular orbit are selected as a key forthe encryption algorithm. Based on the key, a binary sequence is generated to control the encryptionalgorithm. The input image of 2-D is transformed into a 1- D array by using two different scanningpattern (raster and Zigzag and then divided into various sub blocks. Then the position permutation andvalue permutation is applied to each binary matrix based on multiple chaos maps. Finally the receiveruses the same sub keys to decrypt the encrypted images. The salient features of the proposed imageencryption method are loss-less, good peak signal –to noise ratio (PSNR, Symmetric key encryption, lesscross correlation, very large number of secret keys, and key-dependent pixel value replacement.
Cryptanalysis of an ergodic chaotic encryption algorithm
In this paper, we present the results for the security and the possible attacks on a new symmetric key encryption algorithm based on the ergodicity property of a logistic map. After analysis, we use mathematical induction to prove that the algorithm can be attacked by a chosen plaintext attack successfully and give an example to show how to attack it. According to the cryptanalysis of the original algorithm, we improve the original algorithm, and make a brief cryptanalysis. Compared with the original algorithm, the improved algorithm is able to resist a chosen plaintext attack and retain a considerable number of advantages of the original algorithm such as encryption speed, sensitive dependence on the key, strong anti-attack capability, and so on. (general)
Integration of chaotic sequences uniformly distributedin a new image encryption algorithm
Nassiba Wafa Abderrahim
2012-03-01
Full Text Available In this paper we propose a new chaotic secret key cryptosystem, adapted for image encryption in continuous mode, which is based on the use of tow one-dimensional discrete chaotic systems: Bernoulli map and Tent map. The pseudorandom sequences generated by the two maps are characterized by independence of their states, uniformly distributed, so hear integration provides excellent properties of confusion and diffusion, and an important space for the secret key, because it consists of parameters and initial states of the chaotic maps. The security tests results of our cryptosystem are very satisfactory.
CONSTRUCTION OF THE ENCRYPTION MATRIX BASED ON CHEBYSHEV CHAOTIC NEURAL NETWORKS
Zou Ajin; Wu Wei; Li Renfa; Li Yongjiang
2012-01-01
The paper proposes a novel algorithm to get the encryption matrix.Firstly,a chaotic sequence generated by Chebyshev chaotic neural networks is converted into a series of low-order integer matrices from which available encryption matrices are selected.Then,a higher order encryption matrix relating real world application is constructed by means of tensor production method based on selected encryption matrices.The results show that the proposed algorithm can produce a "one-time pad cipher" encryption matrix with high security; and the encryption results have good chaos and autocorrelation with the natural frequency of the plaintext being hidden and homogenized.
A fast image encryption algorithm based on chaotic map
Liu, Wenhao; Sun, Kehui; Zhu, Congxu
2016-09-01
Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.
Cryptanalysis and improvement of a digital image encryption method with chaotic map lattices
Wang Xing-Yuan; Liu Lin-Tao
2013-01-01
A digital image encryption scheme using chaotic map lattices has been proposed recently.In this paper,two fatal flaws of the cryptosystem are pointed out.According to these two drawbacks,cryptanalysts could recover the plaintext by applying the chosen plaintext attack.Therefore,the proposed cryptosystem is not secure enough to be used in the image transmission system.Experimental results show the feasibility of the attack.As a result,we make some improvements to the encryption scheme,which can completely resist our chosen plaintext attack.
A novel color image encryption scheme using alternate chaotic mapping structure
Wang, Xingyuan; Zhao, Yuanyuan; Zhang, Huili; Guo, Kang
2016-07-01
This paper proposes an color image encryption algorithm using alternate chaotic mapping structure. Initially, we use the R, G and B components to form a matrix. Then one-dimension logistic and two-dimension logistic mapping is used to generate a chaotic matrix, then iterate two chaotic mappings alternately to permute the matrix. For every iteration, XOR operation is adopted to encrypt plain-image matrix, then make further transformation to diffuse the matrix. At last, the encrypted color image is obtained from the confused matrix. Theoretical analysis and experimental results has proved the cryptosystem is secure and practical, and it is suitable for encrypting color images.
An improved image encryption algorithm based on chaotic maps
Xu Shu-Jiang; Wang Ji-Zhi; Yang Su-Xiang
2008-01-01
Recently,two chaotic image encryption schemes have been proposed,in which shuffling the positions and changing the grey values of image pixels are combined.This paper provides the chosen plaintext attack to recover the corresponding plaintext of a given ciphertext.Furthermore,it points out that the two schemes are not sufficiently sensitive to small changes of the plaintext.Based on the given analysis,it proposes an improved algorithm which includes two rounds of substitution and one round of permutation to strengthen the overall performance.
An image encryption approach based on chaotic maps
It is well-known that images are different from texts in many aspects, such as highly redundancy and correlation, the local structure and the characteristics of amplitude-frequency. As a result, the methods of conventional encryption cannot be applicable to images. In this paper, we improve the properties of confusion and diffusion in terms of discrete exponential chaotic maps, and design a key scheme for the resistance to statistic attack, differential attack and grey code attack. Experimental and theoretical results also show that our scheme is efficient and very secure
A New Algorithm of Encryption and Decryption of Images Using Chaotic Mapping
Musheer Ahmad; M. Shamsher Alam
2010-01-01
The combination of chaotic theory and cryptography forms an important field of information security. In the past decade, chaos based image encryption is given much attention in the research of information security and a lot of image encryption algorithms based on chaotic maps have been proposed. Due to some inherent features of images like bulk data capacity and high data redundancy, the encryption of images is different from that of texts; therefore it is difficult to handle them by traditio...
Li, SJ; Mou, XQ; Cai, YL; Ji, Z.; Zhang, JH
2003-01-01
Zhou et al. have proposed a chaotic encryption scheme, which is based on a kind of computerized piecewise linear chaotic map (PWLCM) realized in finite computing precision. In this paper, we point out that Zhou's encryption scheme is not secure enough from strict cryptographic viewpoint. The reason lies in the dynamical degradation of the computerized piecewise linear chaotic map employed by Zhou et al. The dynamical degradation of the computerized chaos induces many weak keys to cause large ...
Secure Image Encryption Based On a Chua Chaotic Noise Generator
A. S. Andreatos
2013-10-01
Full Text Available This paper presents a secure image cryptography telecom system based on a Chua's circuit chaotic noise generator. A chaotic system based on synchronised Master–Slave Chua's circuits has been used as a chaotic true random number generator (CTRNG. Chaotic systems present unpredictable and complex behaviour. This characteristic, together with the dependence on the initial conditions as well as the tolerance of the circuit components, make CTRNGs ideal for cryptography. In the proposed system, the transmitter mixes an input image with chaotic noise produced by a CTRNG. Using thresholding techniques, the chaotic signal is converted to a true random bit sequence. The receiver must be able to reproduce exactly the same chaotic noise in order to subtract it from the received signal. This becomes possible with synchronisation between the two Chua's circuits: through the use of specific techniques, the trajectory of the Slave chaotic system can be bound to that of the Master circuit producing (almost identical behaviour. Additional blocks have been used in order to make the system highly parameterisable and robust against common attacks. The whole system is simulated in Matlab. Simulation results demonstrate satisfactory performance, as well as, robustness against cryptanalysis. The system works with both greyscale and colour jpg images.
A New Algorithm of Encryption and Decryption of Images Using Chaotic Mapping
Musheer Ahmad
2010-01-01
Full Text Available The combination of chaotic theory and cryptography forms an important field of information security. In the past decade, chaos based image encryption is given much attention in the research of information security and a lot of image encryption algorithms based on chaotic maps have been proposed. Due to some inherent features of images like bulk data capacity and high data redundancy, the encryption of images is different from that of texts; therefore it is difficult to handle them by traditional encryption methods. In this communication, a new image encryption algorithm based on three different chaotic maps is proposed. In the proposed algorithm, the plain-image is first decomposed into 8x8 size blocks and then the block based shuffling of image is carried out using 2D Cat map. Further, the control parameters of shuffling are randomly generated by employing 2D coupled Logistic map. After that the shuffled image is encrypted using chaotic sequence generated by one-dimensional Logistic map. The experimental results show that the proposed algorithm can successfully encrypt/decrypt the images with same secret keys, and the algorithm has good encryption effect, large key space and high sensitivity to a small change in secret keys. Moreover, the simulation analysis also demonstrates that the encrypted images have good information entropy, very low correlation coefficients and the distribution of gray values of an encrypted image has random-like behavior.
Multiple Chaotic Real-time Image Encryption System Based on DSP+FPGA%基于DSP+FPGA的多混沌实时视频图像加密系统
许艳
2013-01-01
Aiming at the security and privacy problems of videos/images in digital communications, a system design scheme for realize real-time videos/images encryption is proposed based on DSP+FPGA, and then the realization of multi-chaotic encryption algorithm based on the DSP+FPGA is introduced in detail. The experimental results show that the encryption algorithm can enhance the security of the videos/images transmission, and it is proved that the system can run with rather fast encryption speed for the real-time videos/images.% 针对视频图像在数字通信中存在着安全和隐私问题，提出了基于DSP+FPGA技术来实现实时视频图像加密的系统设计方案，并详细介绍了多混沌加密算法在DSP和FPGA上的实现。实验结果表明多混沌实时视频图像加密增强了视频图像传输的安全性，同时证明了本系统对实时视频图像能快速地进行加密。
A Novel Chaotic Map and an Improved Chaos-Based Image Encryption Scheme
2014-01-01
In this paper, we present a novel approach to create the new chaotic map and propose an improved image encryption scheme based on it. Compared with traditional classic one-dimensional chaotic maps like Logistic Map and Tent Map, this newly created chaotic map demonstrates many better chaotic properties for encryption, implied by a much larger maximal Lyapunov exponent. Furthermore, the new chaotic map and Arnold's Cat Map based image encryption method is designed and proved to be of solid robustness. The simulation results and security analysis indicate that such method not only can meet the requirement of imagine encryption, but also can result in a preferable effectiveness and security, which is usable for general applications. PMID:25143990
Application of the Chaotic Ergodicity of Standard Map in Image Encryption and Watermarking
Ruisong Ye
2010-11-01
Full Text Available Thanks to the exceptionally good properties in chaotic systems, such as sensitivity to initial conditions and control parameters, pseudo-randomness and ergodicity, chaos-based image encryption algorithms have been widely studied and developed in recent years. Standard map is chaotic so that it can be employed to shuffle the positions of image pixels to get a totally visual difference from the original images. This paper proposes two novel schemes to shuffle digital images. Different from the conventional schemes based on Standard map, we disorder the pixel positions according to the orbits of the Standard map. The proposed shuffling schemes don’t need to discretize the Standard map and own more cipher leys compared with the conventional shuffling scheme based on the discretized Standard map. The shuffling schemes are applied to encrypt image and disorder the host image in watermarking scheme to enhance the robustness against attacks. Experimental results show that the proposed encryption scheme yields good secure effects. The watermarked images are robust against attacks as well.
Grayscale image encryption using a hyperchaotic unstable dissipative system
Ontanon-García, L.J.; García-Martínez, M.; Campos-Cantón, E.; Čelikovský, Sergej
London: IEEE, 2013, s. 508-512. ISBN 978-1-908320-16-2. [The 8th International Conference for Internet Technology and Secured Transactions (ICITST-2013). Londýn (GB), 09.12.2013-12.12.2013] R&D Projects: GA ČR(CZ) GAP103/12/1794 Institutional support: RVO:67985556 Keywords : Hyperchaos * piecewise linear systems * multi-scrolls * chaotic encryption * stream cypher encryption Subject RIV: BC - Control Systems Theory
Dynamic video encryption algorithm for H.264/AVC based on a spatiotemporal chaos system.
Xu, Hui; Tong, Xiao-Jun; Zhang, Miao; Wang, Zhu; Li, Ling-Hao
2016-06-01
Video encryption schemes mostly employ the selective encryption method to encrypt parts of important and sensitive video information, aiming to ensure the real-time performance and encryption efficiency. The classic block cipher is not applicable to video encryption due to the high computational overhead. In this paper, we propose the encryption selection control module to encrypt video syntax elements dynamically which is controlled by the chaotic pseudorandom sequence. A novel spatiotemporal chaos system and binarization method is used to generate a key stream for encrypting the chosen syntax elements. The proposed scheme enhances the resistance against attacks through the dynamic encryption process and high-security stream cipher. Experimental results show that the proposed method exhibits high security and high efficiency with little effect on the compression ratio and time cost. PMID:27409446
A novel bit-level image encryption algorithm based on chaotic maps
Xu, Lu; Li, Zhi; Li, Jian; Hua, Wei
2016-03-01
Recently, a number of chaos-based image encryption algorithms have been proposed at the pixel level, but little research at the bit level has been conducted. This paper presents a novel bit-level image encryption algorithm that is based on piecewise linear chaotic maps (PWLCM). First, the plain image is transformed into two binary sequences of the same size. Second, a new diffusion strategy is introduced to diffuse the two sequences mutually. Then, we swap the binary elements in the two sequences by the control of a chaotic map, which can permute the bits in one bitplane into any other bitplane. The proposed algorithm has excellent encryption performance with only one round. The simulation results and performance analysis show that the proposed algorithm is both secure and reliable for image encryption.
In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hardware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosystem is secure and practical, and suitable for image encryption. (general)
Wang, Xing-Yuan; Bao, Xue-Mei
2013-05-01
In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hardware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosystem is secure and practical, and suitable for image encryption.
A new image encryption algorithm based on logistic chaotic map with varying parameter
Liu, Lingfeng; Miao, Suoxia
2016-01-01
In this paper, we proposed a new image encryption algorithm based on parameter-varied logistic chaotic map and dynamical algorithm. The parameter-varied logistic map can cure the weaknesses of logistic map and resist the phase space reconstruction attack. We use the parameter-varied logistic map to shuffle the plain image, and then use a dynamical algorithm to encrypt the image. We carry out several experiments, including Histogram analysis, information entropy analysis, sensitivity analysis,...
Enayatifar, Rasul; Sadaei, Hossein Javedani; Abdullah, Abdul Hanan; Lee, Malrey; Isnin, Ismail Fauzi
2015-08-01
Currently, there are many studies have conducted on developing security of the digital image in order to protect such data while they are sending on the internet. This work aims to propose a new approach based on a hybrid model of the Tinkerbell chaotic map, deoxyribonucleic acid (DNA) and cellular automata (CA). DNA rules, DNA sequence XOR operator and CA rules are used simultaneously to encrypt the plain-image pixels. To determine rule number in DNA sequence and also CA, a 2-dimension Tinkerbell chaotic map is employed. Experimental results and computer simulations, both confirm that the proposed scheme not only demonstrates outstanding encryption, but also resists various typical attacks.
Multiple-image encryption with bit-plane decomposition and chaotic maps
Tang, Zhenjun; Song, Juan; Zhang, Xianquan; Sun, Ronghai
2016-05-01
Image encryption is an efficient technique of image content protection. In this work, we propose a useful image encryption algorithm for multiple grayscale images. The proposed algorithm decomposes input images into bit-planes, randomly swaps bit-blocks among different bit-planes, and conducts XOR operation between the scrambled images and secret matrix controlled by chaotic map. Finally, an encrypted PNG image is obtained by viewing four scrambled grayscale images as its red, green, blue and alpha components. Many simulations are done to illustrate efficiency of our algorithm.
A new image encryption algorithm based on logistic chaotic map with varying parameter.
Liu, Lingfeng; Miao, Suoxia
2016-01-01
In this paper, we proposed a new image encryption algorithm based on parameter-varied logistic chaotic map and dynamical algorithm. The parameter-varied logistic map can cure the weaknesses of logistic map and resist the phase space reconstruction attack. We use the parameter-varied logistic map to shuffle the plain image, and then use a dynamical algorithm to encrypt the image. We carry out several experiments, including Histogram analysis, information entropy analysis, sensitivity analysis, key space analysis, correlation analysis and computational complexity to evaluate its performances. The experiment results show that this algorithm is with high security and can be competitive for image encryption. PMID:27066326
Efficient image or video encryption based on spatiotemporal chaos system
In this paper, an efficient image/video encryption scheme is constructed based on spatiotemporal chaos system. The chaotic lattices are used to generate pseudorandom sequences and then encrypt image blocks one by one. By iterating chaotic maps for certain times, the generated pseudorandom sequences obtain high initial-value sensitivity and good randomness. The pseudorandom-bits in each lattice are used to encrypt the Direct Current coefficient (DC) and the signs of the Alternating Current coefficients (ACs). Theoretical analysis and experimental results show that the scheme has good cryptographic security and perceptual security, and it does not affect the compression efficiency apparently. These properties make the scheme a suitable choice for practical applications.
