WorldWideScience

Sample records for ceramic particle reinforcement

  1. TiB2/Al2O3 ceramic particle reinforced aluminum fabricated by spray deposition

    International Nuclear Information System (INIS)

    Chen Xing; Yang Chengxiao; Guan Leding; Yan Biao

    2008-01-01

    Aluminum matrix ceramic particle reinforced composites (AMCs) is a kind of composite with great importance. Aluminum matrix composite reinforced with TiB 2 /Al 2 O 3 ceramic particles was successfully in situ synthesized in Al-TiO 2 -B 2 O 3 system in this paper, using spray deposition with hot-press treatment technique. Five groups of composites with different reinforcement volume contents were prepared and the comparisons of porosity, ultimate tensile strength (UTS), elongation and Brinell hardness (BH) between the composites with and without hot-press treating were carried out. The composite with 21.0% reinforcement volume content was analyzed by X-ray diffraction (XRD), Environmental Scanning Electron Microscope (ESEM), Transmission Electron Microscope (TEM) and Energy Disperse Spectroscopy (EDS). The results revealed the formation and uniform distribution of fine reinforcements in the matrix after hot-press treating, while a new intermetallic phase Al 3 Ti was found besides TiB 2 /Al 2 O 3 ceramic phase

  2. Effect of sintering temperatures on titanium matrix composites reinforced by ceramic particles

    Energy Technology Data Exchange (ETDEWEB)

    Romero, F.; Amigo, V.; Busquets, D.; Klyatskina, E. [Mechanical and Materials Engineering Department. Polytechnical University of Valencia, Valencia (Spain)

    2005-07-01

    Titanium and titanium composites have a potential use in aerospace and biotechnology industries, and nowadays in others like sports and fashion ones. In this work composite materials, based on titanium matrix reinforced with ceramic particles, have been developed. PM route is used to obtain compact and sintered samples. TiN and TiAl powders, are milled with Ti powder in different volumetric percentages in a ball mill. These mixtures are pressed in a uniaxial press and sintered in a vacuum furnace at different temperatures between 1180 to 1220 deg. C. Porosity of samples is analysed, before and after the sintering process, by Archimedes technique and by image analysis. Mechanical properties and the reinforcement particles influence in the titanium matrix are studied by flexion test in green and sintered states, and by hardness and microhardness tests. Complimentarily, a microstructural analysis is carried out by optical and electron microscopy, and the reactivity between the reinforce particles and titanium matrix are studied. (authors)

  3. A Brief Research Review for Improvement Methods the Wettability between Ceramic Reinforcement Particulate and Aluminium Matrix Composites

    Science.gov (United States)

    Razzaq, Alaa Mohammed; Majid, Dayang Laila Abang Abdul; Ishak, M. R.; B, Uday M.

    2017-05-01

    The development of new methods for addition fine ceramic powders to Al aluminium alloy melts, which would lead to more uniform distribution and effective incorporation of the reinforcement particles into the aluminium matrix alloy. Recently the materials engineering research has moved to composite materials from monolithic, adapting to the global need for lightweight, low cost, quality, and high performance advanced materials. Among the different methods, stir casting is one of the simplest ways of making aluminium matrix composites. However, it suffers from poor distribution and combination of the reinforcement ceramic particles in the metal matrix. These problems become significantly effect to reduce reinforcement size, more agglomeration and tendency with less wettability for the ceramic particles in the melt process. Many researchers have carried out different studies on the wettability between the metal matrix and dispersion phase, which includes added wettability agents, fluxes, preheating the reinforcement particles, coating the reinforcement particles, and use composting techniques. The enhancement of wettability of ceramic particles by the molten matrix alloy and the reinforcement particles distribution improvement in the solidified matrix is the main objective for many studies that will be discussed in this paper.

  4. The Particle Distribution in Liquid Metal with Ceramic Particles Mould Filling Process

    Science.gov (United States)

    Dong, Qi; Xing, Shu-ming

    2017-09-01

    Adding ceramic particles in the plate hammer is an effective method to increase the wear resistance of the hammer. The liquid phase method is based on the “with the flow of mixed liquid forging composite preparation of ZTA ceramic particle reinforced high chromium cast iron hammer. Preparation method for this system is using CFD simulation analysis the particles distribution of flow mixing and filling process. Taking the 30% volume fraction of ZTA ceramic composite of high chromium cast iron hammer as example, by changing the speed of liquid metal viscosity to control and make reasonable predictions of particles distribution before solidification.

  5. Microstructures and properties of ceramic particle-reinforced metal matrix composite layers produced by laser cladding

    Science.gov (United States)

    Zhang, Qingmao; He, Jingjiang; Liu, Wenjin; Zhong, Minlin

    2005-01-01

    Different weight ratio of titanium, zirconium, WC and Fe-based alloy powders were mixed, and cladded onto a medium carbon steel substrate using a 3kW continuous wave CO2 laser, aiming at producing Ceramic particles- reinforced metal matrix composites (MMCs) layers. The microstructures of the layers are typical hypoeutectic, and the major phases are Ni3Si2, TiSi2, Fe3C, FeNi, MC, Fe7Mo3, Fe3B, γ(residual austenite) and M(martensite). The microstructure morphologies of MMCs layers are dendrites/cells. The MC-type reinforcements are in situ synthesis Carbides which main compositions consist of transition elements Zr, Ti, W. The MC-type particles distributed within dendrite and interdendritic regions with different volume fractions for single and overlapping clad layers. The MMCs layers are dense and free of cracks with a good metallurgical bonding between the layer and substrate. The addition ratio of WC in the mixtures has the remarkable effect on the microhardness of clad layers.

  6. Thermal Protection of Carbon Fiber-Reinforced Composites by Ceramic Particles

    Directory of Open Access Journals (Sweden)

    Baljinder Kandola

    2016-06-01

    Full Text Available The thermal barrier efficiency of two types of ceramic particle, glass flakes and aluminum titanate, dispersed on the surface of carbon-fiber epoxy composites, has been evaluated using a cone calorimeter at 35 and 50 kW/m2, in addition to temperature gradients through the samples’ thicknesses, measured by inserting thermocouples on the exposed and back surfaces during the cone tests. Two techniques of dispersing ceramic particles on the surface have been employed, one where particles were dispersed on semi-cured laminate and the other where their dispersion in a phenolic resin was applied on the laminate surface, using the same method as used previously for glass fiber composites. The morphology and durability of the coatings to water absorption, peeling, impact and flexural tension were also studied and compared with those previously reported for glass-fiber epoxy composites. With both methods, uniform coatings could be achieved, which were durable to peeling or water absorption with a minimal adverse effect on the mechanical properties of composites. While all these properties were comparable to those previously observed for glass fiber composites, the ceramic particles have seen to be more effective on this less flammable, carbon fiber composite substrate.

  7. Ferroelastic ceramic-reinforced metal matrix composites

    OpenAIRE

    2006-01-01

    Composite materials comprising ferroelastic ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the ferroelastic ceramic particulates are subjected to stress, such as the cyclic stress experienced during vibration of the material, internal stresses in the ceramic cause the material to deform via twinning, domain rotation or domain motion thereby dissipating the vibrational energy. The ferroelastic ceramic particulates may also act as reinforcements to impro...

  8. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Rossoll, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)], E-mail: andreas.rossoll@epfl.ch; Weber, L. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Bourke, M.A.M. [Los Alamos National Laboratory (LANL), LANSCE-12, P.O. Box 1663, MS H805, Los Alamos, NM 87545 (United States); Dunand, D.C. [Northwestern University, Department of Materials Science and Engineering, Evanston, IL 60208 (United States); Mortensen, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)

    2008-10-15

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments.

  9. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    International Nuclear Information System (INIS)

    Mueller, R.; Rossoll, A.; Weber, L.; Bourke, M.A.M.; Dunand, D.C.; Mortensen, A.

    2008-01-01

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments

  10. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  11. Piezoelectric ceramic-reinforced metal matrix composites

    OpenAIRE

    2004-01-01

    Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...

  12. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.

    Science.gov (United States)

    Elsaka, Shaymaa E; Elnaghy, Amr M

    2016-07-01

    The aim of this study was to assess the mechanical properties of recently introduced zirconia reinforced lithium silicate glass-ceramic. Two types of CAD/CAM glass-ceramics (Vita Suprinity (VS); zirconia reinforced lithium silicate and IPS e.max CAD (IC); lithium disilicate) were used. Fracture toughness, flexural strength, elastic modulus, hardness, brittleness index, and microstructures were evaluated. Data were analyzed using independent t tests. Weibull analysis of flexural strength data was also performed. VS had significantly higher fracture toughness (2.31±0.17MPam(0.5)), flexural strength (443.63±38.90MPa), elastic modulus (70.44±1.97GPa), and hardness (6.53±0.49GPa) than IC (Pglass-ceramic revealed significantly a higher brittleness index (2.84±0.26μm(-1/2)) (lower machinability) than IC glass-ceramic (Pglass-ceramic revealed a lower probability of failure and a higher strength than IC glass-ceramic according to Weibull analysis. The VS zirconia reinforced lithium silicate glass-ceramic revealed higher mechanical properties compared with IC lithium disilicate glass-ceramic. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites

    Science.gov (United States)

    Ahmad, Iftikhar; Yazdani, Bahareh; Zhu, Yanqiu

    2015-01-01

    Ceramics suffer the curse of extreme brittleness and demand new design philosophies and novel concepts of manufacturing to overcome such intrinsic drawbacks, in order to take advantage of most of their excellent properties. This has been one of the foremost challenges for ceramic material experts. Tailoring the ceramics structures at nanometre level has been a leading research frontier; whilst upgrading via reinforcing ceramic matrices with nanomaterials including the latest carbon nanotubes (CNTs) and graphene has now become an eminent practice for advanced applications. Most recently, several new strategies have indeed improved the properties of the ceramics/CNT nanocomposites, such as by tuning with dopants, new dispersions routes and modified sintering methods. The utilisation of graphene in ceramic nanocomposites, either as a solo reinforcement or as a hybrid with CNTs, is the newest development. This article will summarise the recent advances, key difficulties and potential applications of the ceramics nanocomposites reinforced with CNTs and graphene. PMID:28347001

  14. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  15. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  16. Microanalytical investigation of fibre-reinforced ceramic materials

    International Nuclear Information System (INIS)

    Meier, B.; Grathwohl, G.

    1989-01-01

    Microanalytical investigations have been made on samples of ceramic fibres (SiC fibres, (Nicalon) C fibre coated with TiN) and fibre-reinforced ceramics (SiC-and glass-matrices). High resolution Auger electron spectroscopy (HRAES), electron probe microanalysis (EPMA) and scanning electron microscopy were employed for these examinations. Analysis was best performed with HRAES on account of its lateral and depth resolution. Some of the problems involved in this technique are discussed e.g. electron beam effects. AES depth profiles of ceramic fibres are reported and compared with the surface analysis of fibres in the composites after being broken in situ. (orig.)

  17. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    Science.gov (United States)

    Meek, T.T.; Blake, R.D.

    1985-04-03

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  18. Impact Strength of Composite Materials Based on EN AC-44200 Matrix Reinforced with Al2O3 Particles

    OpenAIRE

    Kurzawa A.; Kaczmar J.W.

    2017-01-01

    The paper presents the results of research of impact strength of aluminum alloy EN AC-44200 based composite materials reinforced with alumina particles. The research was carried out applying the materials produced by the pressure infiltration method of ceramic preforms made of Al2O3 particles of 3-6μm with the liquid EN AC-44200 Al alloy. The research was aimed at determining the composite resistance to dynamic loads, taking into account the volume of reinforcing particles (from 10 to 40% by ...

  19. Performance of universal adhesives on bonding to leucite-reinforced ceramic.

    Science.gov (United States)

    Kim, Ryan Jin-Young; Woo, Jung-Soo; Lee, In-Bog; Yi, Young-Ah; Hwang, Ji-Yun; Seo, Deog-Gyu

    2015-01-01

    This study aimed to investigate the microshear bond strength of universal bonding adhesives to leucite-reinforced glass-ceramic. Leucite-reinforced glass-ceramic blocks were polished and etched with 9.5% hydrofluoric acid for 1 min. The specimens were assigned to one of four groups based on their surface conditioning (n = 16): 1) NC: negative control with no further treatment; 2) SBU: Single Bond Universal (3M ESPE); 3) ABU: ALL-BOND Universal (Bisco); and 4) PC: RelyX Ceramic Primer and Adper Scotchbond Multi-Purpose Adhesive (3M ESPE) as a positive control. RelyX Ultimate resin cement (3M ESPE) was placed on the pretreated ceramic and was light cured. Eight specimens from each group were stored in water for 24 h, and the remaining eight specimens were thermocycled 10,000 times prior to microshear bond strength evaluation. The fractured surfaces were examined by stereomicroscopy and scanning electron microscopy (SEM). After water storage and thermocycling, the microshear bond strength values decreased in the order of PC > SBU and ABU > NC (P universal adhesives were used, conventional surface conditioning using a separate silane and adhesive is preferable to a simplified procedure that uses only a universal adhesive for cementation of leucite-reinforced glass-ceramic.

  20. Selected mechanical properties of aluminum composite materials reinforced with SiC particles

    Directory of Open Access Journals (Sweden)

    A. Kurzawa

    2008-07-01

    Full Text Available This work presents the results of research concerning influence of ceramic particles’ content of silicon carbide on selected mechanical properties of type AW-AlCu4Mg2Mn - SiC composite materials. Composites produced of SiC particles with pressure infiltration method of porous preform and subject to hot plastic forming in the form of open die forging were investigated. The experimental samples contained from 5% up to 45% of reinforcing SiC particles of 8÷10μm diameter. Studies of strength properties demonstrated that the best results, in case of tensile strength as well as offset yield strength, might be obtained while applying reinforcement in the amount of 20-25% vol. of SiC. Application of higher than 25% vol. contents of reinforcing particles leads to gradual strength loss. The investigated composites were characterized by very high functional properties, such as hardness and abrasive wear resistance, whose values increase strongly with the increase of reinforcement amount. The presented results of the experiments shall allow for a more precise component selection of composite materials at the stage of planning and design of their properties.

  1. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  2. Processing and properties of pressable ceramic with non-uniform reinforcement for selective-toughening

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Wei [School of Mechanical and Chemical Engineering, The University of Western Australia, Perth, WA 6009 (Australia); School of Dentistry, The University of Western Australia, WA 6009 (Australia); Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Hu, Xiaozhi, E-mail: xiao.zhi.hu@uwa.edu.au [School of Mechanical and Chemical Engineering, The University of Western Australia, Perth, WA 6009 (Australia); Ichim, Paul [School of Dentistry, The University of Western Australia, WA 6009 (Australia); Sun, Xudong [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China)

    2012-12-15

    Brittle low-strength and low-toughness pressable dental ceramic can be reinforced by ductile elongated gold-particles (GP). A customized crown structure can be adequately strengthened by distributing GP only in critical sections of the crown, where high tensile stresses are experienced. In the present study, a non-uniformly structured ceramic-matrix composite with excellent interfacial bonding, twofold fracture toughness and strength at desired locations, is fabricated using pressable dental ceramic and GP. The layout pattern and sequence of different GP/ceramic powder mixtures, high-temperature flow properties of these mixtures during hot-pressing and the sample mold geometry are used to control the distribution and locations of GP for selective toughening and strengthening. Nano-crystalline structures of the pressable ceramic-matrix and the nano-scaled interfacial region around GP have been revealed by high-magnification field-emission scanning electron microscopy. Toughening and strengthening mechanisms of the elongated GP including residual stresses from composite processing and ductile fracture of GP are discussed together with SEM observations. Bulk flexural strength and local micro-indentation fracture and deformation characteristics of the selective-toughened ceramic/metal composite have been compared to those of the monolithic pressable ceramic to validate the toughening and strengthening mechanisms.

  3. Constitutional equations of thermal stresses of particle-reinforced composite

    International Nuclear Information System (INIS)

    Asakawa, Atsushi; Noda, Naotake; Tohgo, Keiichiro; Tsuji, Tomoaki.

    1994-01-01

    Functionally gradient materials (FGM) have been developed as ultrahigh-heat-resistant materials in aircraft, space engineering and nuclear fields. In the heat-resistant FGM which contain particles (ceramics) in the matrix (metal), the matrix will be subjected to plastic deformation, particles will be debonded, and finally cracks will be generated. The constitutive equations of FGM which take into account the damage process and change in temperature are necessary in order to solve these phenomena. In this paper, the constitutive equations of particle-reinforced composites with consideration of the damage process and change in temperature are estimated by the equivalent inclusion method in terms of elastoplasticity. The stress-strain relations and the coefficients of linear thermal expansion of the composites (Al-PSZ and Ti-PSZ) are calculated in ultrahigh temperature. (author)

  4. Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Selvakumar, S., E-mail: lathaselvam1963@gmail.com [Department of Mechanical Engineering, Nehru Institute of Technology, Coimbatore 641105, Tamil Nadu (India); Department of Mechanical Engineering, Anna University, Chennai 600025, Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa); Palanivel, R., E-mail: rpalanivelme@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa); Ganesh Babu, B., E-mail: profbgb@gmail.com [Department of Mechanical Engineering, Roever College of Engineering and Technology, Perambalur 621212, Tamil Nadu (India)

    2017-03-15

    Aluminum matrix composites (AMCs) reinforced with various ceramic particles suffer a loss in ductility. Hard metallic particles can be used as reinforcement to improve ductility. The present investigation focuses on using molybdenum (Mo) as potential reinforcement for Mo(0,6,12 and 18 vol.%)/6082Al AMCs produced using friction stir processing (FSP). Mo particles were successfully retained in the aluminum matrix in its elemental form without any interfacial reaction. A homogenous distribution of Mo particles in the composite was achieved. The distribution was independent upon the region within the stir zone. The grains in the composites were refined considerably due to dynamic recrystallization and pinning effect. The tensile test results showed that Mo particles improved the strength of the composite without compromising on ductility. The fracture surfaces of the composites were characterized with deeply developed dimples confirming appreciable ductility. - Highlights: •Molybdenum particles used as reinforcement for aluminum composites to improve ductility. •Molybdenum particles were retained in elemental form without interfacial reaction. •Homogeneous dispersion of molybdenum particles were observed in the composite. •Molybdenum particles improved tensile strength without major loss in ductility. •Deeply developed dimples on the fracture surfaces confirmed improved ductility.

  5. Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing

    International Nuclear Information System (INIS)

    Selvakumar, S.; Dinaharan, I.; Palanivel, R.; Ganesh Babu, B.

    2017-01-01

    Aluminum matrix composites (AMCs) reinforced with various ceramic particles suffer a loss in ductility. Hard metallic particles can be used as reinforcement to improve ductility. The present investigation focuses on using molybdenum (Mo) as potential reinforcement for Mo(0,6,12 and 18 vol.%)/6082Al AMCs produced using friction stir processing (FSP). Mo particles were successfully retained in the aluminum matrix in its elemental form without any interfacial reaction. A homogenous distribution of Mo particles in the composite was achieved. The distribution was independent upon the region within the stir zone. The grains in the composites were refined considerably due to dynamic recrystallization and pinning effect. The tensile test results showed that Mo particles improved the strength of the composite without compromising on ductility. The fracture surfaces of the composites were characterized with deeply developed dimples confirming appreciable ductility. - Highlights: •Molybdenum particles used as reinforcement for aluminum composites to improve ductility. •Molybdenum particles were retained in elemental form without interfacial reaction. •Homogeneous dispersion of molybdenum particles were observed in the composite. •Molybdenum particles improved tensile strength without major loss in ductility. •Deeply developed dimples on the fracture surfaces confirmed improved ductility.

  6. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements.

    LENUS (Irish Health Repository)

    Addison, Owen

    2010-09-01

    Cementation of all-ceramic restorations with resin-cements has been demonstrated to reduce the incidence of fracture in service. The aim was to investigate the influence of loading force and loading duration applied during cementation on the reinforcement conferred by a resin-cement on a leucite reinforced glass-ceramic.

  7. Processing and properties of pressable ceramic with non-uniform reinforcement for selective-toughening

    International Nuclear Information System (INIS)

    Yi, Wei; Hu, Xiaozhi; Ichim, Paul; Sun, Xudong

    2012-01-01

    Brittle low-strength and low-toughness pressable dental ceramic can be reinforced by ductile elongated gold-particles (GP). A customized crown structure can be adequately strengthened by distributing GP only in critical sections of the crown, where high tensile stresses are experienced. In the present study, a non-uniformly structured ceramic–matrix composite with excellent interfacial bonding, twofold fracture toughness and strength at desired locations, is fabricated using pressable dental ceramic and GP. The layout pattern and sequence of different GP/ceramic powder mixtures, high-temperature flow properties of these mixtures during hot-pressing and the sample mold geometry are used to control the distribution and locations of GP for selective toughening and strengthening. Nano-crystalline structures of the pressable ceramic–matrix and the nano-scaled interfacial region around GP have been revealed by high-magnification field-emission scanning electron microscopy. Toughening and strengthening mechanisms of the elongated GP including residual stresses from composite processing and ductile fracture of GP are discussed together with SEM observations. Bulk flexural strength and local micro-indentation fracture and deformation characteristics of the selective-toughened ceramic/metal composite have been compared to those of the monolithic pressable ceramic to validate the toughening and strengthening mechanisms.

  8. Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites

    Science.gov (United States)

    Meng, Guanghui; Yue, T. M.; Lin, Xin; Yang, Haiou; Xie, Hui; Ding, Xu

    2015-07-01

    Traditionally, the laser melt injection (LMI) technique can only be used for forming ceramic particles reinforced metal matrix composites (MMCs) for enhancing surface properties of lightweight engineering materials. In this research, the LMI method was employed to form metal particles reinforced MMCs on AZ91D instead. This was viable because of the unique properties of the AlCoCrCuFeNi high-entropy alloy (HEA) metal particles used. The large difference in melting point between the HEA and the substrate material (AZ91D), and the limited reaction and the lack of fusion between the HEA and Mg have made it possible that a metal particles reinforced AZ91D composite material was produced. The reason of limited reaction was considered mainly due to the relatively high mixing enthalpy between the HEA constituent elements and Mg. Although there was some melting occurred at the particles surface with some solute segregation found in the vicinity close to the surface, intermetallic compounds were not observed. With regard to the wear resistance of the MMCs, it was found that when the volume fraction of the reinforcement phase, i.e. the HEA particles, reached about 0.4, the wear volume loss of the coating was only one-seventh of that of the substrate material.

  9. Development of novel Mg–Ni60Nb40 amorphous particle reinforced composites with enhanced hardness and compressive response

    International Nuclear Information System (INIS)

    Jayalakshmi, S.; Sahu, Shreyasi; Sankaranarayanan, S.; Gupta, Sujasha; Gupta, M.

    2014-01-01

    Development of amorphous alloy/glassy particle reinforced light metal composites is an emerging research field. In this investigation, we have synthesized and characterized Ni 60 Nb 40 amorphous alloy particle reinforced Mg-composites with varying volume fractions. Microwave-assisted two-directional rapid sintering technique followed by hot extrusion was used to produce these pure Mg-based composites. The structural and mechanical properties of the developed composites were investigated, and are discussed using structure–property relationship. Structural analysis indicated the retention of amorphous structure of the reinforcement in all the composites. It was found that the distribution of the reinforcement was strongly dependent on the volume fraction (V f ). The addition of Ni 60 Nb 40 amorphous alloy particles modified the preferred crystal orientation of Mg, as was observed from X-ray diffraction (XRD) analysis. The composites showed significant improvement in hardness (increment up to 120%) and compressive strength (∼85% increase at 5% V f ). Comparison of mechanical properties of the developed composites with those of conventional Mg-composites having ceramic/metallic reinforcements, highlight the effectiveness of using amorphous particles as promising reinforcement materials. - Highlights: • Novel Mg-composites reinforced with Ni 60 Nb 40 amorphous particles were developed . • Microwave sintering and hot extrusion were used to synthesize the composites. • Reinforcements retained the amorphous structure, and changed Mg-crystal orientation. • Composites showed significant enhancement in hardness and compressive properties. • Performance of developed composites are superior/competitive to conventional MMCs

  10. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  11. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  12. Laser cladding in-situ carbide particle reinforced Fe-based composite coatings with rare earth oxide addition

    Institute of Scientific and Technical Information of China (English)

    吴朝锋; 马明星; 刘文今; 钟敏霖; 张红军; 张伟明

    2009-01-01

    Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal surface with various volume fractions of ceramic particles.Recent literatures showed that laser melting of powder mixture containing carbon and carbide-forming elements,was favorable for the formation of in-situ synthesized carbide particles.In this paper,rare earth oxide(RE2O3) was added into t...

  13. Advances in Thermal Spray Deposition of Billets for Particle Reinforced Light Metals

    International Nuclear Information System (INIS)

    Wenzelburger, Martin; Zimmermann, Christian; Gadow, Rainer

    2007-01-01

    Forming of light-metals in semi-solid state offers some advantages like low process temperatures, improved mould durability, good flow behavior and fine, globular microstructure of the final material. By the introduction of ceramic particles, increased elastic modulus and yield strength as well as wear resistance and creep behavior can be obtained. By semi-solid forging or semi-solid casting, particle reinforced metals (PRM) can be produced with improved matrix microstructure and beneficial forming process parameters compared to conventional MMC manufacturing techniques. The production of this kind of light metal matrix composites requires the supply of dense semi-finished parts with well defined volume fractions of homogeneously distributed particulate reinforcement. A manufacturing method for cylindrical light metal billets is described that applies thermal spraying as a build-up process for simultaneous deposition of matrix and reinforcement phase with cored wires as spraying material. Thermal spraying leads to small grain sizes and prevents dendrite formation. However, long process cycle times lead to billet heating and recrystallization of the matrix microstructure. In order to preserve small grain sizes that enable semi-solid forming, the thermal spraying process was analyzed by in-flight particle analysis and thermography. As a consequence, the deposition process was optimized by adaptation of the thermal spraying parameters and by application of additional cooling, leading to lower billet temperatures and finer PRM billet microstructure

  14. Characterization of microstructure of Si3N4 whisker reinforced glass ceramic

    International Nuclear Information System (INIS)

    Han, Byoung Sung; Choi, Shung Shaon

    1993-01-01

    Glass ceramics, especially fiber-reinforced composite ceramics, have attracted a great deal of attention in improving the reliability of ceramic components because of the improvement in various mechanical properties. Through hot-pressing and sintering, 225 cordierite was transformed with glass ceramic and mullite phase. Particularly glass glain size increased with the increasing of the sintering temperature and the heat treatment enhance the toughness and hardness of materials. Like the increased sintering temperature, the roughness increased with increasing whisker vol.%. In case of whisker-rinforced glass ceramic, the fracture surface of samples has been associated with a whisker orientation of samples. (Author)

  15. Impact Strength of Composite Materials Based on EN AC-44200 Matrix Reinforced with Al2O3 Particles

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-09-01

    Full Text Available The paper presents the results of research of impact strength of aluminum alloy EN AC-44200 based composite materials reinforced with alumina particles. The research was carried out applying the materials produced by the pressure infiltration method of ceramic preforms made of Al2O3 particles of 3-6μm with the liquid EN AC-44200 Al alloy. The research was aimed at determining the composite resistance to dynamic loads, taking into account the volume of reinforcing particles (from 10 to 40% by volume at an ambient of 23°C and at elevated temperatures to a maximum of 300°C. The results of this study were referred to the unreinforced matrix EN AC-44200 and to its hardness and tensile strength. Based on microscopic studies, an analysis and description of crack mechanics of the tested materials were performed. Structural analysis of a fracture surface, material structures under the crack surfaces of the matrix and cracking of the reinforcing particles were performed.

  16. ECAP – New consolidation method for production of aluminium matrix composites with ceramic reinforcement

    Directory of Open Access Journals (Sweden)

    Mateja Šnajdar Musa

    2013-06-01

    Full Text Available Aluminium based metal matrix composites are rapidly developing group of materials due to their unique combination of properties that include low weight, elevated strength, improved wear and corrosion resistance and relatively good ductility. This combination of properties is a result of mixing two groups of materials with rather different properties with aluminium as ductile matrix and different oxides and carbides added as reinforcement. Al2O3, SiC and ZrO2 are the most popular choices of reinforcement material. One of the most common methods for producing this type of metal matrix composites is powder metallurgy since it has many variations and also is relatively low-cost method. Many different techniques of compacting aluminium and ceramic powders have been previously investigated. Among those techniques equal channel angular pressing (ECAP stands out due to its beneficial influence on the main problem that arises during powder compaction and that is a non-uniform distribution of reinforcement particles. This paper gives an overview on ECAP method principles, advantages and produced powder composite properties.

  17. Characterization and surface treatment effects on topography of a glass-infiltrated alumina/zirconia-reinforced ceramic.

    Science.gov (United States)

    Della Bona, Alvaro; Donassollo, Tiago A; Demarco, Flávio F; Barrett, Allyson A; Mecholsky, John J

    2007-06-01

    Characterize the microstructure, composition and some physical properties of a glass-infiltrated alumina/zirconia-reinforced ceramic (IZ) and the effect of surface treatment on topography. IZ ceramic specimens were fabricated according to ISO6872 instructions and polished through 1 microm alumina abrasive. Quantitative and qualitative analyses were performed using scanning electron microscopy (SEM), backscattered imaging (BSI), electron dispersive spectroscopy (EDS) and stereology. The elastic modulus (E) and Poisson's ratio (nu) were determined using ultrasonic waves, and the density (rho) using a helium pycnometer. The following ceramic surface treatments were used: AP-as-polished; HF-etching with 9.5% hydrofluoric acid for 90 s; SB-sandblasting with 25 microm aluminum oxide particles for 15s and SC-blasting with 30 microm aluminum oxide particles modified by silica (silica coating) for 15s. An optical profilometer was used to examine the surface roughness (Ra) and SEM-EDS were used to measure the amount of silica after all treatments. The IZ mean property values were as follows: rho=4.45+/-0.01 g/cm(3); nu=0.26 and E=245 GPa. Mean Ra values were similar for AP- and HF-treated IZ but significantly increased after either SC or SB treatment (pceramic. Treating IZ with either SB or SC produced greater Ra values and the SC showed a significant increase in the surface concentration of silica, which may enhance bonding to resin via silane coupling.

  18. Composite of ceramic-coated magnetic alloy particles

    Science.gov (United States)

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.

  19. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    International Nuclear Information System (INIS)

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  20. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites.

    Science.gov (United States)

    Estili, Mehdi; Sakka, Yoshio

    2014-12-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  1. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    Science.gov (United States)

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  2. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F.

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  3. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  4. Method for producing ceramic particles and agglomerates

    Science.gov (United States)

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2001-01-01

    A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.

  5. Influence of Surface Conditioning Protocols on Reparability of CAD/CAM Zirconia-reinforced Lithium Silicate Ceramic.

    Science.gov (United States)

    Al-Thagafi, Rana; Al-Zordk, Walid; Saker, Samah

    2016-01-01

    To test the effect of surface conditioning protocols on the reparability of CAD/CAM zirconia-reinforced lithium silicate ceramic compared to lithium-disilicate glass ceramic. Zirconia-reinforced lithium silicate ceramic (Vita Suprinity) and lithium disilicate glass-ceramic blocks (IPS e.max CAD) were categorized into four groups based on the surface conditioning protocol used. Group C: no treatment (control); group HF: 5% hydrofluoric acid etching for 60 s, silane (Monobond-S) application for 60 s, air drying; group HF-H: 5% HF acid etching for 60 s, application of silane for 60 s, air drying, application of Heliobond, light curing for 20 s; group CO: sandblasting with CoJet sand followed by silanization. Composite resin (Tetric EvoCeram) was built up into 4 x 6 x 3 mm blocks using teflon molds. All specimens were subjected to thermocycling (5000x, 5°C to 55°C). The microtensile bond strength test was employed at a crosshead speed of 1 mm/min. SEM was employed for evaluation of all the debonded microbars, the failure type was categorized as either adhesive (failure at adhesive layer), cohesive (failure at ceramic or composite resin), or mixed (failure between adhesive layer and substrate). Two-way ANOVA and the Tukey's HSD post-hoc test were applied to test for significant differences in bond strength values in relation to different materials and surface pretreatment (p ceramic types used (p ceramics and lithium-disilicate glass ceramic could be improved when ceramic surfaces are sandblasted with CoJet sand followed by silanization.

  6. Thermal Conductivity Measurement and Analysis of Fully Ceramic Microencapsulated fuel

    International Nuclear Information System (INIS)

    Lee, H. G.; Kim, D. J.; Park, J. Y.; Kim, W. J.; Lee, S. J.

    2015-01-01

    FCM nuclear fuel is composed of tristructural isotropic(TRISO) fuel particle and SiC ceramic matrix. SiC ceramic matrix play an essential part in protecting fission product. In the FCM fuel concept, fission product is doubly protected by TRISO coating layer and SiC ceramic matrix in comparison with the current commercial UO2 fuel system of LWR. In addition to a safety enhancement of FCM fuel, thermal conductivity of SiC ceramic matrix is better than that of UO2 fuel. Because the centerline temperature of FCM fuel is lower than that of the current UO2 fuel due to the difference of thermal conductivity of fuel, an operational release of fission products from the fuel can be reduced. SiC ceramic has attracted for nuclear fuel application due to its high thermal conductivity properties with good radiation tolerant properties, a low neutron absorption cross-section and a high corrosion resistance. Thermal conductivity of ceramic matrix composite depends on the thermal conductivity of each component and the morphology of reinforcement materials such as fibers and particles. There are many results about thermal conductivity of fiber-reinforced composite like as SiCf/SiC composite. Thermal conductivity of SiC ceramics and FCM pellets with the volume fraction of TRISO particles were measured and analyzed by analytical models. Polycrystalline SiC ceramics and FCM pellets with TRISO particles were fabricated by hot press sintering with sintering additives. Thermal conductivity of the FCM pellets with TRISO particles of 0 vol.%, 10 vol.%, 20 vol.%, 30 vol.% and 40 vol.% show 68.4, 52.3, 46.8, 43.0 and 34.5 W/mK, respectively. As the volume fraction of TRISO particles increased, the measured thermal conductivity values closely followed the prediction of Maxwell's equation

  7. Elastic Property Simulation of Nano-particle Reinforced Composites

    Directory of Open Access Journals (Sweden)

    He Jiawei

    2016-01-01

    Full Text Available A series of numerical micro-mechanical models for two kinds of particle (cylindrical and discal particle reinforced composites are developed to investigate the effect of microstructural parameters on the elastic properties of composites. The effects of both the degree of particle clustering and particle’s shape on the elastic mechanical properties of composites are investigated. In addition, single particle unit cell approximation is good enough for the analysis of the effect of averaged parameters when only linear elastic response is considered without considering the particle clustering in particle-reinforced composites.

  8. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    Science.gov (United States)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  9. Fracture strength and bending of all-ceramic and fiber-reinforced composites in inlay-retained fixed partial dentures

    Directory of Open Access Journals (Sweden)

    Serkan Saridag

    2012-06-01

    Conclusions: Zirconia-based ceramic inlay-retained fixed partial dentures demonstrated the highest fracture strength. The fiber-reinforced composite inlay-retained fixed partial dentures demonstrated higher bending values than did the all-ceramic inlay-retained fixed partial dentures.

  10. Development of Composite for Thermal Barriers Reinforced by Ceramic Fibers

    Directory of Open Access Journals (Sweden)

    Ondřej Holčapek

    2018-01-01

    Full Text Available The paper introduces the development process of fiber-reinforced composite with increased resistance to elevated temperatures, which could be additionally increased by the hydrothermal curing. However, production of these composites is extremely energy intensive, and that is why the process of the design reflects environmental aspects by incorporation of waste material—fine ceramic powder applied as cement replacement. Studied composite materials consisted of the basalt aggregate, ceramic fibers applied up to 8% by volume, calcium-aluminous cement (CAC, ceramic powder up to 25% by mass (by 5% as cement replacement, plasticizer, and water. All studied mixtures were subjected to thermal loading on three thermal levels: 105°C, 600°C, and 1000°C. Experimental assessment was performed in terms of both initial and residual material properties; flow test of fresh mixtures, bulk density, compressive strength, flexural strength, fracture energy, and dynamic modulus of elasticity were investigated to find out an optimal dosage of ceramic fibers. Resulting set of composites containing 4% of ceramic fibers with various modifications by ceramic powder was cured under specific hydrothermal condition and again subjected to elevated temperatures. One of the most valuable benefits of additional hydrothermal curing of the composites lies in the higher residual mechanical properties, what allows successful utilization of cured composite as a thermal barrier in civil engineering. Mixtures containing ceramic powder as cement substitute exhibited after hydrothermal curing increase of residual flexural strength about 35%; on the other hand, pure mixture exhibited increase up to 10% even higher absolute values.

  11. Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness.

    Science.gov (United States)

    Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe

    2018-06-01

    To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  12. Predicting Mechanical Properties of Metal Matrix Syntactic Foams Reinforced with Ceramic Spheres

    Science.gov (United States)

    2012-01-01

    predicting the properties of interest listed above. Kiser et al. [12] extended a metal foam model to account for ceramic reinforcement to predict the...Daoud A. J Alloys Compd. 2009; 487:618. 11. Drury WJ, Rickles SA, Sanders Jr TH, Cochran JK. In Light-Weight Alloys for Aerospace Applications, ed. Loe

  13. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.

  14. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    Science.gov (United States)

    Lackey, Jr., Walter J.; Caputo, Anthony J.

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  15. Nano/micro particle beam for ceramic deposition and mechanical etching

    International Nuclear Information System (INIS)

    Chun, Doo-Man; Kim, Min-Saeng; Kim, Min-Hyeng; Ahn, Sung-Hoon; Yeo, Jun-Cheol; Lee, Caroline Sunyong

    2010-01-01

    Nano/micro particle beam (NPB) is a newly developed ceramic deposition and mechanical etching process. Additive (deposition) and subtractive (mechanical etching) processes can be realized in one manufacturing process using ceramic nano/micro particles. Nano- or micro-sized powders are sprayed through the supersonic nozzle at room temperature and low vacuum conditions. According to the process conditions, the ceramic powder can be deposited on metal substrates without thermal damage, and mechanical etching can be conducted in the same process with a simple change of process conditions and powders. In the present work, ceramic aluminum oxide (Al 2 O 3 ) thin films were deposited on metal substrates. In addition, the glass substrate was etched using a mask to make small channels. Deposited and mechanically etched surface morphology, coating thickness and channel depth were investigated. The test results showed that the NPB provides a feasible additive and subtractive process using ceramic powders.

  16. Effect of Impact Angle on Ceramic Deposition Behavior in Composite Cold Spray: A Finite-Element Study

    Science.gov (United States)

    Chakrabarty, Rohan; Song, Jun

    2017-10-01

    During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.

  17. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  18. Theoretical and experimental analysis of the toughening behavior of whisker reinforcement in ceramic matrix composites

    International Nuclear Information System (INIS)

    Becher, P.F.; Hsueh, C.H.; Angelini, P.; Tiegs, T.N.

    1988-01-01

    Analytical solutions are presented describing the experimentally verified toughening of whisker reinforced ceramics. Clear insights are provided into the interrelationships of whiskers, matrices, and interfaces in the case of strong interfaces with minimized whisker pullout

  19. Slip casting nano-particle powders for making transparent ceramics

    Science.gov (United States)

    Kuntz, Joshua D [Livermore, CA; Soules, Thomas F [Livermore, CA; Landingham, Richard Lee [Livermore, CA; Hollingsworth, Joel P [Oakland, CA

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  20. In vitro comparison of the biological activity of alumina ceramic and titanium particles associated with aseptic loosening

    International Nuclear Information System (INIS)

    Ding Yue; Qin Chuqiang; Xu Jie; Huang Dongsheng; Fu Yuru

    2012-01-01

    Prosthetic wear particles are thought to play a central role in the initiation and development of periprosthetic osteolysis, leading to aseptic loosening of prostheses. This study aimed to compare the biological activity of ceramic and titanium particles that are associated with particle-induced, aseptic joint loosening. Different sizes of alumina-ceramic particles and titanium particles were prepared to stimulate murine macrophage cells RAW 264.7, of which the expressions of tumor necrosis factor alpha (TNF-alpha) and receptor activator of nuclear factor-κB ligand (RANKL) were measured by qPCR and ELISA at various time points. In the presence of all particles, the expression of TNF-alpha increased in a time-dependent manner, whereas the expression of RANKL showed no regular expression patterns. Notably, particles of smaller sizes provoked significantly higher levels of TNF-alpha and RANKL than those of larger sizes. Compared to the titanium particles, the ceramic particles provoked a significantly lower production of TNF-alpha. Thus, the bioactivities of titanium and alumina ceramic particles were inversely proportional to the sizes of the particles, and the expression of RANKL was not parallel to that of TNF-alpha. The successful outcome of ceramic-on-ceramic artificial joint prostheses may be attributed to the low biological activity of ceramic particles, as evidenced here. (paper)

  1. Characterization, optical properties and laser ablation behavior of epoxy resin coatings reinforced with high reflectivity ceramic particles

    Science.gov (United States)

    Li, Wenzhi; Kong, Jing; Wu, Taotao; Gao, Lihong; Ma, Zhuang; Liu, Yanbo; Wang, Fuchi; Wei, Chenghua; Wang, Lijun

    2018-04-01

    Thermal damage induced by high power energy, especially high power laser, significantly affects the lifetime and performance of equipment. High-reflectance coating/film has attracted considerable attention due to its good performance in the damage protection. Preparing a high-reflectance coating with high reaction endothermal enthalpy will effectively consume a large amount of incident energy and in turn protect the substrate from thermal damage. In this study, a low temperature process was used to prepare coatings onto substrate with complex shape and avoid thermal effect during molding. An advanced high reflection ceramic powder, La1‑xSrxTiO3+δ , was added in the epoxy adhesive matrix to improve the reflectivity of coating. The optical properties and laser ablation behaviors of coatings with different ceramic additive ratio of La1‑xSrxTiO3+δ and modified epoxy-La1‑xSrxTiO3+δ with ammonium polyphosphate coatings were investigated, respectively. We found that the reflectivity of coatings is extremely high due to mixed high-reflection La1‑xSrxTiO3+δ particles, up to 96% at 1070 nm, which can significantly improve the laser resistance. In addition, the ammonium polyphosphate modifies the residual carbon structure of epoxy resin from discontinuous fine particles structure to continuous and porous structure, which greatly enhances the thermal-insulation property of coating. Furthermore, the laser ablation threshold is improved obviously, which is from 800 W cm‑2 to 1000 W cm‑2.

  2. Behavior of micro-particles in monolith ceramic membrane filtration with pre-coagulation.

    Science.gov (United States)

    Yonekawa, H; Tomita, Y; Watanabe, Y

    2004-01-01

    This paper is intended to clarify the characteristics unique to monolith ceramic membranes with pre-coagulation by referring to the behavior of micro-particles. Flow analysis and experiments have proved that monolith ceramic membranes show a unique flow pattern in the channels within the element, causing extremely rapid flocculation in the channel during dead-end filtration. It was assumed that charge-neutralized micro-particles concentrated near the membrane surface grow in size due to flocculation, and as a result, coarse micro-particles were taken up by the shearing force to flow out. As the dead end points of flow in all the channels are located near the end of the channels with higher filterability, most of the flocculated coarse particles are formed to a columnar cake intensively at the dead end point. Therefore cake layer forming on the membrane other than around the dead end point is alleviated. This behavior of particle flocculation and cake formation at the dead end point within the channels are unique characteristics of monolith ceramic membranes. This is why all monolith ceramic membrane water purification systems operating in Japan do not have pretreatment equipment for flocculation and sedimentation.

  3. Study on the improvement of high temperature mechanical properties of carbon fiber reinforced ceramics composites through texture and interface controls; Tanso sen`i kyoka ceramics fukugo zairyo no soshiki kaimen seigyo ni yoru koon rikigaku tokusei kaizen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    To improve the tenacity and reliability of ceramics, the fiber reinforced ceramics composites compounding high strength long fibers and ceramics have been investigated. In this study, carbon fibers were selected as reinforcement fibers. The hexagonal boron nitride (hBN) was selected as a matrix having the plastic deformation performance. To intend to control the composition of the fiber/matrix interface, composites were created by adding polysilazane which was an organic Si (Si3N4) source. Relationships between the condition of interface of each phase and the high temperature mechanical properties were examined by changing the fabrication condition, to grasp the technical problems, such as the optimization of fabrication condition. Knowledge on the fabrication of long fiber reinforced ceramics composites was obtained including the arbitrary control technology of interface consistency of ceramics composites for super high temperature structures. The carbon fiber reinforced hBN composites developed in this study have excellent strength up to 1,500 centigrade and fracture energy, and they are new prospective materials as well as C/C composites. 4 refs., 37 figs., 13 tabs.

  4. Fracture toughness of Ceramic-Fiber-Reinforced Metallic-Intermetallic-Laminate (CFR-MIL) composites

    International Nuclear Information System (INIS)

    Vecchio, Kenneth S.; Jiang, Fengchun

    2016-01-01

    Novel Ceramic-Fiber-Reinforced-Metal-Intermetallic-Laminate (CFR-MIL) composites, Ti–Al 3 Ti–Al 2 O 3 –Al, were synthesized by reactive foil sintering in air. Microstructure controlled material architectures were achieved with continuous Al 2 O 3 fibers oriented in 0° and 90° layers to form fully dense composites in which the volume fractions of all four component phases can be tailored. Bend fracture specimens were cut from the laminate plates in divider orientation, and bend tests were performed to study the fracture behavior of CFR-MIL composites under three-point and four-point bending loading conditions. The microstructures and fractured surfaces of the CFR-MIL composites were examined using optical microscopy and scanning electron microscopy to establish a correlation between the fracture toughness, fracture surface morphology and microstructures of CFR-MIL composites. The fracture and toughening mechanisms of the CFR-MIL composites are also addressed. The present experimental results indicate that the fracture toughness of CFR-MIL composites determined by three- and four-point bend loading configurations are quite similar, and increased significantly compared to MIL composites without ceramic fiber reinforcement. The interface cracking behavior is related to the volume fraction of the brittle Al 3 Ti phase and residual ductile Al, but the fracture toughness values appear to be insensitive to the ratio of these two phases. The toughness appears to be dominated by the ductility/strength of the Ti layers and the strength and crack bridging effect of the ceramic fibers.

  5. Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Vaughn, Wallace L.; Scotti, Stephan J.; Ashe, Melissa P.; Connolly, Liz

    2007-01-01

    A set of lecture slides describes an investigation of creep forming as a means of imparting desired curvatures to initially flat stock plates of carbon-reinforced ceramic-matrix composite (C-CMC) materials. The investigation is apparently part of a continuing effort to develop improved means of applying small CCMC repair patches to reinforced carbon-carbon leading edges of aerospace vehicles (e.g., space shuttles) prior to re-entry into the atmosphere of the Earth. According to one of the slides, creep forming would be an intermediate step in a process that would yield a fully densified, finished C-CMC part having a desired size and shape (the other steps would include preliminary machining, finish machining, densification by chemical vapor infiltration, and final coating). The investigation included experiments in which C-CMC disks were creep-formed by heating them to unspecified high temperatures for time intervals of the order of 1 hour while they were clamped into single- and double-curvature graphite molds. The creep-formed disks were coated with an oxidation- protection material, then subjected to arc-jet tests, in which the disks exhibited no deterioration after exposure to high-temperature test conditions lasting 490 seconds.

  6. Properties and performance of polysiloxane-derived ceramic matrix in heat resistant composites reinforced with R-glass or fine ceramic fibres

    Czech Academy of Sciences Publication Activity Database

    Černý, Martin; Glogar, Petr; Sucharda, Zbyněk; Machovič, V.

    2005-01-01

    Roč. 49, č. 3 (2005), s. 145-152 ISSN 0862-5468 R&D Projects: GA ČR(CZ) GA106/02/0177; GA ČR(CZ) GP106/02/P025 Institutional research plan: CEZ:AV0Z30460519 Keywords : polysiloxane resin * fibre-reinforced composite * mechanical properties Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass Impact factor: 0.463, year: 2005

  7. Mechanical behaviour of aluminium matrix composites with particles in high temperature

    International Nuclear Information System (INIS)

    Amigo, V.; Salvador, M. D.; Ferrer, C.; Costa d, C. E.; Busquets, D.

    2001-01-01

    The aluminium matrix composites materials reinforced by ceramic particles can be elaborated by powder metallurgy techniques, with extrusion processes. These can provide new materials, with a better mechanical behaviour and moreover when we need those properties at higher temperatures. Aluminium alloy reinforced composites with silicon nitride particles by powder extrusion process was done. Their mechanical properties were characterised at room and elevated temperatures. (Author) 28 refs

  8. Effects of particle/matrix interfaces on the mechanical properties for SiCp or YAl2p reinforced Mg–Li composites

    International Nuclear Information System (INIS)

    Zhang, Q.Q.; Wu, G.Q.; Huang, Z.; Tao, Y.

    2014-01-01

    Highlights: • The particle/matrix interfaces in Mg–Li matrix composites are characterized. • The different reinforcement types with intermetallics and ceramics are considered. • The failure behaviors for the composites are successfully studied. • The effect of particle/matrix interface on the mechanical properties is discussed. -- Abstract: YAl 2p or SiC P reinforced Mg–14Li–3Al (LA143) matrix composites were prepared by stir-casting. The composites were subjected to fracture toughness and tensile tests. The particle/matrix interfaces were investigated by nanoindentation combined with scanning electron microscopy (SEM). The effects of the particle/matrix interfaces on the mechanical properties of the composites were discussed through a unit cell model with a transition interface layer. The results show that a transition interface layer with smoother hardness and modulus gradient is developed in the YAl 2 /LA143 composite. Both the fracture toughness and ductility for the YAl 2 /LA143 composite are higher than those for the SiC/LA143 composite. The failure behavior is determined by particle breakage with little interfacial breakage for the YAl 2 /LA143 composite, while being due to interfacial breakage for the SiC/LA143 composite. The superiority of the mechanical properties for the YAl 2 /LA143 composite may result from the failure behavior of particle breakage, which are correlated to the better physical compatibility between the YAl 2 intermetallics and LA143 matrix

  9. Cytotoxicity evaluation of ceramic particles of different sizes and shapes.

    Science.gov (United States)

    Yamamoto, Akiko; Honma, Rieko; Sumita, Masae; Hanawa, Takao

    2004-02-01

    When artificial hip or knee joints are implanted in the human body, they release metallic, ceramic, and polymeric debris into the surrounding tissues. The toxicity of the released particles is of two types: chemical, caused by the released soluble ions and monomers, and mechanical, a result of mechanical stimulation produced by the insoluble particles. In this study, the cytotoxicity of particles of TiO2, Al2O3, ZrO2, Si3N4, and SiC for murine fibroblasts and macrophages were examined to evaluate just their mechanical toxicity because these particles are not expected to release soluble metal ions. Different sizes and shapes of TiO2 particles were used to evaluate the effect of size and shape on particle cytotoxicity. The results suggest that the cytotoxicity of ceramic particles does not depend on their chemical species. Cytotoxicity levels were lower than those of corresponding metal ions, indicating that the mechanical toxicity of particles is lower than the chemical toxicity of released soluble ions and monomers. The differences in size did not affect the mechanical toxicity of these particles. The dendritic particles had a higher cytotoxicity level for macrophages than did spindle and spheric particles. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 244-256, 2004

  10. Metal Matrix Composites Reinforced by Nano-Particles—A Review

    Directory of Open Access Journals (Sweden)

    Riccardo Casati

    2014-03-01

    Full Text Available Metal matrix composites reinforced by nano-particles are very promising materials, suitable for a large number of applications. These composites consist of a metal matrix filled with nano-particles featuring physical and mechanical properties very different from those of the matrix. The nano-particles can improve the base material in terms of wear resistance, damping properties and mechanical strength. Different kinds of metals, predominantly Al, Mg and Cu, have been employed for the production of composites reinforced by nano-ceramic particles such as carbides, nitrides, oxides as well as carbon nanotubes. The main issue of concern for the synthesis of these materials consists in the low wettability of the reinforcement phase by the molten metal, which does not allow the synthesis by conventional casting methods. Several alternative routes have been presented in literature for the production of nano-composites. This work is aimed at reviewing the most important manufacturing techniques used for the synthesis of bulk metal matrix nanocomposites. Moreover, the strengthening mechanisms responsible for the improvement of mechanical properties of nano-reinforced metal matrix composites have been reviewed and the main potential applications of this new class of materials are envisaged.

  11. Rare earth oxide reinforced Al{sub 2}O{sub 3}-TiO{sub 2} ceramics for inert coating of metallic parts for petroleum extraction

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Yoggendra Prasad; Rego, Sheila Alves Bezerra da Costa; Ferreira, Ricardo Artur Sanguinetti [Universidade Federal de Pernambuco (UFPE), Recife (Brazil)

    2012-07-01

    Recent findings of largest known pre-salt petroleum reservoir in Brazil have created an intense demand for new materials capable of withstanding direct contact with the crude petroleum as it is a highly corrosive and chemically reactive fluid. Petroleum drilling equipment, storage tanks and transportation systems suffer from constant physical stress caused by chemical attack of crude petroleum on its structure. Ceramics are materials with high chemical stability in hostile environment and therefore can be used as an inert coating material to resolve such problems. To date, ceramics based on alumina are most widely used in practice where there is demand for high mechanical strength and high fracture toughness. However intrinsic fragility of ceramics is still a fatal factor for their use in mechanical structures. To improve these characteristics, usually ceramics are reinforced with one or more ceramic additives. Mechanical properties of alumina based ceramics improve considerably with the addition of TiO{sub 2}, TiN, ZrO{sub 2} etc. ceramic additives. Nucleation and propagation of cracks is a major problem for ceramic coating applications. Initial studies show that addition of small percentages of rare earth oxides can increase the toughness of the alumina based ceramics. In the present work, we have produced rare-earth oxide (CeO{sub 2}) reinforced Al{sub 2}O{sub 3}-TiO{sub 2} ceramics in proportions of 5-20 wt% TiO{sub 2} and 2%wt% CeO{sub 2} through thermomechanical processing and sintering techniques and studied there microstructural characteristics and mechanical properties. To evaluate the potential of these ceramics as inert coatings for crude petroleum extraction, storage and transportation systems, we have studied the physic-chemical and mechanical stability of these ceramics in crude petroleum environment. Our studies presented satisfactory results in terms of physic-chemical and mechanical stability of these materials for the use of 2wt% of CeO{sub 2

  12. High temperature strengthening of zirconium-toughened ceramics

    International Nuclear Information System (INIS)

    Claussen, N.

    1986-01-01

    Transformation-toughened (i.e. ZrO/sub 2/-toughened) ceramics represent a new class of high performance ceramics with spectacular strength properties at low and intermediate temperatures. However, at temperatures above about 700 0 C, most of these tough oxide-base ceramics can no longer be used as load-bearing engineering parts because of characteristic deficiencies. The aim of the present paper is to provide and discuss microstructural design strategies which may enable ZrO/sub 2/-toughened ceramics to be applied at higher temperatures. From the various strategies suggested, three appear to show good prospects, namely (a) the prevention of glassy intergranular films, (b) the addition of hard high modulus particles and (c) whikser or fibre reinforcement. Experimental approaches are presented from some ZrO/sub 2/-toughened ceramics, elg. tetragonal ZrO/sub 2/ polycrystals and ZrO/sub 2/-toughened cordierite, spinel and mullite

  13. Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Wu Shenqing

    2010-11-01

    Full Text Available The preparation and properties of ceramic short fiber reinforced Al-Si alloy matrix composite and it’s application on the piston for internal combustion engines are presented. Alumina or aluminosilicate fibers reinforced Al-Si alloy matrix composite has more excellent synthetical properties at elevated temperature than the matrix alloys. A partially reinforced Al-Si alloy matrix composite piston produced by squeeze casting technique has a firm interface between reinforced and unreinforced areas, low reject rate and good technical tolerance. As a new kind of piston material, it has been used for mass production of about 400,000 pieces of automobile engines piston. China has become one of a few countries in which aluminum alloy matrix composite materials have been used in automobile industry and attained industrialization.

  14. Niobium Carbide-Reinforced Al Matrix Composites Produced by High-Energy Ball Milling

    Science.gov (United States)

    Travessa, Dilermando Nagle; Silva, Marina Judice; Cardoso, Kátia Regina

    2017-06-01

    Aluminum and its alloys are key materials for the transportation industry as they contribute to the development of lightweight structures. The dispersion of hard ceramic particles in the Al soft matrix can lead to a substantial strengthening effect, resulting in composite materials exhibiting interesting mechanical properties and inspiring their technological use in sectors like the automotive and aerospace industries. Powder metallurgy techniques are attractive to design metal matrix composites, achieving a homogeneous distribution of the reinforcement into the metal matrix. In this work, pure aluminum has been reinforced with particles of niobium carbide (NbC), an extremely hard and stable refractory ceramic. Its use as a reinforcing phase in metal matrix composites has not been deeply explored. Composite powders produced after different milling times, with 10 and 20 vol pct of NbC were produced by high-energy ball milling and characterized by scanning electron microscopy and by X-ray diffraction to establish a relationship between the milling time and size, morphology, and distribution of the particles in the composite powder. Subsequently, an Al/10 pct NbC composite powder was hot extruded into cylindrical bars. The strength of the obtained composite bars is comparable to the commercial high-strength, aeronautical-grade aluminum alloys.

