Sample records for cell culture implications

  1. Rapid kinetic labeling of Arabidopsis cell suspension cultures: Implications for models of lipid export from plastids

    T-87 suspension cell cultures are increasingly used in Arabidopsis research, but there are no reports describing their lipid composition or biosynthesis. To evaluate if T-87 cell cultures as a model system for analysis of lipid metabolism, including tests of gene candidate functions, we have deter...

  2. Angiotensin converting enzyme 2 (ACE2) activity in fetal calf serum: implications for cell culture research

    Lubel, J. S.; Herath, C. B.; Velkoska, E.; Casley, D. J.; Burrell, L. M.; Angus, P. W.


    Cell culture experiments often employ the use of culture media that contain fetal calf serum (FCS). The angiotensin peptides angiotensin II and angiotensin 1–7 have opposing effects with angiotensin converting enzyme 2 (ACE2) being the enzyme predominantly responsible for generating angiotensin 1–7 from angiotensin II. The effect of FCS on angiotensin peptides has not previously been described. We have shown that FCS has ACE2 enzyme activity capable of degrading angiotensin II and generating ...

  3. Microcarrier culture of lepidopteran cell lines: implications for growth and recombinant protein production.

    Ikonomou, Laertis; Drugmand, Jean-Christophe; Bastin, Georges; Schneider, Yves-Jacques; Agathos, Spiros N


    Several microcarrier systems were screened with Sf-9 and High-Five cell lines as to their ability to support cell growth and recombinant (beta-galactosidase) protein production. Growth of both cell lines on compact microcarriers, such as Cytodex-1 and glass beads, was minimal, as cells detached easily from the microcarrier surface and grew as single cells in the medium. Cell growth was also problematic on Cytopore-1 and -2 porous microcarriers. Cells remained attached for several days inside the microcarrier pores, but no cell division and proliferation were observed. On the contrary, insect cells grew well in the interior of Fibra-Cel disks mainly as aggregates at points of fiber intersection, reaching final (plateau) densities of about 4 x 10(6) (Sf-9) and 2.7 x 10(6) (High-Five) cells mL(-1) (8 x 10(6) and 5.5 x 10(6) cells per cm(2) of projected disk area, respectively). Their growth was described well by the logistic equation, which takes into account possible inhibition effects. Beta-Galactosidase (beta-gal) production of Sf-9 cells on Fibra-Cel disks (infected at 3.3 x 10(6) cells mL(-1)) was prolonged (192 h), and specific protein production was similar to that of high-density free cell infection. Cultispher-S microcarriers were found to be a very efficient system for the growth of High-Five cells, whereas no growth of Sf-9 cells took place for the same system. Concentrations of about 9 x 10(6) cells mL(-1) were reached within 120 h, with cell growth in both microcarriers and aggregates, appearance of cellular bridges between microcarriers and aggregates, and eventual formation of macroaggregates incorporating several microcarriers. Specific protein productions after beta-gal baculovirus infection at increasing cell concentrations were almost constant, thus leading to elevated volumetric protein production: final beta-gal titers of 946, 1728, and 1484 U mL(-1) were obtained for infection densities of 3.4, 7.2, and 8.9 x 10(6) cells mL(-1), respectively

  4. Fish Stem Cell Cultures

    Ni Hong, Zhendong Li, Yunhan Hong


    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is th...

  5. Optimizing stem cell culture.

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier


    Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such as serum or feeder cell layers by recombinant cytokines or growth factors. Another example is the control of the oxygen pressure. For many years cell cultures have been done under atmospheric oxygen pressure which is much higher than the one experienced by stem cells in vivo. A consequence of cell metabolism is that cell culture conditions are constantly changing. Therefore, the development of high sensitive monitoring processes and control algorithms is required for ensuring cell culture medium homeostasis. Stem cells also sense the physical constraints of their microenvironment. Rigidity, stiffness, and geometry of the culture substrate influence stem cell fate. Hence, nanotopography is probably as important as medium formulation in the optimization of stem cell culture conditions. Recent advances include the development of synthetic bioinformative substrates designed at the micro- and nanoscale level. On going research in many different fields including stem cell biology, nanotechnology, and bioengineering suggest that our current way to culture cells in Petri dish or flasks will soon be outdated as flying across the Atlantic Ocean in the Lindbergh's plane. PMID:20803548

  6. Cell Culture Made Easy.

    Dye, Frank J.


    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are…

  7. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis

    Research highlights: → BM-EPCs and MSCs establish complex, self-organizing structures in co-culture. → Co-culture decreases proliferation by cellular self-regulatory mechanisms. → Co-cultured cells present an activated proangiogenic phenotype. → qRT-PCR and cluster analysis identify new target genes playing important roles. -- Abstract: Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

  8. Phenolic compounds of Chromolaena odorata protect cultured skin cells from oxidative damage: implication for cutaneous wound healing.

    Phan, T T; Wang, L; See, P; Grayer, R J; Chan, S Y; Lee, S T


    Extracts from the leaves of Chromolaena odorata have been shown to be beneficial for treatment of wounds. The crude ethanol extract of the plant had been demonstrated to be a powerful antioxidant to protect fibroblasts and keratinocytes in vitro. In this study, the most active compounds were fractionated and identified from the crude extract using liquid chromatography coupled with UV spectroscopy and mass spectrometry. The antioxidant effects of purified fractions on cultured fibroblasts and keratinocytes were investigated using colorimetric and lactate hydrogenase release assay. The results showed that the phenolic acids present (protocatechuic, p-hydroxybenzoic, p-coumaric, ferulic and vanillic acids) and complex mixtures of lipophilic flavonoid aglycones (flavanones, flavonols, flavones and chalcones) were major and powerful antioxidants to protect cultured skin cells against oxidative damage. In conclusion, the extract from C odorata contains a mixture of powerful antioxidant compounds that may be one of potential mechanism contributing to enhanced wound healing. PMID:11767105

  9. Bacterial cell culture



    ### Materials 1. Glass culture tubes with metal caps and labels - Growth medium, from media room or customized - Glass pipette tubes - Parafilm ### Equipment 1. Vortexer - Fireboy or Bunsen burner - Motorized pipette - Micropipettes and sterile tips ### Procedure For a typical liquid culture, use 5 ml of appropriate medium. The amount in each tube does not have to be exact if you are just trying to culture cells for their precious DNA. 1. Streak an a...

  10. Mammalian Cell Culture Simplified.

    Moss, Robert; Solomon, Sondra


    A tissue culture experiment that does not require elaborate equipment and that can be used to teach sterile technique, the principles of animal cell line maintenance, and the concept of cell growth curves is described. The differences between cancerous and normal cells can be highlighted. The procedure is included. (KR)

  11. Fish Stem Cell Cultures

    Ni Hong, Zhendong Li, Yunhan Hong


    Full Text Available Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  12. Acinar phenotype is preserved in human exocrine pancreas cells cultured at low temperature: implications for lineage-tracing of β-cell neogenesis.

    Mfopou, Josué K; Houbracken, Isabelle; Wauters, Elke; Mathijs, Iris; Song, Imane; Himpe, Eddy; Baldan, Jonathan; Heimberg, Harry; Bouwens, Luc


    The regenerative medicine field is expanding with great successes in laboratory and preclinical settings. Pancreatic acinar cells in diabetic mice were recently converted into β-cells by treatment with ciliary neurotrophic factor (CNTF) and epidermal growth factor (EGF). This suggests that human acinar cells might become a cornerstone for diabetes cell therapy in the future, if they can also be converted into glucose-responsive insulin-producing cells. Presently, studying pancreatic acinar cell biology in vitro is limited by their high plasticity, as they rapidly lose their phenotype and spontaneously transdifferentiate to a duct-like phenotype in culture. We questioned whether human pancreatic acinar cell phenotype could be preserved in vitro by physico-chemical manipulations and whether this could be valuable in the study of β-cell neogenesis. We found that culture at low temperature (4°C) resulted in the maintenance of morphological and molecular acinar cell characteristics. Specifically, chilled acinar cells did not form the spherical clusters observed in controls (culture at 37°C), and they maintained high levels of acinar-specific transcripts and proteins. Five-day chilled acinar cells still transdifferentiated into duct-like cells upon transfer to 37°C. Moreover, adenoviral-mediated gene transfer evidenced an active Amylase promoter in the 7-day chilled acinar cells, and transduction performed in chilled conditions improved acinar cell labelling. Together, our findings indicate the maintenance of human pancreatic acinar cell phenotype at low temperature and the possibility to efficiently label acinar cells, which opens new perspectives for the study of human acinar-to-β-cell transdifferentiation. PMID:26987985

  13. Optimizing stem cell culture.

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier


    International audience Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such a...

  14. Digital Microfluidic Cell Culture.

    Ng, Alphonsus H C; Li, Bingyu Betty; Chamberlain, M Dean; Wheeler, Aaron R


    Digital microfluidics (DMF) is a droplet-based liquid-handling technology that has recently become popular for cell culture and analysis. In DMF, picoliter- to microliter-sized droplets are manipulated on a planar surface using electric fields, thus enabling software-reconfigurable operations on individual droplets, such as move, merge, split, and dispense from reservoirs. Using this technique, multistep cell-based processes can be carried out using simple and compact instrumentation, making DMF an attractive platform for eventual integration into routine biology workflows. In this review, we summarize the state-of-the-art in DMF cell culture, and describe design considerations, types of DMF cell culture, and cell-based applications of DMF. PMID:26643019

  15. Mycoplasmas detection in cells cultures

    Rivera-Tapia José Antonio; Castillo-Viveros Linda Valeria; Sánchez-Hernández José Antonio


    INTRODUCTION. Cells cultures are widely used in both biomedical and biotechnological research centers and industry, as well as for diagnostic test in hospitals. Contaminations of cells cultures with microbial organisms as well as with virus or other eukaryotic cell lines are a major problem in cell culture related research.OBJECTIVE. Mycoplasmas detection in cells cultures came from biomedical laboratories.MATERIAL AND METHODS. The cells cultures screened for mycoplasmas by using of microbiol...

  16. Perfusion based cell culture chips

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin


    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures and ti...

  17. Oscillating Cell Culture Bioreactor

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.


    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  18. Cultural Implications of Human Resource Development.

    Hiranpruk, Chaiskran

    A discussion of the cultural effects of economic and, by extension, human resource development in Southeast Asia looks at short- and long-term implications. It is suggested that in the short term, increased competition will affect distribution of wealth, which can promote materialism and corruption. The introduction of labor-saving technology may…

  19. Microfluidic Cell Culture Device

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)


    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  20. Feline Foamy Virus Adversely Affects Feline Mesenchymal Stem Cell Culture and Expansion: Implications for Animal Model Development

    Arzi, Boaz; Kol, Amir; Murphy, Brian; Walker, Naomi J.; Wood, Joshua A.; Clark, Kaitlin; Verstraete, Frank J.M.; Borjesson, Dori L.


    Mesenchymal stem cells (MSCs) are a promising therapeutic option for various immune-mediated and inflammatory disorders due to their potent immunomodulatory and trophic properties. Naturally occurring diseases in large animal species may serve as surrogate animal models of human disease, as they may better reflect the complex genetic, environmental, and physiologic variation present in outbred populations. We work with naturally occurring diseases in large animal species to better understand ...

  1. On Dynamic Characteristics of Culture and its Implications



    This paper mainly discusses the dynamic characteristic of western culture and Chinese culture from the intercultural perspective.Then it puts forward some implications for English teaching,it indicates that English teachers should pay due attention to improve the students cultural awareness and their own cultural teaching ability,adjust teaching content to adapt them to cultural changes.

  2. Huanglongbing and psyllid cell cultures

    We successfully established cell cultures of the Asian citrus psyllid, Diaphorina citri (Psyllidae: Hemiptera), DcHH-1. The cell culture also supported growth of Candidatus Liberibacter asiaticus. This bacterial pathogen is associated with Huanglongbing, known as citrus greening disease. Research on...

  3. High density cell culture system

    Spaulding, Glenn F. (Inventor)


    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  4. Transcending Cultural Borders: Implications for Science Teaching.

    Jegede, Olugbemiro J.; Aikenhead, Glen S.


    Reviews collateral learning theory as a cognitive explanation for how pupils cope with disparate worldviews mediated by transcending cultural borders between their everyday culture and the culture of science. Proposes a new pedagogy in which teachers assume the role of culture broker in the classroom to achieve culturally sensitive curriculum and…

  5. Cell culture purity issues and DFAT cells

    Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture

  6. Queer Cultural Capital: Implications for Education

    Pennell, Summer Melody


    This article takes the concept of cultural capital from Yosso's (2005) work and transforms the model for queer communities. While Yosso identified five forms of cultural capital in communities of color (familial, aspirational, navigational, resistant, and linguistic), the author identifies an additional form: transgressive. Queer cultural capital…

  7. Implications of Japanese Culture for Cultural Construction of Chinese Agricultural Enterprises

    Xu, Ming


    The cultural construction in agricultural enterprises in China is not so optimistic especially compared with developed countries. In 2015, as the Party Central Committee in China put forward strategy of building a moderately prosperous society in all aspects, it is necessary for Chinese agricultural enterprise to gain implications for cultural construction by studying Japanese culture. Japanese culture features “group spirit, interpersonal relation, absorbing advanced culture and rational s...

  8. Aseptic technique for cell culture.

    Coté, R J


    This unit describes some of the ways that a laboratory can deal with the constant threat of microbial contamination in cell cultures. A protocol on aseptic technique is described first. This catch-all term universally appears in any set of instructions pertaining to procedures in which noncontaminating conditions must be maintained. In reality, aseptic technique encompasses all aspects of environmental control, personal hygiene, equipment and media sterilization, and associated quality control procedures needed to ensure that a procedure is, indeed, performed with aseptic, noncontaminating technique. Although cell culture can theoretically be carried out on an open bench in a low-traffic area, most cell culture work is carried out using a horizontal laminar-flow clean bench or a vertical laminar-flow biosafety cabinet. Both are described here. PMID:18228291

  9. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system

    Torgan, C. E.; Burge, S. S.; Collinsworth, A. M.; Truskey, G. A.; Kraus, W. E.


    The growth and repair of adult skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. These cells are responsive to a variety of environmental cues, including mechanical stimuli. The overall goal of the research is to examine the role of mechanical signalling mechanisms in muscle growth and plasticity through utilisation of cell culture systems where other potential signalling pathways (i.e. chemical and electrical stimuli) are controlled. To explore the effects of decreased mechanical loading on muscle differentiation, mammalian myoblasts are cultured in a bioreactor (rotating cell culture system), a model that has been utilised to simulate microgravity. C2C12 murine myoblasts are cultured on microcarrier beads in a bioreactor and followed throughout differentiation as they form a network of multinucleated myotubes. In comparison with three-dimensional control cultures that consist of myoblasts cultured on microcarrier beads in teflon bags, myoblasts cultured in the bioreactor exhibit an attenuation in differentiation. This is demonstrated by reduced immunohistochemical staining for myogenin and alpha-actinin. Western analysis shows a decrease, in bioreactor cultures compared with control cultures, in levels of the contractile proteins myosin (47% decrease, p < 0.01) and tropomyosin (63% decrease, p < 0.01). Hydrodynamic measurements indicate that the decrease in differentiation may be due, at least in part, to fluid stresses acting on the myotubes. In addition, constraints on aggregate size imposed by the action of fluid forces in the bioreactor affect differentiation. These results may have implications for muscle growth and repair during spaceflight.

  10. Cell culture compositions

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian


    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  11. Chinese Cultural Implications for ERP Implementation

    Mukesh Srivastava; Betsy Gips


    Implementation of an enterprise resource planning (ERP) system in a global environment can be fragmented due to the internal enterprise culture, which is representative of societal culture. In China, this is especially true due to the nationalistic culture of business. The way ERP systems are perceived, treated, and integrated within the business plays a critical role in the success or failure of the implementation. When a Western developed ERP system is implemented in a country where the cul...

  12. International and Cultural Implications on Internationalization Analysis of Multinational Firms

    José G. Vargas-Hernández


    Full Text Available This paper is aims to analyze some of the institutional and cultural implications on internationalization analysis of multinational firms. The analysis begins questioning what the main institutional and cultural variables are considered in the involvement of internationalization of multinational firms. To answer this question, a literature review types approach in areas like internationalization of multinational firms based on institutional and cultural frameworks is followed. Secondly, these institutional and cultural variables are analyzed to integrate findings. Finally, the paper argues the need to design a better institutional and cultural balance among the development of a glocal-regional transformation, convergence and governance.

  13. Dynamized Preparations in Cell Culture

    Girija Kuttan; Korengath Chandran Preethi; Ramadasan Kuttan; Ellanzhiyil Surendran Sunila


    Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929) and Chinese Hamster Ovary (CHO) cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The ...