Synchronization of chaotic systems
Pecora, Louis M.; Carroll, Thomas L. [U.S. Naval Research Laboratory, Washington, District of Columbia 20375 (United States)
2015-09-15
We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.
Synchronization of chaotic systems
Pecora, Louis M.; Carroll, Thomas L.
2015-09-01
We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.
Chaotic Image Encryption Based on Running-Key Related to Plaintext
Cao Guanghui
2014-01-01
Full Text Available In the field of chaotic image encryption, the algorithm based on correlating key with plaintext has become a new developing direction. However, for this kind of algorithm, some shortcomings in resistance to reconstruction attack, efficient utilization of chaotic resource, and reducing dynamical degradation of digital chaos are found. In order to solve these problems and further enhance the security of encryption algorithm, based on disturbance and feedback mechanism, we present a new image encryption scheme. In the running-key generation stage, by successively disturbing chaotic stream with cipher-text, the relation of running-key to plaintext is established, reconstruction attack is avoided, effective use of chaotic resource is guaranteed, and dynamical degradation of digital chaos is minimized. In the image encryption stage, by introducing random-feedback mechanism, the difficulty of breaking this scheme is increased. Comparing with the-state-of-the-art algorithms, our scheme exhibits good properties such as large key space, long key period, and extreme sensitivity to the initial key and plaintext. Therefore, it can resist brute-force, reconstruction attack, and differential attack.
Chaotic Image Encryption Based on Running-Key Related to Plaintext
Guanghui, Cao; Kai, Hu; Yizhi, Zhang; Jun, Zhou; Xing, Zhang
2014-01-01
In the field of chaotic image encryption, the algorithm based on correlating key with plaintext has become a new developing direction. However, for this kind of algorithm, some shortcomings in resistance to reconstruction attack, efficient utilization of chaotic resource, and reducing dynamical degradation of digital chaos are found. In order to solve these problems and further enhance the security of encryption algorithm, based on disturbance and feedback mechanism, we present a new image encryption scheme. In the running-key generation stage, by successively disturbing chaotic stream with cipher-text, the relation of running-key to plaintext is established, reconstruction attack is avoided, effective use of chaotic resource is guaranteed, and dynamical degradation of digital chaos is minimized. In the image encryption stage, by introducing random-feedback mechanism, the difficulty of breaking this scheme is increased. Comparing with the-state-of-the-art algorithms, our scheme exhibits good properties such as large key space, long key period, and extreme sensitivity to the initial key and plaintext. Therefore, it can resist brute-force, reconstruction attack, and differential attack. PMID:24711727
This paper presents a secure digital communication system based on chaotic modulation, cryptography, and chaotic synchronization techniques. The proposed system consists of a Chaotic Modulator (CM), a Chaotic Secure Transmitter (CST), a Chaotic Secure Receiver (CSR) and a Chaotic Demodulator (CDM). The CM module incorporates a chaotic system and a novel Chaotic Differential Peaks Keying (CDPK) modulation scheme to generate analog patterns corresponding to the input digital bits. The CST and CSR modules are designed such that a single scalar signal is transmitted in the public channel. Furthermore, by giving certain structural conditions of a particular class of chaotic system, the CST and the nonlinear observer-based CSR with an appropriate observer gain are constructed to synchronize with each other. These two slave systems are driven simultaneously by the transmitted signal and are designed to synchronize and generate appropriate cryptography keys for encryption and decryption purposes. In the CDM module, a nonlinear observer is designed to estimate the chaotic modulating system in the CM. A demodulation mechanism is then applied to decode the transmitted input digital bits. The effectiveness of the proposed scheme is demonstrated through the numerical simulation of an illustrative communication system. Synchronization between the chaotic circuits of the transmitter and receiver modules is guaranteed through the Lyapunov stability theorem. Finally, the security features of the proposed system in the event of attack by an intruder in either the time domain or the frequency domain are discussed
Chaotic Image Encryption Algorithm by Correlating Keys with Plaintext
Zhu Congxu; Sun Kehui
2012-01-01
A novel image encryption scheme based on the modified skew tent map was proposed in this paper. In the key generating procedure, the algorithm generates a plaintext-dependent secret keys set. In the encryption process, the diffusion operation with cipher output feedback is introduced. Thus, cipher-irmge is sensitive to both initial keys and plaintext through only one round diffusion operation. The key space is large. As a resuk, the algorithm can effectively resist differential attacks, statistical attacks, brute-force attacks, known plaintext and chosen plaintext attacks. Perforrmnce test and security analysis demonstrates that this algorithm is eficient and reliable, with high potential to be adopted for secure comnmnications.
Robust Secure and Blind Watermarking Based on DWT DCT Partial Multi Map Chaotic Encryption
Esam A. Hagras
2011-12-01
Full Text Available In this paper, a novel Commutative Watermarking and Partial Encryption (CWPE algorithm based onDiscrete Wavelet Transform and Discrete Cosine Transform (DWT-DCT for watermarking and Multi-MapWavelet Chaotic Encryption (MMW-CE is proposed. The original host image is first decomposed into foursub-bands using (DWT, each sub-band coefficients are relocated using Arnold transform to create a noiselikeversion, then apply partial encryption scheme using chaotic scrambled random number pattern bitwiseXOR with the scrambled horizontal coefficients only and the shuffled approximation coefficients aredivided into non-overlapping and equal sized blocks. Watermark embedding process is based on extractingthe (DCT middle frequencies of the encrypted approximation coefficients blocks. Comparison basedthreshold of the extracted DCT mid-band coefficients, watermark bits are embedded in the coefficients ofthe corresponding DCT middle frequencies. The experimental results show that the proposed algorithm isrobust against common signal processing attacks. The proposed algorithm is able to reduce encryption toone quarter of the image information. Statistical and differential analyses are performed to estimate thesecurity strength of the proposed algorithm. The results of the security analysis show that the proposedalgorithm provides a high security level for real time application.
ROBUST SECURE AND BLIND WATERMARKING BASED ON DWT DCT PARTIAL MULTI MAP CHAOTIC ENCRYPTION
Esam A. Hagras
2011-11-01
Full Text Available In this paper, a novel Commutative Watermarking and Partial Encryption (CWPE algorithm based on Discrete Wavelet Transform and Discrete Cosine Transform (DWT-DCT for watermarking and Multi-Map Wavelet Chaotic Encryption (MMW-CE is proposed. The original host image is first decomposed into four sub-bands using (DWT, each sub-band coefficients are relocated using Arnold transform to create a noiselike version, then apply partial encryption scheme using chaotic scrambled random number pattern bitwise XOR with the scrambled horizontal coefficients only and the shuffled approximation coefficients are divided into non-overlapping and equal sized blocks. Watermark embedding process is based on extracting the (DCT middle frequencies of the encrypted approximation coefficients blocks. Comparison based threshold of the extracted DCT mid-band coefficients, watermark bits are embedded in the coefficients of the corresponding DCT middle frequencies. The experimental results show that the proposed algorithm is robust against common signal processing attacks. The proposed algorithm is able to reduce encryption to one quarter of the image information. Statistical and differential analyses are performed to estimate the security strength of the proposed algorithm. The results of the security analysis show that the proposed algorithm provides a high security level for real time application.
Tongfeng Zhang
2016-01-01
Full Text Available A one-dimensional (1D hybrid chaotic system is constructed by three different 1D chaotic maps in parallel-then-cascade fashion. The proposed chaotic map has larger key space and exhibits better uniform distribution property in some parametric range compared with existing 1D chaotic map. Meanwhile, with the combination of compressive sensing (CS and Fibonacci-Lucas transform (FLT, a novel image compression and encryption scheme is proposed with the advantages of the 1D hybrid chaotic map. The whole encryption procedure includes compression by compressed sensing (CS, scrambling with FLT, and diffusion after linear scaling. Bernoulli measurement matrix in CS is generated by the proposed 1D hybrid chaotic map due to its excellent uniform distribution. To enhance the security and complexity, transform kernel of FLT varies in each permutation round according to the generated chaotic sequences. Further, the key streams used in the diffusion process depend on the chaotic map as well as plain image, which could resist chosen plaintext attack (CPA. Experimental results and security analyses demonstrate the validity of our scheme in terms of high security and robustness against noise attack and cropping attack.
Ensemble of Chaotic and Naive Approaches for Performance Enhancement in Video Encryption
Jeyamala Chandrasekaran
2015-01-01
Full Text Available Owing to the growth of high performance network technologies, multimedia applications over the Internet are increasing exponentially. Applications like video conferencing, video-on-demand, and pay-per-view depend upon encryption algorithms for providing confidentiality. Video communication is characterized by distinct features such as large volume, high redundancy between adjacent frames, video codec compliance, syntax compliance, and application specific requirements. Naive approaches for video encryption encrypt the entire video stream with conventional text based cryptographic algorithms. Although naive approaches are the most secure for video encryption, the computational cost associated with them is very high. This research work aims at enhancing the speed of naive approaches through chaos based S-box design. Chaotic equations are popularly known for randomness, extreme sensitivity to initial conditions, and ergodicity. The proposed methodology employs two-dimensional discrete Henon map for (i generation of dynamic and key-dependent S-box that could be integrated with symmetric algorithms like Blowfish and Data Encryption Standard (DES and (ii generation of one-time keys for simple substitution ciphers. The proposed design is tested for randomness, nonlinearity, avalanche effect, bit independence criterion, and key sensitivity. Experimental results confirm that chaos based S-box design and key generation significantly reduce the computational cost of video encryption with no compromise in security.
An Automatically Changing Feature Method based on Chaotic Encryption
Wang Li; Gang Luo; Lingyun Xiang
2014-01-01
In practical applications, in order to extract data from the stego, some data hiding encryption methods need to identify themselves. When performing data hiding, they embed some specific logo for self-identification. However, it is unavoidable to bring themselves the risk of exposure. Suppose each hidden method has a corresponding logo S and the attacker has a logo set Φ which consists of some hidden methods’ logos. Once he find the logo S which matches a l...
A NEW TECHNIQUE BASED ON CHAOTIC STEGANOGRAPHY AND ENCRYPTION TEXT IN DCT DOMAIN FOR COLOR IMAGE
MELAD J. SAEED
2013-10-01
Full Text Available Image steganography is the art of hiding information into a cover image. This paper presents a new technique based on chaotic steganography and encryption text in DCT domain for color image, where DCT is used to transform original image (cover image from spatial domain to frequency domain. This technique used chaotic function in two phases; firstly; for encryption secret message, second; for embedding in DCT cover image. With this new technique, good results are obtained through satisfying the important properties of steganography such as: imperceptibility; improved by having mean square error (MSE, peak signal to noise ratio (PSNR and normalized correlation (NC, to phase and capacity; improved by encoding the secret message characters with variable length codes and embedding the secret message in one level of color image only.
A New Image Encryption Scheme Based on Dynamic S-Boxes and Chaotic Maps
Rehman, Atique Ur; Khan, Jan Sher; Ahmad, Jawad; Hwang, Soeng Oun
2016-03-01
Substitution box is a unique and nonlinear core component of block ciphers. A better designing technique of substitution box can boost up the quality of ciphertexts. In this paper, a new encryption method based on dynamic substitution boxes is proposed via using two chaotic maps. To break the correlation in an original image, pixels values of the original plaintext image are permuted row- and column-wise through random sequences. The aforementioned random sequences are generated by 2-D Burgers chaotic map. For the generation of dynamic substitution boxes, Logistic chaotic map is employed. In the process of diffusion, the permuted image is divided into blocks and each block is substituted via different dynamic substitution boxes. In contrast to conventional encryption schemes, the proposed scheme does not undergo the fixed block cipher and hence the security level can be enhanced. Extensive security analysis including histogram test is applied on the proposed image encryption technique. All experimental results reveal that the proposed scheme has a high level of security and robustness for transmission of digital images on insecure communication channels.
High-performance multimedia encryption system based on chaos.
Hasimoto-Beltrán, Rogelio
2008-06-01
Current chaotic encryption systems in the literature do not fulfill security and performance demands for real-time multimedia communications. To satisfy these demands, we propose a generalized symmetric cryptosystem based on N independently iterated chaotic maps (N-map array) periodically perturbed with a three-level perturbation scheme and a double feedback (global and local) to increase the system's robustness to attacks. The first- and second-level perturbations make cryptosystem extremely sensitive to changes in the plaintext data since the system's output itself (ciphertext global feedback) is used in the perturbation process. Third-level perturbation is a system reset, in which the system-key and chaotic maps are replaced for totally new values. An analysis of the proposed scheme regarding its vulnerability to attacks, statistical properties, and implementation performance is presented. To the best of our knowledge we provide a secure cryptosystem with one of the highest levels of performance for real-time multimedia communications. PMID:18601477
The Research of Image Encryption Algorithm Based on Chaos Cellular Automata
Shuiping Zhang; Huijune Luo
2012-01-01
The Research presents an image encryption algorithm which bases on chaotic cellular automata. This algorithm makes use of features that extreme sensitivity of chaotic system to initial conditions, the cellular automaton with a high degree of parallel processing. The encryption algorithm uses two-dimensional chaotic system to Encrypt image, Then establish a cellular automaton model on the initial encrypted image. Encryption key of this algorithm is made up of the initial value by the two-dimen...
A fractal-based image encryption system
Abd-El-Hafiz, S. K.
2014-12-01
This study introduces a novel image encryption system based on diffusion and confusion processes in which the image information is hidden inside the complex details of fractal images. A simplified encryption technique is, first, presented using a single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved through several parameters: feedback delay, multiplexing and independent horizontal or vertical shifts. The effect of each parameter is studied separately and, then, they are combined to illustrate their influence on the encryption quality. The encryption quality is evaluated using different analysis techniques such as correlation coefficients, differential attack measures, histogram distributions, key sensitivity analysis and the National Institute of Standards and Technology (NIST) statistical test suite. The obtained results show great potential compared to other techniques.
基于FTP的图像混沌加密传输技术的实现%Implementation of transmitting chaotic-encrypted image based on FTP
刘新杰; 李黎明
2014-01-01
In order to accelerate the rate of chaotic-encrypted image transmission system and extend its field of application , this paper proposes a new method of transmitting chaotic-encrypted image: applying VSFTPD software to Mini 2440 ARM platform to setup a FTP server , and using FTP to convey the encrypted image files . The experiment result shows that this system can trans-fer chaotic-encrypted images rapidly and reliably .%为了提高混沌图像加密传输系统的传输速度并扩大应用范围，提出了一种实现混沌图像加密传输的新方法：利用 VSFTPD 软件在 Mini 2440 ARM 平台上构建 FTP 服务器，通过 FTP 实现混沌加密图像数据的传输。实验结果表明，该系统能够实现混沌加密图像的可靠快速传输。
Multi-image encryption based on synchronization of chaotic lasers and iris authentication
Banerjee, Santo; Mukhopadhyay, Sumona; Rondoni, Lamberto
2012-07-01
A new technique of transmitting encrypted combinations of gray scaled and chromatic images using chaotic lasers derived from Maxwell-Bloch's equations has been proposed. This novel scheme utilizes the general method of solution of a set of linear equations to transmit similar sized heterogeneous images which are a combination of monochrome and chromatic images. The chaos encrypted gray scaled images are concatenated along the three color planes resulting in color images. These are then transmitted over a secure channel along with a cover image which is an iris scan. The entire cryptology is augmented with an iris-based authentication scheme. The secret messages are retrieved once the authentication is successful. The objective of our work is briefly outlined as (a) the biometric information is the iris which is encrypted before transmission, (b) the iris is used for personal identification and verifying for message integrity, (c) the information is transmitted securely which are colored images resulting from a combination of gray images, (d) each of the images transmitted are encrypted through chaos based cryptography, (e) these encrypted multiple images are then coupled with the iris through linear combination of images before being communicated over the network. The several layers of encryption together with the ergodicity and randomness of chaos render enough confusion and diffusion properties which guarantee a fool-proof approach in achieving secure communication as demonstrated by exhaustive statistical methods. The result is vital from the perspective of opening a fundamental new dimension in multiplexing and simultaneous transmission of several monochromatic and chromatic images along with biometry based authentication and cryptography.
Digital Chaotic Synchronized Communication System
L. Magafas
2009-01-01
Full Text Available The experimental study of a secure chaotic synchronized communication system is presented. The synchronization betweentwo digital chaotic oscillators, serving as a transmitter-receiver scheme, is studied. The oscillators exhibit rich chaotic behaviorand are unidirectionally coupled, forming a master-slave topology. Both the input information signal and the transmittedchaotic signal are digital ones.