  15. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  16. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  17. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.

    Science.gov (United States)

    Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C

    2015-01-01

    This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (pceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (pceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.

  18. Reinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Schoebel, M., E-mail: michaels@mail.tuwien.ac.at [Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13, A-1040 Vienna (Austria); Degischer, H.P. [Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13, A-1040 Vienna (Austria); Vaucher, S. [Advanced Materials Processing, EMPA - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkstrasse 39, CH-3602 Thun (Switzerland); Hofmann, M. [Forschungsneutronenquelle Heinz Maier-Leibnitz, Lichtenbergstrasse 1, D-85747 Garching (Germany); Cloetens, P. [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, F-38043 Grenoble (France)

    2010-11-15

    Aluminum reinforced by 60 vol.% diamond particles has been investigated as a potential heat sink material for high power electronics. Diamond (CD) is used as reinforcement contributing its high thermal conductivity (TC {approx} 1000 W mK{sup -1}) and low coefficient thermal expansion (CTE {approx} 1 ppm K{sup -1}). An Al matrix enables shaping and joining of the composite components. Interface bonding is improved by limited carbide formation induced by heat treatment and even more by SiC coating of diamond particles. An AlSi7 matrix forms an interpenetrating composite three-dimensional (3D) network of diamond particles linked by Si bridges percolated by a ductile {alpha}-Al matrix. Internal stresses are generated during temperature changes due to the CTE mismatch of the constituents. The stress evolution was determined in situ by neutron diffraction during thermal cycling between room temperature and 350 deg. C (soldering temperature). Tensile stresses build up in the Al/CD composites: during cooling <100 MPa in a pure Al matrix, but around 200 MPa in the Al in an AlSi7 matrix. Compressive stresses build up in Al during heating of the composite. The stress evolution causes changes in the void volume fraction and interface debonding by visco-plastic deformation of the Al matrix. Thermal fatigue damage has been revealed by high resolution synchrotron tomography. An interconnected diamond-Si 3D network formed with an AlSi7 matrix promises higher stability with respect to cycling temperature exposure.

  19. Production of NbC reinforced aluminum matrix composites by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, Marina Judice; Cardoso, Katia Regina; Travessa, Dilermando Nagle

    2014-01-01

    Aluminum and their alloys are key materials for the automotive and aerospace industries. The dispersion of hard ceramic particles in the Al soft matrix produces lightweight composites with interesting properties, as environmental resistance, high specific strength and stiffness, high thermal and electrical conductivity, and good wear resistance, encouraging their technological use. Powder metallurgy techniques like mechanical alloying (MA) are very attractive to design metal matrix composites, as they are able to achieve a homogeneous distribution of well dispersed particles inside the metal matrix. In this work, pure aluminum has been reinforced with particles of Niobium carbide (NbC), an extremely hard and stable refractory ceramic. NbC is frequently used as a grain growth inhibitor in micro-alloyed steel due to their low solubility in austenite. In the present work, NbC is expected to act as a reinforcing phase by its fine dispersion into the aluminum matrix, produced by MA. Composite powders produced after different milling times (up to 50h), with 10 and 20% (volume) of NbC were characterized by diffraction laser particle size analysis, scanning electron microscopy (SEM) and by X-ray diffraction (DRX), in order to establish a relationship between the milling time and the characteristics of the powder produced, as size and morphology, crystallite size and reinforcement distribution. This characterization is important in defining the MA process for production of composites for further consolidation by hot extrusion process. (author)

  20. Production of NbC reinforced aluminum matrix composites by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marina Judice; Cardoso, Katia Regina; Travessa, Dilermando Nagle, E-mail: dilermando.travessa@unifesp.br [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil). Instituto de Ciencia e Tecnologia

    2014-07-01

    Aluminum and their alloys are key materials for the automotive and aerospace industries. The dispersion of hard ceramic particles in the Al soft matrix produces lightweight composites with interesting properties, as environmental resistance, high specific strength and stiffness, high thermal and electrical conductivity, and good wear resistance, encouraging their technological use. Powder metallurgy techniques like mechanical alloying (MA) are very attractive to design metal matrix composites, as they are able to achieve a homogeneous distribution of well dispersed particles inside the metal matrix. In this work, pure aluminum has been reinforced with particles of Niobium carbide (NbC), an extremely hard and stable refractory ceramic. NbC is frequently used as a grain growth inhibitor in micro-alloyed steel due to their low solubility in austenite. In the present work, NbC is expected to act as a reinforcing phase by its fine dispersion into the aluminum matrix, produced by MA. Composite powders produced after different milling times (up to 50h), with 10 and 20% (volume) of NbC were characterized by diffraction laser particle size analysis, scanning electron microscopy (SEM) and by X-ray diffraction (DRX), in order to establish a relationship between the milling time and the characteristics of the powder produced, as size and morphology, crystallite size and reinforcement distribution. This characterization is important in defining the MA process for production of composites for further consolidation by hot extrusion process. (author)

  1. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    Science.gov (United States)

    Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin

    2012-01-01

    To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P ceramics are good potential candidates for ceramic-based dental materials. PMID:22619551

  2. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  3. Encapsulation of sacrificial silicon containing particles for SH oxide ceramics via a boehmite precursor route

    NARCIS (Netherlands)

    Carabat, A.L.; Van der Zwaag, S.; Sloof, W.G.

    2013-01-01

    Easy crack propagation in oxide ceramic coatings limits their application in high temperature environment (e.g. such as engines and gas turbine components) [1]. In order to overcome this problem, incorporation of sacrificial particles into an oxide ceramic coating may be a viable option. Particles

  4. High temperature tribological properties of plasma-sprayed metallic coatings containing ceramic particles

    International Nuclear Information System (INIS)

    Dallaire, S.; Legoux, J.G.

    1995-01-01

    For sealing a moving metal component with a dense silica-based ceramic pre-heated at 800 C, coatings with a low coefficient of friction and moderate wear loss are required. As reported previously, plasma-sprayed coatings containing solid lubricants could reduce sliding wear in high-temperature applications. Plasma-sprayed metal-based coatings containing ceramic particles have been considered for high temperature sealing. Selected metal powders (NiCoCrAlY, CuNi, CuNiIn, Ag, Cu) and ceramic particles (boron nitride, Zeta-B ceramic) were agglomerated to form suitable spray powders. Plasma-sprayed composite coatings and reference materials were tested in a modified pin-on-disc apparatus in which the stationary disc consisted of a dense silica-based ceramic piece initially heated at 800 C and allowed to cool down during tests. The influence of single exposure and repeated contacts with a dense silica-based ceramic material pre-heated to 800 C on the coefficient of friction, wear loss and damage to the ceramic piece was evaluated. Being submitted to a single exposure at high temperature, coatings containing malleable metals such as indium, silver and copper performed well. The outstanding tribological characteristics of the copper-Zeta-B ceramic coating was attributed to the formation of a glazed layer on the surface of this coating which lasted over exposures to high temperature. This glazed layer, composed of fine oxidation products, provided a smooth and polished surface and helped maintaining the coefficient of friction low

  5. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  6. Mechanical Property Analysis on Sandwich Structured Hybrid Composite Made from Natural Fibre, Glass Fibre and Ceramic Fibre Wool Reinforced with Epoxy Resin

    Science.gov (United States)

    Bharat, K. R.; Abhishek, S.; Palanikumar, K.

    2017-06-01

    Natural fibre composites find wide range of applications and usage in the automobile and manufacturing industries. They find lack in desired properties, which are required for present applications. In current scenario, many developments in composite materials involve the synthesis of Hybrid composite materials to overcome some of the lacking properties. In this present investigation, two sandwich structured hybrid composite materials have been made by reinforcing Aloe Vera-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and Sisal fibre-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and its mechanical properties such as Tensile, Flexural and Impact are tested and analyzed. The test results from the two samples are compared and the results show that sisal fibre reinforced hybrid composite has better mechanical properties than aloe vera reinforced hybrid composite.

  7. Reinforcing effect of graphene on the mechanical properties of Al2O3/TiC ceramics

    Science.gov (United States)

    Li, Zuo-li; Zhao, Jun; Sun, Jia-lin; Gong, Feng; Ni, Xiu-ying

    2017-12-01

    Multilayer graphene (MLG)-reinforced Al2O3/TiC ceramics were fabricated through hot pressing sintering, and the reinforcing effect of MLG on the microstructure and mechanical properties of the composites was investigated by experiment and simulation. The simulation of dynamic crack initiation and propagation was investigated based on the cohesive zone method. The results show that the composite added with 0.2wt% MLG has excellent flexural strength and high fracture toughness. The major reinforcing mechanisms are the synergistic effect by strong and weak bonding interfaces, MLG pull-out, and grain refinement resulting from the addition of MLG. In addition, the aggravating of crack deflection, branching, blunting, and bridging have indispensable contribution to the improvement of the as-designed materials.

  8. In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating

    International Nuclear Information System (INIS)

    Balani, K.; Zhang, T.; Karakoti, A.; Li, W.Z.; Seal, S.; Agarwal, A.

    2008-01-01

    Carbon nanotubes (CNT) are potential reinforcements for toughening the ceramic matrix. The critical issue of avoiding CNT agglomeration and introducing CNT-matrix anchoring has challenged many researchers to improve the mechanical properties of the CNT reinforced nanocomposite. In the current work, dispersed CNTs are grown on Al 2 O 3 powder particles in situ by the catalytic chemical vapor deposition (CCVD) technique. Consequently, 0.5 wt.% CNT-reinforced Al 2 O 3 particles were successfully plasma sprayed to obtain a 400 μm thick coating on the steel substrate. In situ CNTs grown on Al 2 O 3 shows a promising enhancement in hardness and fracture toughness of the plasma-sprayed coating attributed to the existence of strong metallurgical bonding between Al 2 O 3 particles and CNTs. In addition, CNT tentacles have imparted multi-directional reinforcement in securing the Al 2 O 3 splats. High-resolution transmission electron microscopy shows interfacial fusion between Al 2 O 3 and CNT and the formation of Y-junction nanotubes

  9. Finite Element Analysis of IPS Empress II Ceramic Bridge Reinforced by Zirconia Bar.

    Science.gov (United States)

    Kermanshah, H; Bitaraf, T; Geramy, A

    2012-01-01

    The aim of this study was to determine the effect of trenched zirconia bar on the von Mises stress distribution of IPS -Empress II core ceramics. The three-dimensional model including a three-unit bridge from the second premolar to the second molar was designed. The model was reinforced with zirconia bar (ZB), zirconia bar with vertical trench (VZB) and zirconia bar with horizontal trench (HZB) (cross sections of these bars were circular). The model without zirconia bar was designed as the control. The bridges were loaded by 200 N and 500 N on the occlusal surface at the middle of the pontic component and von Mises stresses were evaluated along a defined path. IN THE CONNECTOR AREA, VON MISES STRESS IN MPA WERE APPROXIMATELY IDENTICAL IN THE SPECIMENS WITH ZB (AT MOLAR CONNECTOR (MC): 4.75 and at premolar connector (PC): 6.40) and without ZB (MC: 5.50, PC: 6.68), and considerable differences were not recognized. Whereas, Von-Mises stress (MPa) in the specimens with horizontal trenched Zirconia bar (HZB) (MC: 3.91, PC: 2.44) and Vertical trenched Zirconia bar (VZB) (MC: 2.53, PC: 2.56) was decreased considerably. Embeded trenched zirconia bar could reinforce IPS-Empress II at the connector area which is a main failure region in all ceramic fixed partial dentures.

  10. Moisture Absorption Characteristics of Epoxy Based Adhesive Reinforced with CTBN and Ceramic Particles for Bonded-in Timber Connection: Fickian or Non-Fickian Behaviour

    International Nuclear Information System (INIS)

    Ahmad, Z; Ansell, M P; Smedley, D

    2011-01-01

    For in-situ bonding of pultruded rod into timber structural members, such as in the construction of bonded-in timber connection, strengthening and repair of timber structures, the adhesive used must be thixotropic, room temperature cure, environmentally stable and friendly and applied at without pressure. This study investigates the moisture absorption characteristics of three adhesives specially formulated for bonded-in timber connections where the adhesives are reinforced with nano- and micro-particles denoted as CB10TSS (standard adhesive), Albipox (CB10TSS/CTBN) and Timberset (ceramics filled adhesive) with the aim to improve mechanical properties and raise glass transition temperature. The effect of high temperatures and high humidity on the properties of adhesives were determined following conditioning at different temperatures (20 deg. C, 30 deg. C and 50 deg. C) and relative humidities (65%, 75% and 95%) and soaking in water at 20 deg. C In all cases the properties of Albipox were least affected by environment but Timberset exhibited the lowest moisture uptake. Exposure to humid environments at temperatures 20 deg. C and 30 deg. C for CB10TSS and Albipox and 50deg. C for Timberset resulted in water uptake characterized as Fickian which had only a modest effect on properties. However, exposure to humid environments at temperature (50 deg. C) which is higher than Tg resulted in non-Fickian uptake of water for CB10TSS and Albipox and a more adverse effect on properties.

  11. Fracture mechanics of ceramics. Vol. 7

    International Nuclear Information System (INIS)

    Bradt, R.C.; Evans, A.G.; Hasselman, D.P.; Lange, F.F.

    1986-01-01

    This volume, together with volume 8, constitutes the proceedings of an international symposium on the fracture mechanics of ceramics. The topics discussed in this volume include the toughening of ceramics by whisker reinforcement; the mechanical properties of SiCwhisker-reinforced TZP; the fracture of brittle rock and oil shale under dynamic explosive loading; impact damage models of ceramic coatings used in gas turbine and diesel engines; the use of exploratory data analysis for the safety evaluation of structural ceramics; and proof testing methods for the reliability of structural ceramics used in gas turbines

  12. In-situ synthesized Ni–Zr intermetallic/ceramic reinforced composite coatings on zirconium substrate by high power diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kun; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan; Ma, Qunshuang

    2015-03-05

    Highlights: • In-situ synthesized Ni–Zr intermetallics/ceramic reinforced composite coatings. • Si enrichment and Ni replacing site of Si both resulted in forming Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4.} • Microstructure and forming of ZrB{sub 2} depended on affinity of elements and Si/B ratio. - Abstract: Ni–Zr intermetallic/ceramic reinforced composite coatings were in-situ synthesized by laser cladding series of Ni–Cr–B–Si powders on zirconium substrate. Microstructure, phase constituents and microhardness of coatings were investigated by means of optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and microsclemeter. Results indicated that coatings with metallurgical bonding to substrate consisted of cellular NiZr matrix and massive reinforcements including NiZr{sub 2}, Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4} and ZrB{sub 2}. Morphologies of reinforcements were mainly dominated by temperature gradient and cooling rate from surface to bottom of the coating produced by same powder. In different coatings, microstructure and forming of ZrB{sub 2} mainly depended on affinity of elements and Si/B ratio in different powders. In addition, the mean microhardness of coatings up to 1200–1300 HV{sub 0.2} is nearly 7 times higher than that of R60702 zirconium substrate.

  13. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly.

    Science.gov (United States)

    Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin

    2012-01-01

    To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO(2) (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO(2). To determine the optimum addition levels for nano-ZrO(2), ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO(2) were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO(2) resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05). Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.

  14. An Investigation of Fiber Reinforced Chemically Bonded Phosphate Ceramic Composites at Room Temperature.

    Science.gov (United States)

    Ding, Zhu; Li, Yu-Yu; Lu, Can; Liu, Jian

    2018-05-21

    In this study, chemically bonded phosphate ceramic (CBPC) fiber reinforced composites were made at indoor temperatures. The mechanical properties and microstructure of the CBPC composites were studied. The CBPC matrix of aluminum phosphate binder, metakaolin, and magnesia with different Si/P ratios was prepared. The results show that when the Si/P ratio was 1.2, and magnesia content in the CBPC was 15%, CBPC reached its maximum flexural strength. The fiber reinforced CBPC composites were prepared by mixing short polyvinyl alcohol (PVA) fibers or unidirectional continuous carbon fiber sheets. Flexural strength and dynamic mechanical properties of the composites were determined, and the microstructures of specimens were analyzed by scanning electron micrography, X-ray diffraction, and micro X-ray computed tomography. The flexural performance of continuous carbon fiber reinforced CBPC composites was better than that of PVA fiber composites. The elastic modulus, loss modulus, and loss factor of the fiber composites were measured through dynamic mechanical analysis. The results showed that fiber reinforced CBPC composites are an inorganic polymer viscoelastic material with excellent damping properties. The reaction of magnesia and phosphate in the matrix of CBPC formed a different mineral, newberyite, which was beneficial to the development of the CBPC.

  15. Particle-induced amorphization of complex ceramics. Final report

    International Nuclear Information System (INIS)

    Ewing, R.C.; Wang, L.M.

    1998-01-01

    The crystalline-to-amorphous (c-a) phase transition is of fundamental importance. Particle irradiations provide an important, highly controlled means of investigating this phase transformation and the structure of the amorphous state. The interaction of heavy-particles with ceramics is complex because these materials have a wide range of structure types, complex compositions, and because chemical bonding is variable. Radiation damage and annealing can produce diverse results, but most commonly, single crystals become aperiodic or break down into a polycrystalline aggregate. The authors continued the studies of the transition from the periodic-to-aperiodic state in natural materials that have been damaged by α-recoil nuclei in the uranium and thorium decay series and in synthetic, analogous structures. The transition from the periodic to aperiodic state was followed by detailed x-ray diffraction analysis, in-situ irradiation/transmission electron microscopy, high resolution transmission electron microscopy, extended x-ray absorption fine structure spectroscopy/x-ray absorption near edge spectroscopy and other spectroscopic techniques. These studies were completed in conjunction with bulk irradiations that can be completed at Los Alamos National Laboratory or Sandia National Laboratories. Principal questions addressed in this research program included: (1) What is the process at the atomic level by which a ceramic material is transformed into a disordered or aperiodic state? (2) What are the controlling effects of structural topology, bond-type, dose rate, and irradiation temperature on the final state of the irradiated material? (3) What is the structure of the damaged material? (4) What are the mechanisms and kinetics for the annealing of interstitial and aggregate defects in these irradiated ceramic materials? (5) What general criteria may be applied to the prediction of amorphization in complex ceramics?

  16. Composite material reinforced with atomized quasicrystalline particles and method of making same

    Science.gov (United States)

    Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.

  17. Effect of Lithium Disilicate Reinforced Liner Treatment on Bond and Fracture Strengths of Bilayered Zirconia All-Ceramic Crown

    Directory of Open Access Journals (Sweden)

    Yong-Seok Jang

    2018-01-01

    Full Text Available This study was performed to evaluate the effect of a lithium-disilicate spray-liner application on both the bond strength between zirconia cores and heat-pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of all-ceramic zirconia crowns. A lithium-disilicate reinforced liner was applied on the surface of a zirconia core and lithium-disilicate glass-ceramic was veneered on zirconia through heat press forming. Microtensile and crown fracture tests were conducted in order to evaluate, respectively, the bonding strength between the zirconia cores and heat pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of bilayered zirconia all-ceramic crowns. The role of lithium-disilicate spray-liner at the interface between zirconia and lithium-disilicate glass-ceramic veneers was investigated through surface and cross-sectional analyses. We confirmed that both the mean bonding strength between the zirconia ceramics and lithium-disilicate glass-ceramic veneers and the fracture strength of the liner-treated groups were significantly higher than those of the untreated groups, which resulted, on the one hand, from the chemical bonding at the interface of the zirconia and lithium-disilicate liner, and, on the other, from the existence of a microgap in the group not treated with liner.

  18. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    Naslain , R.

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  19. Synthesis of second phase hybrid ceramics using two different bio-source and a comparative study on their morphological characterization

    Science.gov (United States)

    Karivaratharajan, Adhitya; Baskaran, Sidharth; Thillairajan, K.

    2018-02-01

    Ceramics are generally synthesized with various sources and methods. The most common method for synthesis of ceramics with reduced cost and energy is SOL-GEL method. Combustion synthesis is also a most widely used method for ceramic synthesis. In general, ceramics have enhanced hardness and dimensional stability even at elevated temperatures. For this reason, they are used in the production of refractories, thermal barrier coatings, chemical resistant coatings, wear resistant coatings, and also as reinforcement material to produce metal matrix composites and polymer matrix composites. This work concentrates on the comparison of morphological characterization of such reinforcement particles synthesized from different sources. The particles size range varying from 7 μm to 250 μm with flaky and spongy structures are observed in the ash of Vicia faba. However, the ash of Cocos nucífera resulted in fibrous structure with a diameter of 50 μm to length above 600 μm, particles size ranging from 10 μm to 70 μm micro tubes of diameter 3.6 μm to length of 150 μm. The EDX and XRD analysis of Vicia faba showed the presence of carbon as the major element with a few other elements.

  20. Producing ceramic laminate composites by EPD

    International Nuclear Information System (INIS)

    Nicholson, P.S.; Sarkar, P.; Datta, S.

    1996-01-01

    The search for tough structural ceramics to operate at high temperatures in hostile environments has led to the development of ceramic composites. This class of material includes laminar ceramic-ceramic composites, continuous-fiber-reinforced ceramic composites and functionally graded materials. The present authors developed electrophoretic deposition (EPD) to synthesize lamellar, fiber-reinforced and functionally graded composites. This paper briefly describes the synthesis and characterization of these EPD composites and introduces a novel class of lamellar composites with nonplanar layers. The synthesis of the latter demonstrates the facility of the EPD process for the synthesis of ceramic composites. The process is totally controllable via suspension concentration, deposition current, voltage and time

  1. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid.

    Science.gov (United States)

    Kim, Daehyeon; Ha, Sungwoo

    2014-02-07

    In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm) were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  2. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Gopalsami, N.; Dieckman, S.; Hentea, T.; Vaitekunas, J.J.

    1989-01-01

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  3. Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

    2013-11-15

    The microstructure and interface between metal matrix and ceramic reinforcement of a composite play an important role in improving its properties. In the present investigation, the interface and intermetallic compound present in the samples were characterized to understand structural stability at an elevated temperature. Aluminum based 2124 alloy with 10 wt.% silicon carbide (SiC) particle reinforced composite was prepared through vortex method and the solid ingot was deformed by hot rolling for better particle distribution. Heat treatment of the composite was carried out at 575 °C with varying holding time from 1 to 48 h followed by water quenching. In this study, the microstructure and interface of the SiC particle reinforced Al based composites have been studied using optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), electron probe micro-analyzer (EPMA) associated with wavelength dispersive spectroscopy (WDS) and transmission electron microscopy (TEM) to identify the precipitate and intermetallic phases that are formed during heat treatment. The SiC particles are uniformly distributed in the aluminum matrix. The microstructure analyses of Al–SiC composite after heat treatment reveal that a wide range of dispersed phases are formed at grain boundary and surrounding the SiC particles. The energy dispersive X-ray spectroscopy and wavelength dispersive spectroscopy analyses confirm that finely dispersed phases are CuAl{sub 2} and CuMgAl{sub 2} intermetallic and large spherical phases are Fe{sub 2}SiAl{sub 8} or Al{sub 15}(Fe,Mn){sub 3}Si. It is also observed that a continuous layer enriched with Cu and Mg of thickness 50–80 nm is formed at the interface in between Al and SiC particles. EDS analysis also confirms that Cu and Mg are segregated at the interface of the composite while no carbide is identified at the interface. - Highlights: • The composite was successfully heat treated at 575°C for 1

  4. Preparation, microstructural evolution and properties of Ni–Zr intermetallic/Zr–Si ceramic reinforced composite coatings on zirconium alloy by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kun; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan; Ma, Qunshuang; Li, Jishuai; Li, Xinyue

    2015-10-25

    NiZr{sub 2}–ZrSi–Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}-ZrC intermetallic/ceramic reinforced composite coatings were in situ synthesized by laser cladding the pre-placed Ni–Cr–B–Si powder on zirconium substrate. Microstructure and phase constituents were investigated by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). Microhardness tester and block-on-ring wear tester were employed to measure the hardness distribution and wear resistance of the intermetallic/ceramic reinforced composite coating. Results indicated that the multiphase of reinforcements includes Ni–Zr intermetallic compounds (e.g., NiZr and NiZr{sub 2}) and Zr–Si(C) ceramic phases (e.g., ZiSi, Zr{sub 5}Si{sub 4} and ZrC). Ni–Si clusters transforming to Zr–Si–Ni clusters at high temperature facilitated the forming of Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4} and during the growth of Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}, the consumption of Zr atoms at the lateral interface of liquid/Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4} resulted into developing Zr-poor zone near Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}. The microhardness and wear resistance of the coating were significantly improved by various reinforced phases in comparison to zirconium substrate. - Highlights: • NiZr{sub 2}–ZrSi–Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}-ZrC compostie coating was in-situ synthesized. • Ni–Si clusters transforming resulted into developing Zr-poor zone near Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}. • Reinforced phases significantly improve wear resistance of the coating.

  5. Reinforced magnesium composites by metallic particles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Vahid, Alireza; Hodgson, Peter [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); Li, Yuncang, E-mail: yuncang.li@rmit.edu.au [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); School of Engineering, RMIT University, Melbourne, Victoria 3001 (Australia)

    2017-02-08

    Pure magnesium (Mg) implants have unsatisfactory mechanical properties, particularly in loadbearing applications. Particulate-reinforced Mg composites are known as promising materials to provide higher strength implants compared to unreinforced metals. In the current work biocompatible niobium (Nb) and tantalum (Ta) particles are selected as reinforcement, and Mg-Nb and Mg-Ta composites fabricated via a powder metallurgy process associated with the ball milling technique. The effect of Nb and Ta contents on the microstructure and mechanical properties of Mg matrix was investigated. There was a uniform distribution of reinforcements in the Mg matrix with reasonable integrity and no intermetallic formation. The compressive mechanical properties of composites vary with reinforcement contents. The optimal parameters to fabricate biocompatible Mg composites and the optimal composition with appropriate strength, hardness and ductility are recommended.

  6. Morphological characterization of ceramic fillers made from Indonesian natural sand as restorative dental materials

    Science.gov (United States)

    Karlina, E.; Susra, S.; Fatmala, Y.; Hartoyo, H. M.; Takarini, V.; Usri, K.; Febrida, R.; Djustiana, N.; Panatarani, C.; Joni, I. M.

    2018-02-01

    Dental composite as restorative dental materials can be reinforced using ceramic fillers. Homogeneous distribution of filler particles shall improve its mechanical properties. This paper presents the results of the preliminary study on the ZrO2-Al2O3-SiO2 ceramic fillers made from Indonesian natural sand that can increase the mechanical properties of dental composite. The synthesis was done using zirconium silicate sand (ZrSiO4) and aluminium oxide (Al2O3) precursors, which dissolved together with 70:30 weight ratios. Two types of sand were used: (1) manufactured sand (mesh #80) and (2) natural sand (mesh #400). The samples then heated in the furnace at 1100 °C for 8 hours. The morphological characterization was then evaluated using JEOL Scanning Electron Microscope (SEM) for the surface structure that analyze particles size and distribution. Ceramic fillers made from natural sand is homogenous, well distributed with average particle size of 5-10 µm. Comparably, ceramic filler made from the manufactured sand is heterogeneous, poorly distributed and appear as agglomerates with average particle size are 30-50 µm. The results suggest that ceramic fillers made from natural sand demonstrate better character to represent as a functional restorative dental material.

  7. Functionally graded bio-ceramic reinforced PVA hydrogel composites for knee joint artificial cartilages

    Science.gov (United States)

    Kumar, G. C. Mohan

    2018-04-01

    Research progress in materials science for bio-based materials for cartilage repair or supportive to host tissue has become a fashionable, worldwide. Few efforts in biomedical engineering has attempted in the development of newer biomaterials successfully. Bio ceramics, a class of materials been used in particulate form as a reinforcement with polymers those ensure its biocompatibility. Every artificial biomedical system has to meet the minimum in Vitro requirements for successful application. Equally the biological behavior of normal and diseased tissues is also essential to understand the artificial systems to human body.

  8. Finite Element Analysis of IPS –Empress II Ceramic Bridge Reinforced by Zirconia Bar

    Directory of Open Access Journals (Sweden)

    Allahyar Geramy

    2012-01-01

    Full Text Available Objective: The aim of this study was to determine the effect of trenched zirconia bar on the von Mises stress distribution of IPS –Empress II core ceramics.Material and Methods: The three-dimensional model including a three-unit bridge from the second premolar to the second molar was designed. The model was reinforced with zirconia bar (ZB, zirconia bar with vertical trench (VZB, and zirconia bar with horizontal trench (HZB (cross sections of these bars were circular. The model without zirconia bar was designed as the control. The bridges were loaded by 200 N and 500 N on the occlusal surface at the middle of the pontic component, and Von-Mises stresses were evaluated along a defined path.Result: In the connector area, VonMises stress in MPa were approximately identical in the specimens with ZB (at molar connector (MC: 4.75, and at premolar connector (PC: 6.40 and without ZB (MC: 5.50, PC: 6.68, and considerable differences were not recognized. Whereas, Von-Mises stress (MPa in the specimens with horizontal trenched Zirconia bar (HZB (MC: 3.91, PC: 2.44 and Vertical trenched Zirconia bar (VZB (MC: 2.53, PC: 2.56 was decreased considerably.Conclusion: Embeded trenched zirconia bar could reinforce IPS-Empress II at the connector area which is a main failure region in all ceramic fixed partial dentures.

  9. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles.

    Science.gov (United States)

    Kamalasanan, Kaladhar; Anupriya; Deepa, M K; Sharma, Chandra P

    2014-10-01

    A simple and stable curcumin-ceramic combined formulation was developed with an aim to improve curcumin stability and release profile in the presence of reactive ceramic particles for potential dental and orthopedic applications. For that, curcumin was complexed with barium (Ba(2+)) to prepare curcumin-barium (BaCur) complex. Upon removal of the unbound curcumin and Ba(2+) by dialysis, a water-soluble BaCur complex was obtained. The complex was showing [M+1](+) peak at 10,000-20,000 with multiple fractionation peaks of MALDI-TOF-MS studies, showed that the complex was a supramolecular multimer. The (1)H NMR and FTIR studies revealed that, divalent Ba(2+) interacted predominantly through di-phenolic groups of curcumin to form an end-to-end complex resulted in supramolecular multimer. The overall crystallinity of the BaCur was lower than curcumin as per XRD analysis. The complexation of Ba(2+) to curcumin did not degrade curcumin as per HPLC studies. The fluorescence spectrum was blue shifted upon Ba(2+) complexation with curcumin. Monodisperse nanoparticles with size less than 200dnm was formed, out of the supramolecular complex upon dialysis, as per DLS, and upon loading into pluronic micelles the size was remaining in similar order of magnitude as per DLS and AFM studies. Stability of the curcumin was improved greater than 50% after complexation with Ba(2+) as per UV/Vis spectroscopy. Loading of the supramloecular nanoparticles into pluronic micelles had further improved the stability of curcumin to approx. 70% in water. These BaCur supramolecule nanoparticles can be considered as a new class of prodrugs with improved solubility and stability. Subsequently, ceramic nanoparticles with varying chemical composition were prepared for changing the material surface reactivity in terms of the increase in, degradability, surface pH and protein adsorption. Further, these ceramic particles were combined with curcumin prodrug formulations and optimized the curcumin release

  10. Microstructures and performance of CaO-based ceramic cores with different particle size distributions for investment casting

    Science.gov (United States)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    A series of calcium-based ceramic cores for casting titanium alloy were prepared by mixing different amounts of coarse and fine powders through injection molding. The effects of particle size on the microstructures and properties of the ceramic cores were investigated using quantitative and statistical analysis methods. It is found that the shrinkage and room-temperature strength of the ceramic cores were enhanced as increasing the contents of fine particles. Moreover, the creep resistance of the ceramic cores increased initially and then decreased. The increase in the fine particle content of the cores reduced the number and mean diameter of pores after sintering. The grain boundary density decreased firstly and then increased. The flexural strength of the ceramic cores at room temperature decreased with increasing porosity of ceramic cores, whereas the creep resistance increased with decreasing grain boundary density. A core exhibiting the optimal property was obtained when mixing 65 wt% of coarse powders (75-150 μm) and 35 wt% of fine powders (25-48 μm).

  11. Microstructure and hardness of WC-Co particle reinforced iron matrix surface composite

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-11-01

    Full Text Available In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry (EDS, electron probe microanalysis (EPMA, scanning electron microscope (SEM and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as (Cr, W, Fe23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA (69.5 HRC is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material.

  12. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid

    Directory of Open Access Journals (Sweden)

    Daehyeon Kim

    2014-02-01

    Full Text Available In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  13. Effects of the application of different particle sizes of mill scale (residue) in mass red ceramic

    International Nuclear Information System (INIS)

    Arnt, A.B.C.; Rocha, M.R.; Meller, J.G.

    2012-01-01

    This study aims to evaluate the influence of particle size of mill scale, residue, when added to a mass ceramic. This residue rich in iron oxide may be used as pigment in the ceramics industry. The use of pigments in ceramic products is related to the characteristics of non-toxicity, chemical stability and determination of tone. The tendency to solubilize the pigment depends on the specific surface area. The residue study was initially subjected to physical and chemical characterization and added in a proportion of 5% at a commercial ceramic white burning, with different particle sizes. Both formulations were sintered at a temperature of 950 ° C and evaluated for: loss on ignition, firing linear shrinkage, water absorption, flexural strength and difference of tone. Samples with finer particles of mill scale 0.038 μ showed higher mechanical strength values in the order of 18 MPa. (author)

  14. Synthesis, Mechanical Behavior, and Multi-Scale Tribological Performance of Carbon Nanoparticle Reinforced Ceramic Composites

    Science.gov (United States)

    Nieto, Andy

    This dissertation investigates the effects of carbon nanoparticles on the synthesis, mechanical behavior, and tribological performance of ceramic based composites. Specifically graphene Nanoplatelet (GNP) reinforced Al 2O3 and nanodiamond (ND) reinforced WC-Co systems are investigated. Carbon based nanoparticles such as GNPs and NDs are ideal reinforcements for ceramic based composites because of their unique functional and mechanical properties. GNPs have exceptional mechanical properties such as yield strength and elastic modulus, along with superb functional properties such as thermal conductivity and electrical conductivity. NDs possess the highest hardness of any materials, very high elastic modulus, and have a very high thermal conductivity. GNPs are demonstrated to affect the sintering of Al2O 3 matrix composites by wrapping around grains, inhibiting diffusion, and thereby suppressing grain growth. High applied pressures (90 MPa) during sintering are observed to exacerbate grain growth suppression, while promoting attainment of fully dense ceramic composites. Higher applied pressures facilitate the wrapping of GNPs around grains, which promotes the onset of GNP induced grain growth suppression. Grain growth suppression compensates for the decreased hardness induced by low strength of the GNPs phase along the c-axis direction. GNPs enhanced the toughness and wear resistance of the nanocomposites by 21% and 39%, respectively, due to the intrinsic energy dissipating mechanisms such as GNP sheet kinking and sliding and GNP induced phenomena such as micro-cracking and crack bridging. The addition of ND affects the deposition of thermally sprayed coatings. Porosity increased in samples deposited by high velocity oxyacetylene flame spray (HVOF) and decreased in samples deposited by air plasma spray (APS). NDs are believed to inhibit solid state diffusion during splat impact, in the low thermal energy and high kinetic energy HVOF process. The high thermal

  15. A study on the damping capacity of BaTiO3-reinforced Al-matrix ...

    Indian Academy of Sciences (India)

    the results showed that the damping capacity of Al-matrix composites can increase greatly [3–5]. Therefore, reinforcing. Al alloy matrix with higher damping particles could be an efficient way to obtain Al-matrix composites with both high strength and high damping capacity. Ferroelectric and piezoelectric ceramics can exhibit ...

  16. Tribomechanical behavior of B{sub 4}C{sub p} reinforced Al 359 composites

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Deivasigamani; Rathanasamy, Rajasekar [Kongu Engineering College, Tamil Nadu (India). Dept. of Mechanical Engineering; Subramanian, Mohan Kumar; Kaliyannan, Gobinath Velu [PAAVAI Engineering College, Tamil Nadu (India). Dept. of Mechatronics Engineering; Palaniappan, Sathish Kumar [Indian Institute of Technology, Kharagpur, West Bengal (India); Durairaj, Jayanth

    2017-03-01

    n the present investigation, the influence of B{sub 4}C{sub p} particles on the mechanical and tribological behavior of Al 359 composites has been studied. B{sub 4}C{sub p} particle reinforced Al 359 composite samples were prepared by stir casting process. Hardness, tensile strength and wear behavior of the composites were studied and compared with a control specimen. Hardness of B{sub 4}C{sub p} particles reinforced Al 359 matrix increases compared to base matrix due to the presence of the ceramic phase. Coefficient of friction considerably increases with up to 20 wt.-% addition of B{sub 4}C{sub p} in base matrix. Specimens were subjected to wear tests under different load conditions and the following five different wear mechanisms such as wear groove, abrasion, delamination, oxidation and plastic deformation were evaluated. The abrasion results prove the increase in wear resistance of B{sub 4}C{sub p} reinforced composites compared to a control specimen.

  17. Ceramic component with reinforced protection against radiations

    International Nuclear Information System (INIS)

    Dubuisson, J.; Laville, H.; Le Gal, P.

    1986-01-01

    Ceramic components hardened against radiations are claimed (for example capacitors or ceramic substrates for semiconductors). They are prepared with a sintered ceramic containing a high proportion of heavy atoms (for instance barium titanate and a bismuth salt) provided with a glass layer containing a high proportion of light atoms. The two materials are joined by vitrification producing a diffusion zone at the interface [fr

  18. Electrical and mechanical properties of 0.5Ba (Zr0.2Ti0.8)O3-0.5 (Ba0.7Ca0.3)TiO3 (BZT-BCT) lead free ferroelectric ceramics reinforced with Al2O3 nano-oxide

    International Nuclear Information System (INIS)

    Adhikari, Prativa; Mazumder, R.

    2014-01-01

    Piezoelectric ceramics are widely used as actuator, resonator, and spark igniter. Recently, much attention has been paid to prepare 0.5Ba (Zr 0.2 Ti 0.8 )O 3 -0.5 (Ba 0.7 Ca 0.3 )TiO 3 (BZT-BCT) piezoelectric ceramics because of its good dielectric, piezoelectric properties and environment friendly nature. However, piezoelectric ceramics based on BaTiO 3 suffer from low reliability and poor mechanical properties such as strength and toughness. For practical application improvement of the mechanical properties of BaTiO 3 -based ceramics is strongly required. A novel method has been used to improve the mechanical properties of structural ceramics by reinforcement of oxide (Al 2 O 3 , MgO, ZrO 2 and Stabilized-ZrO 2 ) or non-oxide (SiC) particles. It is well known that electrical properties of ferroelectric ceramics generally degrade with non-ferroelectric additives and decrease in sinterability usually encountered with refractory oxide additives. Use of nano-oxide additives may drastically reduce the amount of additive and electrical property may not degrade much. In this report we would show the electrical and mechanical properties of BZT-BCT with Al 2 O 3 nano oxide additive. Modified BZT-BCT nanocomposites were prepared by mixing and sintering of solid state synthesized Zr, Ca modified barium titanate powder and small amount (0.1-2.0 vol %) of nano-oxides, i.e. Al 2 O 3 . Effect of sintering temperature, time, particle size of the nano-oxide additives on electrical (dielectric constant, loss factor, Curie temperature, d 33 ) and mechanical (flexural strength, fracture toughness, hardness) properties were studied. We obtained ∼ 94% dense BZT-BCT reinforced with Al 2 O 3 nano-oxide at 1300℃ without degrading electrical properties (dielectric constant (4850), low dissipation factor (0.0242)) and superior mechanical properties (flexural strength - 60.3 MPa, Vickers hardness-750-800 MPa). (author)

  19. The Particle Shape of WC Governing the Fracture Mechanism of Particle Reinforced Iron Matrix Composites.

    Science.gov (United States)

    Li, Zulai; Wang, Pengfei; Shan, Quan; Jiang, Yehua; Wei, He; Tan, Jun

    2018-06-11

    In this work, tungsten carbide particles (WC p , spherical and irregular particles)-reinforced iron matrix composites were manufactured utilizing a liquid sintering technique. The mechanical properties and the fracture mechanism of WC p /iron matrix composites were investigated theoretically and experimentally. The crack schematic diagram and fracture simulation diagram of WC p /iron matrix composites were summarized, indicating that the micro-crack was initiated both from the interface for spherical and irregular WC p /iron matrix composites. However, irregular WC p had a tendency to form spherical WC p . The micro-cracks then expanded to a wide macro-crack at the interface, leading to a final failure of the composites. In comparison with the spherical WC p , the irregular WC p were prone to break due to the stress concentration resulting in being prone to generating brittle cracking. The study on the fracture mechanisms of WC p /iron matrix composites might provide a theoretical guidance for the design and engineering application of particle reinforced composites.

  20. High performance brake discs made of fiber reinforced ceramics; Hochleistungsbremsscheiben aus Faserverbundkeramik

    Energy Technology Data Exchange (ETDEWEB)

    Rosenloecher, J.; Deinzer, G.; Waninger, R.; Muenchhoff, J. [AUDI AG, 85045 Ingolstadt (Germany)

    2007-11-15

    The Audi AG is one of the worldwide leading car manufacturers of the premium class. One of the main aims of the technical development department at Audi is the use of novel and innovative materials. The Audi AG has intensively worked on the development and introduction of ceramic brake discs for several car types. These brake discs are made of a short carbon fiber reinforced silicon carbide ceramic, a so called CMC-material (ceramic matrix composite). This material is produced in a very complex process by silicon melt infiltration of carbon preforms. The advantages of these innovative and powerful brake discs out of C/SiC-ceramic are the low weight and thus the reduction of the unsprung rotating masses, the low wear rate during completed service life, the temperature and fading stability and the corrosion resistance. The complete braking system and its periphery had to be reengineered and adjusted because of the specific material properties. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [German] Die Audi AG ist einer der weltweit fuehrenden Automobilhersteller der Premiumklasse. Eines der Hauptziele der Technischen Entwicklung bei Audi ist der Einsatz neuartiger und innovativer Werkstoffe. Daher bietet die Audi AG nach intensiver Entwicklung und Erprobung fuer mehrere Fahrzeugmodelle Keramikbremsscheiben an. Diese Bremsscheiben bestehen aus einer kohlenstoffkurzfaserverstaerkten Siliziumkarbidkeramik, einem sog. CMC-Werkstoff. Dieser Werkstoff wird in einem aufwendigen Verfahren ueber die Schmelzinfiltration von Kohlenstoff-Preformen mit Silizium hergestellt. Die Vorteile dieser innovativen und leistungsfaehigen Bremsscheiben aus C/SiC-Keramik sind das geringe Gewicht und dadurch die Reduzierung der ungefederten rotierenden Massen, der geringe Verschleiss ueber Betriebsdauer, die Temperatur- und Fadingstabilitaet und die Korrosionsbestaendigkeit. Aufgrund der materialspezifischen Eigenschaften wurde das gesamte Bremssystem ueberarbeitet und die

  1. Solid state reaction in alumina nanoparticles/LZSA glass-ceramic composites

    International Nuclear Information System (INIS)

    Montedo, O.K.; Oliveira, A.N. de; Raupp-Pereira, F.

    2016-01-01

    Full text: The aim of this work is to present results related to solid state reactions on LZSA glass-ceramic composites containing alumina reinforcement nano-particles. A LZSA (Li2O-ZrO2-SiO2-Al2O3) glass-ceramic has been prepared by sintering of powders and characterized. Composites containing 0 to 77 vol.% of alumina nanoparticles (27-43 nm APS, 35 m2.g-1 SSA) and a 16.9Li2O•5.0ZrO2•65.1SiO2•8.6Al2O3 glass-ceramic matrix have been prepared. X-ray diffractometry studies have been performed in order of investigating the solid state reactions occurring in LZSA-based composites. Results of the XRD patterns have been related to the coefficient of thermal expansion (CTE), Young modulus, and dielectric constant, showing that, in comparison with the glass-ceramic composition, the composites showed a decrease of CTE with the alumina concentration increasing, due to the increasing of beta-spodumeness formation (solid solution of beta-spodumene, Li2O.Al2O3.4-10SiO2). The performance of the glass-ceramic was improved with the alumina nano-particles addition, showing potential of using in the preparation of Low Thermal Co-fired Ceramics (LTCC). (author)

  2. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amir, N., E-mail: norlailiamir@petronas.com.my; Othman, W. M. S. W., E-mail: wamosa@gmail.com; Ahmad, F., E-mail: faizahmad@petronas.com.my [Mechanical Engineering Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  3. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    International Nuclear Information System (INIS)

    Amir, N.; Othman, W. M. S. W.; Ahmad, F.

    2015-01-01

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating

  4. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Science.gov (United States)

    Amir, N.; Othman, W. M. S. W.; Ahmad, F.

    2015-07-01

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  5. Infrared processed Cu composites reinforced with WC particles

    International Nuclear Information System (INIS)

    Deshpande, P.K.; Li, J.H.; Lin, R.Y.

    2006-01-01

    Copper matrix composites with WC particle reinforcements have been prepared with an innovative infrared infiltration technique. The volume content of the reinforcement particles in the composite is about 53%. The relative composite density of as high as 99.9% has been obtained with this process. The electric conductivity of composites prepared in this study as determined by a four-point probe method, is similar to commercially available Cu/W composites containing 52 vol% tungsten. Microhardness, microstructure and wear resistance of the composites were also determined. The microstructure of Cu/WC composite reveals excellent wetting between the two constituent phases, WC and copper. The microhardness values of all completely infiltrated Cu/WC composites were in the range of 360-370 HV which is significantly higher than the microhardness of pure copper, 65 HV. Wear resistance of the composites was determined with a pin on disk wear test technique. The wear test results show that composites prepared in this study performed much better than those commercially available Cu/W composites by more than two-fold against silicon carbide abrasive disks

  6. Nanometer, submicron and micron sized aluminum powder prepared by semi-solid mechanical stirring method with addition of ceramic particles

    International Nuclear Information System (INIS)

    Qin, X.H.; Jiang, D.L.; Dong, S.M.

    2004-01-01

    Composite powder, which is a mixture of Al/Al 2 O 3 composite particles and nanometer, submicron and micron sized aluminum powder, was prepared by semi-solid mechanical stirring method with addition of Al 2 O 3 ceramic particles. The ceramic particles have an average diameter of 80 μm and a volume fraction of 15% in the slurry. The methods used to measure the size distribution of particles greater than 50 μm and less than 50 μm were sieve analysis and photosedimentation, respectively. The surface morphology and transverse sections of the composite powder of different sizes were examined by scanning electron microscope (SEM), optical microscope and auger electron spectroscopy (AES). The results indicate that the composite powder prepared in present work have a wide size distribution ranging from less than 50-900 μm, and the aluminum particles and Al/Al 2 O 3 composite particles are separated and isolated. The particles greater than 200 μm and less than 50 μm are almost pure aluminum powder. The rate of conversion of ingot aluminum into particles less than 1 μm containing nanometer and submicron sizes is 1.777 wt.% in this work. The aluminum powder of different sizes has different shape and surface morphology, quasi-spherical in shape with rough surface for aluminum particles of micron scale, irregular in shape for aluminum particles of submicron scale, and quite close to a globular or an excellent globular in shape for aluminum particles of nanometer size. On the other hand, the surface of ceramic particle was coated by aluminum particles with maximum thickness less than 10 μm containing nanometer and submicron sizes as a single layer. It is suggested that the surface of ceramic particles can provide more nucleation sites for solidification of liquid aluminum and the nucleation of liquid aluminum can take place readily, grow and adhere on the surface of ceramic particles, although it is poorly wetted by the liquid aluminum and the semi-solid slurry can

  7. Reinforcing effect of graphene on the mechanical properties of Al2O3/TiC ceramics

    Institute of Scientific and Technical Information of China (English)

    Zuo-li Li; Jun Zhao; Jia-lin Sun; Feng Gong; Xiu-ying Ni

    2017-01-01

    Multilayer graphene (MLG)-reinforced Al2O3/TiC ceramics were fabricated through hot pressing sintering, and the reinforcingef-fect of MLG on the microstructure and mechanical properties of the composites was investigated by experiment and simulation. The simula-tion of dynamic crack initiation and propagation was investigated based on the cohesive zone method. The results show that the composite added with 0.2wt% MLG has excellent flexural strength and high fracture toughness. The major reinforcing mechanisms are the synergistic effect by strong and weak bonding interfaces, MLG pull-out, and grain refinement resulting from the addition of MLG. In addition, the ag-gravating of crack deflection, branching, blunting, and bridging have indispensable contribution to the improvement of the as-designed mate-rials.

  8. Tensile and Compressive Responses of Ceramic and Metallic Nanoparticle Reinforced Mg Composites

    Directory of Open Access Journals (Sweden)

    Quy Bau Nguyen

    2013-05-01

    Full Text Available In the present study, room temperature mechanical properties of pure magnesium, Mg/ZrO2 and Mg/(ZrO2 + Cu composites with various compositions are investigated. Results revealed that the use of hybrid (ZrO2 + Cu reinforcements in Mg led to enhanced mechanical properties when compared to that of single reinforcement (ZrO2. Marginal reduction in mechanical properties of Mg/ZrO2 composites were observed mainly due to clustering of ZrO2 particles in Mg matrix and lack of matrix grain refinement. Addition of hybrid reinforcements led to grain size reduction and uniform distribution of hybrid reinforcements, globally and locally, in the hybrid composites. Macro- and micro- hardness, tensile strengths and compressive strengths were all significantly increased in the hybrid composites. With respect to unreinforced magnesium, failure strain was almost unchanged under tensile loading while it was reduced under compressive loading for both Mg/ZrO2 and Mg/(ZrO2 + Cu composites.

  9. Early stages of sliding wear behaviour of Al2O3 and SiC reinforced aluminium

    International Nuclear Information System (INIS)

    Bonollo, F.; Ceschini, L.; Garagnani, G.L.; Palombarini, G.; Tangerini, I.; Zambon, A.

    1993-01-01

    Al matrix composites reinforced by 10 vol.% Al 2 O 3 and SiC particles were subjected to dry sliding tests against steel using a slider-on-cylinder tribometer. Damage mechanisms were 'micro-machining' of the steel carried out by ceramic particles, plastic deformation and oxidation of the metal matrix, as well as abrasion. The results were discussed on the basis of the third-body wear model. (orig.)

  10. Ageing kinetics and strength of airborne-particle abraded 3Y-TZP ceramics.

    Science.gov (United States)

    Cotič, Jasna; Jevnikar, Peter; Kocjan, Andraž

    2017-07-01

    The combined effects of alumina airborne-particle abrasion and prolonged in vitro ageing on the flexural strength of 3Y-TZP ceramic have been studied. The aim was to identify the different effects on the surface and subsurface regions that govern the performance of this popular bioceramic known for its susceptibility to low-temperature degradation (LTD). As-sintered or airborne-particle abraded 3Y-TZP discs were subjected to ageing at 134°C for up to 480h. Biaxial flexural strength was measured and the relative amount of monoclinic phase determined using X-ray diffraction. The transformed zone depth (TZD) was observed on cross-sections with scanning electron microscopy coupled with a focused ion beam. Segmented linear regression was used to analyze the flexural strength and TZD as functions of the ageing time. A two-step linear ageing kinetics was detected in airborne-particle abraded specimens, reflecting the different microstructures through which the LTD proceeds into the bulk. A 10μm thick altered zone under the abraded surface was involved in both the surface strengthening and the increased ageing resistance. When the zone was annihilated by the LTD, the strength of the ceramic specimens and the speed of LTD returned to the values measured before abrasion. Even at prolonged ageing times, the strength of abraded groups was not lower than that of as-sintered groups. Both the ageing kinetics and the flexural strength were prominently affected by airborne-particle abrasion, which altered the subsurface microstructure and phase composition. Airborne-particle abrasion was not harmful to the 3Y-TZP ceramics' stability. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, H., E-mail: hossein.beygi@stu-mail.um.ac.ir; Sajjadi, S.A.; Zebarjad, S.M.

    2014-06-01

    Aluminum matrix composites used in the aerospace, military and automotive industries are typically fabricated by a stir casting method. However, when nanoparticles are used for reinforcement, fabrication of composite materials by this method leads to the formation of a large number of structural defects. In this study, copper coating of alumina reinforcement particles is investigated as a technique for improving the structure of Al-Al{sub 2}O{sub 3} composites. Microstructural investigations by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersion spectroscopy (EDS) and transmission electron microscopy (TEM) showed that the alumina particles were coated uniformly with copper shells. Copper coating of the reinforcing particles significantly increased their wettability in the molten aluminum alloy, strengthened the matrix-particle interfaces and improved the distribution of reinforcing particles within the matrix. Due to these microstructural improvements, the hardness, compressive strength, yield stress, tensile strength and elongation of the composites were enhanced by copper coating of the alumina particles.

  12. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles

    International Nuclear Information System (INIS)

    Beygi, H.; Sajjadi, S.A.; Zebarjad, S.M.

    2014-01-01

    Aluminum matrix composites used in the aerospace, military and automotive industries are typically fabricated by a stir casting method. However, when nanoparticles are used for reinforcement, fabrication of composite materials by this method leads to the formation of a large number of structural defects. In this study, copper coating of alumina reinforcement particles is investigated as a technique for improving the structure of Al-Al 2 O 3 composites. Microstructural investigations by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersion spectroscopy (EDS) and transmission electron microscopy (TEM) showed that the alumina particles were coated uniformly with copper shells. Copper coating of the reinforcing particles significantly increased their wettability in the molten aluminum alloy, strengthened the matrix-particle interfaces and improved the distribution of reinforcing particles within the matrix. Due to these microstructural improvements, the hardness, compressive strength, yield stress, tensile strength and elongation of the composites were enhanced by copper coating of the alumina particles

  13. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  14. Mechanical and Tribological Characteristics of TIG Hardfaced Dispersive Layer by Reinforced with Particles Extruded Aluminium

    Directory of Open Access Journals (Sweden)

    R. Dimitrova

    2017-05-01

    Full Text Available The article presents the results of the implemented technology for generation of hardfaced dispersive layers obtained by additive material containing reinforcing phase of non-metal particles. The wear resistant coatings are deposited on pure aluminium metal matrix by shielded gas metal-arc welding applying tungsten inert gas (TIG with extruded aluminium wire reinforced by particles as additive material. Wire filler is produced by extrusion of a pack containing metalized and plated by flux micro/nano SiC particles. The metalized particles implanting in the metal matrix and its dispersive hardfacing are realized by solid-state welding under conditions of hot plastic deformation. Tribological characteristics are studied of the hardfaced layers of dispersive reinforced material on pure aluminium metal matrix with and without flux. Hardness profiles of the hardfaced layers are determined by nanoindentation. The surface layers are studied by means of Scanning Electron Microscopy (SEM and Energy Dispersive X-ray (EDX analysis. Increase by 15-31 % of the wear resistance of the hardfaced layers and 30-40 % of their hardness was found, which is due to the implanted in the layer reinforcing phase of metalized micro/nano SiC particles.

  15. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Science.gov (United States)

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  16. Amorphization of complex ceramics by heavy-particle irradiations

    International Nuclear Information System (INIS)

    Ewing, R.C.; Wang, L.M.