  14. Cultural Diversity: Implications For Workplace Management

    Donatus I. Amaram


    Full Text Available The acceptance and management of cultural diversity have been promoted and touted as a positive tool in social and organizational engineering aimed at solving and preventing group dynamics problems in both business organizations and society as well. Positive attributes of cultural integration in business organizations have received fair and significant attention in the past two decades. What have not been sufficiently presented are the challenges and pitfalls inherent in the management of culturally diverse work groups. For the practicing manager, there is a need to know when and where mono- and multi-cultural arrangements may be preferred. This paper reviews relevant research findings that can be used for building effective paradigms in the management of cultural diversity in the workplace.

  15. Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead.

    Liu, Gang; Wang, Zhong-Kun; Wang, Zhen-Yong; Yang, Du-Bao; Liu, Zong-Ping; Wang, Lin


    Previous studies have already demonstrated that mitochondria play a key role in Pb-induced apoptosis in primary cultures of rat proximal tubular (rPT) cells. To further clarify the underlying mechanism of Pb-induced mitochondrial apoptosis, this study was designed to investigate the role of mitochondrial permeability transition (MPT) and its regulatory components in Pb-induced apoptosis in rPT cells. Mitochondrial permeability transition pore (MPTP) opening together with disruption of mitochondrial ultrastructure, translocation of cytochrome c from mitochondria to cytoplasm and subsequent caspase-3 activation were observed in this study, suggesting that MPT is involved in Pb-induced apoptosis in rPT cells. Simultaneously, Pb-induced caspase-3 activation and apoptosis can be significantly inhibited by three MPTP inhibitors (CsA, DIDS, BA), which target different regulatory components of MPTP (Cyp-D, VDAC, ANT), respectively, demonstrating that Cyp-D, VDAC and ANT participate in MPTP regulation during lead exposure. Moreover, decreased ATP levels and increased ADP/ATP ratio induced by lead treatment can be significantly reversed by BA, indicating that Pb-mediated ANT dysfunction resulted in ATP depletion. In addition, up-regulation of VDAC-1, ANT-1 together with down-regulation of Cyp-D, VDAC-2 and ANT-2 at both the levels of transcription and translation were revealed in rPT cells under lead exposure conditions. In conclusion, Pb-mediated mitochondrial apoptosis in rPT cells is dependent on MPTP opening. Different expression levels in each isoform of three regulatory components contribute to alteration in their functions, which may promote the MPTP opening. PMID:26082307

  16. Insect Cell Culture and Biotechnology

    Robert R.Granados; Guoxun Li; G.W.Blissard


    The continued development of new cell culture technology is essential for the future growth and application of insect cell and baculovirus biotechnology. The use of cell lines for academic research and for commercial applications is currently dominated by two cell lines; the Spodoptera frugiperda line, SF21 (and its clonal isolate, SF9), and the Trichoplusia ni line, BTI 5B1-4, commercially known as High Five cells. The long perceived prediction that the immense potential application of the baculovirus-insect cell system, as a tool in cell and molecular biology, agriculture, and animal health, has been achieved. The versatility and recent applications of this popular expression system has been demonstrated by both academia and industry and it is clear that this cell-based system has been widely accepted for biotechnological applications. Numerous small to midsize startup biotechnology companies in North America and the Europe are currently using the baculovirus-insect cell technology to produce custom recombinant proteins for research and commercial applications. The recent breakthroughs using the baculovirus-insect cell-based system for the development of several commercial products that will impact animal and human health will further enhance interest in this technology by pharma. Clearly, future progress in novel cell and engineering advances will lead to fundamental scientific discoveries and serve to enhance the utility and applications of this baculovirus-insect cell system.

  17. Cultural Diversity: Implications For Workplace Management

    Donatus I. Amaram


    The acceptance and management of cultural diversity have been promoted and touted as a positive tool in social and organizational engineering aimed at solving and preventing group dynamics problems in both business organizations and society as well. Positive attributes of cultural integration in business organizations have received fair and significant attention in the past two decades. What have not been sufficiently presented are the challenges and pitfalls inherent in the management of cul...

  18. Techniques for mammalian cell tissue culture.

    Phelan, Mary C


    This unit opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18770828

  19. Implications of Japanese Culture for Cultural Construction of Chinese Agricultural Enterprises

    Ming; XU


    The cultural construction in agricultural enterprises in China is not so optimistic especially compared with developed countries. In2015,as the Party Central Committee in China put forward strategy of building a moderately prosperous society in all aspects,it is necessary for Chinese agricultural enterprise to gain implications for cultural construction by studying Japanese culture. Japanese culture features " group spirit,interpersonal relation,absorbing advanced culture and rational spirit" as its quintessence and with " lifetime employment,annual merits,decision making on application,cooperative management ". Chinese agricultural enterprises should find ways for cultural construction which is beneficial for enhancing staff awareness and management from quintessence and outward manifestation of Japanese culture. By doing so,it will promote the cultural construction of Chinese agricultural enterprises and lift the core-competitiveness.

  20. Using Cultural Diversity in Teaching Economics: Global Business Implications

    Mitry, Darryl J.


    Globalization and increasing cross-cultural interactivity have implications for education in general and may also present valuable pedagogical opportunities in the practice of teaching economics for business students. Therefore, the author investigated this proposition and offers some empirical observations from research and teaching experiments.…


    Dr. Agnes Erich


    Full Text Available At present, we have moved from „a world dominated by cultural isolation in a world where intercultural factors dominate, from an era characterized by cultural autonomy of traditional isolated groups to an era of generalized interrelations and communication”1. Our time has the great historical privilege of moving from a world of isolated civilizations, based to some extent on different spaces and times, to a single world, which is characterized by the same space (world market and the same time (synchronicity of all events. The positive meaning of globalization is that of progress. Accordingly, among many other aspects of globalization, there is an increase in the role of modern information and communication means used in large structures of information and documentation. The major difference between industrial and information age is that in the new economy the information consumers are also its producers, and mediators of information need to be aware who their „customers” are. Particular attention should be paid to the concept of information goods, these being considered the products and services that can be distributed in digital form, such as a book, a movie or a phone conversation.

  2. Dynamized Preparations in Cell Culture

    Ellanzhiyil Surendran Sunila


    Full Text Available Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929 and Chinese Hamster Ovary (CHO cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The effect of dynamized medicines to induce apoptosis was also evaluated and we studied how dynamized medicines affected genes expressed during apoptosis. Mother tinctures as well as some dynamized medicines showed significant cytotoxicity to cells during short and long-term incubation. Potentiated alcohol control did not produce any cytotoxicity at concentrations studied. The dynamized medicines were found to inhibit CHO cell colony formation and thymidine uptake in L929 cells and those of Thuja, Hydrastis and Carcinosinum were found to induce apoptosis in DLA cells. Moreover, dynamized Carcinosinum was found to induce the expression of p53 while dynamized Thuja produced characteristic laddering pattern in agarose gel electrophoresis of DNA. These results indicate that dynamized medicines possess cytotoxic as well as apoptosis-inducing properties.

  3. Expanding intestinal stem cells in culture

    Heo, Inha; Clevers, Hans


    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  4. The effects of glucocorticoids on cultured human endothelial cells.

    Maca, R D; Fry, G L; Hoak, J C


    The effects of hydrocortisone, dexamethasone and prednisone on the morphology, replication, DNA synthesis, cell protein content and protein synthesis of cultured, human endothelial cells were evaluated. After culturing the cells with these glucocorticoids for 24-48 h, the cells covered a greater portion of the culture surface area. The mean surface area of the individual endothelial cell treated with glucocorticoids was 1.53 times greater than that of the untreated control endothelial cell. When compared with controls, the endothelial cover provided by the cells treated with glucocorticoids was more extensive and in many instances covered the entire culture surface. The change in morphology was associated with an increase in protein synthesis and protein content of the cells without an increase in DNA synthesis or cellular replication. Dexamethasone was approximately 10-fold more effective than hydrocortisone, while prednisone was the least effective. Aldosterone, DOCA, testosterone, progesterone, oestradiol and oestriol were ineffective. These studies indicate that glucocorticoids can alter the morphology and biochemistry of cultured endothelial cells and may have implications for the effects of steroids in the treatment of thrombocytopenic states and vascular disorders in man. PMID:646949

  5. 0Adipose-derived stem cells: Implications in tissue regeneration

    Wakako; Tsuji; J; Peter; Rubin; Kacey; G; Marra


    Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.

  6. Cell Culture as an Alternative in Education.

    Nardone, Roland M.


    Programs that are intended to inform and provide "hands-on" experience for students and to facilitate the introduction of cell culture-based laboratory exercises into the high school and college laboratory are examined. The components of the CellServ Program and the Cell Culture Toxicology Training Programs are described. (KR)

  7. Hydrodynamic effects on cells in agitated tissue culture reactors

    Cherry, R. S.; Papoutsakis, E. T.


    The mechanisms by which hydrodynamic forces can affect cells grown on microcarrier beads in agitated cell culture reactors were investigated by analyzing the motion of microcarriers relative to the surrounding fluid, to each other, and to moving or stationary solid surfaces. It was found that harmful effects on cell cultures that have been previously attributed to shear can be better explained as the effects of turbulence (of a size scale comparable to the microcarriers or the spacing between them) or collisions. The primary mechanisms of cell damage involve direct interaction between microcarriers and turbulent eddies, collisions between microcarriers in turbulent flow, and collisions against the impeller or other solid surfaces. The implications of these analytical results for the design of tissue culture reactors are discussed.

  8. In vitro culture of human thyroid cells

    Procedures for establishing primary cultures of human thyroid tissue are described. Tissues removed surgically from patients with papillary carcinoma (PC), follicular adenoma (FA), or hyperthyroidism were grown in culture. In addition, normal cells were separated from the margins of excised tumors and were also cultured. For each gram of thyroid tissue cultured, more than 1 x 105 cells attached to culture dishes. A mixture of 2.5 % fetal bovine serum supplemented with insulin, hydrocortisone, transferrin, glycl-1-histidyl-L-lysine acetate, somatostatin and epidermal growth factor was added to nutrient media containing equal parts of Ham's F-12 and minimum essential medium (αMEM). Complete medium selectively supported epithelial cell growth while restricting fibroblast cell growth, especially during the first two weeks of the primary culture. Cells were stimulated with thyroid stimulating hormone (TSH) and produced raised levels of cAMP and thyroid hormone (T3). Culture conditions that affected the response of cells to X-rays were identified. During the culture period, first and second passage cells were compared for differences in their radiosensitivities. In all cases, cells showed differences in their responses to radiation depending on the cell passage number. However, results of replicate experiments of first passage cells that were exposed to X-rays showed good agreement between experiments. This technique makes it possible to quantitate the effects of chemical and physical cytotoxic agents on proliferating human thyroid epithelial cells. (author)

  9. Evaluating the social and cultural implications of the internet

    Brey, Philip


    Since the Internet's breakthrough as a mass medium, it has become a topic of discussion because of its implications for society. At one extreme, one finds those who only see great benefits and consider the Internet a tool for freedom, commerce, connectivity, and other societal benefits. At the other extreme, one finds those who lament the harms and disadvantages of the Internet, and who consider it a grave danger to existing social structures and institutions, to culture, morality and human r...

  10. Culture of Cells from Amphibian Embryos.

    Stanisstreet, Martin


    Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)

  11. Advantages of embryogenic cell cultures of Gramineae

    Immature embryos and/or explants from very young leaves and inflorescences of 13 species and over 75 cultivars of Gramineae - including wheat, maize, rye, pearl millet, sugar-cane, Napier grass, Guinea grass, etc. - were used to initiate callus cultures. The cultures are white to yellowish white in colour, compact and contain small and thin-walled meristematic cells which are richly cytoplasmic, non-vacuolated and contain prominent starch grains. These embryogenic tissue cultures provide a long-term, highly reliable and efficient means of rapid mass clonal propagation by the formation of somatic embryos that arise from single cells. The cultures consist largely of cytologically normal diploid cells. During the process of plant regeneration via somatic embryogenesis, there is strong selection in favour of normal cells, so that plants recovered from such cultures neither exhibit any morphological abnormalities nor show any evidence of cytological changes in the number or structure of chromosomes. Embryogenic callus cultures have been used successfully to establish highly dispersed and friable cell-suspension cultures. These fast-growing cultures comprise groups of 2-6 embryogenic cells, which adhere together to form larger unorganized aggregates of up to about 75 cells, but do not contain any organized meristems or callus tissues. Plants were regenerated by somatic embryogenesis from embryogenic cell-suspension cultures of pearl millet, Guinea grass, sugar-cane and maize. Finally, embryogenic cell-suspension cultures are the only current source of totipotent protoplasts in Gramineae. Protoplasts isolated from such cultures have been successfully cultured to produce somatic embryos and plants in pearl millet, Guinea grass, Napier grass and sugar-cane. (author)

  12. Cell Suspension Culture of Neem Tree


    The establishment of suspension culture system for neem (Azadirachta indica A. Juss) cells and the suspension culture condition was studied. It shows that the neem cell suspension culture system was best in B5 liquid medium, 2.0~4.0mg/L NAA with direct spill method. Based on the integrated analysis of cell biomass, Azadirachtin content and productivity, the optimum culture conditions were B5 liquid medium, 2.0-4.0 mg/L NAA, 3% sucrose at 25 ℃. The optimum rotating speed of the shaker and broth content d...

  13. From Mental Game to Cultural Praxis: A Cultural Studies Model's Implications for the Future of Sport Psychology

    Ryba, Tatiana V.; Wright, Handel Kashope


    This paper explores the implications of a cultural studies as praxis heuristic "model: for transforming sport psychology". It provides a brief introduction to both cultural studies and sport psychology and discusses a cultural studies intersection with sport studies and sport psychology. Cultural studies, it asserts, provides one of several…

  14. 9 CFR 101.6 - Cell cultures.


    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cell cultures. 101.6 Section 101.6 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference...

  15. Callus and cell suspension cultures of carnation

    Engvild, Kjeld Christensen


    . Cell suspension cultures worked best in media containing 2,4-D in which they had a doubling time of about 2 days. Filtered suspensions were successfully plated on agar in petri dishes, but division was never observed in single cells. The cultures initiated roots at higher concentrations of IAA or NAA...

  16. Plant cell cultures and their biotechnological potential

    Barz, W.; Ellis, B.E.


    The potential of plant cell suspension cultures for the biotechnological production of high-cost, plant-specific compounds is critically evaluated. The basic roles of nutrient media and phytohormones are described followed by a description of the recent progress in mass cultivation of plant cell cultures as measured by biomass and doubling time. The accumulation of secondary constituents in cell cultures is reviewed and methods for the selection of high-producing strains are described. The essential features of the selection strategy are the establishment of cell cultures from high-producing plants and a sensitive assay (e.g. radio-immunoassay) for the screening of microcolonies grown on petri dishes. The accumulation of biosynthetic intermediates of secondary constituents in cell culture strains will possibly lead to the isolation of novel compounds.

  17. Studying cell-cell communication in co-culture

    Bogdanowicz, Danielle R.; Lu, Helen H.


    Heterotypic and homotypic cellular interactions are essential for biological function, and co-culture models are versatile tools for investigating these cellular interactions in vitro. Physiologically relevant co-culture models have been used to elucidate the effects of cell-cell physical contact and/or secreted factors, as well as the influence of substrate geometry and interaction scale on cell response. Identifying the relative contribution of each cell population to co-culture is often ex...

  18. Colon cancer stem cells: implications in carcinogenesis

    Sanders, Matthew A.; Majumdar, Adhip P. N.


    The cancer stem cell model was described for hematologic malignancies in 1997 and since then evidence has emerged to support it for many solid tumors as well, including colon cancer. This model proposes that certain cells within the tumor mass are pluripotent and capable of self-renewal and have an enhanced ability to initiate distant metastasis. The cancer stem cell model has important implications for cancer treatment, since most current therapies target actively proliferating cells and may...

  19. Cell Culture for Production of Insecticidal Viruses.

    Reid, Steven; Chan, Leslie C L; Matindoost, Leila; Pushparajan, Charlotte; Visnovsky, Gabriel


    While large-scale culture of insect cells will need to be conducted using bioreactors up to 10,000 l scale, many of the main challenges for cell culture-based production of insecticidal viruses can be studied using small-scale (20-500 ml) shaker/spinner flasks, either in free suspension or using microcarrier-based systems. These challenges still relate to the development of appropriate cell lines, stability of virus strains in culture, enhancing virus yields per cell, and the development of serum-free media and feeds for the desired production systems. Hence this chapter presents mainly the methods required to work with and analyze effectively insect cell systems using small-scale cultures. Outlined are procedures for quantifying cells and virus and for establishing frozen cells and virus stocks. The approach for maintaining cell cultures and the multiplicity of infection (MOI) and time of infection (TOI) parameters that should be considered for conducting infections are discussed.The methods described relate, in particular, to the suspension culture of Helicoverpa zea and Spodoptera frugiperda cell lines to produce the baculoviruses Helicoverpa armigera nucleopolyhedrovirus, HearNPV, and Anticarsia gemmatalis multicapsid nucleopolyhedrovirus, AgMNPV, respectively, and the production of the nonoccluded Oryctes nudivirus, OrNV, using an adherent coleopteran cell line. PMID:27565495

  20. Emulsions Containing Perfluorocarbon Support Cell Cultures

    Ju, Lu-Kwang; Lee, Jaw Fang; Armiger, William B.