Ji, Shiyu; Tong, Xiaojun; Zhang, Miao
2012-01-01
This paper proposed several methods to transplant the compound chaotic image encryption scheme with permutation based on 3D baker into image formats as Joint Photographic Experts Group (JPEG) and Graphics Interchange Format (GIF). The new method averts the lossy Discrete Cosine Transform and quantization and can encrypt and decrypt JPEG images lossless. Our proposed method for GIF keeps the property of animation successfully. The security test results indicate the proposed methods have high s...
Wei Jun [Department of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China); Zhunyi Medical College, Zhunyi 563000, Guizhou (China); Liao Xiaofeng [Department of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China)]. E-mail: xfliao@cqu.edu.cn; Wong, Kwok-wo [Department of Computer Engineering and Information Technology, City University of Hong Kong (China); Xiang Tao [Department of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China)
2006-12-15
Based on the study of some previously proposed chaotic encryption algorithms, we found that it is dangerous to mix chaotic state or iteration number of the chaotic system with ciphertext. In this paper, a new chaotic cryptosystem is proposed. Instead of simply mixing the chaotic signal of the proposed chaotic cryptosystem with the ciphertext, a noise-like variable is utilized to govern the encryption and decryption processes. This adds statistical sense to the new cryptosystem. Numerical simulations show that the new cryptosystem is practical whenever efficiency, ciphertext length or security is concerned.
Based on the study of some previously proposed chaotic encryption algorithms, we found that it is dangerous to mix chaotic state or iteration number of the chaotic system with ciphertext. In this paper, a new chaotic cryptosystem is proposed. Instead of simply mixing the chaotic signal of the proposed chaotic cryptosystem with the ciphertext, a noise-like variable is utilized to govern the encryption and decryption processes. This adds statistical sense to the new cryptosystem. Numerical simulations show that the new cryptosystem is practical whenever efficiency, ciphertext length or security is concerned
Design of Image Security System Based on Chaotic Maps Group
Feng Huang
2011-12-01
Full Text Available Images are used more and more widely in people’s life today. The image security becomes an important issue. Some encryption technologies are used to ensure the security of images. In them, the SCAN patterns are the one of effective tools to protect image. It generates very large number of scanning patterns of image. Then it shuffles the positions of image pixels by the patterns. The idea of chaotic maps group is similar to SCAN patterns. The paper designs a new image security system based on chaotic maps group. It takes the different maps of chaotic maps as patterns. The key represents different chaotic map patterns. Simulation shows that the image security system has a fast encryption speed and large enough key space, which mean high security. The design solve the limit between the keys and the size of image when encrypt image by chaotic map. At the same time it also solves the problem of the size of image required by SCAN pattern.
Synchronization of identical chaotic systems through external chaotic driving
In recent years, the study of synchronization of identical chaotic systems subjected to a common fluctuating random driving signal has drawn considerable interest. In this communication, we report that it is possible to achieve synchronization between two identical chaotic systems, which are not coupled directly but subjected to an external chaotic signal. The external chaotic signal may be obtained from any chaotic system identical or non-identical to both identical chaotic systems. Results of numerical simulations on well known Roessler and jerk dynamical systems have been presented. (author)
Research on medical image encryption in telemedicine systems.
Dai, Yin; Wang, Huanzhen; Zhou, Zixia; Jin, Ziyi
2016-04-29
Recently, advances in computers and high-speed communication tools have led to enhancements in remote medical consultation research. Laws in some localities require hospitals to encrypt patient information (including images of the patient) before transferring the data over a network. Therefore, developing suitable encryption algorithms is quite important for modern medicine. This paper demonstrates a digital image encryption algorithm based on chaotic mapping, which uses the no-period and no-convergence properties of a chaotic sequence to create image chaos and pixel averaging. Then, the chaotic sequence is used to encrypt the image, thereby improving data security. With this method, the security of data and images can be improved. PMID:27163302
Generalized function projective synchronization of chaotic systems for secure communication
Xu Xiaohui
2011-01-01
Abstract By using the generalized function projective synchronization (GFPS) method, in this paper, a new scheme for secure information transmission is proposed. The Liu system is employed to encrypt the information signal. In the transmitter, the original information signal is modulated into the system parameter of the chaotic systems. In the receiver, we assume that the parameter of receiver system is uncertain. Based on the Lyapunov stability theory, the controllers and corresponding param...
Altmann, Eduardo G; Tél, Tamás
2013-01-01
There are numerous physical situations in which a hole or leak is introduced in an otherwise closed chaotic system. The leak can have a natural origin, it can mimic measurement devices, and it can also be used to reveal dynamical properties of the closed system. In this paper we provide an unified treatment of leaking systems and we review applications to different physical problems, both in the classical and quantum pictures. Our treatment is based on the transient chaos theory of open systems, which is essential because real leaks have finite size and therefore estimations based on the closed system differ essentially from observations. The field of applications reviewed is very broad, ranging from planetary astronomy and hydrodynamical flows, to plasma physics and quantum fidelity. The theory is expanded and adapted to the case of partial leaks (partial absorption/transmission) with applications to room acoustics and optical microcavities in mind. Simulations in the lima .con family of billiards illustrate...
Design a New Image Encryption using Fuzzy Integral Permutation with Coupled Chaotic Maps
Yasaman Hashemi
2013-01-01
Full Text Available This article introduces a novel image encryption algorithm based on DNA addition combining and coupled two-dimensional piecewise nonlinear chaotic map. This algorithm consists of two parts. In the first part of the algorithm, a DNA sequence matrix is obtained by encoding each color component, and is divided into some equal blocks and then the generated sequence of Sugeno integral fuzzy and the DNA sequence addition operation is used to add these blocks. Next, the DNA sequence matrix from the previous step is decoded and the complement operation to the result of the added matrix is performed by using Sugeno fuzzy integral. In the second part of the algorithm, the three modified color components are encrypted in a coupling fashion in such a way to strengthen the cryptosystem security. It is observed that the histogram, the correlation and avalanche criterion, can satisfy security and performance requirements (Avalanche criterion > 0.49916283. The experimental results obtained for the CVG-UGR image databases reveal the fact that the proposed algorithm is suitable for practical use to protect the security of digital image information over the Internet.
Parameters identification of chaotic system by chaotic gravitational search algorithm
In this paper, for the parameter identification problem of chaotic system, a chaotic gravitational search algorithm (CGSA) is proposed. At first, an iterative chaotic map with infinite collapses is introduced and chaotic local search (CLS) is designed, then CLS and basic gravitational search are combined in the procedure frame. The CGSA is composed of coarse gravitational search and fine chaotic local search, while chaotic search seeks the optimal solution further, based on the current best solution found by the coarse gravitational search. In order to show the effectiveness of CGSA, both offline and online parameter identifications of Lorenz system are conducted in comparative experiments, while the performances of CGSA are compared with GA, PSO and GSA. The results demonstrate the effectiveness and efficiency of CGSA in solving the problem of parameter identification of chaotic system, and the improvement to GSA has been verified.
Eigenfunctions in chaotic quantum systems
Baecker, Arnd
2007-07-01
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Eigenfunctions in chaotic quantum systems
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Synchronization and an application of a novel fractional order King Cobra chaotic system
In this paper, we design a new three dimensional King Cobra face shaped fractional order chaotic system. The multi-scale synchronization scheme of two fractional order chaotic systems is described. The necessary conditions for the multi-scale synchronization of two identical fractional order King Cobra chaotic systems are derived through feedback control. A new cryptosystem is proposed for an image encryption and decryption by using synchronized fractional order King Cobra chaotic systems with the supports of multiple cryptographic assumptions. The security of the proposed cryptosystem is analyzed by the well known algebraic attacks. Numerical simulations are given to show the effectiveness of the proposed theoretical results
Synchronization and an application of a novel fractional order King Cobra chaotic system
Muthukumar, P., E-mail: muthukumardgl@gmail.com; Balasubramaniam, P., E-mail: balugru@gmail.com [Department of Mathematics, Gandhigram Rural Institute‐Deemed University, Gandhigram 624 302, Tamilnadu (India); Ratnavelu, K., E-mail: kuru052001@gmail.com [Faculty of Science, Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)
2014-09-01
In this paper, we design a new three dimensional King Cobra face shaped fractional order chaotic system. The multi-scale synchronization scheme of two fractional order chaotic systems is described. The necessary conditions for the multi-scale synchronization of two identical fractional order King Cobra chaotic systems are derived through feedback control. A new cryptosystem is proposed for an image encryption and decryption by using synchronized fractional order King Cobra chaotic systems with the supports of multiple cryptographic assumptions. The security of the proposed cryptosystem is analyzed by the well known algebraic attacks. Numerical simulations are given to show the effectiveness of the proposed theoretical results.
Altmann, Eduardo G.; Portela, Jefferson S. E.; Tél, Tamás
2013-04-01
There are numerous physical situations in which a hole or leak is introduced in an otherwise closed chaotic system. The leak can have a natural origin, it can mimic measurement devices, and it can also be used to reveal dynamical properties of the closed system. A unified treatment of leaking systems is provided and applications to different physical problems, in both the classical and quantum pictures, are reviewed. The treatment is based on the transient chaos theory of open systems, which is essential because real leaks have finite size and therefore estimations based on the closed system differ essentially from observations. The field of applications reviewed is very broad, ranging from planetary astronomy and hydrodynamical flows to plasma physics and quantum fidelity. The theory is expanded and adapted to the case of partial leaks (partial absorption and/or transmission) with applications to room acoustics and optical microcavities in mind. Simulations in the limaçon family of billiards illustrate the main text. Regarding billiard dynamics, it is emphasized that a correct discrete-time representation can be given only in terms of the so-called true-time maps, while traditional Poincaré maps lead to erroneous results. Perron-Frobenius-type operators are generalized so that they describe true-time maps with partial leaks.
Correlation control theory of chaotic laser systems
A novel control theory of chaotic systems is studied. The correlation functions are calculated and used as feedback signals of the chaotic lasers. Computer experiments have shown that in this way the chaotic systems can be controlled to have time-independent output when the external control parameters are in chaotic domain. (author)
Chaotic behaviour of deterministic systems
In these Proceedings many dissipative as well as conservative systems are discussed. In some cases one would like to understand chaotic behavior in order to avoid it, e.g. for certain applications of mechanical and electrical engineering, celestial mechanics (satellite orbits), population dynamics, the storage rings of high energy physics, hydrodynamics, plasma physics (fusion), biophysics, etc. In other cases one would like to obtain chaotic behavior, e.g. for certain applications of classical (and quantum) statistical mechanics, hydrodynamics (turbulence), chemical kinetics, etc. Many diverse and notorious problems of Nonlinear Dynamics exist in one or another of those fields. The basic mathematical tools used in the study of chaotic behavior are introduced in the opening lecture. Chaotic behavior in conservative systems is discussed. For the simplest class of dissipative systems, 'Mappings of the Interval', a well developed theory is treated. More complicated dissipative systems with many degrees of freedom can often be reduced thanks to Bifurcation theory. The mathematical basis for chaotic behavior in difference- and differential equations is treated in detail. Finally, the lectures on full fledged real turbulence, show us how many outstanding problems still remain to be explained from first principles. Nevertheless it is exciting to detect progress on these old problems of chaotic behavior and see some agreement with experiment. (Auth.)
An Efficient Image Encryption Scheme Based on a Peter De Jong Chaotic Map and a RC4 Stream Cipher
Hanchinamani, Gururaj; Kulkarni, Linganagouda
2015-09-01
Security is a vital issue in communication and storage of the images and encryption is one of the ways to ensure the security. This paper proposes an efficient image encryption scheme based on a Peter De Jong chaotic map and a RC4 stream cipher. A Peter De Jong map is employed to determine the initial keys for the RC4 stream generator and also during permutation stage. The RC4 stream generator is utilized to generate the pseudo random numbers for the pixel value rotation and diffusion operations. Each encryption round is comprised of three stages: permutation, pixel value rotation and diffusion. The permutation is based on scrambling the rows and columns, in addition, circular rotations of the rows and columns in alternate orientations. The second stage circularly rotates each and every pixel value by utilizing M × N pseudo random numbers. The last stage carries out the diffusion twice by scanning the image in two different ways. Each of the two diffusions accomplishes the diffusion in two orientations (forward and backward) with two previously diffused pixels and two pseudo random numbers. The security and performance of the proposed method is assessed thoroughly by using key space, statistical, differential, entropy and performance analysis. Moreover, two rounds of the call to the encrypt function provide the sufficient security. The experimental results show that the proposed encryption scheme is computationally fast with high security.
A secure image encryption method based on dynamic harmony search (DHS) combined with chaotic map
Mirzaei Talarposhti, Khadijeh; Khaki Jamei, Mehrzad
2016-06-01
In recent years, there has been increasing interest in the security of digital images. This study focuses on the gray scale image encryption using dynamic harmony search (DHS). In this research, first, a chaotic map is used to create cipher images, and then the maximum entropy and minimum correlation coefficient is obtained by applying a harmony search algorithm on them. This process is divided into two steps. In the first step, the diffusion of a plain image using DHS to maximize the entropy as a fitness function will be performed. However, in the second step, a horizontal and vertical permutation will be applied on the best cipher image, which is obtained in the previous step. Additionally, DHS has been used to minimize the correlation coefficient as a fitness function in the second step. The simulation results have shown that by using the proposed method, the maximum entropy and the minimum correlation coefficient, which are approximately 7.9998 and 0.0001, respectively, have been obtained.
Parameters identification of chaotic systems via chaotic ant swarm
Through the construction of a suitable fitness function, the problem of parameters estimation of the chaotic system is converted to that of parameters optimization. In this paper, an optimization method, called CAS (chaotic ant swarm), is developed to solve the problem of searching for the optimal. Finally numerical simulations are provided to show the effectiveness and feasibility of the developed method
Modeling of deterministic chaotic systems
The success of deterministic modeling of a physical system relies on whether the solution of the model would approximate the dynamics of the actual system. When the system is chaotic, situations can arise where periodic orbits embedded in the chaotic set have distinct number of unstable directions and, as a consequence, no model of the system produces reasonably long trajectories that are realized by nature. We argue and present physical examples indicating that, in such a case, though the model is deterministic and low dimensional, statistical quantities can still be reliably computed. copyright 1999 The American Physical Society
Compound Synchronization of Four Chaotic Complex Systems
Junwei Sun
2015-01-01
Full Text Available The chaotic complex system is designed from the start of the chaotic real system. Dynamical properties of a chaotic complex system in complex space are investigated. In this paper, a compound synchronization scheme is achieved for four chaotic complex systems. According to Lyapunov stability theory and the adaptive control method, four chaotic complex systems are considered and the corresponding controllers are designed to realize the compound synchronization scheme. Four novel design chaotic complex systems are given as an example to verify the validity and feasibility of the proposed control scheme.
Steganography and encrypting based on immunochemical systems.
Kim, Kyung-Woo; Bocharova, Vera; Halámek, Jan; Oh, Min-Kyu; Katz, Evgeny
2011-05-01
Steganography and encrypting were demonstrated with immuno-specific systems. IgG-proteins were used as invisible ink developed with complementary antibodies labeled with enzymes producing color spots. The information security was achieved by mixing the target protein-antigens used for the text encoding with masking proteins of similar composition but having different bioaffinity. Two different texts were simultaneously encoded by using two different encoding proteins in a mixture. Various encrypting techniques were exemplified with the immuno-systems used for the steganography. Future use of the developed approach for information protection and watermark-technology was proposed. Scaling down the encoded text to a micro-size is feasible with the use of nanotechnology. PMID:21449025
Chaotic Synchronzation System and Electrocardiogram
LiuqingPei; XinlaiDai; 等
1997-01-01
A mathematical model of chaotic synchronization of the heart-blood flow coupling dynamics is propsed,which is based on a seven dimension nonlinear dynamical system constructed by three subsystems of the sinoatrial node natural pacemaker,the cardiac relaxation oscillator and the dynamics of blood-fluid in heart chambers.The existence and robustness of the self-chaotic synchronization of the system are demonstrated by both methods of theoretical analysis and numerical simulation.The spectrum of Lyapunov exponent,the Lyapunov dimension and the Kolmogorov entropy are estimated when the system was undergoing the state of self-chaotic synchronization evolution.The time waveform of the dynamical variable,which represents the membrane potential of the cardiac integrative cell,shows a shape which is similar to that of the normal electrocardiogram(ECG) of humans,thus implying that the model possesses physiological significance functionally.