    1994-11-01

    Complex ceramics, for the purpose of this paper, include materials that are generally strongly bonded (mixed ionic and covalent), refractory and frequently good insulators. They are distinguished from simple, compact ceramics (e.g., MgO and UO 2 ) by structural features which include: (1) open network structures, best characterized by a consideration of the shape, size and connectivity of coordination polyhedra; (2) complex compositions which characteristically lead to multiple cation sites and lower symmetry; (3) directional bonding; (4) bond-type variations within the structure. The heavy particle irradiations include ion-beam irradiations and recoil-nucleus damage resulting from a-decay events from constituent actinides. The latter effects are responsible for the radiation-induced transformation to the metamict state in minerals. The responses of these materials to irradiation are complex, as energy may be dissipated ballistically by transfer of kinetic energy from an incident projectile or radiolytically by conversion of radiation-induced electronic excitations into atomic motion. This results in isolated Frenkel defect pairs, defect aggregates, isolated collision cascades or bulk amorphization. Thus, the amorphization process is heterogeneous. Only recently have there been systematic studies of heavy particle irradiations of complex ceramics on a wide variety of structure-types and compositions as a function of dose and temperature. In this paper, we review the conditions for amorphization for the tetragonal orthosilicate, zircon [ZrSiO 4 ]; the hexagonal orthosilicate/phosphate apatite structure-type [X 10 (ZO 4 ) 6 (F,Cl,O) 2 ]; the isometric pyrochlores [A 1-2 B 2 O 6 (O,OH,F) 0-1p H 2 O] and its monoclinic derivative zirconotite [CaZrTi 2 O 7 ]; the olivine (derivative - hcp) structure types, α- VI A 2 IV BO 4 , and spinel (ccp), γ- VI A 2 IV BO 4

  17. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    Science.gov (United States)

    1991-01-01

    The addition of ceramic particles to aluminum based alloys can substantially improve mechanical properties, especially Young's modulus and room and elevated temperature strengths. However, these improvements typically occur at the expense of tensile ductility. The mechanical properties are evaluated to a metal matrix composite (MMC) consisting of an ultrahigh strength aluminum lithium alloy, Weldalite (tm) 049, reinforced with TiB2 particles produced by an in situ precipitation technique called the XD (tm) process. The results are compared to the behavior of a nonreinforced Weldalite 049 variant. It is shown that both 049 and 049-TiB2 show very attractive warm temperature properties e.g., 625 MPa yield strength at 150 C after 100 h at temperature. Weldalite 049 reinforced with a nominal 4 v pct. TiB2 shows an approx. 8 pct. increase in modulus and a good combination of strength (529 MPa UTS) and ductility (6.5 pct.) in the T3 temper. And the high ductility of Weldalite 049 in the naturally aged and underaged tempers makes the alloy a good, high strength matrix for ceramic reinforcement.

  18. Matrix-reinforcement reactivity in P/M titanium matrix composites

    International Nuclear Information System (INIS)

    Amigo, V.; Romero, F.; Salvador, M. D.; Busquets, D.

    2007-01-01

    The high reactivity of titanium and the facility of the same one to form intermetallics makes difficult obtaining composites with this material and brings the need in any case of covering the principal fibres used as reinforcement. To obtain composites of titanium reinforced with ceramic particles ins proposed in this paper, for this reason it turns out to be fundamental to evaluate the reactivity between the matrix and reinforcement. Both titanium nitride and carbide (TiN and TiC) are investigated as materials of low reactivity whereas titanium silicide (TiSi 2 ) is also studied as materials of major reactivity, already stated by the scientific community. This reactivity will be analysed by means of scanning electron microscopy (SEM) there being obtained distribution maps of the elements that allow to establish the possible influence of the sintering temperature and time. Hereby the matrix-reinforcement interactions are optimized to obtain suitable mechanical properties. (Author) 39 refs

  19. The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, GH.A., E-mail: Gh.a.bagheri65@gmail.com

    2016-08-15

    In this research, copper matrix composites reinforced with different amounts of titanium carbide particles were produced by mechanical milling and in-situ formation of reinforcements. Morphology and size of milled powders were inspected by scanning electron microscopy (SEM) several times during milling process. Changes in lattice parameter, crystallite size, lattice strain, dislocation density and Gibbs free energy changes (due to increasing in dislocation densities and grain boundaries) in different samples (with different TiC particles contents) were studied by X-Ray Diffraction technique with Cu-kα radiation and using Nelson–Riley method and Williamson–Hall equation. Microstructure of samples after sintering was investigated by FESEM. Finally, densitometry, hardness, determination of electrical resistance and pin on disk wear test were performed and effect of reinforcement percentages on the physical and mechanical properties of composites was studied. Results show incredible improvement in mechanical properties with increasing in TiC value, even though, electrical conductivity dropped off considerably. - Highlights: • Microstructures, mechanical and physical properties of composites have been studied. • Stored Gibbs free energy of dislocations and grain boundaries has been calculated. • Gibbs free energy increased with increasing in titanium percent. • Higher TiC percentage led to better mechanical and unfavorable physical properties.

  20. Internal friction and microplasticity of carbon-fiber-reinforced SiC ceramics; Tanso sen`i kyoka SiC ceramics no hakai zenku katei ni okeru naibu masatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H.; Nishino, Y.; Asano, S. [Nagoya Institute of Technology, Nagoya (Japan)

    1995-08-20

    Mechanical responses of carbon-fiber-reinforced SiC ceramics before fracture were measured in the strain range below 2 {times} 10{sup {minus}3} by two experimental methods: mechanical hysteresis and internal friction. Load-deflection curves were obtained by the three-point bending deformation in loading-unloading cycles. A little permanent strain was found after the first cycle even in the range where fracture never occurred. A closed hysteresis loop was observed after several cycles and stabilized with a symmetrical shape after more than twenty cycles. Such a stabilized hysteresis loop is attributed to the steady-state microplastic deformation and may cause the amplitude-dependent internal friction. Internal friction was measured in the fundamental mode of free-free resonant vibration as a function of strain amplitude. With increasing the amount of prestrain in the bending deformation, internal friction increased and became sensitive to the strain amplitude. The amplitude-dependent internal friction in the composites is considered to originate from fiber pull-out or microcrack propagation. The internal friction data were analyzed on the basis of the microplasticity theory and converted into the plastic strain expressed as a function of stress. Therefore, it becomes possible to non-destructively study the forerunning process of fracture of the fiber-reinforced ceramics. 23 refs., 6 figs.

  1. Enhancement of Compatibility between Ultrahigh-Molecular-Weight Polyethylene Particles and Butadiene.Nitrile Rubber Matrix with Nanoscale Ceramic Particles and Characterization of Evolving Layer

    International Nuclear Information System (INIS)

    Shadrinov, Nikolay V.; Sokolova, Marina D.; Cho, Jinho; Okhlopkova, A. A.; Lee, Jungkeun; Jeong, Daeyong

    2013-01-01

    This article examines the modification of surface properties of ultrahigh-molecular-weight polyethylene (UHMWPE) with nanoscale ceramic particles to fabricate an improved composite with butadiene.nitrile rubber (BNR). Adhesion force data showed that ceramic zeolite particles on the surface of UHMWPE modulated the surface state of the polymer and increased its compatibility with BNR. Atomic force microscopy phase images showed that UHMWPE made up the microphase around the zeolite particles and formed the evolving layer with a complex interface. The complex interface resulted in improvements in the mechanical properties of the composite, especially its low-temperature resistance coefficients, thereby improving its performance in low-temperature applications

  2. Metallic-fibre-reinforced ceramic-matrix composite

    International Nuclear Information System (INIS)

    Prevost, F.; Schnedecker, G.; Boncoeur, M.

    1994-01-01

    A refractory metal wire cloth is embedded in an oxide ceramic matrix, using a plasma spraying technology, in order to elaborate composite plates. When mechanically tested, the composite fails with a pseudo-ductile fracture mode whereas the ceramic alone is originally brittle. It exhibits a higher fracture strength, and remains in the form of a single piece even when straining is important. No further heat treatment is needed after the original processing to reach these characteristics. (authors). 2 figs., 2 refs

  3. Transmission of Er:YAG laser through different dental ceramics.

    Science.gov (United States)

    Sari, Tugrul; Tuncel, Ilkin; Usumez, Aslihan; Gutknecht, Norbert

    2014-01-01

    The aim of this study was to determine the erbium-doped yttrium aluminum garnet (Er:YAG) laser transmission ratio through different dental ceramics with different thicknesses. Laser debonding procedure of adhesively luted all-ceramic restorations is based on the transmission of laser energy through the ceramic and the ablation of resin cement, because of the transmitted laser energy. Five different dental ceramics were evaluated in this study: sintered zirconium-oxide core ceramic, monolithic zirconium-oxide ceramic, feldspathic ceramic, leucite-reinforced glass ceramic, and lithium disilicate-reinforced glass ceramic. Two ceramic discs with different thicknesses (0.5 and 1 mm) were fabricated for each group. Ceramic discs were placed between the sensor membrane of the laser power meter and the tip of the contact handpiece of an Er:YAG laser device with the aid of a custom- made acrylic holder. The transmission ratio of Er:YAG laser energy (500 mJ, 2 Hz, 1 W, 1000 μs) through different ceramic discs was measured with the power meter. Ten measurements were made for each group and the results were analyzed with two way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. The highest transmission ratio was determined for lithium disilicate-reinforced ceramic with 0.5 mm thickness (88%) and the lowest was determined for feldspathic ceramic with 1 mm thickness (44%). The differences among the different ceramics and between the different thicknesses were significant (pCeramic type and thickness should be taken into consideration to adjust the laser irradiation parameters during laser debonding of adhesively luted all-ceramic restorations.

  4. Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond strength evaluation.

    Science.gov (United States)

    Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli

    2014-05-01

    This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect. Copyright © 2014 Wiley Periodicals, Inc.

  5. Fiber-reinforced ceramic matrix composites processed by a hybrid technique based on chemical vapor infiltration, slurry impregnation and spark plasma sintering

    International Nuclear Information System (INIS)

    Magnant, J.; Pailler, R.; Le Petitcorps, Y.; Maille, L.; Guette, A.; Marthe, J.

    2013-01-01

    Fabrication of multidirectional continuous carbon and silicon carbide fiber reinforced ceramic matrix composites (CMC) by a new short time hybrid process was studied. This process is based, first, on the deposition of fiber interphase and coating by chemical vapor infiltration, next, on the introduction of silicon nitride powders into the fibrous preform by slurry impregnation and, finally, on the densification of the composite by liquid phase spark plasma sintering (LP-SPS). The homogeneous introduction of the ceramic charges into the multidirectional fiber pre-forms was realized by slurry impregnation from highly concentrated and well-dispersed aqueous colloid suspensions. The chemical degradation of the carbon fibers during the fabrication was prevented by adapting the sintering pressure cycle. The composites manufactured are dense. Microstructural analyses were conducted to explain the mechanical properties achieved. One main important result of this study is that LP-SPS can be used in some hybrid processes to densify fiber reinforced CMC. (authors)

  6. Study of new CaO-SiO/sub 2/-P/sub 2/O/sub 5/CaF/sub 2/ bioactive ceramic

    International Nuclear Information System (INIS)

    Shamim, A.; Arif, I.; Siddiqi, S.A.; Shah, W.A.

    1997-01-01

    A new bioactive glass ceramic having, composition 48CaO-32SiO/sub 2/-16P/sub 2/O/sub 5/-4CaF/sub 2/ has been developed and studied for its physical and biological properties. Like the natural bone in which spastic particles are reinforced by collagen, in the present glass-ceramic, fine grained ceramic particles embedded in a glass matrix. X-ray diffraction analysis reveals wollastonite and oxyfluorapatite as the crystalline part of the glass-ceramic. Scanning electron microscopy of the samples has been carried out to see the grain size and grain distribution. Bending and compressive strength of the glass ceramic have been carried out to measured and found to be 208.60 m.Pa and 788.61 M.Pa respectively. Growth of apatite layer, which is responsible for bonding the broken part of a natural bone, on a bioactive glass-ceramic in a simulated body fluid has been studied. A small rectangular piece of this glass-ceramic has also been implanted successfully in a dog's tibia. (author)

  7. Enhancing the Hardness and Compressive Response of Magnesium Using Complex Composition Alloy Reinforcement

    Directory of Open Access Journals (Sweden)

    Khin Sandar Tun

    2018-04-01

    Full Text Available The present study reports the development of new magnesium composites containing complex composition alloy (CCA particles. Materials were synthesized using a powder metallurgy route incorporating hybrid microwave sintering and hot extrusion. The presence and variation in the amount of ball-milled CCA particles (2.5 wt %, 5 wt %, and 7.5 wt % in a magnesium matrix and their effect on the microstructure and mechanical properties of Mg-CCA composites were investigated. The use of CCA particle reinforcement effectively led to a significant matrix grain refinement. Uniformly distributed CCA particles were observed in the microstructure of the composites. The refined microstructure coupled with the intrinsically high hardness of CCA particles (406 HV contributed to the superior mechanical properties of the Mg-CCA composites. A microhardness of 80 HV was achieved in a Mg-7.5HEA (high entropy alloy composite, which is 1.7 times higher than that of pure Mg. A significant improvement in compressive yield strength (63% and ultimate compressive strength (79% in the Mg-7.5CCA composite was achieved when compared to that of pure Mg while maintaining the same ductility level. When compared to ball-milled amorphous particle-reinforced and ceramic-particle-reinforced Mg composites, higher yield and compressive strengths in Mg-CCA composites were achieved at a similar ductility level.

  8. Elastohydrodynamic lubrication in point contact on the surfaces of particle-reinforced composite

    Science.gov (United States)

    Chen, Keying; Zeng, Liangcai; Wu, Zhenpeng; Zheng, Feilong

    2018-04-01

    Appreciable friction and serious wear are common challenges in the operation of advanced manufacturing equipment, and friction pairs may be susceptible to damage even with oil lubrication when point contact exists. In this study, a type of particle-reinforced composite material is introduced for one of the components of a heavy-load contact pair, and the performance improvement of elastohydrodynamic lubrication (EHL) is analyzed considering the rheological properties of non-Newtonian fluids. The Ree-Eyring EHL model is used considering the surface of the particle-reinforced composite, in which the film thickness includes the particle-induced elastic deformation. The problem of inclusions with different eigenstrains is solved by using Galerkin vectors. The influences of particle properties, size, burial depth, and interparticle distance on point-contact EHL are investigated. Furthermore, using several cases, the structural parameters of the particles in the composites are optimized, and an appropriate parameter range is obtained with the goal of reducing friction. Finally, the results for the EHL traction coefficient demonstrate that appropriate particle properties, size, burial depth, and interparticle distance can effectively reduce the traction coefficient in heavy-load contact.

  9. Microstructure and property of WC particles ceramic-metal composite coatings by laser surface cladding

    International Nuclear Information System (INIS)

    Zeng Xiaoyan; Zhu Beidi; Tao Zengyi; Yang Shuguo; Cui Kun

    1993-01-01

    Ceramic-metal is widely used as a kind of good hardfacing material. The coarse WC particles ceramic-metal composite coatings with WC density of 67% it weight and the thickness of 1.6-2.0 mm have been cladded on 20Ni 4 Mo steel surface by a 2kw CO 2 laser. The sintered WC particles with the size of 600-1,000 μm are chosen as the main strengthening phase, Ni-base self-flux alloy as the binder in the composite coatings. The microstructure and micro-hardness of both WC particles and binder are analyzed. The rigid ball indention with acoustic emission technique is used to evaluate the brittleness of the coating. Finally, the abrasive wear resistance of the coatings are tested, Besides, the coatings with the same ratio and size of WC particles within low carbon steel tube were cladded on 20Ni 4 Mo steel by atomic hydrogen welding technique and analyzed by the same ways their result are compared

  10. A self-setting particle-stabilized porous ceramic panel prepared from commercial cement and loaded with carbon for potential radar'absorbing applications

    Directory of Open Access Journals (Sweden)

    Jang-Hoon Ha

    2018-03-01

    Full Text Available Porous ceramic materials are in a current research focus because of their outstanding thermal stability, chemical stability and lightweight. Recent research has widened the range of applications to radar absorption to utilize the advantages of porous ceramic materials. There has been long-standing interest in the development of lightweight radar-absorbing materials for military applications such as camouflaging ground-based facilities against airborne radar detection. Therefore, in this study, a novel lightweight radar-absorbing material for X-band frequencies was developed using a self-setting particle-stabilized porous ceramic panel composited with carbon. The panel was prepared using a commercial calcium aluminate cement (as a self-setting matrix, zeolite 13X particles with propyl gallate (as a particle-stabilized pore former and carbon (as a radar-absorbing material. The panel contained macropores approximately 200 to 400 µm in size formed by zeolite 13X particles that are irreversibly adsorbed at liquid-gas interfaces. The self-setting particle-stabilized porous ceramic panels were characterized by scanning electron microscopy, mercury porosimetry, physisorption analysis, capillary flow porosimetry and network analysis. When 0.2 wt.% carbon was added to a self-setting particle-stabilized porous ceramic panel to fabricate a composite 7 mm thick, the maximum reflection loss was −11.16 dB at 12.4 GHz. The effects of the amount of added carbon and the thickness variation of a self-setting particle-stabilized porous ceramic panel on the radar-absorbing properties remain important issues for further research.

  11. Ceramic nanostructures and methods of fabrication

    Science.gov (United States)

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  12. Y-TZP ceramic processing from coprecipitated powders : A comparative study with three commercial dental ceramics

    NARCIS (Netherlands)

    Lazar, Dolores R. R.; Bottino, Marco C.; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H. A.

    2008-01-01

    Objectives. (1) To synthesize 3 mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. Methods.

  13. Acoustic emission characterization of fracture toughness for fiber reinforced ceramic matrix composites

    International Nuclear Information System (INIS)

    Mei, Hui; Sun, Yuyao; Zhang, Lidong; Wang, Hongqin; Cheng, Laifei

    2013-01-01

    The fracture toughness of a carbon fiber reinforced silicon carbide composite was investigated relating to classical critical stress intensity factor K IC , work of fracture, and acoustic emission energy. The K IC was obtained by the single edge notch beam method and the work of fracture was calculated using the featured area under the load–displacement curves. The K IC , work of fracture, and acoustic emission energy were compared for the composites before and after heat treatment and then analyzed associated with toughening microstructures of fiber pullout. It indicates that the work of fracture and acoustic emission energy can be more suitable to reflect the toughness rather than the traditional K IC , which has certain limitation for the fracture toughness characterization of the crack tolerant fiber ceramic composites.

  14. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    International Nuclear Information System (INIS)

    Zou, C.; Li, B.; Zhang, C.; Wang, S.; Marrow, T.J.; Reinhard, C.

    2016-01-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a 'node-bond' geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1∼ 9.3% closed micropores

  15. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    Directory of Open Access Journals (Sweden)

    Lu X

    2012-04-01

    Full Text Available Xiaoli Lu1,2, Yang Xia1, Mei Liu1, Yunzhu Qian3, Xuefeng Zhou4, Ning Gu4, Feimin Zhang1,41Institute of Stomatology, Nanjing Medical University, Nanjing, 2Nantong Stomatological Hospital, Nantong, 3Center of Stomatology, The Second Affiliated Hospital of Suzhou University, Suzhou, 4Suzhou Institute, Southeast University, Suzhou, People's Republic of ChinaAbstract: To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride] and anionic [poly(sodium 4-styrenesulfonate] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05. Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.Keywords: layer-by-layer, diatomite, nanoceramics, zirconia (ZrO2, dental materials

  16. Effect of Particle Size on Microstructure and Mechanical Properties of Al-Based Composite Reinforced with 10 Vol.% Mechanically Alloyed Mg-7.4%Al Particles

    Directory of Open Access Journals (Sweden)

    Anil K. Chaubey

    2016-11-01

    Full Text Available The effect of Mg-7.4%Al reinforcement particle size on the microstructure and mechanical properties in pure Al matrix composites was investigated. The samples were prepared by hot consolidation using 10 vol.% reinforcement in different size ranges, D, 0 < D < 20 µm (0–20 µm, 20 ≤ D < 40 µm (20–40 µm, 40 ≤ D < 80 µm (40–80 µm and 80 ≤ D < 100 µm (80–100 µm. The result reveals that particle size has a strong influence on the yield strength, ultimate tensile strength and percentage elongation. As the particle size decreases from 80 ≤ D < 100 µm to 0 < D < 20 µm, both tensile strength and ductility increases from 195 MPa to 295 MPa and 3% to 4% respectively, due to the reduced ligament size and particle fracturing. Wear test results also corroborate the size effect, where accelerated wear is observed in the composite samples reinforced with coarse particles.

  17. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    Science.gov (United States)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  18. Comparison of mechanical and tribotechnical properties of UHMWPE reinforced with basalt fibers and particles

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Qitao, Huang; Ivanova, L. R.

    2016-11-01

    Mechanical and tribotechnical properties of UHMWPE composites reinforced with basalt fibers and particles under dry sliding friction and abrasion were investigated. It is shown that adding of the basalt particles provides higher wear resistance under the dry sliding friction while at abrasion filling by the basalt fibers is more efficient since the wear resistance of the reinforced UHMWPE composites is by 3.7 times higher in contrast with the neat polymer. Wear mechanisms of the polymeric UHMWPE composites under various types of wear are discussed.

  19. Design and characterization of a carbon-nanotube-reinforced adhesive coating for piezoelectric ceramic discs

    International Nuclear Information System (INIS)

    Lanzara, G; Chang, F-K

    2009-01-01

    The silver paste electrode of piezoelectric (PZT) ceramic discs has been shown to produce a weak interface bond between a bare PZT and its paste coating under a peeling force. In this work, an investigation was conducted to reinforce the bond with a high density array of oriented carbon nanotube nano-electrodes (CNTs-NEA), between a bare PZT ceramic and a metal substrate. The ensuing design and fabrication of a carbon-nanotube-coated piezoelectric disc (CPZT) is presented along with a study of the bondline integrity of a CPZT mounted on a hosting structure. The CPZT has its electrode silver paste coating replaced with a high density array of CNTs-NEA. Mechanical tests were performed to characterize the shear strength of the bondline between CPZT discs and the substrate. The test results were compared with shear strengths of the bondlines made of pure non-conductive adhesive and adhesive with randomly mixed CNTs. The comparison showed the oriented CNT coating on PZTs could significantly enhance the interfacial shear strength. Through the microscopic examination, it was evident that the ratio between the CNT length (Lc) and the bond thickness (H) significantly influenced the bond strength of CPZT discs. Three major interface microstructure types and their corresponding failure modes for specific Lc/H values were identified. The study also showed that failure did not occur along the interface between the PZT ceramic element and the CNT coating

  20. Influence of ceramic particulate type on microstructure and tensile strength of aluminum matrix composites produced using friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Dinaharan

    2016-06-01

    Full Text Available Friction stir processing (FSP was applied to produce aluminum matrix composites (AMCs. Aluminum alloy AA6082 was used as the matrix material. Various ceramic particles, such as SiC, Al2O3, TiC, B4C and WC, were used as reinforcement particle. AA6082 AMCs were produced using a set of optimized process parameters. The microstructure was studied using optical microscopy, filed emission scanning electron microscopy and electron back scattered diagram. The results indicated that the type of ceramic particle did not considerably vary the microstructure and ultimate tensile strength (UTS. Each type of ceramic particle provided a homogeneous dispersion in the stir zone irrespective of the location and good interfacial bonding. Nevertheless, AA6082/TiC AMC exhibited superior hardness and wear resistance compared to other AMCs produced in this work under the same set of experimental conditions. The strengthening mechanisms and the variation in the properties are correlated to the observed microstructure. The details of fracture mode are further presented.

  1. Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

    2013-12-15

    The interface between metal matrix and ceramic reinforcement particles plays an important role in improving properties of the metal matrix composites. Hence, it is important to find out the interface structure of composite after re-melting. In the present investigation, the 2124Al matrix with 10 wt.% SiC particle reinforced composite was re-melted at 800 °C and 900 °C for 10 min followed by pouring into a permanent mould. The microstructures reveal that the SiC particles are distributed throughout the Al-matrix. The volume fraction of SiC particles varies from top to bottom of the composite plate and the difference increases with the decrease of re-melting temperature. The interfacial structure of re-melted 2124Al–10 wt.%SiC composite was investigated using scanning electron microscopy, an electron probe micro-analyzer, a scanning transmission electron detector fitted with scanning electron microscopy and an X-ray energy dispersive spectrometer. It is found that a thick layer of reaction product is formed at the interface of composite after re-melting. The experimental results show that the reaction products at the interface are associated with high concentration of Cu, Mg, Si and C. At re-melting temperature, liquid Al reacts with SiC to form Al{sub 4}C{sub 3} and Al–Si eutectic phase or elemental Si at the interface. High concentration of Si at the interface indicates that SiC is dissociated during re-melting. The X-ray energy dispersive spectrometer analyses confirm that Mg- and Cu-enrich phases are formed at the interface region. The Mg is segregated at the interface region and formed MgAl{sub 2}O{sub 4} in the presence of oxygen. The several elements identified at the interface region indicate that different types of interfaces are formed in between Al matrix and SiC particles. The Al–Si eutectic phase is formed around SiC particles during re-melting which restricts the SiC dissolution. - Highlights: • Re-melted composite shows homogeneous particle

  2. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    Science.gov (United States)

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (pceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (pceramics (pceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.

  3. Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through particle-surface-initiated polymerization

    International Nuclear Information System (INIS)

    Guo Zhanhu; Park, Sung; Wei Suying; Pereira, Tony; Moldovan, Monica; Karki, Amar B; Young, David P; Hahn, H Thomas

    2007-01-01

    Flexible high-loading nanoparticle-reinforced polyurethane magnetic nanocomposites fabricated by the surface-initiated polymerization (SIP) method are reported. Extensive field emission scanning electron microscopic (SEM) and atomic force microscopic (AFM) observations revealed a uniform particle distribution within the polymer matrix. X-ray photoelectron spectrometry (XPS) and differential thermal analysis (DTA) revealed a strong chemical bonding between the nanoparticles and the polymer matrix. The elongation of the SIP nanocomposite under tensile test was about four times greater than that of the composite fabricated by a conventional direct mixing fabrication method. The nanocomposite shows particle-loading-dependent magnetic properties, with an increase of coercive force after the magnetic nanoparticles were embedded into the polymer matrix, arising from the increased interparticle distance and the introduced polymer-particle interactions

  4. Preparation of a ceramic superconductor from ultrafine particles by freeze-dry process in Ba-Y-Cu-O system

    International Nuclear Information System (INIS)

    Chen Zuyao; Qian Yitai; Wan Yanjian; Rong Jingfang; Zhang Han; Pan Guoqiang; Zhao Yong; Zhang Qirui

    1989-01-01

    Freeze-dry technique is first reported for preparing ceramic ultrafines. The single-phase complex oxide Ba 2 YCu 3 O/sub 9-δ/, a poly-crystallized compound, and ceramic superconductor have been synthesized successfully. The experimental results show that not only is the ceramic superconductor obtained uniform with fine particles and excellent superconductivity, but the conditions for solid reactions are relatively limited

  5. Metallic and intermetallic-bonded ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  6. Particle migration using local variation of the viscosity (LVOV) model in flow of a non-Newtonian fluid for ceramic tape casting

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hattel, Jesper Henri

    2016-01-01

    In this paper, the migration of secondary particles in a non-Newtonian ceramic slurry inthe tape casting process is investigated with the purpose of understanding the particle distribution patterns along the casting direction. The Ostwald-de Waele power law model for the non-Newtonian flow...... the substratevelocity (casting speed) leads to a more uniform distribution of the particles inside the ceramic slurry, in which case the shear induced particle migration is dominating over the gravity induced one....

  7. Residual stress analysis in carbon fiber-reinforced SiC ceramics

    International Nuclear Information System (INIS)

    Broda, M.

    1998-01-01

    Systematic residual stress analyses are reported, carried out in long-fiber reinforced SiC ceramics. The laminated C fiber /SiC matrix specimens used were prepared by polymer pyrolysis, and the structural component specimens used are industrial products. Various diffraction methods have been applied for non-destructive evaluation of residual stress fields, so as to completely detect the residual stresses and their distribution in the specimens. The residual stress fields at the surface (μm) have been measured using characteristic X-radiation and applying the sin 2 ψ method as well as the scatter vector method. For residual stress field analysis in the mass volume (cm), neutron diffraction has been applied. The stress fields in the fiber layers (approx. 250μm) have been measured as a function of their location within the laminated composite by using an energy-dispersive method and synchrotron radiation. By means of the systematic, process-accompanying residual stress and phase analyses, conclusions can be drawn as to possible approaches for optimization of fabrication parameters. (orig./CB) [de

  8. Damage Assessment in a SiC-fiber reinforced Ceramic Matrix Composite

    Directory of Open Access Journals (Sweden)

    Konstantinos G. Dassios

    2013-01-01

    Full Text Available Assessment of the fracture behavior of a SiC-fbre-reinforced barium osumilite (BMAS ceramic matrix composite tested under static and cyclic tension conditions is reported herein. Notched specimens were used in order to limit material damage within a predefined gauge length. Imposition of successive unloading/reloading loops was found to result in an increase by 20% in material strength as compared to pure tension; the observed increase is attributed to energy dissipation from large-scale interfacial debonding phenomena that dominated the post-elastic tensile behaviour of the composite. Cyclic loading also helped establish the axial residual stress state of the fibres in the composite of tensile nature via a well-defined common intersection point of unloading-reloading cycles. A translation vector approach in the stress-strain plane was successful in establishing the residual stress-free properties of the composite and in reconciling the scatter noted in elastic properties of specimens with respect to theoretical expectations.

  9. Influence of thermal residual stress on behaviour of metal matrix composites reinforced with particles

    Science.gov (United States)

    Guzmán, R. E.; Hernández Arroyo, E.

    2016-02-01

    The properties of a metallic matrix composites materials (MMC's) reinforced with particles can be affected by different events occurring within the material in a manufacturing process. The existence of residual stresses resulting from the manufacturing process of these materials (MMC's) can markedly differentiate the curves obtained in tensile tests obtained from compression tests. One of the themes developed in this work is the influence of residual stresses on the mechanical behaviour of these materials. The objective of this research work presented is numerically estimate the thermal residual stresses using a unit cell model for the Mg ZC71 alloy reinforced with SiC particles with volume fraction of 12% (hot-forging technology). The MMC's microstructure is represented as a three dimensional prismatic cube-shaped with a cylindrical reinforcing particle located in the centre of the prism. These cell models are widely used in predicting stress/strain behaviour of MMC's materials, in this analysis the uniaxial stress/strain response of the composite can be obtained through the calculation using the commercial finite-element code.

  10. Aluminium EN AW-2124 alloy matrix composites reinforced with Ti(C,N), BN and Al2O3 particles

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Wlodarczyk, A.; Adamiak, M.

    2003-01-01

    Investigation results of the aluminium alloy EN AW-2124 matrix composite materials with particles of the powders Ti(C,N), BN and Al 2 O 3 (15 wt.%) are presented in the paper. In order to obtain uniform distribution of reinforcement particles in aluminium alloy matrix powders of composite components have been milled in the rotary ball-bearing pulverizer. The composites have been pressed in laboratory vertical press at room temperature under the pressure of 500 kN. Obtained die samplings have been heated to the temperature 520-550 o C and extruded. Bars of diameter 8 mm have been received as a final product. Metallographic examination of the composites materials' structure shows non-uniform distribution of reinforced powders in the aluminium alloy matrix banding of reinforcements particles corresponds to the extrusion direction. Particles of reinforcement distribution in aluminium alloy matrix is irregular, some agglomerations of powder of aluminium oxide and porosity of different size have been noticed. Investigations of hardness and ultimate compressive strength show that the particles of reinforcement improve mechanical properties of composite materials. Investigations of compressive strength, carried out at room temperature, enable to compare mechanical properties of matrix and composite. (author)

  11. Oxidation behavior of TiC particle-reinforced 304 stainless steel

    International Nuclear Information System (INIS)

    Wu Qianlin; Zhang Jianqiang; Sun Yangshan

    2010-01-01

    TiC particle-reinforced 304 stainless steels were prepared using a new developed in situ technology and exhibited the uniform distribution of TiC particles in the matrix. The oxidation behavior of 304SS-2TiC and 304SS-6TiC (all in weight percentage) was compared with that of 304SS at 850 deg. C in air for 96 h using thermogravimetry analysis. For 304SS, the rate of weight gain was very slow initially, but accelerated suddenly to a very high level, forming breakaway oxidation. The addition of TiC particles to 304SS resulted in no breakaway oxidation and maintained a low oxidation rate in the whole reaction time investigated. Examination of oxide scale morphology and cross-section analysis by scanning electron microscopy and optical microscopy showed a significant scale spallation and a deep oxide penetration in the case of 304SS, but a rather continuous, dense and adherent oxide layer formed on the surface of TiC particle-reinforced alloys. XRD analysis revealed the presence of Cr 2 O 3 together with spinel-type oxides in the oxide scale. For TiC-containing alloys, fine TiO 2 was also found on the surface and the amount of this oxide increased with TiC addition. The TiC addition developed finer matrix structure before oxidation, which accelerates chromium diffusion. As a result, scale adherence was improved and oxidation resistance was increased.

  12. Fabrication of ceramic dispersoid reinforcement by using mechanical activation

    International Nuclear Information System (INIS)

    Kim, Ji Soon; Kim, Jin Chun

    2010-07-01

    For fabrication of ceramic dispersoid with good wettability, disreputably and homogeneity to metal melt by Mechanical Surface Activation method the followings have been investigated: (1) Processing optimization for surface activation of ceramic dispersoids by mechanical activation (mechanical alloying) (2) Wetting behavior of mechanically-activated ceramic dispersoids (3) Effect of second element on the improvement of wettability and dispersibility

  13. Al-matrix composite materials reinforced by Al-Cu-Fe particles

    International Nuclear Information System (INIS)

    Bonneville, J; Laplanche, G; Joulain, A; Gauthier-Brunet, V; Dubois, S

    2010-01-01

    Al-matrix material composites were produced using hot isostatic pressing technique, starting with pure Al and icosahedral (i) Al-Cu-Fe powders. Depending on the processing temperature, the final reinforcement particles are either still of the initial i-phase or transformed into the tetragonal ω-Al0 0.70 Cu 0.20 Fe 0.10 crystalline phase. Compression tests performed in the temperature range 293K - 823K on the two types of composite, i.e. Al/i and Al/ω, indicate that the flow stress of both composites is strongly temperature dependent and exhibit distinct regimes with increasing temperature. Differences exist between the two composites, in particular in yield stress values. In the low temperature regime (T ≤ 570K), the yield stress of the Al/ω composite is nearly 75% higher than that of the Al/i composite, while for T > 570K both composites exhibit similar yield stress values. The results are interpreted in terms of load transfer contribution between the matrix and the reinforcement particles and elementary dislocation mechanisms in the Al matrix.

  14. Laser melt injection of ceramic particles in metals : Processing, microstructure and properties

    NARCIS (Netherlands)

    Ocelík, V.; De Hosson, J.Th.M.

    2010-01-01

    The objective of this paper is to present an overview of the possibilities of the laser melt injection (LMI) methodology to enhance the surface of light-weighted metals by adding hard ceramic particles in the top layer, with the aim to enhance the wear resistance and to increase the hardness. In

  15. Particle Board and Oriented Strand Board Prepared with Nanocellulose-Reinforced Adhesive

    Directory of Open Access Journals (Sweden)

    Stefan Veigel

    2012-01-01

    Full Text Available Adhesives on the basis of urea-formaldehyde (UF and melamine-urea-formaldehyde (MUF are extensively used in the production of wood-based panels. In the present study, the attempt was made to improve the mechanical board properties by reinforcing these adhesives with cellulose nanofibers (CNFs. The latter were produced from dissolving grade beech pulp by a mechanical homogenization process. Adhesive mixtures with a CNF content of 0, 1, and 3 wt% based on solid resin were prepared by mixing an aqueous CNF suspension with UF and MUF adhesives. Laboratory-scale particle boards and oriented strand boards (OSBs were produced, and the mechanical and fracture mechanical properties were investigated. Particle boards prepared with UF containing 1 wt% CNF showed a reduced thickness swelling and better internal bond and bending strength than boards produced with pure UF. The reinforcing effect of CNF was even more obvious for OSB where a significant improvement of strength properties of 16% was found. For both, particle board and OSB, mode I fracture energy and fracture toughness were the parameters with the greatest improvement indicating that the adhesive bonds were markedly toughened by the CNF addition.

  16. Process of producing a ceramic matrix composite article and article formed thereby

    Science.gov (United States)

    Corman, Gregory Scot [Ballston Lake, NY; McGuigan, Henry Charles [Duanesburg, NY; Brun, Milivoj Konstantin [Ballston Lake, NY

    2011-10-25

    A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heated to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.

  17. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    International Nuclear Information System (INIS)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto

    2016-01-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  18. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto, E-mail: carlos.couto.sjc@gmail.com [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  19. Influence of ECAP temperature on the formability of a particle reinforced 2017 aluminum alloy

    Science.gov (United States)

    Wagner, S.; Härtel, M.; Frint, P.; F-X Wagner, M.

    2017-03-01

    Severe plastic deformation methods are commonly used to increase the strength of materials by generating ultrafine-grained microstructures. The application of these methods to Al-Cu alloys is, however, difficult because of their poor formability at room temperature. An additional reduction of formability of such alloys occurs when ceramic particles are added as reinforcement: this often triggers shear localization and crack initiation during ECAP. This is the main reason why equal-channel angular pressing (ECAP) of aluminum matrix composites (AMCs) can generally only be performed at elevated temperatures and using ECAP dies with a channel angle larger than 90° (e.g. 120°). In this study we present a brief first report on an alternative approach for the improvement of the formability of an AMC (AA2017, 10 % SiC): ECAP at low temperatures. We show that, using a temperature of -60 °C and a channel angle of 90° (corresponding to an equivalent strain of 1.1), ECAP of the AMC can be successfully performed without material failure. The mechanical properties of the strongly deformed AMC are analyzed by tensile testing. Our results indicate that the increased formability of the AMC at low temperatures can be attributed to the suppression of unstable plastic flow that affects formability at room temperature.

  20. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing

    Science.gov (United States)

    Liu, Dejian; Hu, Peipei; Min, Guoqing

    2015-06-01

    Laser injection of ceramic particle was conducted to produce particulate reinforced metal matrix composites (MMCs) coating on Ti-6Al-4V alloy. Cast WC particle (WCp) was used as injection reinforcement to avoid excessive release of carbon atoms into the melt pool. The interfaces and boundaries between WC and Ti matrix were investigated by electron microscopy study. Compared with single crystal WCp, cast WCp was an appropriate solution to control the reaction products (TiC) in the matrix and the total amount of reaction products was significantly reduced. Irregular-shape reaction layers were formed around cast WCp. The reaction layers consist of a W2C layer and a mixed layer of W and TiC. Such reaction layers are effective in load transfer under an external load.

  1. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  2. Infiltration processing of metal matrix composites using coated ceramic particulates

    Science.gov (United States)

    Leon-Patino, Carlos Alberto

    2001-07-01

    A new process was developed to fabricate particulate metal matrix composites (MMCs). The process involves three steps: (1) modifying the particulate surface by metal coating, (2) forming a particulate porous compact; and (3) introducing metal into the channel network by vacuum infiltration. MMCs with different reinforcements, volume fractions, and sizes can be produced by this technique. Powders of alumina and silicon carbide were successfully coated with nickel and copper in preparation for infiltration with molten aluminum. Electroless Ni and Cu deposition was used since it enhances the wettability of the reinforcements for composite fabrication. While Cu deposits were polycrystalline, traces of phosphorous co-deposited from the electroless bath gave an amorphous Ni-P coating. The effect of metal coating on wetting behavior was evaluated at 800°C on plain and metal-coated ceramic plates using a sessile drop technique. The metallic films eliminated the non-wetting behavior of the uncoated ceramics, leading to equilibrium contact angles in the order of 12° and below 58° for Ni and Cu coated ceramics, respectively. The spreading data indicated that local diffusion at the triple junction was the governing mechanism of the wetting process. Precipitation of intermetallic phases in the drop/ceramic interface delayed the formation of Al4C3. Infiltration with molten Al showed that the coated-particulates are suitable as reinforcing materials for fabricating MMCs, giving porosity-free components with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterparts. Liquid state diffusion kinetics due to temperature dependent viscosity forces controlled the infiltration process. Microstructural analysis indicated the formation of intermetallic phases such as CuAl 2, in the case of Cu coating, and Ni2Al3 and NiAl 3 when Ni-coated powders were infiltrated. The

  3. Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties

    International Nuclear Information System (INIS)

    Essabir, H.; Nekhlaoui, S.; Malha, M.; Bensalah, M.O.; Arrakhiz, F.Z.; Qaiss, A.; Bouhfid, R.

    2013-01-01

    Highlights: • Almond Shells (ASs) particles have been used as reinforcement in polypropylene matrix. • The SEBS-g-MA has been used to improve the adhesion between matrix and particles. • The mechanical and thermal properties of the composite have been improved by the AS. - Abstract: In this work, Almond Shells (ASs) particles are used as reinforcement in a thermoplastic matrix as polypropylene (PP). Composites containing Almond Shells (ASs) particles with and without compatibilizer (maleic anhydride grafted polypropylene; SEBS-g-MA) for various particle content (5, 10, 15, 20, 25, 30 wt.%) was investigated by means of studying their mechanical, thermal and rheological properties. The composites were prepared in a twin-screw extruder and assessed by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), tensile testing and Dynamic Mechanical Analysis (DMA). Results show a clear improvement in mechanical and rheological properties from the use of Almond Shells particles in the matrix without and with maleic anhydride compatibilizer, corresponding to a gain in Young’s modulus of 56.2% and 35% respectively, at 30 wt.% particle loading. Thermal analysis revealed that incorporation of particle in the composites resulted in increase in the initial thermal decomposition temperatures

  4. Thermo-mechanical properties of mullite/zirconia reinforced alumina ceramic composites

    International Nuclear Information System (INIS)

    Wahsh, M.M.S.; Khattab, R.M.; Awaad, M.

    2012-01-01

    Highlights: ► Alumina–mullite–zirconia ceramic composites were prepared from alumina and zircon. ► Constant amount of magnesia was added as a sintering aid. ► Mechanical properties were enhanced with increasing of zircon up to 30.52 mass%. ► All of ceramic composites were achieved excellent thermal shock resistance. -- Abstract: Alumina–mullite–zirconia ceramic composites were prepared by reaction bonding of alumina and zircon mixtures after firing at different temperatures 1300°, 1400° and 1500 °C. Constant amount of magnesia was added as a sintering aid. The technological parameters of the sintered ceramic composites, i.e. the mechanical properties and densification parameter as well as thermal shock resistance, have been investigated. The phase compositions and microstructure of the sintered ceramic composites were detected by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results indicated that alumina–mullite–zirconia ceramic composites fired at 1500 °C for 2 h were achieved a good densification parameters and mechanical properties as well as excellent thermal shock resistance. In addition, these ceramic composites were showed enhancement in Vickers’ microhardness and fracture toughness values.

  5. Effect of Aluminium Content on the In-situ Synthesis of Nanocrystalline TiN Particles in Al-Ti-AlN Composite by Mechanical Alloying

    International Nuclear Information System (INIS)

    Mashhadi, H.A.; Tanaka, S.; Hokamoto, K.

    2011-01-01

    Aluminum matrix composites (AMCs) have gathered attention as new advanced materials due to their improved strength to weight ratio, a most desirable characteristic in automotive, aerospace and military industries [1]. Such materials offer a combination of light weight, high strength, and high specific modulus, low coefficient of thermal expansion; good wear resistance properties and beneficial physical behaviors like electrical and thermal conductivity [2]. When reinforced with ceramic particles, AMCs exhibit improved mechanical properties attractive to researchers for their potential structural applications [3]. Such ceramic particles include AlN [4] and TiN [5]. (author)

  6. Performance of Silicon carbide whisker reinforced ceramic inserts on Inconel 718 in end milling process

    International Nuclear Information System (INIS)

    Reddy, M M; Joshua, C X H

    2016-01-01

    An experimental investigation is planned in order to study the machinability of Inconel 718 with silicon carbide whisker reinforced ceramic inserts in end milling process. The relationship between the cutting speed, feed rate, and depth of cut against the response factors are studied to show the level of significance of each parameter. The cutting parameters are optimized by using Taguchi method. Implementing analysis of variance, the parameter which influences the surface roughness the most is determined to be the cutting speed, followed by the feed rate and depth of cut. Meanwhile, the optimal cutting condition is determined to have high cutting speed, low feed rate, and high depth of cut in the range of selected parameters. (paper)

  7. Flexural creep of coated SiC-fiber-reinforced glass-ceramic composites

    International Nuclear Information System (INIS)

    Sun, E.Y.

    1995-01-01

    This study reports the flexural creep behavior of a fiber-reinforced glass-ceramic and associated changes in microstructure. SiC fibers were coated with a dual layer of SiC/BN to provide a weak interface that was stable at high temperatures. Flexural creep, creep-rupture, and creep-strain recovery experiments were conducted on composite material and barium-magnesium aluminosilicate matrix from 1,000 to 1,200 C. Below 1,130 C, creep rates were extremely low (∼10 -9 s -1 ), preventing accurate measurement of the stress dependence. Above 1,130 C, creep rates were in the 10 -8 s -1 range. The creep-rupture strength of the composite at 1,100 C was about 75--80% of the fast fracture strength. Creep-strain recovery experiments showed recovery of up to 90% under prolonged unloading. Experimental creep results from the composite and the matrix were compared, and microstructural observations by TEM were employed to assess the effectiveness of the fiber coatings and to determine the mechanism(s) of creep deformation and damage

  8. Designing the fiber volume ratio in SiC fiber-reinforced SiC ceramic composites under Hertzian stress

    International Nuclear Information System (INIS)

    Lee, Kee Sung; Jang, Kyung Soon; Park, Jae Hong; Kim, Tae Woo; Han, In Sub; Woo, Sang Kuk

    2011-01-01

    Highlights: → Optimum fiber volume ratios in the SiC/SiC composite layers were designed under Hertzian stress. → FEM analysis and spherical indentation experiments were undertaken. → Boron nitride-pyrocarbon double coatings on the SiC fiber were effective. → Fiber volume ratio should be designed against flexural stress. -- Abstract: Finite element method (FEM) analysis and experimental studies are undertaken on the design of the fiber volume ratio in silicon carbide (SiC) fiber-reinforced SiC composites under indentation contact stresses. Boron nitride (BN)/Pyrocarbon (PyC) are selected as the coating materials for the SiC fiber. Various SiC matrix/coating/fiber/coating/matrix structures are modeled by introducing a woven fiber layer in the SiC matrix. Especially, this study attempts to find the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics under Hertzian stress. The analysis is performed by changing the fiber type, fiber volume ratio, coating material, number of coating layers, and stacking sequence of the coating layers. The variation in the stress for composites in relation to the fiber volume ratio in the contact axial or radial direction is also analyzed. The same structures are fabricated experimentally by a hot process, and the mechanical behaviors regarding the load-displacement are evaluated using the Hertzian indentation method. Various SiC matrix/coating/fiber/coating/matrix structures are fabricated, and mechanical characterization is performed by changing the coating layer, according to the introduction (or omission) of the coating layer, and the number of woven fiber mats. The results show that the damage mode changes from Hertzian stress to flexural stress as the fiber volume ratio increases in composites because of the decreased matrix volume fraction, which intensifies the radial crack damage. The result significantly indicates that the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics should be designed for

  9. Effect of particle shapes on effective strain gradient of SiC particle reinforced aluminum composites

    International Nuclear Information System (INIS)

    Liu, X; Cao, D F; Mei, H; Liu, L S; Lei, Z T

    2013-01-01

    The stress increments depend not only on the plastic strain but also on the gradient of plastic strain, when the characteristic length scale associated with non-uniform plastic deformation is on the order of microns. In the present research, the Taylor-based nonlocal theory of plasticity (TNT plasticity), with considering both geometrically necessary dislocations and statistically stored dislocations, is applied to investigated the effect of particle shapes on the strain gradient and mechanical properties of SiC particle reinforced aluminum composites (SiC/Al composites). Based on this theory, a two-dimensional axial symmetry cell model is built in the ABAQUS finite element code through its USER-ELEMENT (UEL) interface. Some comparisons with the classical plastic theory demonstrate that the effective stress predicted by TNT plasticity is obviously higher than that predicted by classical plastic theory. The results also demonstrate that the irregular particles cause higher effective gradient strain which is attributed to the fact that angular shape particles give more geometrically.

  10. Fatigue properties of particle reinforced aluminium alloys

    International Nuclear Information System (INIS)

    Tabernig, B.J.

    2000-06-01

    In this work the particle reinforced Al-alloys 359 T6 + 20 % SiC and 2124 + 17 % SiC which differ significantly in their production and microstructure are investigated. Standard and in-situ tensile tests show, that in the powder metallurgically produced alloy 2124 reinforcement leads to a higher Young's modulus, yield and ultimate tensile stress where the cast alloy 359 + 20 % SiC exhibit increased stiffness, but low ductility due to cast porosity of some 100 μm. The failure mechanism governed by microstructural parameters is found to play an important role for ductility. The fatigue properties are investigated with specific regard to the influence of the in-service condition (load ratio, temperature, variable amplitude loading) in the foreseen applications in the automobile- and aerospace industry. Standard fatigue tests point out that the endurance limit is improved by reinforcement, but is strongly dependent on the size of given initial defects. The fatigue crack properties are characterised by standard crack growth curves and r(esistance)-curves for the threshold of stress intensity factor range. Both composites exhibit a higher effective threshold than their unreinforced alloys. Furthermore the fatigue resistance described by the R-curve as well as the long crack threshold are improved in the alloy 2124 + 17 % SiC. While in crack growth tests under constant amplitude loading the alloy 2124 + 17 % SiC shows lower crack growth rates than its unreinforced alloy, the opposite case is in the alloy 359 + 20 % SiC at high DK. Periodic overloads lead in the 359 + 20 % SiC to particle fracture at the crack tip and to a steeper increase in the crack growth rate. In the 2124 + 17% SiC the fatigue crack grows predominately in the matrix and a retardation effect due to overloads is observed. In order to describe the fatigue limit of components as a function of initial defect size an analytical concept is developed assuming that the fatigue limit is controlled by the

  11. The performance of biological anaerobic filters packed with sludge-fly ash ceramic particles (SFCP) and commercial ceramic particles (CCP) during the restart period: effect of the C/N ratios and filter media.

    Science.gov (United States)

    Yue, Qinyan; Han, Shuxin; Yue, Min; Gao, Baoyu; Li, Qian; Yu, Hui; Zhao, Yaqin; Qi, Yuanfeng

    2009-11-01

    Two lab-scale upflow biological anaerobic filters (BAF) packed with sludge-fly ash ceramic particles (SFCP) and commercial ceramic particles (CCP) were employed to investigate effects of the C/N ratios and filter media on the BAF performance during the restart period. The results indicated that BAF could be restarted normally after one-month cease. The C/N ratio of 4.0 was the thresholds of nitrate removal and nitrite accumulation. TN removal and phosphate uptake reached the maximum value at the same C/N ratio of 5.5. Ammonia formation was also found and excreted a negative influence on TN removal, especially when higher C/N ratios were applied. Nutrients were mainly degraded within the height of 25 cm from the bottom. In addition, SFCP, as novel filter media manufactured by wastes-dewatered sludge and fly ash, represented a better potential in inhibiting nitrite accumulation, TN removal and phosphate uptake due to their special characteristics in comparison with CCP.

  12. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  13. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  14. Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles

    International Nuclear Information System (INIS)

    Derradji, Mehdi; Ramdani, Noureddine; Zhang, Tong; Wang, Jun; Feng, Tian-tian; Wang, Hui; Liu, Wen-bin

    2015-01-01

    Highlights: • SiC microparticles improve the mechanical properties of phthalonitrile resin. • Excellent thermal stability achieved by adding SiC particles in phthalonitrile resin. • Adding 20 wt.% of SiC microparticles increases the T g by 38 °C. • Silane coupling agent can enhance the adhesion and dispersion of particles/matrix. - Abstract: A new type of composite based on phthalonitrile resin reinforced with silicon carbide (SiC) microparticles was prepared. For various weight ratios ranging between 0% and 20%, the effect of the micro-SiC particles on the mechanical and thermal properties has been studied. Results from thermal analysis revealed that the starting decomposition temperature and the residual weight were significantly improved upon adding the reinforcing phase. At the maximum micro-SiC loading, dynamic mechanical analysis (DMA) showed an important enhancement in both the storage modulus and glass transition temperature (T g ), reaching 3.1 GPa and 338 °C, respectively. The flexural strength and modulus as well as the microhardness were significantly enhanced by adding the microfillers. Tensile test revealed enhancements in the composites toughness upon adding the microparticles. Polarization optical microscope (POM) and scanning electron microscope (SEM) analysis confirmed that mechanical and thermal properties improvements are essentially attributed to the good dispersion and adhesion between the particles and the resin

  15. Microstructure and strain rate effects on the mechanical behavior of particle reinforced epoxy-based reactive materials

    Science.gov (United States)

    White, Bradley William

    The effects of reactive metal particles on the microstructure and mechanical properties of epoxy-based composites is investigated in this work. Particle reinforced polymer composites show promise as structural energetic materials that can provide structural strength while simultaneously being capable of releasing large amounts of chemical energy through highly exothermic reactions occurring between the particles and with the matrix. This advanced class of materials is advantageous due to the decreased amount of high density inert casings needed for typical energetic materials and for their ability to increase payload expectancy and decrease collateral damage. Structural energetic materials can be comprised of reactive particles that undergo thermite or intermetallic reactions. In this work nickel (Ni) and aluminum (Al) particles were chosen as reinforcing constituents due to their well characterized mechanical and energetic properties. Although, the reactivity of nickel and aluminum is well characterized, the effects of their particle size, volume fractions, and spatial distribution on the mechanical behavior of the epoxy matrix and composite, across a large range of strain rates, are not well understood. To examine these effects castings of epoxy reinforced with 20--40 vol.% Al and 0--10 vol.% Ni were prepared, while varying the aluminum nominal particle size from 5 to 50 mum and holding the nickel nominal particle size constant at 50 mum. Through these variations eight composite materials were produced, possessing unique microstructures exhibiting different particle spatial distributions and constituent makeup. In order to correlate the microstructure to the constitutive response of the composites, techniques such as nearest-neighbor distances, and multiscale analysis of area fractions (MSAAF) were used to quantitatively characterize the microstructures. The composites were investigated under quasi-static and dynamic compressive loading conditions to characterize

  16. Experimental Studies on SiC and Rice Husk Ash Reinforced Al Alloy Composite

    Directory of Open Access Journals (Sweden)

    Shivaprakash Y. M.

    2018-01-01

    Full Text Available In this research work Aluminium alloy with Cu (4.5% as the major alloying element is used as the matrix in which SiC and Rice Husk Ash (RHA are dispersed to develop a hybrid composite. The dispersion is done by the motorized stir casting arrangement. The composite is fabricated by varying the proportions of the reinforcements in the base alloy. The composite specimens were tested for density changes, hardness and the wear. The microstructure images showed a uniform dispersion of the reinforcements in the matrix and this resulted in higher strength to weight ratio. The increase in strength of the composite is probably attributed to the increase in the dislocation density. Also, the abrasive wear resistance of the produced composite is found to be superior as compared to the matrix alloy because of the hard-ceramic particles in the reinforcements.

  17. Comparison of two bond strength testing methodologies for bilayered all-ceramics.

    Science.gov (United States)

    Dündar, Mine; Ozcan, Mutlu; Gökçe, Bülent; Cömlekoğlu, Erhan; Leite, Fabiola; Valandro, Luiz Felipe

    2007-05-01

    This study compared the shear bond strength (SBS) and microtensile (MTBS) testing methodologies for core and veneering ceramics in four types of all-ceramic systems. Four different ceramic veneer/core combinations, three of which were feldspathic and the other a fluor-apatite to their respectively corresponding cores, namely leucite-reinforced ceramic ((IPS)Empress, Ivoclar), low leucite-reinforced ceramic (Finesse, Ceramco), glass-infiltrated alumina (In-Ceram Alumina, Vita) and lithium disilicate ((IPS)Empress 2, Ivoclar) were used for SBS and MTBS tests. Ceramic cores (N=40, n=10/group for SBS test method, N=5 blocks/group for MTBS test method) were fabricated according to the manufacturers' instructions (for SBS: thickness, 3mm; diameter, 5mm and for MTBS: 10 mm x 10 mm x 2 mm) and ultrasonically cleaned. The veneering ceramics (thickness: 2mm) were vibrated and condensed in stainless steel moulds and fired onto the core ceramic materials. After trying the specimens in the mould for minor adjustments, they were again ultrasonically cleaned and embedded in PMMA. The specimens were stored in distilled water at 37 degrees C for 1 week and bond strength tests were performed in universal testing machines (cross-head speed: 1mm/min). The bond strengths (MPa+/-S.D.) and modes of failures were recorded. Significant difference between the two test methods and all-ceramic types were observed (P<0.05) (2-way ANOVA, Tukey's test and Bonferroni). The mean SBS values for veneering ceramic to lithium disilicate was significantly higher (41+/-8 MPa) than those to low leucite (28+/-4 MPa), glass-infiltrated (26+/-4 MPa) and leucite-reinforced (23+/-3 MPa) ceramics, while the mean MTBS for low leucite ceramic was significantly higher (15+/-2 MPa) than those of leucite (12+/-2 MPa), glass-infiltrated (9+/-1 MPa) and lithium disilicate ceramic (9+/-1 MPa) (ANOVA, P<0.05). Both the testing methodology and the differences in chemical compositions of the core and veneering ceramics

  18. Preparation and biocompatibility of poly (methyl methacrylate reinforced with bioactive particles

    Directory of Open Access Journals (Sweden)

    Pereira Marivalda de Magalhães

    2003-01-01

    Full Text Available Calcium phosphates and bioactive glasses have been used in many biomedical applications for more than 30 years due basically to their bioactive behavior. However, ceramics are too brittle for applications that require high levels of toughness and easy processability. In this work, a biphasic calcium phosphate (BCP and a bioactive glass composition (BG were combined with polymers to produce composites with tailorable properties and processability. The BCP particles were synthesized by a precipitation technique. The BG particles were produced by sol-gel processing. The BCP particles were treated with a silane agent to improve the compatibility between particles and the polymer matrix. Dense samples were produced by hot pressing (200 °C a mixture of 30 wt.% of particles in poly (methyl methacrylate. The samples produced were characterized by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Mechanical properties were evaluated by a three point bending test. Samples were also submitted to in vitro bioactivity test and in vivo toxicity test. Results showed that the production of the composites was successfully achieved, yielding materials with particles well dispersed within the matrices. Evaluation of the in vivo inflammatory response showed low activity levels for all composites although composites with silane treated BCP particles led to milder inflammatory responses than composites with non-treated particles.