    Addition of emulsion containing perfluorocarbon liquid to aqueous cell-culture medium increases capacity of medium to support mammalian cells. FC-40 Fluorinert (or equivalent) - increases average density of medium so approximately equal to that of cells. Cells stay suspended in medium without mechanical stirring, which damages them. Increases density enough to prevent cells from setting, and increases viscosity of medium so oxygen bubbled through it and nutrients stirred in with less damage to delicate cells.

  1. Constructing a High Density Cell Culture System

    Spaulding, Glenn F. (Inventor)


    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  2. 3D Cell Culture in Alginate Hydrogels

    Therese Andersen


    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  3. Human hematopoietic cell culture, transduction, and analyses

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B;


    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long......-term cultures. Support protocols describe methods for maintenance of vector-producing fibroblasts (VPF) and supernatant collection from these cells, screening medium components for the ability to support hematopoietic cell growth, and establishing colonies from long-term cultures. Other protocols provide PCR...

  4. Methods for Maintaining Insect Cell Cultures

    Dwight E. Lynn


    Insect cell cultures are now commonly used in insect physiology, developmental biology, pathology, and molecular biology. As the field has advanced from methods development to a standard procedure, so has the diversity of scientists using the technique. This paper describes methods that are effective for maintaining various insect cell lines. The procedures are differentiated between loosely or non-attached cell strains, attached cell strains, and strongly adherent cell strains.

  5. Callus and cell suspension cultures of carnation

    Engvild, Kjeld Christensen


    Callus cultures of carnation, Dianthus caryophyllus L. ev. G. J. Sim, were grown on a synthetic medium of half strength Murashige and Skoog salts, 3 % sucrose, 100 mg/l of myo-inositol, 0.5 mg/l each of thiamin, HCl, pyridoxin, HCl and nicotinic acid and 10 g/l agar. Optimal concentrations of....... Cell suspension cultures worked best in media containing 2,4-D in which they had a doubling time of about 2 days. Filtered suspensions were successfully plated on agar in petri dishes, but division was never observed in single cells. The cultures initiated roots at higher concentrations of IAA or NAA...

  6. Pituitary stem cells: candidates and implications.

    Nassiri, Farshad; Cusimano, Michael; Zuccato, Jeff A; Mohammed, Safraz; Rotondo, Fabio; Horvath, Eva; Syro, Luis V; Kovacs, Kalman; Lloyd, Ricardo V


    The pituitary is the master endocrine gland of the body. It undergoes many changes after birth, and these changes may be mediated by the differentiation of pituitary stem cells. Stem cells in any tissue source must display (1) pluripotent capacity, (2) capacity for indefinite self-renewal, and (3) a lack of specialization. Unlike neural stem cells identified in the hippocampus and subventricular zone, pituitary stem cells are not associated with one specific cell type. There are many major candidates that are thought to be potential pituitary stem cell sources. This article reviews the evidence for each of the major cell types and discuss the implications of identifying a definitive pituitary stem cell type. PMID:23423660

  7. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.


    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  8. Cell culture models for study of differentiated adipose cells

    Clynes, Martin


    Adipose cells are an important source of mesenchymal stem cells and are important for direct use in research on lipid metabolism and obesity. In addition to use of primary cultures, there is increasing interest in other sources of larger numbers of cells, using approaches including induced pluripotent stem cell differentiation and viral immortalisation.

  9. Human cell culture in a space bioreactor

    Morrison, Dennis R.


    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  10. Melphalan metabolism in cultured cells

    Procedures are presented for the adaptation of reversed-phase-HPLC methods to accomplish separation and isolation of the cancer therapeutic drug melphalan (L-phenylalanine mustard) and its metabolic products from whole cells. Five major degradation products of melphalan were observed following its hydrolysis in phosphate buffer in vitro. The two most polar of these products (or modifications of them) were also found in the cytosol of Chinese hamster CHO cells. The amounts of these two polar products (shown not to be mono- or dihydroxymelphalan) were significantly changed by the pretreatment of cells with ZnC12, one being increased in amount while the other was reduced to an insignificant level. In ZnC12-treated cells, there was also an increased binding of melphalan (or its derivatives) to one protein fraction resolved by gel filtration-HPLC. These observations suggest that changes in polar melphalan products, and perhaps their interaction with a protein, may by involved in the reduction of melphalan cytotoxicity observed in ZnC12-treated cells. While ZnC12 is also known to increase the level of glutathione in cells, no significant amounts of glutathione-melphalan derivatives of the type formed non-enzymatically in vitro could be detected in ZnC12-treated or untreated cells. Formation of derivatives of melphalan with glutathione catabolic products in ZnC12-treated cells has not yet been eliminated, however. 17 refs., 5 figs., 1 tab

  11. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Stampfer, Martha R; Garbe, James C


    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  12. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Stampfer, Martha R.; Garbe, James C.


    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.


    Savchenkova, I P; Vasil'eva, S A


    In the present study, we developed in vitro culture conditions using co-culture of boar spermatogonial cells with Sertoli cells. Testes from 60-day-old crossbred boar were used. A spermatogonia-enriched culture was achieved by enzymatic digestion method and purification by density gradient centrifugation using a discontinuous Percoll gradient and differentiated adherence technique. Lipid drops were detected in isolated Sertoli cells by Oil Red O staining. We have found that the cultivation of boar spermatogonia in the presence of Sertoli cells (up to 35 days) leads to their differentiation as well as in vivo in testis. Association of cells in groups, formation of chains and suspension clusters of the spermatogenic cells were observed on the 10th day. Spermatogonial cellular colonies were noted at the same time. These cellular colonies were analyzed for the expression of genes: Nanog and Plzf in RT PCR. The expression of the Nanog gene in the experimental cellular clones obtained by short-term culture of spermatogonial cells in the presence of Sertoli cells was 200 times higher than the expression of this gene in the freshly isolated spermatogonial cells expression was found in freshly isolated germ cells and in cellular clones derived in vitro. We have found that, in the case of longer cultivation of these cells on Sertoli cells, in vitro process of differentiation of germ cells and formation of single mobile boar spermatozoa occurs at 30-33 days. Cellular population is heterogeneous at this stage. Spermatogenic differentiation in vitro without Sertoli cells stays on the 7th day of cultivation. The results show that co-culture of boar spermatogonia-enriched cells with Sertoli cells can induce their differentiation into spermatozoa in vitro and facilitate obtaining of porcine germ cell culture. PMID:27228660

  14. Cell culture experiments planned for the space bioreactor

    Morrison, Dennis R.; Cross, John H.


    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  15. Implications from the Diagnosis of a School Culture at a Higher Education Institution

    Bahar Gün; Esin Çağlayan


    Probing into the school culture is the first step for the enhancement of the effectiveness of any school. Conducted in an English-medium private university in Turkey, this study aims at exploring teachers’ perceptions of existing school culture to provide enriched and contemporary understandings of that culture, as well as making implications regarding understanding and improving school culture. Quantitative data was collected using the School Culture Survey (SCS) developed by Gruenert and Va...

  16. A biocompatible micro cell culture chamber (mu CCC) for the culturing and on-line monitoring of eukaryote cells

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, Anders Michael;


    We have previously shown that a polymeric (PMMA) chip with medium perfusion and integrated heat regulation provides sufficiently precise heat regulation, pH-control and medium exchange to support cell growth for weeks. However, it was unclear how closely the cells cultured in the chip resembled...... cells cultured in the culture flask. In the current study, gene expression profiles of cells cultured in the chip were compared with gene expression profiles of cells cultured in culture flasks. The results showed that there were only two genes that were differently expressed in cells grown in the cell...... culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...

  17. A biocompatible micro cell culture chamber (microCCC) for the culturing and on-line monitoring of eukaryote cells

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, A M;


    We have previously shown that a polymeric (PMMA) chip with medium perfusion and integrated heat regulation provides sufficiently precise heat regulation, pH-control and medium exchange to support cell growth for weeks. However, it was unclear how closely the cells cultured in the chip resembled...... cells cultured in the culture flask. In the current study, gene expression profiles of cells cultured in the chip were compared with gene expression profiles of cells cultured in culture flasks. The results showed that there were only two genes that were differently expressed in cells grown in the cell...... culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...

  18. An animal cell culture: Advance technology for modern research

    Sarita Khare; Rajeev Nema


    At the present time animal cell culture is more significant and multifarious application tool for current research streams. A lot of field assorted from animal cell culture such: stem cell biology, IVF technology, cancer cell biology, monoclonal antibody production, recombinant protein production, gene therapy, vaccine manufacturing, novel drug selection and improvement. In this review conclude animal cell culture as well as its requirements

  19. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    Runkle, Kristin B; Witze, Eric S


    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways. PMID:27590152

  20. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Parks, Kelsey


    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  1. Integrated biosensors for cell culture monitoring

    De Micheli, Giovanni; Boero, Cristina; Olivo, Jacopo; Carrara, Sandro


    Biosensors for endogenous compounds, such as glucose and lactate, are applied to monitor cell cultures. Cells can be cultivated for several purposes, such as understanding and modeling some biological mechanisms, the development of new drugs and therapies, and in the field of regenerative medicine. We have realized a self-contained monitoring system with remote readout. Metabolite detection is based on oxidases immobilized onto carbon nanotubes. We calibrate the system for glucose and lactate...

  2. Cell culture from sponges: pluripotency and immortality

    Caralt Bosch, de S.; Uriz, M.J.; Wijffels, R.H.


    Sponges are a source of compounds with potential pharmaceutical applications. In this article, methods of sponge cell culture for production of these bioactive compounds are reviewed, and new approaches for overcoming the problem of metabolite supply are examined. The use of embryos is proposed as a


    Insect cell cultures are now commonly used in insect physiology, developmental biology, pathology, and molecular biology. As the field has advanced from a methods development to a standard procedure, so has the diversity of scientists using the technique. This paper describes techniques that are e...


    Anthocyanins (ACNs) are potential oxygen radical scavengers that have coronary vasoactive and vasoprotective properties. Cell or tissue culture systems have been used to examine the bioactivity and mechanisms of action of ACNs on the vascular system. However, due to their unique chemical structure, ...

  5. Cell Culture Microfluidic Biochips: Experimental Throughput Maximization

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan;


    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory, integrating all necessary functionalities on-chip in order to perform biochemical applications. Researchers have started to propose computer-aided design tools for the synthesis of such biochips. Our focus...... Annealing metaheuristic for experimental design generation for the cell culture microfluidic biochips, and we have evaluated our approach using multiple experimental setups....

  6. Nanotechnology, Cell Culture and Tissue Engineering

    Kazutoshi Haraguchi


    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  7. Cell culture models using rat primary alveolar type I cells.

    Downs, Charles A; Montgomery, David W; Merkle, Carrie J


    There is a lack of cell culture models using primary alveolar type I (AT I) cells. The purpose of this study was to develop cell culture models using rat AT I cells and microvascular endothelial cells from the lung (MVECL). Two types of model systems were developed: single and co-culture systems; additionally a 3-dimensional model system was developed. Pure AT I cell (96.3 ± 2.7%) and MVECL (97.9 ± 1.1%) preparations were used. AT I cell morphology, mitochondrial number and distribution, actin filament arrangement and number of apoptotic cells at confluence, and telomere attrition were characterized. AT I cells maintained their morphometric characteristics through at least population doubling (PD) 35, while demonstrating telomere attrition through at least PD 100. Furthermore, AT I cells maintained the expression of their specific markers, T1α and AQ-5, through PD 42. For the co-cultures, AT I cells were grown on the top and MVECL were grown on the bottom of fibronectin-coated 24-well Transwell Fluroblok™ filter inserts. Neither cell type transmigrated the 1 μm pores. Additionally, AT I cells were grown in a thick layer of Matrigel(®) to create a 3-dimensional model in which primary AT I cells form ring-like structures that resemble an alveolus. The development of these model systems offers the opportunities to investigate AT I cells and their interactions with MVECL in response to pharmacological interventions and in the processes of disease, repair and regeneration. PMID:21624488

  8. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.


    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground

  9. Dynamic cell culture system (7-IML-1)

    Cogoli, Augusto


    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  10. The Effect of Spaceflight on Bone Cell Cultures

    Landis, William J.


    Understanding the response of bone to mechanical loading (unloading) is extremely important in defining the means of adaptation of the body to a variety of environmental conditions such as during heightened physical activity or in extended explorations of space or the sea floor. The mechanisms of the adaptive response of bone are not well defined, but undoubtedly they involve changes occurring at the cellular level of bone structure. This proposal has intended to examine the hypothesis that the loading (unloading) response of bone is mediated by specific cells through modifications of their activity cytoskeletal elements, and/or elaboration of their extracellular matrices. For this purpose, this laboratory has utilized the results of a number of previous studies defining molecular biological, biochemical, morphological, and ultrastructural events of the reproducible mineralization of a primary bone cell (osteoblast) culture system under normal loading (1G gravity level). These data and the culture system then were examined following the use of the cultures in two NASA shuttle flights, STS-59 and STS-63. The cells collected from each of the flights were compared to respective synchronous ground (1G) control cells examined as the flight samples were simultaneously analyzed and to other control cells maintained at 1G until the time of shuttle launch, at which point they were terminated and studied (defined as basal cells). Each of the cell cultures was assayed in terms of metabolic markers- gene expression; synthesis and secretion of collagen and non-collagenous proteins, including certain cytoskeletal components; assembly of collagen into macrostructural arrays- formation of mineral; and interaction of collagen and mineral crystals during calcification of the cultures. The work has utilized a combination of biochemical techniques (radiolabeling, electrophoresis, fluorography, Western and Northern Blotting, and light microscopic immunofluorescence) and structural

  11. The Commercial Revitalization of Southern Appalachian Culture: Some Implications.

    Vossler, Kathryn B.

    The paper examines the varied cultures of Appalachia in terms of the cultural images currently being projected by tourist and land development advertisers in the area. Because these industries have not clearly defined the culture they are trying to sell, they promote conflicting public images and thereby violate the ethnic and cultural heritage of…

  12. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices

    Halldórsson, Skarphédinn; Lucumi Moreno, Edinson; Gómez-Sjöberg, Rafael; Fleming, Ronan MT


    Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dis...

  13. Prevention and Detection of Mycoplasma Contamination in Cell Culture

    Parvaneh Farzaneh


    Full Text Available One of the main problems in cell culture is mycoplasma infection. It can extensively affectcell physiology and metabolism. As the applications of cell culture increase in research,industrial production and cell therapy, more concerns about mycoplasma contaminationand detection will arise. This review will provide valuable information about: 1. the waysin which cells are contaminated and the frequency and source of mycoplasma species incell culture; 2. the ways to prevent mycoplasma contamination in cell culture; 3. the importanceof mycoplasma tests in cell culture; 4. different methods to identify mycoplasmacontamination; 5. the consequences of mycoplasma contamination in cell culture and 6.available methods to eliminate mycoplasma contamination. Awareness about the sourcesof mycoplasma and pursuing aseptic techniques in cell culture along with reliable detectionmethods of mycoplasma contamination can provide an appropriate situation to preventmycoplasma contamination in cell culture.

  14. Cell culture: Progenitor cells from human brain after death

    Palmer, Theo D.; Schwartz, Philip H.; Taupin, Philippe; Kaspar, Brian; Stein, Stuart A.; Gage, Fred H.


    Culturing neural progenitor cells from the adult rodent brain has become routine and is also possible from human fetal tissue, but expansion of these cells from postnatal and adult human tissue, although preferred for ethical reasons, has encountered problems. Here we describe the isolation and successful propagation of neural progenitor cells from human postmortem tissues and surgical specimens. Although the relative therapeutic merits of adult and fetal progenitor cells still need to be assessed, our results may extend the application of these progenitor cells in the treatment of neurodegenerative diseases.