NES++: number system for encryption based privacy preserving speaker verification
Xu, Lei; Feng, Tao; Zhao, Xi; Shi, Weidong
2014-05-01
As speech based operation becomes a main hand-free interaction solution between human and mobile devices (i.e., smartphones, Google Glass), privacy preserving speaker verification receives much attention nowadays. Privacy preserving speaker verification can be achieved through many different ways, such as fuzzy vault and encryption. Encryption based solutions are promising as cryptography is based on solid mathematic foundations and the security properties can be easily analyzed in a well established framework. Most current asymmetric encryption schemes work on finite algebraic structures, such as finite group and finite fields. However, the encryption scheme for privacy preserving speaker verification must handle floating point numbers. This gap must be filled to make the overall scheme practical. In this paper, we propose a number system that meets the requirements of both speaker verification and the encryption scheme used in the process. It also supports addition homomorphic property of Pailliers encryption, which is crucial for privacy preserving speaker verification. As asymmetric encryption is expensive, we propose a method of packing several numbers into one plain-text and the computation overhead is greatly reduced. To evaluate the performance of this method, we implement Pailliers encryption scheme over proposed number system and the packing technique. Our findings show that the proposed solution can fulfill the gap between speaker verification and encryption scheme very well, and the packing technique improves the overall performance. Furthermore, our solution is a building block of encryption based privacy preserving speaker verification, the privacy protection and accuracy rate are not affected.
Triple Encrypted Holographic Storage and Digital Holographic System
ZHU Yi-Chao; ZHANG Jia-Sen; GONG Qi-Huang
2008-01-01
We propose a triple encrypted holographic memory containing a digital holographic system. The original image is encrypted using double random phase encryption and stored in a LiNbO3:Fe crystal with shift-multiplexing. Both the reference beams of the memory and the digital holographic system are random phase encoded. We theoretically and experimentally demonstrate the encryption and decryption of multiple images and the results show high quality and good fault tolerance. The total key length of this system is larger than 4.7×1033.
Triple Encrypted Holographic Storage and Digital Holographic System
We propose a triple encrypted holographic memory containing a digital holographic system. The original image is encrypted using double random phase encryption and stored in a LiNbO3:Fe crystal with shift-multiplexing. Both the reference beams of the memory and the digital holographic system are random phase encoded. We theoretically and experimentally demonstrate the encryption and decryption of multiple images and the results show high quality and good fault tolerance. The total key length of this system is larger than 4.7 × 1033. (fundamental areas of phenomenology (including applications))
Advances and applications in chaotic systems
Volos, Christos
2016-01-01
This book reports on the latest advances and applications of chaotic systems. It consists of 25 contributed chapters by experts who are specialized in the various topics addressed in this book. The chapters cover a broad range of topics of chaotic systems such as chaos, hyperchaos, jerk systems, hyperjerk systems, conservative and dissipative systems, circulant chaotic systems, multi-scroll chaotic systems, finance chaotic system, highly chaotic systems, chaos control, chaos synchronization, circuit realization and applications of chaos theory in secure communications, mobile robot, memristors, cellular neural networks, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in chaos theory. This book will serve as a reference book for graduate students and researchers with a basic knowledge of chaos theory and control systems. The resulting design procedures on the chaotic systems are emphasized using MATLAB software.
Broadcast encryption: paving the road to practical content protection systems
Deen, G.; Ponceleon, D.; Leake, Donald, Jr.
2009-02-01
Broadcast encryption is a well established alternative to public key encryption for use in content protection systems. It offers significant performance benefits, as well as useful features such a one-to-many delivery, dynamic membership in the authorized receivers group, and provides anonymous access to content, permitting content protection systems to preserve privacy for consumers. Broadcast encryption has been successfully deployed to users for protection of commercial content on digital media such as flash memory devices and optical media for both standard-definition and high-definition content. In this paper, we present the Advanced Secure Content Cluster Technology which applies broadcast encryption to content protection for home media networks
This paper deals with the master-slave synchronization scheme for partially known nonlinear chaotic systems, where the unknown dynamics is considered as the master system and we propose the slave system structure which estimates the unknown states. It introduced a new reduced order observer, using the concept of Algebraic Observability; we applied the results to a Sundarapandian chaotic system, and by means of some numerical simulations we show the effectiveness of the suggested approach. Finally, the proposed observer is utilized for encryption, where encryption key is the master system and decryption key is the slave system
Castro-Ramírez, Joel, E-mail: ingcastro.7@gmail.com [Universidad Politécnica de Tlaxcala Av. Universidad Politecnica de Tlaxcala No.1, San Pedro Xalcaltzinco, Tepeyanco, Tlaxcala, C.P. 90180 (Mexico); Martínez-Guerra, Rafael, E-mail: rguerra@ctrl.cinvestav.mx [Departamento de Control Automático CINVESTAV-IPN, A.P. 14-740, D.F., México C.P. 07360 (Mexico); Cruz-Victoria, Juan Crescenciano, E-mail: juancrescenciano.cruz@uptlax.edu.mx [Universidad Politécnica de Tlaxcala Av. Universidad Politécnica de Tlaxcala No.1, San Pedro Xalcaltzinco, Tepeyanco, Tlaxcala, C.P. 90180 (Mexico)
2015-10-15
This paper deals with the master-slave synchronization scheme for partially known nonlinear chaotic systems, where the unknown dynamics is considered as the master system and we propose the slave system structure which estimates the unknown states. It introduced a new reduced order observer, using the concept of Algebraic Observability; we applied the results to a Sundarapandian chaotic system, and by means of some numerical simulations we show the effectiveness of the suggested approach. Finally, the proposed observer is utilized for encryption, where encryption key is the master system and decryption key is the slave system.
The Extensive Bit-level Encryption System (EBES)
Satyaki Roy
2013-01-01
In the present work, the Extensive Bit-level Encryption System (EBES), a bit-level encryption mechanism has been introduced. It is a symmetric key cryptographic technique that combines advanced randomization of bits and serial bitwise feedback generation modules. After repeated testing with a variety of test inputs, frequency analysis, it would be safe to conclude that the algorithm is free from standard cryptographic attacks. It can effectively encrypt short messages and passwords.
Chaotic Synchronization Theory Video Encryption Technology Research%混沌同步理论视频加密技术研究
曾凡培
2012-01-01
加密技术一直是国内外研究热点问题.本文利用混沌同步理论对视频图像进行加密处理,采用混沌理论中的Logistic映射序列密码加密系统进行加密.实验结果说明了采用该方法能够有效地对视频图像进行加密.%encryption technology has been a research hotspot issues, this paper uses chaotic synchronization theory on video image encryption processing, using chaos theory in the Logistic mapping sequence cipher encryption encryption, the experimental results show the method can effective video image encryption.
基于混沌序列的数字彩色图像加密算法%Encryption Algorithm for Digital Color Image Based on Chaotic Sequences
何松林
2011-01-01
The new encryption algorithm for digital color image is proposed. The image can be encrypted through encryption matrixes generated with Logistic chaotic sequences to exclusive OR(XOR) color matrixes many times. The R, G and B components of the color image can be treated randomly and encrypted image becomes more uniform. Because the chaotic sequences are extremely sensitive to the parameters and the initial values, even ifthe encryption algorithm is open. Without the right key, the useful information can not be got. The encryption key length is effectively enlarged by using multiple sets of parameter of the branch and initial value as the encryption key. The experiments confirm its validity.%提出用Logistic混沌序列产生多个加密矩阵与基色矩阵进行多次异或的方法,对彩色图像的RGB分量进行随机化处理,使加密后的图像均匀.由于混沌序列对参数和初始值的极端敏感性,即使加密算法被公开,没有正确的密钥也无法得到有用信息.因此采用多组分支参数和初始值作为密钥,使密钥长度有效增加.实验结果证明了该算法是有效的.
Design of Image Security System Based on Chaotic Maps Group
Feng Huang; Xilong Qu
2011-01-01
Images are used more and more widely in people’s life today. The image security becomes an important issue. Some encryption technologies are used to ensure the security of images. In them, the SCAN patterns are the one of effective tools to protect image. It generates very large number of scanning patterns of image. Then it shuffles the positions of image pixels by the patterns. The idea of chaotic maps group is similar to SCAN patterns. The paper designs a new image security system bas...
Signal and reference wave dually encrypted digital holographic system
ZHU YiChao; ZHANG JiaSen; GONG QiHuang
2008-01-01
We propose a secure digital holographic system with signal and reference waves dually encrypted. Two random phase masks are used to encrypt the images in the input and the Fourier planes. The reference beam is phase encoded by another random phase mask. The encrypted image and the key are recorded by a CCD camera. The data can be processed or transferred directly by computer. We theoretically and experimentally demonstrate encryption and decryption of multiple images and the results show a high quality and good fault tolerance.
Cryptosystems based on chaotic dynamics
McNees, R.A.; Protopopescu, V.; Santoro, R.T.; Tolliver, J.S.
1993-08-01
An encryption scheme based on chaotic dynamics is presented. This scheme makes use of the efficient and reproducible generation of cryptographically secure pseudo random numbers from chaotic maps. The result is a system which encrypts quickly and possesses a large keyspace, even in small precision implementations. This system offers an excellent solution to several problems including the dissemination of key material, over the air rekeying, and other situations requiring the secure management of information.
CifrarFS – Encrypted File System Using FUSE
Anagha Kulkarni
2009-10-01
Full Text Available This paper describes a file system that enables transparent encryption and decryption of files by using advanced, standard cryptographic algorithm, Data Encryption Standard (DES [1]. Any individual, including super user, or program, that doesn't possess the appropriate passphrase for the directory which contains encrypted files cannot read the encrypted data. Encrypted files can be protected even from those who gain physical possession of the computer on which files reside [2]. ‘CifrarFS’, an encrypted file system using ‘File system in USEr space (FUSE’ maintains all the files in a specific directory in an encrypted form and decrypts them on demand. It encodes the file name while storing but decodes it while viewed from the mount point. We propose an idea of watermark in every encrypted file that is validated before decryption and also log all the operations on ‘CifrarFS’. It is a stackable file system that operates on top of ext3. It does not need root privileges.
Communications with chaotic optoelectronic systems cryptography and multiplexing
Rontani, Damien
With the rapid development of optical communications and the increasing amount of data exchanged, it has become utterly important to provide effective architectures to protect sensitive data. The use of chaotic optoelectronic devices has already demonstrated great potential in terms of additional computational security at the physical layer of the optical network. However, the determination of the security level and the lack of a multi-user framework are two hurdles which have prevented their deployment on a large scale. In this thesis, we propose to address these two issues. First, we investigate the security of a widely used chaotic generator, the external cavity semiconductor laser (ECSL). This is a time-delay system known for providing complex and high-dimensional chaos, but with a low level of security regarding the identification of its most critical parameter, the time delay. We perform a detailed analysis of the in uence of the ECSL parameters to devise how higher levels of security can be achieved and provide a physical interpretation of their origin. Second, we devise new architectures to multiplex optical chaotic signals and realize multi-user communications at high bit rates. We propose two different approaches exploiting known chaotic optoelectronic devices. The first one uses mutually coupled ECSL and extends typical chaos-based encryption strategies, such as chaos-shift keying (CSK) and chaos modulation (CMo). The second one uses an electro-optical oscillator (EOO) with multiple delayed feedback loops and aims first at transposing coded-division multiple access (CDMA) and then at developing novel strategies of encryption and decryption, when the time-delays of each feedback loop are time-dependent.
Robust synchronization of chaotic systems via feedback
Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion
2008-07-01
This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)
Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations
Gong, Li-Hua; He, Xiang-Tao; Cheng, Shan; Hua, Tian-Xiang; Zhou, Nan-Run
2016-07-01
A novel encryption algorithm for quantum images based on quantum image XOR operations is designed. The quantum image XOR operations are designed by using the hyper-chaotic sequences generated with the Chen's hyper-chaotic system to control the control-NOT operation, which is used to encode gray-level information. The initial conditions of the Chen's hyper-chaotic system are the keys, which guarantee the security of the proposed quantum image encryption algorithm. Numerical simulations and theoretical analyses demonstrate that the proposed quantum image encryption algorithm has larger key space, higher key sensitivity, stronger resistance of statistical analysis and lower computational complexity than its classical counterparts.
Amplitude death in steadily forced chaotic systems
Feng Guo-Lin; He Wen-Ping
2007-01-01
Steady forcing can induce the amplitude death in chaotic systems, which generally exists in coupled dynamic systems. Using the Lorenz system as a typical example, this paper investigates the dynamic behaviours of the chaotic system with steady forcing numerically, and finds that amplitude death can occur as the strength of the steady forcing goes beyond a critical constant.
A Novel Bit-level Image Encryption Method Based on Chaotic Map and Dynamic Grouping
张国基; 沈彦
2012-01-01
In this paper,a novel bit-level image encryption method based on dynamic grouping is proposed.In the proposed method,the plain-image is divided into several groups randomly,then permutation-diffusion process on bit level is carried out.The keystream generated by logistic map is related to the plain-image,which confuses the relationship between the plain-image and the cipher-image.The computer simulation results of statistical analysis,information entropy analysis and sensitivity analysis show that the proposed encryption method is secure and reliable enough to be used for communication application.
An image encryption scheme based on the MLNCML system using DNA sequences
Zhang, Ying-Qian; Wang, Xing-Yuan; Liu, Jia; Chi, Ze-Lin
2016-07-01
We propose a new image scheme based on the spatiotemporal chaos of the Mixed Linear-Nonlinear Coupled Map Lattices (MLNCML). This spatiotemporal chaotic system has more cryptographic features in dynamics than the system of Coupled Map Lattices (CML). In the proposed scheme, we employ the strategy of DNA computing and one time pad encryption policy, which can enhance the sensitivity to the plaintext and resist differential attack, brute-force attack, statistical attack and plaintext attack. Simulation results and theoretical analysis indicate that the proposed scheme has superior high security.
System for processing an encrypted instruction stream in hardware
Griswold, Richard L.; Nickless, William K.; Conrad, Ryan C.
2016-04-12
A system and method of processing an encrypted instruction stream in hardware is disclosed. Main memory stores the encrypted instruction stream and unencrypted data. A central processing unit (CPU) is operatively coupled to the main memory. A decryptor is operatively coupled to the main memory and located within the CPU. The decryptor decrypts the encrypted instruction stream upon receipt of an instruction fetch signal from a CPU core. Unencrypted data is passed through to the CPU core without decryption upon receipt of a data fetch signal.
Generalized function projective synchronization of chaotic systems for secure communication
Xu Xiaohui
2011-01-01
Full Text Available Abstract By using the generalized function projective synchronization (GFPS method, in this paper, a new scheme for secure information transmission is proposed. The Liu system is employed to encrypt the information signal. In the transmitter, the original information signal is modulated into the system parameter of the chaotic systems. In the receiver, we assume that the parameter of receiver system is uncertain. Based on the Lyapunov stability theory, the controllers and corresponding parameter update rule are constructed to achieve GFPS between the transmitter and receiver system with uncertain parameters, and identify unknown parameters. The original information signal can be recovered successfully through some simple operations by the estimated parameter. Furthermore, by means of the proposed method, the original information signal can be extracted accurately in the presence of additional noise in communication channel. Numerical results have verified the effectiveness and feasibility of presented method. Mathematics subject classification (2010 68M10, 34C28, 93A30, 93C40
Generalized function projective synchronization of chaotic systems for secure communication
Xu, Xiaohui
2011-12-01
By using the generalized function projective synchronization (GFPS) method, in this paper, a new scheme for secure information transmission is proposed. The Liu system is employed to encrypt the information signal. In the transmitter, the original information signal is modulated into the system parameter of the chaotic systems. In the receiver, we assume that the parameter of receiver system is uncertain. Based on the Lyapunov stability theory, the controllers and corresponding parameter update rule are constructed to achieve GFPS between the transmitter and receiver system with uncertain parameters, and identify unknown parameters. The original information signal can be recovered successfully through some simple operations by the estimated parameter. Furthermore, by means of the proposed method, the original information signal can be extracted accurately in the presence of additional noise in communication channel. Numerical results have verified the effectiveness and feasibility of presented method. Mathematics subject classification (2010) 68M10, 34C28, 93A30, 93C40
Extended Logistic Chaotic Sequence and Its Performance Analysis
ZHANG Xuefeng; FAN Jiulun
2007-01-01
In order to improve performance and security of image encryption algorithm effectively based on chaotic sequences, an extended chaotic sequence generating method is presented based on logistic chaotic system using Bernstein form Bezier curve generating algorithm. In order to test the pseudorandom performance of the extended chaotic sequence, we also analyze random performance, autocorrelation performance, and balance performance of the extended chaotic sequence. Simulation results show that the extended chaotic sequence generated using our method is pseudorandom and its correlation performance and balance performance are good. As an application, we apply the extended chaotic sequence in image encryption algorithm, the simulation results show that the performance of the encrypted image using our method is better than that using logistic chaotic sequence.