  19. Celsian Glass-Ceramic Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  20. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO2 aerogel

    International Nuclear Information System (INIS)

    Shi, Duoqi; Sun, Yantao; Feng, Jian; Yang, Xiaoguang; Han, Shiwei; Mi, Chunhu; Jiang, Yonggang; Qi, Hongyu

    2013-01-01

    Compression tests were conducted on a ceramic-fiber-reinforced SiO 2 aerogel at high temperature. Anisotropic mechanical property was found. In-plane Young's modulus is more than 10 times higher than that of out-of-plane, but fracture strain is much lower by a factor of 100. Out-of-plane Young's modulus decreases with increasing temperature, but the in-plane modulus and fracture stress increase with temperature. The out-of-plane property does not change with loading rates. Viscous flow at high temperature is found to cause in-plane shrinkage, and both in-plane and out-of-plane properties change. Compression induced densification of aerogel matrix was also found by Scanning Electron Microscope analysis

  1. Particle reinforced composites from acrylamide modified blend of styrene-butadiene and natural rubber

    Science.gov (United States)

    Blends of styrene-butadiene rubber and natural rubber that provide balanced properties were modified with acrylamide and reinforced with soy protein particles. The rubber composites show improved mechanical properties. Both modified rubber and composites showed a faster curing rate. The crosslinking...

  2. High-performance ceramics - state of the art and trends of development

    International Nuclear Information System (INIS)

    Gadow, R.; Keizer, K; Burggraaf, A.J.; Boch, P.; Chartier, T.; Thomann, H.

    1989-01-01

    This paper contains 4 lectures on the following topics: 1. fiber and whisker reinforced ceramics (R. Gadow), 2. ceramic membranes (K. Keizer, A.J. Burggraf), 3. ceramic processing techniques: The case of tape casting (P. Bach, T. Chartier), 4. ceramic superconductors (H. Thomann). Three contributions are separately analyzed for the ENERGIE database. (MM) [de

  3. Hemorrhagic iliopsoas bursitis complicating well-functioning ceramic-on-ceramic total hip arthroplasty.

    Science.gov (United States)

    Park, Kyung Soon; Diwanji, Sanket R; Kim, Hyung Keun; Song, Eun Kyoo; Yoon, Taek Rim

    2009-08-01

    Iliopsoas bursitis has been increasingly recognized as a complication of total hip arthroplasty and is usually associated with polyethylene wear. Here, the authors report a case of hemorrhagic iliopsoas bursitis complicating an otherwise well-functioning ceramic-on-ceramic arthroplasty performed by minimal invasive modified 2-incision technique. The bursitis in turn resulted in femoral nerve palsy and femoral vein compression. In this report, there was no evidence to support that the bursitis was due to an inflammatory response to ceramic wear particles or any other wear particles originating from the total hip arthroplasty.

  4. Processing and Characterization of NiTi Shape Memory Alloy Particle Reinforced Sn-In Solders

    National Research Council Canada - National Science Library

    Chung, Kohn C

    2006-01-01

    .... In previous work, it was proposed that reinforcement of solder by NiTi shape memory alloy particles to form smart composite solder reduces the inelastic strain of the solder and hence, may enhance...

  5. Characterization techniques to predict mechanical behaviour of green ceramic bodies fabricated by ceramic microstereolithography

    Science.gov (United States)

    Adake, Chandrashekhar V.; Bhargava, Parag; Gandhi, Prasanna

    2018-02-01

    Ceramic microstereolithography (CMSL) has emerged as solid free form (SFF) fabrication technology in which complex ceramic parts are fabricated from ceramic suspensions which are formulated by dispersing ceramic particles in UV curable resins. Ceramic parts are fabricated by exposing ceramic suspension to computer controlled UV light which polymerizes resin to polymer and this polymer forms rigid network around ceramic particles. A 3-dimensional part is created by piling cured layers one over the other. These ceramic parts are used to build microelectromechanical (MEMS) devices after thermal treatment. In many cases green ceramic parts can be directly utilized to build MEMS devices. Hence characterization of these parts is essential in terms of their mechanical behaviour prior to their use in MEMS devices. Mechanical behaviour of these green ceramic parts depends on cross link density which in turn depends on chemical structure of monomer, concentrations of photoinitiator and UV energy dose. Mechanical behaviour can be determined with the aid of nanoindentation. And extent of crosslinking can be verified with the aid of DSC. FTIR characterization is used to analyse (-C=C-) double bond conversion. This paper explains characterization tools to predict the mechanical behaviour of green ceramic bodies fabricated in CMSL

  6. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites

    International Nuclear Information System (INIS)

    Lee, Hyeon-Geun; Kim, Daejong; Lee, Seung Jae; Park, Ji Yeon; Kim, Weon-Ju

    2017-01-01

    Highlights: • Thermal conductivity of SiC ceramics and FCM pellets was measured and discussed. • Thermal conductivity of FCM pellets was analyzed by the Maxwell-Eucken equation. • Effective thermal conductivity of TRISO particles applied in this study was assumed. - Abstract: The thermal conductivity of SiC ceramics and FCM fuel composites, consisting of a SiC matrix and TRISO coated particles, was measured and analyzed. SiC ceramics and FCM pellets were fabricated by hot press sintering with Al_2O_3 and Y_2O_3 sintering additives. Several factors that influence thermal conductivity, specifically the content of sintering additives for SiC ceramics and the volume fraction of TRISO particles and the matrix thermal conductivity of FCM pellets, were investigated. The thermal conductivity values of samples were analyzed on the basis of their microstructure and the arrangement of TRISO particles. The thermal conductivity of the FCM pellets was compared to that predicted by the Maxwell-Eucken equation and the thermal conductivity of TRISO coated particles was calculated. The thermal conductivity of FCM pellets in various sintering conditions was in close agreement to that predicted by the Maxwell-Eucken equation with the fitted thermal conductivity value of TRISO particles.

  7. A review of the strength properties of dental ceramics.

    Science.gov (United States)

    Hondrum, S O

    1992-06-01

    New ceramic materials for restorative dentistry have been developed and introduced in recent years. This article reviews advantages and disadvantages of dental ceramics, concentrating on strength properties. Included are factors affecting the strength of dental ceramic materials and the most common mechanisms for increasing the strength of dental ceramics. The properties of presently available materials such as dispersion-strengthened ceramics, cast ceramics, and foil-reinforced materials are discussed. Current research efforts to improve the fracture resistance of ceramic restorative materials are reviewed. A description of methods to evaluate the strength of ceramics is included, as a caution concerning the interpretation of strength data reported in the literature.

  8. Effect of particle morphology of Ni on the mechanical behavior of AZ91E-Ni coated nano Al2O3 composites

    Science.gov (United States)

    Sameer Kumar, D.; Suman, K. N. S.; Poddar, Palash

    2017-06-01

    The properties of any composite always depend on the bonding between the matrix and reinforcement phases. One way of improving the wettability of reinforcement in a matrix is to apply a layer of coating on reinforcing particles. The present study aims at developing Ni coating on nano Al2O3 ceramic particles and dispersing them in AZ91E magnesium matrix material. The electroless plating method has been employed to coat the particles and semi solid stir casting technique was adopted to prepare the composites. Several weight fractions of dispersed phase are considered to analyze the behavior of the fabricated composites. Field emission scanning electron microscopy (FESEM) and x-ray diffraction analysis has been carried out to investigate the distribution of particles and phase characteristics of the proposed material. The physical and mechanical behavior of the material was examined through density measurements, hardness, elastic modulus, ductility and tensile strength calculations. The metal coating on reinforcement aids to promote metal-metal bonding interface reactions which result in improved properties of the composite. Tensile fractography was carried out under FESEM and presented.

  9. Development and characterization of ceramic composites alumina-titania based reinforced with lanthanum oxide for fabrication of inert coatings for metallic tanks of the oil industry

    International Nuclear Information System (INIS)

    Bandeira, J.M.; Yadava, Y.P.; Silva, N.D.G.; Ferreira, R.A.S.

    2016-01-01

    Crude petroleum is highly corrosive causing superficial degradation in metallic tanks used for storage and transportation of this material, which causes a serious problem in the oil industry. An alternative to solve this problem is to use some kind of coating that is inert to this kind of corrosion. Alumina and titania are interesting materials for several engineering applications because, when compared with other ceramic materials, they present superior mechanical properties, e.g. high mechanical strength, good chemical stability and high fracture toughness combined with good wear resistance and a coefficient of thermal expansion close to the iron's, which makes them fit to use in ceramic hardening process and coating. In this paper, alumina-titania ceramic composites with 5%, 10%, 15% and 20% of titania (TiO2) and reinforced with 2% of lanthanum oxide of were produced by thermo-mechanical processing and sintering techniques at 1350 deg C. In these composites, microstructure and mechanical properties were analyzed using X-ray spectroscopy, optical microscopy, scanning electron microscopy and Vickers hardness in order to evaluate their applicability. X-ray spectroscopy showed the formation of composite without the presence of other phases. Optical microscopy and scanning electron microscopy showed a homogeneous microstructure in terms of particle size and distribution. Vickers hardness test showed a gradual decrease in hardness with the addition of titania. The composite with 5% of titania and 2% of lanthanum oxide is the best choice for structural applications. The composites were submerged in crude petroleum for 30 days to study their stability in such environment. Through the analysis of X-ray spectroscopy, optical microscopy and Vickers hardness before and after the submersion in crude petroleum, it was not observed structural or microstructural degradation nether alterations in mechanical properties. This way, it was concluded that these composites have good

  10. Development and study of mechanical behaviour reinforcing composites by waste BTP

    Directory of Open Access Journals (Sweden)

    kanzaoui M.El

    2018-01-01

    Full Text Available Composite materials are used in many industrial applications for their excellent mechanical and electric properties and their low density compared to metal structures. Most countries are extremely rich waste materials such as white ceramic breakages which represents a potential to be developed. Ceramic breakages have exceptional properties and could be effectively exploited in the manufacture of composite materials for a wide variety of applications. The composite materials reinforced by construction waste materials, such as ceramic breaks which offer significant benefits and gains in strength and stiffness properties (Young's modulus E : a material whose modulus Young is very high is said rigid.This article covers the benefits of breakages as ceramic filler used for reinforcement in composites, as well as improve the mechanical response of these structural elements (test compression.

  11. Processes for fabricating composite reinforced material

    Science.gov (United States)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  12. A Novel MK-based Geopolymer Composite Activated with Rice Husk Ash and KOH: Performance at High Temperature

    International Nuclear Information System (INIS)

    Villaquirán-Caicedo, M.A.; Mejía de Gutiérrez, R.; Gallego, N.C.

    2017-01-01

    Geopolymers were produced using an environmentally friendly alkali activator (based on Rice Husk Ash and potassium hydroxide). Aluminosilicates particles, carbon and ceramic fibres were used as reinforcement materials. The effects of reinforcement materials on the flexural strength, linear-shrinkage, thermophysical properties and microstructure of the geopolymers at room and high temperature (1200 °C) were studied. The results indicated that the toughness of the composites is increased 110.4% for geopolymer reinforced by ceramic fibres (G-AF) at room temperature. The presence of particles improved the flexural behaviour 265% for geopolymer reinforced by carbon fibres and particles after exposure to 1200 .C. Linear-shrinkage for geopolymer reinforced by ceramic fibres and particles and the geopolymer G-AF compared with reference sample (without fibres and particles) is improved by 27.88% and 7.88% respectively at 900 °C. The geopolymer materials developed in this work are porous materials with low thermal conductivity and good mechanical properties with potential thermal insulation applications for building applications. [es

  13. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients

    OpenAIRE

    Hernigou, Philippe; Roubineau, Fran?ois; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-01-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantages CoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion. However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with...

  14. Producing Durable Continuously Reinforced Concrete Pavement using Glass-ceramic Coated Reinforcing Steel

    Science.gov (United States)

    2010-02-01

    reinforcement if the enamel is broken  Embedded cement grains hydrate if enamel is cracked to self-heal with the formation of calcium silicate hydrate Goal...Reinforced Concrete Pavement The 600% volume change in the iron to iron oxide formation put the concrete in tension and it cracks an spalls BUILDING...corrodes prematurely and delaminates the pavement  Moisture and chlorides can move through the natural porosity of concrete and the cracks in the

  15. Micromechanical analysis of a hybrid composite—effect of boron carbide particles on the elastic properties of basalt fiber reinforced polymer composite

    Science.gov (United States)

    Krishna Golla, Sai; Prasanthi, P.

    2016-11-01

    A fiber reinforced polymer (FRP) composite is an important material for structural application. The diversified application of FRP composites has become the center of attention for interdisciplinary research. However, improvements in the mechanical properties of this class of materials are still under research for different applications. The reinforcement of inorganic particles in a composite improves its structural properties due to their high stiffness. The present research work is focused on the prediction of the mechanical properties of the hybrid composites where continuous fibers are reinforced in a micro boron carbide particle mixed polypropylene matrix. The effectiveness of the addition of 30 wt. % of boron carbide (B4C) particle contributions regarding the longitudinal and transverse properties of the basalt fiber reinforced polymer composite at various fiber volume fractions is examined by finite element analysis (FEA). The experimental approach is the best way to determine the properties of the composite but it is expensive and time-consuming. Therefore, the finite element method (FEM) and analytical methods are the viable methods for the determination of the composite properties. The FEM results were obtained by adopting a micromechanics approach with the support of FEM. Assuming a uniform distribution of reinforcement and considering one unit-cell of the whole array, the properties of the composite materials are determined. The predicted elastic properties from FEA are compared with the analytical results. The results suggest that B4C particles are a good reinforcement for the enhancement of the transverse properties of basalt fiber reinforced polypropylene.

  16. Properties of lithium disilicate reinforced with ZrO_2 (3mol%Y_2O_3

    International Nuclear Information System (INIS)

    Alves, M.F.R.P.; Cossu, C.M.F.A.; Santos, C.; Simba, B.G.

    2016-01-01

    The new generation of dental ceramics based on lithium disilicate, Li_2Si_2O_5, allows the production of restorative prosthetic with reduced times compared to alumina and / or zirconia (Y-TZP). A great limitation of their use is related low fracture strength of such glass-ceramics, which reduces their use in unit fixed prosthesis. In this work, lithium disilicate reinforced with 10% ZrO_2 (3-mol% Y_2O_3) is characterized by relative density, crystalline phase, hardness, fracture toughness and microstructural aspects. Lithium metasilicate and tetragonal zirconia, prior to heat treatment. After thermal treatment under vacuum at 840 deg C-8min the lithium metasilicate is converted to lithium disilicate as the ZrO_2 phase remains in the tetragonal structure. This maintenance of the tetragonal phase ensures the material a good fracture toughness, reaching average values near 2MPam"1"/"2, while the average hardness of 600HV. Morphological analysis of the samples indicates that ZrO_2 particles are uniformly dispersed in the matrix composed of high aspect ratio lithium disilicate grains, which contributes to the results presented.. A critical analysis of the performance of toughening mechanisms such as cracks deflection, phase transformation of ZrO_2 (T-M), residual stress between the matrix and the reinforcement are presented, discussed and compared with other ceramic materials used in dentistry restorer. (author)

  17. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: Multiple-unit FDPs.

    Science.gov (United States)

    Pjetursson, Bjarni Elvar; Sailer, Irena; Makarov, Nikolay Alexandrovich; Zwahlen, Marcel; Thoma, Daniel Stefan

    2015-06-01

    To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported fixed dental prostheses (FDPs) and to describe the incidence of biological, technical and esthetic complications. Medline (PubMed), Embase and Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported FDPs with a mean follow-up of at least 3 years. This was complemented by an additional hand search and the inclusion of 10 studies from a previous systematic review [1]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. Forty studies reporting on 1796 metal-ceramic and 1110 all-ceramic FDPs fulfilled the inclusion criteria. Meta-analysis of the included studies indicated an estimated 5-year survival rate of metal-ceramic FDPs of 94.4% (95% CI: 91.2-96.5%). The estimated survival rate of reinforced glass ceramic FDPs was 89.1% (95% CI: 80.4-94.0%), the survival rate of glass-infiltrated alumina FDPs was 86.2% (95% CI: 69.3-94.2%) and the survival rate of densely sintered zirconia FDPs was 90.4% (95% CI: 84.8-94.0%) in 5 years of function. Even though the survival rate of all-ceramic FDPs was lower than for metal-ceramic FDPs, the differences did not reach statistical significance except for the glass-infiltrated alumina FDPs (p=0.05). A significantly higher incidence of caries in abutment teeth was observed for densely sintered zirconia FDPs compared to metal-ceramic FDPs. Significantly more framework fractures were reported for reinforced glass ceramic FDPs (8.0%) and glass-infiltrated alumina FDPs (12.9%) compared to metal-ceramic FDPs (0.6%) and densely sintered zirconia FDPs (1.9%) in 5 years in function. However, the incidence of ceramic fractures and loss of retention was significantly (p=0.018 and 0.028 respectively) higher for densely sintered zirconia FDPs compared to all other types of FDPs. Survival rates of all

  18. Properties of textile grade ceramic fibers

    International Nuclear Information System (INIS)

    Pudnos, E.

    1992-01-01

    The availability of textile grade ceramic fibers has sparked great interest for applications in composite reinforcement and high temperature insulation. This paper summarizes the properties of various small diameter textile grade ceramic fibers currently available. Room temperature mechanical and electrical properties of the fibers are discussed for three cases: ambient conditions, after heat aging in argon, and after heat aging in wet air. Dow Corning (R) HPZ Ceramic Fiber, a silicon nitride type fiber, is shown to have improved retention of mechanical and electrical properties above 1200 C

  19. Elaboration of silicon carbides nano particles (SiC): from the powder synthesis to the sintered ceramic

    International Nuclear Information System (INIS)

    Reau, A.

    2008-01-01

    Materials for the reactor cores of the fourth generation will need materials supporting high temperatures with fast neutrons flux. SiC f /SiC ceramics are proposed. One of the possible elaboration process is to fill SiC fiber piece with nano particles SiC powder and to strengthen by sintering. The aim of this thesis is to obtain a nano structured SiC ceramic as a reference for the SiC f /SiC composite development and to study the influence of the fabrication parameters. (A.L.B.)

  20. The characteristics and application of sludge-fly ash ceramic particles (SFCP) as novel filter media

    International Nuclear Information System (INIS)

    Han Shuxin; Yue Qinyan; Yue Min; Gao Baoyu; Li Qian; Yu Hui; Zhao Yaqin; Qi Yuanfeng

    2009-01-01

    Novel filter media-sludge-fly ash ceramic particles (SFCP) were prepared using dewatered sludge, fly ash and clay with a mass ratio of 1:1:1. Compared with commercial ceramic particles (CCP), SFCP had higher total porosity, larger total surface area and lower bulk and apparent density. Tests of heavy metal elements in lixivium proved that SFCP were safe for wastewater treatment. A lab-scale upflow anaerobic bioreactor was employed to ascertain the application of SFCP in denitrification process using acetate as carbon source. The results showed that SFCP reactor brought a relative superiority to CCP reactor in terms of total nitrogen (TN) removal at the optimum C/N ratio of 4.03 when volumetric loading rates (VLR) ranged from 0.33 to 3.69 kg TN (m 3 d) -1 . Therefore, SFCP application, as a novel process of treating wastes with wastes, provided a promising way in sludge and fly ash utilization.

  1. Additively Manufactured Ceramic Rocket Engine Components

    Data.gov (United States)

    National Aeronautics and Space Administration — HRL Laboratories, LLC, with Vector Space Systems (VSS) as subcontractor, has a 24-month effort to develop additive manufacturing technology for reinforced ceramic...

  2. Transient and steady-state erosion of in-situ reinforced silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Karasek, K.R. [Allied Signal Research and Technology, Des Plaines, IL (United States); Whalen, P.J. [Allied Signal, Inc., Morristown, NJ (United States); Rateick, R.G. Jr. [Allied Signal Aerospace, South Bend, IN (United States); Hamilton, A.C. [Michigan Technological Univ., Houghton, MI (United States); Routbort, J.L. [Argonne National Lab., IL (United States)

    1994-10-01

    Relative to most other materials silicon nitride is very erosion resistant. However, the resulting surface flaws degrade strength - a serious concern for component designers. AlliedSignal Ceramic Components GS-44 in-situ reinforced silicon nitride was eroded in a slinger apparatus. Both transient (extremely low level) and steady-state erosion regimes were investigated. Alumina particles with effective average diameters of 140 Jim and 63 {mu}m were used at velocities of 50 m/s, 100 m/s, and 138 m/s. Biaxial tensile strength was measured. Strength decreased by about 15% after a very small erodent dosage and then remained virtually constant with further erosion. In-situ reinforcement produces R-curve behavior in which the fracture toughness increases with crack size. The effect of this is quite dramatic with strength loss being significantly less than expected for a normal silicon nitride with constant fracture toughness.

  3. Probabilistic homogenization of random composite with ellipsoidal particle reinforcement by the iterative stochastic finite element method

    Science.gov (United States)

    Sokołowski, Damian; Kamiński, Marcin

    2018-01-01

    This study proposes a framework for determination of basic probabilistic characteristics of the orthotropic homogenized elastic properties of the periodic composite reinforced with ellipsoidal particles and a high stiffness contrast between the reinforcement and the matrix. Homogenization problem, solved by the Iterative Stochastic Finite Element Method (ISFEM) is implemented according to the stochastic perturbation, Monte Carlo simulation and semi-analytical techniques with the use of cubic Representative Volume Element (RVE) of this composite containing single particle. The given input Gaussian random variable is Young modulus of the matrix, while 3D homogenization scheme is based on numerical determination of the strain energy of the RVE under uniform unit stretches carried out in the FEM system ABAQUS. The entire series of several deterministic solutions with varying Young modulus of the matrix serves for the Weighted Least Squares Method (WLSM) recovery of polynomial response functions finally used in stochastic Taylor expansions inherent for the ISFEM. A numerical example consists of the High Density Polyurethane (HDPU) reinforced with the Carbon Black particle. It is numerically investigated (1) if the resulting homogenized characteristics are also Gaussian and (2) how the uncertainty in matrix Young modulus affects the effective stiffness tensor components and their PDF (Probability Density Function).

  4. An Overview on the Improvement of Mechanical Properties of Ceramics Nanocomposites

    Directory of Open Access Journals (Sweden)

    J. Silvestre

    2015-01-01

    Full Text Available Due to their prominent properties (mechanical, stiffness, strength, thermal stability, ceramic composite materials (CMC have been widely applied in automotive, industrial and aerospace engineering, as well as in biomedical and electronic devices. Because monolithic ceramics exhibit brittle behaviour and low electrical conductivity, CMCs have been greatly improved in the last decade. CMCs are produced from ceramic fibres embedded in a ceramic matrix, for which several ceramic materials (oxide or non-oxide are used for the fibres and the matrix. Due to the large diversity of available fibres, the properties of CMCs can be adapted to achieve structural targets. They are especially valuable for structural components with demanding mechanical and thermal requirements. However, with the advent of nanoparticles in this century, the research interests in CMCs are now changing from classical reinforcement (e.g., microscale fibres to new types of reinforcement at nanoscale. This review paper presents the current state of knowledge on processing and mechanical properties of a new generation of CMCs: Ceramics Nanocomposites (CNCs.

  5. Characterization of B4C-composite-reinforced aluminum alloy composites

    Science.gov (United States)

    Singh, Ram; Rai, R. N.

    2018-04-01

    Dry sliding wear tests conducted on Pin-on-disk wear test machine. The rotational speed of disc is ranging from (400-600rpm) and under loads ranging from (30-70 N) the contact time between the disc and pin is constant for each pin specimen of composites is 15 minute. In all manufacturing industries the uses of composite materials has been increasing globally, In the present study, an aluminum 5083 alloy is used as the matrix and 5% of weight percentage of Boron Carbide (B4C) as the reinforcing material. The composite is produced using stir casting technique. This is cost effective method. The aluminum 5083 matrix can be strengthened by reinforcing with hard ceramic particles like silicon carbide and boron carbide. In this experiment, aluminum 5083 alloy is selected as one of main material for making parts of the ship it has good mechanical properties, good corrosion resistance and it is can welded very easily and does have good strength. The samples are tested for hardness and tensile strength. The mechanical properties like Hardness can be increased by reinforcing aluminum 5083alloy 5% boron carbide (B4C) particles and tensile strength. Finally the Scanning Electron Microscope (SEM) analysis and EDS is done, which helps to study topography of composites and it produces images of a sample by scanning it with a focused beam of electrons and the presence of composition found in the matrix.

  6. Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects.

    Science.gov (United States)

    Zhitomirsky, I

    2002-03-29

    Electrodeposition of ceramic materials can be performed by electrophoretic (EPD) or electrolytic (ELD) deposition. Electrophoretic deposition is achieved via motion of charged particles towards an electrode under an applied electric field. Electrolytic deposition produces colloidal particles in cathodic reactions for subsequent deposition. Various electrochemical strategies and deposition mechanisms have been developed for electrodeposition of ceramic and organoceramic films, and are discussed in the present article. Electrode-position of ceramic and organoceramic materials includes mass transport, accumulation of particles near the electrode and their coagulation to form a cathodic deposit. Various types of interparticle forces that govern colloidal stability in the absence and presence of processing additives are discussed. Novel theoretical contributions towards an interpretation of particle coagulation near the electrode surface are reviewed. Background information is given on the methods of particle charging, stabilization of colloids in aqueous and non-aqueous media, electrophoretic mobility of ceramic particles and polyelectrolytes, and electrode reactions. This review also covers recent developments in the electrodeposition of ceramic and organoceramic materials.

  7. Effect of mechanical and thermal loading on boron carbide particles reinforced Al-6061 alloy

    International Nuclear Information System (INIS)

    Manjunatha, B.; Niranjan, H.B.; Satyanarayana, K.G.

    2015-01-01

    Metal Matrix Composites (MMC) considered as one of the ‘advanced materials’ have evoked growing interest during the last three decades due to their high performance and applications in strategic sectors. These composites exhibit unique and attractive properties over the monolithic alloys, but suffer from low ductility, which makes them not so attractive for some of the applications where high toughness is one of the design criteria. This limitation of MMCs has been overcome by resorting to various treatments such as mechanical and thermal loading. Considering very limited reports available on Al alloy reinforced with boron carbide (B 4 C) particles, this paper presents (i) preparation of Al-6061 alloy reinforced with 1.5–10 wt% B 4 C, (ii) subjecting them to mechanical and thermal treatments and (iii) characterization of all the above samples. Specific ultimate tensile strength and hardness of all the composites were higher than those of matrix. Also, these values increased with increasing amount of particles, with composites containing 8 wt% B 4 C showing the maximum values in all the three conditions. These observations are supported by the uniform distribution of particles in the matrix as observed in their microstructure

  8. Evaluation of fine ceramics raw powders with particle size analyzers having different measuring principle and its problem

    International Nuclear Information System (INIS)

    Hayakawa, Osamu; Nakahira, Kenji; Tsubaki, Junichiro.

    1995-01-01

    Many kinds of analyzers based on various principles have been developed for measuring particle size distribution of fine ceramics powders. But the reproducibility of the results, interchangeability of the models, reliability of the ends of the measured distribution have not been investigated for each principle. In this paper, these important points for particle size analysis were clarified by measuring raw material powders of fine ceramics. (1) in the case of laser diffraction and scattering method, the reproducibility in the same model is good, however, interchangeability of the different models is not so good, especially at the ends of the distribution. Submicron powders having high refractive index show such a tendency remarkably. (2) the photo sedimentation method has some problems to be conquered, especially in measuring submicron powders having high refractive index or flaky shape particles. The reproducibility of X-ray sedimentation method is much better than that of photo sedimentation. (3) the light obscuration and electrical sensing zone methods, show good reproducibility, however, sometime bad interchangeability is affected by calibration and so on. (author)

  9. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  10. Ceramic Electron Multiplier

    International Nuclear Information System (INIS)

    Comby, G.

    1996-01-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  11. Sol-gel coatings of ceramic fibres for composites with ceramic matrix

    International Nuclear Information System (INIS)

    Maier, B.; Grathwohl, G.; Spallek, M.; Pannhorst, W.

    1992-01-01

    The aim of this work was to show the feasibility in principle of sol-gel coating of ceramic reinforcement components for composites from technical aspects as well. The complexity of the coating task rises with the transition from individual fibres to bundles of fibres of different thickness to weaves, and finally to composites. (orig.) [de

  12. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO{sub 2} aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Duoqi; Sun, Yantao [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Feng, Jian [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Yang, Xiaoguang, E-mail: yxg@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Han, Shiwei; Mi, Chunhu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Jiang, Yonggang [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Qi, Hongyu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China)

    2013-11-15

    Compression tests were conducted on a ceramic-fiber-reinforced SiO{sub 2} aerogel at high temperature. Anisotropic mechanical property was found. In-plane Young's modulus is more than 10 times higher than that of out-of-plane, but fracture strain is much lower by a factor of 100. Out-of-plane Young's modulus decreases with increasing temperature, but the in-plane modulus and fracture stress increase with temperature. The out-of-plane property does not change with loading rates. Viscous flow at high temperature is found to cause in-plane shrinkage, and both in-plane and out-of-plane properties change. Compression induced densification of aerogel matrix was also found by Scanning Electron Microscope analysis.

  13. Solid-State Recycling of Light Metal Reinforced Inclusions by Equal Channel Angular Pressing: A Review

    Directory of Open Access Journals (Sweden)

    Al-Alimi Sami.

    2017-01-01

    Full Text Available Solid-state recycling of light metals reinforced inclusions through hot Equal Channel Angular Pressing (ECAP is performed to directly recycle metal scraps and reduce cost of material in engineering applications. The ECAP is one of the most important method in severe plastic deformation (SPD that can convert light metals into finished products. This paper reviews several experimental and numerical works that have been done to investigate the effects of the ECAP parameters such as die angles, material properties, outer corner angle, friction coefficient, temperature, size of chips, pressing force, ram speed and direct effects of number of passes on the strain distributions. It also includes the performance enhancement of aluminium matrix composite reinforced ceramic-based particles that derived from direct recycled aluminium chips for sustainable manufacturing practices.

  14. A Novel MK-based Geopolymer Composite Activated with Rice Husk Ash and KOH: Performance at High Temperature

    Directory of Open Access Journals (Sweden)

    M. A. Villaquirán-Caicedo

    2017-02-01

    Full Text Available Geopolymers were produced using an environmentally friendly alkali activator (based on Rice Husk Ash and potassium hydroxide. Aluminosilicates particles, carbon and ceramic fibres were used as reinforcement materials. The effects of reinforcement materials on the flexural strength, linear-shrinkage, thermophysical properties and microstructure of the geopolymers at room and high temperature (1200 ÅãC were studied. The results indicated that the toughness of the composites is increased 110.4% for geopolymer reinforced by ceramic fibres (G-AF at room temperature. The presence of particles improved the flexural behaviour 265% for geopolymer reinforced by carbon fibres and particles after exposure to 1200 .C. Linear-shrinkage for geopolymer reinforced by ceramic fibres and particles and the geopolymer G-AF compared with reference sample (without fibres and particles is improved by 27.88% and 7.88% respectively at 900 ÅãC. The geopolymer materials developed in this work are porous materials with low thermal conductivity and good mechanical properties with potential thermal insulation applications for building applications.

  15. Removal of virus to protozoan sized particles in point-of-use ceramic water filters.

    Science.gov (United States)

    Bielefeldt, Angela R; Kowalski, Kate; Schilling, Cherylynn; Schreier, Simon; Kohler, Amanda; Scott Summers, R

    2010-03-01

    The particle removal performance of point-of-use ceramic water filters (CWFs) was characterized in the size range of 0.02-100 microm using carboxylate-coated polystyrene fluorescent microspheres, natural particles and clay. Particles were spiked into dechlorinated tap water, and three successive water batches treated in each of six different CWFs. Particle removal generally increased with increasing size. The removal of virus-sized 0.02 and 0.1 microm spheres were highly variable between the six filters, ranging from 63 to 99.6%. For the 0.5 microm spheres removal was less variable and in the range of 95.1-99.6%, while for the 1, 2, 4.5, and 10 microm spheres removal was >99.6%. Recoating four of the CWFs with colloidal silver solution improved removal of the 0.02 microm spheres, but had no significant effects on the other particle sizes. Log removals of 1.8-3.2 were found for natural turbidity and spiked kaolin clay particles; however, particles as large as 95 microm were detected in filtered water. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Fibre-reinforced ceramics for vehicle brakes; Faserverstaerkte Keramiken fuer Bremsenanwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Krenkel, W. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Bauweisen- und Konstruktionsforschung

    2000-08-01

    Fibre-reinforced ceramics are extremely light, with a high fracture toughness, and have a high potential for applications in motor brakes. It is envisaged that they will last through the whole vehicle life. They can be used in passenger cars, industrial vehicles, high-speed trains, aircraft and in safety brakes in machines, plants and haulage systems. [German] Im Rahmen der Raumfahrt-Forschung wurde vom Deutschen Zentrum fuer Luft- und Raumfahrt (DLR) das Fluessigsilicier-Verfahren zur Herstellung von keramischen Verbundwerkstoffen entwickelt. Diese extrem leichten und bruchzaehen Faserkeramiken haben sich unter den besonderen Bedingungen des Weltraums beispielsweise fuer Hitzeschutzstrukturen von Raumfahrzeugen hervorragend bewaehrt. Darueber hinaus zeigten Untersuchungen ein hohes Anwendungspotenzial fuer neue Bremsen mit deutlich verbesserten Reibungs- und Verschleisseigenschaften. Weiterentwicklungen des keramischen Gefueges fuehrten zu innovativen Leichtbau- bzw. Hochleistungs-Bremsen auf der Basis dieser harten und hitzebestaendigen Verbundwerkstoffe. Bereits mit serienmaessigen Bremsbelaegen wurden die heute geltenden Verschleiss- und Reibwertanforderungen teilweise weit uebertroffen. Die Leistungsfaehigkeit heutiger Bremssysteme kann damit deutlich gesteigert und die ungefederte Masse des Fahrwerks drastisch reduziert werden. Mit der zielgerichteten Anpassung geeigneter Belaege auf die neuen Keramik-Bremsscheiben scheint erstmals ein Einsatz von Lebensdauerbremsen moeglich zu sein, deren geringe Verschleissraten einen Austausch der Bremsscheiben waehrend der Betriebszeit eines Fahrzeugs ueberfluessig machen. Neben der Verwendung dieser innovativen Leichtbaubremsen im PKW-Bereich wird zukuenftig deren Einsatz auch fuer Gefahrguttransporter, Hochgeschwindigkeitszuege, Flugzeuge und fuer Sicherheitsbremsen im Maschinen- und Anlagenbau sowie in der Foerdertechnik erwartet. (orig.)

  17. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    International Nuclear Information System (INIS)

    Ali, F.; Scudino, S.; Anwar, M.S.; Shahid, R.N.; Srivastava, V.C.; Uhlenwinkel, V.; Stoica, M.; Vaughan, G.; Eckert, J.

    2014-01-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al 62.5 Cu 25 Fe 12.5 quasicrystalline (QC) reinforcing particles to form the Al 7 Cu 2 Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix

  18. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, F. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Scudino, S., E-mail: s.scudino@ifw-dresden.de [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Anwar, M.S.; Shahid, R.N. [Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Srivastava, V.C. [Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur 831007 (India); Uhlenwinkel, V. [Institut für Werkstofftechnik, Universität Bremen, D-28359 Bremen (Germany); Stoica, M. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Vaughan, G. [European Synchrotron Radiation Facilities ESRF, BP 220, 38043 Grenoble (France); Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany)

    2014-09-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} quasicrystalline (QC) reinforcing particles to form the Al{sub 7}Cu{sub 2}Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix.

  19. An Overview on the Improvement of Mechanical Properties of Ceramics Nano composites

    International Nuclear Information System (INIS)

    Silvestre, J.; Brito, J. D.; Silvestre, N.

    2015-01-01

    Due to their prominent properties (mechanical, stiffness, strength, thermal stability), ceramic composite materials (CMC) have been widely applied in automotive, industrial and aerospace engineering, as well as in biomedical and electronic devices. Because monolithic ceramics exhibit brittle behaviour and low electrical conductivity, CMC_s have been greatly improved in the last decade. CMC_s are produced from ceramic fibres embedded in a ceramic matrix, for which several ceramic materials (oxide or non-oxide) are used for the fibres and the matrix. Due to the large diversity of available fibres, the properties of CMC_s can be adapted to achieve structural targets. They are especially valuable for structural components with demanding mechanical and thermal requirements. However, with the advent of nanoparticles in this century, the research interests in CMC_s are now changing from classical reinforcement (e.g., microscale fibres) to new types of reinforcement at nano scale. This review paper presents the current state of knowledge on processing and mechanical properties of a new generation of CMC_s: Ceramics Nano composites (CNC_s)

  20. Interaction mechanisms between ceramic particles and atomized metallic droplets

    Science.gov (United States)

    Wu, Yue; Lavernia, Enrique J.

    1992-10-01

    The present study was undertaken to provide insight into the dynamic interactions that occur when ceramic particles are placed in intimate contact with a metallic matrix undergoing a phase change. To that effect, Al-4 wt pct Si/SiCp composite droplets were synthesized using a spray atomization and coinjection approach, and their solidification microstructures were studied both qualitatively and quantitatively. The present results show that SiC particles (SiCp) were incor- porated into the matrix and that the extent of incorporation depends on the solidification con- dition of the droplets at the moment of SiC particle injection. Two factors were found to affect the distribution and volume fraction of SiC particles in droplets: the penetration of particles into droplets and the entrapment and/or rejection of particles by the solidification front. First, during coinjection, particles collide with the atomized droplets with three possible results: they may penetrate the droplets, adhere to the droplet surface, or bounce back after impact. The extent of penetration of SiC particles into droplets was noted to depend on the kinetic energy of the particles and the magnitude of the surface energy change in the droplets that occurs upon impact. In liquid droplets, the extent of penetration of SiC particles was shown to depend on the changes in surface energy, ΔEs, experienced by the droplets. Accordingly, large SiC particles encoun- tered more resistance to penetration relative to small ones. In solid droplets, the penetration of SiC particles was correlated with the dynamic pressure exerted by the SiC particles on the droplets during impact and the depth of the ensuing crater. The results showed that no pene- tration was possible in such droplets. Second, once SiC particles have penetrated droplets, their final location in the microstructure is governed by their interactions with the solidification front. As a result of these interactions, both entrapment and rejection of

  1. Characterisation of glass matrix composites reinforced with lead zirconate titanate particles

    International Nuclear Information System (INIS)

    Cannillo, Valeria; Manfredini, Tiziano; Montorsi, Monia; Tavoni, Francesca; Minay, Emma J.; Boccaccini, Aldo R.

    2005-01-01

    A new type of glass matrix composite reinforced with ferroelectric particulate secondary phase was investigated. Samples containing lead zirconate titanate (PZT) particles in a silicate lead glass were fabricated. Various sintering strategies were tested in order to optimise the processing route. The densest samples were obtained by hot-pressing. The composites were characterized by means of SEM observations, X-ray diffraction, differential thermal analysis and Vickers indentations. In order to get a deeper insight into the thermo-mechanical behaviour of the material, a FEM based numerical model was prepared and applied. In particular, the crack-particle interaction was assessed and thus possible toughening mechanisms were investigated. By means of the numerical modelling supported by SEM observations, traditional toughening mechanisms (e.g. crack deflection, particle debonding) were ruled out. Since the experimentally measured indentation fracture toughness of the composite is significantly higher than that of the unreinforced glass, the findings suggest that a new toughening mechanism may be active, based on the piezoelectric effect

  2. Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating

    International Nuclear Information System (INIS)

    Li, Qingtang; Lei, Yongping; Fu, Hanguang

    2014-01-01

    Highlights: • Reinforced (Ti, Nb)Cp can be synthesized in the molten pool during laser cladding. • Formation mechanism of (Ti, Nb)Cp are impacted by Ti/Nb atomic ratio. • Appropriate Ti element can improve the precipitation of carbide particle. • Excess Ti weakens this effect above-mentioned. • The wear resistance of the coating was improved when Ti/Nb = 1. - Abstract: Over the past decade, researchers have demonstrated much interest in laser cladded metal matrix composite coatings for its good wear resistance, corrosion resistance, and high temperature properties. In this paper, in-situ (Ti, Nb)C particle reinforced Fe-based composite coatings were produced by laser cladding. The effects of Ti/Nb(atomic ratio) in the cladding powder on the formation mechanism and distribution characteristics of multiple particle were investigated. The results showed that when Ti/Nb > 1, Ti had a stronger ability to bond with C compared with Nb. (Ti, Nb)C multiple particles with TiC core formed in the molten pool. With the decrease of Ti/Nb, core-shell structure disappeared, the structure of particle got close to that of NbC gradually. It is found that the amount, area ratio and distribution of the reinforced particle in the coating containing Ti and Nb elements were improved, compared with these in the coating containing equal Nb element. When Ti/Nb = 1, the effects above-mentioned is most prominent, and the wear resistance of the coating is promoted obviously

  3. Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingtang, E-mail: liqingtang123@126.com; Lei, Yongping, E-mail: yplei@bjut.edu.cn; Fu, Hanguang

    2014-10-15

    Highlights: • Reinforced (Ti, Nb)Cp can be synthesized in the molten pool during laser cladding. • Formation mechanism of (Ti, Nb)Cp are impacted by Ti/Nb atomic ratio. • Appropriate Ti element can improve the precipitation of carbide particle. • Excess Ti weakens this effect above-mentioned. • The wear resistance of the coating was improved when Ti/Nb = 1. - Abstract: Over the past decade, researchers have demonstrated much interest in laser cladded metal matrix composite coatings for its good wear resistance, corrosion resistance, and high temperature properties. In this paper, in-situ (Ti, Nb)C particle reinforced Fe-based composite coatings were produced by laser cladding. The effects of Ti/Nb(atomic ratio) in the cladding powder on the formation mechanism and distribution characteristics of multiple particle were investigated. The results showed that when Ti/Nb > 1, Ti had a stronger ability to bond with C compared with Nb. (Ti, Nb)C multiple particles with TiC core formed in the molten pool. With the decrease of Ti/Nb, core-shell structure disappeared, the structure of particle got close to that of NbC gradually. It is found that the amount, area ratio and distribution of the reinforced particle in the coating containing Ti and Nb elements were improved, compared with these in the coating containing equal Nb element. When Ti/Nb = 1, the effects above-mentioned is most prominent, and the wear resistance of the coating is promoted obviously.

  4. Resistance to bond degradation between dual-cure resin cements and pre-treated sintered CAD-CAM dental ceramics

    Science.gov (United States)

    Osorio, Raquel; Monticelli, Francesca; Osorio, Estrella; Toledano, Manuel

    2012-01-01

    Objective: To evaluate the bond stability of resin cements when luted to glass-reinforced alumina and zirconia CAD/CAM dental ceramics. Study design: Eighteen glass-infiltrated alumina and eighteen densely sintered zirconia blocks were randomly conditioned as follows: Group 1: No treatment; Group 2: Sandblasting (125 µm Al2O3-particles); and Group 3: Silica-coating (50 µm silica-modified Al2O3-particles). Composite samples were randomly bonded to the pre-treated ceramic surfaces using different resin cements: Subgroup 1: Clearfil Esthetic Cement (CEC); Subgroup 2: RelyX Unicem (RXU); and Subgroup 3: Calibra (CAL). After 24 h, bonded specimens were cut into 1 ± 0.1 mm2 sticks. One-half of the beams were tested for microtensile bond strength (MTBS). The remaining one-half was immersed in 10 % NaOCl aqueous solution (NaOClaq) for 5 h before testing. The fracture pattern and morphology of the debonded surfaces were assessed with a field emission gun scanning electron microscope (FEG-SEM). A multiple ANOVA was conducted to analyze the contributions of ceramic composition, surface treatment, resin cement type, and chemical challenging to MTBS. The Tukey test was run for multiple comparisons (p ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. The MDP-containing and the self-adhesive resin cements were both suitable for luting CAD/CAM ceramics. Despite both cements being prone to degradation, RXU luted to zirconia or untreated or sandblasted alumina showed the most stable interfaces. CAL experimented spontaneous debonding in all tested groups. Key words:CAD/CAM ceramic, alumina, zirconia, resin cement, surface pre-treatment, sandblasting, silica-coating, chemical aging, bond degradation, microtensile bond strength. PMID:22322517

  5. Tough ceramic coatings: Carbon nanotube reinforced silica sol-gel

    Science.gov (United States)

    López, A. J.; Rico, A.; Rodríguez, J.; Rams, J.

    2010-08-01

    Silica coatings reinforced with carbon nanotubes were produced via sol-gel route using two mixing techniques of the sol-gel precursors, mechanical and ultrasonic mixing, and dip-coating as deposition process on magnesium alloy substrates. Effective incorporation and distribution of 0.1 wt.% of carbon nanotubes in the amorphous silica matrix of the coatings were achieved using both techniques. Fabrication procedure determines the morphological aspects of the coating. Only mechanical mixing process produced coatings dense and free of defects. Nanoindentation technique was used to examine the influence of the fabrication process in the mechanical features of the final coatings, i.e. indentation fracture toughness, Young's modulus and hardness. A maximum toughening effect of about 24% was achieved in silica coatings reinforced with carbon nanotubes produced by the mechanical mixing route. Scanning electron microscopy investigation revealed that the toughening of these reinforced coatings was mainly due to bridging effect of the reinforcement.

  6. A new classification system for all-ceramic and ceramic-like restorative materials.

    Science.gov (United States)

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  7. Processing and properties of ceramic matrix-polymer composites for dental applications

    Science.gov (United States)

    Huang, Hsuan Yao

    The basic composite structure of natural hard tissue was used to guide the design and processing of dental restorative materials. The design incorporates the methodology of using inorganic minerals as the main structural phase reinforced with a more ductile but tougher organic phase. Ceramic-polymer composites were prepared by slip casting a porous ceramic structure, heating and chemical treating the porous preform, infiltrating with monomer and then curing. The three factors that determined the mechanical properties of alumina-polymer composites were the type of polymer used, the method of silane treatments, and the type of bond between particles in the porous preforms. Without the use of silane coupling agents, the composites were measured to have a lower strength. The composite with a more "flexible" porous alumina network had a greater ability to plastically dissipate the energy of propagating cracks. However, the aggressive nature of the alumina particles on opposing enamel requires that these alumina-polymer composites have a wear compatible coating for practical application. A route to dense bioactive apatite wollastonite glass ceramics (AWGC)-polymer composites was developed. The problems associated with glass dissolution into the aqueous medium for slip casting were overcome with the use of silane. The role of heating rate and development of ceramic compact microstructure on composite properties was explored. In general, if isothermal heating was not applied, decreasing heating rate increased glass crystallinity and particle-particle fusion, but decreased pore volume. Also composite strength and fracture toughness decreased while modulus and hardness increased with decreasing heating rate. If isothermal heating was applied, glass crystallinity, pore content, and composite mechanical properties showed relatively little change regardless of the initial heating rate. The potential of AWGC-polymer composites for dental and implant applications was explored

  8. Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles

    International Nuclear Information System (INIS)

    Essabir, H.; Hilali, E.; Elgharad, A.; El Minor, H.; Imad, A.; Elamraoui, A.; Al Gaoudi, O.

    2013-01-01

    Highlights: ► Nuts-shells of Argan particles are used as reinforcement in thermoplastic matrix. ► Particles are homogeneously dispersed and distributed within PP matrix. ► Mechanical and thermal characterization of the composite are applied. ► Particles–matrix adhesion was assured by the use of a SBS compatibilizer. - Abstract: This study treats the combined effects of both particle sizes and particle loading on the mechanical and thermal properties of polypropylene (PP) composites reinforced with Nut-shells of Argan (NA) particles. Three range sizes of particles were used in the presence of a polypropylene matrix grafted with 8 wt.% of a linear block copolymer based on styrene and butadiene coupling agent, to improve adhesion between the particles and the matrix. The composites were prepared through melt-blending using an internal mixer and the tensile specimens were prepared using a hot press molding machine. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Thermo Gravimetric Analysis (TGA), Differential Thermal Analysis (DTA) and tensile tests were employed to characterize the composites at 10, 15, 20 and 25 wt.% particle contents. Results show a clear improvement in Young’s modulus from the use of particles when compared to the neat PP, a gain of 42.65%, 26.7% and 2.9% at 20 wt.% particle loading, for particle range 1, 2 and 3, respectively. In addition a notable increase in the Young’s modulus was observed when decrease the particle size. The thermal stability of composites exhibits a slight decrease (256–230 °C) with particles loading from 10 to 25 wt.%, against neat PP (258 °C)

  9. Correlations Between Arrangement of Reinforcing Particles and Mechanical Properties in Pressure Die Cast AlSi11-SiC Composites

    Directory of Open Access Journals (Sweden)

    Konopka Z.

    2014-06-01

    Full Text Available The work presents the investigation results concerning the structure of composite pressure die castings with AlSi11 alloy matrix reinforced with SiC particles. Examination has been held for composites containing 10 and 20 volume percent of SiC particles. The arrangement of the reinforcing particles within the matrix has been qualitatively assessed in specimens cut out of the castings. The index of distribution was determined on the basis of particle count in elementary measuring fields. The tensile strength, the yield point and elongation of the obtained composite were measured. Composite castings were produced at various values of the piston velocity in the second stage of injection, diverse intensification pressure values, and various injection gate width values. The regression equation describing the change of the considered arrangement particles index and mechanical properties were found as a function of the pressure die casting parameters. The infuence of particle arrangement in composite matrix on mechanical properties these material was examined and the functions of correlations between values were obtained. The conclusion gives the analysis and the interpretation of the obtained results.

  10. Fabrication of transparent ceramics using nanoparticles

    Science.gov (United States)

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  11. Wear and microstructural characteristics of spray atomized zircon sand reinforced LM13 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, K.; Pandey, O.P. [School of Physics and Materials Science, Thapar University Patiala, Punjab (India)

    2010-07-15

    The requirement of the high performance light weight materials demands the development of varieties of materials within the economical range to get it commercialized. Light weight aluminium alloys are used in several structural applications like automotive, aerospace, defense industry and other fields of engineering. The ceramic particle reinforced aluminium metal matrix composites (AMCs) have emerged as a suitable candidate for commercial applications. A variety of processing routes have been adopted to manufacture AMCs. In the present work LM13 alloy reinforced with zircon sand is formed via spray forming. During experimentation a self prepared convergent-divergent nozzle is used for inert gas atomization of the melt which is subsequently deposited on copper substrate placed vertically below the atomizer. The zircon sand particles are injected in the atomization zone by external injectors aligned perpendicular to the gas atomization axis. Zircon sand has been found to have new promising economical commercial candidate due to its easy availability and good mechanical properties like high hardness, high modulus of elasticity and good thermal stability. The microhardness of cast alloy and spray formed composite shows that the spray formed zircon sand reinforced composite has higher hardness. Also the lower wear rate has been observed in case of the zircon sand reinforced AMC as compared to LM13 alloy. This behaviour is further analyzed in light of microstructural features of the spray deposited composite using optical and scanning electron microscope (SEM). A comparative study of this material (LM13/Zircon sand) with the parent alloy (LM13) is presented in this work. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    Energy Technology Data Exchange (ETDEWEB)

    Arun Prakash, V.R., E-mail: vinprakash101@gmail.com; Rajadurai, A., E-mail: rajadurai@annauniv.edu.in

    2016-10-30

    Highlights: • Particles dimension have reduced using Ball milling process. • Importance of surface modification was explored. • Surface modification has been done to improve adhesion of fiber/particles with epoxy. • Mechanical properties has been increased by adding modified fiber and particles. • Thermal properties have been increased. - Abstract: In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee’s disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved

  13. Effect of silica particles modified by in-situ and ex-situ methods on the reinforcement of silicone rubber

    International Nuclear Information System (INIS)

    Song, Yingze; Yu, Jinhong; Dai, Dan; Song, Lixian; Jiang, Nan

    2014-01-01

    Highlights: • In-situ and ex-situ methods were applied to modify silica particles. • In-situ method was more beneficial to preparing silica particles with high BET surface area. • Silicone rubber filled with in-situ modified silica exhibits excellent mechanical and thermal properties. - Abstract: In-situ and ex-situ methods were applied to modify silica particles in order to investigate their effects on the reinforcement of silicone rubber. Surface area and pore analyzer, laser particle size analyzer, Fourier-transform infrared spectroscopy (FTIR), contact-angle instrument, and transmission electron microscope (TEM) were utilized to investigate the structure and properties of the modified silica particles. Dynamic mechanical thermal analyzer (DMTA) was employed to characterize the vulcanizing behavior and mechanical properties of the composites. Thermogravimetric analysis (TGA) was performed to test the thermal stability of the composites. FTIR and contact angle analysis indicated that silica particles were successfully modified by these two methods. The BET surface area and TEM results reflected that in-situ modification was more beneficial to preparing silica particles with irregular shape and higher BET surface area in comparison with ex-situ modification. The DMTA and TGA data revealed that compared with ex-situ modification, the in-situ modification produced positive influence on the reinforcement of silicone rubber

  14. Effect of fiber coatings on room and elevated temperature mechanical properties of Nicalon trademark fiber reinforced Blackglas trademark ceramic matrix composites (CMCs)

    International Nuclear Information System (INIS)

    Aly, E.I.; Freitag, D.W.; Littlefield, J.E.

    1993-01-01

    With the development of silicon organometallic preceramic polymers as precursors for producing oxidation resistant ceramic matrices, through the polymer pyrolysis route, the fabrication of lightweight, complex advanced aircraft and missile structures from fiber reinforced composites is increasingly becoming more feasible. Besides refinement of processing techniques, the potential for achieving this objective depends upon identifying and developing the proper debond barrier coating layer, between the fiber and the matrix, for optimization of strength, toughness, and durability properties. Blackglas trademark based CMC's reinforced with Nicalon trademark SiC fibers with different types of coatings were fabricated. Coating schemes evaluated include CVD applied single layer boron nitride (BN) composition, dual-layer coatings of BN/SiC, and triple-layer coatings of SiC BN/SiC. Results of tensile and flexural property tests, scanning electron microscopy (SEM) of fracture surfaces, and auger electron spectroscopy (AES) microanalysis of the fiber/matrix interface have been discussed

  15. Influence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites

    International Nuclear Information System (INIS)

    Dinaharan, I.; Murugan, N.; Parameswaran, Siva

    2011-01-01

    Highlights: → In situ fabrication of aluminium metal matrix composite reinforced ZrB 2 particles. → Colour metallography of composites. → Improvement of matrix properties by ZrB 2 particles. → Sliding wear behaviour of in situ composites. - Abstract: Particulate reinforced metal matrix composites (PMMCs) have gained considerable amount of research emphasis and attention in the present era. Research is being carried out across the globe to produce new combination of PMMCs. PMMCs are prepared by adding a variety of ceramic particles with monolithic alloys using several techniques. An attempt has been made to produce aluminium metal matrix composites reinforced with zirconium boride (ZrB 2 ) particles by the in situ reaction of K 2 ZrF 6 and KBF 4 salts with molten aluminium. The influence of in situ formed ZrB 2 particles on the microstructure and mechanical properties of AA6061 alloy was studied in this work. The in situ formed ZrB 2 particles significantly refined the microstructure and enhanced the mechanical properties of AA6061 alloy. The weight percentage of ZrB 2 was varied from 0 to 10 in steps of 2.5. Improvement of hardness, ultimate tensile strength and wear resistance of AA6061 alloy was observed with the increase in ZrB 2 content.

  16. Preparation of rod-like β-Si3N4 single crystal particles

    International Nuclear Information System (INIS)

    Hirao, K.; Tsuge, A.; Brito, M.E.; Kanzaki, S.