  15. Mouse cell culture - Methods and protocols

    CarloAlberto Redi


    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  16. Regulation of Taurine transporter activity in cultured rat retinal ganglion cells and rat retinal Muller Cells

    Diabetic retinopathy is one of the most common complications of diabetes. The amino acid taurine is believed to play an antioxidant protective role in diabetic retinopathy through the scavenging of the reactive species. It is not well established whether taurine uptake is altered in retina cells during diabetic conditions. Thus, the present study was designed to investigate the changes in taurine transport in cultures of rat retinal Muller cells and rat retinal ganglion cells under conditions associated with diabetes. Taurine was abundantly taken up by retinal Muller cells and rat retinal ganglion cells under normal glycemic condition. Taurine was actively transported to rat Muller cells and rat retinal ganglion cells in a Na and Cl dependant manner. Taurine uptake further significantly elevated in both type of cells after the incubation with high glucose concentration. This effect could be attributed to the increase in osmolarity. Because Nitric Oxide (NO) is a molecule implicated in the pathogenesis of diabetes, we also determined the activity of taurine transporter in cultured rat retinal Muller cells and rat retinal ganglion cells in the presence of the NO donors, SIN-1 and SNAP. Taurine uptake was elevated above control value after 24-h incubation with low concentration of NO donors. We finally investigated the ability of neurotoxic glutamate to change taurine transporter activity in both types of cells. Uptake of taurine was significantly increased in rat retinal ganglion cells when only incubated with high concentration of glutamate. Our data provide evidence that taurine transporter is present in cultured rat retinal ganglion and Muller cells and is regulated by hyperosmolarity. The data are relevant to disease such as diabetes and neuronal degeneration where retinal cell volume may dramatically change. (author)

  17. Darwinian Evolution of Prions in Cell Culture*

    Li, Jiali; Browning, Shawn; Mahal, Sukhvir P.; Oelschlegel, Anja M.; Weissmann, Charles


    Prions are infectious proteins consisting mainly of PrPSc, a β sheet-rich conformer of the normal host protein PrPC, and occur in different strains. Strain identity is thought to be encoded by PrPSc conformation. We found that biologically cloned prion populations gradually became heterogeneous by accumulating “mutants”, and selective pressures resulted in the emergence of different mutants as major constituents of the evolving population. Thus, when transferred from brain to cultured cells, ...

  18. Bioactive sugar surfaces for hepatocyte cell culture

    Ambury, Rachael


    The primary objective of this study was to identify, develop and characterise a novel bioactive surface capable of binding hepatocytes and enabling the retention of hepatocyte-specific cell function during in-vitro culture. The materials were designed to exploit a unique characteristic of hepatocyte biology, with β-galactose moieties displayed to allow cellular adhesion via the specific asialoglycoprotein receptors (ASGP-R) found on hepatocytes. Hydrogels were created by modifying a commercia...

  19. Degradation of TNT by plant cell cultures

    Podlipná, Radka; Nepovím, Aleš; Zeman, S.; Vágner, Martin; Vaněk, Tomáš

    Smolenice, 2003, s. 78-79. [Xenobiochemické sympózium /22./. Smolenice (SK), 09.06.2003-11.06.2003] R&D Projects: GA ČR GP206/02/P065; GA MŠk OC 837.10 Institutional research plan: CEZ:AV0Z5038910; CEZ:AV0Z4055905 Keywords : degradation * plant cell cultures Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides

  20. Implications from the Diagnosis of a School Culture at a Higher Education Institution

    Bahar Gün


    Full Text Available Probing into the school culture is the first step for the enhancement of the effectiveness of any school. Conducted in an English-medium private university in Turkey, this study aims at exploring teachers’ perceptions of existing school culture to provide enriched and contemporary understandings of that culture, as well as making implications regarding understanding and improving school culture. Quantitative data was collected using the School Culture Survey (SCS developed by Gruenert and Valentine, and the School Culture Triage, developed by Wagner and Masden-Copas; and qualitative data was collected through semi-structured interviews conducted with a sample group of teachers from the school. The results suggest that three dominant aspects of the culture of the school studied are collegial support and collaboration, collaborative leadership and unity of purpose. The outcomes of this research study facilitate a ‘personal critique’ for the given school, and implications can be extended to institutions operating in similar settings

  1. Prevention and Detection of Mycoplasma Contamination in Cell Culture

    Parvaneh Farzaneh; Laleh Nikfarjam


    One of the main problems in cell culture is mycoplasma infection. It can extensively affect cell physiology and metabolism. As the applications of cell culture increase in research, industrial production and cell therapy, more concerns about mycoplasma contamination and detection will arise. This review will provide valuable information about: 1. the ways in which cells are contaminated and the frequency and source of mycoplasma species in cell culture; 2. the ways to prevent mycoplasma conta...

  2. Cultural Schemata--Yardstick for Measuring Others: Implications for Teachers

    Plata, Maximino


    Classroom teachers' cultural schemata become important factors when they use them as the standard or yardstick to instruct culturally, linguistically, and economically diverse (CLED) students. However, when teachers' yardstick is comprised of limited cross-cultural knowledge and experiences, they cannot gauge the true learning potential of CLED…

  3. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids

    Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A.; Falvo D’Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto


    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future. PMID:27144306

  4. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids.

    Massai, Diana; Isu, Giuseppe; Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A; Falvo D'Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto


    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future. PMID:27144306

  5. Enterprise Culture--Its Meaning and Implications for Education and Training.

    Gibb, Allan A.


    Examines the following aspects of entrepreneurship: definitions of entrepreneurship and enterprise culture; social, political, and economic context; relationship with education; entrepreneurial versus corporist education with implications for business schools; developing intrapreneurship in large corporations; and implications for training policy.…

  6. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices

    An, Yuehuei H.; Mironov, Vladimir A.; Gutowska, Anna


    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  7. An Introductory Undergraduate Course Covering Animal Cell Culture Techniques

    Mozdziak, Paul E.; Petitte, James N.; Carson, Susan D.


    Animal cell culture is a core laboratory technique in many molecular biology, developmental biology, and biotechnology laboratories. Cell culture is a relatively old technique that has been sparingly taught at the undergraduate level. The traditional methodology for acquiring cell culture training has been through trial and error, instruction when…

  8. Sodium 22+ washout from cultured rat cells

    The washout of Na+ isotopes from tissues and cells is quite complex and not well defined. To further gain insight into this process, we have studied 22Na+ washout from cultured Wistar rat skin fibroblasts and vascular smooth muscle cells (VSMCs). In these preparations, 22Na+ washout is described by a general three-exponential function. The exponential factor of the fastest component (k1) and the initial exchange rate constant (kie) of cultured fibroblasts decrease in magnitude in response to incubation in K+-deficient medium or in the presence of ouabain and increase in magnitude when the cells are incubated in a Ca++-deficient medium. As the magnitude of the kie declines (in the presence of ouabain) to the level of the exponential factor of the middle component (k2), 22Na+ washout is adequately described by a two-exponential function. When the kie is further diminished (in the presence of both ouabain and phloretin) to the range of the exponential factor of the slowest component (k3), the washout of 22Na+ is apparently monoexponential. Calculations of the cellular Na+ concentrations, based on the 22Na+ activity in the cells at the initiation of the washout experiments, and the medium specific activity agree with atomic absorption spectrometry measurements of the cellular concentration of this ion. Thus, all three components of 22Na+ washout from cultured rat cells are of cellular origin. Using the exponential parameters, compartmental analyses of two models (in parallel and in series) with three cellular Na+ pools were performed. The results indicate that, independent of the model chosen, the relative size of the largest Na+ pool is 92-93% in fibroblasts and approximately 96% in VSMCs. This pool is most likely to represent the cytosol

  9. Cell response of Chlamydomonas actinochloris culture to repeated microwave irradiation



    Full Text Available Abstract. Grygorieva OO, Berezovsjka MA, Dacenko OI. 2015. Cell response of Chlamydomonas actinochloris culture to repeated microwave irradiation. Nusantara Bioscience 7: 38-42. Two cultures of Chlamydomonas actinochloris Deason et Bold in the lag-phase were exposed to the microwave irradiation. One of them (culture 1 was not treated beforehand, whereas the other (culture 2 was irradiated by microwaves 2 years earlier. The measurement of cell quantity as well as measurement of change of intensities and spectra of cultures photoluminescence (PL in the range of chlorophyll a emission was regularly conducted during the cell cultures development. Cell concentration of culture 1 exposed to the microwave irradiation for the first time has quickly restored while cell concentration of culture 2 which was irradiated repeatedly has fallen significantly. The following increasing of cell concentration of culture 2 is negligible. Cell concentration reaches the steady-state level that is about a half of the cell concentration of control culture. Initially the PL efficiency of cells of both cultures decreases noticeable as a result of irradiation. Then there is the monotonic increase to the values which are significantly higher than the corresponding values in the control cultures. The ratio of the intensities at the maxima of the main emission bands of chlorophyll for control samples of both cultures remained approximately at the same level. At the same time effect of irradiation on the cell PL spectrum appears as a temporary reduction of this magnitude.

  10. The cell-surface proteome of cultured adipose stromal cells.

    Donnenberg, Albert D; Meyer, E Michael; Rubin, J Peter; Donnenberg, Vera S


    In this technical note we describe a method to evaluate the cell surface proteome of human primary cell cultures and cell lines. The method utilizes the BD Biosciences lyoplate, a system covering 242 surface proteins, glycoproteins, and glycosphingolipids plus relevant isotype controls, automated plate-based flow cytometry, conventional file-level analysis and unsupervised K-means clustering of markers on the basis of percent of positive events and mean fluorescence intensity of positive and total clean events. As an example, we determined the cell surface proteome of cultured adipose stromal cells (ASC) derived from 5 independent clinical isolates. Between-sample agreement of very strongly expressed (n = 32) and strongly expressed (n =16) markers was excellent, constituting a reliable profile for ASC identification and determination of functional properties. Known mesenchymal markers (CD29, CD44, CD73, CD90, CD105) were among the identified strongly expressed determinants. Among other strongly expressed markers are several that are potentially immunomodulatory including three proteins that protect from complement mediated effects (CD46, CD55, and CD59), two that regulate apoptosis (CD77 and CD95) and several with ectoenzymatic (CD10, CD26, CD13, CD73, and CD143) or receptor tyrosine kinase (CD140b (PDGFR), CD340 (Her-2), EGFR) activity, suggesting mechanisms for the anti-inflammatory and tissue remodeling properties of ASC. Because variables are standardized for K-means clustering, results generated using this methodology should be comparable between instrumentation platforms. It is widely generalizable to human primary explant cultures and cells lines and will prove useful to determine how cell passage, culture interventions, and gene expression and silencing affect the cell-surface proteome. PMID:25929697

  11. Development of Scalable Culture Systems for Human Embryonic Stem Cells

    Azarin, Samira M.; Palecek, Sean P.


    The use of human pluripotent stem cells, including embryonic and induced pluripotent stem cells, in therapeutic applications will require the development of robust, scalable culture technologies for undifferentiated cells. Advances made in large-scale cultures of other mammalian cells will facilitate expansion of undifferentiated human embryonic stem cells (hESCs), but challenges specific to hESCs will also have to be addressed, including development of defined, humanized culture media and su...

  12. Rotating bio-reactor cell culture apparatus

    Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor)


    A bioreactor system is described in which a tubular housing contains an internal circularly disposed set of blade members and a central tubular filter all mounted for rotation about a common horizontal axis and each having independent rotational support and rotational drive mechanisms. The housing, blade members and filter preferably are driven at a constant slow speed for placing a fluid culture medium with discrete microbeads and cell cultures in a discrete spatial suspension in the housing. Replacement fluid medium is symmetrically input and fluid medium is symmetrically output from the housing where the input and the output are part of a loop providing a constant or intermittent flow of fluid medium in a closed loop.




    Full Text Available Jatropha curcas belongs to the Euphorbiaceae family which has potential economically. This plant has been reported to contain toxic compounds such as curcin and phorbol ester and its derivatives. These compounds may become a problem if J. curcas will be explored as a source of biofuel. In order to provide safety plants, the research on the study of phytochemical and initiation of cell and organ culture have been carried out. J curcas which has been collected from different regions in Indonesia showed to contain relatively the same profile of chemical contents. Dominant compounds that were detected by GCMS are hidrocarbon such as 2-heptenal, decadienal, hexsadecane, pentadecane, cyclooctane etc, fatty acid such as oktadecanoate acid, etthyl linoleate, ethyl stearate, heksadecanoate acid and steroid such as stigmasterol, fucosterol, sitosterol. No phorbol ester and its derivatives have been detected yet by the GCMS method. Callus and suspension cultures of J. curcas have been established to be used for further investigation.

  14. Effects of deprivation of background environmental radiation on cultured human cells

    In this paper we present results from an experiment aimed at investigating whether living cells are influenced by background ionizing radiation. Parallel human cell cultures were set-up in two separate laboratories and maintained for several months under identical conditions but for a 80 x different level of background ionizing radiation. Periodically, the cell cultures were monitored for the onset of divergences in biochemical behavior, using two distinct cellular biology assays, namely micronuclei induction and activity of enzymes implicated in the management of oxidative stress. To reveal any subtle modifications, responses were also amplified by subjecting cell cultures to acute stress induced by exposure to moderately high doses of ionizing radiation. Compared to reference radiation background conditions, cultures maintained in a reduced background radiation environment handled the consequences of acute stress with diminished efficacy.

  15. Renotropic stimulation in rat kidney cell culture

    A circulating renotropic factor specific for renal cells has been described in rats. The addition of sera obtained from unilaterally nephrectomized (uni) rats 24h after operation compared to sham-operated (sham) rats augments 3H-thymidine incorporation into the DNA of incubating kidney slices approximately 10% - 30%. Attempting to amplify the sensitivity of the assay for this renotropic agent, the authors replaced slices with primary rat kidney cultures. The assay system was based on one previously used for rabbits. The cultured cells were synchronized in their growth phase by a period of protein-free starvation. Compared to sera from sham rats, sera from uni rats showed significant stimulation of thymidine incorporation into DNA, 35.5% +/- 9.3 (SEM), p < .0001, at 16 h; 63.3% +/- 10.0 (SEM), p < .001, at 24 h; and 19.5% +/- 6.5 (SEM), p < .01, at 48 h post operation. Accordingly, the maximal stimulation at 24 h was greater than that previously found using the kidney slice assay. Measurable renotropic activity occurred earlier and over a shorter duration than in rabbits. Stimulation was similar when a D-valine medium, relatively specific for renal epithelial cells, replaced DME medium

  16. Culturally Responsive Collegiate Mathematics Education: Implications for African American Students

    Jett, Christopher C.


    In this article, the author utilizes the culturally congruent work of Gay (2010) and Ladson-Billings (2009) to highlight culturally responsive teaching as a viable option for African American students in higher education mathematics spaces. He offers translations of Gay and Ladson-Billings' work to Africana mathematics and argues that these…

  17. Disability as Cultural Difference: Implications for Special Education

    Anastasiou, Dimitris; Kauffman, James M.


    This article critiques the treatment of disability as cultural difference by the theorists of the "social model" and "minority group model" of disability. Both models include all of the various disabling conditions under one term--disability--and fail to distinguish disabilities from cultural differences (e.g., race, ethnicity, or gender…

  18. Optical Oxygen Sensors for Applications in Microfluidic Cell Culture

    Grist, Samantha M.; Lukas Chrostowski; Cheung, Karen C.


    The presence and concentration of oxygen in biological systems has a large impact on the behavior and viability of many types of cells, including the differentiation of stem cells or the growth of tumor cells. As a result, the integration of oxygen sensors within cell culture environments presents a powerful tool for quantifying the effects of oxygen concentrations on cell behavior, cell viability, and drug effectiveness. Because microfluidic cell culture environments are a promising alternat...


    John N. N. Ugoani


    Full Text Available As enterprise operations continue to be globalized through overseas expansions, joint ventures, mergers and acquisitions as well as strategic relationships and partnerships transnational organizations need to give attention to issues of culture in human resource management practices as a panacea for prosperity. The global organization is competent if only it is able to bridge the gap between management and culture so that personal relationships with other peoples in the organization and society become in harmony. This is critical because cultural relativity and reality in organizations influence operations. The study was designed to explore possible relationships between cultural dimensions and global human resource management. The survey research design was employed and data generated through primary and secondary sources. The participants comprised of 385 respondents from a cross-section of the population in Nigeria. By Chi-Square test, it was found that culture has a significant positive relationship with global human resource management.

  20. Cardiac Cells Beating in Culture: A Laboratory Exercise

    Weaver, Debora


    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  1. Growth of cultured porcine retinal pigment epithelial cells

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair;


    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  2. Equipment for large-scale mammalian cell culture.

    Ozturk, Sadettin S


    This chapter provides information on commonly used equipment in industrial mammalian cell culture, with an emphasis on bioreactors. The actual equipment used in the cell culture process can vary from one company to another, but the main steps remain the same. The process involves expansion of cells in seed train and inoculation train processes followed by cultivation of cells in a production bioreactor. Process and equipment options for each stage of the cell culture process are introduced and examples are provided. Finally, the use of disposables during seed train and cell culture production is discussed. PMID:24429549

  3. Development of primary cell culture from Scylla serrata: Primary cell cultures from Scylla serrata

    Sashikumar, Anu; Desai, P. V.


    This paper reports for the first time, the Primary cell culture of hepatopancreas from edible crab Scylla serrata using crab saline, L-15 (Leibovitz), 1 × L-15 + crab saline, 2 × L-15 + crab saline, 3 × L-15 and citrate buffer without any serum. We could isolate and maintain E (Embryonalzellen), F (Fibrenzellen), B (Blasenzellen), R (Restzellen) and G (Granular cells). Upon seeding the hepatopancreatic E, F, B, and R cells showed different survival pattern over time than granular cells. A mod...