Repetitive learning control of continuous chaotic systems
Combining a shift method and the repetitive learning strategy, a repetitive learning controller is proposed to stabilize unstable periodic orbits (UPOs) within chaotic attractors in the sense of least mean square. If nonlinear parts in chaotic systems satisfy Lipschitz condition, the proposed controller can be simplified into a simple proportional repetitive learning controller
Inventive Cubic Symmetric Encryption System for Multimedia
Ali M Alshahrani
2015-01-01
Full Text Available Cryptography is a security technique that must be applied in both communication sides to pro- tect the data during its transmission through the n etwork from all kinds of attack. On the sender side, the original data will be changed into differ ent symbols or shapes by using a known key; this is called encryption. On the other communicati on side, the decryption process will be done and the data will be returned to its former shape b y using the agreed key. The importance of cryptography is to fulfil the communication securit y requirements. Real time applications (RTA are vulnerable for the moment because of their big size. However, some of the current algo- rithms are not really appropriate for use with thes e kinds of information. In this paper, a novel symmetric block cipher cryptography algorithm has b een illustrated and discussed. The system uses an 8x8x8 cube, and each cell contains a pair o f binary inputs. The cube can provide a huge number of combinations that can produce a very stro ng algorithm and a long key size. Due to the lightweight and fast technique used in this ide a, it is expected to be extremely rapid com- pared to the majority of current algorithms, such a s DES and AES.
Synchronization Techniques for Chaotic Communication Systems
Jovic, Branislav
2011-01-01
Since the early 1990s, when synchronization of chaotic communication systems became a popular research subject, a vast number of scientific papers have been published. However, most of today's books on chaotic communication systems deal exclusively with the systems where perfect synchronization is assumed, an assumption which separates theoretical from practical, real world, systems. This book is the first of its kind dealing exclusively with the synchronization techniques for chaotic communication systems. It describes a number of novel robust synchronization techniques, which there is a lack
Digital Image Encryption Algorithm Design Based on Genetic Hyperchaos
Wang, Jian
2016-01-01
In view of the present chaotic image encryption algorithm based on scrambling (diffusion is vulnerable to choosing plaintext (ciphertext) attack in the process of pixel position scrambling), we put forward a image encryption algorithm based on genetic super chaotic system. The algorithm, by introducing clear feedback to the process of scrambling, makes the scrambling effect related to the initial chaos sequence and the clear text itself; it has realized the image features and the organic fusi...
Raeiatibanadkooki, Mahsa; Quchani, Saeed Rahati; KhalilZade, MohammadMahdi; Bahaadinbeigy, Kambiz
2016-03-01
In mobile health care monitoring, compression is an essential tool for solving storage and transmission problems. The important issue is able to recover the original signal from the compressed signal. The main purpose of this paper is compressing the ECG signal with no loss of essential data and also encrypting the signal to keep it confidential from everyone, except for physicians. In this paper, mobile processors are used and there is no need for any computers to serve this purpose. After initial preprocessing such as removal of the baseline noise, Gaussian noise, peak detection and determination of heart rate, the ECG signal is compressed. In compression stage, after 3 steps of wavelet transform (db04), thresholding techniques are used. Then, Huffman coding with chaos for compression and encryption of the ECG signal are used. The compression rates of proposed algorithm is 97.72 %. Then, the ECG signals are sent to a telemedicine center to acquire specialist diagnosis by TCP/IP protocol. PMID:26779641
Effect of noise on coupled chaotic systems
Roy, M F; Roy, Manojit
1997-01-01
Effect of noise in inducing order on various chaotically evolving systems is reviewed, with special emphasis on systems consisting of coupled chaotic elements. In many situations it is observed that the uncoupled elements when driven by identical noise, show synchronization phenomena where chaotic trajectories exponentially converge towards a single noisy trajectory, independent of the initial conditions. In a random neural network, with infinite range coupling, chaos is suppressed due to noise and the system evolves towards a fixed point. Spatiotemporal stochastic resonance phenomenon has been observed in a square array of coupled threshold devices where a temporal characteristic of the system resonates at a given noise strength. In a chaotically evolving coupled map lattice with logistic map as local dynamics and driven by identical noise at each site, we report that the number of structures (a structure is a group of neighbouring lattice sites for whom values of the variable follow certain predefined patte...
The Research of Image Encryption Algorithm Based on Chaos Cellular Automata
Shuiping Zhang
2012-02-01
Full Text Available The Research presents an image encryption algorithm which bases on chaotic cellular automata. This algorithm makes use of features that extreme sensitivity of chaotic system to initial conditions, the cellular automaton with a high degree of parallel processing. The encryption algorithm uses two-dimensional chaotic system to Encrypt image, Then establish a cellular automaton model on the initial encrypted image. Encryption key of this algorithm is made up of the initial value by the two-dimensional chaotic systems, parameters, two-dimensional cellular automata local evolution rules f and iterations n. Experimental results shows that the algorithm has features that high efficiency, better security, sensitivity to the key and so on.
Dispersion compensation in an open-loop all-optical chaotic communication system
The optical chaotic communication system using open-loop fiber transmission is studied under strong injection conditions. The optical chaotic communication system with open-loop configuration is studied using fiber transmission under strong injection conditions. The performances of fiber links composed of two types of fiber segments in different dispersion compensation maps are compared by testing the quality of the recovered message with different bit rates and encrypted by chaotic modulation (CM) or chaotic shift keying (CSK). The result indicates that the performance of the pre-compensation map is always worst. Two types of symmetrical maps are identical whatever the encryption method and bit-rate of message are. For the transmitting and the recovering of message of lower bit rate (1 Gb/s), the post-compensation map is the best scheme. However, for the message of higher bit rate (2.5 Gb/s), the parameters in communication system need to be modified properly in order to adapt to the high-speed application. Meanwhile, two types of symmetrical maps are the best scheme. In addition, the CM method is superior to the CSK method for high-speed applications. It is in accordance with the result in a back-to-back configuration system. (general)
Rigatos, Gerasimos
2016-07-01
The Derivative-free nonlinear Kalman Filter is used for developing a communication system that is based on a chaotic modulator such as the Duffing system. In the transmitter's side, the source of information undergoes modulation (encryption) in which a chaotic signal generated by the Duffing system is the carrier. The modulated signal is transmitted through a communication channel and at the receiver's side demodulation takes place, after exploiting the estimation provided about the state vector of the chaotic oscillator by the Derivative-free nonlinear Kalman Filter. Evaluation tests confirm that the proposed filtering method has improved performance over the Extended Kalman Filter and reduces significantly the rate of transmission errors. Moreover, it is shown that the proposed Derivative-free nonlinear Kalman Filter can work within a dual Kalman Filtering scheme, for performing simultaneously transmitter-receiver synchronisation and estimation of unknown coefficients of the communication channel.
Fuzzy system identification via chaotic ant swarm
In this paper, we introduce a chaotic optimization method, called CAS (chaotic ant swarm), to solve the problem of designing a fuzzy system to identify dynamical systems. The position vector of each ant in the CAS algorithm corresponds to the parameter vector of the selected fuzzy system. At each learning time step, the CAS algorithm is iterated to give the optimal parameters of fuzzy systems based on the fitness theory. Then the corresponding CAS-designed fuzzy system is built and applied to the identification of the unknown nonlinear dynamical systems. Numerical simulation results are provided to show the effectiveness and feasibility of the developed CAS-designed fuzzy system.
Hyperchaotic encryption based on multi-scroll piecewise linear Systems
García-Martínez, M.; Ontanon-García, L.J.; Campos-Cantón, E.; Čelikovský, Sergej
2015-01-01
Roč. 270, č. 1 (2015), s. 413-424. ISSN 0096-3003 R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : Hyperchaotic encryption * Piecewise linear systems * Stream cipher * Pseudo-random bit generator * Chaos theory * Multi-scrollattractors Subject RIV: BC - Control Systems Theory Impact factor: 1.551, year: 2014
Digital color image encoding and decoding using a novel chaotic random generator
This paper proposes a novel chaotic system, in which variables are treated as encryption keys in order to achieve secure transmission of digital color images. Since the dynamic response of chaotic system is highly sensitive to the initial values of a system and to the variation of a parameter, and chaotic trajectory is so unpredictable, we use elements of variables as encryption keys and apply these to computer internet communication of digital color images. As a result, we obtain much higher communication security. We adopt one statistic method involving correlation coefficient γ and FIPS PUB 140-1 to test on the distribution of distinguished elements of variables for continuous-time chaotic system, and accordingly select optimal encryption keys to use in secure communication of digital color images. At the transmitter end, we conduct RGB level decomposition on digital color images, and encrypt them with chaotic keys, and finally transmit them through computer internet. The same encryption keys are used to decrypt and recover the original images at the receiver end. Even if the encrypted images are stolen in the public channel, an intruder is not able to decrypt and recover the original images because of the lack of adequate encryption keys. Empirical example shows that the chaotic system and encryption keys applied in the encryption, transmission, decryption, and recovery of digital color images can achieve higher communication security and best recovered images
Digital color image encoding and decoding using a novel chaotic random generator
Nien, H.H. [Department of Electrical Engineering, Chienkuo Technology University, Changhua 500, Taiwan (China); Huang, C.K. [Department of Electrical Engineering, Chienkuo Technology University, Changhua 500, Taiwan (China)]. E-mail: hcg@cc.ctu.edu.tw; Changchien, S.K. [Department of Electrical Engineering, Chienkuo Technology University, Changhua 500, Taiwan (China); Shieh, H.W. [Department of Electrical Engineering, Chienkuo Technology University, Changhua 500, Taiwan (China); Chen, C.T. [Department of Electrical Engineering, Chienkuo Technology University, Changhua 500, Taiwan (China); Tuan, Y.Y. [Department of Electrical Engineering, Chienkuo Technology University, Changhua 500, Taiwan (China)
2007-05-15
This paper proposes a novel chaotic system, in which variables are treated as encryption keys in order to achieve secure transmission of digital color images. Since the dynamic response of chaotic system is highly sensitive to the initial values of a system and to the variation of a parameter, and chaotic trajectory is so unpredictable, we use elements of variables as encryption keys and apply these to computer internet communication of digital color images. As a result, we obtain much higher communication security. We adopt one statistic method involving correlation coefficient {gamma} and FIPS PUB 140-1 to test on the distribution of distinguished elements of variables for continuous-time chaotic system, and accordingly select optimal encryption keys to use in secure communication of digital color images. At the transmitter end, we conduct RGB level decomposition on digital color images, and encrypt them with chaotic keys, and finally transmit them through computer internet. The same encryption keys are used to decrypt and recover the original images at the receiver end. Even if the encrypted images are stolen in the public channel, an intruder is not able to decrypt and recover the original images because of the lack of adequate encryption keys. Empirical example shows that the chaotic system and encryption keys applied in the encryption, transmission, decryption, and recovery of digital color images can achieve higher communication security and best recovered images.
Controlled transitions between cupolets of chaotic systems
Morena, Matthew A., E-mail: matthew.morena@wildcats.unh.edu; Short, Kevin M.; Cooke, Erica E. [Integrated Applied Mathematics Program, University of New Hampshire, Durham, New Hampshire 03824 (United States)
2014-03-15
We present an efficient control scheme that stabilizes the unstable periodic orbits of a chaotic system. The resulting orbits are known as cupolets and collectively provide an important skeleton for the dynamical system. Cupolets exhibit the interesting property that a given sequence of controls will uniquely identify a cupolet, regardless of the system's initial state. This makes it possible to transition between cupolets, and thus unstable periodic orbits, simply by switching control sequences. We demonstrate that although these transitions require minimal controls, they may also involve significant chaotic transients unless carefully controlled. As a result, we present an effective technique that relies on Dijkstra's shortest path algorithm from algebraic graph theory to minimize the transients and also to induce certainty into the control of nonlinear systems, effectively providing an efficient algorithm for the steering and targeting of chaotic systems.
Controlled transitions between cupolets of chaotic systems
Morena, Matthew A.; Short, Kevin M.; Cooke, Erica E.
2014-03-01
We present an efficient control scheme that stabilizes the unstable periodic orbits of a chaotic system. The resulting orbits are known as cupolets and collectively provide an important skeleton for the dynamical system. Cupolets exhibit the interesting property that a given sequence of controls will uniquely identify a cupolet, regardless of the system's initial state. This makes it possible to transition between cupolets, and thus unstable periodic orbits, simply by switching control sequences. We demonstrate that although these transitions require minimal controls, they may also involve significant chaotic transients unless carefully controlled. As a result, we present an effective technique that relies on Dijkstra's shortest path algorithm from algebraic graph theory to minimize the transients and also to induce certainty into the control of nonlinear systems, effectively providing an efficient algorithm for the steering and targeting of chaotic systems.
Urey Prize Lecture - Chaotic dynamics in the solar system
Wisdom, Jack
1987-01-01
Attention is given to solar system cases in which chaotic solutions of Newton's equations are important, as in chaotic rotation and orbital evolution. Hyperion is noted to be tumbling chaotically; chaotic orbital evolution is suggested to be of fundamental importance to an accounting for the Kirkwood gaps in asteroid distribution and for the phase space boundary of the chaotic zone at the 3/1 mean-motion commensurability with Jupiter. In addition, chaotic trajectories in the 2/1 chaotic zone reach very high eccentricities by a route that carries them to high inclinations temporarily.
An Image Encryption Scheme Based on Hyperchaotic Rabinovich and Exponential Chaos Maps
Xiaojun Tong
2015-01-01
Full Text Available This paper proposes a new four-dimensional hyperchaotic map based on the Rabinovich system to realize chaotic encryption in higher dimension and improve the security. The chaotic sequences generated by Runge-Kutta method are combined with the chaotic sequences generated by an exponential chaos map to generate key sequences. The key sequences are used for image encryption. The security test results indicate that the new hyperchaotic system has high security and complexity. The comparison between the new hyperchaotic system and the several low-dimensional chaotic systems shows that the proposed system performs more efficiently.
Formulation of statistical mechanics for chaotic systems
Vishnu M Bannur; Ramesh Babu Thayyullathil
2009-02-01
We formulate the statistical mechanics of chaotic system with few degrees of freedom and investigated the quartic oscillator system using microcanonical and canonical ensembles. Results of statistical mechanics are numerically verified by considering the dynamical evolution of quartic oscillator system with two degrees of freedom.
Subsampling technique to enhance the decoded output of JTC encrypting system
Barrera, John Fredy; Rueda, Edgar; Ríos, Carlos; Tebaldi, Myrian; Bolognini, Nestor; Torroba, Roberto
2011-08-01
Optical systems have physical restrictions that impose limits in the finest spatial feature that can be processed. In this work we combine a subsampling procedure with a multiplexing technique to overtake the limit on the information that is processed in a JTC encryption system. In the process the object is divided in subsamples and each subsample is encrypted separately. Then the encrypted subsamples are multiplexed. The encryption of the subsamples is performed in a real optical JTC encrypting system. The multiplexing and the decryption process are carried out by means of a virtual optical system. Experimental results are presented to show the validity of the proposal.
Fuzzy adaptive synchronization of uncertain chaotic systems
This Letter presents an adaptive approach for synchronization of Takagi-Sugeno (T-S) fuzzy chaotic systems. Since the parameters of chaotic system are assumed unknown, the adaptive law is derived to estimate the unknown parameters and its stability is guaranteed by Lyapunov stability theory. The control law to be designed consists of two parts: one part that can stabilize the synchronization error dynamics and the other part that estimates the unknown parameters. Numerical examples are given to demonstrate the validity of the proposed adaptive synchronization approach
Generalized Synchronization of Diverse Structure Chaotic Systems
KADIR Abdurahman; WANG Xing-Yuan; ZHAO Yu-Zhang
2011-01-01
@@ Generalized synchronization between two diverse structures of chaotic systems possesses significance in the research of synchronization.We propose an approach based on the Lyapunov stability theory to study it.This method can be used widely.Numerical examples are given to demonstrate the effectiveness of this approach.%Generalized synchronization between two diverse structures of chaotic systems possesses significance in the research of synchronization. We propose an approach based on the Lyapunov stability theory to study it. This method can be used widely. Numerical examples are given to demonstrate the effectiveness of this approach.