    1994-01-01

    The use of β-Si 3 N 4 particles as a seed material has been demonstrated to be effective for development of a self-reinforcing microstructure in sintered silicon nitride ceramics. We have confirmed the seeding effect and arrived at a concept that seed particles should consist of rod-like single crystals free from defects and with a large diameter. The present work describes our attempts to produce such particles with a controlled morphology and in high amount. β-Si 3 N 4 particles with a diameter of 1μm and length of 5μm were obtained by heating a mixture of α-Si 3 N 4 , SiO 2 and Y 2 O 3 , followed by acid rinse treatments to remove residual glassy phase. (orig.)

  17. Method of forming a ceramic to ceramic joint

    Science.gov (United States)

    Cutler, Raymond Ashton; Hutchings, Kent Neal; Kleinlein, Brian Paul; Carolan, Michael Francis

    2010-04-13

    A method of joining at least two sintered bodies to form a composite structure, includes: providing a joint material between joining surfaces of first and second sintered bodies; applying pressure from 1 kP to less than 5 MPa to provide an assembly; heating the assembly to a conforming temperature sufficient to allow the joint material to conform to the joining surfaces; and further heating the assembly to a joining temperature below a minimum sintering temperature of the first and second sintered bodies. The joint material includes organic component(s) and ceramic particles. The ceramic particles constitute 40-75 vol. % of the joint material, and include at least one element of the first and/or second sintered bodies. Composite structures produced by the method are also disclosed.

  18. Microstructure and wear properties of the electroslag remelting layer reinforced by TiC particles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The electroslag remelting (ESR) layer reinforced by TiC particles was obtained by electroslag remelting.The microstructure and wear properties of the ESR layer were studied by means of scanning electron microscopy (SEM),X-ray diffraction (XRD),and wear test.The results indicate that TiC particles are synthesized by self-propagating high-temperature synthesis (SHS) reaction during the electroslag remelting process.The size of TiC particles is in the range of 1-10 μm,and the distribution of TiC particles is uniform,from outside to inside of the ESR layer,and the volume fraction and the size of TiC particles decrease gradually.Molten iron and slag flow into porosity due to the SHS process leading to rapid densification and the elimination of porosity in the ESR layer during the ESR process.TiC particles enhance the wear resistance of the ESR layer,whereas CaF2 can improve the high temperature lubricating property of the ESR layer.

  19. Fracture Resistance Evaluation of Fibre Reinforced Brittle Matrix Composites

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk

    2005-01-01

    Roč. 290, - (2005), s. 167-174 ISSN 1013-9826. [Fractography of Advanced Ceramic s /2./. Stará Lesná, 03.10.2004-06.10.2004] R&D Projects: GA AV ČR(CZ) IAA2041003; GA ČR(CZ) GA101/02/0683 Keywords : fibre-reinforced ceramic s * glass matrix composites * chevron notch Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.224, year: 2005

  20. Environmental Particle Emissions due to Automated Drilling of Polypropylene Composites and Nanocomposites Reinforced with Talc, Montmorillonite and Wollastonite

    Science.gov (United States)

    Starost, K.; Frijns, E.; Laer, J. V.; Faisal, N.; Egizabal, A.; Elizextea, C.; Nelissen, I.; Blazquez, M.; Njuguna, J.

    2017-05-01

    In this study, the effect on nanoparticle emissions due to drilling on Polypropylene (PP) reinforced with 20% talc, 5% montmorillonite (MMT) and 5% Wollastonite (WO) is investigated. The study is the first to explore the nanoparticle release from WO and talc reinforced composites and compares the results to previously researched MMT. With 5% WO, equivalent tensile properties with a 10 % weight reduction were obtained relative to the reference 20% talc sample. The materials were fabricated through injection moulding. The nanorelease studies were undertaken using the controlled drilling methodology for nanoparticle exposure assessment developed within the European Commission funded SIRENA Life 11 ENV/ES/506 project. Measurements were taken using CPC and DMS50 equipment for real-time characterization and measurements. The particle number concentration (of particles <1000nm) and particle size distribution (4.87nm - 562.34nm) of the particles emitted during drilling were evaluated to investigate the effect of the silicate fillers on the particles released. The nano-filled samples exhibited a 33% decrease (MMT sample) or a 30% increase (WO sample) on the average particle number concentration released in comparison to the neat polypropylene sample. The size distribution data displayed a substantial percentage of the particles released from the PP, PP/WO and PP/MMT samples to be between 5-20nm, whereas the PP/talc sample emitted larger particle diameters.

  1. Particle-Based Geometric and Mechanical Modelling of Woven Technical Textiles and Reinforcements for Composites

    Science.gov (United States)

    Samadi, Reza

    affecting the textile geometry and constitutive behaviour under evolving loading; 5) validating simulation results with experimental trials; and 6) demonstrating the applicability of the simulation procedure to textile reinforcements featuring large numbers of small fibres as used in PMCs. As a starting point, the effects of reinforcement configuration on the in-plane permeability of textile reinforcements, through-thickness thermal conductivity of PMCs and in-plane stiffness of unidirectional and bidirectional PMCs were quantified systematically and correlated with specific geometric parameters. Variability was quantified for each property at a constant fibre volume fraction. It was observed that variability differed strongly between properties; as such, the simulated behaviour can be related to variability levels seen in experimental measurements. The effects of the geometry of textile reinforcements on the aforementioned processing and performance properties of the textiles and PMCs made from these textiles was demonstrated and validated, but only for simple cases as thorough and credible geometric models were not available at the onset of this work. Outcomes of this work were published in a peer-reviewed journal [101]. Through this thesis it was demonstrated that predicting changes in textile geometry prior and during loading is feasible using the proposed particle-based modelling method. The particle-based modelling method relies on discrete mechanics and offers an alternative to more traditional methods based on continuum mechanics. Specifically it alleviates issues caused by large strains and management of intricate, evolving contact present in finite element simulations. The particle-based modelling method enables credible, intricate modelling of the geometry of textiles at the mesoscopic scale as well as faithful mechanical modelling under load. Changes to textile geometry and configuration due to the normal compaction pressure, stress relaxation, in-plane shear

  2. Wear behaviour of A356 aluminium alloy reinforced with micron and nano size SiC particles

    CSIR Research Space (South Africa)

    Camagu, ST

    2013-07-01

    Full Text Available A method for producing metal matrix composites MMC was successfully implemented for mixing nano and low micron (“Hybrid”) sized SiC reinforcing particles in an aluminium alloy matrix. Due to the improved specific modulus and strength, MMC...

  3. Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Mostaed, A., E-mail: alimostaed@yahoo.com [Advanced Materials and Nanotechnology Research Center, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, 16765-3381 Pardis Street, Tehran (Iran, Islamic Republic of); Saghafian, H.; Mostaed, E. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Narmak, Tehran (Iran, Islamic Republic of); Shokuhfar, A. [Advanced Materials and Nanotechnology Research Center, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, 16765-3381 Pardis Street, Tehran (Iran, Islamic Republic of); Rezaie, H.R. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Narmak, Tehran (Iran, Islamic Republic of)

    2013-02-15

    The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal, the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM.

  4. Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling

    International Nuclear Information System (INIS)

    Mostaed, A.; Saghafian, H.; Mostaed, E.; Shokuhfar, A.; Rezaie, H.R.

    2013-01-01

    The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal, the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM

  5. Wear Resistance of Nano Alumina Containing SiO2-B2O3-Na2O Glass-Ceramic on Steel Substrate

    Directory of Open Access Journals (Sweden)

    A. Faeghinia

    2016-09-01

    Full Text Available The experimental study has been carried out to investigate the tribological properties of nano Alumina reinforced glass-ceramic enamel. The mixtures of (5, 10, 15 wt.% nano alumina and glass powders have been air sprayed on stainless steel substrate.. The thixotropy, wetting angle and surface tension of used slurry were increased inherently by 15-wt.% nano alumina. By heat treating at 870-640-525 ºC, the homogeneous crystalline sodium silicate phase beside nano alumina was obtained in glass –ceramic coat. According to the EDAX results, the precipitated reduced Sb and Mo particles at the interface of enamel and steel caused to reasonable adherence of coat and steel. The dry sliding wear tests were carried out using pin on disk method. Results revealed the 0.01 mg wear rate by 30N load at 100 m for nano alumina bearing coats. The wear resistance increased by a factor of 10. According to SEM micrographs, the sliding load transfer by nano alumina particles occurred.

  6. Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles

    Science.gov (United States)

    Janicki, Damian

    2017-09-01

    Inconel 625/Cr3C2 composite coatings were produced via a laser cladding process using Cr3C2 reinforcing particles presenting an open porosity of about 60%. A laser cladding system used consisted of a direct diode laser with a rectangular beam spot and the top-hat beam profile, and an off-axis powder injection nozzle. The microstructural characteristics of the coatings was investigated with the use of scanning electron microscopy and X-ray diffraction. A complete infiltration of the porous structure of Cr3C2 reinforcing particles and low degree of their dissolution have been achieved in a very narrow range of processing parameters. Crack-free composite coatings having a uniform distribution of the Cr3C2 particles and their fraction up to 36 vol% were produced. Comparative erosion tests between the Inconel 625/Cr3C2 composite coatings and the metallic Inconel 625 coatings were performed following the ASTM G 76 standard test method. It was found that the composite coatings have a significantly higher erosion resistance to that of metallic coatings for both 30° and 90° impingement angles. Additionally, the erosion performances of composite coatings were similar for both the normal and oblique impact conditions. The erosive wear behaviour of composite coatings is discussed and related to the unique microstructure of these coatings.

  7. Characteristics and fabrication of cermet spent nuclear fuel casks: ceramic particles embedded in steel

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Swaney, P.M.; Tiegs, T.N.

    2004-01-01

    Cermets are being investigated as an advanced material of construction for casks that can be used for storage, transport, or disposal of spent nuclear fuel (SNF). Cermets, which consist of ceramic particles embedded in steel, are a method to incorporate brittle ceramics with highly desirable properties into a strong ductile metal matrix with a high thermal conductivity, thus combining the best properties of both materials. Traditional applications of cermets include tank armor, vault armor, drill bits, and nuclear test-reactor fuel. Cermets with different ceramics (DUO 2 , Al 2 O 3 , Gd 2 O 3 , etc.) are being investigated for the manufacture of SNF casks. Cermet casks offer four potential benefits: greater capacity (more SNF assemblies) for the same gross weight cask, greater capacity (more SNF assemblies) for the same external dimensions, improved resistance to assault, and superior repository performance. These benefits are achieved by varying the composition, volume fraction, and particulate size of the ceramic particles in the cermet with position in the cask body. Addition of depleted uranium dioxide (DUO 2 ) to the cermet increases shielding density, improves shielding effectiveness, and increases cask capacity for a given cask weight or size. Addition of low-density aluminium oxide (Al 2 O 3 ) to the outer top and bottom sections of the cermet cask, where the radiation levels are lower, can lower cask weight without compromising shielding. The use of Al2O3 and other oxides, in appropriate locations, can increase resistance to assault. Repository performance may be improved by compositional control of the cask body to (1) create a local geochemical environment that slows the long-term degradation of the SNF and (2) enables the use of DUO 2 for longterm criticality control. While the benefits of using cermets follow directly from their known properties, the primary challenge is to develop low-cost methods to fabricate casks with variable cermet compositions

  8. Ceramic External Pressure Housings For Deep Sea Vehicles

    National Research Council Canada - National Science Library

    Stachiw, J. D; Peters, Donald; McDonald, Glenn

    2006-01-01

    Only glasses, ceramic and carbon fiber reinforced plastic can provide the necessary weight to strength ratio to make the external pressure housings for undersea vehicles positively buoyant at the abyssal design depth...

  9. The mechanical properties of magnesium matrix composites reinforced with 10 wt.% W14Al86 alloy particles

    International Nuclear Information System (INIS)

    Tang, H.G.; Ma, X.F.; Zhao, W.; Cai, S.G.; Zhao, B.; Qiao, Z.H.

    2007-01-01

    The Mg-based metal matrix composite reinforced by 10 wt.% W 14 Al 86 alloy particles has been prepared by mechanical alloying and press-forming process. X-ray diffraction studies confirm the formation of the composite. Microstructure characterization of the samples reveals the uniform distribution of fine W 14 Al 86 alloy. Mechanical properties characterization revealed that the reinforcement of W 14 Al 86 alloy lead to a significant increase in hardness and tensile strength of Mg and AZ91

  10. Waste Tire Particles and Gamma Radiation as Modifiers of the Mechanical Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Eduardo Sadot Herrera-Sosa

    2014-01-01

    Full Text Available In polymer reinforced concrete, the Young’s modulus of both polymers and cement matrix is responsible for the detrimental properties of the concrete, including compressive and tensile strength, as well as stiffness. A novel methodology for solving such problems is based on use of ionizing radiation, which has proven to be a good tool for improvement on physical and chemical properties of several materials including polymers, ceramics, and composites. In this work, particles of 0.85 mm and 2.80 mm obtained from waste tire were submitted at 250 kGy of gamma radiation in order to modify their physicochemical properties and then used as reinforcement in Portland cement concrete for improving mechanical properties. The results show diminution on mechanical properties in both kinds of concrete without (or with irradiated tire particles with respect to plain concrete. Nevertheless such diminutions (from 2 to 16% are compensated with the use of high concentration of waste tire particles (30%, which ensures that the concrete will not significantly increase the cost.

  11. Hybrid Ti-ceramic bionanomaterials for medical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Niespodziana, K.; Miklaszewski, A.; Jurczyk, M. [Institute of Materials Science and Engineering, Poznan University of Technology, Sklodowska-Curie 5 Sq., 60-965 Poznan (Poland); Jurczyk, K. [Department of Conservative Dentistry and Periodontology, University of Medical Sciences, Bukowska 70 St., 60-812 Poznan (Poland)

    2010-05-15

    In the last decade a great interest has been observed in the field of nanoscale materials. Commercially pure titanium as well as titanium alloys have become predominant in implantology. Low hardness and poor tribiological properties of titanium alloys may become critical factor when wear phenomena are involved. One of the methods that allow the change of properties of Ti alloys is the production of nanocomposites, which will exhibit the favorable mechanical properties of titanium and excellent biocompatibility and bioactivity of ceramics. In this work hybrid Ti-x wt% ceramic (45S5 Bioglass, SiO{sub 2}, Al{sub 2}O{sub 3}) bionanocomposites (x =0, 3 and 10) were prod-uced by the combination of mechanical alloying and powder metallurgical process. Reinforced by 45S5 Bioglass, SiO{sub 2} or Al{sub 2}O{sub 3} particles, Vickers hardness of Ti-based nanocomposite is higher from two to six times in comparison with pure microcrystalline Ti. Additionally, the experimental results show that in Ringer's solution at 37 C, Ti-based nanocomposites have good corrosion resistance. On the other hand, in vitro studies show that these bionanocomposites have excellent biocompatibility and could integrate with bone (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. The Use of All-Ceramic Resin-Bonded Bridges in the Anterior Aesthetic Zone.

    Science.gov (United States)

    Shah, Rupal; Laverty, Dominic P

    2017-03-01

    For several years, all-ceramic resin-bonded bridges (RBBs) have been considered an aesthetic treatment option for the replacement of missing teeth in the anterior region. With continued developments in technology, various different ceramic materials have been used to fabricate all-ceramic RBBs including zirconia, glass-reinforced, alumina-based ceramics, and lithium disilicate glass ceramics. The aim of this article is to provide an overview of all-ceramic RBBs, the advantages and disadvantages associated with these prostheses, as well as to demonstrate their application in replacing missing anterior teeth. Clinical relevance: To present the current literature and clinical application of all-ceramic resin-bonded bridges for replacing missing anterior teeth.

  13. Optimization of Reinforced Concrete Reservoir with Circumferential Stiffeners Strips by Particle Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    GholamReza Havaei

    2015-09-01

    Full Text Available Reinforced concrete reservoirs (RCR have been used extensively in municipal and industrial facilities for several decades. The design of these structures requires that attention be given not only to strength requirements, but to serviceability requirements as well. These types of structures will be square, round, and oval reinforced concrete structures which may be above, below, or partially below ground. The main challenge is to design concrete liquid containing structures which will resist the extremes of seasonal temperature changes, a variety of loading conditions, and remain liquid tight for useful life of 50 to 60 years. In this study, optimization is performed by particle swarm algorithm basd on structural design. Firstly by structural analysis all range of shell thickness and areas of rebar find. In the second step by parameter identification system interchange algorithm, source code which developed in particle swarm algorithm by MATLAB software linked to analysis software. Therefore best and optimized thicknesses and total area of bars for each element find. Lastly with circumferential stiffeners structure optimize and show 19% decrease in weight of rebar, 20% decrease in volume of concrete, and 13% minimum cost reduction in construction procedure compared with conventional 10,000 m3 RCR structures.

  14. A statistical analysis on erosion wear behaviour of A356 alloy reinforced with in situ formed TiB2 particles

    International Nuclear Information System (INIS)

    Kumar, S.; Subramanya Sarma, V.; Murty, B.S.

    2008-01-01

    Solid particle erosion wear behaviour of A356 and A356/TiB 2 in situ composites has been studied. A356 alloy reinforced with in situ TiB 2 particles was fabricated by the reaction of halide salts with aluminium melt and the formation of Al 3 Ti brittle phase is completely suppressed. The composites show good grain refinement of α-Al and modification of eutectic Si. These in situ composites show high hardness and better erosion resistance than the base alloy. Though the sizes of in situ formed TiB 2 reinforcement particles are smaller than the erodent SiC particles, TiB 2 particles are able to effectively resist the erodent particles. Design of experiment has been used to run the solid particle erosion experiment. An attempt has also been made to develop a mathematical model by using regression analysis. Analysis of variance (ANOVA) technique is applied to check the validity of the developed model. Student's t-test is utilized to find out the significance of factors. The wear mechanism has been studied by analyzing the surface of the worn specimen using scanning electron microscopy and energy dispersive X-ray microanalysis

  15. Improvement of the stability of hydroxyapatite through glass ceramic reinforcement.

    Science.gov (United States)

    Ha, Na Ra; Yang, Zheng Xun; Hwang, Kyu Hong; Kim, Tae Suk; Lee, Jong Kook

    2010-05-01

    Hydroxyapatite has achieved significant application in orthopedic and dental implants due to its excellent biocompatibility. Sintered hydroxyapatites showed significant dissolution, however, after their immersion in water or simulated body fluid (SBF). This grain boundary dissolution, even in pure hydroxyapatites, resulted in grain separation at the surfaces, and finally, in fracture. In this study, hydroxyapatite ceramics containing apatite-wollastonite (AW) or calcium silicate (SG) glass ceramics as additives were prepared to prevent the dissolution. AW and SG glass ceramics were added at 0-7 wt% and powder-compacted uniaxially followed by firing at moisture conditions. The glass phase was incorporated into the hydroxyapatite to act as a sintering aid, followed by crystallization, to improve the mechanical properties without reducing the biocompatibility. As seen in the results of the dissolution test, a significant amount of damage was reduced even after more than 14 days. TEM and SEM showed no decomposition of HA to the secondary phase, and the fracture toughness increased, becoming even higher than that of the commercial hydroxyapatite.

  16. [Comparison of in vivo characteristics of polyethylene wear particles produced by a metal and a ceramic femoral component in total knee replacement].

    Science.gov (United States)

    Veigl, D; Vavřík, P; Pokorný, D; Slouf, M; Pavlova, E; Landor, I

    2011-01-01

    The aim of the study was to evaluate in vivo and compare, in terms of the quality and number of ultra high-molecular polyethylene (UHMWPE) wear particles, total knee replacements of identical construction differing only in the material used for femoral component production, i.e., CoCrMo alloy or ZrO2 ceramics. Samples of peri-prosthetic granuloma tissue were collected in two patients with total knee replacement suffering from implant migration, who were matched in relevant characteristics. The primary knee replacement in Patient 1 with a CoCrMo femoral component was done 7.2 years and in Patient 2 with a ZrO2 implant 6.8 years before this assessment. The polyethylene wear-induced granuloma was analysed by the MORF method enabling us to assess the shape and size of wear debris and the IRc method for assessment of particle concentration. In the granuloma tissue samples of Patient 1, on the average, particles were 0.30 mm in size and their relative volume was 0.19. In the Patient 2 tissue samples, the average size of particles was 0.33 mm and their relative volume was 0.26. There was no significant difference in either particle morphology or their concentration in the granuloma tissue between the two patients. One of the options of how to reduce the production of polyethylene wear particles is to improve the tribological properties of contacting surfaces in total knee replacement by substituting a cobalt-chrome femoral component with a zirconia ceramic femoral component. The previous in vitro testing carried out with a mechanical simulator under conditions approaching real weight-bearing in the human body did show a nearly three-fold decrease in the number of UHMWPE wear particles in zirconia components. The evaluation of granuloma tissue induced by the activity of a real prosthetic joint for nearly seven years, however, did not reveal any great difference in either quality or quantity of polyethylene debris between the two replacements. The difference of surface

  17. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients.

    Science.gov (United States)

    Hernigou, Philippe; Roubineau, François; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-04-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantagesCoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion.However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with fracture of a component.We recommend that surgeons weigh the potential advantages and disadvantages of current CoC THA in comparison with other bearing surfaces when considering young very active patients who are candidates for THA. Cite this article: Hernigou P, Roubineau F, Bouthors C, Flouzat-Lachaniette C-H. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients. EFORT Open Rev 2016;1:107-111. DOI: 10.1302/2058-5241.1.000027.

  18. Science and Technology of Ceramics -4 ...

    Indian Academy of Sciences (India)

    In order to improve the mechanical properties of these ceramics other materials are ... temperature range of 800 to 1650 °C. SiC fiber reinforced SiC composite is .... (X= S, Se, Te) system where it is possible to get an n-type semi- conductor by ...

  19. X-ray microtomography of damage in particle-reinforced metal matrix composites

    International Nuclear Information System (INIS)

    Mummery, P.M.; Derby, B.; Anderson, P.; Davis, G.; Elliott, J.C.

    1993-01-01

    The damage which occurs on plastic straining of silicon carbide particle-reinforced aluminium alloys has been characterised using x-ray microtomography. The technique is used to provide density measurements as a function of strain in addition to imaging the internal structure with a resolution of ∼15μm. This allows a much more accurate determination of microstructural damage in terms of void growth than is available from measurements of density using buoyancy methods or from elastic modulus decrease. These data can be combined with acoustic emission measurements during straining to allow damage nucleation and growth contributions to be separated. (orig.)

  20. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    Science.gov (United States)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning.

  1. Ultra High Temperature and Multifunctional Ceramic Matrix Composite – Coating Systems for Light-Weight Space and Aero Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Revolutionary ultra-high temperature, high mechanical loading capable, oxidation resistant, durable ceramic coatings and light-weight fiber-reinforced Ceramic Matrix...

  2. Dual-nanoparticulate-reinforced aluminum matrix composite materials

    International Nuclear Information System (INIS)

    Kwon, Hansang; Cho, Seungchan; Kawasaki, Akira; Leparoux, Marc

    2012-01-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al 4 C 3 ) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al 4 C 3 . Along with the CNT and the nano-SiC, Al 4 C 3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials. (paper)

  3. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Reis, A.S.; Oliveira, J.N.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2014-01-01

    The clay used in the manufacture of structural ceramic products must meet quality requirements that are influenced by their chemical, physical, mineralogical and microstructural characteristics, which control the ceramic properties of the final products. This paper aims to characterize the clay used in the manufacture of ceramic roof tiles and bricks. The clay was characterized through XRF, XRD, thermogravimetry and differential thermal analysis, Atterberg limits and particle size distribution. Specimens were shaped, dried at 110°C, and burned at 900 deg C in an industrial kiln. After that, they were submitted to tests of water absorption, apparent porosity, bulk density and flexural strength. The results show that the chemical composition of clay has significant amount of silica and alumina and adequate levels of kaolinite for use in structural ceramic. The ceramic properties evaluated in the specimens partially meet the requirements of the Brazilian standard-clays for structural ceramics. (author)

  4. Synthesis of carbon fibre-reinforced, silicon carbide composites by ...

    Indian Academy of Sciences (India)

    carbon fibre (Cf) reinforced, silicon carbide matrix composites which are ... eral applications, such as automotive brakes, high-efficiency engine systems, ... The PIP method is based on the use of organo metallic pre-ceramic precursors.

  5. Improving the strength of ceramics by controlling the interparticle forces and rheology of the ceramic suspensions

    International Nuclear Information System (INIS)

    Chou, Yi-Ping

    2001-01-01

    This thesis describes a study of the modification of the interparticle forces of colloidal ceramic particles in aqueous suspensions in order to improve the microstructural homogeneity, and hence the reliability and mechanical performances, of subsequently formed ceramic compacts. A concentrated stable fine ceramic powder suspension has been shown to be able to generate a higher density of a ceramic product with better mechanical, and also electrical, electrochemical and optical, properties of the ceramic body. This is because in a colloidally stable suspension there are no aggregates and so defect formation, which is responsible for the ceramic body performance below its theoretical maximum, is reduced. In order to achieve this, it is necessary to form a well dispersed ceramic suspension by ensuring the interparticle forces between the particles are repulsive, with as a high a loading with particles as possible. By examining the rheological behaviour and the results of Atomic Force Microscope, the dispersion state of the suspensions and hence the interparticle forces can be analysed. In this study, concentrated ceramic suspensions were made from two kinds of zirconia powders, monoclinic (DK1) and yttria partially stabilised (HSY3) zirconia, in the presence of a dispersant, 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt (Tiron), in aqueous system. The optimum dispersant concentrations, where the viscosity and rheological moduli are the entire minimum, for DK1 and HSY3 suspensions, respectively, are 0.625% and 0.1%. The modifications of the interparticle forces were also achieved by pH adjustment and it was found that both of the suspensions at the optimum dispersant concentration were stable over the pH range 7 ∼ 10, which coincide with the results of the electrophoretic mobility measurements. Ceramic compacts have then been made by slip casting the suspensions of different dispersant concentration, followed by firing procedure. Mechanical properties of

  6. Indirect zirconia-reinforced lithium silicate ceramic CAD/CAM restorations: Preliminary clinical results after 12 months.

    Science.gov (United States)

    Zimmermann, Moritz; Koller, Christina; Mehl, Albert; Hickel, Reinhard

    2017-01-01

    No clinical data are available for the new computer-aided design/computer-assisted manufacture (CAD/CAM) material zirconia-reinforced lithium silicate (ZLS) ceramic. This study describes preliminary clinical results for indirect ZLS CAD/CAM restorations after 12 months. Indirect restorations were fabricated, using the CEREC method and intraoral scanning (CEREC Omnicam, CEREC MCXL). Sixty-seven restorations were seated adhesively (baseline). Sixty restorations were evaluated after 12 months (follow-up), using modified FDI criteria. Two groups were established, according to ZLS restorations' post-processing procedure prior to adhesive seating: group I (three-step polishing, n = 32) and group II (fire glazing, n = 28). Statistical analysis was performed with Mann-Whitney U test and Wilcoxon test (P  .05). Statistically significant differences were found for criteria surface gloss for group I and group II (Mann-Whitney U test, P < .05). This study demonstrates ZLS CAD/CAM restorations have a high clinical success rate after 12 months. A longer clinical evaluation period is necessary to draw further conclusions.

  7. Thin-walled reinforcement lattice structure for hollow CMC buckets

    Science.gov (United States)

    de Diego, Peter

    2017-06-27

    A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.

  8. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  9. Study of dielectric and piezoelectric properties of CNT reinforced PZT-PVA 0-3 composite

    Science.gov (United States)

    Vyas, Prince; Prajapat, Rampratap; Manmeeta, Saxena, Dhiraj

    2016-05-01

    Ferroelectric ceramic/polymer composites have the compliance of polymers which overcome the problems of brittleness in ceramics. By imbedding piezoelectric ceramic powder into a polymer matrix, 0-3 composites with good mechanical properties and high dielectric breakdown strength can be developed. The obtained composites of 0-3 connectivity exhibit the piezoelectric properties of ceramics and flexibility, strength and lightness of polymer. These composites can be used in vibration sensing and transducer applications specially as piezoelectric sensors. A potential way to improve piezoelectric& dielectric properties of theses composites is by inclusion of another conductive phase in these composites as reported in the literature. In present work, we prepared PZT-PVA 0-3 composites with 60% ceramic volume fraction reinforced with CNTs with volume ranging from 0 to 1.5 vol%. These CNT reinforced composites were obtained using hot press method with thickness of 200 µm having 0-3 conductivity. These composites were poled applying DC voltage. Dielectric properties of these samples were obtained in a wide frequency range (100 Hz to 1 Mhz) at room temperature. The piezoelectric properties of these composites were analyzed by measuring piezoelectric charge constants (d33). The dielectric and piezoelectric properties of these composites were studied as a function of CNT volume content. In these reinforced composites, CNTs act as a conductive filler dispersed in the matrix which in turn facilitates poling and results in an increase of the piezoelectric properties of the composite due to formation of percolation path through the composites. With a CNT content of 0.3 vol.% in PZT/PVA/CNTs, an increase of 61.3 % was observed in piezoelectric strain factors (d33). In these CNT reinforced composites, a substantial increase (approx. 67%) was also observed in dielectric constant and approximately 89% increase was observed in dielectric loss factor. Results so obtained are in the good

  10. Study on preparation and properties of molybdenum alloys reinforced by nano-sized ZrO2 particles

    International Nuclear Information System (INIS)

    Cui, Chaopeng; Gao, Yimin; Zhou, Yucheng; Wei, Shizhong; Zhang, Guoshang; Zhu, Xiangwei; Guo, Songliang

    2016-01-01

    The nano-sized ZrO 2 -reinforced Mo alloy was prepared by a hydrothermal method and a subsequent powder metallurgy process. During the hydrothermal process, the nano-sized ZrO 2 particles were added into the Mo powder via the hydrothermal synthesis. The grain size of Mo powder decreases obviously with the addition of ZrO 2 particles, and the fine-grain sintered structure is obtained correspondingly due to hereditation. In addition to a few of nano-sized ZrO 2 particles in grain boundaries or sub-boundaries, most are dispersed in grains. The tensile strength and yield strength have been increased by 32.33 and 53.76 %. (orig.)

  11. Solid Particle Erosion of Date Palm Leaf Fiber Reinforced Polyvinyl Alcohol Composites

    Directory of Open Access Journals (Sweden)

    Jyoti R. Mohanty

    2014-01-01

    Full Text Available Solid particle erosion behavior of short date palm leaf (DPL fiber reinforced polyvinyl alcohol (PVA composite has been studied using silica sand particles (200 ± 50 μm as an erodent at different impingement angles (15–90° and impact velocities (48–109 m/s. The influence of fiber content (wt% of DPL fiber on erosion rate of PVA/DPL composite has also been investigated. The neat PVA shows maximum erosion rate at 30° impingement angle whereas PVA/DPL composites exhibit maximum erosion rate at 45° impingement angle irrespective of fiber loading showing semiductile behavior. The erosion efficiency of PVA and its composites varies from 0.735 to 16.289% for different impact velocities studied. The eroded surfaces were observed under scanning electron microscope (SEM to understand the erosion mechanism.

  12. Magnesium alloy AZ63A reinforcement by alloying with gallium and using high-disperse ZrO2 particles

    Directory of Open Access Journals (Sweden)

    J. Khokhlova

    2016-12-01

    Full Text Available The aim of this work was to obtain an experimental magnesium alloy by remelting standard AZ63A alloy with addition of gallium ligatures and ZrO2 particles. This allowed reinforcement of alloy and increase its hardness and Young's modulus. The chemical analysis of this alloy shows two types of structures which are evenly distributed in volume. Thus we can conclude that reinforcing effect is the result of formation of intermetallic phase Mg5-Ga2.

  13. Effects of different lasers and particle abrasion on surface characteristics of zirconia ceramics.

    Directory of Open Access Journals (Sweden)

    Sakineh Arami

    2014-04-01

    Full Text Available The aim of this study was to assess the surface of yttrium-stabilized tetragonal zirconia (Y-TZP after surface treatment with lasers and airborne-particle abrasion.First, 77 samples of presintered zirconia blocks measuring 10 × 10 × 2 mm were made, sintered and polished. Then, they were randomly divided into 11 groups (n=7 and received surface treatments namely, Er:YAG laser irradiation with output power of 1.5, 2 and 2.5 W, Nd:YAG laser with output power of 1.5, 2 and 2.5 W, CO2 laser with output power of 3, 4 and 5 W, AL2O3 airborne-particle abrasion (50μ and no treatment (controls. Following treatment, the parameters of surface roughness such as Ra, Rku and Rsk were evaluated using a digital profilometer and surface examination was done by SEM.According to ANOVA and Tukey's test, the mean surface roughness (Ra after Nd:YAG laser irradiation at 2 and 2.5 W was significantly higher than other groups. Roughness increased with increasing output power of Nd:YAG and CO2 lasers. Treated surfaces by Er:YAG laser and air abrasion showed similar surface roughness. SEM micrographs showed small microcracks in specimens irradiated with Nd:YAG and CO2 lasers.Nd:YAG laser created a rough surface on the zirconia ceramic with many microcracks; therefore, its use is not recommended. Air abrasion method can be used with Er:YAG laser irradiation for the treatment of zirconia ceramic.

  14. Development of AL_2O_3 - ZrO_2 ceramic composite reinforced with rare earth oxides (Y_2O)3) for inert coating of storage and transport systems of crude petroleum

    International Nuclear Information System (INIS)

    Silva, J.C.; Yadava, Y.P.; Sanguinetti Ferreira, R.A.; Albuquerque, L.T.

    2014-01-01

    The advancement of the oil sector has generated the need for the use of materials resistant to aggressive environments to oil. Although ceramics have high melting point and high hardness is, on the other hand, more fragile and less tough, which can cause damage to the metal structure. The Al_2O_3 based ceramics reinforced with rare earth oxide can improve tenaciousness and makes the ceramic material more resistant. This article aims to present the production of composite Al_2O_3 - Y_2O_3 stabilized ZrO_2 by uniaxial pressing, following sintering (1200-1350 deg C). Structural and microstructural characterizations as XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscopy) and mechanical tests as Vickers hardness, % absorption and % linear shrinkage were conducted to evaluate the feasibility of using the composite and ceramic coating for storage and transportation of oil tanks. The results indicate that the proportions of 5%, 10% and 30% ZrO_2 make it suitable as a good composite suitable coating. (author)

  15. Characteristics and fabrication of cermet spent nuclear fuel casks: ceramic particles embedded in steel

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Swaney, P.M.; Tiegs, T.N. [Oak Ridge National Lab., Oak Ridge, TN (United States)

    2004-07-01

    Cermets are being investigated as an advanced material of construction for casks that can be used for storage, transport, or disposal of spent nuclear fuel (SNF). Cermets, which consist of ceramic particles embedded in steel, are a method to incorporate brittle ceramics with highly desirable properties into a strong ductile metal matrix with a high thermal conductivity, thus combining the best properties of both materials. Traditional applications of cermets include tank armor, vault armor, drill bits, and nuclear test-reactor fuel. Cermets with different ceramics (DUO{sub 2}, Al{sub 2}O{sub 3}, Gd{sub 2}O{sub 3}, etc.) are being investigated for the manufacture of SNF casks. Cermet casks offer four potential benefits: greater capacity (more SNF assemblies) for the same gross weight cask, greater capacity (more SNF assemblies) for the same external dimensions, improved resistance to assault, and superior repository performance. These benefits are achieved by varying the composition, volume fraction, and particulate size of the ceramic particles in the cermet with position in the cask body. Addition of depleted uranium dioxide (DUO{sub 2}) to the cermet increases shielding density, improves shielding effectiveness, and increases cask capacity for a given cask weight or size. Addition of low-density aluminium oxide (Al{sub 2}O{sub 3}) to the outer top and bottom sections of the cermet cask, where the radiation levels are lower, can lower cask weight without compromising shielding. The use of Al2O3 and other oxides, in appropriate locations, can increase resistance to assault. Repository performance may be improved by compositional control of the cask body to (1) create a local geochemical environment that slows the long-term degradation of the SNF and (2) enables the use of DUO{sub 2} for longterm criticality control. While the benefits of using cermets follow directly from their known properties, the primary challenge is to develop low-cost methods to fabricate

  16. Fiscal 1991-1993 summary report on R and D on new forming technology of composite materials; Fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu 1991 nendo - 1993 nendo sokatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    Developed were the materials which can be easily formed by manifesting superplasticity simultaneously with high toughness and high strength through selection of material composition and micronizing of the structure, in regard to composite materials answering to high strength and resistance to high temperature suitable for engines or the like. Developed for ceramic matrix composite materials were composite technology of silicon nitride matrix composites by a casting method, composite technology of Al{sub 2}O{sub 3}/TiC matrix composites by a material preparation method using aqueous slurry, and superplastic forming technology of yttria stabilized zirconia/alumina matrix composites; developed for metallic matrix composite materials were composite technology of reinforced ceramics particulate aluminum alloy matrix composites by a voltex method, composite technology of ceramic short fibers reinforced aluminum alloy composites by a high pressure casting method under reduced pressure, composite technology of titanium matrix composites by a mechanical alloying method, and composite technology of aluminum alloy composites by ceramics particles, superplastic forming technology of SiC whisker reinforced aluminum alloy reinforced composites, and superplastic forming technology of aluminum alloy matrix reinforced composites reinforced by SiC particles. (NEDO)

  17. In vitro wear of four ceramic materials and human enamel on enamel antagonist.

    Science.gov (United States)

    Nakashima, Jun; Taira, Yohsuke; Sawase, Takashi

    2016-06-01

    The purpose of the present study was to evaluate the wear of four different ceramics and human enamel. The ceramics used were lithium disilicate glass (e.max Press), leucite-reinforced glass (GN-Ceram), yttria-stabilized zirconia (Aadva Zr), and feldspathic porcelain (Porcelain AAA). Hemispherical styli were fabricated with these ceramics and with tooth enamel. Flattened enamel was used for antagonistic specimens. After 100,000 wear cycles of a two-body wear test, the height and volume losses of the styli and enamel antagonists were determined. The mean and standard deviation for eight specimens were calculated and statistically analyzed using a non-parametric (Steel-Dwass) test (α = 0.05). GN-Ceram exhibited greater stylus height and volume losses than did Porcelain AAA. E.max Press, Porcelain AAA, and enamel styli showed no significant differences, and Aadva Zr exhibited the smallest stylus height and volume losses. The wear of the enamel antagonist was not significantly different among GN-Ceram, e.max Press, Porcelain AAA, and enamel styli. Aadva Zr resulted in significantly lower wear values of the enamel antagonist than did GN-Ceram, Porcelain AAA, and enamel styli. In conclusion, leucite-reinforced glass, lithium disilicate glass, and feldspathic porcelain showed wear values closer to those for human enamel than did yttria-stabilized zirconia. © 2016 Eur J Oral Sci.

  18. Research on sludge-fly ash ceramic particles (SFCP) for synthetic and municipal wastewater treatment in biological aerated filter (BAF).

    Science.gov (United States)

    Zhao, Yaqin; Yue, Qinyan; Li, Renbo; Yue, Min; Han, Shuxin; Gao, Baoyu; Li, Qian; Yu, Hui

    2009-11-01

    Sludge-fly ash ceramic particles (SFCP) and clay ceramic particles (CCP) were employed in two lab-scale up-flow biological aerated filters (BAF) for wastewater treatment to investigate the availability of SFCP used as biofilm support compared with CCP. For synthetic wastewater, under the selected hydraulic retention times (HRT) of 1.5, 0.75 and 0.37 h, respectively, the removal efficiencies of chemical oxygen demand (COD(Cr)) and ammonium nitrogen (NH(4)(+)-N) in SFCP reactor were all higher than those of CCP reactor all through the media height. Moreover, better capabilities responding to loading shock and faster recovery after short intermittence were observed in the SFCP reactor compared with the CCP reactor. For municipal wastewater treatment, which was carried out under HRT of 0.75 h, air-liquid ratio of 7.5 and backwashing period of 48 h, the SFCP reactor also performed better than the CCP reactor, especially for the removal of NH(4)(+)-N.

  19. Influence of Nickel Particle Reinforcement on Cyclic Fatigue and Final Fracture Behavior of a Magnesium Alloy Composite

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2012-06-01

    Full Text Available The microstructure, tensile properties, cyclic stress amplitude fatigue response and final fracture behavior of a magnesium alloy, denoted as AZ31, discontinuously reinforced with nano-particulates of aluminum oxide and micron size nickel particles is presented and discussed. The tensile properties, high cycle fatigue and final fracture behavior of the discontinuously reinforced magnesium alloy are compared with the unreinforced counterpart (AZ31. The elastic modulus and yield strength of the dual particle reinforced magnesium alloy is marginally higher than of the unreinforced counterpart. However, the tensile strength of the composite is lower than the monolithic counterpart. The ductility quantified by elongation to failure over 0.5 inch (12.7 mm gage length of the test specimen showed minimal difference while the reduction in specimen cross-section area of the composite is higher than that of the monolithic counterpart. At the microscopic level, cyclic fatigue fractures of both the composite and the monolithic alloy clearly revealed features indicative of the occurrence of locally ductile and brittle mechanisms. Over the range of maximum stress and at two different load ratios the cyclic fatigue resistance of the magnesium alloy composite is superior to the monolithic counterpart. The mechanisms responsible for improved cyclic fatigue life and resultant fracture behavior of the composite microstructure are highlighted.

  20. Alumina-zirconium ceramics synthesis by selective laser sintering/melting

    International Nuclear Information System (INIS)

    Shishkovsky, I.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    In the present paper, porous refractory ceramics synthesized by selective laser sintering/melting from a mixture of zirconium dioxide, aluminum and/or alumina powders are subjected to optical metallography and X-ray analysis to study their microstructure and phase composition depending on the laser processing parameters. It is shown that high-speed laser sintering in air yields ceramics with dense structure and a uniform distribution of the stabilizing phases. The obtained ceramic-matrix composites may be used as thermal and electrical insulators and wear resistant coating in solid oxide fuel cells, crucibles, heating elements, medical tools. The possibility to reinforce refractory ceramics by laser synthesis is shown on the example of tetragonal dioxide of zirconium with hardened micro-inclusion of Al 2 O 3 . By applying finely dispersed Y 2 O 3 powder inclusions, the type of the ceramic structure is significantly changed

  1. A comparative study on the tensile and impact properties of Kevlar, carbon, and S-glass/epoxy composites reinforced with SiC particles

    Science.gov (United States)

    Bulut, Mehmet; Alsaadi, Mohamad; Erkliğ, Ahmet

    2018-02-01

    Present study compares the tensile and impact characteristics of Kevlar, carbon and glass fiber reinforced composites with addition of microscale silicon carbide (SiC) within the common matrix of epoxy. The variation of tensile and impact strength values was explored for different content of SiC in the epoxy resin by weight (0, 5, 10, 15 and 20 wt%). Resulting failure characteristics were identified by assisting Charpy impact tests. The influence of interfacial adhesion between particle and fiber/matrix on failure and tensile properties was discussed from obtained results and scanning electron microscopy (SEM) figures. It is concluded from results that the content of SiC particles, and fiber types used as reinforcement are major parameters those effecting on tensile and impact resistance of composites as a result of different interface strength properties between particle-matrix and particle-fiber.

  2. Particle Swarm Optimization approach to defect detection in armour ceramics.

    Science.gov (United States)

    Kesharaju, Manasa; Nagarajah, Romesh

    2017-03-01

    In this research, various extracted features were used in the development of an automated ultrasonic sensor based inspection system that enables defect classification in each ceramic component prior to despatch to the field. Classification is an important task and large number of irrelevant, redundant features commonly introduced to a dataset reduces the classifiers performance. Feature selection aims to reduce the dimensionality of the dataset while improving the performance of a classification system. In the context of a multi-criteria optimization problem (i.e. to minimize classification error rate and reduce number of features) such as one discussed in this research, the literature suggests that evolutionary algorithms offer good results. Besides, it is noted that Particle Swarm Optimization (PSO) has not been explored especially in the field of classification of high frequency ultrasonic signals. Hence, a binary coded Particle Swarm Optimization (BPSO) technique is investigated in the implementation of feature subset selection and to optimize the classification error rate. In the proposed method, the population data is used as input to an Artificial Neural Network (ANN) based classification system to obtain the error rate, as ANN serves as an evaluator of PSO fitness function. Copyright © 2016. Published by Elsevier B.V.

  3. Quartz crystal reinforced quartz glass by spark plasma sintering

    International Nuclear Information System (INIS)

    Torikai, D.; Barazani, B.; Ono, E.; Santos, M.F.M.; Suzuki, C.K.

    2011-01-01

    The Spark Plasma Sintering presents fast processing time when compared to conventional sintering techniques. This allows to control the grain growth during sintering as well as the diffusion rate of a multi-material compounds, and make possible obtainment of functionally graded materials and nanostructured compounds. Powders of high purity silica glass and crystalline silica were sintered in a SPS equipment at temperatures around 1350° C, i.e., above the softening temperature of silica glass and below the melting temperature of quartz crystal. As a result, glass ceramics with pure silica glass matrix reinforced with crystalline alpha-quartz grains were fabricated at almost any desired range of composition, as well as controlled size of the crystalline reinforcement. X-ray diffraction and density measurements showed the possibility to manufacture a well controlled density and crystallinity glass-ceramic materials. (author)

  4. Glasses, ceramics, and composites from lunar materials

    Science.gov (United States)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  5. Current all-ceramic systems in dentistry: a review.

    Science.gov (United States)

    Santos, Maria Jacinta M C; Costa, Max Dorea; Rubo, José H; Pegoraro, Luis Fernando; Santos, Gildo C

    2015-01-01

    This article describes the ceramic systems and processing techniques available today in dentistry. It aims to help clinicians understand the advantages and disadvantages of a myriad of ceramic materials and technique options. The microstructural components, materials' properties, indications, and names of products are discussed to help clarify their use. Key topics will include ceramics, particle-filled glasses, polycrystalline ceramics, CAD/CAM, and adhesive cementation.

  6. Metallic nano-particles in lustre glazed ceramics from the 15th century in Seville studied by PIXE and RBS

    International Nuclear Information System (INIS)

    Polvorinos del Rio, A.; Castaing, J.; Aucouturier, M.

    2006-01-01

    Lustre ceramics, found in a workshop located in Triana (Sevilla), have been analysed to determine the composition of glazes including the metallic particle layers giving rise to the lustre effect. PIXE and RBS were used for the elemental composition and the sub-surface concentration profiles, respectively. Copper and silver at the origin of the lustre are detected by PIXE. RBS gives access to the detailed distribution of the elements in the surface layers. The simulation of RBS spectra confirms the occurrence of thin layers (less than 300 nm) containing metallic silver and/or copper. The results are compared with those obtained on other types of lustre ceramics

  7. Analysis of Damage in a Ceramic Matrix Composite

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Talreja, Ramesh

    1993-01-01

    Mechanisms of damage and the associated mechanical response are stud ied for a unidirectionally fiber-reinforced ceramic matrix composite subjected to uniaxial tensile loading parallel to fibers. A multi-stage development of damage is identified, and for each stage the governing mechanisms...

  8. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    Science.gov (United States)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  9. Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media.

    Science.gov (United States)

    Qiu, Liping; Zhang, Shoubin; Wang, Guangwei; Du, Mao'an

    2010-10-01

    The performance and nitrification properties of three BAFs, with ceramic, zeolite and carbonate media, respectively, were investigated to evaluate the feasibility of employing these materials as biological aerated filter media. All three BAFs shown a promising COD and SS removal performance, while influent pH was 6.5-8.1, air-liquid ratio was 5:1 and HRT was 1.25-2.5 h, respectively. Ammonia removal in BAFs was inhibited when organic and ammonia nitrogen loading were increased, but promoted effectively with the increase pH value. Zeolite and carbonate were more suitable for nitrification than ceramic particle when influent pH below 6.5. It is feasible to employ these media in BAF and adequate bed volume has to be supplied to satisfy the requirement of removal COD, SS and ammonia nitrogen simultaneously in a biofilter. The carbonate with a strong buffer capacity is more suitable to treat the wastewater with variable or lower pH. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. HIGH TEMPERATURE EROSION WEAR OF CERMET PARTICLES REINFORCED SELF-FLUXING ALLOY MATRIX HVOF SPRAYED COATINGS

    Directory of Open Access Journals (Sweden)

    Andrei Surzhenkov

    2015-09-01

    Full Text Available In the present paper, the resistance of high velocity oxy-fuel (HVOF sprayed TiC-NiMo and Cr3C2-Ni cermet particles reinforced NiCrSiB self-fluxing alloy matrix coatings to high temperature erosion wear is studied. Microstructure of the coatings was examined by SEM, phase composition was determined by XRD. A four-channel centrifugal particle accelerator was applied to study the high temperature erosion wear of the coatings. The impact angles were 30 and 90 degrees, initial particle velocity was 50 m/s, temperature of the test - 650 degrees. Volume wear of the coatings was calculated and compared to the respective values of the reference materials. Wear mechanisms were studied by SEM.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7617

  11. Fracture-dissociation of ceramic liner.

    Science.gov (United States)

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  12. Effect of Fiber Poisson Contraction on Matrix Multicracking Evolution of Fiber-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Longbiao, Li

    2015-12-01

    An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.

  13. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  14. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    Lowden, R.A.; Ferber, M.K.; DiPietro, S.G.

    1995-01-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  15. [Tribological properties of carbon fiber-reinforced plastic. Experimental and clinical results].

    Science.gov (United States)

    Früh, H J; Ascherl, R; Hipp, E

    1997-02-01

    Wear of the articulating components (especially PE-UHMW) of total hip endoprostheses is the most important technical factor limiting the functional lifetime. To minimize wear debris, ceramic heads, according to ISO 6474 (Al2O3), have been used, from 1969 paired with Al2O3 and since 1975 paired with PE-UHMW. Al2O3 balls articulating with cups made from CFRP have been in clinical use since 1988. Laboratory experiments and in-vivo testing showed minimized wear debris and mild biological response to wear products using CFRP (carbon fiber reinforced plastic) instead of PE-UHMW as the cup material. The articulating surfaces of retrieved ceramic heads (Al2O3-Biolox) and cementless CFRP cups (carbon fiber reinforced plastic, Caproman) were compared using sphericity measurement techniques, scanning electron microscopy (SEM) and roughness measurements (including advanced roughness parameters Rvk or Rpk according to ISO 4287). Altogether, the first results of the clinical study showed that the combination Al2O3-ball/CFRP-cup came up to the expected lower wear rates compared with the conventional combinations. The wear rates are comparable with the combination Al2O3/Al2O3 without the material-related problems of ceramic components in all ceramic combinations.

  16. Ceramic matrix composites by microwave assisted CVI

    International Nuclear Information System (INIS)

    Currier, R.P.; Devlin, D.J.

    1993-01-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. Potential advantages of microwave assisted CVI are noted and numerical studies of microwave assisted CVI are reviewed. The models predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results on silicon-based composite systems. The role played by the relative ability of fiber and matrix to dissipate microwave energy is noted. Results suggest that microwave induced inverted gradients can be exploited to promote inside-out densification. 10 refs., 2 figs

  17. Erosion of magnesium potassium phosphate ceramic waste forms

    International Nuclear Information System (INIS)

    Goretta, K. C.

    1998-01-01

    Phosphate-based chemically bonded ceramics were formed from magnesium potassium phosphate (MKP) binder and either industrial fly ash or steel slag. The resulting ceramics were subjected to solid-particle erosion by a stream of either angular Al 2 O 3 particles or rounded SiO 2 sand. Particle impact angles were 30 or 90degree and the impact velocity was 50 m/s. Steady-state erosion rates, measured as mass lost from a specimen per mass of impacting particle, were dependent on impact angle and on erodent particle size and shape. Material was lost by a combination of fracture mechanisms. Evolution of H 2 O from the MKP phase appeared to contribute significantly to the material loss

  18. Mechanical properties study of particles reinforced aluminum matrix composites by micro-indentation experiments

    Directory of Open Access Journals (Sweden)

    Yuan Zhanwei

    2014-04-01

    Full Text Available By using instrumental micro-indentation technique, the microhardness and Young’s modulus of SiC particles reinforced aluminum matrix composites were investigated with micro-compression-tester (MCT. The micro-indentation experiments were performed with different maximum loads, and with three loading speeds of 2.231, 4.462 and 19.368 mN/s respectively. During the investigation, matrix, particle and interface were tested by micro-indentation experiments. The results exhibit that the variations of Young’s modulus and microhardness at particle, matrix and interface were highly dependent on the loading conditions (maximum load and loading speed and the locations of indentation. Micro-indentation hardness experiments of matrix show the indentation size effects, i.e. the indentation hardness decreased with the indentation depth increasing. During the analysis, the effect of loading conditions on Young’s modulus and microhardness were explained. Besides, the elastic–plastic properties of matrix were analyzed. The validity of calculated results was identified by finite element simulation. And the simulation results had been preliminarily analyzed from statistical aspect.

  19. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    Science.gov (United States)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  20. Effect of kaolin particle size and loading on the characteristics of kaolin ceramic support prepared via phase inversion technique

    Directory of Open Access Journals (Sweden)

    Siti Khadijah Hubadillah

    2016-06-01

    Full Text Available In this study, low cost ceramic supports were prepared from kaolin via phase inversion technique with two kaolin particle sizes, which are 0.04–0.6 μm (denoted as type A and 10–15 μm (denoted as type B, at different kaolin contents ranging from 14 to 39 wt.%, sintered at 1200 °C. The effect of kaolin particle sizes as well as kaolin contents on membrane structure, pore size distribution, porosity, mechanical strength, surface roughness and gas permeation of the support were investigated. The support was prepared using kaolin type A induced asymmetric structure by combining macroporous voids and sponge-like structure in the support with pore size of 0.38 μm and 1.05 μm, respectively, and exhibited ideal porosity (27.7%, great mechanical strength (98.9 MPa and excellent gas permeation. Preliminary study shows that the kaolin ceramic support in this work is potential to gas separation application at lower cost.

  1. Factors affecting the electrostatic charge of ceramic powders

    International Nuclear Information System (INIS)

    Lorite, I.; Romero, J.; Fernandez, J. F.

    2011-01-01

    The phenomenon of electrostatic charge in ceramic powders takes place when the particle surfaces enter in contact between them or with the containers. The accumulation of electrostatic charge is of relevance in ceramic powders in view of their insulating character and the risk of explosions during the material handling. In this work the main factors that affect the appearance of intrinsic charge and tribo-charge in ceramic powder have been studied. In ceramic powders of alumina it has been verified that the smallest particle sizes present an increase of the electrostatic charge of negative polarity. A correlation has been observed between the nature of the OH -surface groups and the electrostatic charge. The intrinsic charge and the tribocharge in ceramic powders can be diminished by compensating the surface groups that support the charge. The dry dispersion of nanoparticles on microparticles allows surface charge compensation with a noticeable modification of the powder agglomeration. (Author) 19 refs.

  2. Advanced ceramic materials and their potential impact on the future

    International Nuclear Information System (INIS)

    Laren, M.G.M.

    1989-01-01

    This article reviews the types of advanced ceramic materials that are being used today and their potential for even greater utilization in the future. Market analysis and projections have been developed from a number of sources both foreign and domestic are referenced and given in the text. Projection on the future use of advanced ceramics to the year 2000 indicate a potential growth of the total world market approaching 187 billion dollars. This paper describes advanced ceramic materials by their functionality, i.e. structural, electronic, chemical, thermal, biological, nuclear, etc. It also refers to specific engineering uses of advanced ceramics and include automotive ceramic materials with physical data for the most likely ceramic materials to be used for engine parts. This family of materials includes silicon carbides, silicon nitride, partially stabilized zirconia and alumina. Fiber reinforced ceramic composites are discussed with recognition of the research on fiber coating chemistry and the compatibility of the coating with the fiber and the matrix. Another class of advanced ceramics is toughened ceramics. The transformation toughened alumina is recognized as an example of this technology. The data indicate that electronic ceramic materials will always have the largest portion of the advanced ceramic market and the critical concepts of a wide range of uses is reviewed. (Auth.)

  3. Deposition and consolidation of porous ceramic films for membrane separation

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Johannessen, Tue

    The deposition of porous ceramic films for membrane separation can be done by several processes such as thermophoresis [1], dip-coating [2] and spray pyrolysis [3]. Here we present a high-speed method, in which ceramic nano-particles form a porous film by filtration on top of a porous ceramic...... substrate [4]. Ceramic nano-particles are generated in a flame, using either a premixed (gas) flame, in which a metal-oxide precursor is evaporated in an N2 stream, which is combusted with methane and air, or using a flame spray pyrolysis, in which a liquid metal-oxide precursor is sprayed through a nozzle...