  4. Phosphatidylinositol species of suspension cultured plant cells

    Heim, S.; Wagner, K.G.

    Suspension cultured Nicotiana tabacum and Catharanthus roseus cells were labeled with (/sup 3/H)inositol, the phospholipid fraction extracted and separated by thin layer chromatography. Three different solvent systems and reference compounds were used to assign the different /sup 3/H-labeled species by autoradiography. The ratio of (/sup 3/H)inositol incorporation into PI, PIP and PIP/sub 2/ was found to be 95:4:1; with some preparations a lyso-PI band was obtained which incorporated about a tenth of the label of the PIP band. With Catharanthus roseus cells a very faint band between PI and lyso-PI was detected which could not be assigned to a reference compound.

  5. Metabolic flux rewiring in mammalian cell cultures.

    Young, Jamey D


    Continuous cell lines (CCLs) engage in 'wasteful' glucose and glutamine metabolism that leads to accumulation of inhibitory byproducts, primarily lactate and ammonium. Advances in techniques for mapping intracellular carbon fluxes and profiling global changes in enzyme expression have led to a deeper understanding of the molecular drivers underlying these metabolic alterations. However, recent studies have revealed that CCLs are not necessarily entrenched in a glycolytic or glutaminolytic phenotype, but instead can shift their metabolism toward increased oxidative metabolism as nutrients become depleted and/or growth rate slows. Progress to understand dynamic flux regulation in CCLs has enabled the development of novel strategies to force cultures into desirable metabolic phenotypes, by combining fed-batch feeding strategies with direct metabolic engineering of host cells. PMID:23726154

  6. Evaluation of osteogenic cell culture and osteogenic/peripheral blood mononuclear human cell co-culture on modified titanium surfaces

    This study aimed to determine the effect of a bioactive ceramic coating on titanium in the nanothickness range on human osteogenic cells, peripheral blood mononuclear cells (PBMC) and on osteogenic cells co-cultured with PBMC without exogenous stimuli. Cell viability, proliferation, adhesion, cytokine release (IL1β, TGFβ1, IL10 and IL17) and intracellular stain for osteopontin and alkaline phosphatase were assessed. Morphologic evaluation showed smaller and less spread cell aspects in co-culture relative to osteogenic cell culture. Cell viability, proliferation and adhesion kinetics were differently influenced by surface texture/chemistry in culture versus co-culture. Cytokine release was also influenced by the interaction between mononuclear and osteogenic cells (mediators released by mononuclear cells acted on osteogenic cells and vice versa). In general, ‘multi-cell type’ interactions played a more remarkable role than the surface roughness or chemistry utilized on the in vitro cellular events related to initial stages of bone formation. (paper)

  7. Recombinant Protein Production and Insect Cell Culture and Process

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)


    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  8. Childhood Development Cross Culturally:Implications for Designing Childhood Obesity Interventions and Providing Culturally Competent Care

    Jiying Ling; PhD.MS.RN.Vicki Hines-Martin; PhD.CNS.RN.FAAN Hong Ji; MSN


    United States is experiencing significant growth in its foreign -born population , especially Chinese American population comprising of 1.2% of the U.S.population.Many healthcare providers are challenged in their efforts to provide culturally competent healthcare to this population. To provide culturally competent healthcare ,healthcare providers should understand variations in cultural at-tributes that impact health. One group in which cultural variation holds great influence is that of children. Culture influences a child's be-havior,development and health. This article provides a cross -cultural,comparative examination of important cultural influences on child behaviors development and health in China and the U. S.Using the findings about these two populations ,interventions for childhood obesity cross culturally are addressed through the analysis of a U. S.based Children's Obesity Program. The author suggests that uniquely different approaches to childhood obesity intervention research are needed based upon the cultural differences identified within this paper.

  9. Greek Immigrants in Australia: Implications for Culturally Sensitive Practice.

    Georgiades, Savvas Daniel


    This exploratory research examined adjustment challenges, resiliencies, attitudes, emotional health, economic stability, criminal involvement, victimization and service experiences, and some cultural propensities of Greek Immigrants (GIs) in Australia using a convenient multi-generational sample (n = 123; response rate = .5). Data were collected via surveys, telephone, and personal-interviews in four major Australian cities. Among other things, the study revealed that Greek identity and cultural customs are often significant to first generation GIs. Adjustment challenges upon entry include primarily language, housing, and transportation difficulties, nostalgia for relatives and the motherland, unfamiliarity with socio-cultural systems, unemployment, money challenges, and lack of friendships. Christian faith, the extended family, family values and traditions, cultural pride for ancient Greek achievements, and a hard 'work ethic' are notable resiliencies that support GIs in their struggles and solidify their pursuit for happiness and success. Financial concerns, aging, and nostalgia for relatives and the motherland were the primary causes of socio-emotional instability. Attitudinal differences in the respondents based on age, gender, and socio-economic status, cross-cultural comparisons, and recommendations for culturally-sensitive practice with GIs are analyzed and methodological limitations illuminated. Future research needs in the field are also highlighted. PMID:25376129

  10. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan;


    -defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chip. ProCell contains a cell culture chamber, which is envisioned to run 256 simultaneous experiments (viewed as a...

  11. Protection of cultured mammalian cells by rebamipide

    Antoku, Shigetoshi; Aramaki, Ryoji [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine; Tanaka, Hisashi; Kusumoto, Naotoshi


    Rebamipide which is used as a drug for gastritis and stomach ulcer has large capability for OH radical scavenging. It is expected that rebamipide has protective effect against ionizing radiations. The present paper deals with protective effect of rebamipide for cultured mammalian cells exposed to ionizing radiations. As rebamipide is insoluble in water, three solvents were used to dissolve. Rebamipide dissolved in dimethyl sulfoxide (DMSO), dimethyl formamide (DMFA) and 0.02 N NaOH was added to the cells in Eagle`s minimum essential medium (MEM) supplemented with 10% fetal calf serum and the cells were irradiated with X-rays. After irradiation, the cells were trypsinized, plated in MEM with 10% fetal calf serum and incubated for 7 days in a CO{sub 2} incubator to form colonies. Rebamipide dissolved in 0.02 N NaOH exhibited the protective effect expected its OH radical scavenging capability. However, the protective effect of rebamipide dissolved in DMSO was about half of that expected by its radical scavenging capability and that of rebamipide dissolved in DMFA was not observed. Uptake of rebamipide labeled with {sup 14}C increased with increasing contact time with rebamipide. These rebamipide mainly distributed in nucleus rather than cytoplasm. (author)

  12. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform.

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W; Werner, Carsten; Pompe, Tilo


    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin. PMID:27535453

  13. Determining Cell Number During Cell Culture using the Scepter Cell Counter

    Ongena, Kathleen; Das, Chandreyee; Smith, Janet L.; Gil, Sónia; Johnston, Grace


    Counting cells is often a necessary but tedious step for in vitro cell culture. Consistent cell concentrations ensure experimental reproducibility and accuracy. Cell counts are important for monitoring cell health and proliferation rate, assessing immortalization or transformation, seeding cells for subsequent experiments, transfection or infection, and preparing for cell-based assays. It is important that cell counts be accurate, consistent, and fast, particularly for quantitative measuremen...

  14. Three-Dimensional Cell Culture: A Breakthrough in Vivo

    Delphine Antoni


    Full Text Available Cell culture is an important tool for biological research. Two-dimensional cell culture has been used for some time now, but growing cells in flat layers on plastic surfaces does not accurately model the in vivo state. As compared to the two-dimensional case, the three-dimensional (3D cell culture allows biological cells to grow or interact with their surroundings in all three dimensions thanks to an artificial environment. Cells grown in a 3D model have proven to be more physiologically relevant and showed improvements in several studies of biological mechanisms like: cell number monitoring, viability, morphology, proliferation, differentiation, response to stimuli, migration and invasion of tumor cells into surrounding tissues, angiogenesis stimulation and immune system evasion, drug metabolism, gene expression and protein synthesis, general cell function and in vivo relevance. 3D culture models succeed thanks to technological advances, including materials science, cell biology and bioreactor design.

  15. Nanotextured polymer substrates show enhanced cancer cell isolation and cell culture

    Islam, Muhymin; Sajid, Adeel; Arif Iftakher Mahmood, M.; Motasim Bellah, Mohammad; Allen, Peter B.; Kim, Young-Tae; Iqbal, Samir M.


    Detection of circulating tumor cells (CTCs) in the early stages of cancer is a great challenge because of their exceedingly small concentration. There are only a few approaches sensitive enough to differentiate tumor cells from the plethora of other cells in a sample like blood. In order to detect CTCs, several antibodies and aptamers have already shown high affinity. Nanotexture can be used to mimic basement membrane to further enhance this affinity. This article reports an approach to fabricate nanotextured polydimethylsiloxane (PDMS) substrates using micro reactive ion etching (micro-RIE). Three recipes were used to prepare nanotextured PDMS using oxygen and carbon tetrafluoride. Micro-RIE provided better control on surface properties. Nanotexturing improved the affinity of PDMS surfaces to capture cancer cells using surface immobilized aptamers against cell membrane overexpressed with epidermal growth factor receptors. In all cases, nanotexture of PDMS increased the effective surface area by creating nanoscale roughness on the surface. Nanotexture also enhanced the growth rate of cultured cells compared to plain surfaces. A comparison among the three nanotextured surfaces demonstrated an almost linear relationship between the surface roughness and density of captured tumor cells. The nanotextured PDMS mimicked biophysical environments for cells to grow faster. This can have many implications in microfluidic platforms used for cell handling.

  16. "Taking Culture Seriously": Implications for Intercultural Education and Training

    Ogay, Tania; Edelmann, Doris


    Albeit indispensable to understanding human action, the concept of culture has suffered from excessive enthusiasm in the fields of intercultural education as well as in intercultural teacher training, leading too often to culturalist stances. These excesses of intercultural education and training as well as their contradictory message (between…

  17. Cultural Diversity in the School: Implications for Principals.

    Lomotey, Kofi


    Given that America is still a dangerously racist, classist, and sexist society and that students need opportunities to celebrate their diverse cultural backgrounds, the failure of the nation's schools to educate African-American students must be reexamined. Change strategies include making the curriculum more multicultural and reorienting…

  18. Digital Divide among Youth: Socio-Cultural Factors and Implications

    Parycek, Peter; Sachs, Michael; Schossbock, Judith


    Purpose: This paper aims to examine socio-cultural differences in internet use (Digital Divide) among 14-year-old Austrian pupils, in particular usage scenarios and research competences. It is based on a paper presented at the International Association for the Development of the Information Society e-Society conference, 10-13 March 2011, Spain…

  19. Third Culture Kids: Implications for Professional School Counseling

    Limberg, Dodie; Lambie, Glenn W.


    The increase of international business, military placements, and immigration has led to an increase in students attending schools in a country other than where they were born: third culture kids (TCKs). TCKs have unique educational needs, necessitating the support of their school counselors. This article (a) defines and introduces the needs and…

  20. Palmer's Cultural Linguistics and Its Implications for Translation Studies



    As an English learner and educator,I am devoting myself to translating works in clear and exact way.But in practice,I find it very difficult to translate works from one language to another,especially some Chinese ancient poets,which embodies the essence of Chinese culture.And what makes me obsessed with is the imageries conveyed in the two cultures.One word in Chinese ancient poets is not only interpreted literally but also explained between the lines,because it will contain a lot of images,which are most difficult to be translated.Therefore,I have to understand the basic meaning,besides it is necessary for me to understand the images and transform them into another language so that the translation can drive home to the natives.Here I borrow the theories from the cultural linguistics to translate Chinese poets.I will try best to apply the theories to translation from Chinese to English and compare some works including various versions.Finally I will draw a conclusion that for translation,the cultural linguistics is essential.

  1. Cultural Bias in Children's Storybooks: Implications for Education.

    Timm, Joan S.

    This study addresses concern about bias in educational materials for elementary school pupils. Children's storybooks were examined for the appearance of biases across the cultural categories of race, ethnicity, gender, age, socioeconomic level, religion, and environmental background. These biases included stereotyping, invisibility (omission of…

  2. Appropriate Management in an African Culture: Implications for Education

    Duze, Chinelo O.


    Following continued search for reasons on the inability of African nations to realize appreciable economic development through education, the researcher investigated the influence of cultural environment on management in industry. Because input/output measures of productivity are not easily measured in education, the industry was used, hoping that…

  3. Facilitating Cross-Cultural Online Discussion Groups: Implications for Practice.

    Williams, Saundra Wall; Watkins, Karen; Daley, Barbara; Courtenay, Bradley; Davis, Mike; Dymock, Darryl


    Discusses research that examined the issues and challenges experienced by facilitators in cross-cultural group discussions in a Web conferencing program, using action research methods of data collection and analysis. Considers questioning, participation, interpersonal and group dynamics, facilitator expectations, and student expectations.…

  4. The Implications of Culture for Dictionaries of the African Languages*

    A.C. Nkabinde


    Full Text Available

    Abstract: This article attempts to show how culture or aspects thereof can be used to comple-ment linguistic and other information in the compilation of dictionaries of African languages. Some obstacles in the way of achieving this goal are identified and proposals made on how to deal with them. Although only some cultural aspects of a single language are examined, the conclusions are valid for cultural aspects of all African languages.


    Opsomming: Die implikasies van kultuur vir woordeboeke van die Afri-katale. Hierdie artikel probeer om aan te toon hoe kultuur of aspekte daarvan gebruik kan word om taalkundige en ander inligting aan te vul by die samestelling van woordeboeke van die Afrika-tale. 'n Aantal struikelblokke op die weg om hierdie doel te bereik, word geïdentifiseer en voor-stelle gemaak oor hoe om hulle te hanteer. Alhoewel slegs sommige kulturele aspekte van 'n enkele taal ondersoek word, is die gevolgtrekkings geldig vir kulturele aspekte van alle Afrikatale.


  5. The Implications of Contemporary Cultural Diversity for the Hospitality Curriculum

    Hearns, Niamh; Devine, Frances; Baum, Tom


    Purpose: This viewpoint paper aims to assess a curriculum response within a specific vocational sector, hospitality, driven by the recent surge in intra EU labour migration and the ensuing increase in workplace cultural diversity. Design/methodology/approach: The paper identifies an appropriate curriculum response by assessing the industry…

  6. Organ culture-cell culture system for studying multistage carcinogenesis in respiratory epithelium. [Mice

    Steele, Vernon E.; Marchok, Ann C.; Nettesheim, Paul


    An organ culture-cell culture system was used to demonstrate carcinogen dose-dependent transformation of tracheal epithelial cells in vitro. Tracheal explants were exposed to MNNG (N-methyl-N/sup 1/-nitro-N-nitrosoguanidine) in organ culture. Outgrowths from these explants provided epithelial cell cultures. The numbers of long term epithelial cell cultures and cell lines that were established per explant increased as MNNG exposure concentration increased. At the present time, more cell lines derived from explants exposed to the highest MNNG concentration have produced palpable tumors than cell lines derived from explants exposed to lower MNNG concentrations. No cell lines were established from primaries derived from control explants. TPA (12-0-tetradecanoyl-phorbol-13-acetate), stimulates DNA synthesis in tracheal epithelium in organ culture in a manner simular to that described for mouse skin. Short exposures to TPA not only stimulated DNA synthesis earlier, but the stimulation was greater than that obtained with continuous exposure. At the present time, exposure of tracheal organ cultures to MNNG followed by TPA has resulted in an enhanced production of morphologically altered cells in primary epithelial cell cultures, than exposure to either agent alone.

  7. Electrospinning of microbial polyester for cell culture

    Biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as a nanofibrous mat by electrospinning. The specific surface area and the porosity of electrospun PHBV nanofibrous mat were determined. When the mechanical properties of flat film and electrospun PHBV nanofibrous mats were investigated, both the tensile modulus and strength of electrospun PHBV were less than those of cast PHBV film. However, the elongation ratio of nanofiber mat was higher than that of the cast film. The structure of electrospun nanofibers using PHBV-trifluoroethanol solutions depended on the solution concentrations. When x-ray diffraction patterns of bulk PHBV before and after electrospinning were compared, the crystallinity of PHBV was not significantly affected by the electrospinning process. Chondrocytes adhered and grew on the electrospun PHBV nanofibrous mat better than on the cast PHBV film. Therefore, the electrospun PHBV was considered to be suitable for cell culture

  8. Particle Trajectories in Rotating Wall Cell Culture Devices

    Ramachandran N.; Downey, J. P.


    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.