A method of improving the properties of digital chaotic system
To weaken the degradation phenomenon of digital chaotic systems with finite computing precision, the paper brings forward a varying parameter compensation method (VPCM) on the basis of the Lyapunov number. According to the differential mean-value theorem, the proposed method employs the varying parameter and Lyapunov number to improve the properties of digital chaotic systems with finite computing precision. Results of the experiments demonstrate that: the method prolongs the cycle length greatly, the digital chaotic systems achieve ergodicity in finite precision, and the distribution of digital chaotic sequences (DCSs) approximates that of real chaotic sequences (RCSs). This method can be applied to the fields of chaotic cryptography and broad spectrum communications
Several types of the chaotic mapping image encryption algorithm%几类混沌映射图像加密算法的比较
薛香莲
2015-01-01
对图像信息安全技术进行了研究，报告了现阶段图像加密的相关现状，分析了基于混沌理论的图像加密的主要方法，提出分别用一维混沌映射Logistic、二维混沌映射2DLogistic以及Chen超混沌映射对图像进行位置和值置乱来实现图像加密，并从实验仿真结果、密钥空间、密钥灵敏性、灰度直方图、置乱程度以及加密时间等方面来比较以上三种混沌理论作用于图像加密中的各自优缺点。%Studied the image information security technology,the report related to the status quo of the current image encryption,analyzed the main method of image encryption based on chaos theory,put forward respectively in one-dimensional chaotic map Logistic,2 dlogistic two-dimensional chaos mapping and hyperchaos mapping for the position and value of Chen to behave in such a way to realize image encryption, and from the experimental simulation results,the key space,key sensitivity,gray histogram,scrambling degree and the encryption time and so on to compare the above three kinds of chaos theory applied to image encryption in the respective advantages and disadvantages.
A Chaotic Attractor in Delayed Memristive System
Lidan Wang
2012-01-01
Full Text Available Over the last three decades, theoretical design and circuitry implementation of various chaotic generators by simple electronic circuits have been a key subject of nonlinear science. In 2008, the successful development of memristor brings new activity for this research. Memristor is a new nanometre-scale passive circuit element, which possesses memory and nonlinear characteristics. This makes it have a unique charm to attract many researchers’ interests. In this paper, memristor, for the first time, is introduced in a delayed system to design a signal generator to produce chaotic behaviour. By replacing the nonlinear function with memristors in parallel, the memristor oscillator exhibits a chaotic attractor. The simulated results demonstrate that the performance is well predicted by the mathematical analysis and supports the viability of the design.
Chaotic Turing pattern formation in spatiotemporal systems
XIAO Jing-hua; LI Hai-hong; YANG Jun-zhong; HU Gang
2006-01-01
The problem of Turing pattern formation has attracted much attention in nonlinear science as well as physics,chemistry and biology.So far spatially ordered Turing patterns have been observed in stationary and oscillatory media only.In this paper we find that spatially ordered Turing patterns exist in chaotic extended systems.And chaotic Turing patterns are strikingly rich and surprisingly beautiful with their space structures.These findings are in sharp contrast with the intuition of pseudo-randomness of chaos.The richness and beauty of the chaotic Turing patterns are attributed to a large variety of symmetry properties realized by various types of self-organizations of partial chaos synchronizations.
In this Letter we consider modified function projective synchronization of unidirectionally coupled multiple time-delayed Rossler chaotic systems using adaptive controls. Recently, delay differential equations have attracted much attention in the field of nonlinear dynamics. The high complexity of the multiple time-delayed systems can provide a new architecture for enhancing message security in chaos based encryption systems. Adaptive control can be used for synchronization when the parameters of the system are unknown. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems are function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.
Controlling projective synchronization in coupled chaotic systems
Zou Yan-Li; Zhu Jie
2006-01-01
In this paper, a new method for controlling projective synchronization in coupled chaotic systems is presented.The control method is based on a partially linear decomposition and negative feedback of state errors. Firstly, the synchronizability of the proposed projective synchronization control method is proved mathematically. Then, three different representative examples are discussed to verify the correctness and effectiveness of the proposed control method.
Projective synchronization of chaotic systems with bidirectional nonlinear coupling
Mohammada Ali Khan; Swarup Poria
2013-09-01
This paper presents a new scheme for constructing bidirectional nonlinear coupled chaotic systems which synchronize projectively. Conditions necessary for projective synchronization (PS) of two bidirectionally coupled chaotic systems are derived using Lyapunov stability theory. The proposed PS scheme is discussed by taking as examples the so-called unified chaotic model, the Lorenz–Stenflo system and the nonautonomous chaotic Van der Pol oscillator. Numerical simulation results are presented to show the efficiency of the proposed synchronization scheme.
Highlights: ► A new meta-heuristic optimization algorithm. ► Integration of invasive weed optimization and chaotic search methods. ► A novel parameter identification scheme for chaotic systems. - Abstract: This paper introduces a novel hybrid optimization algorithm by taking advantage of the stochastic properties of chaotic search and the invasive weed optimization (IWO) method. In order to deal with the weaknesses associated with the conventional method, the proposed chaotic invasive weed optimization (CIWO) algorithm is presented which incorporates the capabilities of chaotic search methods. The functionality of the proposed optimization algorithm is investigated through several benchmark multi-dimensional functions. Furthermore, an identification technique for chaotic systems based on the CIWO algorithm is outlined and validated by several examples. The results established upon the proposed scheme are also supplemented which demonstrate superior performance with respect to other conventional methods.
Parameter identification of time-delay chaotic system using chaotic ant swarm
The identification problem of delay time as well as parameters of time-delay chaotic system is investigated in this paper. The identification problem is converted to that of parameter optimization by constructing suitable fitness function. A novel optimization method, called CAS (chaotic ant swarm), which simulates the chaotic behavior of single ant and the self-organization behavior of ant colony, is used to solve this optimization problem. Illustrative example demonstrates the effectiveness of the proposed method.
Synchronization of the chaotic secure communication system with output state delay
In this paper, we utilize a proper Lyapunov function and Lyapunov theorem, combined with LMIs method, in order to design a controller L, which ensures the synchronization between the transmission and the reception ends of the chaotic secure communication system with time-delay of output state. Meanwhile, for the purpose of increasing communication security, we encrypt and decrypt the original to-be-transmitted message with the techniques of n-shift cipher and public key. The result of simulation shows that the proposed method is able to synchronize the transmission and the reception ends of the system, and moreover, to recover the original message at the reception end. Therefore, the method proposed in this paper is effective and feasible to apply in the chaotic secure communication system.
Synchronization of the chaotic secure communication system with output state delay
Changchien, S.-K. [Department of Electrical Engineering, Chienkuo Technology University, Changhua 500, Taiwan (China)], E-mail: ccsk@ctu.edu.tw; Huang, C.-K.; Nien, H.-H.; Shieh, H.-W. [Department of Electrical Engineering, Chienkuo Technology University, Changhua 500, Taiwan (China)
2009-02-28
In this paper, we utilize a proper Lyapunov function and Lyapunov theorem, combined with LMIs method, in order to design a controller L, which ensures the synchronization between the transmission and the reception ends of the chaotic secure communication system with time-delay of output state. Meanwhile, for the purpose of increasing communication security, we encrypt and decrypt the original to-be-transmitted message with the techniques of n-shift cipher and public key. The result of simulation shows that the proposed method is able to synchronize the transmission and the reception ends of the system, and moreover, to recover the original message at the reception end. Therefore, the method proposed in this paper is effective and feasible to apply in the chaotic secure communication system.
Testing System Encryption-Decryption Method to RSA Security Documents
A model of document protection which was tested as one of the instruments, especially text document. The principle of the document protection was how the system was able to protect the document storage and transfer processes. Firstly, the text-formed document was encrypted; therefore, the document cannot be read for the text was transformed into random letters. The letter-randomized text was then unfolded by the description in order that the document owner was able to read it. In the recent research, the method adopted was RSA method, in which it used complicated mathematics calculation and equipped with initial protection key (with either private key or public key), thus, it was more difficult to be attacked by hackers. The system was developed by using the software of Borland Delphi 7. The results indicated that the system was capable to save and transfer the document, both via internet and intranet in the form of encrypted letter and put it back to the initial form of document by way of description. The research also tested for encrypted and decrypted process for various memory size documents. (author)
Novel implementation of memristive systems for data encryption and obfuscation
Du, Nan; Manjunath, Niveditha; Shuai, Yao; Bürger, Danilo; Skorupa, Ilona; Schüffny, René; Mayr, Christian; Basov, Dimitri N.; Di Ventra, Massimiliano; Schmidt, Oliver G.; Schmidt, Heidemarie
2014-03-01
With the rise of big data handling, new solutions are required to drive cryptographic algorithms for maintaining data security. Here, we exploit the nonvolatile, nonlinear resistance change in BiFeO3 memristors [Shuai et al., J. Appl. Phys. 109, 124117 (2011)] by applying a voltage for the generation of second and higher harmonics and develop a new memristor-based encoding system from it to encrypt and obfuscate data. It is found that a BiFeO3 memristor in high and low resistance state can be used to generate two clearly distinguishable sets of second and higher harmonics as recently predicted theoretically [Cohen et al., Appl. Phys. Lett. 100, 133109 (2012)]. The computed autocorrelation of encrypted data using higher harmonics generated by a BiFeO3 memristor shows that the encoded data distribute randomly.
Hardware Realization of Chaos Based Symmetric Image Encryption
Barakat, Mohamed L.
2012-06-01
This thesis presents a novel work on hardware realization of symmetric image encryption utilizing chaos based continuous systems as pseudo random number generators. Digital implementation of chaotic systems results in serious degradations in the dynamics of the system. Such defects are illuminated through a new technique of generalized post proceeding with very low hardware cost. The thesis further discusses two encryption algorithms designed and implemented as a block cipher and a stream cipher. The security of both systems is thoroughly analyzed and the performance is compared with other reported systems showing a superior results. Both systems are realized on Xilinx Vetrix-4 FPGA with a hardware and throughput performance surpassing known encryption systems.
Bayesian optimization for tuning chaotic systems
M. Abbas
2014-08-01
Full Text Available In this work, we consider the Bayesian optimization (BO approach for tuning parameters of complex chaotic systems. Such problems arise, for instance, in tuning the sub-grid scale parameterizations in weather and climate models. For such problems, the tuning procedure is generally based on a performance metric which measures how well the tuned model fits the data. This tuning is often a computationally expensive task. We show that BO, as a tool for finding the extrema of computationally expensive objective functions, is suitable for such tuning tasks. In the experiments, we consider tuning parameters of two systems: a simplified atmospheric model and a low-dimensional chaotic system. We show that BO is able to tune parameters of both the systems with a low number of objective function evaluations and without the need of any gradient information.
Estimating parameters of chaotic systems under noise-induced synchronization
Kim et al. introduced in 2002 [Kim CM, Rim S, Kye WH. Sequential synchronization of chaotic systems with an application to communication. Phys Rev Lett 2002;88:014103] a hierarchically structured communication scheme based on sequential synchronization, a modification of noise-induced synchronization (NIS). We propose in this paper an approach that can estimate the parameters of chaotic systems under NIS. In this approach, a dimensionally-expanded parameter estimating system is first constructed according to the original chaotic system. By feeding chaotic transmitted signal and external driving signal, the parameter estimating system can be synchronized with the original chaotic system. Consequently, parameters would be estimated. Numerical simulation shows that this approach can estimate all the parameters of chaotic systems under two feeding modes, which implies the potential weakness of the chaotic communication scheme under NIS or sequential synchronization.
Estimating parameters of chaotic systems under noise-induced synchronization
Wu Xiaogang [Institute of PR and AI, Huazhong University of Science and Technology, Wuhan 430074 (China)], E-mail: seanwoo@mail.hust.edu.cn; Wang Zuxi [Institute of PR and AI, Huazhong University of Science and Technology, Wuhan 430074 (China)
2009-01-30
Kim et al. introduced in 2002 [Kim CM, Rim S, Kye WH. Sequential synchronization of chaotic systems with an application to communication. Phys Rev Lett 2002;88:014103] a hierarchically structured communication scheme based on sequential synchronization, a modification of noise-induced synchronization (NIS). We propose in this paper an approach that can estimate the parameters of chaotic systems under NIS. In this approach, a dimensionally-expanded parameter estimating system is first constructed according to the original chaotic system. By feeding chaotic transmitted signal and external driving signal, the parameter estimating system can be synchronized with the original chaotic system. Consequently, parameters would be estimated. Numerical simulation shows that this approach can estimate all the parameters of chaotic systems under two feeding modes, which implies the potential weakness of the chaotic communication scheme under NIS or sequential synchronization.
Frequency-Locking in Coupled Chaotic Systems
HU Bam-Bi; LIU Zong-Hua; ZHENG Zhi-Gang
2001-01-01
A novel approach is presented for measuring the phase synchronization (frequency-locking) of coupled N nonidentical oscillators, which can characterize frequency-locking for chaotic systems without well-defined phase by measuring the mean frequency. Numerical simulations confirm the existence of frequency-locking. The relations between the mean frequency and the coupling strength and the frequency mismatch are given. For the coupled hyperchaotic systems, the frequency-locking can be better characterized by more than one mean frequency curves.
Symplectic synchronization of different chaotic systems
In this paper, a new symplectic synchronization of chaotic systems is studied. Traditional generalized synchronizations are special cases of the symplectic synchronization. A sufficient condition is given for the asymptotical stability of the null solution of an error dynamics. The symplectic synchronization may be applied to the design of secure communication. Finally, numerical results are studied for a Quantum-CNN oscillators synchronized with a Roessler system in three different cases.
NEW SYMMETRIC ENCRYPTION SYSTEM BASED ON EVOLUTIONARY ALGORITHM
A. Mouloudi
2015-12-01
Full Text Available In this article, we present a new symmetric encryption system which is a combination of our ciphering evolutionary system SEC [1] and a new ciphering method called “fragmentation”. This latter allows the alteration of the appearance frequencies of characters from a given text. Our system has at its disposed two keys, the first one is generated by the evolutionary algorithm, the second one is generated after “fragmentation” part. Both of them are symmetric, session keys and strengthening the security of our system.
Entanglement production in quantized chaotic systems
Jayendra N Bandyopadhyay; Arul Lakshminarayan
2005-04-01
Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies. We find that, in general, chaos in the system produces more entanglement. However, coupling strength between two subsystems is also a very important parameter for entanglement production. Here we show how chaos can lead to large entanglement which is universal and describable by random matrix theory (RMT). We also explain entanglement production in coupled strongly chaotic systems by deriving a formula based on RMT. This formula is valid for arbitrary coupling strengths, as well as for sufficiently long time. Here we investigate also the effect of chaos on the entanglement production for the mixed initial state. We find that many properties of the mixed-state entanglement production are qualitatively similar to the pure state entanglement production. We however still lack an analytical understanding of the mixed-state entanglement production in chaotic systems.
芮坤坤
2014-01-01
频域加密非常适用于大多数数字和光学图像处理体系，而空间域加密则适用于图像通信。为了充分利用在图像频率域和空间域加密的优势，进一步提高图像加密系统的安全性，提出基于离散的傅里叶变换和双混沌映射的图像加密算法，同时对图像的频率域和空间域进行加密。首先，利用二维离散的傅里叶变换将图像从空间域转换成频率域，并用改进的分段Tent映射分别对幅值和位相进行置乱处理；其次，将置乱后图像频率域进行傅里叶逆变换，转换成空间域，获得置乱加密图像；最后，利用改进的Ber-noulli移位映射对置乱加密图像进行扩散处理。在MATLAB仿真平台上，实验结果表明：该算法高度安全，密钥空间大，有较强的密钥敏感性能，有效地提高了抵御选择明文攻击的能力。%Frequency domain encryption very fits most of digital and optical image processing systems,while spatial domain encryption is applicable for image communications.In order to make full use of image encryption advantages in both frequency domain and spatial domain and further improve the security of image encryption system,we propose an image encryption algorithm which is based on discrete Fourier transformation and doubling chaotic map to encrypt frequency and spatial domains of image simultaneously.Firstly,the two-dimensional discrete Fourier transformation is committed to convert the image from the spatial domain to frequency domain,and the improved subsection Tent map is used to scramble the amplitude and phase of the frequency domain respectively;Secondly,the frequency domain of scrambled image is transformed into spatial domain with Fourier inverse transformation to get scrambling encryption image;Finally,the improved Bernoulli displacement map is applied to the scrambling encryption image for diffusion processing.The proposed algorithm is tested on MATLAB simulation platform
Resonance eigenfunctions in chaotic scattering systems
Martin Sieber
2009-09-01
We study the semiclassical structure of resonance eigenstates of open chaotic systems. We obtain semiclassical estimates for the weight of these states on different regions in phase space. These results imply that the long-lived right (left) eigenstates of the non-unitary propagator are concentrated in the semiclassical limit ħ → 0 on the backward (forward) trapped set of the classical dynamics. On this support the eigenstates display a self-similar behaviour which depends on the limiting decay rate.