  4. Fabrication, interfacial characterization and mechanical properties of continuous Al{sub 2}O{sub 3} ceramic fiber reinforced Ti/Al{sub 3}Ti metal-intermetallic laminated (CCFR-MIL) composite

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yuqiang; Lin, Chunfa; Han, Xiaoxiao; Chang, Yunpeng; Guo, Chunhuan, E-mail: guochunhuan@hrbeu.edu.cn; Jiang, Fengchun, E-mail: fengchunjiang@hrbeu.edu.cn

    2017-03-14

    Continuous Al{sub 2}O{sub 3} ceramic fiber reinforced Ti/Al{sub 3}Ti metal-intermetallic laminated (CCFR-MIL) composite was fabricated using a vacuum hot pressing (VHP) sintering method and followed by hot isostatic pressing (HIP). The microstructure characteristics of the interfaces between Ti and Al{sub 3}Ti, as well as Al{sub 2}O{sub 3} fiber and Al{sub 3}Ti intermetallic were analyzed by scanning electron microscopy (SEM). Elemental distribution in the interfacial reaction zones were quantitatively examined by energy-dispersive spectroscopy (EDS). The phases in the composite were identified by X-ray diffractometer (XRD). The mechanical properties of the CCFR-MIL composite were measured using compression and tensile tests under quasi-static strain rate. The experimental results indicated that the residual Al was found in Al{sub 3}Ti intermetallic layer of CCFR-MIL composite. The interfacial reactions occurred during HIP and the reaction products were determined to be Al{sub 2}Ti, TiSi{sub 2}, TiO{sub 2} and Al{sub 2}SiO{sub 5} phases. Compared to Ti/Al{sub 3}Ti MIL composite without fiber reinforcement, both the strength and failure strain of CCFR-MIL composite under both compressive and tensile stress states increased due to the contribution of the continuous ceramic Al{sub 2}O{sub 3} fiber.

  5. Mechanical behavior of a ceramic matrix composite material. M.S. Thesis Final Report

    Science.gov (United States)

    Grosskopf, Paul P.; Duke, John C., Jr.

    1991-01-01

    Monolithic ceramic materials have been used in industry for hundreds of years. These materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited. The existence of an imperfection in a monolithic ceramic on the order of several microns in size may be critical, resulting in catastrophic failure. To overcome this extreme sensitivity to small material imperfections, reinforced ceramic materials were developed. A ceramic matrix which has been reinforced with continuous fibers is not only less sensitive to microscopic flaws, but is also able to sustain significant damage without suffering catastrophic failure. A borosilicate glass reinforced with several layers of plain weave silicon carbide cloth (Nicalon) was studied. The mechanical testing which was performed included both flexural and tensile loading configurations. This testing was done not only to determine the material properties, but also to initiate a controlled amount of damage within each specimen. Several nondestructive testing techniques, including acousto-ultrasonics (AU), were performed on the specimens periodically during testing. The AU signals were monitored through the use of an IBM compatible personal computer with a high speed data acquisition board. Software was written which manipulates the AU signals in both the time and frequency domains, resulting in quantitative measures of the mechanical response of the material. The measured AU parameters are compared to both the mechanical test results and data from other nondestructive methods including ultrasonic C-scans and penetrant enhanced x ray radiography.

  6. Weibull modeling of particle cracking in metal matrix composites

    International Nuclear Information System (INIS)

    Lewis, C.A.; Withers, P.J.

    1995-01-01

    An investigation into the occurrence of reinforcement cracking within a particulate ZrO 2 /2618 Al alloy metal matrix composite under tensile plastic straining has been carried out, special attention being paid to the dependence of fracture on particle size and shape. The probability of particle cracking has been modeled using a Weibull approach, giving good agreement with the experimental data. Values for the Weibull modulus and the stress required to crack the particles were found to be within the range expected for the cracking of ceramic particles. Additional information regarding the fracture behavior of the particles was provided by in-situ neutron diffraction monitoring of the internal strains, measurement of the variation in the composite Young's modulus with straining and by direct observation of the cracked particles. The values of the particle stress required for the initiation of particle cracking deduced from these supplementary experiments were found to be in good agreement with each other and with the results from the Weibull analysis. Further, it is shown that while both the current experiments, as well as the previous work of others, can be well described by the Weibull approach, the exact values of the Weibull parameters do deduced are very sensitive to the approximations and the assumptions made in constructing the model

  7. Ceramic drug-delivery devices.

    Science.gov (United States)

    Lasserre, A; Bajpai, P K

    1998-01-01

    A variety of ceramics and delivery systems have been used to deliver chemicals, biologicals, and drugs at various rates for desired periods of time from different sites of implantation. In vitro and in vivo studies have shown that ceramics can successfully be used as drug-delivery devices. Matrices, inserts, reservoirs, cements, and particles have been used to deliver a large variety of therapeutic agents such as antibiotics, anticancer drugs, anticoagulants, analgesics, growth factors, hormones, steroids, and vaccines. In this article, the advantages and disadvantages of conventional drug-delivery systems and the different approaches used to deliver chemical and biological agents by means of ceramic systems will be reviewed.

  8. Effects of silica and calcium levels in nanobioglass ceramic particles on osteoblast proliferation

    International Nuclear Information System (INIS)

    Moorthi, A.; Parihar, P.R.; Saravanan, S.; Vairamani, M.; Selvamurugan, N.

    2014-01-01

    At nanoscale, bioglass ceramic (nBGC) particles containing calcium oxide (lime), silica and phosphorus pentoxide promote osteoblast proliferation. However, the role of varied amounts of calcium and silica present in nBGC particles on osteoblast proliferation is not yet completely known. Hence, the current work was aimed at synthesizing two different nBGC particles with varied amounts of calcium oxide and silica, nBGC-1: SiO 2 :CaO:P 2 O 5 ; mol% ∼ 70:25:5 and nBGC-2: SiO 2 :CaO:P 2 O 5 ; mol% ∼ 64:31:5, and investigating their role on osteoblast proliferation. The synthesized nBGC particles were characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) studies. They exhibited their size at nanoscale and were non-toxic to human osteoblastic cells (MG-63). The nBGC-2 particles were found to have more effect on stimulation of osteoblast proliferation and promoted entering of more cells into G2/M cell cycle phase compared to nBGC-1 particles. There was a differential expression of cyclin proteins in MG-63 cells by nBGC-1 and nBGC-2 treatments, and the expression of cyclin B1 and E proteins was found to be more by nBGC-2 treatment. Thus, these results provide us a new insight in understanding the design of various nBGC particles by altering their ionic constituents with desirable biological properties thereby supporting bone augmentation. - Highlights: • nBGC particles with varied amounts of calcium and silica were synthesized. • They were non-toxic to human osteoblastic cells. • nBGC-2 particles had more effect on stimulation of osteoblast proliferation. • nBGC-2 particles promoted entering of osteoblasts into G2/M cell cycle phase. • Expression of cyclin B1 and E proteins was found to be more by nBGC-2 treatment

  9. Effects of silica and calcium levels in nanobioglass ceramic particles on osteoblast proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Moorthi, A.; Parihar, P.R.; Saravanan, S.; Vairamani, M.; Selvamurugan, N., E-mail: selvamurugan.n@ktr.srmuniv.ac.in

    2014-10-01

    At nanoscale, bioglass ceramic (nBGC) particles containing calcium oxide (lime), silica and phosphorus pentoxide promote osteoblast proliferation. However, the role of varied amounts of calcium and silica present in nBGC particles on osteoblast proliferation is not yet completely known. Hence, the current work was aimed at synthesizing two different nBGC particles with varied amounts of calcium oxide and silica, nBGC-1: SiO{sub 2}:CaO:P{sub 2}O{sub 5}; mol% ∼ 70:25:5 and nBGC-2: SiO{sub 2}:CaO:P{sub 2}O{sub 5}; mol% ∼ 64:31:5, and investigating their role on osteoblast proliferation. The synthesized nBGC particles were characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) studies. They exhibited their size at nanoscale and were non-toxic to human osteoblastic cells (MG-63). The nBGC-2 particles were found to have more effect on stimulation of osteoblast proliferation and promoted entering of more cells into G2/M cell cycle phase compared to nBGC-1 particles. There was a differential expression of cyclin proteins in MG-63 cells by nBGC-1 and nBGC-2 treatments, and the expression of cyclin B1 and E proteins was found to be more by nBGC-2 treatment. Thus, these results provide us a new insight in understanding the design of various nBGC particles by altering their ionic constituents with desirable biological properties thereby supporting bone augmentation. - Highlights: • nBGC particles with varied amounts of calcium and silica were synthesized. • They were non-toxic to human osteoblastic cells. • nBGC-2 particles had more effect on stimulation of osteoblast proliferation. • nBGC-2 particles promoted entering of osteoblasts into G2/M cell cycle phase. • Expression of cyclin B1 and E proteins was found to be more by nBGC-2 treatment.

  10. Study on preparation and properties of molybdenum alloys reinforced by nano-sized ZrO{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Chaopeng; Gao, Yimin; Zhou, Yucheng [Xi' an Jiaotong University, State Key Laboratory for Mechanical Behavior of Materials, Xi' an, Shaanxi Province (China); Wei, Shizhong [Henan University of Science and Technology, School of Materials Science and Engineering, Luoyang (China); Henan University of Science and Technology, Engineering Research Center of Tribology and Materials Protection, Ministry of Education, Luoyang (China); Zhang, Guoshang; Zhu, Xiangwei; Guo, Songliang [Henan University of Science and Technology, School of Materials Science and Engineering, Luoyang (China)

    2016-03-15

    The nano-sized ZrO{sub 2}-reinforced Mo alloy was prepared by a hydrothermal method and a subsequent powder metallurgy process. During the hydrothermal process, the nano-sized ZrO{sub 2} particles were added into the Mo powder via the hydrothermal synthesis. The grain size of Mo powder decreases obviously with the addition of ZrO{sub 2} particles, and the fine-grain sintered structure is obtained correspondingly due to hereditation. In addition to a few of nano-sized ZrO{sub 2} particles in grain boundaries or sub-boundaries, most are dispersed in grains. The tensile strength and yield strength have been increased by 32.33 and 53.76 %. (orig.)

  11. Erosion of magnesium potassium phosphate ceramic waste forms.

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K. C.

    1998-11-20

    Phosphate-based chemically bonded ceramics were formed from magnesium potassium phosphate (MKP) binder and either industrial fly ash or steel slag. The resulting ceramics were subjected to solid-particle erosion by a stream of either angular Al{sub 2}O{sub 3} particles or rounded SiO{sub 2} sand. Particle impact angles were 30 or 90{degree} and the impact velocity was 50 m/s. Steady-state erosion rates, measured as mass lost from a specimen per mass of impacting particle, were dependent on impact angle and on erodent particle size and shape. Material was lost by a combination of fracture mechanisms. Evolution of H{sub 2}O from the MKP phase appeared to contribute significantly to the material loss.

  12. Randomized clinical trial of implant-supported ceramic-ceramic and metal-ceramic fixed dental prostheses: preliminary results.

    Science.gov (United States)

    Esquivel-Upshaw, Josephine F; Clark, Arthur E; Shuster, Jonathan J; Anusavice, Kenneth J

    2014-02-01

    The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52-75 years) were recruited for the study to receive a three-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD, and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher's exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure (p = 0.68), and connector height (p = 0

  13. On the Stability of c-BN-Reinforcing Particles in Ceramic Matrix Materials

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Wolfrum

    2018-02-01

    Full Text Available Cubic boron nitride (c-BN composites produced at high pressures and temperatures are widely used as cutting tool materials. The advent of new, effective pressure-assisted densification methods, such as spark plasma sintering (SPS, has stimulated attempts to produce these composites at low pressures. Under low-pressure conditions, however, transformation of c-BN to the soft hexagonal BN (h-BN phase can occur, with a strong deterioration in hardness and wear. In the present work, the influence of secondary phases (B2O3, Si3N4, and oxide glasses on the transformation of c-BN was studied in the temperature range between 1100 °C and 1575 °C. The different heat treated c-BN particles and c-BN composites were analyzed by SEM, X-ray diffraction, and Raman spectroscopy. The transformation mechanism was found to be kinetically controlled solution–diffusion–precipitation. Given a sufficiently low liquid phase viscosity, the transformation could be observed at temperatures as low as 1200 °C for the c-BN–glass composites. In contrast, no transformation was found at temperatures up to 1575 °C when no liquid oxide phase is present in the composite. The results were compared with previous studies concerning the c-BN stability and the c-BN phase diagram.

  14. Preparation and characterization of squeeze cast-Al–Si piston alloy reinforced by Ni and nano-Al2O3 particles

    Directory of Open Access Journals (Sweden)

    Hashem F. El-Labban

    2016-07-01

    Full Text Available Al–Si base composites reinforced with different mixtures of Ni and nano-Al2O3 particles have been fabricated by squeeze casting and their metallurgical and mechanical characterization has been investigated. A mixture of Ni and nano-Al2O3 particles of different ratios was added to the melted Al–Si piston alloy at 700 °C and stirred under pressure. After the Al-base-nano-composites were fabricated by squeeze casting, the microstructure and the particle distribution inside the matrix have been investigated using optical and scanning electron microscopes. Moreover, the hardness and the tensile properties of the resulted Al-base-nano-composites were evaluated at room temperature by using Vickers hardness and universal tensile testers, respectively. As a result, in most cases, it was found that the matrix showed a fine eutectic structure of short silicon constituent which appeared in the form of islands in the α-phase around some added particle agglomerations of the nano-composite structures. The tendency of this structure formation increases with the increase of Ni particle addition. As the ratio of the added particles increases, the tendency of these particles to be agglomerated also increases. Regarding the tensile properties of the fabricated Al-base-nano-composites, ultimate tensile strength is increased by adding the Ni and nano-Al2O3 particles up to 10 and 2 wt.%, respectively. Moreover, the ductility of the fabricated composites is significantly improved by increasing the added Ni particles. The composite material reinforced with 5 wt.% Ni and 2 wt.% nano-Al2O3 particles showed superior ultimate tensile strength and good ductility compared with any other added particles in this investigation.

  15. Characterization of Conventional and High-Translucency Y-TZP Dental Ceramics Submitted to Air Abrasion.

    Science.gov (United States)

    Tostes, Bhenya Ottoni; Guimarães, Renato Bastos; Noronha-Filho, Jaime Dutra; Botelho, Glauco Dos Santos; Guimarães, José Guilherme Antunes; Silva, Eduardo Moreira da

    2017-01-01

    This study evaluated the effect of air-abrasion on t®m phase transformation, roughness, topography and the elemental composition of three Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) dental ceramics: two conventional (Lava Frame and IPS ZirCad) and one with high-translucency (Lava Plus). Plates obtained from sintered blocks of each ceramic were divided into four groups: AS (as-sintered); 30 (air-abrasion with 30 mm Si-coated Al2O3 particles); 50 (air-abrasion with 50 mm Al2O3 particles) and 150 (air-abrasion with 150 mm Al2O3 particles). After the treatments, the plates were submitted to X-ray diffractometry; 3-D profilometry and SEM/EDS. The AS surfaces were composed of Zr and t phases. All treatments produced t®m phase transformation in the ceramics. The diameter of air-abrasion particles influenced the roughness (150>50>30>AS) and the topography. SEM analysis showed that the three treatments produced groove-shaped microretentions on the ceramic surfaces, which increased with the diameter of air-abrasion particles. EDS showed a decrease in Zr content along with the emergence of O and Al elements after air-abrasion. Presence of Si was also detected on the plates air-abraded with 30 mm Si-coated Al2O3 particles. It was concluded that irrespective of the type and diameter of the particles, air-abrasion produced t®m phase transformation, increased the roughness and changed the elemental composition of the three Y-TZP dental ceramics. Lava Plus also behaved similarly to the conventional Y-TZP ceramics, indicating that this high translucency ceramic could be more suitable to build monolithic ceramic restorations in the aesthetic restorative dentistry field.

  16. Processing and characterization of ceramic superconductor/polymer composites

    International Nuclear Information System (INIS)

    Kander, R.G.; Namboodri, S.L.

    1993-01-01

    One way to more easily process a brittle high-temperature ceramic superconductor into a useful structure is to combine it with a polymer to form a composite material. Processing of polymer-based composites into complex shapes is well established and relatively easy when compared with traditional ceramic processing unit operations. In addition, incorporating a ceramic superconductor into a polymer matrix can improve mechanical performance as compared with a monolithic ceramic. Finally, because ceramic superconductors are susceptible to attack by moisture, a polymer-based composite structure can also provide protection from deleterious environmental effects. This paper focuses on the processing and subsequent characterization of ceramic superconductor/polymer composites designed primarily for electromagnetic shielding and diamagnetic applications. YBa 2 Cu 3 O 7-x [YBCO] ceramic superconductor is combined with poly(methyl methacrylate) [PMMA] to form novel composite structures. Composite structures have been molded with both a discontinuous superconducting phase (i.e., ceramic particulate reinforced polymers) and with a continuous superconducting phase (i.e., polymer infiltrated porous ceramics). Characterization of these composite structures includes the determination of diamagnetic strength, electromagnetic shielding effectiveness, mechanical performance, and environmental resistance. The goal of this program is to produce a composite structure with increased mechanical integrity and environmental resistance at liquid nitrogen temperatures without compromising the electromagnetic shielding and diamagnetic properties of the superconducting phase. Composites structures of this type are potentially useful in numerous magnetic applications including electromagnetic shielding, magnetic sensors, energy storage, magnetic levitation, and motor windings

  17. Nanofunctionalized zirconia and barium sulfate particles as bone cement additives

    Directory of Open Access Journals (Sweden)

    Riaz Gillani

    2009-12-01

    Full Text Available Riaz Gillani1, Batur Ercan1, Alex Qiao3, Thomas J Webster1,21Division of Engineering, 2Department of Orthopaedics, Brown University, Providence, RI, USA; 3G3 Technology Innovations, LLC, Pittsford, NY, USAAbstract: Zirconia (ZrO2 and barium sulfate (BaSO4 particles were introduced into a methyl methacrylate monomer (MMA solution with polymethyl methacrylate (PMMA beads during polymerization to develop the following novel bone cements: bone cements with unfunctionalized ZrO2 micron particles, bone cements with unfunctionalized ZrO2 nanoparticles, bone cements with ZrO2 nanoparticles functionalized with 3-(trimethoxysilylpropyl methacrylate (TMS, bone cements with unfunctionalized BaSO4 micron particles, bone cements with unfunctionalized BaSO4 nanoparticles, and bone cements with BaSO4 nanoparticles functionalized with TMS. Results demonstrated that in vitro osteoblast (bone-forming cell densities were greater on bone cements containing BaSO4 ceramic particles after four hours compared to control unmodified bone cements. Osteoblast densities were also greater on bone cements containing all of the ceramic particles after 24 hours compared to unmodified bone cements, particularly those bone cements containing nanofunctionalized ceramic particles. Bone cements containing ceramic particles demonstrated significantly altered mechanical properties; specifically, under tensile loading, plain bone cements and bone cements containing unfunctionalized ceramic particles exhibited brittle failure modes whereas bone cements containing nanofunctionalized ceramic particles exhibited plastic failure modes. Finally, all bone cements containing ceramic particles possessed greater radio-opacity than unmodified bone cements. In summary, the results of this study demonstrated a positive impact on the properties of traditional bone cements for orthopedic applications with the addition of unfunctionalized and TMS functionalized ceramic nanoparticles

  18. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    International Nuclear Information System (INIS)

    Chen, Y.L.; Liu, B.; Hwang, K.C.; Chen, Y.L.; Huang, Y.

    2011-01-01

    Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT-) reinforced hard matrix composites is carried out on the basis of shear-lag theory and fracture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  19. Thermal stability of segmented polyurethane elastomers reinforced by clay particles

    Directory of Open Access Journals (Sweden)

    Pavličević Jelena

    2009-01-01

    Full Text Available The aim of this work was to determine the influence of clay nanoparticles on thermal properties of segmented polyurethanes based on hexamethylene- diisocyanate, aliphatic polycarbonate diol and 1,4-butanediol as chain extender. The organically modified particles of montmorillonite and bentonite were used as reinforcing fillers. The structure of elastomeric materials was varied either by diol type or chain extender content. The ratio of OH groups from diol and chain extender (R was either 1 or 10. Thermal properties of prepared materials were determined using modulated differential scanning calorimetry (MDSC. Thermal stability of obtained elastomers has been studied by simultaneously thermogravimetry coupled with DSC. The glass transition temperature, Tg, of soft segments for all investigated samples was about -33°C. On the basis of DTG results, it was concluded that obtained materials were very stable up to 300°C.

  20. Modelling of Tape Casting for Ceramic Applications

    DEFF Research Database (Denmark)

    Jabbari, Masoud

    was increased by improving the steady state model with a quasi-steady state analytical model. In order to control the most important process parameter, tape thickness, the two-doctor blade configuration was also modeled analytically. The model was developed to control the tape thickness based on the machine...... for magnetic refrigeration applications. Numerical models were developed to track the migration of the particles inside the ceramic slurry. The results showed the presence of some areas inside the ceramic in which the concentration of the particles is higher compared to other parts, creating the resulting...

  1. Metallized ceramic vacuum pipe for particle beams

    International Nuclear Information System (INIS)

    Butler, B.L.; Featherby, M.

    1990-01-01

    A ceramic vacuum chamber segment in the form of a long pipe of rectangular cross section has been assembled from standard shapes of alumina ceramic using glass bonding techniques. Prior to final glass bonding, the internal walls of the pipe are metallized using an electroplating technology. These advanced processes allow for precision patterning and conductivity control of surface conducting films. The ability to lay down both longitudinal and transverse conductor patterns separated by insulating layers of glass give the accelerator designer considerable freedom in tailoring longitudinal and transverse beam pipe impedances. Assembly techniques of these beam pipes are followed through two iterations of semi-scale pipe sections made using candidate materials and processes. These demonstrate the feasibility of the concepts and provide parts for electrical characterization and for further refinement of the approach. In a parallel effort, a variety of materials, joining processes and assembly procedures have been tried to assure flexibility and reliability in the construction of 10-meter long sections to any required specifications

  2. Physical and Mechanical Properties of LoVAR: A New Lightweight Particle-Reinforced Fe-36Ni Alloy

    Science.gov (United States)

    Stephenson, Timothy; Tricker, David; Tarrant, Andrew; Michel, Robert; Clune, Jason

    2015-01-01

    Fe-36Ni is an alloy of choice for low thermal expansion coefficient (CTE) for optical, instrument and electrical applications in particular where dimensional stability is critical. This paper outlines the development of a particle-reinforced Fe-36Ni alloy that offers reduced density and lower CTE compared to the matrix alloy. A summary of processing capability will be given relating the composition and microstructure to mechanical and physical properties.

  3. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    Directory of Open Access Journals (Sweden)

    Y. L. Chen

    2011-01-01

    Full Text Available Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT- reinforced hard matrix composites is carried out on the basis of shear-lag theory and facture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  4. Manufacturing of Porous Ceramic Preforms Based on Halloysite Nanotubes (Hnts

    Directory of Open Access Journals (Sweden)

    Kujawa M.

    2016-06-01

    Full Text Available The aim of this study was to determine the influence of manufacturing conditions on the structure and properties of porous halloysite preforms, which during pressure infiltration were soaked with a liquid alloy to obtain a metal matrix composite reinforced by ceramic, and also to find innovative possibilities for the application of mineral nanotubes obtained from halloysite. The method of manufacturing porous ceramic preforms (based on halloysite nanotubes as semi-finished products that are applicable to modern infiltrated metal matrix composites was shown. The ceramic preforms were manufactured by sintering of halloysite nanotubes (HNT, Natural Nano Company (USA, with the addition of pores and canals forming agent in the form of carbon fibres (Sigrafil C10 M250 UNS SGL Group, the Carbon Company. The resulting porous ceramic skeletons, suggest innovative application capabilities mineral nanotubes obtained from halloysite.

  5. Ceramics as nuclear reactor fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  6. Fiscal 1996 report on the R and D result of industrial science and technology. R and D synergy ceramics (R and D on synergy ceramics); 1996 nendo sangyo kagaku gijutsu kenkyu kaihatsu seika hokokusho. Synergy ceramics no kenkyu kaihatsu (synergy ceramics no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper summarizes the general survey mainly conducted by FCRA (Fine Ceramics Research Association) in fiscal 1996, and the joint research results with some universities, from some R and D on synergy ceramics. Silicon nitride based ceramics expressed the same high thermal conductivity as metal by seed crystal addition, grain growth control and orientation control of sheet lamination. For its practical use, study was made on control factors of material, formation and sintering. Ca2Y2Si2O9 single crystal was prepared by float-zone method to determine its crystal structure. No volume change due to high-temperature phase transition as thermal expansion was found. In carbothermal reduction- nitridation of SiO2, addition of Si3N4 seed powder increased a reaction rate and formed uniform particles with an isotropic shape. An average particle size was dependent on the size and number of fine particles in seed powder. Addition of both Si3N4 and Fe compound could change a particle shape from a spherical grain to an elongated grain. A spherical Fe-Si metal grain was found on the tip of an elongated grain. 66 refs., 73 figs., 13 tabs.

  7. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies have received a lot of attention in recent years for their use in multiple materials such as metals, ceramics, and polymers. The aim of this review article is to analyze the technology of fiber-reinforced polymers and its implementation with additive...... manufacturing. This article reviews recent developments, ideas, and state-of-the-art technologies in this field. Moreover, it gives an overview of the materials currently available for fiber-reinforced material technology....

  8. Impact of Particle Size of Ceramic Granule Blends on Mechanical Strength and Porosity of 3D Printed Scaffolds

    Directory of Open Access Journals (Sweden)

    Sebastian Spath

    2015-07-01

    Full Text Available 3D printing is a promising method for the fabrication of scaffolds in the field of bone tissue engineering. To date, the mechanical strength of 3D printed ceramic scaffolds is not sufficient for a variety of applications in the reconstructive surgery. Mechanical strength is directly in relation with the porosity of the 3D printed scaffolds. The porosity is directly influenced by particle size and particle-size distribution of the raw material. To investigate this impact, a hydroxyapatite granule blend with a wide particle size distribution was fractioned by sieving. The specific fractions and bimodal mixtures of the sieved granule blend were used to 3D print specimens. It has been shown that an optimized arrangement of fractions with large and small particles can provide 3D printed specimens with good mechanical strength due to a higher packing density. An increase of mechanical strength can possibly expand the application area of 3D printed hydroxyapatite scaffolds.

  9. Cryo-SEM studies of latex/ceramic nanoparticle coating microstructure development.

    Science.gov (United States)

    Luo, Hui; Scriven, L E; Francis, Lorraine F

    2007-12-15

    Cryogenic scanning electron microscopy (cryo-SEM) was used to investigate microstructure development of composite coatings prepared from dispersions of antimony-doped tin oxide (ATO) nanoparticles (approximately 30 nm) or indium tin oxide (ITO) nanoparticles (approximately 40 nm) and latex particles (polydisperse, D(v): approximately 300 nm). Cryo-SEM images of ATO/latex dispersions as-frozen show small clusters of ATO and individual latex particles homogeneously distribute in a frozen water matrix. In contrast, cryo-SEM images of ITO/latex dispersions as-frozen show ITO particles adsorb onto latex particle surfaces. Electrostatic repulsion between negatively charged ATO and negatively charged latex particles stabilizes the ATO/latex dispersion, whereas in ITO/latex dispersion, positively charged ITO particles are attracted onto surfaces of negatively charged latex particles. These results are consistent with calculations of interaction potentials from past research. Cryo-SEM images of frozen and fractured coatings reveal that both ceramic nanoparticles and latex become more concentrated as drying proceeds; larger latex particles consolidate with ceramic nanoparticles in the interstitial spaces. With more drying, compaction flattens the latex-latex particle contacts and shrinks the voids between them. Thus, ceramic nanoparticles are forced to pack closely in the interstitial spaces, forming an interconnected network. Finally, latex particles partially coalesce at their flattened contacts, thereby yielding a coherent coating. The research reveals how nanoparticles segregate and interconnect among latex particles during drying.

  10. Effect of a nano-sized TiC particle addition on the flow-assisted corrosion resistance of SA 106B carbon steel

    Science.gov (United States)

    Park, Jin-Ju; Park, Eun-Kwang; Lee, Gyoung-Ja; Rhee, Chang-Kyu; Lee, Min-Ku

    2017-09-01

    Carbon steel with dispersed nano-sized TiC ceramic particles was fabricated by the ex-situ introduction of the particles into the melt, with the flow-assisted corrosion (FAC) resistance then investigated in the presence and absence of TiC nanoparticles using a once-through type of FAC loop test. From the potentiodynamic polarization curves, the current density at any given anodic potential was decreased and the open-circuit potential was increased by the addition of TiC nanoparticles. In addition, when the nano-sized TiC particles were added, the FAC rate was 1.38 times lower than that of carbon steel without TiC nanoparticles, indicating an improvement of the FAC resistance due to the homogeneous distribution of the TiC reinforcing nanoparticles.

  11. Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing

    Directory of Open Access Journals (Sweden)

    Sandeep Rathee

    2017-04-01

    Full Text Available Aluminium matrix surface composites are gaining alluring role especially in aerospace, defence, and marine industries. Friction stir processing (FSP is a promising novel solid state technique for surface composites fabrication. In this study, AA6061/SiC surface composites were fabricated and the effect of tool plunge depth on pattern of reinforcement particles dispersion in metal matrix was investigated. Six varying tool plunge depths were chosen at constant levels of shoulder diameter and tool tilt angle to observe the exclusive effect of plunge variation. Process parameters chosen for the experimentation are speed of rotation, travel speed and tool tilt angle which were taken as 1400 rpm, 40 mm/min, and 2.5°respectively. Macro and the microstructural study were performed using stereo zoom and optical microscope respectively. Results reflected that lower plunge depth levels lead to insufficient heat generation and cavity formation towards the stir zone center. On the other hand, higher levels of plunge depth result in ejection of reinforcement particles and even sticking of material to tool shoulder. Thus, an optimal plunge depth is needed in developing defect free surface composites.

  12. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Field assisted sintering of refractory carbide ceramics and fiber reinforced ceramic matrix composites

    Science.gov (United States)

    Gephart, Sean

    materials. While FAST sintered materials showed higher average values, in general they also showed consistently larger variation in the scattered data and consequently larger standard deviation for the resulting material properties. In addition, dynamic impact testing (V50 test) was conducted on the resulting materials and it was determined that there was no discernable correlation between observed mechanical properties of the ceramic materials and the resulting dynamic testing. Another study was conducted on the sintering of SiC and carbon fiber reinforced SiC ceramic matrix composites (CMC) using FAST. There has been much interest recently in fabricating high strength, low porosity SiC CMC.s for high temperature structural applications, but the current methods of production, namely chemical vapor infiltration (CVI), melt infiltration (MI), and polymer infiltration and pyrolysis (PIP), are considered time consuming and involve material related shortcomings associated with their respective methodologies. In this study, SiC CMC.s were produced using the 25 ton laboratory unit with a target sample size of 40 mm diameter and 3 mm thickness, as well as on the larger 250 ton industrial FAST system targeting a sample size of 101.6 x 101.6 x 3 mm3 to investigate issues associated with scaling. Several sintering conditions were explored including: pressure of 35-65 MPa, temperature of 1700-1900°C, and heating rates between 50-400°C/min. The SiC fibers used in this study were coated using chemical vapor deposition (CVD) with boron nitride (BN) and pyrolytic carbon to act as a barrier layer and preserve the integrity of the fibers during sintering. Then the barrier coating was coated by an outer layer of SiC to enhance the bonding between the fibers and the SiC matrix. Microstructures of the sintered samples were examined by FE-SEM. Mechanical properties including flexural strength-deflection and stress-strain were characterized using 4-point bend testing. Tensile testing was

  14. Effect of the bur grit size on the flexural strength of a glass-ceramic

    Directory of Open Access Journals (Sweden)

    P. P. Kist

    Full Text Available Abstract The purpose of the present study was to determine the biaxial flexural strength (BFS of a CAD/CAM leucite reinforced glass-ceramic ground by diamond burs of different grit sizes and the influence of surface roughness on the BFS. For this, 104 plates were obtained from CAD/CAM ceramic blocks and divided into 4 groups (n = 26, according to bur grit size: extra-fine, fine, medium and coarse. Roughness parameters (Ra, RyMax were measured, and plates were kept dry for 7 days. The flexural test was carried out and BFS was calculated. Ra, RyMax and BFS data were subjected to analysis of variance and post-hoc test. Weibull analysis was used to compare characteristic strength and Weibull modulus. Regression analysis was performed for BFS vs. Ra and RyMax. When burs with coarse grit were used, higher surface roughness values were found, causing a negative effect on the ceramic BFS (117 MPa for extra-fine, and 83 MPa for coarse. Correlation (r between surface roughness and BFS was 0.78 for RyMax and 0.73 for Ra. Increases in diamond grit size have a significant negative effect on the BFS of leucite-reinforced glass-ceramics, suggesting that grinding of sintered glass-ceramic should be performed using burs with the finest grit possible in order to minimize internal surface flaws and maximize flexural strength.

  15. Reinforcement of Conducting Silver-based Materials

    Directory of Open Access Journals (Sweden)

    Heike JUNG

    2014-09-01

    Full Text Available Silver is a well-known material in the field of contact materials because of its high electrical and thermal conductivity. However, due to its bad mechanical and switching properties, silver alloys or reinforcements of the ductile silver matrix are required. Different reinforcements, e. g. tungsten, tungsten carbide, nickel, cadmium oxide or tin oxide, are used in different sectors of switches. To reach an optimal distribution of these reinforcements, various manufacturing techniques (e. g. powder blending, preform infiltration, wet-chemical methods, internal oxidation are being used for the production of these contact materials. Each of these manufacturing routes offers different advantages and disadvantages. The mechanical alloying process displays a successful and efficient method to produce particle-reinforced metal-matrix composite powders. This contribution presents the obtained fine disperse microstructure of tungsten-particle-reinforced silver composite powders produced by the mechanical alloying process and displays this technique as possible route to provide feedstock powders for subsequent consolidation processes. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4889

  16. Advantages and disadvantages of ceramic on ceramic total hip arthroplasty: a review.

    Science.gov (United States)

    Gallo, Jiri; Goodman, Stuart Barry; Lostak, Jiri; Janout, Martin

    2012-09-01

    Ceramic on ceramic (COC) total hip arthroplasty (THA) was developed to reduce wear debris and accordingly, the occurrence of osteolysis and aseptic loosening especially in younger patients. Based on the excellent tribological behavior of current COC bearings and the relatively low biological activity of ceramic particles, significant improvement in survivorship of these implants is expected. We used manual search to identify all relevant studies reporting clinical data on COC THAs in PubMed. The objective was to determine whether current COC THA offers a better clinical outcome and survivorship than non-COC THA. Studies with early generation ceramic bearings yielded 68% to 84% mean survivorship at 20 years follow-up which is comparable with the survivorship of non-COC THAs. Studies on current ceramic bearings report a 10-year revision-free interval of 92% to 99%. These outcomes are comparable to the survivorship of the best non-COC THAs. However, there are still concerns regarding fracture of sandwich ceramic liners, squeaking, and impingement of the femoral neck on the rim of the ceramic liner leading to chipping, especially in younger and physically active patients. Current COC THA leads to equivalent but not improved survivorship at 10 years follow-up in comparison to the best non-COC THA. Based on this review, we recommend that surgeons weigh the potential advantages and disadvantages of current COC THA in comparison to other bearing surfaces when considering young very active patients who are candidates for THA.

  17. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method will permit the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent emphasis has been given to technology transfer activities, and several collaborative research efforts are in progress. Investigations are focusing on applying the joining method to sintered {alpha}-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  18. ZnO core spike particles and nano-networks and their wide range of applications

    Science.gov (United States)

    Wille, S.; Mishra, Y. K.; Gedamu, D.; Kaps, S.; Jin, X.; Koschine, T.; Bathnagar, A.; Adelung, R.

    2011-05-01

    In our approach we are producing a polymer composite material with ZnO core spike particles as concave fillers. The core spike particles are synthesized by a high throughput method. Using PDMS (Polydimethylsiloxane) as a matrix material the core spike particles achieve not only a high mechanical reinforcement but also influence other material properties in a very interesting way, making such a composite very interesting for a wide range of applications. In a very similar synthesis route a nanoscopic ZnO-network is produced. As a ceramic this network can withstand high temperatures like 1300 K. In addition this material is quite elastic. To find a material with these two properties is a really difficult task, as polymers tend to decompose already at lower temperatures and metals melt. Especially under ambient conditions, often oxygen creates a problem for metals at these temperatures. If this material is at the same time a semiconductor, it has a high potential as a multifunctional material. Ceramic or classical semiconductors like III-V or IIVI type are high temperature stable, but typically brittle. This is different on the nanoscale. Even semiconductor wires like silicon with a very small diameter do not easily built up enough stress that leads to a failure while being bent, because in a first order approximation the maximum stress of a fiber scales with its diameter.

  19. The development of Zirconia and Copper toughened Alumina ceramic insert

    Science.gov (United States)

    Amalina Sabuan, Nur; Zolkafli, Nurfatini; Mebrahitom, A.; Azhari, Azmir; Mamat, Othman

    2018-04-01

    Ceramic cutting tools have been utilized in industry for over a century for its productivity and efficiency in machine tools and cutting tool material. However, due to the brittleness property the application has been limited. In order to manufacture high strength ceramic cutting tools, there is a need for suitable reinforcement to improve its toughness. In this case, copper (Cu) and zirconia (ZrO2) powders were added to investigate the hardness and physical properties of the developed composite insert. A uniaxial pre-forming process of the mix powder was done prior to densification by sintering at 1000 and 1300°C. The effect of the composition of the reinforcement on the hardness, density, shrinkage and microstructure of the inserts was investigated. It was found that an optimum density of 3.26 % and hardness 1385HV was obtained for composite of 10wt % zirconia and 10wt% copper at temperature 1000 °C.

  20. Processing of pure titanium containing titanium-based reinforcing ceramics additives using spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Mondiu Olayinka DUROWOJU

    2017-06-01

    Full Text Available The densification behaviour, microstructural changes and hardness characteristics during spark plasma sintering of CP-Ti reinforced with TiC, TiN, TiCN and TiB2 were investigated. Commercially pure Ti powders were dry mixed with varied amounts (2.5 and 5 wt. % of the ceramic additives using a T2F Turbula mixer for 5 h and at a speed of 49 rpm. The blended composite powders were then sintered using spark plasma sintering system (model HHPD-25 from FCT Germany at a heating rate of 100oC min-1, dwell time of 5 min and sintering temperature of 950ºC. The sintering of CP-Ti was used as a base study to select the proper spark plasma sintering temperature for full density. Densification was monitored through analysis of the recorded punch displacement and the measured density of the sintered samples using Archimedes method. High densities ranging from 97.8% for 5% TiB2 addition to 99.6% for 5% TiCN addition were achieved at a relatively low temperature of 950°C. Microstructural analyses show a uniform distribution of the additives and finer structure showing their inhibitive effect on grain growth. An improved hardness was observed in all the cases with highest values obtained with TiCN as a result of the combined effect of TiC and TiN. A change in the fracture mode from trans granular to intergranular was also observed.

  1. The analysis of composite properties reinforced with particles from palm oil industry waste produced by casting methods

    Science.gov (United States)

    Tugiman; Ariani, F.; Taher, F.; Hasibuan, M. S.; Suprianto

    2017-12-01

    Palm oil processing industries are very attractive because they offer plenty products with high economic value. The CPO factory processes not only produces crude palm oil but also generates fly ash (FA) particles waste in its final process. The purpose of this investigation to analyze and increase the benefits of particles as reinforcement materials for fabricating aluminum matrix composites (AMC’s) by different casting route. Stirring, centrifugal and squeeze casting method was conducted in this study. Further, the chemical composition of FA particles, densities and mechanical properties have been analyzed. The characteristics of composite material were investigated using an Optical microscope, scanning electron microscope (SEM), hardness (Brinell), impact strength (Charpy). The pin on disc method was used to measure the wear rate. The results show that SiO2, Fe2O3, and Al2O3 are the main compounds of fly ash particles. These particles enhanced the hardness and reduce wear resistance of aluminum matrix composites. The squeeze method gives better results than stir and centrifugal casting.

  2. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    Science.gov (United States)

    Ebrahimpour, Omid

    In this work, mullite-bonded porous silicon carbide (SiC) ceramics were prepared via a reaction bonding technique with the assistance of a sol-gel technique or in-situ polymerization as well as a combination of these techniques. In a typical procedure, SiC particles were first coated by alumina using calcined powder and alumina sol via a sol-gel technique followed by drying and passing through a screen. Subsequently, they were coated with the desired amount of polyethylene via an in-situ polymerization technique in a slurry phase reactor using a Ziegler-Natta catalyst. Afterward, the coated powders were dried again and passed through a screen before being pressed into a rectangular mold to make a green body. During the heating process, the polyethylene was burnt out to form pores at a temperature of about 500°C. Increasing the temperature above 800°C led to the partial oxidation of SiC particles to silica. At higher temperatures (above 1400°C) derived silica reacted with alumina to form mullite, which bonds SiC particles together. The porous SiC specimens were characterized with various techniques. The first part of the project was devoted to investigating the oxidation of SiC particles using a Thermogravimetric analysis (TGA) apparatus. The effects of particle size (micro and nano) and oxidation temperature (910°C--1010°C) as well as the initial mass of SiC particles in TGA on the oxidation behaviour of SiC powders were evaluated. To illustrate the oxidation rate of SiC in the packed bed state, a new kinetic model, which takes into account all of the diffusion steps (bulk, inter and intra particle diffusion) and surface oxidation rate, was proposed. Furthermore, the oxidation of SiC particles was analyzed by the X-ray Diffraction (XRD) technique. The effect of different alumina sources (calcined Al2O 3, alumina sol or a combination of the two) on the mechanical, physical, and crystalline structure of mullite-bonded porous SiC ceramics was studied in the

  3. Polymer derived non-oxide ceramics modified with late transition metals.

    Science.gov (United States)

    Zaheer, Muhammad; Schmalz, Thomas; Motz, Günter; Kempe, Rhett

    2012-08-07

    This tutorial review highlights the methods for the preparation of metal modified precursor derived ceramics (PDCs) and concentrates on the rare non-oxide systems enhanced with late transition metals. In addition to the main synthetic strategies for modified SiC and SiCN ceramics, an overview of the morphologies, structures and compositions of both, ceramic materials and metal (nano) particles, is presented. Potential magnetic and catalytic applications have been discussed for the so manufactured metal containing non-oxide ceramics.

  4. Reliability Estimation for Single-unit Ceramic Crown Restorations

    Science.gov (United States)

    Lekesiz, H.

    2014-01-01

    The objective of this study was to evaluate the potential of a survival prediction method for the assessment of ceramic dental restorations. For this purpose, fast-fracture and fatigue reliabilities for 2 bilayer (metal ceramic alloy core veneered with fluorapatite leucite glass-ceramic, d.Sign/d.Sign-67, by Ivoclar; glass-infiltrated alumina core veneered with feldspathic porcelain, VM7/In-Ceram Alumina, by Vita) and 3 monolithic (leucite-reinforced glass-ceramic, Empress, and ProCAD, by Ivoclar; lithium-disilicate glass-ceramic, Empress 2, by Ivoclar) single posterior crown restorations were predicted, and fatigue predictions were compared with the long-term clinical data presented in the literature. Both perfectly bonded and completely debonded cases were analyzed for evaluation of the influence of the adhesive/restoration bonding quality on estimations. Material constants and stress distributions required for predictions were calculated from biaxial tests and finite element analysis, respectively. Based on the predictions, In-Ceram Alumina presents the best fast-fracture resistance, and ProCAD presents a comparable resistance for perfect bonding; however, ProCAD shows a significant reduction of resistance in case of complete debonding. Nevertheless, it is still better than Empress and comparable with Empress 2. In-Ceram Alumina and d.Sign have the highest long-term reliability, with almost 100% survivability even after 10 years. When compared with clinical failure rates reported in the literature, predictions show a promising match with clinical data, and this indicates the soundness of the settings used in the proposed predictions. PMID:25048249

  5. High-temperature mechanical properties of a uniaxially reinforced zircon-silicon carbide composite

    International Nuclear Information System (INIS)

    Singh, R.N.

    1990-01-01

    This paper reports that mechanical properties of a monolithic zircon ceramic and zircon-matrix composites uniaxially reinforced with either uncoated or BN-coated silicon carbide monofilaments were measured in flexure between 25 degrees and 1477 degrees C. Monolithic zircon ceramics were weak and exhibited a brittle failure up to abut 1300 degrees C. An increasing amount of the plastic deformation was observed before failure above about 1300 degrees C. In contrast, composites reinforced with either uncoated or BN-coated Sic filaments were stronger and tougher than the monolithic zircon at all test temperatures between 25 degrees and 1477 degrees. The ultimate strength and work-of-fracture of composite samples decreased with increasing temperature. A transgranular matrix fracture was shown by the monolithic and composite samples tested up to about 1200 degrees C, whereas an increasing amount of the intergranular matrix fracture was displayed above 1200 degrees C

  6. Comparison of deflection forces of esthetic archwires combined with ceramic brackets*

    Science.gov (United States)

    MATIAS, Murilo; de FREITAS, Marcos Roberto; de FREITAS, Karina Maria Salvatore; JANSON, Guilherme; HIGA, Rodrigo Hitoshi; FRANCISCONI, Manoela Fávaro

    2018-01-01

    Abstract Coated archwires and ceramic brackets have been developed to improve facial esthetics during orthodontic treatment. However, their mechanical behavior has been shown to be different from metallic archwires and brackets. Therefore, the aim of this study was to compare the deflection forces in coated nickel-titanium (NiTi) and esthetic archwires combined with ceramic brackets. Material and Methods Non-coated NiTi (NC), rhodium coated NiTi (RC), teflon coated NiTi (TC), epoxy coated NiTi (EC), fiber-reinforced polymer (FRP), and the three different conventional brackets metal-insert polycrystalline ceramic (MI-PC), polycrystalline ceramic (PC) and monocrystalline ceramic (MC) were used. The specimens were set up on a clinical simulation device and evaluated in a Universal Testing Machine (Instron). An acrylic device, representative of the right maxillary central incisor was buccolingually activated and the unloading forces generated were recorded at 3, 2, 1 and 0.5 mm. The speed of the testing machine was 2 mm/min. ANOVA and Tukey tests were used to compare the different archwires and brackets. Results The brackets presented the following decreasing force ranking: monocrystalline, polycrystalline and polycrystalline metal-insert. The decreasing force ranking of the archwires was: rhodium coated NiTi (RC), non-coated NiTi (NC), teflon coated NiTi (TC), epoxy coated NiTi (EC) and fiber-reinforced polymer (FRP). At 3 mm of unloading the FRP archwire had a plastic deformation and produced an extremely low force in 2; 1 and 0.5 mm of unloading. Conclusion Combinations of the evaluated archwires and brackets will produce a force ranking proportional to the combination of their individual force rankings. PMID:29451650

  7. Comparison of deflection forces of esthetic archwires combined with ceramic brackets.

    Science.gov (United States)

    Matias, Murilo; Freitas, Marcos Roberto de; Freitas, Karina Maria Salvatore de; Janson, Guilherme; Higa, Rodrigo Hitoshi; Francisconi, Manoela Fávaro

    2018-01-01

    Coated archwires and ceramic brackets have been developed to improve facial esthetics during orthodontic treatment. However, their mechanical behavior has been shown to be different from metallic archwires and brackets. Therefore, the aim of this study was to compare the deflection forces in coated nickel-titanium (NiTi) and esthetic archwires combined with ceramic brackets. Material and Methods Non-coated NiTi (NC), rhodium coated NiTi (RC), teflon coated NiTi (TC), epoxy coated NiTi (EC), fiber-reinforced polymer (FRP), and the three different conventional brackets metal-insert polycrystalline ceramic (MI-PC), polycrystalline ceramic (PC) and monocrystalline ceramic (MC) were used. The specimens were set up on a clinical simulation device and evaluated in a Universal Testing Machine (Instron). An acrylic device, representative of the right maxillary central incisor was buccolingually activated and the unloading forces generated were recorded at 3, 2, 1 and 0.5 mm. The speed of the testing machine was 2 mm/min. ANOVA and Tukey tests were used to compare the different archwires and brackets. Results The brackets presented the following decreasing force ranking: monocrystalline, polycrystalline and polycrystalline metal-insert. The decreasing force ranking of the archwires was: rhodium coated NiTi (RC), non-coated NiTi (NC), teflon coated NiTi (TC), epoxy coated NiTi (EC) and fiber-reinforced polymer (FRP). At 3 mm of unloading the FRP archwire had a plastic deformation and produced an extremely low force in 2; 1 and 0.5 mm of unloading. Conclusion Combinations of the evaluated archwires and brackets will produce a force ranking proportional to the combination of their individual force rankings.

  8. Deformation of a dental ceramic following adhesive cementation.

    LENUS (Irish Health Repository)

    2010-01-01

    Stress-induced changes imparted in a \\'dentin-bonded-crown\\' material during sintering, annealing, pre-cementation surface modification, and resin coating have been visualized by profilometry. The hypothesis tested was that operative techniques modify the stressing pattern throughout the material thickness. We polished the upper surfaces of 10 ceramic discs to remove surface imperfections before using a contact profilometer (40-nm resolution) to measure the \\'flatness\\'. Discs were re-profiled after annealing and after alumina particle air-abrasion and resin-coating of the \\'fit\\' surface. Polished surfaces were convex, with a mean deflection of 8.4 + or - 1.5 microm. Mean deflection was significantly reduced (P = 0.029) following alumina particle air-abrasion and increased (P < 0.001) on resin-coating. Polishing induced a tensile stress state, resulting in surface convexity. Alumina particle air-abrasion reduced the relative tensile stress state of the contralateral polished surface. Resin-polymerization generated compression within the resin-ceramic \\'hybrid layer\\' and tension in the polished surface and is likely to contribute to the strengthening of ceramics by resin-based cements.

  9. Shock compression profiles in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.E.; Moody, R.L.

    1996-03-01

    An investigation of the shock compression properties of high-strength ceramics has been performed using controlled planar impact techniques. In a typical experimental configuration, a ceramic target disc is held stationary, and it is struck by plates of either a similar ceramic or by plates of a well-characterized metal. All tests were performed using either a single-stage propellant gun or a two-stage light-gas gun. Particle velocity histories were measured with laser velocity interferometry (VISAR) at the interface between the back of the target ceramic and a calibrated VISAR window material. Peak impact stresses achieved in these experiments range from about 3 to 70 GPa. Ceramics tested under shock impact loading include: Al{sub 2}O{sub 3}, AlN, B{sub 4}C, SiC, Si{sub 3}N{sub 4}, TiB{sub 2}, WC and ZrO{sub 2}. This report compiles the VISAR wave profiles and experimental impact parameters within a database-useful for response model development, computational model validation studies, and independent assessment of the physics of dynamic deformation on high-strength, brittle solids.

  10. DEVELOPMENT OF WEAR RESISTANT COATINGS FORMED BY PLASMA SPRAYING OF ALLOY Ni–Fe–Cr–Si–B–C SYSTEM REINFORCED WITH CERAMICS Al2O3

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available . Creating a functionally oriented, including nanostructured, anti-friction materials and coatings with qualitatively new complex of service properties is an important scientific and practical problem. In particular, for the cable industry it is urgent task of ensuring the high performance properties of fast deteriorating stretching and supporting rollers. Working surfaces of these parts operate under practically dry friction conditions with constantly updated material of stretching wire. Plasma spraying is one of the widely used methods of surface engineering to create wear resistant coatings and which is characterized with process flexibility and the ability to create coatings using various materials and alloys including composite ones. The installation UPU-3D with the PP-25 plasma torch was used for plasma spraying. The thickness of the sprayed layer was 0.8–1.1 mm. As a material for the deposition of composite coatings a powder mixture of self-fluxing nickel alloy PG-HN80SR4 (system Ni–Fe–Cr–Si–B–C and a neutral oxide ceramics Al2O3 was used. The amount of ceramics varied from 15 to 33 %. This ceramic oxide was selected due to the desire to reduce coatings’ costs while providing high durability. Carried out phase and microstructural studies have shown when ceramics was added in an amount more than 20 % a formation of conglomerates formed by not melted alumina particles often was observed. These conglomerates serve as crack formation centers in the coating. The phase composition of the coatings practically does not depend on the content of ceramics compounds. Tribological tests have shown that the best results were obtained when the content of the oxide ceramic in the coating was in the range from 15 to 20 %.

  11. Lubrication of ceramics in ring/cylinder applications

    International Nuclear Information System (INIS)

    Gaydos, P.A.; Dufrane, K.F.

    1989-01-01

    In support of efforts to apply ceramics to advanced heat engines, a study was performed of the wear mechanisms of ceramics at the ring/cylinder interface. A laboratory apparatus was constructed to reproduce most of the conditions of an actual engine but used easily prepared ring and cylinder specimens to facilitate their fabrication. Plasma-sprayed coatings of Cr 2 O 3 and hypersonic flame-sprayed coatings of cobalt-bonded WC performed particularly well as ring coatings. Similar performance was obtained with these coatings operating against SiC, Si 3 N 4 , SiC whisker-reinforced Al 2 O 3 and Cr 2 O 2 coatings. The study demonstrated the critical need for lubrication and evaluated the performance of two available lubricants

  12. Modeling of solidification of MMC composites during gravity casting process

    Directory of Open Access Journals (Sweden)

    R. Zagórski

    2013-04-01

    Full Text Available The paper deals with computer simulation of gravity casting of the metal matrix composites reinforced with ceramics (MMC into sand mold. The subject of our interest is aluminum matrix composite (AlMMC reinforced with ceramic particles i.e. silicon carbide SiC and glass carbon Cg. The created model describes the process taking into account solidification and its influence on the distribution of reinforcement particles. The computer calculation has been carried out in 2D system with the use of Navier-Stokes equations using ANSYS FLUENT 13. The Volume of Fluid approach (VOF and enthalpy method have been used to model the air-fluid free surface (and also volume fraction of particular continuous phases and the solidification of the cast, respectively.

  13. Alumina reinforced tetragonal zirconia (TZP) composites. Final technical report, July 1, 1993--December 31, 1996

    International Nuclear Information System (INIS)

    Shetty, D.K.

    1997-01-01

    This final technical report summarizes the significant research results obtained during the period July 1, 1993 through December 31, 1996 in the DOE-supported research project entitled, open-quotes Alumina Reinforced Tetragonal Zirconia (TZP) Compositesclose quotes. The objective of the research was to develop high-strength and high-toughness ceramic composites by combining mechanisms of platelet, whisker or fiber reinforcement with transformation toughening. The approach used included reinforcement of Celia- or yttria-partially-stabilized zirconia (Ce-TZP or Y-TZP) with particulates, platelets, or continuous filaments of alumina

  14. Wear and creep of highly crosslinked polyethylene against cobalt chrome and ceramic femoral heads.

    Science.gov (United States)

    Galvin, A L; Jennings, L M; Tipper, J L; Ingham, E; Fisher, J

    2010-10-01

    The wear and creep characteristics of highly crosslinked ultrahigh-molecular-weight polyethylene (UHMWPE) articulating against large-diameter (36mm) ceramic and cobalt chrome femoral heads have been investigated in a physiological anatomical hip joint simulator for 10 million cycles. The crosslinked UHMWPE/ceramic combination showed higher volume deformation due to creep plus wear during the first 2 million cycles, and a steady-state wear rate 40 per cent lower than that of the crosslinked UHMWPE/cobalt chrome combination. Wear particles were isolated and characterized from the hip simulator lubricants. The wear particles were similar in size and morphology for both head materials. The particle isolation methodology used could not detect a statistically significant difference between the particles produced by the cobalt chrome and alumina ceramic femoral heads.

  15. Recycling and reuse of waste from electricity distribution networks as reinforcement agents in polymeric composites.

    Science.gov (United States)

    Zimmermann, Matheus V G; Zattera, Ademir J

    2013-07-01

    Of the waste generated from electricity distribution networks, wooden posts treated with chromated copper arsenate (CCA) and ceramic insulators make up the majority of the materials for which no effective recycling scheme has been developed. This study aims to recycle and reuse this waste as reinforcement elements in polymer composites and hybrid composites, promoting an ecologically and economically viable alternative for the disposal of this waste. The CCA wooden posts were cut, crushed and recycled via acid leaching using 0.2 and 0.4N H2SO4 in triplicate at 70°C and then washed and dried. The ceramic insulators were fragmented in a hydraulic press and separated by particle size using a vibrating sieve. The composites were mixed in a twin-screw extruder and injected into the test specimens, which were subjected to physical, mechanical, thermal and morphological characterization. The results indicate that the acid treatment most effective for removing heavy metals in the wood utilizes 0.4NH2SO4. However, the composites made from wood treated with 0.2NH2SO4 exhibited the highest mechanical properties of the composites, whereas the use of a ceramic insulator produces composites with better thermal stability and impact strength. This study is part of the research and development project of ANEEL (Agência Nacional de Energia Elétrica) and funded by CPFL (Companhia Paulista de Força e Luz). Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Microstructure and fracture analysis of fully ceramic microencapsulated fuel

    International Nuclear Information System (INIS)

    Lee, H. G.; Kim, D. J.; Park, J. Y.; Kim, W. J.; Lee, S. J.