    Liu Hui; Zhu Hongliang; Li Shengli; Yao Xiaobao; Wang Xiaoxia


    Objective To establish adult rat auditory epithelial cell culture and try to find precursor cells of auditory hair cells in vitro. Methods With refinement of culture media and techniques, cochlear sensory epithelial cells of adult rat were cultured. Immunocytochemistry and Bromodeoxyuridine (BrdU)labeling were used to detect properties and mitotic status of cultured cells. Results The cultured auditory epithelial cells showed a large, flat epithelial morphotype and expressed F-actin and cytokeratin, a subset of cells generated from auditory epithelium were labeled by calretinin, a specific marker of early hair cell. Conclusion Adult rat auditory epithelium can be induced to generate hair cell-like cells by nature culture, this phenomenon suggests that progenitor cells may exist in rat cochlea and they may give birth to new hair cells. Whether these progenitor cells are tissue specific stem cells is still need more study.

  10. A qualitative study of the cultural implications of attempted suicide and its prevention in South India

    Lasrado, Reena Anitha


    Suicide in India is a complex social issue and a neglected area by the state. Research has focused on risk factors and the epidemiology of suicide; studies concerning the intersection of culture with attempted suicide are limited. The aim of this study is to explore cultural implications of attempted suicide and its prevention in Southern India by means of comparing and contrasting the accounts of survivors of attempted suicide, mental health professionals and traditional healers engaged in...

  11. Usability and Applicability of Microfluidic Cell Culture Systems

    Hemmingsen, Mette

    devices still lack general implementation into biological research laboratories. In this project, the usability and applicability of microfluidic cell culture systems have been investigated. The tested systems display good properties regarding optics and compatibility with standard laboratory equipment...... possibilities for, for example, precise control of the chemical environment, 3D cultures, controlled co-culture of different cell types or automated, individual control of up to 96 cell culture chambers in one integrated system. Despite the great new opportunities to perform novel experimental designs, these...... shown to be needed. This is possibly one of the reasons for the lack of implementation of microfluidic cell culture systems into biological research laboratories. Procedures to perform long-term microfluidic perfusion cell culture experiments have been established. Furthermore, successful application of...

  12. Post genocide Rwanda: implications for cross-cultural police training

    Willoughby-Mellors, Debra Lynn


    Within a period of three months in 1994, up to one million people were killed as a result of war and genocide in Rwanda. Large numbers were physically and psychologically afflicted for life through maiming, rape and other trauma; over two million fled to neighbouring countries and half as many became internally displaced within Rwanda's borders. Post-genocide Rwanda is dramatically different from pre-genocide Rwanda; the genocide transformed the social, political and cultural landscape of Rwa...

  13. Implication of Globalization on Organization Culture, Kenyan Experience

    Nandwa Doreen Josephine


    The mere mention of Millennium Development Goals (MDGs) adopted by world leaders in the year 2000 and set to be achieved by 2015, provide concrete, numerical benchmarks for tackling extreme poverty in its many dimensions. This brings into focus changes, experiences and opportunities organizations and work force can grasp for effective organizational cultural change and development. Most of the developing countries in the world and Africa in specific are adopting a global and modern outlook in...

  14. Three dimensional neuronal cell cultures more accurately model voltage gated calcium channel functionality in freshly dissected nerve tissue.

    Yinzhi Lai

    Full Text Available It has been demonstrated that neuronal cells cultured on traditional flat surfaces may exhibit exaggerated voltage gated calcium channel (VGCC functionality. To gain a better understanding of this phenomenon, primary neuronal cells harvested from mice superior cervical ganglion (SCG were cultured on two dimensional (2D flat surfaces and in three dimensional (3D synthetic poly-L-lactic acid (PLLA and polystyrene (PS polymer scaffolds. These 2D- and 3D-cultured cells were compared to cells in freshly dissected SCG tissues, with respect to intracellular calcium increase in response to high K(+ depolarization. The calcium increases were identical for 3D-cultured and freshly dissected, but significantly higher for 2D-cultured cells. This finding established the physiological relevance of 3D-cultured cells. To shed light on the mechanism behind the exaggerated 2D-cultured cells' functionality, transcriptase expression and related membrane protein distributions (caveolin-1 were obtained. Our results support the view that exaggerated VGCC functionality from 2D cultured SCG cells is possibly due to differences in membrane architecture, characterized by uniquely organized caveolar lipid rafts. The practical implication of use of 3D-cultured cells in preclinical drug discovery studies is that such platforms would be more effective in eliminating false positive hits and as such improve the overall yield from screening campaigns.


    Gazaliev A.M.


    Full Text Available Alkaloids are vegetative establishments of complex and original structure with nitrous heterocycles in the basis. For a long time they drew researchers’ attention because of their unique and specific physiological effect on alive organisms. Not all the representatives of the globe’s flora contain these unique substances. Alkaloid cytisine is to be found mainly in the plants of the fabaceous family - Fabaceae. For the cytisine production the seeds of Thermopsis lanceolata R.Br (T. lanceolata R.Br and Cytisus laburnum (C. laburnum are used as a raw material. The object of the research is T. lanceolata cell culture. Sterile sprouts are used at the first stage of the experiment. Callus genesis is accompanied with dedifferentiation. It leads to the cellular organization simplification. Based on an important property of a plant cell, such as totipotency, there appears the formation of the “de novo” biosynthetic device. The cultivation algorithm consists of two basic stages: (i the cultivation conditions optimization of callus with a high level of the primary metabolites biosynthesis (Aspartat – lysine; (ii the research of cultivation chemical and physical factors influence on the secondary metabolite (cytisine biosynthesis and accumulation. During the cultivation the Murashige and Skoog classical recipe of nutrient medium will be used. Optimization of the cultivation conditions will concern the phytohormones, macro- and micronutrients content, as the purpose of optimization is the production of the determined high-level competence embriogenical callus. The main problem is genetic heterogeneity of a cellular population and instability of morpho-physiological processes. The correct management of higher plants cells population is possible at the synchronization of a cellular cycle phases. The references analysis has shown that it is almost impossible to synchronize cellular cycles in the culture of plant tissue. The application of chemical

  16. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    Bozzone, Donna M.


    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  17. Systems Biology for Organotypic Cell Cultures

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)


    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  18. The Importance of Culture in Language Teaching and its Implications for the Role of Teachers



    Understanding and alleviating the influence of culture in a language-learning environment is not simply which a case of ensuring effective communication, it is also imperative to ensure that the students are actually able to learn the language according to their own culturally specific learning methods. Effective communication between student and teacher may not produce the desired results if the learner is unable to incorporate this new knowledge into their existing understanding of the world. This paper is mainly about the element of culture in the process of language teaching. In the meanwhile, the author will present the ideas and examples on its implications for the roles of English teachers.

  19. Generation of fertile sperm in a culture dish: clinical implications

    Hoi-Hung Cheung; Owen M Rennert


    @@ Spermatogenesis is a tightly regulated process of development for the generation of mature spermatozoa.Mammalian spermatogenesis occurs in the convoluted seminiferous tubules of the testes, where spermatogenic stem cells (SSCs) reside on sustentacular Sertoli cells of somatic origin, forming a germinal epithelial structure.Spermato genesis is accomplished in a complicated,timely controlled differentiation of SSCs into premeiotic primary spermatocytes, followed by formation of postmeiotic round spermatids and their subsequent maturation into spermatozoa.

  20. Bring Back Our Girls, Social Mobilization: Implications for Cross-Cultural Research

    Olutokunbo, Adekalu Samuel; Suandi, Turiman; Cephas, Oluwaseyitan Rotimi; Abu-Samah, Irza Hanie


    Social mobilization is a proactive measure for community development that salvages the society from destruction and disaster. From sociological perspective, this paper discusses the concept of social mobilization and its implications for cross-cultural research. To do this, the study uses the "Bring Back Our Girls" Global Campaign, as…

  1. Induced engulfment of Neisseria gonorrhoeae by tissue culture cells.

    Richardson, W P; Sadoff, J C


    Engulfment of gonococci by mammalian tissue culture cells was examined as a model of the penetration of host cells in gonorrhea. Engulfment required viable organisms; killing the gonococci with heat or refrigeration abolished the process. Engulfment also required tissue culture cell microtubule- and microfilament-dependent movement; treating the cells with cytochalasin B (0.5 micrograms/ml) or demecolcine (Colcemid; Ciba-Geigy AG, Basel, Switzerland) (10 micrograms/ml) also prevented his proc...

  2. Increased exosome production from tumour cell cultures using the Integra CELLine Culture System.

    Mitchell, J Paul; Court, Jacqueline; Mason, Malcolm David; Tabi, Zsuzsanna; Clayton, Aled


    Exosomes are nanometer-sized vesicles, secreted from most cell types, with documented immune-modulatory functions. Exosomes can be purified from cultured cells but to do so effectively, requires maintenance of cells at high density in order to obtain sufficient accumulation of exosomes in the culture medium, prior to purification. Whilst high density cultures can be achieved with cells in suspension, this remains difficult with adherent cells, resulting in low quantity of exosomes for subsequent study. We have used the Integra CELLine culture system, originally designed for hybridoma cultures, to achieve a significant increase in obtainable exosomes from adherent and non-adherent tumour cells. Traditional cultures of mesothelioma cells (cultured in 75 cm(2) flasks) gave an average yield of 0.78 microg+/-0.14 microg exosome/ml of conditioned medium. The CELLine Adhere 1000 (CLAD1000) flask, housing the same cell line, increased exosome yield approximately 12 fold to 10.06 microg+/-0.97 microg/ml. The morphology, phenotype and immune function of these exosomes were compared, and found to be identical in all respects. Similarly an 8 fold increase in exosome production was obtained from NKL cells (a suspension cell line) using a CELLine 1000 (CL1000) flask. The CELLine system also incurred ~5.5 fold less cost and reduced labour for cell maintenance. This simple culture system is a cost effective, useful method for significantly increasing the quantity of exosomes available from cultured cells, without detrimental effects. This tool should prove advantageous in future studies of exosome-immune modulation in cancer and other settings. PMID:18423480

  3. High-Aspect-Ratio Rotating Cell-Culture Vessel

    Wolf, David A.; Sams, Clarence; Schwarz, Ray P.


    Cylindrical rotating cell-culture vessel with thin culture-medium layer of large surface area provides exchange of nutrients and products of metabolism with minimal agitation. Rotation causes averaging of buoyant forces otherwise separating components of different densities. Vessel enables growth of cells in homogeneous distribution with little agitation and little shear stress.

  4. Detecting mycoplasma contamination in cell cultures by polymerase chain reaction.

    Uphoff, Cord C; Drexler, Hans G


    The detection of mycoplasmas in human and animal cell cultures is mandatory for every cell culture laboratory, because these bacteria are common contaminants, persist unrecognized in cell cultures for many years, and affect research results as well as the purity of cell culture products. The reliability of the mycoplasma detection depends on the sensitivity and specificity of the method and should also be convenient to be included in the basic routine of cell culture quality assessment. Polymerase chain reaction (PCR) detection is one of the acknowledged methodologies to detect mycoplasmas in cell cultures and cell culture products. Although the PCR offers a fast and simple technique to detect mycoplasmas, the method is also susceptible to errors and can produce false positive as well as false-negative results. Thus, the establishment and the routine application of the PCR assay require optimization and the inclusion of the appropriate control reactions. The presented protocol describes sample preparation, DNA extraction, PCR run, the analysis of the PCR products, and speciation of the contaminant. It also provides detailed information on how to avoid artifacts produced by the method. Established properly, PCR is a reliable, fast, and sensitive method and should be applied regularly to monitor the contamination status of cell cultures. PMID:21516400

  5. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    Engvild, Kjeld Christensen


    ammonium malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities...

  6. Batch variation between branchial cell cultures: An analysis of variance

    Hansen, Heinz Johs. Max; Grosell, M.; Kristensen, L.


    We present in detail how a statistical analysis of variance (ANOVA) is used to sort out the effect of an unexpected batch-to-batch variation between cell cultures. Two separate cultures of rainbow trout branchial cells were grown on permeable filtersupports ("inserts"). They were supposed to be...

  7. 21 CFR 864.2280 - Cultured animal and human cells.


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section 864.2280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products §...

  8. Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells

    Akopian, Veronika; Andrews, Peter W.; Beil, Stephen; Benvenisty, Nissim; Brehm, Jennifer; Christie, Megan; Ford, Angela; Fox, Victoria; Gokhale, Paul J; Healy, Lyn; Holm, Frida; Hovatta, Outi; Knowles, Barbara B; Ludwig, Tenneille E; Ronald D G McKay


    There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with pr...

  9. Autophagic response to cell culture stress in pluripotent stem cells.

    Gregory, Siân; Swamy, Sushma; Hewitt, Zoe; Wood, Andrew; Weightman, Richard; Moore, Harry


    Autophagy is an important conserved cellular process, both constitutively as a recycling pathway for long lived proteins and as an upregulated stress response. Recent findings suggest a fundamental role for autophagic processes in the maintenance of pluripotent stem cell function. In human embryonic stem cells (hESCS), autophagy was investigated by transfection of LC3-GFP to visualize autophagosomes and with an antibody to LC3B protein. The presence of the primary cilium (PC) in hESCs as the site of recruitment of autophagy-related proteins was also assessed. HESCs (mShef11) in vitro displayed basal autophagy which was upregulated in response to deprivation of culture medium replacement. Significantly higher levels of autophagy were exhibited on spontaneous differentiation of hESCs in vitro. The PC was confirmed to be present in hESCs and therefore may serve to coordinate autophagy function. PMID:26385182

  10. Horizontally rotated cell culture system with a coaxial tubular oxygenator

    Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Trinh, Tinh T. (Inventor)


    The present invention relates to a horizontally rotating bioreactor useful for carrying out cell and tissue culture. For processing of mammalian cells, the system is sterilized and fresh fluid medium, microcarrier beads, and cells are admitted to completely fill the cell culture vessel. An oxygen containing gas is admitted to the interior of the permeable membrane which prevents air bubbles from being introduced into the medium. The cylinder is rotated at a low speed within an incubator so that the circular motion of the fluid medium uniformly suspends the microbeads throughout the cylinder during the cell growth period. The unique design of this cell and tissue culture device was initially driven by two requirements imposed by its intended use for feasibility studies for three dimensional culture of living cells and tissues in space by JSC. They were compatible with microgravity and simulation of microgravity in one G. The vessels are designed to approximate the extremely quiescent low shear environment obtainable in space.

  11. Consumption embedded in culture and language: implications for finding sustainability

    Richard Wilk


    Full Text Available In this article I ask how deeply consumer culture has become embedded in contemporary American society. I suggest that we need to begin with greater conceptual clarity, particularly on terms that are part of the very phenomenon we are trying to study—consumption and freedom, for example. Metaphor theory helps to distinguish between folk concepts and analytical categories as a basis for understanding why consumption is so central, so deeply embedded in fundamental concepts of family, gender, individualism, ethnicity, and nationality. It also helps reveal inconsistencies in environmentalists’ ideas about freedom, individual action, and the role of the state in regulating consumption. The article concludes with the deliberately provocative argument that “sustainable consumption” is not the best way to phrase or frame the goals of reducing the amount of energy and materials used and wasted in the United States.

  12. Biona-C Cell Culture pH Monitoring System

    Friedericks, C.


    Sensors 2000! is developing a system to demonstrate the ability to perform accurate, real-time measurements of pH and CO2 in a cell culture media in Space. The BIONA-C Cell Culture pH Monitoring System consists of S2K! developed ion selective sensors and control electronics integrated with the fluidics of a cell culture system. The integrated system comprises a "rail" in the Cell Culture Module (CCM) of WRAIR (Space Biosciences of Walter Read Army Institute of Research). The CCM is a Space Shuttle mid-deck locker experiment payload. The BIONA-C is displayed along with associated graphics and text explanations. The presentation will stimulate interest in development of sensor technology for real-time cell culture measurements. The transfer of this technology to other applications will also be of interest. Additional information is contained in the original document.