Control of chaotic transport in Hamiltonian systems
Ciraolo, Guido; Chandre, Cristel; Lima, Ricardo; Vittot, Michel; Pettini, Marco; Figarella, Charles; Ghendrih, Philippe
2003-01-01
It is shown that a relevant control of Hamiltonian chaos is possible through suitable small perturbations whose form can be explicitly computed. In particular, it is possible to control (reduce) the chaotic diffusion in the phase space of a Hamiltonian system with 1.5 degrees of freedom which models the diffusion of charged test particles in a ``turbulent'' electric field across the confining magnetic field in controlled thermonuclear fusion devices. Though still far from practical applicatio...
A novel image encryption scheme based on spatial chaos map
Sun Fuyan [College of Control Science and Engineering, Shandong University, Jinan 250061 (China)], E-mail: fuyan.sun@gmail.com; Liu Shutang [College of Control Science and Engineering, Shandong University, Jinan 250061 (China); Li Zhongqin [HeiLongJiang Institute of Science and Technology, Harbin 150027 (China); Lue Zongwang [Information and Communication College, Guilin University of Electronic and Technology, Guilin 541004 (China); Corporate Engineering Department, Johnson Electric Co. Ltd., Shenzhen 518125 (China)
2008-11-15
In recent years, the chaos-based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. In this paper, spatial chaos system are used for high degree security image encryption while its speed is acceptable. The proposed algorithm is described in detail. The basic idea is to encrypt the image in space with spatial chaos map pixel by pixel, and then the pixels are confused in multiple directions of space. Using this method one cycle, the image becomes indistinguishable in space due to inherent properties of spatial chaotic systems. Several experimental results, key sensitivity tests, key space analysis, and statistical analysis show that the approach for image cryptosystems provides an efficient and secure way for real time image encryption and transmission from the cryptographic viewpoint.
A novel image encryption scheme based on spatial chaos map
In recent years, the chaos-based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. In this paper, spatial chaos system are used for high degree security image encryption while its speed is acceptable. The proposed algorithm is described in detail. The basic idea is to encrypt the image in space with spatial chaos map pixel by pixel, and then the pixels are confused in multiple directions of space. Using this method one cycle, the image becomes indistinguishable in space due to inherent properties of spatial chaotic systems. Several experimental results, key sensitivity tests, key space analysis, and statistical analysis show that the approach for image cryptosystems provides an efficient and secure way for real time image encryption and transmission from the cryptographic viewpoint
Chaotic attractor transforming control of hybrid Lorenz-Chen system
Qi Dong-Lian; Wang Qiao; Gu Hong
2008-01-01
Based on passive theory, this paper studies a hybrid chaotic dynamical system from the mathematics perspective to implement the control of system stabilization.According to the Jacobian matrix of the nonlinear system, the stabilization control region is gotten.The controller is designed to stabilize fast the minimum phase Lorenz-Chen chaotic system after equivalently transforming from chaotic system to passive system. The simulation results show that the system not only can be controlled at the different equilibria, but also can be transformed between the different chaotic attractors.
Color Digital Image Encryption Using Wavelet Transform and Chaotic Sequence%彩色数字图像的小波变换和混沌序列加密
张定会; 许赛赛; 余日; 张建伟
2011-01-01
根据彩色数字图像的基本特点,运用数字图像加密和解密原理,将离散小波变换和离散混沌序列有机地结合起来,研究了彩色数字图像的小波变换和混沌序列的加密和解密方法;对原始图像进行加密实质是利用混沌序列对其低频小波系数进行加密,对加密图像进行解密实质是利用混沌序列对其低频小波系数进行解密}研究的彩色数字图像加解密方法,为彩色数字图像加密提供了一种有效可行的方法,不仅能够使加密彩色数字图像具有理想的加密效果,而且能够保证加密彩色数字图像足够的安全.%According to the basic characteristic of color digital image, using the encrypting and decrypting theorem of digital image, organically combining discrete wavelet transform with discrete chaotic sequence, the encryption and decryption of color digital image based on wavelet transform and chaotic sequence has been studied. The encryption of original images is to use chaotic sequences to encrypt its low frequency wavelet coefficients. The decryption of encrypted images is to use chaotic sequences to decrypt its low frequency wavelet coefficients. The encryption and decryption of color digital image studied by this paper provides an effective and feasibJe method for color digital image encryption, and not only can make the encrypted color digital image have perfect encryption effect, but also can ensure its sufficient security.
An Optical Encryption and Decryption Method and System
2000-01-01
The invention relates to securing of information utilising optical imaging technologies and more specifically to phase encryption and decryption of images. An image is encrypted into a mask having a plurality of mask resolution elements (Xm, Ym) by encoding the image using e.g. a phase mask with an...... encoded phase value phi (Xm, Ym) and an encoded amplitude value a (Xm, Ym), and by further encrypting the mask (using e.g. a spatial light modulator) by addition of an encrypting phase value phi c (Xm, Ym) to the encoded phase value phi (Xm, Ym) and by multiplication of an encrypting amplitude value ac...
Random digital encryption secure communication system
Doland, G. D. (Inventor)
1982-01-01
The design of a secure communication system is described. A product code, formed from two pseudorandom sequences of digital bits, is used to encipher or scramble data prior to transmission. The two pseudorandom sequences are periodically changed at intervals before they have had time to repeat. One of the two sequences is transmitted continuously with the scrambled data for synchronization. In the receiver portion of the system, the incoming signal is compared with one of two locally generated pseudorandom sequences until correspondence between the sequences is obtained. At this time, the two locally generated sequences are formed into a product code which deciphers the data from the incoming signal. Provision is made to ensure synchronization of the transmitting and receiving portions of the system.
Targeting engineering synchronization in chaotic systems
Bhowmick, Sourav K.; Ghosh, Dibakar
2016-07-01
A method of targeting engineering synchronization states in two identical and mismatch chaotic systems is explained in detail. The method is proposed using linear feedback controller coupling for engineering synchronization such as mixed synchronization, linear and nonlinear generalized synchronization and targeting fixed point. The general form of coupling design to target any desire synchronization state under unidirectional coupling with the help of Lyapunov function stability theory is derived analytically. A scaling factor is introduced in the coupling definition to smooth control without any loss of synchrony. Numerical results are done on two mismatch Lorenz systems and two identical Sprott oscillators.
ON FEEDBACK CONTROL OF DELAYED CHAOTIC SYSTEM
李丽香; 彭海朋; 卢辉斌; 关新平
2001-01-01
In this paper two different types of feedback control technique are discussed: the standard feedback control and the time-delay feedback control which have been successfully used in many control systems. In order to understand to what extent the two different types of control technique are useful in delayed chaotic systems, some analytic stabilization conditions for chaos control from the two types of control technique are derived based on Lyapunov stabilization arguments. Similarly, we discuss the tracking problem by applying the time-delay feedback control. Finally, numerical examples are provided.
Artificial Cooperative Search algorithm for parameter identification of chaotic systems
Turgut, Oguz Emrah; Turgut, Mert Sinan; Çoban, Mustafa Turhan
2015-01-01
Parameter estimation of chaotic systems is a challenging and critical topic in nonlinear science. Problem at hand is multi-dimensional and highly nonlinear thereof conventional optimization methods generally fail to extract the unknown parameters of chaotic system. In this study, Artificial Cooperative Search algorithm is put into practice for successful parameter estimation of chaotic systems and compared the parameter estimation performance of Artificial Cooperative Search with Bat, Artifi...
Channel coding and modulation based on chaotic systems
Kozic, Slobodan; Hasler, Martin
2007-01-01
In this thesis, a new class of codes on graphs based on chaotic dynamical systems are proposed. In particular, trellis coded modulation and iteratively decodable codes on graphs are studied. The codes are designed by controlling symbolic dynamics of chaotic systems and using linear convolutional codes. The relation between symbolic dynamics of chaotic systems and trellis aspects to minimum distance properties of coded modulations is explained. Our arguments are supported by computer simulatio...
Efficient methodology for implementation of Encrypted File System in User Space
Kumar, Dr Shishir; Jasra, Sameer Kumar; Jain, Akshay Kumar
2009-01-01
The Encrypted File System (EFS) pushes encryption services into the file system itself. EFS supports secure storage at the system level through a standard UNIX file system interface to encrypted files. User can associate a cryptographic key with the directories they wish to protect. Files in these directories (as well as their pathname components) are transparently encrypted and decrypted with the specified key without further user intervention; clear text is never stored on a disk or sent to a remote file server. EFS can use any available file system for its underlying storage without modifications, including remote file servers such as NFS. System management functions, such as file backup, work in a normal manner and without knowledge of the key. Performance is an important factor to users since encryption can be time consuming. This paper describes the design and implementation of EFS in user space using faster cryptographic algorithms on UNIX Operating system. Implementing EFS in user space makes it porta...
Projective Synchronization in Time-Delayed Chaotic Systems
FENG Cun-Fang; ZHANG Yan; WANG Ying-Hai
2006-01-01
For the first time, we report on projective synchronization between two time delay chaotic systems with single time delays. It overcomes some limitations of the previous wort, where projective synchronization has been investigated only in finite-dimensional chaotic systems, so we can achieve projective synchronization in infinite-dimensional chaotic systems. We give a general method with which we can achieve projective synchronization in time-delayed chaotic systems. The method is illustrated using the famous delay-differential equations related to optical bistability. Numerical simulations fully support the analytical approach.
WANG Jian-Gen; ZHAO Yi
2005-01-01
@@ We propose a Bang-Bang control scheme that can synchronize master-slave chaotic systems. The chaotic systems considered here are structurally different from each other. Different from some control strategies reported previously, the scheme proposed here can be taken as a generalone that is independent of the chaotic system itself.
Stochastic resonance in deterministic chaotic systems
We propose a mechanism which produces periodic variations of the degree of predictability in dynamical systems. It is shown that even in the absence of noise when the control parameter changes periodically in time, below and above the threshold for the onset of chaos, stochastic resonance effects appear. As a result one has an alternation of chaotic and regular, i.e. predictable, evolutions in an almost periodic way, so that the Lyapunov exponent is positive but some time correlations do not decay. (author)
Control of chaotic transport in Hamiltonian systems
It is shown that a relevant control of Hamiltonian chaos is possible through suitable small perturbations whose form can be explicitly computed. In particular, it is possible to control (reduce) the chaotic diffusion in the phase space of a Hamiltonian system with 1.5 degrees of freedom which models the diffusion of charged test particles in a 'turbulent' electric field across the confining magnetic field in controlled thermonuclear fusion devices. Though still far from practical applications, this result suggests that some strategy to control turbulent transport in magnetized plasmas, in particular tokamaks, is conceivable. (author)
Phase synchronization of coupled chaotic multiple time scales systems
The brushless dc motor (BLDCM) with multi-time scales is an electric machine. By coupled BLDCM, it is discovered that chaotic routes of the uncoupled systems influence synchronous result of coupled identical and nonidentical chaotic systems. Another multi-time scales form, Hindmarsh-Rose (HR) neurons, when the chaotic parameter is selected only in the range of the period-doubling route to chaos, phase synchronization can be predicted via Laypunov exponent. Finally, Laypunov exponent however cannot be used as a criterion for phase synchronization of coupled chaotic systems with either single or multi-time scales in our study
Encryption and validation of multiple signals for optical identification systems
Multifactor encryption-authentication technique reinforces optical security by allowing the simultaneous A N D-verification of more than one primary image. Instead of basing the identification on a unique signature or piece of information, our goal is to authenticate a given person, object, vehicle by the simultaneous recognition of several factors. Some of them are intrinsic to the person and object or vehicle under control. Other factors, act as keys of the authentication step. Such a system is proposed for situations such as the access control to restricted areas, where the demand of security is high. The multifactor identification method involves double random-phase encoding, fully phase-based encryption and a combined nonlinear joint transform correlator and a classical 4f-correlator for simultaneous recognition and authentication of multiple images. The encoded signal fulfils the general requirements of invisible content, extreme difficulty in counterfeiting and real-time automatic verification. Four reference double-phase encoded images are compared with the retrieved input images obtained in situ from the person or the vehicle whose authentication is wanted and from a database. A recognition step based on the correlation between the signatures and the stored references determines the authentication or rejection of the person and object under surveillance
Hongjuan Liu
2014-01-01
Full Text Available A new general and systematic coupling scheme is developed to achieve the modified projective synchronization (MPS of different fractional-order systems under parameter mismatch via the Open-Plus-Closed-Loop (OPCL control. Based on the stability theorem of linear fractional-order systems, some sufficient conditions for MPS are proposed. Two groups of numerical simulations on the incommensurate fraction-order system and commensurate fraction-order system are presented to justify the theoretical analysis. Due to the unpredictability of the scale factors and the use of fractional-order systems, the chaotic data from the MPS is selected to encrypt a plain image to obtain higher security. Simulation results show that our method is efficient with a large key space, high sensitivity to encryption keys, resistance to attack of differential attacks, and statistical analysis.
Linear generalized synchronization of continuous-time chaotic systems
This paper develops a general approach for constructing a response system to implement linear generalized synchronization (GS) with the drive continuous-time chaotic system. Some sufficient conditions of global asymptotic linear GS between the drive and response continuous-time chaotic systems are attained from rigorously modern control theory. Finally, we take Chua's circuit as an example for illustration and verification
Linear generalized synchronization of continuous-time chaotic systems
Lu Jun
2003-01-01
This paper develops a general approach for constructing a response system to implement linear generalized synchronization (GS) with the drive continuous-time chaotic system. Some sufficient conditions of global asymptotic linear GS between the drive and response continuous-time chaotic systems are attained from rigorously modern control theory. Finally, we take Chua's circuit as an example for illustration and verification.
Synchronization of bidirectionally coupled chaotic Chen's system with delay
This paper presents synchronization scheme for time-delayed linearly bidirectionally coupled chaotic Chen's system. The method is based on linear stability analysis of hyperbolic fixed point. Here we derive a generic condition of global chaos synchronization for time-delayed chaotic Chen's system with linearly bidirectional coupling. The behavior of the system with and without coupling are demonstrated by numerical simulation.
Adaptive Synchronization of Memristor-based Chaotic Neural Systems
Xiaofang Hu
2014-11-01
Full Text Available Chaotic neural networks consisting of a great number of chaotic neurons are able to reproduce the rich dynamics observed in biological nervous systems. In recent years, the memristor has attracted much interest in the efficient implementation of artificial synapses and neurons. This work addresses adaptive synchronization of a class of memristor-based neural chaotic systems using a novel adaptive backstepping approach. A systematic design procedure is presented. Simulation results have demonstrated the effectiveness of the proposed adaptive synchronization method and its potential in practical application of memristive chaotic oscillators in secure communication.
Transmission of Information with Chaotic Signals
Argüelles, A.; Estrada, H.
2003-08-01
We present a numerical simulation for a transmission of information by applying the synchronization phenomenon[1] of two identical chaotic Lorenz's systems. This system offers the possibility to encrypt information [2]. The numerical method yields to an excellent recovering of voice signals. We also analyze the effect over the recovered signal due to relative variations of the system value of the parameters.
On closure parameter estimation in chaotic systems
J. Hakkarainen
2012-02-01
Full Text Available Many dynamical models, such as numerical weather prediction and climate models, contain so called closure parameters. These parameters usually appear in physical parameterizations of sub-grid scale processes, and they act as "tuning handles" of the models. Currently, the values of these parameters are specified mostly manually, but the increasing complexity of the models calls for more algorithmic ways to perform the tuning. Traditionally, parameters of dynamical systems are estimated by directly comparing the model simulations to observed data using, for instance, a least squares approach. However, if the models are chaotic, the classical approach can be ineffective, since small errors in the initial conditions can lead to large, unpredictable deviations from the observations. In this paper, we study numerical methods available for estimating closure parameters in chaotic models. We discuss three techniques: off-line likelihood calculations using filtering methods, the state augmentation method, and the approach that utilizes summary statistics from long model simulations. The properties of the methods are studied using a modified version of the Lorenz 95 system, where the effect of fast variables are described using a simple parameterization.
Digital signal transmission with cascaded heterogeneous chaotic systems
Murali, K.