    2015-01-01

    Nuclear fuel enhancing the accident tolerance is satisfied two parts. First, the performance has to be retained compared to the existing UO 2 nuclear fuel and zircaloy cladding system under the normal operation condition. Second, under the severe accident condition, the high temperature structural integrity has to be kept and the generation rate of hydrogen has to be reduced largely. FCM nuclear fuel is composed of tristructural isotropic(TRISO) fuel particle and SiC ceramic matrix. SiC ceramic matrix play an essential part in protecting fission product. In the FCM fuel concept, fission product is doubly protected by TRISO coating layer and SiC ceramic matrix compared to the current commercial UO 2 fuel system. SiC ceramic has excellent properties for fuel application. SiC ceramic has low neutron absorption cross-section, excellent irradiation resistivity and high thermal conductivity. Additionally, the relative thermal conductivity of the SiC ceramic as compared to UO 2 is quite good, reducing operational release of fission products form the fuel. TRISO coating layer which is deposited on UO 2 kernel is consists of PyC/SiC/PyC trialyer and buffer PyC layer. SiC matrix composite with TRISO particle was fabricated by hot pressing. 3 to 20 wt.% of sintering additives were added to investigate reaction between sintering additives and outer PyC layer of TRISO coating layer. The relative densities of all specimens show above 92%. The reaction between sintering additives and PyC is observed in most TRISO particles, the thickness of reactants shows about ten micrometers. The thermal shock resistance of SiC matrix composite was investigated

  17. A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics.

    Science.gov (United States)

    Askari, Ehsan; Flores, Paulo; Silva, Filipe

    2018-01-01

    The thermal residual stresses (TRSs) generated owing to the cooling down from the processing temperature in layered ceramic systems can lead to crack formation as well as influence the bending stress distribution and the strength of the structure. The purpose of this study is to minimize the thermal residual and bending stresses in dental ceramics to enhance their strength as well as to prevent the structure failure. Analytical parametric models are developed to evaluate thermal residual stresses in zirconia-porcelain multi-layered and graded discs and to simulate the piston-on-ring test. To identify optimal designs of zirconia-based dental restorations, a particle swarm optimizer is also developed. The thickness of each interlayer and compositional distribution are referred to as design variables. The effect of layers number constituting the interlayer between two based materials on the performance of graded prosthetic systems is also investigated. The developed methodology is validated against results available in literature and a finite element model constructed in the present study. Three different cases are considered to determine the optimal design of graded prosthesis based on minimizing (a) TRSs; (b) bending stresses; and (c) both TRS and bending stresses. It is demonstrated that each layer thickness and composition profile have important contributions into the resulting stress field and magnitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Study on Metal Microfilter Coated with Ceramics by Using Plasma Thermal Spray Method

    International Nuclear Information System (INIS)

    Song, In Gyu; Shin, Hyun Myung; Choi, Hae Woon; Lee, Young Min

    2011-01-01

    This research was performed on a microfilter made of a hybrid material (ceramic + metal) that was coated with ceramics on the metal-filter surface by using the thermal spray method. The ceramic powders used were Al 2 O 3 +40TiO 2 powder with a particle size of 20 μm and Al 2 O 3 (98%+)powder with a particle size of 45 μm. The metal filters were filter-grade 20 μm, 30 μm, and 50 μm sintered metal powder filters (SIKA-R 20 IS, 30 IS, 50 IS: Sinter Metals Filters) and filter-grade 75 μm sintered mesh filter with five layers. Ceramic-coated filters that were coated using the thermal spray method had a great influence on powder material, particle size, and coating thickness. However, these filters showed a fine performance when used as micro-filters

  19. Study on Metal Microfilter Coated with Ceramics by Using Plasma Thermal Spray Method

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Gyu; Shin, Hyun Myung; Choi, Hae Woon [Keimyung University, Daegu (Korea, Republic of); Lee, Young Min [Korea Polytechincs VI, Daegu (Korea, Republic of)

    2011-09-15

    This research was performed on a microfilter made of a hybrid material (ceramic + metal) that was coated with ceramics on the metal-filter surface by using the thermal spray method. The ceramic powders used were Al{sub 2}O{sub 3}+40TiO{sub 2} powder with a particle size of 20 {mu}m and Al{sub 2}O{sub 3} (98%+)powder with a particle size of 45 {mu}m. The metal filters were filter-grade 20 {mu}m, 30 {mu}m, and 50 {mu}m sintered metal powder filters (SIKA-R 20 IS, 30 IS, 50 IS: Sinter Metals Filters) and filter-grade 75 {mu}m sintered mesh filter with five layers. Ceramic-coated filters that were coated using the thermal spray method had a great influence on powder material, particle size, and coating thickness. However, these filters showed a fine performance when used as micro-filters.

  20. Bond strength between zirconium ceramic and dual resinous cement

    Directory of Open Access Journals (Sweden)

    João Galan Junior

    2010-04-01

    Full Text Available Objective: To assess the influence of different surface treatments on the bond strength between the resinous cement Panavia F (Kuraray Co. Ltd., Osaka, Japan and the structure of In-Ceram YZ (Vita Zahnfabrik, Bad Säckingen, Germany. Methods: Fifteen ceramic blocks were assessed: Group 1, finishing with abrasive paper; Group 2, finishing, airborne Al2O3 particle abrasion and silanization; Group 3, finishing, airborne particle abrasion, silicatization and silanization. After treatment, the blocks received cementation of resin composite cylinders with Panavia F (Kuraray Co. Ltd., Osaka, Japan and were submitted to the shear bond strength test in a universal testing machine. Results: The results were statistically analyzed (ANOVA and multiple comparison Student-Newman-Keuls test: Group 1 (9.66 ± 1.67 MPa < Group 2 (16.61 ± 3.38 MPa = Group 3 (19.23 ± 5.69 MPa, with p = 0.007. Conclusion: The structures of the In-Ceram YZ system (Vita Zahnfabrik, Bad Säckingen, Germany associated with Panavia F (Kuraray Co. Ltd., Osaka, Japan require previous etching to achieve greater bond strength between the ceramic and cement, and this treatment may be performed with airborne particle abrasion I or traditional silicatization, both followed by silanization.

  1. Effects of TiB2 Particle and Short Fiber Sizes on the Microstructure and Properties of TiB2-Reinforced Composite Coatings

    Science.gov (United States)

    Lin, Yinghua; Yao, Jianhua; Wang, Liang; Zhang, Qunli; Li, Xueqiao; Lei, Yongping; Fu, Hanguang

    2018-03-01

    In this study, particle and short fiber-reinforced titanium matrix composite coatings are prepared via laser in situ technique using (0.5 and 50 μm) TiB2 and Ti powder as cladding materials. The microstructure and properties of the composite coatings are studied, and the changing mechanism of the microstructure is discussed. The results reveal that particle agglomeration is prone to appear with using fine TiB2 particles. Decomposition of the particles preferentially occurs with using coarse TiB2 particles. The cracks and pores on the surface of the coating are formed at a lower laser energy density. With the increase in the laser energy density, cracking on the surface of the coating diminishes, but the coating exhibits depression behavior. The depression extent of the coating using fine TiB2 particle as the reinforcement is much less than that of the coating using coarse TiB2 particle. Moreover, the size of the aggregate and the tendency of cracking can be reduced with the increase in Ti addition. Meanwhile, short TiB fiber bundles are formed by the diffusion mechanism of rod aggregate, and randomly oriented TiB short fibers are formed mainly by the dissolution-precipitation mechanism of fine TiB2 particles. Moreover, the growth of short TiB fibers can be in an alternating manner between B27 and Bf structures. The micro-hardness and wear resistance of the coatings are evidently higher than that of the titanium alloy substrate. The wear resistance of the large size TiB2 coating is higher than that of the small size TiB2 coating under the condition of low load.

  2. The fracture toughness and DBTT of MoB particle-reinforced MoSi2 composites

    International Nuclear Information System (INIS)

    Xiong Zhi; Wang Gang; Jiang Wan

    2005-01-01

    The room temperature fracture toughness and the high temperature DBTT of MoB particle-reinforced MoSi 2 composites were investigated using Vickers indentation technique and MSP testing method, respectively. Modified small punch (MSP) test is a method for evaluation of mechanical properties using very small specimens, and it's appropriate for the determination of strength and DBTT. It was found that the approximate fracture toughness of the composite is 1.3 times that of monolithic MoSi 2 , and its DBTT is 100 C higher than that of monolithic MoSi 2 materials. Cracks deflection is a probable mechanism responsible for this behavior. (orig.)

  3. Ceramic composites by chemical vapor infiltration

    International Nuclear Information System (INIS)

    Stinton, D.P.

    1987-01-01

    Composites consisting of silicon carbide matrices reinforced with continuous ceramic fibers are being developed for high-temperature structural applications. Chemical vapor deposition (CVD) techniques are very effective in fabricating composites with high strengths and exceptional fracture toughness. Mechanical properties of infiltrated composites are controlled by the strength of the interfacial bond between the fibers and matrix. This paper describes two CVD techniques and reviews the models being developed to better understand and control the infiltration process

  4. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  5. Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, S.A. [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz (Iran, Islamic Republic of); Ranjbar, Khalil, E-mail: k_ranjbar@scu.ac.ir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz (Iran, Islamic Republic of); Dehmolaei, R. [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz (Iran, Islamic Republic of); Amirani, A.R. [12th Ghaem Street, Bld. Hashemzadeh, Shahrak Golestan, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Highlights: • Using friction stir processing, an effect of CNTs and CeO{sub 2} reinforcements on mechanical and corrosion properties of Al5083 alloy is reported. • The strength of Al5083 was increased by 42%, its matrix grain size reduced five times, and hardness was doubled by the incorporation of CNTs-CeO{sub 2} mixture in the volume ratio of 75-25 respectively. • Unlike the CNTs, incorporation of nanosized CeO{sub 2} particles resulted in remarkable increase in pitting resistance of the alloy. - Abstract: In the present investigation, friction stir processing (FSP) was utilized to incorporate Multi Walled Carbon Nano Tubes (MWCNT) and nanosized cerium oxide particles into the matrix of Al5083 alloy to form surface reinforced composites. The effect of these nanosized reinforcements either separately or in the combined form, on microstructural modification, mechanical properties and corrosion resistance of FSPed Al5083 surface composites was studied. A threaded cylindrical hardened steel tool was used with the rotation speeds of 600 and 800 rpm and travel speeds of 35 and 45 mm/min and a tilt angle of 5°. Mechanical properties and corrosion resistance of FSPed samples were evaluated and compared with the base alloy. The maximum tensile strength and hardness value were achieved for the hybrid composite containing a mixture of CNTs and cerium oxide in the volume ratio of 75-25, respectively, whereas a significant increase in pitting resistance of the base alloy was obtained when cerium oxide alone was incorporated. The corrosion behavior of the samples was investigated by potentiodynamic polarization tests and assessed in term of pitting potential and passivation range. Microstructural analysis carried out by using optical and electron microscopes showed that reinforcements are well dispersed inside the nugget zone (NZ), and remarkable grain refinement is gained. The study was aimed to fabricate surface composites with improved mechanical properties and

  6. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Kim, Hyunryung; Che, Lihua; Ha, Yoon; Ryu, WonHyoung

    2014-01-01

    Electrospun silk fibroin (SF) scaffolds provide large surface area, high porosity, and interconnection for cell adhesion and proliferation and they may replace collagen for many tissue engineering applications. Despite such advantages, electrospun SF scaffolds are still limited as bone tissue replacement due to their low mechanical strengths. While enhancement of mechanical strengths by incorporating inorganic ceramics into polymers has been demonstrated, electrospinning of a mixture of SF and inorganic ceramics such as hydroxyapatite is challenging and less studied due to the aggregation of ceramic particles within SF. In this study, we aimed to enhance the mechanical properties of electrospun SF scaffolds by uniformly dispersing hydroxyapatite (HAp) nanoparticles within SF nanofibers. HAp nanoaprticles were modified by γ-glycidoxypropyltrimethoxysilane (GPTMS) for uniform dispersion and enhanced interfacial bonding between HAp and SF fibers. Optimal conditions for electrospinning of SF and GPTMS-modified HAp nanoparticles were identified to achieve beadless nanofibers without any aggregation of HAp nanoparticles. The MTT and SEM analysis of the osteoblasts-cultured scaffolds confirmed the biocompatibility of the composite scaffolds. The mechanical properties of the composite scaffolds were analyzed by tensile tests for the scaffolds with varying contents of HAp within SF fibers. The mechanical testing showed the peak strengths at the HAp content of 20 wt.%. The increase of HAp content up to 20 wt.% increased the mechanical properties of the composite scaffolds, while further increase above 20 wt.% disrupted the polymer chain networks within SF nanofibers and weakened the mechanical strengths. - Highlights: • Electrospun composite silk fibroin scaffolds were mechanically-reinforced. • GPTMS enhanced hydroxyapatite distribution in silk fibroin nanofibers. • Mechanical property of composite scaffolds increased up to 20% of hydroxyapatite. • Composite

  7. A study on wear resistance and microcrack of the Ti3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Squartini, Tiziano; He Qingshan

    2010-01-01

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti 3 Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti 3 Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti 3 Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  8. In situ synthesis and properties of self-reinforced Si3N4–SiO2 ...

    Indian Academy of Sciences (India)

    reinforced glass–ceramic composites were obtained without any β -Si 3 N 4 seed crystal. These composites with different compositions were prepared in a nitrogenatmosphere for comparison of phase transformation and mechanical properties.

  9. Intake and subsequent fate of a ceramic particle containing 2. 85 microCi /sup 241/Am: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L R; Sullivan, P A; Laferriere, J; Cumming, E; Demis, D

    1983-04-01

    Intake of /sup 241/Am was reported in a young female technologist. External monitoring, whole body counting, urinalysis and fecal analysis were performed to determine the subsequent fate of the contaminant. Five days later, more than 99.5% of the radioactivity was voided in a fecal sample. A single particle, containing 2.85 microCi of /sup 241/AmO2 incorporated in a ceramic matrix, was isolated from the fecal sample. Brief descriptions of the radioanalytical results and dosimetry implications are presented. A shadow shield whole body counter was conveniently used to make an early estimate of the intake. This initial estimate enabled staff to decide that it was not necessary to artifically remove the contaminant. It was estimated that the lower large intestine was the organ which received the highest dose due to the passage of the ceramic particle. Systemic uptake of /sup 241/JAm was indicated by urinalysis. The fractional transfer of /sup 241/Am from the GI tract to the blood was estimated to be less than 6 X 10(-5). This maximum estimate is limited by the MDA of the analytical procedures used. The fractional transfer of the /sup 241/Am from the GI tract to blood in this case is about an order of magnitude less than recent ICRP recommendations for ''all compounds of americium''.

  10. Wear and impact resistance of HVOF sprayedceramic matrix composites coating

    Science.gov (United States)

    Prawara, B.; Martides, E.; Priyono, B.; Ardy, H.; Rikardo, N.

    2016-02-01

    Ceramic coating has the mechanical properties of high hardness and it is well known for application on wear resistance, but on the other hand the resistance to impact load is low. Therefore its use is limited to applications that have no impact loading. The aim of this research was to obtain ceramic-metallic composite coating which has improved impact resistance compared to conventional ceramic coating. The high impact resistance of ceramic-metallic composite coating is obtained from dispersed metallic alloy phase in ceramic matrix. Ceramic Matrix Composites (CMC) powder with chrome carbide (Cr3C2) base and ceramic-metal NiAl-Al2O3 with various particle sizes as reinforced particle was deposited on mild steel substrate with High Velocity Oxygen Fuel (HVOF) thermal spray coating. Repeated impact test showed that reinforced metallic phase size influenced impact resistance of CMC coating. The ability of CMC coating to absorb impact energy has improved eight times and ten times compared with original Cr3C2 and hard chrome plating respectively. On the other hand the high temperature corrosion resistance of CMC coating showed up to 31 cycles of heating at 800°C and water quenching cooling.

  11. [Study of relationship between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite powder].

    Science.gov (United States)

    Chai, Feng; Xu, Ling; Liao, Yun-mao; Chao, Yong-lie

    2003-07-01

    The fabrication of all-ceramic dental restorations is challenged by ceramics' relatively low flexural strength and intrinsic poor resistance to fracture. This paper aimed at investigating the relationships between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite (Al(2)O(3)-nZrO(2)). Al(2)O(3)-nZrO(2) ceramics powder (W) was processed by combination methods of chemical co-precipitation and ball milling with addition of different powder-sized ZrO(2). Field-emission scanning electron microscopy was used to determine the particle size distribution and characterize the particle morphology of powders. The matrix compacts were made by slip-casting technique and sintered to 1,450 degrees C and flexural strength and the fracture toughness of them were measured. 1. The particle distribution of Al(2)O(3)-nZrO(2) ceramics powder ranges from 0.02 - 3.5 micro m and among them the superfine particles almost accounted for 20%. 2. The ceramic matrix samples with addition of nZrO(2) (W) showed much higher flexural strength (115.434 +/- 5.319) MPa and fracture toughness (2.04 +/- 0.10) MPa m(1/2) than those of pure Al(2)O(3) ceramics (62.763 +/- 7.220 MPa; 1.16 +/- 0.02 MPa m(1/2)). The particle size of additive ZrO(2) may impose influences on mechanical properties of Al(2)O(3)-nZrO(2) ceramics matrix. Good homogeneity and reasonable powder-size gradation of ceramic powder can improve the mechanical properties of material.

  12. The effect of zirconia on flexural strength of IPS Empress 2 ceramic

    Directory of Open Access Journals (Sweden)

    Kermanshah H

    2007-06-01

    Full Text Available Background and Aim: All ceramic, inlay-retained resin bonded fixed partial denture is a conservative method for replacement of missing teeth, because of minimal tooth reduction. The connector between the retainer and the pontic is the weak point of these bridges. Reinforcement of ceramic core will increase the clinical longevity. The aim of this study was to determine the effect of zirconia on flexural strength of IPS Empress 2 core ceramic.Materials and Methods: In this experimental in vitro study, twenty eight bar shape specimens (17´3.1´3.1 mm were made of four different materials: (1 Slip casting in-ceram alumina core (control group (2 Hot-pressed lithium disilicate core ceramic (IPS Empress 2 (3 IPS Empress 2 with cosmopost (zirconia post inserted longitudinally in the center of the bar (4 IPS Empress 2 with cosmopost (zirconia post inserted longitudinally in bottom of the bar. Specimens were subjected to three-point flexure loading with the span of 15mm, at a cross-head speed of 0.5 mm/min. Failure loads were recorded and analyzed using one-way ANOVA and Tomhane Post-hoc tests and p<0.05 was set as the level of significance. Fractured surfaces were then observed by scanning electron microscope (SEM. Four additional samples were made as the third group, and zirconia-IPS interface was observed by SEM before fracture.Results: Mean values and standard deviations of three point flexural strengths of groups 1 to 4, were: 378.4±44.6, 258.6±27.5, 144.3±51.7, 230±22.3 MPa respectively. All the groups were statistically different from each other (P<0.05, except groups 2 and 4. The flexural strengths of groups 2, 3, 4 were significantly lower than group 1. Group 3 had the lowest flexural strength. SEM analysis showed that the initiated cracks propagated in the interface of zirconia post and IPS Empress 2 ceramic.Conclusion: Based on the results of this study, inserting zirconia post (cosmopost in IPS Empress 2 ceramic does not reinforce all-ceramic

  13. Cytotoxic effects of polycarbonate-based orthodontic brackets by activation of mitochondrial apoptotic mechanisms

    NARCIS (Netherlands)

    Kloukos, D.; Taoufik, E.; Eliades, T.; Katsaros, C.; Eliades, G.

    2013-01-01

    OBJECTIVES: The aim of the study was to evaluate the biological effects of water eluents from polycarbonate based esthetic orthodontic brackets. METHODS: The composite polycarbonate brackets tested were Silkon Plus (SL, fiber-glass-reinforced), Elan ME (EL, ceramic particle-reinforced) and Elegance

  14. Thermal and mechanical behaviour of sub micron sized fly ash reinforced polyester resin composite

    Science.gov (United States)

    Nantha Kumar, P.; Rajadurai, A.; Muthuramalingam, T.

    2018-04-01

    The utilization of particles reinforced resin matrix composites is being increased owing to its lower density and high strength to weight ratio. In the present study, an attempt has been made to synthesize fly ash particles reinforced polyester resin composite for engine cowling application. The thermal stability and mechanical behaviours such as hardness and flexural strength of the composite with 2, 3 and 4 weight % of reinforcement is studied and analyzed. The thermo gravimetric analysis indicates that the higher addition of reinforcement increases the decomposition temperature due to its refractory nature. It is also observed that the hardness increases with higher filler addition owing to the resistance of FA particles towards penetration. The flexural strength is found to increase up to the addition of 3% of FA particles, whereas the polyester resin composite prepared with 4% FA particles addition is observed to have low flexural strength owing to agglomeration of particles.

  15. Effect of wear parameters on dry sliding behavior of Fly Ash/SiC particles reinforced AA 2024 hybrid composites

    Science.gov (United States)

    Bhaskar Kurapati, Vijaya; Kommineni, Ravindra

    2017-09-01

    In the present work AA 2024 alloy reinforced with mixtures of SiC and Fly Ash (FA) particles of 70 µm (5, 10 and 15 wt. %) are fabricated using the stir casting method. Both reinforcements are added in equal weight proportions. The wear test specimens are prepared from both the alloy and composite castings in the dimensions of Ф 4 mm and 30 mm lengths by the wire cut EDM process. The dry sliding wear properties of the prepared composites at room temperature are estimated by pin-on-disc wear testing equipment. The wear characteristics of the composites are studied by conducting the dry sliding wear test over loads of 0.5 Kgf, 1.0 Kgf, 1.5 Kgf, a track diameter of 60 mm and sliding times of 15 min, 30 min, 45min. The experimental results shows that the wear decreases with an increase in the weight percentage of FA and SiC particles in the matrix. Additionally wear increases with an increase in load and sliding time. Further, it is found that the wear resistance of the AA2024-Hybrid composites is higher than that of the AA2024 matrix.

  16. Stress–rupture measurements of cast magnesium strengthened by in-situ production of ceramic particles

    Directory of Open Access Journals (Sweden)

    Nagaraj M. Chelliah

    2017-06-01

    Full Text Available We have introduced a polymer precursor into molten magnesium and then in-situ pyrolyzed to produce castings of metal matrix composites (P-MMCs containing silicon-carbonitride (SiCNO ceramic particles. Stress-rupture measurements of as-cast P-MMCs was performed at 350 °C (0.69TM to 450 °C (0.78TM under dead load condition corresponding to tensile stress of 2.5 MPa to 20 MPa. The time-to-fracture data were analyzed using the classical Monkman–Grant equation. The time-to-fracture is thermally activated and follows a power-law stress exponent exhibiting dislocation creep. Fractography analysis revealed that while pure magnesium appears to fracture by dislocation slip, the P-MMCs fail from the nucleation and growth of voids at the grain boundaries.

  17. Recycling ceramic industry wastes in sound absorbing materials

    Directory of Open Access Journals (Sweden)

    C. Arenas

    2016-10-01

    Full Text Available The scope of this investigation is to develop a material mainly composed (80% w/w of ceramic wastes that can be applied in the manufacture of road traffic noise reducing devices. The characterization of the product has been carried out attending to its acoustic, physical and mechanical properties, by measuring the sound absorption coefficient at normal incidence, the open void ratio, density and compressive strength. Since the sound absorbing behavior of a porous material is related to the size of the pores and the thickness of the specimen tested, the influence of the particle grain size of the ceramic waste and the thickness of the samples tested on the properties of the final product has been analyzed. The results obtained have been compared to a porous concrete made of crushed granite aggregate as a reference commercial material traditionally used in similar applications. Compositions with coarse particles showed greater sound absorption properties than compositions made with finer particles, besides presenting better sound absorption behavior than the reference porous concrete. Therefore, a ceramic waste-based porous concrete can be potentially recycled in the highway noise barriers field.

  18. Incorporation of tungsten metal fibers in a metal and ceramic matrix

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Vokáč, M.; Kolísko, J.; Pokorný, P.; Kubatík, Tomáš František

    2017-01-01

    Roč. 56, 1-2 (2017), s. 79-82 ISSN 0543-5846 Institutional support: RVO:61389021 Keywords : tungsten wires * tungsten fibers * plasma spraying * metallic coatings * ceramic coatings Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics http://hrcak.srce.hr/168890

  19. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications

  20. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1987-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying responses to the fusion environment. Materials can be identified today that will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications. (author)

  1. 3D-WOVEN FIBER-REINFORCED COMPOSITE FOR CAD/CAM DENTAL APPLICATION.

    Science.gov (United States)

    Petersen, Richard; Liu, Perng-Ru

    2016-05-01

    Three-dimensional (3D)-woven noncrimp fiber-reinforced composite (FRC) was tested for mechanical properties in the two principal directions of the main XY plane and compared to different Computer-Aided-Design/Computer-Aided-Machining (CAD/CAM) Dental Materials. The Dental Materials included ceramic with Vitablock Mark II®, ProCAD®, InCeram® Spinel, InCeram® Alumina and InCeram® Zirconia in addition to a resin-based 3M Corp. Paradigm® particulate-filled composite. Alternate material controls included Coors 300 Alumina Ceramic and a tungsten carbide 22% cobalt cermet. The 3D-woven FRC was vacuum assisted resin transfer molding processed as a one-depth-thickness ~19-mm preform with a vinyl-ester resin and cut into blocks similar to the commercial CAD/CAM Dental Materials. Mechanical test samples prepared for a flexural three-point span length of 10.0 mm were sectioned for minimum-depth cuts to compare machinability and fracture resistance between groups. 3D-woven FRC improved mechanical properties with significant statistical differences over all CAD/CAM Dental Materials and Coors Alumina Ceramic for flexural strength (p<0.001), resilience (p<0.05), work of fracture (p<0.001), strain energy release (p<0.05), critical stress intensity factor (p<0.001) and strain (p<0.001).

  2. Method of preparing porous, rigid ceramic separators for an electrochemical cell. [Patent application

    Science.gov (United States)

    Bandyopadhyay, G.; Dusek, J.T.

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200/sup 0/C for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide, and magnesium-aluminium oxide have advantageously been used to form separators by this method.

  3. Effect of laser welding on the titanium ceramic tensile bond strength

    Directory of Open Access Journals (Sweden)

    Rodrigo Galo

    2011-08-01

    Full Text Available Titanium reacts strongly with elements, mainly oxygen at high temperature. The high temperature of titanium laser welding modifies the surface, and may interfere on the metal-ceramic tensile bond strength. OBJECTIVE: The influence of laser welding on the titanium-ceramic bonding has not yet been established. The purpose of this in vitro study was to analyze the influence of laser welding applied to commercially pure titanium (CpTi substructure on the bond strength of commercial ceramic. The influence of airborne particle abrasion (Al2O3 conditions was also studied. MATERIAL AND METHODS: Forty CpTi cylindrical rods (3 mm x 60 mm were cast and divided into 2 groups: with laser welding (L and without laser welding (WL. Each group was divided in 4 subgroups, according to the size of the particles used in airborne particle abrasion: A - Al2O3 (250 µm; B - Al2O3 (180 µm; C - Al2O3 (110 µm; D - Al2O3 (50 µm. Ceramic rings were fused around the CpTi rods. Specimens were invested and their tensile strength was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 200 kgf load cell. Statistical analysis was carried out with analysis of variance and compared using the independent t test (p<0.05. RESULTS: Significant differences were found among all subgroups (p<0.05. The highest and the lowest bond strength means were recorded in subgroups WLC (52.62 MPa and LD (24.02 MPa, respectively. CONCLUSION: Airborne particle abrasion yielded significantly lower bond strength as the Al2O3 particle size decreased. Mechanical retention decreased in the laser-welded specimens, i.e. the metal-ceramic tensile bond strength was lower.

  4. Improvement in the Design of Metal-Ceramic High Voltage Feedthroughs for use in High Energy Particle Accelerators

    CERN Document Server

    Weterings, W

    1999-01-01

    Large high-voltage devices operate in particle accelerators to steer charged particles in the desired direction. Solid and hollow rods of sintered alumina are used as insulating supports and high-voltage feedthroughs to power the electrodes of these electrostatic systems. The performance of the systems is often limited by voltage breakdown along the surface of the ceramic insulator (so-called surface flashover) or discharge between feedthrough and vacuum tank, which can lead to significant disruptions in terms of overall machine efficiency. Available results on the influence of the mechanical preparation, thermal history and particular cleaning techniques on commercially obtainable alumina samples have been studied in order to investigate possibilities for better preparation methodology of the insulating supports. Also the influence of the relative position of the feedthrough inside the vacuum tank on the high-voltage breakdown behaviour has been studied. This paper describes the theoretical and practical bac...

  5. Stereolithographic processing of ceramics: Photon diffusion in colloidal dispersion

    Science.gov (United States)

    Garg, Rajeev

    The technique of ceramic stereolithography (CSL) has been developed for fabricating near net shape ceramic objects. In stereolithography, the three-dimensional computer design file of the object is sliced into thin layers. Each layer is physically fabricated by photocuring the surface of a liquid photo-polymerizable resin bath by raster scanning an ultra-violet laser across the surface of the resin. In CSL, the liquid resin is a high concentration colloidal dispersion in a solution of ultraviolet curable polymers. The ceramic green body fabricated by ceramic stereolithography technique is subjected to the post processing steps of drying, binder burnout and sintering to form a dense ceramic object. An aqueous alumina dispersion in photocuring polymers with particle volume fraction greater than 0.5 was formulated for CSL process. Low molecular weight solution polymers were found to be best suited for formulating ceramic resins due to their inherently low viscosity and favorable interactions with the ceramic dispersant. A hydroxyapatite ceramic resin was also developed for the use in the CSL technique. A model is developed to describe the photocuring process in concentrated ceramic dispersion. The curing profile in ceramic dispersion is governed by multiple scattering from the ceramic particles and absorption by the photocuring polymers. Diffusion theory of light transport is used to model the multiple scattering and absorption phenomena. It is found that diffusive transport adequately describes the phenomena of laser pulse propagation in highly concentrated colloidal dispersions. A model was developed to describe the absorption in highly concentrated ceramic dispersion. Various complex-shaped monolithic alumina and hydroxyapatite objects were fabricated by CSL and shown to possess uniform microstructure. The mechanical properties and sintering behavior of the parts fabricated by CSL are shown to be comparable to those fabricated by other ceramic processing technique

  6. Ternary ceramic alloys of Zr-Ce-Hf oxides

    Science.gov (United States)

    Becher, P.F.; Funkenbusch, E.F.

    1990-11-20

    A ternary ceramic alloy is described which produces toughening of zirconia and zirconia composites through the stress transformation from tetragonal phase to monoclinic phase. This alloy, having the general formula Ce[sub x]Hf[sub y]Zr[sub 1[minus]x[minus]y]O[sub 2], is produced through the addition of appropriate amounts of ceria and hafnia to the zirconia. Typically, improved toughness is achieved with about 5 to about 15 mol % ceria and up to about 40 mol % hafnia. The preparation of alloys of these compositions are given together with data as to the densities, tetragonal phase content, hardness and fracture toughness. The alloys are useful in preparing zirconia bodies as well as reinforcing ceramic composites. 1 fig.

  7. Investigating aluminum alloy reinforced by graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.J., E-mail: shaojiuyan@126.com [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z. [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Lin, Z.M. [Aviation Industry Corporation of China, Beijing 100022 (China)

    2014-08-26

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs.

  8. Mesoscale Characterization of Fracture Properties of Steel Fiber-Reinforced Concrete Using a Lattice–Particle Model

    Directory of Open Access Journals (Sweden)

    Francisco Montero-Chacón

    2017-02-01

    Full Text Available This work presents a lattice–particle model for the analysis of steel fiber-reinforced concrete (SFRC. In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice–particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests.

  9. Mesoscale Characterization of Fracture Properties of Steel Fiber-Reinforced Concrete Using a Lattice-Particle Model.

    Science.gov (United States)

    Montero-Chacón, Francisco; Cifuentes, Héctor; Medina, Fernando

    2017-02-21

    This work presents a lattice-particle model for the analysis of steel fiber-reinforced concrete (SFRC). In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice-particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE) analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests.

  10. Mesoscale Characterization of Fracture Properties of Steel Fiber-Reinforced Concrete Using a Lattice–Particle Model

    Science.gov (United States)

    Montero-Chacón, Francisco; Cifuentes, Héctor; Medina, Fernando

    2017-01-01

    This work presents a lattice–particle model for the analysis of steel fiber-reinforced concrete (SFRC). In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice–particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE) analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests. PMID:28772568

  11. Influence of the Sr and Mg Alloying Additions on the Bonding Between Matrix and Reinforcing Particles in the AlSi7Mg/SiC-Cg Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Dolata A. J.

    2016-06-01

    Full Text Available The aim of the work was to perform adequate selection of the phase composition of the composite designated for permanent - mould casting air compressor pistons. The hybrid composites based on AlSi7Mg matrix alloy reinforced with mixture of silicon carbide (SiC and glassy carbon (Cg particles were fabricated by the stir casting method. It has been shown that the proper selection of chemical composition of matrix alloy and its modification by used magnesium and strontium additions gives possibility to obtain both the advantageous casting properties of composite suspensions as well as good bonding between particles reinforcements and matrix.

  12. ATTAP/AGT101 - Year 2 progress in ceramic technology development

    Science.gov (United States)

    Kidwell, J. R.; Lindberg, L. J.; Morey, R. E.

    1990-01-01

    The progress made by the Advanced Turbine Technology Applications Project (ATTAP) is summarized, with emphasis on the following areas: ceramic materials assessment and characterization, ceramic impact damage assessment, ceramic combustor evaluation, turbine inlet particle separator development, impact-tolerant turbine designs, and net-shape ceramic component fabrications. In the evolutionary ceramics development in the Automotive Gas Turbine (AGT101) and ATTAP programs initial designs were conceived to reduce stresses by using well-established criteria: bodies of revolution were preferred over nonaxisymmetric geometries, sharp corners were avoided, the contact area between components was kept as large as possible, and small parts were preferred over large when feasible. Projects discussed include: initial ceramic component fabrication by ceramic suppliers in 1990, engine test to 1371 C in 1991, 100-hr test bed engine durability test in 1991, and 300-hr test bed engine durability in 1992.

  13. Multilayer Ceramic Regenerator Materials for 4 K Cooling

    International Nuclear Information System (INIS)

    Numazawa, T.; Kamiya, K.; Satoh, T.; Nozawa, H.; Yanagitani, T.

    2006-01-01

    The ceramics oxide magnetic materials have shown excellent properties for use as regenerator materials used in 4 K crycoolers. Currently four kinds of oxide magnetic materials GdVO4, GAP=GdAlO3, GOS=Gd2O2S and Tb2O2S are available for applications for regenerators or thermal anchors from 2 K to 8 K. This paper focused on controlling the heat capacity of the (GdxTb1-x)2O2S system to cover the refrigeration temperatures between 6 K and 8 K. A concept of multilayer regenerator material consisting of multicomponent magnetic materials has been proposed and investigated. Two-layer ceramic material including two kinds of magnetic materials (Gd0.1Tb0.9)2O2S+Tb2O2S was successfully fabricated in the form of regenerator particles with an average diameter of 0.25 mm. Measured heat capacity data showed that it had twin peaks relating to those of (Gd0.1Tb0.9)2O2S and Tb2O2S, and the entire curve became broader and wider. The mechanical properties of strength and hardness of the two-layer ceramic material were the same as other ceramic regenerator materials like GOS. Thus, it is concluded that the multilayer ceramic material is very useful to control the heat capacity of the regenerator particles. The cooling tests using the two-layer ceramic material with HoCu2 and GOS have been done to investigate the 2nd stage regenerator configuration

  14. Coated ceramic breeder materials

    Science.gov (United States)

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  15. Removing Pathogens Using Nano-Ceramic-Fiber Filters

    Science.gov (United States)

    Tepper, Frederick; Kaledin, Leonid

    2005-01-01

    A nano-aluminum-oxide fiber of only 2 nanometers in diameter was used to develop a ceramic-fiber filter. The fibers are electropositive and, when formulated into a filter material (NanoCeram(TradeMark)), would attract electro-negative particles such as bacteria and viruses. The ability to detect and then remove viruses as well as bacteria is of concern in space cabins since they may be carried onboard by space crews. Moreover, an improved filter was desired that would polish the effluent from condensed moisture and wastewater, producing potable drinking water. A laboratory- size filter was developed that was capable of removing greater than 99.9999 percent of bacteria and virus. Such a removal was achieved at flow rates hundreds of times greater than those through ultraporous membranes that remove particles by sieving. Because the pore size of the new filter was rather large as compared to ultraporous membranes, it was found to be more resistant to clogging. Additionally, a full-size cartridge is being developed that is capable of serving a full space crew. During this ongoing effort, research demonstrated that the filter media was a very efficient adsorbent for DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and endotoxins. Since the adsorption is based on the charge of the macromolecules, there is also a potential for separating proteins and other particulates on the basis of their charge differences. The separation of specific proteins is a major new thrust of biotechnology. The principal application of NanoCeram filters is based on their ability to remove viruses from water. The removal of more than 99.9999 percent of viruses was achieved by a NanoCeram polishing filter added to the effluent of an existing filtration device. NanoCeram is commercially available in laboratory-size filter discs and in the form of a syringe filter. The unique characteristic of the filter can be demonstrated by its ability to remove particulate dyes such as Metanyl yellow. Its

  16. High-temperature LDV seed particle development

    Science.gov (United States)

    Frish, Michael B.; Pierce, Vicky G.

    1989-05-01

    The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such

  17. Development of ceramic glaze with photocatalytic activity

    International Nuclear Information System (INIS)

    Tezza, V.B.; Uggioni, E.; Carrera, A.A. Duran; Bernardin, A.M.

    2011-01-01

    Glazes were developed by adding anatase in commercial ceramic plates as an agent of photocatalysis. The glazes were coated on ceramic tiles, which were fired between 800 and 1000°C. The formulations were characterized (SEM, XRD), and the wettability was determined by measuring the water contact angle. The microstructural analysis (SEM) showed that the anatase particles can disperse properly in the glaze matrix. The X-ray diffraction shows that from 1000°C, the glaze becomes very reactive, and particles of anatase are transformed into titanite or rutile, depending on the glaze used. The determination of the contact angle shows the clear influence of the glaze type and sintering temperature on the wettability characteristics of the obtained layer. (author)

  18. New ceramics containing dispersants for improved fracture toughness

    Science.gov (United States)

    Nevitt, M.V.; Aldred, A.T.; Chan, Sai-Kit

    1985-07-01

    The invention is a ceramic composition containing a new class of dispersant for hindering crack propagation by means of one or more energy-dissipative mechanisms. The composition is composed of a ceramic matrix with dispersed particles of a transformation-prone rare-earth niobate, tantalate or mixtures of these with each other and/or with a rare-earth vanadate. The dispersants, having a generic composition tRBO/sub 4/, where R is a rare-earth element, B if Nb or Ta and O is oxygen, are mixed in powder form with a powder of the matrix ceramic and sintered to produce a ceramic form or body. The crack-hindering mechanisms operates to provide improved performance over a wide range of temperature and operating conditions.

  19. Mechanical and fracture properties of R-glass reinforced composites with pyrolysed polysiloxane resin as a matrix

    Czech Academy of Sciences Publication Activity Database

    Černý, Martin; Bednářová, D.; Glogar, Petr; Dusza, J.; Rudnayová, E.

    2005-01-01

    Roč. 290, - (2005), s. 344-347 ISSN 1013-9826. [International conference on fractography of advanced ceramics /2./. Stará Lesná, 03.10.2005-06.10.2005] R&D Projects: GA AV ČR(CZ) KSK2067107; GA ČR GA106/02/0177 Institutional research plan: CEZ:AV0Z30460519 Keywords : unidirectional composite * glass fiber reinforcement * pyrolysed polysiloxane resins Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.224, year: 2005

  20. Mechanical properties of aluminium matrix composites reinforced with intermetallics

    International Nuclear Information System (INIS)

    Torres, B.; Garcia-Escorial, A.; Ibanez, J.; Lieblich, M.

    2001-01-01

    In this work 2124 aluminium matrix composites reinforced with Ni 3 Al, NiAl, MoSi 2 and Cr 3 Si intermetallic powder particles have been investigated. For comparison purposes, un reinforced 2124 and reinforced with SiC have also been studied. In all cases, the same powder metallurgy route was used, i. e. the 2124 alloy was obtained by rapid solidification and the intermetallic particles by self-propagating high-temperature synthesis (SHS). The matrix and the intermetallics were mechanically blended, cold compacted and finally hot extruded. Tensile tests were carried out in T1 and T4 treatments. Results indicate that mechanical properties depend strongly on the tendency to form new phases at the matrix-intermetallic interface during processing and/or further thermal treatments. The materials which present better properties are those that present less reaction between matrix and intermetallic reinforcement, i. e. MoSi 2 and SiC reinforced composites. (Author) 9 refs

  1. Contributions to the R-curve behaviour of ceramic materials

    International Nuclear Information System (INIS)

    Fett, T.

    1994-12-01

    Several ceramic materials show an increase in crack growth resistance with increasing crack extension. Especially, in case of coarse-grained alumina this ''R-curve effect'' is caused by crack-face interactions in the wake of the advancing crack. Similar effects occur for whisker reinforced ceramics. Due to the crack-face interactions so-called ''bridging stresses'' are generated which transfer forces between the two crack surfaces. A second reason for an increase of crack-growth resistance are stress-induced phase transformations in zirconia ceramics with the tetragonal phase changing to the monoclinic phase. These transformations will affect the stress field in the surroundings of crack tips. The transformation generates a crack-tip transformation zone and, due to the stress balance, also residual stresses in the whole crack region which result in a residual stress intensity factor. This additional stress intensity factor is also a reason for the R-curve behaviour. In this report both effects are outlined in detail. (orig.) [de

  2. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs).

    Science.gov (United States)

    Sailer, Irena; Makarov, Nikolay Alexandrovich; Thoma, Daniel Stefan; Zwahlen, Marcel; Pjetursson, Bjarni Elvar

    2015-06-01

    To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported single crowns (SCs) and to describe the incidence of biological, technical and esthetic complications. Medline (PubMed), Embase, Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported fixed dental prostheses (FDPs) with a mean follow-up of at least 3 years. This was complimented by an additional hand search and the inclusion of 34 studies from a previous systematic review [1,2]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. Sixty-seven studies reporting on 4663 metal-ceramic and 9434 all-ceramic SCs fulfilled the inclusion criteria. Seventeen studies reported on metal-ceramic crowns, and 54 studies reported on all-ceramic crowns. Meta-analysis of the included studies indicated an estimated survival rate of metal-ceramic SCs of 94.7% (95% CI: 94.1-96.9%) after 5 years. This was similar to the estimated 5-year survival rate of leucit or lithium-disilicate reinforced glass ceramic SCs (96.6%; 95% CI: 94.9-96.7%), of glass infiltrated alumina SCs (94.6%; 95% CI: 92.7-96%) and densely sintered alumina and zirconia SCs (96%; 95% CI: 93.8-97.5%; 92.1%; 95% CI: 82.8-95.6%). In contrast, the 5-year survival rates of feldspathic/silica-based ceramic crowns were lower (pceramic and zirconia crowns exhibited significantly lower survival rates in the posterior region (pceramic fractures than metal-ceramic SCs (pceramic SCs than for metal-ceramic SCs. Survival rates of most types of all-ceramic SCs were similar to those reported for metal-ceramic SCs, both in anterior and posterior regions. Weaker feldspathic/silica-based ceramics should be limited to applications in the anterior region. Zirconia-based SCs should not be considered as primary option due to their high incidence of technical problems. Copyright © 2015 Academy

  3. Radiation Effects in Nuclear Ceramics

    Directory of Open Access Journals (Sweden)

    L. Thomé

    2012-01-01

    Full Text Available Due to outstanding physicochemical properties, ceramics are key engineering materials in many industrial domains. The evaluation of the damage created in ceramics employed in radiative media is a challenging problem for electronic, space, and nuclear industries. In this latter field, ceramics can be used as immobilization forms for radioactive wastes, inert fuel matrices for actinide transmutation, cladding materials for gas-cooled fission reactors, and structural components for fusion reactors. Information on the radiation stability of nuclear materials may be obtained by simulating the different types of interactions involved during the slowing down of energetic particles with ion beams delivered by various types of accelerators. This paper presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on recent results concerning the damage accumulation processes. Energetic ions in the KeV-GeV range are used to explore the nuclear collision (at low energy and electronic excitation (at high energy regimes. The recovery by electronic excitation of the damage created by ballistic collisions (SHIBIEC process is also addressed.

  4. The Influence of Pressure Die Casting Parameters on Distribution of Reinforcing Particles in the AlSi11/10% SiC Composite

    Directory of Open Access Journals (Sweden)

    Pasieka A.

    2013-09-01

    Full Text Available The method of pressure die casting of composites with AlSi11 alloy matrix reinforced with 10 vol. % of SiC particles and the analysis of the distribution of particles within the matrix is presented. The composite castings were produced at various values of the piston velocity in the second stage of injection, at diverse intensification pressure values, and various injection gate width values. The distribution of particles over the entire cross-section of the tensile specimen is shown. The index of distribution was determined on the basis of particle count in elementary measuring fields. The regression equation describing the change of the considered index was found as a function of the pressure die casting parameters. The conclusion presents an analysis of the obtained results and their interpretation.

  5. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    International Nuclear Information System (INIS)

    Holcomb, M.J.

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material is disclosed. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy

  6. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    Science.gov (United States)

    Holcomb, Matthew J.

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.

  7. Fracture Toughness and Reliability in High-Temperature Structural Ceramics and Composites: Prospects and Challenges for the 21st Century

    Science.gov (United States)

    Dutta, Sunil

    1999-01-01

    The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defense and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fiber into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc., essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fiber reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibers should display sufficient high temperature strength and creep resistance at service temperatures above 1000 'C. The greatest challenge to date is the development of high quality ceramic fibers with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are, preparation of optimum matrix precursors, precursor infiltration into fiber array, and matrix densification at a temperature, where grain crystallization and fiber degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.

  8. Effect of the bur grit size on the flexural strength of a glass-ceramic

    OpenAIRE

    Kist, P. P.; Aurélio, I. L.; Amaral, M.; May, L. G.

    2016-01-01

    Abstract The purpose of the present study was to determine the biaxial flexural strength (BFS) of a CAD/CAM leucite reinforced glass-ceramic ground by diamond burs of different grit sizes and the influence of surface roughness on the BFS. For this, 104 plates were obtained from CAD/CAM ceramic blocks and divided into 4 groups (n = 26), according to bur grit size: extra-fine, fine, medium and coarse. Roughness parameters (Ra, RyMax) were measured, and plates were kept dry for 7 days. The flexu...

  9. Superplasticity in fine-grained ceramics. Final report, 1 July 1993--31 December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Nieh, T.G.

    1994-01-31

    Progress has been summarized in three papers: biaxial gas-pressure forming of a superplastic Al{sub 2}O{sub 3}/YTZP; mechanical properties of a 20 vol% SiC whisker-reinforced yttria-stabilized, tetragonal zirconia composite at elevated temperatures; and gas- pressure forming of ceramic sheet.

  10. Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Fedrizzi, A., E-mail: anna.fedrizzi@ing.unitn.it [Department of Industrial Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Pellizzari, M. [Department of Industrial Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Zadra, M. [K4Sint, Start-up of the University of Trento, Viale Dante 300, 38057 Pergine Valsugana (Italy); Marin, E. [Department of Chemistry, Physics and Environment, University of Udine, Via Cotonificio 108, 33100 Udine (Italy)

    2013-12-15

    Hot work tool steels are characterized by good toughness and high hot hardness but are less wear resistant than other tooling materials, such as high speed steel. Metal matrix composites show improved tribological behavior, but not much work has been done in the field of hot work tool steels. In this paper TiB{sub 2}-reinforced hot work tool steel matrix composites were produced by spark plasma sintering (SPS). Mechanical alloying (MA) was proposed as a suited process to improve the composite microstructure. Density measurements and microstructure confirmed that MA promotes sintering and produces a fine and homogeneous dispersion of reinforcing particles. X-ray diffraction patterns of the sintered composites highlighted the formation of equilibrium Fe{sub 2}B and TiC, as predicted by thermodynamic calculations using Thermo-Calc® software. Scanning electron microscopy as well as scanning Kelvin probe force microscopy highlighted the reaction of the steel matrix with TiB{sub 2} particles, showing the formation of a reaction layer at the TiB{sub 2}-steel interface. Phase investigations pointed out that TiB{sub 2} is not chemically stable in steel matrix because of the presence of carbon even during short time SPS. - Highlights: • TiB{sub 2} reinforced steel matrix composites were produced by spark plasma sintering. • TiB{sub 2} was successfully dispersed in the steel matrix by mechanical alloying. • Steel and TiB{sub 2} react during sintering forming equilibrium Fe{sub 2}B and TiC. • The new phases were investigated by means of AFM, Volta potential and XRD analyses.

  11. Stereolithography: A new method for processing dental ceramics by additive computer-aided manufacturing.

    Science.gov (United States)

    Dehurtevent, Marion; Robberecht, Lieven; Hornez, Jean-Christophe; Thuault, Anthony; Deveaux, Etienne; Béhin, Pascal

    2017-05-01

    The aim of this study was to compare the physical and mechanical properties of stereolithography (SLA)- manufactured alumina ceramics of different composition to those of subtractive- manufactured ceramics and to produce suitable dental crown frameworks. The physical and mechanical properties of a control and six experimental SLA ceramics prepared from slurries with small (S) and large (L) particles (0.46±0.03 and 1.56±0.04μm, respectively) and three dry matter contents (70%, 75%, 80%) were evaluated by dynamic rheometry, hydrostatic weighing, three3-point flexural strength measurements, and Weibull analyses, and by the micrometrics measurement of shrinkage ratio before and after the heat treatments. S75 was the only small particle slurry with a significantly higher viscosity than L70. The viscosity of the S80 slurry made it impossible to take rheological measurements. The viscosities of the S75 and S80 slurries caused deformations in the printed layers during SLA manufacturing and were excluded from further consideration. SLA samples with low dry matter content had significantly lower and densityflexural strengths. Only SLA samples with a large particle size and high dry matter content (L75 and L80) were similar in density and flexural strength to the subtractive- manufactured samples. The 95% confidence intervals of the Weibull modulus of the L80 ceramic were higher (no overlap fraction) than those of the L75 ceramic and were similar to the control (overlap fraction). The Weibull characteristics of L80 ceramic were higher than those of L75 ceramic and the control. SLA can be used to process suitable crown frameworks but shows results in anisotropic shrinkage. The hH High particle size and dry matter content of the L80 slurry allowed made it possible to produce a reliable ceramic by SLA manufacturing with an anisotropic shrinkage, and a density, and flexural strength similar to those of a subtractive-manufactured ceramic. SLA allowed made it possible to build

  12. Blood Compatibility of ZrO2 Particle Reinforced PEEK Coatings on Ti6Al4V Substrates

    Directory of Open Access Journals (Sweden)

    Jian Song

    2017-11-01

    Full Text Available Titanium (Ti and its alloys are widely used in biomedical devices. As biomaterials, the blood compatibility of Ti and its alloys is important and needs to be further improved to provide better functionality. In this work, we studied the suitability of zirconia (ZrO2 particle reinforced poly-ether-ether-ketone (PEEK coatings on Ti6Al4V substrates for blood-contacting implants. The wettability, surface roughness and elastic modulus of the coatings were examined. Blood compatibility tests were conducted by erythrocytes observation, hemolysis assay and clotting time of recalcified human plasma, to find out correlations between the microstructure of the ZrO2-filled PEEK composite coatings and their blood compatibilities. The results suggested that adding ZrO2 nanoparticles increased the surface roughness and improved the wettability and Derjaguin-Muller-Toporov (DMT elastic modulus of PEEK coating. The PEEK composite matrix coated Ti6Al4V specimens did not cause any aggregation of erythrocytes, showing morphological normal shapes. The hemolysis rate (HR values of the tested specimens were much less than 5% according to ISO 10993-4 standard. The values of plasma recalcification time (PRT of the tested specimens varied with the increasing amount of ZrO2 nanoparticles. Based on the results obtained, 10 wt % ZrO2 particle reinforced PEEK coating has demonstrated an optimum blood compatibility, and can be considered as a candidate to improve the performance of existing PEEK based coatings on titanium substrates.

  13. Study of the AlON-VN composite ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Sainbaatar; Zhang Zuotai; Li Wenchao; Wang Xidong [Dept. of Physical Chemistry of Metallurgy, Univ. of Science and Technology Beijing, BJ (China)

    2005-07-01

    Aluminium oxynitride-vanadium nitride (AlON-VN) composite ceramic was fabricated based on thermodynamic analysis of V-Al-O-N systems. The results indicated that the VN dispersed homogeneously in AlON matrix and can reinforce AlON matrix. Oxidation behavior was studied and the results showed that it belongs to self-protective oxidation due to the good adherence of oxidation product. Therefore, AlON-VN composites have excellent oxidation resistance. (orig.)

  14. Fabrication and properties of graphene reinforced silicon nitride composite materials

    International Nuclear Information System (INIS)

    Yang, Yaping; Li, Bin; Zhang, Changrui; Wang, Siqing; Liu, Kun; Yang, Bei

    2015-01-01

    Silicon nitride (Si 3 N 4 ) ceramic composites reinforced with graphene platelets (GPLs) were prepared by hot pressed sintering and pressureless sintering respectively. Adequate intermixing of the GPLs and the ceramic powders was achieved in nmethyl-pyrrolidone (NMP) under ultrasonic vibration followed by ball-milling. The microstructure and phases of the Si 3 N 4 ceramic composites were investigated by Field Emission Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The effects of GPLs on the composites' mechanical properties were analyzed. The results showed that GPLs were well dispersed in the Si 3 N 4 ceramic matrix. β-Si 3 N 4, O′-sialon and GPLs were present in the hot-pressed composites while pressureless sintered composites contain β-Si 3 N 4 , Si, SiC and GPLs. Graphene has the potential to improve the mechanical properties of both the hot pressed and pressureless sintered composites. Toughening effect of GPLs on the pressureless sintered composites appeared more effective than that on the hot pressed composites. Toughening mechanisms, such as pull-out, crack bridging and crack deflection induced by GPLs were observed in the composites prepared by the two methods

  15. Effects of Fiber Content on Mechanical Properties of CVD SiC Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    Science.gov (United States)

    Bansal, Narottam P.

    1996-01-01

    Unidirectional CVD SiC(f)(SCS-6) fiber-reinforced strontium aluminosilicate (SAS) glass-ceramic matrix composites containing various volume fractions, approximately 16 to 40 volume %, of fibers were fabricated by hot pressing at 1400 C for 2 h under 27.6 MPa. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase formed, with complete absence of the undesired hexacelsian phase, in the matrix. Room temperature mechanical properties were measured in 3-point flexure. The matrix microcracking stress and the ultimate strength increased with increase in fiber volume fraction, reached maximum values for V(sub f) approximately equal to 0.35, and degraded at higher fiber loadings. This degradation in mechanical properties is related to the change in failure mode, from tensile at lower V(sub f) to interlaminar shear at higher fiber contents. The extent of fiber loading did not have noticeable effect on either fiber-matrix debonding stress, or frictional sliding stress at the interface. The applicability of micromechanical models in predicting the mechanical properties of the composites was also examined. The currently available theoretical models do not appear to be useful in predicting the values of the first matrix cracking stress, and the ultimate strength of the SCS-6/SAS composites.

  16. The influence of matrix composition and reinforcement type on the properties of polysialate composites

    Science.gov (United States)

    Hammell, James A.