    A.M. NOSOV


    Full Text Available metabolites formation in plant cell cultures of Panax spp., (ginsenosides; Dioscorea deltoidea (steroid glycosides; Ajuga reptans, Serratula coronata, Rhaponticum carthamoides (ecdisteroids; Polyscias spp., (triterpene glycosides, Taxus spp. (taxoids, Stevia rebaudiana (diterpene steviol-glycosides, Stephania glabra (alkaloids. They are some regular trends of secondary metabolites synthesis in the plant cell culture:It can be noted the stable synthesis of the compound promoting cell proliferation. Indeed, cell cultures of Dioscorea deltoidea were demonstrated to accumulate only furostanol glycosides, which promoted cell division. Furostanol glycoside content of Dioscorea strain DM-0.5 was up to 6 - 12% by dry biomass.Panax ginseng and P. japonicus plant cell cultures synthesize as minimum seven triterpene glycosides (ginsenosides, the productivity of these compounds was up to 6.0 - 8.0% on dry biomass.By contrast, the detectable synthesis of diterpene steviol-glycosides in cultivated cells of Stevia rebaudiana initiated in the mixotrophic cultures during chloroplast formation only.Despite these differences, or mainly due to them, plant cell cultures have become an attractive source of phytochemicals in alternative to collecting wild plants. It provides a guideline to bioreactor-based production of isoprenoids using undifferentiated plant cell cultures

  14. Morphological and Immunohistochemical Characterization of Canine Osteosarcoma Spheroid Cell Cultures.

    Gebhard, C; Gabriel, C; Walter, I


    Spheroid cell culture emerges as powerful in vitro tool for experimental tumour research. In this study, we established a scaffold-free three-dimensional spheroid system built from canine osteosarcoma (OS) cells (D17). Spheroids (7, 14 and 19 days of cultivation) and monolayer cultures (2 and 7 days of cultivation) were evaluated and compared on light and electron microscopy. Monolayer and spheroid cultures were tested for vimentin, cytokeratin, alkaline phosphatase, osteocalcin and collagen I by means of immunohistochemistry. The spheroid cell culture exhibited a distinct network of collagen I in particular after 19-day cultivation, whereas in monolayer cultures, collagen I was arranged as a lamellar basal structure. Necrotic centres of large spheroids, as observed in 14- and 19-day cultures, were characterized by significant amounts of osteocalcin. Proliferative activity as determined by Ki-67 immunoreactivity showed an even distribution in two-dimensional cultures. In spheroids, proliferation was predominating in the peripheral areas. Metastasis-associated markers ezrin and S100A4 were shown to be continuously expressed in monolayer and spheroid cultures. We conclude that the scaffold-free spheroid system from canine OS cells has the ability to mimic the architecture of the in vivo tumour, in particular cell-cell and cell-matrix interactions. PMID:26287450

  15. Culturing of PC12 Cells, Neuronal Cells, Astrocytes Cultures and Brain Slices in an Open Microfluidic System

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Rømer Sørensen, Ane;

    culturing PC12 cells, neuronal cells, astrocytes cultures and brain slices. The microfluidic system provides efficient nutrient delivery, waste removal, access to oxygen, fine control over the neurochemical environment and access to modern microscopy. Additionally, the setup consists of an in vitro...

  16. Microglial cells in astroglial cultures: a cautionary note

    Saura Josep


    Full Text Available Abstract Primary rodent astroglial-enriched cultures are the most popular model to study astroglial biology in vitro. From the original methods described in the 1970's a great number of minor modifications have been incorporated into these protocols by different laboratories. These protocols result in cultures in which the astrocyte is the predominant cell type, but astrocytes are never 100% of cells in these preparations. The aim of this review is to bring attention to the presence of microglia in astroglial cultures because, in my opinion, the proportion of and the role that microglial cells play in astroglial cultures are often underestimated. The main problem with ignoring microglia in these cultures is that relatively minor amounts of microglia can be responsible for effects observed on cultures in which the astrocyte is the most abundant cell type. If the relative contributions of astrocytes and microglia are not properly assessed an observed effect can be erroneously attributed to the astrocytes. In order to illustrate this point the case of NO production in activated astroglial-enriched cultures is examined. Lipopolysaccharide (LPS induces nitric oxide (NO production in astroglial-enriched cultures and this effect is very often attributed to astrocytes. However, a careful review of the published data suggests that LPS-induced NO production in rodent astroglial-enriched cultures is likely to be mainly microglial in origin. This review considers cell culture protocol factors that can affect the proportion of microglial cells in astroglial cultures, strategies to minimize the proportion of microglia in these cultures, and specific markers that allow the determination of such microglial proportions.

  17. Isolation, Culture, and Maintenance of Mouse Intestinal Stem Cells

    O’Rourke, Kevin P.; Ackerman, Sarah; Dow, Lukas E; Lowe, Scott W


    In this protocol we describe our modifications to a method to isolate, culture and maintain mouse intestinal stem cells as crypt-villus forming organoids. These cells, isolated either from the small or large intestine, maintain self-renewal and multilineage differentiation potential over time. This provides investigators a tool to culture wild type or transformed intestinal epithelium, and a robust assay for stem cell tissue homeostasis in vitro.


    Zou, Lijin; Zou, Xuenong; Li, Haisheng;

    -term culture are transformed into malignant cells. MATERIAL AND METHODS BMSC from 6 pigs were isolated and propagated continuously. Cell morphology was observed. Transformation properties were evaluated by means of serum dependence assay, Ki- 67 immunostaining, soft agar colony assay, karyotyping, telomerase...... was increased and TGF‚ signaling pathway was upregulated. However, telomerase activity maintained negative during culture. CONCLUSION Porcine BMSC can undergo spontaneous transformation, which provides a useful model to study the mechanisms associated with the tumorigenic potential of adult stem cells....

  19. Effects of methyl isocyanate on rat brain cells in culture.

    Anderson, D; Goyle, S; Phillips, B J; Tee, A; Beech, L; Butler, W H


    Since the disaster in Bhopal, India, people exposed to methyl isocyanate (MIC) have complained of various disorders including neuromuscular dysfunction. In an attempt to get information about such dysfunction we have previously shown that MIC can affect muscle cells in culture. The present communication reports investigations into the effect of MIC on brain cells in culture. MIC was toxic to brain cells and the response was dose related. The observations were supported by light and electron microscopy. PMID:2207030

  20. Multizone paper platform for 3D cell cultures.

    Ratmir Derda

    Full Text Available In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc. The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously ("cells-in-gels-in-paper" or CiGiP, this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, "sections" all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures.

  1. Chemotherapy in heterogeneous cultures of cancer cells with interconversion

    Recently, the interconversion between differentiated and stem-like cancer cells has been observed. Here, we model the in vitro growth of heterogeneous cell cultures in the presence of interconversion from differentiated cancer cells to cancer stem cells (CSCs), showing that, by targeting only CSC with cytotoxic agents, it is not always possible to eradicate cancer. We have determined the kinetic conditions under which cytotoxic agents in in vitro heterogeneous cultures of cancer cells eradicate cancer. In particular, we have shown that the chemotherapeutic elimination of in vitro cultures of heterogeneous cancer cells is effective only if it targets all cancer cell types, and if the induced death rates for the different subpopulations of cancer cell types are large enough. The quantitative results of the model are compared and validated with experimental data. (paper)

  2. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.


    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  3. Mammosphere culture of cancer stem cells in a microfluidic device

    Saadin, Katayoon; White, Ian M.


    It is known that tumor-initiating cells with stem-like properties will form spherical colonies - termed mammospheres - when cultured in serum-free media on low-attachment substrates. Currently this assay is performed in commercially available 96-well trays with low-attachment surfaces. Here we report a novel microsystem that features on-chip mammosphere culture on low attachment surfaces. We have cultured mammospheres in this microsystem from well-studied human breast cancer cell lines. To enable the long-term culture of these unattached cells, we have integrated diffusion-based delivery columns that provide zero-convection delivery of reagents, such as fresh media, staining agents, or drugs. The multi-layer system consists of parallel cell-culture chambers on top of a low-attachment surface, connected vertically with a microfluidic reagent delivery layer. This design incorporates a reagent reservoir, which is necessary to reduce evaporation from the cell culture micro-chambers. The development of this microsystem will lead to the integration of mammosphere culture with other microfluidic functions, including circulating tumor cell recovery and high throughput drug screening. This will enable the cancer research community to achieve a much greater understanding of these tumor initiating cancer stem cells.

  4. Production of Plasminogen Activator in Cultures of Superior Cervical Ganglia and Isolated Schwann Cells

    Alvarez-Buylla, Arturo; Valinsky, Jay E.


    Plasminogen activator has been implicated in tissue remodeling and cell migration during embryogenesis. In the developing nervous system, these processes are evident in the migration of neurons, axonal extension, Schwann cell migration, and the ensheathment and myelination of nerves. We have studied the production of plasminogen activator in cultures of superior cervical ganglia under conditions in which both neurons and glia are present. We have found that a principal source of the enzyme in these cultures is the glial cells and that the enzyme could not be detected at the growing tips of neurites. Plasminogen activator is also produced by Schwann cells isolated from neonatal rat sciatic nerve. The production of the enzyme by these cells is stimulated 6- to 10-fold by cholera toxin. Isolated Schwann cells and glial cells in the ganglion explant cultures produce the tissue form of plasminogen activator, a form of the enzyme not often found in nonmalignant cells. Preliminary experiments suggest that neuronal-glial interactions may regulate enzyme production by Schwann cells.

  5. Cultural evolution: implications for understanding the human language faculty and its evolution.

    Smith, Kenny; Kirby, Simon


    Human language is unique among the communication systems of the natural world: it is socially learned and, as a consequence of its recursively compositional structure, offers open-ended communicative potential. The structure of this communication system can be explained as a consequence of the evolution of the human biological capacity for language or the cultural evolution of language itself. We argue, supported by a formal model, that an explanatory account that involves some role for cultural evolution has profound implications for our understanding of the biological evolution of the language faculty: under a number of reasonable scenarios, cultural evolution can shield the language faculty from selection, such that strongly constraining language-specific learning biases are unlikely to evolve. We therefore argue that language is best seen as a consequence of cultural evolution in populations with a weak and/or domain-general language faculty. PMID:18801718

  6. Child Development in Cultural Contexts: Implications of Cultural Psychology for Early Childhood Teacher Education

    Lee, Kyunghwa; Johnson, Amy S.


    In this article we argue that early childhood educators, under the influence of last century's grand universal theories of child development, have not been attentive enough to the centrality of culture in children's development. We discuss how the exploration of contemporary developmental perspectives is critical to the field and illustrate…

  7. Epithelial cell detachment by Porphyromonas gingivalis biofilm and planktonic cultures.

    Huang, Lijia; van Loveren, Cor; Ling, Junqi; Wei, Xi; Crielaard, Wim; Deng, Dong Mei


    Porphyromonas gingivalis is present as a biofilm at the sites of periodontal infections. The detachment of gingival epithelial cells induced by P. gingivalis biofilms was examined using planktonic cultures as a comparison. Exponentially grown planktonic cultures or 40-h biofilms were co-incubated with epithelial cells in a 24-well plate for 4 h. Epithelial cell detachment was assessed using imaging. The activity of arginine-gingipain (Rgp) and gene expression profiles of P. gingivalis cultures were examined using a gingipain assay and quantitative PCR, respectively. P. gingivalis biofilms induced significantly higher cell detachment and displayed higher Rgp activity compared to the planktonic cultures. The genes involved in gingipain post-translational modification, but not rgp genes, were significantly up-regulated in P. gingivalis biofilms. The results underline the importance of including biofilms in the study of bacterial and host cell interactions. PMID:26963862

  8. [Continuous perfusion culture hybridoma cells for production of monoclonal antibody].

    Mi, Li; Li, Ling; Feng, Qiang; Yu, Xiao-Ling; Chen, Zhi-Nan


    Hybridoma cells were cultured by continuous perfusion in Fibra-Cel of 5L packed-bed bioreactor for 22 days in low serum or serum-free media. The corresponded amino acids were fed and serum concentration was decreased by analyzing glucose concentration, oxygen uptake rate, secretary antibody amount and amino acids concentration in culture supernatant. Comparing with continuous perfusion culture that amino acids were not fed, antibody amount of production was increased about 2-3 times. The inoculated cell density was 2.5 x 10(5) cells/mL, while the final cell density was 8.79 x 10(8) cells/mL. Antibody production was reached 295 mg/L/d at average level, and the highest level was reached 532 mg/L/d. These results provided a primary mode of enlarge culture for monoclonal antibody industralization. PMID:12192875

  9. A practical guide to hydrogels for cell culture.

    Caliari, Steven R; Burdick, Jason A


    There is growing appreciation of the role that the extracellular environment plays in regulating cell behavior. Mechanical, structural, and compositional cues, either alone or in concert, can drastically alter cell function. Biomaterials, and particularly hydrogels, have been developed and implemented to present defined subsets of these cues for investigating countless cellular processes as a means of understanding morphogenesis, aging, and disease. Although most scientists concede that standard cell culture materials (tissue culture plastic and glass) do a poor job of recapitulating native cellular milieus, there is currently a knowledge barrier for many researchers in regard to the application of hydrogels for cell culture. Here, we introduce hydrogels to those who may be unfamiliar with procedures to culture and study cells with these systems, with a particular focus on commercially available hydrogels. PMID:27123816



    There are many reports that cells (protoplasts) separated from the thallus of Porphyra by enzyme can develop to normal leafy thalli in the same way as monospores. But there are few investigations on the subcellular structure of the isolated vegetative cell for comparison with the subcellular structure of monospores. To clarify whether the separated and cultured cells undergo the same or similar ultrastructure changes during culture and germination as monospores undergo in their formation and germination, we observed their ultrastructure, compared them with those of the monospore and found that the ultrastructure of separated and cultured cells did not have the characteristic feature as that of monospore formation, such as production of small and large fibrous vesicles, but was accompanied by vacuolation and starch mobilization like that in monospore germination. The paper also discusses the relations between monospores and separated and cultured cells.

  11. Growth regulation of skin cells by epidermal cell-derived factors: implications for wound healing.

    Eisinger, M; Sadan, S; Silver, I. A.; Flick, R B


    Epidermal cell-derived factors (EDF), present in extracts and supernatant fluids of cultured epidermal cells, were found to stimulate the proliferation of keratinocytes but to inhibit fibroblasts. In vitro, the effect of EDF on epidermal cells resulted in an increased number of rapidly proliferating colonies composed mainly of basal keratinocytes. Control cultures grown in the absence of EDF had a high proportion of terminally differentiated cells. In fibroblast cultures EDF inhibited the abi...

  12. Surface modified alginate microcapsules for 3D cell culture

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin


    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  13. Crystal Violet Assay for Determining Viability of Cultured Cells.

    Feoktistova, Maria; Geserick, Peter; Leverkus, Martin


    Adherent cells detach from cell culture plates during cell death. This characteristic can be used for the indirect quantification of cell death and to determine differences in proliferation upon stimulation with death-inducing agents. One simple method to detect maintained adherence of cells is the staining of attached cells with crystal violet dye, which binds to proteins and DNA. Cells that undergo cell death lose their adherence and are subsequently lost from the population of cells, reducing the amount of crystal violet staining in a culture. This protocol describes a quick and reliable screening method that is suitable for the examination of the impact of chemotherapeutics or other compounds on cell survival and growth inhibition. However, characterization of the cause of reduced crystal violet staining requires additional methods detailed elsewhere. PMID:27037069

  14. Controlling the diversity of cell populations in a stem cell culture

    Heo, Inha; Clevers, Hans


    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  15. A Place to Call Home: Bioengineering Pluripotential Stem Cell Cultures

    Mark Weingarten; Nathan Akhavan; Joshua Hanau; Yakov Peter


    Pluripotent stem cells (PSCs) have the power to revolutionize the future of cell-based therapies and regenerative medicine. However, stem/progenitor cell use in the clinical arsenal has been hampered by discrepancies resulting from stem cell engineering and expansion, as well as in their (mass) differentiation in culture. Moreover, the manner in which external conditions affect PSC and induced-pluripotent stem cell lineage establishment as well as maturation remains controversial. In this rev...

  16. Air pollutant production by algal cell cultures

    Fong, F.; Funkhouser, E. A.


    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  17. Silver nanoparticle protein corona composition in cell culture media.

    Jonathan H Shannahan

    Full Text Available The potential applications of nanomaterials as drug delivery systems and in other products continue to expand. Upon introduction into physiological environments and driven by energetics, nanomaterials readily associate proteins forming a protein corona (PC on their surface. This PC influences the nanomaterial's surface characteristics and may impact their interaction with cells. To determine the biological impact of nanomaterial exposure as well as nanotherapeutic applications, it is necessary to understand PC formation. Utilizing a label-free mass spectrometry-based proteomics approach, we examined the composition of the PC for a set of four silver nanoparticles (AgNPs including citrate-stabilized and polyvinlypyrrolidone-stabilized (PVP colloidal silver (20 or 110 nm diameter. To simulate cell culture conditions, AgNPs were incubated for 1 h in Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine serum, washed, coronal proteins solubilized, and proteins identified and quantified by label-free LC-MS/MS. To determine which attributes influence PC formation, the AgNPs were characterized in both water and cell culture media with 10% FBS. All AgNPs associated a common subset of 11 proteins including albumin, apolipoproteins, keratins, and other serum proteins. 110 nm citrate- and PVP-stabilized AgNPs were found to bind the greatest number of proteins (79 and 85 respectively compared to 20 nm citrate- and PVP-stabilized AgNPs (45 and 48 respectively, suggesting a difference in PC formation based on surface curvature. While no relationships were found for other protein parameters (isoelectric point or aliphatic index, the PC on 20 nm AgNPs (PVP and citrate consisted of more hydrophobic proteins compared to 110 nm AgNPs implying that this class of proteins are more receptive to curvature-induced folding and crowding in exchange for an increased hydration in the aqueous environment. These observations demonstrate the significance of

  18. Insect cell culture and applications to research and pest management

    Building on earlier research, insect cell culture began with the successful establishment of one cell line from pupal ovarian tissue. The field has grown to the extent that now over 500 insect cell lines have been established from many insect species representing numerous insect Orders and from seve...