2001-01-01
A new chaos based secure communication scheme is proposed to transmit digital signals by combining the concepts of chaotic-switching and chaotic-modulation approaches. In this scheme two heterogeneous chaotic circuits are used both at the transmitter and receiver modules. First a binary message signal is scrambled by two chaotic attractors produced by a set of chaotic systems (No. 1) of the drive module. The so produced small amplitude scrambled chaotic signal is further directly injected or modulated by different chaotic system (No. 2) within the drive module. Then the chaotic signal generated by this second chaotic system No. 2 is transmitted to the response module through the channel. An appropriate feedback loop is constructed in the response module to achieve synchronization among the variables of the drive and response modules and the binary information signal is recovered by using the synchronization error followed by low-pass filtering and thresholding. Simulation results are reported in which the quality of the recovered signal is higher and the encoding of the information signal is potentially secure. The effect of perturbing factors like channel noise and nonidentity of parameters are also considered.
Chaotic Image Scrambling Algorithm Based on S-DES
Yu, X Y [College of Measurement-Control Tech and Communications Engineering, Harbin University of Science and Technology, Harbin, 150080 (China); Zhang, J [College of Measurement-Control Tech and Communications Engineering, Harbin University of Science and Technology, Harbin, 150080 (China); Ren, H E [Information and Computer Engineering College, Northeast Forestry University, Harbin, 150000 (China); Xu, G S [College of Measurement-Control Tech and Communications Engineering, Harbin University of Science and Technology, Harbin, 150080 (China); Luo, X Y [College of Measurement-Control Tech and Communications Engineering, Harbin University of Science and Technology, Harbin, 150080 (China)
2006-10-15
With the security requirement improvement of the image on the network, some typical image encryption methods can't meet the demands of encryption, such as Arnold cat map and Hilbert transformation. S-DES system can encrypt the input binary flow of image, but the fixed system structure and few keys will still bring some risks. However, the sensitivity of initial value that Logistic chaotic map can be well applied to the system of S-DES, which makes S-DES have larger random and key quantities. A dual image encryption algorithm based on S-DES and Logistic map is proposed. Through Matlab simulation experiments, the key quantities will attain 10{sup 17} and the encryption speed of one image doesn't exceed one second. Compared to traditional methods, it has some merits such as easy to understand, rapid encryption speed, large keys and sensitivity to initial value.
Wigner function statistics in classically chaotic systems
We have studied statistical properties of the values of the Wigner function W(x) of 1D quantum maps on compact 2D phase space of finite area V. For this purpose we have defined a Wigner function probability distribution P(w) = (1/V) ∫ δ(w - W(x))dx, which has, by definition, fixed first and second moments. In particular, we concentrate on relaxation of time-evolving quantum states in terms of W(x), starting from a coherent state. We have shown that for a classically chaotic quantum counterpart the distribution P(w) in the semiclassical limit becomes a Gaussian distribution that is fully determined by the first two moments. Numerical simulations have been performed for the quantum sawtooth map and the quantized kicked top. In a quantum system with Hilbert space dimension N(∼1/h-bar ) the transition of P(w) to a Gaussian distribution was observed at times t ∝ log N. In addition, it has been shown that the statistics of Wigner functions of propagator eigenstates is Gaussian as well in the classically fully chaotic regime. We have also studied the structure of the nodal cells of the Wigner function, in particular the distribution of intersection points between the zero manifold and arbitrary straight lines
Adaptive tracking control for a class of uncertain chaotic systems
Chen Feng-Xiang; Wang Wei; Zhang Wei-Dong
2007-01-01
The paper is concerned with adaptive tracking problem for a class of chaotic system with time-varying uncertainty,but bounded by norm polynomial. Based on adaptive technique, it proposes a novel controller to asymptotically track the arbitrary desired bounded trajectory. Simulation on the Rossler chaotic system is performed and the result verifies the effectiveness of the proposed method.
Impulsive Control for Fractional-Order Chaotic Systems
ZHONG Qi-Shui; BAO Jing-Fu; YU Yong-Bin; LIAO Xiao-Feng
2008-01-01
@@ We propose an impulsive control scheme for fractional-order chaotic systems. Based on the Takagi-Sugeno (T-S) fuzzy model and linear matrix inequalities (LMIs), some sufficient conditions are given to stabilize the fractional-order chaotic system via impulsive control. Numerical simulation shows the effectiveness of this approach.
Chaotic Disintegration of the Inner Solar System
Batygin, Konstantin; Holman, Mathew J
2014-01-01
On timescales that greatly exceed an orbital period, typical planetary orbits evolve in a stochastic yet stable fashion. On even longer timescales, however, planetary orbits can spontaneously transition from bounded to unbound chaotic states. Large-scale instabilities associated with such behavior appear to play a dominant role in shaping the architectures of planetary systems, including our own. Here we show how such transitions are possible, focusing on the specific case of the long-term evolution of Mercury. We develop a simple analytical model for Mercury's dynamics and elucidate the origins of its short term stochastic behavior as well as of its sudden progression to unbounded chaos. Our model allows us to estimate the timescale on which this transition is likely to be triggered, i.e. the dynamical lifetime of the Solar System as we know it. The formulated theory is consistent with the results of numerical simulations and is broadly applicable to extrasolar planetary systems dominated by secular interact...
Chaotic Behavior in a Switched Dynamical System
Hassane Bouzahir
2008-05-01
Full Text Available We present a numerical study of an example of piecewise linear systems that constitute a class of hybrid systems. Precisely, we study the chaotic dynamics of the voltage-mode controlled buck converter circuit in an open loop. By considering the voltage input as a bifurcation parameter, we observe that the obtained simulations show that the buck converter is prone to have subharmonic behavior and chaos. We also present the corresponding bifurcation diagram. Our modeling techniques are based on the new French native modeler and simulator for hybrid systems called Scicos (Scilab connected object simulator which is a Scilab (scientific laboratory package. The followed approach takes into account the hybrid nature of the circuit.
CONVERTIBLE DRM SYSTEM BASED ON IDENTITY-BASED ENCRYPTION
Chou-Chen Yang
2009-10-01
Full Text Available With the rapid growth of the Internet, acquiring digital contents over the Internet has becomecommonplace. Most traditional items can be translated into digital form. That is to say the digitalcontents can be distributed easily and rapidly to users over the Internet. Unfortunately, situations ofpiracy are common and become more serious, since the digital contents can be copied and distributedeasily through Internet. Thus, Digital Rights Management (DRM is a popular tool used to protect digitalcontents with cryptographic technology. But there are many different DRM encryption formats that areadopted by different content providers, causing consumers can’t play their contents on devices withdifferent DRM format even though they bought it legally. In this paper, we employ identity-basedencryption to allow a conversion between different DRM systems. Through the conversion process, thedigital content can be used at different DRM systems and hold the legitimate use of the right.
Nonlinear Dynamics, Chaotic and Complex Systems
Infeld, E.; Zelazny, R.; Galkowski, A.
2011-04-01
Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet
A Modified Location-Dependent Image Encryption for Mobile Information System
Prasad Reddy.P.V.G.D
2010-05-01
Full Text Available The wide spread use of WLAN (Wireless LAN and the popularity of mobile devices increases the frequency of data transmission among mobile users. In such scenario, a need for Secure Communication arises. Secure communication is possible through encryption of data. A lot of encryption techniques have evolved over time. However, most of the data encryption techniques are location-independent. Data encrypted with such techniques can be decrypted anywhere. The encryption technology cannot restrict the location of data decryption. GPS-based encryption (or geoencryption is an innovative technique that uses GPS-technology to encode location information into the encryption keys to provide location based security. In this paper a location-dependent approach is proposed for mobile information system. The mobile client transmits a target latitude/longitude coordinate and an LDEA key is obtained for data encryption to information server. The client can only decrypt the ciphertext when the coordinate acquired form GPS receiver matches with the target coordinate. For improved security, a random key (R-key is incorporated in addition to the LDEA key. The proposed method is applied for images.
Active control technique of fractional-order chaotic complex systems
Mahmoud, Gamal M.; Ahmed, Mansour E.; Abed-Elhameed, Tarek M.
2016-06-01
Several kinds of synchronization of fractional-order chaotic complex systems are challenging research topics of current interest since they appear in many applications in applied sciences. Our main goal in this paper is to introduce the definition of modified projective combination-combination synchronization (MPCCS) of some fractional-order chaotic complex systems. We show that our systems are chaotic by calculating their Lyapunov exponents. The fractional Lyapunov dimension of the chaotic solutions of these systems is computed. A scheme is introduced to calculate MPCCS of four different (or identical) chaotic complex systems using the active control technique. Special cases of this type, which are projective and anti C-C synchronization, are discussed. Some figures are plotted to show that MPCCS is achieved and its errors approach zero.
Chaotic Diffusion in the Gliese-876 Planetary System
Martí, J G; Beaugé, C
2016-01-01
Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disk, and a natural consequence of irregular motion. In this paper we show that resonant multi-planetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over timescales comparable to their age.Using the GJ-876 system as an example, we analyze the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincar\\'e maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, th...
Mutual stabilization of chaotic systems through entangled cupolets
Morena, Matthew Allan
Recent experimental and theoretical work has detected signatures of chaotic behavior in nearly every physical science, including quantum entanglement. In some instances, chaos either plays a significant role or, as an underlying presence, explains perplexing observations. There are certain properties of chaotic systems which are consistently encountered and become focal points of the investigations. For instance, chaotic systems typically admit a dense set of unstable periodic orbits around an attractor. These orbits collectively provide a rich source of qualitative information about the associated system and their abundance has been utilized in a variety of applications. We begin this thesis by describing a control scheme that stabilizes the unstable periodic orbits of chaotic systems and we go on to discuss several properties of these orbits. This technique allows for the creation of thousands of periodic orbits, known as cupolets ( Chaotic Unstable Periodic Orbit-lets ). We then present several applications of cupolets for investigating chaotic systems. First, we demonstrate an effective technique that combines cupolets with algebraic graph theory in order to transition between their orbits. This also induces certainty into the control of nonlinear systems and effectively provides an efficient algorithm for the steering and targeting of chaotic systems. Next, we establish that many higher-order cupolets are amalgamations of simpler cupolets, possibly through bifurcations. From a sufficiently large set of cupolets, we obtain a hierarchal subset of fundamental cupolets from which other cupolets may be assembled and dynamical invariants approximated. We then construct an independent coordinate system aligned to the local dynamical geometry and that reveals the local stretching and folding dynamics which characterize chaotic behavior. This partitions the dynamical landscape into regions of high or low chaoticity, thereby supporting prediction capabilities. Finally
Partial synchronization and spontaneous spatial ordering in coupled chaotic systems
A model of many symmetrically and locally coupled chaotic oscillators is studied. Partial chaotic synchronizations associated with spontaneous spatial ordering are demonstrated. Very rich patterns of the system are revealed, based on partial synchronization analysis. The stabilities of different partially synchronous spatiotemporal structures and some novel dynamical behaviors of these states are discussed both numerically and analytically. (author)
Generalized Synchronization of Lorenz Chaotic System with Star Network
Mohammad Ali Khan
2012-01-01
In this paper, we propose the theory for generalized synchronization (GS) of a chaotic star network. We derive sufficient conditions for generalized synchronization of any chaotic system on a star network. The relationship among the state variables at GS are completely known in our method. The effectiveness and feasibility of the synchronization strategy is confirmed and demonstrated by numerical simulation.
Robust optimization with transiently chaotic dynamical systems
Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.
2014-05-01
Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.
Hardware Realization of Chaos-based Symmetric Video Encryption
Ibrahim, Mohamad A.
2013-05-01
This thesis reports original work on hardware realization of symmetric video encryption using chaos-based continuous systems as pseudo-random number generators. The thesis also presents some of the serious degradations caused by digitally implementing chaotic systems. Subsequently, some techniques to eliminate such defects, including the ultimately adopted scheme are listed and explained in detail. Moreover, the thesis describes original work on the design of an encryption system to encrypt MPEG-2 video streams. Information about the MPEG-2 standard that fits this design context is presented. Then, the security of the proposed system is exhaustively analyzed and the performance is compared with other reported systems, showing superiority in performance and security. The thesis focuses more on the hardware and the circuit aspect of the system’s design. The system is realized on Xilinx Vetrix-4 FPGA with hardware parameters and throughput performance surpassing conventional encryption systems.
Control of Unknown Chaotic Systems Based on Neural Predictive Control
LIDong-Mei; WANGZheng-Ou
2003-01-01
We introduce the predictive control into the control of chaotic system and propose a neural network control algorithm based on predictive control. The proposed control system stabilizes the chaotic motion in an unknown chaotic system onto the desired target trajectory. The proposed algorithm is simple and its convergence speed is much higher than existing similar algorithms. The control system can control hyperchaos. We analyze the stability of the control system and prove the convergence property of the neural controller. The theoretic derivation and simulations demonstrate the effectiveness of the algorithm.
A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system
Wang Zhen; Huang Xia; Li Yu-Xia; Song Xiao-Na
2013-01-01
We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system.While in the process of generating a key stream,the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security.Such an algorithm is detailed in terms of security analyses,including correlation analysis,information entropy analysis,run statistic analysis,mean-variance gray value analysis,and key sensitivity analysis.The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.
Modeling of digital information optical encryption system with spatially incoherent illumination
Bondareva, Alyona P.; Cheremkhin, Pavel A.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.; Starikov, Sergey N.
2015-10-01
State of the art micromirror DMD spatial light modulators (SLM) offer unprecedented framerate up to 30000 frames per second. This, in conjunction with high speed digital camera, should allow to build high speed optical encryption system. Results of modeling of digital information optical encryption system with spatially incoherent illumination are presented. Input information is displayed with first SLM, encryption element - with second SLM. Factors taken into account are: resolution of SLMs and camera, holograms reconstruction noise, camera noise and signal sampling. Results of numerical simulation demonstrate high speed (several gigabytes per second), low bit error rate and high crypto-strength.
Equilibrium points and bifurcation control of a chaotic system
Liang Cui-Xiang; Tang Jia-Shi
2008-01-01
Based on the Routh-Hurwitz criterion,this paper investigates the stability of a new chaotic system.State feedback controllers are designed to control the chaotic system to the unsteady equilibrium points and limit cycle.Theoretical analyses give the range of value of control parameters to stabilize the unsteady equilibrium points of the chaotic system and its critical parameter for generating Hopf bifurcation.Certain nP periodic orbits can be stabilized by parameter adjustment.Numerical simulations indicate that the method can effectively guide the system trajectories to unsteady equilibrium points and periodic orbits.
Chaotic filter bank for computer cryptography
A chaotic filter bank for computer cryptography is proposed. By encrypting and decrypting signals via a chaotic filter bank, the following advantages are enjoyed: (1) one can embed signals in different frequency bands by employing different chaotic functions; (2) the number of chaotic generators to be employed and their corresponding functions can be selected and designed in a flexible manner because perfect reconstruction does not depend on the invertibility, causality, linearity and time invariance of the corresponding chaotic functions; (3) the ratios of the subband signal powers to the chaotic subband signal powers can be easily changed by the designers and perfect reconstruction is still guaranteed no matter how small these ratios are; (4) the proposed cryptographical system can be easily adapted in the international multimedia standards, such as JPEG 2000 and MPEG4
The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock
Shengyong Li
2009-11-01
Full Text Available In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array. The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user’s password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode.
Chaotic synchronization for a class of fractional-order chaotic systems
Zhou Ping
2007-01-01
In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-order systems, is simple and theoretically rigorous.
Ontic and epistemic descriptions of chaotic systems
Atmanspacher, Harald
2000-05-01
Traditional philosophical discourse draws a distinction between ontology and epistemology and generally enforces this distinction by keeping the two subject areas separated and unrelated. In addition, the relationship between the two areas is of central importance to physics and philosophy of physics. For instance, all kinds of measurement-related problems force us to consider both our knowledge of the states and observables of a system (epistemic perspective) and its states and observables independent of such knowledge (ontic perspective). This applies to quantum systems in particular. In this contribution we present an example which shows the importance of distinguishing between ontic and epistemic levels of description even for classical systems. Corresponding conceptions of ontic and epistemic states and their evolution will be introduced and discussed with respect to aspects of stability and information flow. These aspects show why the ontic/epistemic distinction is particularly important for systems exhibiting deterministic chaos. Moreover, this distinction provides some understanding of the relationships between determinism, causation, predictability, randomness, and stochasticity in chaotic systems.
An optical CDMA system based on chaotic sequences
Liu, Xiao-lei; En, De; Wang, Li-guo
2014-03-01
In this paper, a coherent asynchronous optical code division multiple access (OCDMA) system is proposed, whose encoder/decoder is an all-optical generator. This all-optical generator can generate analog and bipolar chaotic sequences satisfying the logistic maps. The formula of bit error rate (BER) is derived, and the relationship of BER and the number of simultaneous transmissions is analyzed. Due to the good property of correlation, this coherent OCDMA system based on these bipolar chaotic sequences can support a large number of simultaneous users, which shows that these chaotic sequences are suitable for asynchronous OCDMA system.