    There is a critical need for the development of materials for eliminating fire as a cause of death in aircraft accidents. Currently available composites that use organic matrices not only deteriorate at temperatures above 300°C but also emit toxic fumes. The results presented in this dissertation focus on the development of an inorganic matrix that does not burn or emit toxic fumes. The matrix, known as polysialate, can withstand temperatures in excess of 1000°C. The matrix behaves like a ceramic, but does not need high curing temperatures, so it can be processed like many common organic matrices. The major parameters evaluated in this dissertation are: (i) Influence of reinforcement type, (ii) Matrix formulation for both wet-dry durability and high temperature resistance, (iii) Influence of processing variables such as moisture reduction and storage, (iv) Tensile strain capacity of modified matrices and matrices reinforced with ceramic microfibers and discrete carbon fibers, and (v) analytical modeling of mechanical properties. For the reinforcement type; carbon, glass, and stainless steel wire fabrics were investigated. Carbon fabrics with 1, 3, 12, and 50k tows were used. A matrix chemical formulation that can withstand wetting and drying was developed. This formulation was tested at high temperatures to ascertain its stability above 400°C. On the topic of processing, shelf life of prepregged fabric layers and efficient moisture removal methods were studied. An analytical model based on layered reinforcement was developed for analyzing flexural specimens. It is shown that the new inorganic matrix can withstand wetting and drying, and also high temperature. The layered reinforcement concept provides accurate prediction of strength and stiffness for composites reinforced with 1k and 3k tows. The prepregged fabric layers can be stored for 14 days at -15°C without losing strength.

  17. Current Progress in Bioactive Ceramic Scaffolds for Bone Repair and Regeneration

    Science.gov (United States)

    Gao, Chengde; Deng, Youwen; Feng, Pei; Mao, Zhongzheng; Li, Pengjian; Yang, Bo; Deng, Junjie; Cao, Yiyuan; Shuai, Cijun; Peng, Shuping

    2014-01-01

    Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration. PMID:24646912

  18. Microstructure of bonding zones in laser-clad Ni-alloy-based composite coatings reinforced with various ceramic powders

    International Nuclear Information System (INIS)

    Pei, Y.T.; Ouyang, J.H.; Lei, T.C.

    1996-01-01

    Microstructure of the bonding zones (BZs) between laser-clad Ni-alloy-based composite coatings and steel substrates was studied by means of scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. Observations indicate that for pure Ni-alloy coating the laser parameters selected for good interface fusion have no effect on the microstructure of the BZ except for its thickness. However, the addition of ceramic particles (TiN, SiC, or ZrO 2 ) to the Ni alloy varies the compositional or constitutional undercooling of the melt near the solid/liquid interface and consequently leads to the observed changes of microstructure of the BZs. For TiN/Ni-alloy coating the morphology of γ-Ni solid solution in the BZ changes from dendritic to planar form with increasing scanning speed. A colony structure of eutectic is found in the BZ of SiC/Ni-alloy coating in which complete dissolution of SiC particles takes place during laser cladding. The immiscible melting of ZrO 2 and Ni-alloy powders induces the stratification of ZrO 2 /Ni-alloy coating which consists of a pure ZrO 2 layer fin the upper region and a BZ composed mainly of γ-Ni dendrites adjacent to the substrate. All the BZs studied in this investigation have good metallurgical characteristics between the coatings and the substrates

  19. Ceramic/metal nanocomposites by lyophilization: Processing and HRTEM study

    International Nuclear Information System (INIS)

    Gutierrez-Gonzalez, C.F.; Agouram, S.; Torrecillas, R.; Moya, J.S.; Lopez-Esteban, S.

    2012-01-01

    Highlights: ► A cryogenic route has been used to obtain ceramic/metal nanostructured powders. ► The powders present good homogeneity and dispersion of metal. ► The metal nanoparticle size distributions are centred in 17–35 nm. ► Both phases, ceramic and metal, present a high degree of crystallinity. ► Good metal/ceramic interfaces due to epitaxial growth, studied by HRTEM. -- Abstract: This work describes a wet-processing route based on spray-freezing and subsequent lyophilization designed to obtain nanostructured ceramic/metal powders. Starting from the ceramic powder and the corresponding metal salt, a water-based suspension is sprayed on liquid nitrogen. The frozen powders are subsequently freeze-dried, calcined and reduced. The material was analyzed using X-ray diffraction analysis at all stages. High resolution transmission electron microscopy studies showed a uniform distribution of metal nanoparticles on the ceramic grain surfaces, good interfaces and high crystallinity, with an average metal particle size in the nanometric range.

  20. Characterization of ashes of elephant grass (Pennisetum purpureum) for potential added in mass red ceramic

    International Nuclear Information System (INIS)

    Silva, A.M.F.D.; Sales, K.A.; Monteiro, S.N.; Vieira, C.M.F.

    2012-01-01

    This work is in characterizing ash from biomass grass (Pennisetum purpureums) for incorporation into red ceramic masses. The ashes of elephant grass were generated from burning this dry biomass in an industrial furnace of red ceramic. The morphology of the material generated was observed by an optical microscope. The chemical composition was determined by fluorescence X-ray spectrometry, and the identification of phases by X-ray diffraction. The particle size distribution was obtained by sieving. Thermogravimetric analyzes were also conducted. The results indicate that these ashes are constituted of high quantities of SiO 2 , MgO, CaO and K 2 O, totaling approximately 75% of composition of matter. They have a particle size of 0.7 to 2.2mm featuring. The residue as a kind of coarse particles. Therefore, the results of this study can support future research to the addition of this residue in structural ceramics products (red ceramic)

  1. Properties of copper matrix reinforced with nano- and micro-sized Al2O3 particles

    International Nuclear Information System (INIS)

    Rajkovic, Viseslava; Bozic, Dusan; Jovanovic, Milan T.

    2008-01-01

    The mixture of electrolytic copper powder with 5 wt.% of commercial Al 2 O 3 powder (average particle size: 15 and 0.75 μm, respectively) and the inert gas atomized prealloyed copper powder (average particle size: 30 μm) containing 2.5 wt.% aluminum were separately milled in air up to 20 h in the planetary ball mill. During milling aluminum in the prealloyed copper powders was oxidized in situ by internal oxidation with oxygen from the air forming very fine nano-sized Al 2 O 3 particles. The internal oxidation of 2.5 wt.% aluminum generated 4.7 wt.% of Al 2 O 3 in the copper matrix. Powders and compacts were characterized by light and scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and X-ray diffraction analysis. Microhardness and electrical conductivity were also included in measurements. The microhardness of Cu-2.5 wt.% Al compacts was 3.6 times higher than that of compacts processed from electrolytic copper powder. This increase in microhardness is a consequence of a fine dispersion of Al 2 O 3 particles and refined grain structure. The average values of electrical conductivity of compacts processed from Cu-5 wt.% Al 2 O 3 and Cu-2.5 wt.% Al powders previously milled for 20 h and were 88% and 70% IACS, respectively, which is a rather significant increase if compared with values of 60% and 23% IACS of compacts processed from as-received and non-milled powders. The microhardness of 20-h milled compacts decreases with the heat treatment at 800 deg. C. Due to the effect of nano-sized Al 2 O 3 particles Cu-2.5 wt.% Al compacts show lower decrease in microhardness. The results are discussed in terms of the effect of Al 2 O 3 particle size and fine grain structure on the reinforcing of the copper matrix

  2. Lava ultimate resin nano ceramic for CAD/ CAM: customization case study.

    Science.gov (United States)

    Koller, M; Arnetzl, G V; Holly, L; Arnetzl, G

    2012-01-01

    Lava Ultimate Resin Nano Ceramic (RNC) blocks are innovative new CAD/CAM materials that make it possible to achieve superior esthetic results in easy steps. The blocks are made of nano ceramic particles embedded in a highly cured resin matrix. Therefore, composite materials can be used to characterize and adjust resin nano ceramic restorations after milling. The milled RNC restorations can be individualized intra-orally or extra-orally, either before or after insertion. Unlike conventional ceramic restorations, customization and glaze firing is neither necessary nor possible with RNC restorations. This opens up the opportunity for intraoral individualization and adaptation of the restorations.

  3. A TEM quantitative evaluation of strengthening in an Mg-RE alloy reinforced with SiC

    International Nuclear Information System (INIS)

    Cabibbo, Marcello; Spigarelli, Stefano

    2011-01-01

    Magnesium alloys containing rare earth elements are known to have high specific strength, good creep and corrosion resistance up to 523 K. The addition of SiC ceramic particles strengthens the metal matrix composite resulting in better wear and creep resistance while maintaining good machinability. The role of the reinforcement particles in enhancing strength can be quantitatively evaluated using transmission electron microscopy (TEM). This paper presents a quantitative evaluation of the different strengthening contributions, determined through TEM inspections, in an SiC Mg-RE composite alloy containing yttrium, neodymium, gadolinium and dysprosium. Compression tests at temperatures ranging between 290 and 573 K were carried out. The microstructure strengthening mechanism was studied for all the compression conditions. Strengthening was compared to the mechanical results and the way the different contributions were combined is also discussed and justified. - Research Highlights: → TEM yield strengthening terms evaluation on a Mg-RE SiC alloy. → The evaluation has been extended to different compression temperature conditions. → Linear and Quadratic sum has been proposed and validated. → Hall-Petch was found to be the most prominent strengthening contributions.

  4. ELABORATION OF AN EPOXY COATING REINFORCED WITH ZIRCONIUM CARBIDE NANOSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Lucia G. Díaz-Barriga

    2013-12-01

    Full Text Available This work shows the preparation of a transparent epoxy coating reinforced with 200 PPM of zirconium carbide nanostructures. The nanostructures of ZrC were prepared by mechanosynthesis. The additive characteristics analyzed by X-ray diffraction (XRD and scanning electron microscopy (SEM were presented. Epoxy coating adhesion on a steel plate was analyzed using MEB. Thermogravimetric analysis (TGA was performed to the reinforced paints between 20-700 °C. The reinforced enamel was compared with an enamel without nanostructures. There is not vaporization of reinforced enamel at a 95 y 100 °C with ZrC particles size of 10 µm y 120 nm respectively. The final enamel degradation is slower when there is a 14% by weight of the residue and 426 °C with 120nm diameter particles.

  5. Properties of lithium disilicate reinforced with ZrO{sub 2} (3mol%Y{sub 2}O{sub 3}; Propriedades de dissilicato de litio reforcado com ZrO{sub 2} (3mol%Y{sub 2}O{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Alves, M.F.R.P.; Cossu, C.M.F.A.; Santos, C., E-mail: manuelfellipealves@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Resende, RJ (Brazil). Faculdade de Tecnologia; Silva, C.L.M. [Centro Universitario de Volta Redonda (UniFOA), Volta Redonda, RJ (Brazil); Simba, B.G. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Faculdade de Engenharia; Fernandes, M.H.F. [Universidade de Aveiro (Portugal)

    2016-07-01

    The new generation of dental ceramics based on lithium disilicate, Li{sub 2}Si{sub 2}O{sub 5}, allows the production of restorative prosthetic with reduced times compared to alumina and / or zirconia (Y-TZP). A great limitation of their use is related low fracture strength of such glass-ceramics, which reduces their use in unit fixed prosthesis. In this work, lithium disilicate reinforced with 10% ZrO{sub 2} (3-mol% Y{sub 2}O{sub 3}) is characterized by relative density, crystalline phase, hardness, fracture toughness and microstructural aspects. Lithium metasilicate and tetragonal zirconia, prior to heat treatment. After thermal treatment under vacuum at 840 deg C-8min the lithium metasilicate is converted to lithium disilicate as the ZrO{sub 2} phase remains in the tetragonal structure. This maintenance of the tetragonal phase ensures the material a good fracture toughness, reaching average values near 2MPam{sup 1/2}, while the average hardness of 600HV. Morphological analysis of the samples indicates that ZrO{sub 2} particles are uniformly dispersed in the matrix composed of high aspect ratio lithium disilicate grains, which contributes to the results presented.. A critical analysis of the performance of toughening mechanisms such as cracks deflection, phase transformation of ZrO{sub 2} (T-M), residual stress between the matrix and the reinforcement are presented, discussed and compared with other ceramic materials used in dentistry restorer. (author)

  6. Strength and thermal stability of fiber reinforced plastic composites ...

    African Journals Online (AJOL)

    Therefore, the strength properties and thermal stability of plastic composites reinforced with rattan fibers were investigated in this work. Particles of rattan species (Eremospatha macrocarpa (EM) and Laccosperma secundiflorum (LS)) were blended with High-Density Polyethylene (HDPE) to produce fiber reinforced plastic ...

  7. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2011-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  8. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2010-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  9. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2012-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  10. Effect of the percentage of reinforcement on the wear in the metal matrix composites sintered with abnormal glow discharge; Efecto del porcentaje de refuerzo frente al desgaste en compuestos de matriz metalica sinterizados con descarga luminiscente anormal

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Velasquez, S.; Pineda-Triana, Y.; Aguilar-Castro, Y.; Vera-Lopez, E.

    2016-05-01

    In this study an analysis of the behavior of dry wear coefficient of a Metal Matrix Composite (MMC) in 316 stainless steel reinforced with particles of titanium carbide (TiC) according to ASTM G 99 standards, in a pin-on-disk test. In this research it is tested the effect of the percentage of reinforcement in the MMC manufactured with 3, 6 y 9% (vol.) of TiC, in samples compacted at 800 MPa, generating different values of grain size, hardness and density, they are sintered with abnormal glow discharge, at a temperature of 1200 degree centigrade ±5 degree centigrade, with a protection atmosphere H{sub 2} - N{sub 2} and a permanence time of 30 minutes. According to the results obtained it is concluded that the best condition for the MMC manufacturing, in relation to the reinforcement percentage, is the one obtained when the mixture contains 6% of TiC compacted at 800 MPa. In these conditions, it was obtained: achieving smaller grain size, the greater hardness and the lowest coefficient of friction. In this respect, it was observed that the incorporation of the ceramic particles (TiC) in a matrix of austenitic steel (316) shows significant improvements in the resistance to the wear. (Author)

  11. SYNTHESIS AND CHARACTERIZATION OF CANNABIS INDICA FIBER REINFORCED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Amar Singh Singha

    2011-04-01

    Full Text Available This paper reports on the synthesis of Cannabis indica fiber-reinforced composites using Urea-Resorcinol-Formaldehyde (URF as a novel matrix through compression molding technique. The polycondensation between urea, resorcinol, and formaldehyde in different molar ratios was applied to the synthesis of the URF polymer matrix. A thermosetting matrix based composite, reinforced with lignocellulose from Cannabis indica with different fiber loadings 10, 20, 30, 40, and 50% by weight, was obtained. The mechanical properties of randomly oriented intimately mixed fiber particle reinforced composites were determined. Effects of fiber loadings on mechanical properties such as tensile, compressive, flexural strength, and wear resistance were evaluated. Results showed that mechanical properties of URF resin matrix increased considerably when reinforced with particles of Cannabis indica fiber. Thermal (TGA/DTA/DTG and morphological studies (SEM of the resin, fiber and polymer composite thus synthesized were carried out.

  12. Poly(borosiloxanes as precursors for carbon fiber ceramic matrix composites

    Directory of Open Access Journals (Sweden)

    Renato Luiz Siqueira

    2007-06-01

    Full Text Available Ceramic matrix composites (CMCs, constituted of a silicon boron oxycarbide (SiBCO matrix and unidirectional carbon fiber rods as a reinforcement phase, were prepared by pyrolysis of carbon fiber rods wrapped in polysiloxane (PS or poly(borosiloxane (PBS matrices. The preparation of the polymeric precursors involved hydrolysis/condensation reactions of alkoxysilanes in the presence and absence of boric acid, with B/Si atomic ratios of 0.2 and 0.5. Infrared spectra of PBS showed evidence of Si-O-B bonds at 880 cm-1, due to the incorporation of the crosslinker trigonal units of BO3 in the polymeric network. X ray diffraction analyses exhibited an amorphous character of the resulting polymer-derived ceramics obtained by pyrolysis up to 1000 °C under inert atmosphere. The C/SiBCO composites showed better thermal stability than the C/SiOC materials. In addition, good adhesion between the carbon fiber and the ceramic phase was observed by SEM microscopy

  13. Hydroxyapatite additive influenced the bioactivity of bioactive nano-titania ceramics and new bone-forming capacity

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhensheng [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Yang Xiaozhan [Chongqing University of Technology, School of Optoelectronic Information (China); Guo Hongfeng [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China); Yang Xiaochao; Sun Lili [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Dong Shiwu, E-mail: shiwudong@gmail.com [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China)

    2012-09-15

    Bioceramics plays an important role in bone-substitutes. In this study, titania porous ceramics with excellent bioactivity were prepared using hydroxyapatite (HA, 10 vol.% contents) as a grain growth inhibitor. The pure TiO{sub 2} porous ceramics were also prepared as a control. After sintered at 1,000 Degree-Sign C with a pressureless sintering method, the particle size of the pure TiO{sub 2} and TiO{sub 2}/HA (10 vol.%) porous ceramics were 450 and 310 nm, respectively. Each of the porous ceramics presented numerous pores, which were cross-connected. The size of the pores ranged from 100 to 300 {mu}m. There were also profuse micropores inside the pore wall and between the particles. A SBF soaking experiment demonstrated that the HA additive played an important role in promoting apatite formation. The cell proliferation demonstrated that osteoblasts on the TiO{sub 2}/HA (10 vol.%) porous ceramics proliferated faster than that on the pure TiO{sub 2} ceramics. The histological sections and EDX assay results of the two porous ceramics also illustrated that TiO{sub 2}/HA (10 vol.%) composite ceramics combined with Ca and P elements induced much better apatite formation than that of the pure TiO{sub 2} ceramics. These results indicated that titania ceramics combined with HA holds great promise for bone-substitutes.

  14. Production and characterization of ceramic composite Al_2O_3-TiO_2 reinforced with Y_2O_3 and its stability in crude oil for internal coating of petroleum tankers

    International Nuclear Information System (INIS)

    Yadava, Y.P.; David, N.R.; Sanguinetti Ferreira, R.A.; Shinohara, A.H.

    2014-01-01

    The internal surfaces of crude petroleum tankers are subjected to corrosive environments, therefore it is of great importance to research coatings for the protection of those structures. Ceramic materials generally exhibit characteristic chemical inertness and are shown as material option for this application. In this study alumina-titania ceramic composites have been produced and reinforced with yttria. These composites were produced by thermo-mechanical process, sintered at 1350 ° C for 24 hours, and left to cool down in the oven. The structural and microstructural characterization of the sintered material was tested by X-ray diffraction and scanning electron microscopy. And its mechanical property was studied by Vickers microhardness test. After this characterization, the samples underwent a stability test where they were immersed in crude oil at room temperature for 60 days, during which were periodically subjected to tests related to stability, which was found found that the material was free from cracks, fissures or fractures, presenting for these reasons characteristics of inertia when subjected to crude oil environment. (author)

  15. Characterization of granite waste for use in red ceramic

    International Nuclear Information System (INIS)

    Aguiar, M.C.; Monteiro, S.N.; Vieira, C.M.F.; Borlini, M.C.

    2011-01-01

    This work aims to study the characterization of the granite waste from the city of Santo Antonio de Padua-RJ for the use in red ceramic. The chemical, physical and morphological characterization of the waste was performed by chemical analysis, X-ray diffraction, particle size distribution, thermal analysis and scanning electron microscopy (SEM). The results indicated that this waste is a material with great potential to be used as a component of ceramic body due to its capacity to act as flux during the firing, and to improve the properties of the ceramic when is incorporate. (author)

  16. Porosity and biocompatibility study of ceramic implants based on ZrO2 and Al2O3

    International Nuclear Information System (INIS)

    Litvinova, Larisa; Shupletsova, Valeria; Leitsin, Vladimir; Vasyliev, Roman; Zubov, Dmitry; Buyakov, Ales; Kulkov, Sergey

    2014-01-01

    The work studies ZrO 2 (Me x O y )-based porous ceramics produced from the powders consisting of hollow spherical particles. It was shown that the structure is represented by a cellular framework with bimodal porosity consisting of sphere-like large pores and pores that were not filled with the powder particles during the compaction. For such ceramics, the increase of pore volume is accompanied by the increased strain in an elastic area. It was also shown that the porous ZrO 2 ceramics had no acute or chronic cytotoxicity. At the same time, ceramics possess the following osteoconductive properties: adhesion support, spreading, proliferation and osteogenic differentiation of MSCs

  17. The impact of core-shell nanotube structures on fracture in ceramic nanocomposites

    International Nuclear Information System (INIS)

    Liang, Xin; Yang, Yingchao; Lou, Jun; Sheldon, Brian W.

    2017-01-01

    Multi-wall carbon nanotubes (MWCNTs) can be used to create ceramic nanocomposites with improved fracture toughness. In the present work, atomic layer deposition (ALD) was employed to deposit thin oxide layers on MWCNTs. These core-shell structures were then used to create nanocomposites by using a polymer derived ceramic (PDC) to produce the matrix. Variations in both the initial MWCNT structure and the oxide layers led to substantial differences in fiber-pullout behavior. Single tube pullout tests also showed that the oxide coatings led to stronger bonding with the ceramic matrix. With high defect density MWCNTs, this led to shorter pull-out lengths which is consistent with the conventional understanding of fracture in ceramic matrix composites. However, with low defect density MWCNTs longer pullout lengths were observed with the oxide layers. To interpret the different trends that were observed, we believe that the ALD coatings should not be viewed simply as a means of altering the interfacial properties. Instead, the coated MWCNTs should be viewed as more complex core-shell fibers where both interface and internal properties can be controlled with the ALD layers. - Graphical abstract: Fracture properties of core-shell nanotubes reinforced ceramic nanocomposites.

  18. A study of the bending resistance of implant-supported reinforced alumina and machined zirconia abutments and copies.

    Science.gov (United States)

    Sundh, Anders; Sjögren, Göran

    2008-05-01

    The purpose of the present study was to evaluate the bending resistance of implant-supported CAD/CAM-processed restorations made out of zirconia or manually shaped made out of reinforced alumina. Units of abutments and copies made of (i) a prefabricated hot isostatic pressed (HIPed) yttrium oxide partially-stabilized zirconia (Y-TZP) (Denzir), (ii) a prefabricated densely-sintered magnesia partially stabilized zirconia (Mg-PSZ) (Denzir-M) or, copies made of (iii) a prefabricated partially-sintered, porous reinforced alumina ceramic (RN synOcta-In-Ceram) were subjected to static loading perpendicularly at the long axis. The abutments were attached to either stainless steel analogs or titanium implant fixtures. The Y-TZP and Mg-PSZ copies were bonded onto the ceramic abutments with a dual-cured resin composite (Rely-X Unicem). Units of titanium abutment attached to a titanium implant fixtures were used as reference. The units comprising Denzir abutments as delivered (pstainless steel analogs exhibited significantly higher bending resistance than the control. The heat-treated Denzir copies bonded to the heat-treated Denzir M abutments attached to titanium implant fixtures and the In-Ceram specimens attached to stainless steel analogs showed significantly (pstainless steel analogs. No statistically significant (p>0.05) differences were seen among the other groups studied. All the ceramic abutments and copies exhibited values that were equal or superior to that of the control and exceeded the reported value, up to 300 N, for maximum incisal bite forces. To assess the clinical behavior long-term clinical studies should be conducted.

  19. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    Science.gov (United States)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  20. Fiscal 1997 report of the R and D result of industrial science and technology. R and D on synergy ceramics (development of rational energy use technology); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu seika hokokusho. Synergy ceramics no kenkyu kaihatsu (energy shiyo gorika gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For rational use of energy resources, the process technology which allows harmonization and multiplication of conflicting characteristics was developed for development of new ceramic system materials. This paper summarizes the result in fiscal 1997. On a structural reaction process among creation technologies of ultra-reliable structure, study was made on structure control and hot-working technology through atmosphere control in ceramics synthesis. On basic technology for analysis and evaluation, study was made on the effect of particle bridging on strengthening and toughening of ceramic materials. Study was also made on a toughness expression mechanism, FEM model analysis of particle bridging, and crack growth resistance of ceramics. On control of solid solution precipitation, new alumina ceramics with high strength, hardness and wear resistance was obtained by transgranularly precipitating nano-size particles from a fine-grain high-density matrix through an improved particle formation process. Its toughness was considerably improved by controlling grain shape and grain boundary structure. A precipitation mechanism was also discussed. 89 refs., 107 figs., 14 tabs.

  1. Diffusion of transmutation isotope in YBaCuO ceramics

    International Nuclear Information System (INIS)

    Malkovich, R.Sh.

    2005-01-01

    The diffusion of a transmutation isotope generated in YBaCuO ceramics irradiated by high-energy charged particles is mathematically analyzed. The model is based on the assumption that copper isotope atoms created in subsurface layers of ceramic grains segregate at the grain boundaries in the course of subsequent annealing and then rapidly diffuse via intergranular regions in depth of the material and penetrate into the bulk of grains [ru

  2. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    Science.gov (United States)

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  3. Improved C/SiC Ceramic Composites Made Using PIP

    Science.gov (United States)

    Easler, Timothy

    2007-01-01

    Improved carbon-fiber-reinforced SiC ceramic-matrix composite (C/SiC CMC) materials, suitable for fabrication of thick-section structural components, are producible by use of a combination of raw materials and processing conditions different from such combinations used in the prior art. In comparison with prior C/SiC CMC materials, these materials have more nearly uniform density, less porosity, and greater strength. The majority of raw-material/processing-condition combinations used in the prior art involve the use of chemical vapor infiltration (CVI) for densifying the matrix. In contrast, in synthesizing a material of the present type, one uses a combination of infiltration with, and pyrolysis of, a preceramic polymer [polymer infiltration followed by pyrolysis (PIP)]. PIP processing is performed in repeated, tailored cycles of infiltration followed by pyrolysis. Densification by PIP processing takes less time and costs less than does densification by CVI. When one of these improved materials was tested by exposure to a high-temperature, inert-gas environment that caused prior C/SiC CMCs to lose strength, this material did not lose strength. (Information on the temperature and exposure time was not available at the time of writing this article.) A material of the present improved type consists, more specifically, of (1) carbon fibers coated with an engineered fiber/matrix interface material and (2) a ceramic matrix, containing SiC, derived from a pre-ceramic polymer with ceramic powder additions. The enhancements of properties of these materials relative to those of prior C/SiC CMC materials are attributable largely to engineering of the fiber/ matrix interfacial material and the densification process. The synthesis of a material of this type includes processing at an elevated temperature to a low level of open porosity. The approach followed in this processing allows one to fabricate not only simple plates but also more complexly shaped parts. The carbon fiber

  4. A study on wear resistance and microcrack of the Ti{sub 3}Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianing, E-mail: ljnljn1022@163.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Chen Chuanzhong [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Squartini, Tiziano [INFM-Department of Physics, Siena University, Siena 53100 (Italy); He Qingshan [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China)

    2010-12-15

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti{sub 3}Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti{sub 3}Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti{sub 3}Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti{sub 3}Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  5. Wear Characteristics of Hybrid Composites Based on Za27 Alloy Reinforced With Silicon Carbide and Graphite Particles

    Directory of Open Access Journals (Sweden)

    S. Mitrović

    2014-06-01

    Full Text Available The paper presents the wear characteristics of a hybrid composite based on zinc-aluminium ZA27 alloy, reinforced with silicon-carbide and graphite particles. The tested sample contains 5 vol.% of SiC and 3 vol.% Gr particles. Compocasting technique has been used to prepare the samples. The experiments were performed on a “block-on-disc” tribometer under conditions of dry sliding. The wear volumes of the alloy and the composite were determined by varying the normal loads and sliding speeds. The paper contains the procedure for preparation of sample composites and microstructure of the composite material and the base ZA27 alloy. The wear surface of the composite material was examined using the scanning electronic microscope (SEM and energy dispersive spectrometry (EDS. Conclusions were obtained based on the observed impact of the sliding speed, normal load and sliding distance on tribological behaviour of the observed composite.

  6. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    Science.gov (United States)

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  7. Influence of resin cement shade on the color and translucency of ceramic veneers.

    Science.gov (United States)

    Hernandes, Daiana Kelly Lopes; Arrais, Cesar Augusto Galvão; Lima, Erick de; Cesar, Paulo Francisco; Rodrigues, José Augusto

    2016-01-01

    This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.

  8. Flash sintering of ceramic materials

    Science.gov (United States)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  9. Clinical examination of leucite-reinforced glass-ceramic crowns (Empress) in general practice: a retrospective study.

    Science.gov (United States)

    Sjögren, G; Lantto, R; Granberg, A; Sundström, B O; Tillberg, A

    1999-01-01

    The purpose of this study was to retrospectively evaluate leucite reinforced-glass ceramic crowns (Empress) placed in patients who regularly visit general practices. One hundred ten Empress crowns, placed in 29 patients who visited a general practice on a regular basis, were evaluated according to the California Dental Association's (CDA) quality evaluation system. In addition, the occurrence of plaque and certain gingival conditions was evaluated. All crowns were luted with resin composite cement. The mean and median years in function for the crowns were 3.6 and 3.9 years, respectively. Based on the CDA criteria, 92% of the 110 crowns were rated "satisfactory." Eighty-six percent were given the CDA rating "excellent" for margin integrity. Fracture was registered in 6% of the 110 crowns. Of the remaining 103 crowns, the CDA rating excellent was given to 74% for anatomic form, 86% for color, and 90% for surface. No significant differences (P > 0.05) were observed regarding fracture rates between anterior and posterior crowns. With regard to the occurrence of plaque and bleeding on probing, no significant differences (P > 0.05) were observed between the Empress crowns and the controls. Most of the fractured crowns had been placed on molars or premolars. Although the difference between anterior and posterior teeth was not statistically significant with respect to the fracture rates obtained, the number of fractured crowns placed on posterior teeth exceeded that of those placed on anterior teeth. The difference between the fracture rates may have clinical significance, and the risk of fracture has to be taken into consideration when placing crowns on teeth that are likely to be subjected to high stress levels.

  10. Mechanical Failure of Endocrowns Manufactured with Different Ceramic Materials: An In Vitro Biomechanical Study.

    Science.gov (United States)

    Aktas, Guliz; Yerlikaya, Hatice; Akca, Kivanc

    2018-04-01

    To evaluate the effect of different silica-based ceramic materials on the mechanical failure behavior of endocrowns used in the restoration of endodontically treated mandibular molar teeth. Thirty-six intact mandibular molar teeth extracted because of a loss of periodontal support received root canal treatment. The teeth were prepared with a central cavity to support the endocrowns, replacing the occlusal surface with mesial-lingual-distal walls. Data acquisition of the prepared tooth surfaces was carried out digitally with a powder-free intraoral scanner. Restoration designs were completed on manufactured restorations from three silicate ceramics: alumina-silicate (control), zirconia-reinforced (Zr-R), and polymer-infiltrated (P-I). Following adhesive cementation, endocrowns were subjected to thermal aging, and then, each specimen was obliquely loaded to record the fracture strength and define the mechanical failure. For the failure definition, the fracture type characteristics were identified, and further analytic measurements were made on the fractured tooth and ceramic structure. Load-to-fracture failure did not differ significantly, and the calculated mean values were 1035.08 N, 1058.33 N, and 1025.00 N for control, Zr-R, and P-I groups, respectively; however, the stiffness of the restoration-tooth complex was significantly higher than that in both test groups. No statistically significant correlation was established in paired comparisons of the failure strength, restorative stiffness, and fractured tooth distance parameters. The failure mode for teeth restored with zirconia-reinforced glass ceramics was identified as non-restorable. The resin interface in the control and P-I groups presented similar adhesive failure behavior. Mechanical failure of endocrown restorations does not significantly differ for silica-based ceramics modified either with zirconia or polymer. © 2016 by the American College of Prosthodontists.

  11. Microstructure Control of Barium Titanate Grain-oriented Ceramics and Their Piezoelectric Properties

    International Nuclear Information System (INIS)

    Mori, Rintaro; Nakashima, Koichi; Fujii, Ichiro; Wada, Satoshi; Hayashi, Hiroshi; Nagamori, Yoshitaka; Yamamoto, Yuichi

    2011-01-01

    The Barium titanate (BaTiO 3 , BT) [110] grain-oriented ceramics along [110] direction were prepared by a templated grain growth (TGG) method. The [110] oriented BT platelike particles (t-BT) were used as template particles. The relationship between poling treatment program and piezoelectric constant was investigated. The change in the poling conditions did not greatly influence domain size and the piezoelectric constant. The relationship between piezoelectric properties and domain size in BT grain-oriented ceramics was investigated. The smaller domain size was required to increase the piezoelectric constant.

  12. Effect of particle size on the friction welding of Al2O3 reinforced 6160 Al alloy composite and SAE 1020 steel

    International Nuclear Information System (INIS)

    Hascalik, Ahmet; Orhan, Nuri

    2007-01-01

    The aim of this study is to investigate the feasibility of joining Al 2 O 3 reinforced Al alloy composite to SAE 1020 steel by rotational friction welding. The aluminum-based metal matrix composite (MMC) material containing 5, 10 and 15 vol% Al 2 O 3 particles with average particle sizes of 30 and 60 μm was produced by powder metallurgy technique. The integrity of the joints has been investigated by optical and scanning electron microscopy, while the mechanical properties assessment included microhardness and shear tests. Results indicated that Al/Al 2 O 3 composite could be joined to SAE 1020 steel by friction welding. However, it was pointed out that the quality of the joint was effected negatively with the increase in particle size and volume percentage of the oxide particles in the MMC

  13. CeO2-stabilized tetragonal ZrO2 polycrystals (Ce-TZP ceramics)

    International Nuclear Information System (INIS)

    Andrade Nono, M.C. de.

    1990-12-01

    This work presents the development and the characterization of CeO 2 -stabilized tetragonal ZrO 2 polycrystals (Ce-TZP ceramics), since it is considered candidate material for applications as structural high performance ceramics. Sintered ceramics were fabricated from mixtures of powders containing different CeO 2 content prepared by conventional and nonconventional techniques. These powders and their resultant sintered ceramics were specified by chemical and physical characterization, compactation state and mechanical properties. The chemical characteristics were determined by chemical analysis and the physical characteristics were evaluated by phase content, particle and agglomerate size and aspect, and powder porosity. (author)

  14. Interfaces in ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    Internal interfaces in all-ceramic dispersion fuels (such as these for HTGRs) are discussed for two classes: BeO-based dispersions, and coated particles for graphite-based fuels. The following points are made: (1) The strength of a two-phase dispersion is controlled by the weaker dispersed phase bonded to the matrix. (2) Differential expansion between two phases can be controlled by an intermediate buffer zone of low density. (3) A thin ceramic coating should be in compression. (4) Chemical reaction between coating and substrate and mass transfer in service should be minimized. The problems of the nuclear fuel designer are to develop coatings for fission product retention, and to produce radiation-resistant interfaces. 44 references, 18 figures

  15. Porous ceramics achievement by soybean and corn agricultural waste insertion

    International Nuclear Information System (INIS)

    Valdameri, C.Z.; Ank, A.; Zatta, L.; Anaissi, F.J.

    2014-01-01

    Porous ceramic materials are produced by incorporating organic particles and stable foams. Generally it improves low thermal conductivity, which gives thermal comfort for buildings. The southwest region of Parana state is one of the largest producers of grains in Brazil, this causes the disposal of a large amount of waste in the agricultural processing. This paper presents the characterization of porous ceramics produced from clay minerals and agricultural waste (soybeans and corn). The precursor was characterized by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) techniques. For the ceramic materials produced, characterizations about density, water absorption, tensile strength by diametrical compression strength and flexural strength curves was performed. The results showed high possibility of industrial/commercial application because the ceramic materials were produced from low costs precursors leading to ceramic products with properties of interest in construction. (author)

  16. The Y2BaCuO5 oxide as green pigment in ceramics

    International Nuclear Information System (INIS)

    Fernandez, F.; Colon, C.; Duran, A.; Barajas, R.; Llopis, J.; Paje, S.E.; Saez-Puche, R.; Julian, I.

    1998-01-01

    Fine particles of green yttrium-barium-copper-oxide pigments Y 2 BaCuO 5 have been prepared using two different synthesis methods. The process of combustion of mixed nitrates and urea needs a maximal temperature of 900 C and provides samples formed by aggregates of homogeneous small particles with a size of about 0.3 μm. However, the ceramic method requires 1050 C as synthesis temperature, and yields rather higher particle sizes. Even after grinding, these samples are formed by heterogeneous particles with mean sizes of about 3 μm. Diffuse reflectance spectra reveal that the samples obtained using the former method present a higher brilliancy, so they have been selected to be tested as green pigment in ceramics with good results. (orig.)

  17. Cold Gas-Sprayed Deposition of Metallic Coatings onto Ceramic Substrates Using Laser Surface Texturing Pre-treatment

    Science.gov (United States)

    Kromer, R.; Danlos, Y.; Costil, S.

    2018-04-01

    Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle-substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications.

  18. Ceramic matrix composites using polymer pyrolysis and liquid densification processing

    International Nuclear Information System (INIS)

    Davis, H.O.; Petrak, D.R.

    1995-01-01

    The polymer precursor approach for manufacture of ceramic matrix composites (CMCs) is both flexible and tailorable to shape and engineering requirements. The tailorability includes a wide range of reinforcements, polymer matrix precursors and fillers. Processing is selected based on cure/pressure requirements to best produce the required shape, radii, fiber volume and fiber orientation. Combinations of tooling used for cure/pressure applications are discussed and fabricated components are shown. ((orig.))

  19. Fabrication and properties of graphene reinforced silicon nitride composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yaping; Li, Bin, E-mail: libin@nudt.edu.cn; Zhang, Changrui; Wang, Siqing; Liu, Kun; Yang, Bei

    2015-09-17

    Silicon nitride (Si{sub 3}N{sub 4}) ceramic composites reinforced with graphene platelets (GPLs) were prepared by hot pressed sintering and pressureless sintering respectively. Adequate intermixing of the GPLs and the ceramic powders was achieved in nmethyl-pyrrolidone (NMP) under ultrasonic vibration followed by ball-milling. The microstructure and phases of the Si{sub 3}N{sub 4} ceramic composites were investigated by Field Emission Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The effects of GPLs on the composites' mechanical properties were analyzed. The results showed that GPLs were well dispersed in the Si{sub 3}N{sub 4} ceramic matrix. β-Si{sub 3}N{sub 4,} O′-sialon and GPLs were present in the hot-pressed composites while pressureless sintered composites contain β-Si{sub 3}N{sub 4}, Si, SiC and GPLs. Graphene has the potential to improve the mechanical properties of both the hot pressed and pressureless sintered composites. Toughening effect of GPLs on the pressureless sintered composites appeared more effective than that on the hot pressed composites. Toughening mechanisms, such as pull-out, crack bridging and crack deflection induced by GPLs were observed in the composites prepared by the two methods.

  20. Factors controlling crystallization of miserite glass-ceramic.

    Science.gov (United States)

    Muhammed, Fenik K; Moorehead, Robert; van Noort, Richard; Pollington, Sarah

    2015-12-01

    The purpose of this study was to investigate a range of variables affecting the synthesis of a miserite glass-ceramic (GC). Miserite glass was synthesized by the melt quench technique. The crystallization kinetics of the glass were determined using Differential Thermal Analysis (DTA). The glasses were ground with dry ball-milling and then sieved to different particle sizes prior to sintering. These particle sizes were submitted to heat treatment regimes in a high temperature furnace to form the GC. The crystal phases of the GC were analyzed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to examine the microstructure of the cerammed glass. XRD analysis confirmed that the predominant crystalline phase of the GC was miserite along with a minor crystalline phase of cristobalite only when the particle size is <20 μm and the heat treatment at 1000°C was carried out for 4h and slowly cooled at the furnace rate. For larger particle sizes and faster cooling rates, a pseudowollastonite crystalline phase was produced. Short sintering times produced either a pseudowollastonite or xonotolite crystalline phase. The current study has shown that particle size and heat treatment schedules are major factors in controlling the synthesis of miserite GC. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  2. LSA glass-ceramic tiles made by powder pressing

    International Nuclear Information System (INIS)

    Figueira, F.C.; Bertan, F.M.; Riella, H.G.; Uggioni, E.; Bernardin, A.M.

    2009-01-01

    A low cost alternative for the production of glass-ceramic materials is the pressing of the matrix glass powders and its consolidation simultaneously with crystallization in a single stage of sintering. The main objective of this work was to obtain LSA glass ceramics with low thermal expansion, processed by pressing and sintering a ceramic frit powder. The raw materials were homogenized and melted (1480 deg C, 80min), and the melt was poured in water. The glass was chemically (XRF and AAS) and thermally (DTA, 10 deg C/min, air) characterized, and then ground (60min and 120min). The ground powders were characterized (laser diffraction) and compressed (35MPa and 45MPa), thus forming four systems. The compacts were dried (150 deg C, 24h) and sintered (1175 deg C and 1185 deg C, 10 deg C/min). Finally, the glass-ceramics were characterized by microstructural analysis (SEM and XRD), mechanical behavior (σbending) and thermal analysis (α). The best results for thermal expansion were those for the glass-ceramics processed with smaller particle size and greater compaction pressure. (author)

  3. Are PEEK-on-Ceramic Bearings an Option for Total Disc Arthroplasty? An In Vitro Tribology Study.

    Science.gov (United States)

    Siskey, Ryan; Ciccarelli, Lauren; Lui, Melissa K C; Kurtz, Steven M

    2016-11-01

    Most contemporary total disc replacements (TDRs) use conventional orthopaedic bearing couples such as ultrahigh-molecular-weight polyethylene (polyethylene) and cobalt-chromium (CoCr). Cervical total disc replacements incorporating polyetheretherketone (PEEK) bearings (specifically PEEK-on-PEEK bearings) have been previously investigated, but little is known about PEEK-on-ceramic bearings for TDR. (1) What is the tribologic behavior of a PEEK-on-ceramic bearing for cervical TDR under idealized, clean wear test conditions? (2) How does the PEEK-on-ceramic design perform under impingement conditions? (3) How is the PEEK-on-ceramic bearing affected by abrasive wear? (4) Is the particle morphology from PEEK-on-ceramic bearings for TDRs affected by adverse wear scenarios? PEEK-on-ceramic cervical TDR bearings were subjected to a 10 million cycle ideal wear test based on ASTM F2423 and ISO 181912-1 using a six-station spine wear simulator (MTS, Eden Prairie, MN, USA) with 5 g/L bovine serum concentration at 23° ± 2° C (ambient temperature). Validated 1 million cycle impingement and 5 million cycle abrasive tests were conducted on the PEEK-on-ceramic bearings based, in part, on retrieval analysis of a comparable bearing design as well as finite element analyses. The ceramic-on-PEEK couple was characterized for damage modes, mass and volume loss, and penetration and the lubricant was subjected to particle analysis. The resulting mass wear rate, volumetric wear rate, based on material density, and particle analysis were compared with clinically available cervical disc bearing couples. The three modes of wear (idealized, impingement, and abrasive) resulted in mean mass wear rates of 0.9 ± 0.2 mg/MC, 1.9 ± 0.5 mg/MC, and 2.8 ± 0.6 mg/MC, respectively. The mass wear rates were converted to volumetric wear rates using density and found to be 0.7 ± 0.1 mm 3 /MC, 1.5 ± 0.4 mm 3 /MC, and 2.1 ± 0.5 mm 3 /MC, respectively. During each test, the PEEK

  4. On the influence of particle morphology on the post-impact ballistic response of ceramic armour materials

    Science.gov (United States)

    Hameed, Amer; Appleby-Thomas, Gareth; Wood, David; Jaansalu, Kevin

    2015-06-01

    Recent studies have shown evidence that the ballistic-resistance of fragmented (comminuted) ceramics is independent of the original strength of the material. In particular, experimental investigations into the ballistic behaviour of such fragmented ceramics have indicated that this response is correlated to shattered ceramic morphology. This suggests that careful control of ceramic microstructure - and therefore failure paths - might provide a route to optimise post-impact ballistic performance, thereby enhancing multi-hit capability. In this study, building on previous in-house work, ballistic tests were conducted using pre-formed `fragmented-ceramic' analogues based around three morphologically differing (but chemically identical) alumina feedstock materials compacted into target `pucks. In an evolution of previous work, variation of target thickness provided additional insight into an apparent morphology-based contribution to ballistic response.

  5. Characterization of sugarcane bagasse ash for use in ceramic bodies

    Energy Technology Data Exchange (ETDEWEB)

    Faria, K.C.P.; Gurgel, R.F.; Holanda, J.N.F., E-mail: katiacpf@terra.com.br, E-mail: rfguenf2009@hotmail.com, E-mail: holanda@uenf.br [Universidade Estadual do Norte Fluminense (LAMAV/GMCer/UENF), Campos dos Goytacazes-RJ (Brazil)

    2009-07-01

    The objective of this work is to characterization of sugarcane bagasse ash waste aiming the use it in red ceramic industry. The characterization was done in terms of chemical composition, X-ray diffraction, particle size distribution, morphology, and plasticity. The results show that the cane bagasse ash waste is a non plastic material, which contains high content of silica and minor amounts of Al, Fe, Ca, Mg, and K oxides. Thus, the sugar cane bagasse ash waste presents high potential for application in the manufacture of ceramic products such as bricks, roofing tiles, and ceramic tiles. (author)

  6. Characterization of sugarcane bagasse ash for use in ceramic bodies

    International Nuclear Information System (INIS)

    Faria, K.C.P.; Gurgel, R.F.; Holanda, J.N.F.

    2009-01-01

    The objective of this work is to characterization of sugarcane bagasse ash waste aiming the use it in red ceramic industry. The characterization was done in terms of chemical composition, X-ray diffraction, particle size distribution, morphology, and plasticity. The results show that the cane bagasse ash waste is a non plastic material, which contains high content of silica and minor amounts of Al, Fe, Ca, Mg, and K oxides. Thus, the sugar cane bagasse ash waste presents high potential for application in the manufacture of ceramic products such as bricks, roofing tiles, and ceramic tiles. (author)

  7. Producing a particle-reinforced AlCuMgMn alloy by means of mechanical alloying; Herstellung einer partikelverstaerkten AlCuMgMn-Legierung durch mechanisches Legieren

    Energy Technology Data Exchange (ETDEWEB)

    Nestler, D.; Wielage, B. [TU Chemnitz, Institut fuer Werkstoffwissenschaft und Werkstofftechnik (Germany); Siebeck, S.

    2012-07-15

    High-energy ball milling (HEM) with subsequent consolidation is a suitable method to produce particle-reinforced aluminium materials. The task of HEM is to distribute the reinforcement particles as homogeneously as possible. A further application of HEM is mechanical alloying (MA). This paper deals with the combination of both applications. Pure metallic powders (Al, Cu, Mg, Mn) were milled together with SiC particles up to 10 h. The composition of the metallic powder corresponds to that of the alloy AA2017 (3.9% Cu, 0.7% Mg, 0.6% Mn). In previous experiments [1], this alloy was used in the form of atomized powder. The changes in microstructure during the formation of the composite powder have been studied by light microscopy, SEM, EDXS and XRD. The results show that the production of composite powders in a single step is possible. This not only allows the economical production of such powders, but also facilitates the use of alloy compositions that are not producible via the melting route, or only producible with difficulty via the melting route. It's possible to produce tailor-made-alloys. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  9. Effects of surface-finishing protocols on the roughness, color change, and translucency of different ceramic systems.

    Science.gov (United States)

    Akar, Gülcan Coşkun; Pekkan, Gürel; Çal, Ebru; Eskitaşçıoğlu, Gürcan; Özcan, Mutlu

    2014-08-01

    Surface-finishing protocols have a mechanical impact on ceramic surfaces that could eventually affect surface topography and light scattering. An optimum protocol is needed to avoid damaging the optical properties of ceramics. The purpose of this study was to determine the effects of different surface-finishing protocols on the surface roughness, color change, and translucency of ceramic and metal ceramic restorations. Standardized disk-shaped specimens (1.5 × 10 mm, n=128) were fabricated from 3 different ceramic core materials (aluminum oxide [Al2O3]-AL, zirconium oxide [ZrO2]-ZR, lithium disilicate [Li2Si2O5]-LIT), veneered (V) with dentin ceramics (n=32 per group), and placed in the following groups: ALV, ZRV, and LITV. The metal ceramic group acted as the control (n=32). Four different surface-finishing methods were tested. Airborne-particle abrasion with 50 μm Al2O3, polishing with adjustment kit, polishing with adjustment kit plus diamond polishing paste, and autoglazing (n=8 subgroup) were applied on the veneering ceramics. The specimens were analyzed with a profilometer for surface roughness, and color change and translucency were measured with a clinical spectrophotometer. Statistical analyses were performed with 1-way ANOVA and the Tukey honest significant difference tests (α=.05). Specimens treated with the airborne particle abrasion method showed significantly higher mean profilometer for surface roughness values in all groups (P.05). With the diamond polishing paste method, lower surface roughness values were achieved in the ZRV and metal ceramic groups acted as the control groups. Different surface-finishing methods affected the color change of the ceramic systems, except for ZRV. Surface-finishing protocols significantly affected the translucency values of the ALV, LITV, and metal ceramic groups (Pceramics tested. The airborne-particle abrasion protocol created rougher surfaces and decreased translucency, and color change in zirconia was not

  10. An investigation of ductile and brittle reinforcement on the fracture behavior of molybdenum disilicide composites

    International Nuclear Information System (INIS)

    Brooks, D.; Soboyejo, W.O.

    1994-01-01

    The results of an ongoing study of the effects of ductile and brittle reinforcement on the fracture toughness of particulate reinforced molybdenum disilicide matrix composites are presented. MoSi 2 composites reinforced with ductile Nb, Mo, and W particles are compared with MoSi 2 composites reinforced with SiC, TiB 2 , and partially stabilized zirconia (PSZ) particles. The effects of different degrees of yttria stabilization on zirconia reinforced composites will also be examined, as well as the effect of solid solution alloying with WSi 2 . The effects of multiple reinforcement of MoSi 2 with 20 vol.% Nb and 20 vol.% unstabilized zirconia (TZ-0) are discussed. The toughening is rationalized using micromechanical models for crack bridging, transformation toughening, and crack deflection

  11. The characterization of an oxide interfacial coating for ceramic matrix composites

    International Nuclear Information System (INIS)

    Coons, Timothy P.; Reutenauer, Justin W.; Mercado, Andrew; Kmetz, Michael A.; Suib, Steven L.

    2013-01-01

    This work focused on the use of metal organic chemical vapor deposition (MOCVD) to deposit a zinc oxide (ZnO) coating on ceramic fibers as an interfacial system for continuous fiber reinforced ceramic matrix composites (CFR-CMCs). ZnO coatings were deposited on ceramic grade (CG) Nicalon ™ , Hi-Nicalon ™ , and Hi-Nicalon ™ Type S fabric by the thermal decomposition of zinc acetate dihydrate in a low pressure hot wall CVD reactor. A duplex SiO 2 coating was also deposited in order to protect the ZnO layer from the reducing conditions during composite fabrication. Tow testing was used to evaluate the effect of the ZnO coating on the strength retention of the ceramic fabrics. Single strand unidirectional mini composites were fabricated by infiltrating SiC into the ZnO/SiO 2 duplex coated tows in order to understand the interfacial properties of the ZnO coating. The mini composite utilizing Hi-Nicalon ™ Type S produced the highest ultimate tensile strength (UTS) of 330 MPa. The coated fabrics and the mini composites were characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and scanning Auger microscopy (SAM)

  12. Effects of process variables on the properties of YBa2Cu3O(7-x) ceramics formed by investment casting

    Science.gov (United States)

    Hooker, M. W.; Taylor, T. D.; Leigh, H. D.; Wise, S. A.; Buckley, J. D.; Vasquez, P.; Buck, G. M.; Hicks, L. P.

    1993-01-01

    An investment casting process has been developed to produce net-shape, superconducting ceramics. In this work, a factorial experiment was performed to determine the critical process parameters for producing cast YBa2Cu3O7 ceramics with optimum properties. An analysis of variance procedure indicated that the key variables in casting superconductive ceramics are the particle size distribution and sintering temperature. Additionally, the interactions between the sintering temperature and the other process parameters (e.g., particle size distribution and the use of silver dopants) were also found to influence the density, porosity, and critical current density of the fired ceramics.

  13. Possibilities of special cements in ceramic applications

    International Nuclear Information System (INIS)

    Capmas, A.; Bier, T.A.

    1993-01-01

    About 25 years ago, the only way to have confinement material for high temperature applications was to prepare a ceramic by sintering or fusion at high temperature. A new technology came, with the production of Low Cement Castables. This new product was obtained by a careful choice of the granulometry of the aggregates, an optimization of the defloculation of fine particles, including the cement (Calcium Aluminate Cement) and the addition of silica fume. Silica fume brought two improvements: a) a fluidifying effect, due partly to the low sensitivity of viscosity to pH, and partly to the geometric effect of the nicely spherical particle, b) a chemical effect, brought by the reaction of silica and Calcium Aluminate Cement to give a coherent zeolithic structure, through which water could escape during the first firing. From a ceramist point of view, it is interesting to understand how this components, nearly colloidal system mixed in water can be heated up to ceramization without any noticeable change in mechanical characteristics and shrinkage. From a more practical point of view, it is also interesting to realize that some characteristics, usually attributed only to ceramics, also apply with low cement castables technology: high compressive strength, flexural strength, corrosion resistance, abrasion resistance, impact resistance. (orig.)

  14. Improving Ballistic Performance of Polyurethane Foam by Nanoparticle Reinforcement

    Directory of Open Access Journals (Sweden)

    M. F. Uddin

    2009-01-01

    Full Text Available We report improving ballistic performance of polyurethane foam by reinforcing it with nanoscale TiO2 particles. Particles were dispersed through a sonic cavitation process and the loading of particles was 3 wt% of the total polymer. Once foams were reinforced, sandwich panels were made and impacted with fragment simulating projectiles (FSPs in a 1.5-inch gas gun. Projectile speed was set up to have complete penetration of the target in each experiment. Test results have indicated that sandwich with nanophased cores absorbed about 20% more kinetic energy than their neat counterpart. The corresponding increase in ballistic limit was around 12% over the neat control samples. The penetration phenomenon was also monitored using a high-speed camera. Analyses of digital images showed that FSP remained inside the nanophased sandwich for about 7 microseconds longer than that of a neat sandwich demonstrating improved energy absorption capability of the nanoparticle reinforced core. Failure modes for energy absorption have been investigated through a microscope and high-speed images.

  15. Improving Ballistic Performance of Polyurethane Foam by Nanoparticle Reinforcement

    International Nuclear Information System (INIS)

    Uddin, M.F.; Zainuddin, S.; Mahfuz, H.; Jeelani, S.

    2009-01-01

    We report improving ballistic performance of polyurethane foam by reinforcing it with nano scale TiO 2 particles. Particles were dispersed through a sonic cavitation process and the loading of particles was 3 wt % of the total polymer. Once foams were reinforced, sandwich panels were made and impacted with fragment simulating projectiles (FSPs) in a 1.5-inch gas gun. Projectile speed was set up to have complete penetration of the target in each experiment. Test results have indicated that sandwich with nano phased cores absorbed about 20% more kinetic energy than their neat counterpart. The corresponding increase in ballistic limit was around 12% over the neat control samples. The penetration phenomenon was also monitored using a high-speed camera. Analyses of digital images showed that FSP remained inside the nano phased sandwich for about 7 microseconds longer than that of a neat sandwich demonstrating improved energy absorption capability of the nanoparticle reinforced core. Failure modes for energy absorption have been investigated through a microscope and high-speed images.

  16. Effects of ultrasonic vibration on microstructure and mechanical properties of nano-sized SiC particles reinforced Al-5Cu composites.

    Science.gov (United States)

    Li, Jianyu; Lü, Shulin; Wu, Shusen; Gao, Qi

    2018-04-01

    Ultrasonic vibration (UV) treatment has been successfully applied to improve the particles distribution of nano-sized SiC particles (SiC p ) reinforced Al-5Cu alloy matrix composites which were prepared by combined processes of dry high energy ball milling and squeeze casting. When UV treatment is applied, the distribution of nano-sized SiC p has been greatly improved. After UV for 1 min, large particles aggregates are broken up into small aggregates due to effects of cavitation and the acoustic streaming. After UV for 5 min, all the particles aggregates are dispersed and the particles are uniformly distributed in the composites. Compared with the Al-5Cu matrix alloy, the ultimate tensile strength, yield strength and elongation of the 1 wt% nano-sized SiC p /Al-5Cu composites treated by UV for 5 min are 270 MPa, 173 MPa and 13.3%, which are increased by 7.6%, 6.8% and 29%, respectively. The improvements of mechanical properties after UV are attributed to the uniform distribution of nano particles, grain refinement of aluminum matrix alloy and reduction of porosity in the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Methods of three-dimensional electrophoretic deposition for ceramic and cermet applications and systems thereof

    Science.gov (United States)

    Rose, Klint Aaron; Kuntz, Joshua D.; Worsley, Marcus

    2016-09-27

    A ceramic, metal, or cermet according to one embodiment includes a first layer having a gradient in composition, microstructure and/or density in an x-y plane oriented parallel to a plane of deposition of the first layer. A ceramic according to another embodiment includes a plurality of layers comprising particles of a non-cubic material, wherein each layer is characterized by the particles of the non-cubic material being aligned in a common direction. Additional products and methods are also disclosed.

  18. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  19. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    International Nuclear Information System (INIS)

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-01-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  20. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.