  19. T cell avidity and tumor recognition: implications and therapeutic strategies

    Roszkowski Jeffrey J


    Full Text Available Abstract In the last two decades, great advances have been made studying the immune response to human tumors. The identification of protein antigens from cancer cells and better techniques for eliciting antigen specific T cell responses in vitro and in vivo have led to improved understanding of tumor recognition by T cells. Yet, much remains to be learned about the intricate details of T cell – tumor cell interactions. Though the strength of interaction between T cell and target is thought to be a key factor influencing the T cell response, investigations of T cell avidity, T cell receptor (TCR affinity for peptide-MHC complex, and the recognition of peptide on antigen presenting targets or tumor cells reveal complex relationships. Coincident with these investigations, therapeutic strategies have been developed to enhance tumor recognition using antigens with altered peptide structures and T cells modified by the introduction of new antigen binding receptor molecules. The profound effects of these strategies on T cell – tumor interactions and the clinical implications of these effects are of interest to both scientists and clinicians. In recent years, the focus of much of our work has been the avidity and effector characteristics of tumor reactive T cells. Here we review concepts and current results in the field, and the implications of therapeutic strategies using altered antigens and altered effector T cells.

  20. Detection and Treatment of Mycoplasma Contamination in Cultured Cells

    Hsuan Jung


    Full Text Available Background: Mycoplasmas, the smallest and simplest prokaryotes that reside in endosomesof mammalian cells, are widespread contaminants found in cell cultures.About 30% of all cell cultures, varying from 15 to 80%, are reportedlycontaminated with mycoplasmas. Here, we present our experience in successfullydetecting and treating mycoplasmal infection in various cell lines.Methods: The nested polymerase chain reaction (PCR detection and microscopicexamination, including phase-contrast, fluorescent, as well as differentialinterference contrast, were used for detecting potential mycoplasma contaminationof cell lines used in our laboratory. As soon as mycoplasma was identified,antibiotic treatment was initiated.Results: Mycoplasmal contamination was detected in six of 15 cell lines using thenested PCR amplification of mycoplasma DNA, which was further demonstratedusing 4, 6-Diamidino-2-phenylindole (DAPI staining and fluorescentmicroscopy. Alternate treatment with two antibiotics, macrolide (tiamulinand tetracycline (minocycline, effectively eliminated mycoplasma, whichwas validated by both PCR and microscopic studies.Conclusions: The nested PCR using genomic DNA extracted from cultured cells as templatesis a rapid and sensitive method for detecting mycoplasma contamination.Treatment with combined antibiotics can completely eradicatemycoplasmal infection from cultured cells. For the ease of use, PCR and/orDAPI staining appear suitable for detecting potential mycoplasmal contaminationin laboratories that rely heavily on the cell culture system.

  1. Novel culturing platform for brain slices and neuronal cells

    Svendsen, Winnie Edith; Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya;


    In this paper we demonstrate a novel culturing system for brain slices and neuronal cells, which can control the concentration of nutrients and the waste removal from the culture by adjusting the fluid flow within the device. The entire system can be placed in an incubator. The system has been te...

  2. Adipose-derived stem cells: Implications in tissue regeneration

    Tsuji, Wakako; Rubin, J. Peter; Marra, Kacey G.


    Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differentiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs damaged by injury and dise...

  3. Cell/Tissue Culture Radiation Exposure Facility Project

    National Aeronautics and Space Administration — We propose to develop a Cell/Tissue Culture Radiation Exposure Facility (CTC-REF) to enable radiobiologists to investigate the real-time radiation effects on...

  4. Hypoxia-induced alteration of tracer accumulation in cultured cancer cells and xenografts in mice: implications for pre-therapeutic prediction of treatment outcomes with 99mTc-sestamibi, 201Tl chloride and 99mTc-HL91

    Weak visualization of tumours in pre-therapeutic scintigrams with technetium-99m sestamibi (MIBI) is likely a predictive sign of unfavourable tumour response to radiotherapy and chemotherapy. However, factors relating to this scintigraphic finding are not well understood. The presence of hypoxic tumour cells is one of the major reasons for therapeutic failure; consequently, we attempted to determine whether oxygenation status affects 99mTc-MIBI accumulation in tumour cells. LS180 human colon cancer and T24 human bladder cancer cells were incubated in air or N2 gas at 37 C. Cellular uptake of 99mTc-MIBI was subsequently determined at 15, 60 and 120 min. Uptake of thallium-201 chloride was also assessed. Uptake of 99mTc-HL91 was assessed as a hypoxic marker. Accumulation of the tracers in LS180 xenografts was observed in mice treated with 5 mg/kg hydralazine and compared with that in untreated mice. pO2 in the medium and tumours was measured with O2 microelectrodes. N2 gas flow gradually reduced pO2 in the cell suspension to 1-2 mmHg in 60 min. Cellular uptake of 99mTc-MIBI in LS180 cells decreased by approximately 30% in N2 gas in comparison to that in air throughout the study. Hypoxia had a more prominent influence on 201Tl uptake, which displayed a reduction of approximately 60% in N2 gas at 120 min, than on 99mTc-MIBI uptake. On the other hand, N2 gas induced an increase of 170% in 99mTc-HL91 uptake at 120 min, indicating the hypoxic condition of cells. The results of in vitro assays employing the T24 cell line were similar to those obtained with the LS180 cell line. Hydralazine treatment markedly reduced 99mTc-MIBI and 201Tl accumulation in LS180 xenografts; moreover, intratumoural pO2 decreased from 14.5±6.6 mmHg to 7.6±6.2 mmHg. 99mTc-HL91 accumulation in xenografts was markedly increased by hydralazine. In conclusion, hypoxia reduced accumulation of 99mTc-MIBI and 201Tl in tumour cells. Accordingly, hypoxia may be an important factor in terms of the

  5. Convoluted cells as a marker for maternal cell contamination in CVS cultures

    Hertz, Jens Michael; Jensen, P K; Therkelsen, A J


    In order to identify cells of maternal origin in CVS cultures, tissue from 1st trimester abortions were cultivated and the cultures stained in situ for X-chromatin. Convoluted cells and maternal fibroblasts were found to be positive. By chromosome analysis of cultures from 105 diagnostic placenta...... biopsies, obtained by the transabdominal route, metaphases of maternal origin were found in nine cases. In eight of these cases colonies of convoluted cells were observed. We conclude that convoluted cells are of maternal origin and are a reliable marker for maternal cell contamination in CVS cultures....

  6. Regulatory T cells and B cells: implication on autoimmune diseases

    Wang, Ping; Zheng, Song Guo


    The regulatory T (Treg) cells play an important role in the maintenance of homeostasis and the prevention of autoimmune diseases. Although most studies are focusing on the role of Treg cells in T cells and T cells-mediated diseases, these cells also directly affect B cells and other non-T cells. This manuscript updates the role of Treg cells on the B cells and B cell-mediated diseases. In addition, the mechanisms whereby Treg cells suppress B cell responses have been discussed.

  7. Effects of UVC-irradiation on cultured mouse embryonic cells

    Effects of UVC-irradiation on the cultured differentiating mouse embryonic cells were investigated. Embryonic mesenchymal cells, isolated from fore-and hind-limbs or mid brain of Day 11 mouse embryos, and 3T3 cells, a reference mouse fibroblast cell line, were irradiated with UVC at a dose range of 0∼30 J/m2. Dose-dependent inhibition was found for both cellular proliferation and differentiation, dose-dependent induction of DNA cyclobutane pyrimidine dimers and (6-4) photoproducts were found in the embryonic cells. Mesenchymal chondrogenesis was more sensitive to the UVC than proliferation, and the UVC-induced DNA damage and their repair kinetics in the cultured embryonic cells were similar to those in mouse 3T3 cells. No effects of treatments by the fluorescent light pre or post UVC-irradiation were found on the repair kinetics of DNA damage in all of the cells

  8. Vascular mimicry in cultured head and neck tumour cell lines

    Upile, Tahwinder; Jerjes, Waseem; Radhi, Hani; Al-Khawalde, Mohammed; Kafas, Panagiotis; Nouraei, Seyed; Sudhoff, Holger


    Introduction Vascuologenesis is the de novo establishment of blood vessels and vascular networks from mesoderm-derived endothelial cell precursors (angioblasts). Recently a novel mechanism, by which some genetically deregulated and aggressive tumour cells generate "micro-vascular" channels without the participation of endothelial cells and independent of angiogenesis, has been proposed. This has been termed "vasculogenic mimicry" and has implications beyond angiogenesis and adds another layer...


    Ninuk Lustyantie


    Full Text Available The culture of a society is closely related to the language used by the speakers. Moreover, there are opinions saying that in a language there will be patterns of behavior, materials, ideas (beliefs and knowledge, and sentiments (attitudes and norms of a society that are formed and exposed. This fact is in accordance with the opinion that a language is more than just a communion; it is the relation between individual and sociocultural values. Among all characteristics of culture, language is the most prominent distinguishing feature, since each social group feel themselves as a different entity from other groups. For certain social groups, language is used as the social identity/symbol. Close relation between language and culture is reflected in words used by the society. A concept or way of life in a society can be supported by words and language. Someone’s language behavior generally follows the culture of a society where he/she lives, including how the cultural elements appear in the equipment of human life, livelihood, social system, language (and literature system either written or oral, various of arts, knowledge system, and religious system. Sapir-Whorf Hypothesis states that there is a close relation between the language used by people and how they understand the world and behave in it. Based on 17th Century French fairytales, this article will review the moral values contained in the cultural elements and the implications in learning French as a foreign language.

  10. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture

    Lestard, Nathalia R.


    Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells. PMID:27478480

  11. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture.

    Lestard, Nathalia R; Capella, Marcia A M


    Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells. PMID:27478480

  12. Qualitative study of three cell culture methods.

    Wang, Aiguo; Xia, Tao; Ran, Peng; Chen, Xuemin; Nuessler, Andreas K


    Primary rat hepatocytes were cultured using different in vitro models and the enzyme leakage, albumin secretion, and cytochrome P450 1A (CYP 1A) activity were observed. The results showed that the level of LDH was decreased over time in culture. However, on day 5, LDH showed a significant increase in monolayer culture (MC) while after day 8 no LDH was detectable in sandwich culture (SC). The levels of AST and ALT did not change significantly over the investigated time. The CYP 1A activity was gradually decreased in a time-dependent manner in MC and SC. The decline of CYP 1A was faster in MC than in SC. This effect was partially reversed by using cytochrome P450 (CYP450) inducer such as Omeprazol and 3-methylcholanthrene (3-MC) and the CYP 1A induction was always higher in MC than in SC. In bioreactor basic CYP 1A activity was preserved over 2 weeks and the highest albumin production was observed in bioreactor followed by SC and MC. Taken together, it was indicated each investigated model had its advantages and disadvantages. It was also underlined that various in vitro models may address different questions. PMID:12674760

  13. [Effect evaluation of three cell culture models].

    Wang, Aiguo; Xia, Tao; Yuan, Jing; Chen, Xuemin


    Primary rat hepatocytes were cultured using three kinds of models in vitro and the enzyme leakage, albumin secretion, and cytochrome P450 1A (CYP 1A) activity were observed. The results showed that the level of LDH in the medium decreased over time in the period of culture. However, on 5 days, LDH showed a significant increase in monolayer culture (MC) while after 8 days LDH was not detected in sandwich culture (SC). The levels of AST and ALT in the medium did not change significantly over the investigated time. The basic CYP 1A activity gradually decreased with time in MC and SC. The decline of CYP 1A in rat hepatocytes was faster in MC than that in SC. This effect was partially reversed by using cytochrome P450 (CYP450) inducers such as omeprazol and 3-methylcholanthrene (3-MC) and the CYP 1A induction was always higher in MC than that in SC. Basic CYP 1A activity in bioreactor was keeped over 2 weeks and the highest albumin production was observed in bioreactor, and next were SC and MC. In conclusion, our results clearly indicated that there have some advantages and disadvantages in each of models in which can address different questions in metabolism of toxicants and drugs. PMID:14963896

  14. Hydrofocusing Bioreactor for Three-Dimensional Cell Culture

    Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly


    The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.

  15. Learning about Cells as Dynamic Entities: An Inquiry-Driven Cell Culture Project

    Palombi, Peggy Shadduck; Jagger, Kathleen Snell


    Using cultured fibroblast cells, undergraduate students explore cell division and the responses of cultured cells to a variety of environmental changes. The students learn new research techniques and carry out a self-designed experiment. Through this project, students enhance their creative approach to scientific inquiry, learn time-management and…

  16. Stability of resazurin in buffers and mammalian cell culture media

    Rasmussen, Eva; Nicolaisen, G.M.


    The utility of a ferricyanide/ferrocyanide system used in the AlamarBlue(TM) (Serotec, Oxford, UK) vital. dye to inhibit the reduction of resazurin by mammalian cell culture media is questioned. Resazurin was found to be relatively stable when dissolved in phosphate-buffered saline (PBS). The use...... of HEPES resulted in a huge immediate dye reduction, which was significantly enhanced by exposure to diffuse light from fluorescent tubes in the laboratory 8 h per day. The reduction of resazurin by various cell culture media was time and temperature dependent, and it was significantly enhanced by......'s nutrient mixture F-10 and F-12. Fetal calf serum (5-20%) slightly decreased resazurin reduction during the first 2 days of incubation. The reduction of resazurin by mammalian cell culture media do not appear to be problematic under normal culture conditions, and it is primarily dependent upon the presence...

  17. Towards dynamic metabolic flux analysis in CHO cell cultures.

    Ahn, Woo Suk; Antoniewicz, Maciek R


    Chinese hamster ovary (CHO) cells are the most widely used mammalian cell line for biopharmaceutical production, with a total global market approaching $100 billion per year. In the pharmaceutical industry CHO cells are grown in fed-batch culture, where cellular metabolism is characterized by high glucose and glutamine uptake rates combined with high rates of ammonium and lactate secretion. The metabolism of CHO cells changes dramatically during a fed-batch culture as the cells adapt to a changing environment and transition from exponential growth phase to stationary phase. Thus far, it has been challenging to study metabolic flux dynamics in CHO cell cultures using conventional metabolic flux analysis techniques that were developed for systems at metabolic steady state. In this paper we review progress on flux analysis in CHO cells and techniques for dynamic metabolic flux analysis. Application of these new tools may allow identification of intracellular metabolic bottlenecks at specific stages in CHO cell cultures and eventually lead to novel strategies for improving CHO cell metabolism and optimizing biopharmaceutical process performance. PMID:22102428

  18. Detection of multiple mycoplasma infection in cell cultures by PCR

    J. Timenetsky


    Full Text Available A total of 301 cell cultures from 15 laboratories were monitored for mycoplasma (Mollicutes using PCR and culture methodology. The infection was detected in the cell culture collection of 12 laboratories. PCR for Mollicutes detected these bacteria in 93 (30.9% samples. Although the infection was confirmed by culture for 69 (22.9% samples, PCR with generic primers did not detect the infection in five (5.4%. Mycoplasma species were identified with specific primers in 91 (30.2% of the 98 samples (32.6% considered to be infected. Mycoplasma hyorhinis was detected in 63.3% of the infected samples, M. arginini in 59.2%, Acholeplasma laidlawii in 20.4%, M. fermentans in 14.3%, M. orale in 11.2%, and M. salivarium in 8.2%. Sixty (61.2% samples were co-infected with more than one mycoplasma species. M. hyorhinis and M. arginini were the microorganisms most frequently found in combination, having been detected in 30 (30.6% samples and other associations including up to four species were detected in 30 other samples. Failure of the treatments used to eliminate mycoplasmas from cell cultures might be explained by the occurrence of these multiple infections. The present results indicate that the sharing of non-certified cells among laboratories may disseminate mycoplasma in cell cultures.

  19. Integrin VLA-3: ultrastructural localization at cell-cell contact sites of human cell cultures


    The integrin VLA-3 is a cell surface receptor, which binds to fibronectin, laminin, collagen type I and VI (Takada, Y., E. A. Wayner, W. G. Carter, and M. E. Hemler. 1988. J. Cell. Biochem. 37:385-393) and is highly expressed in substrate adherent cultures of almost all human cell types. The ligand specificity of VLA-3 and the inhibition of cell adhesion by anti-VLA-3 monoclonal antibodies suggest its involvement in cell-substrate interaction. In normal tissues, VLA-3 is restricted to few cel...

  20. Lack of FasL expression in cultured human retinal pigment epithelial cells

    Kaestel, C G; Madsen, H O; Prause, J U;


    Retinal pigment epithelial (RPE) cells have been proposed to play a part in maintaining the eye as an immune privileged organ. However, our knowledge of the implicated mechanism is still sparse. Fas ligand (FasL) expression of RPE cells is generally recognized to be essential for the immune...... blotting, RT-PCR and RNase Protection assay for FasL expression. Additionally, sections of ocular tissue were stained for FasL by immunohistochemistry. None of the used methods indicated FasL expression in cultured fetal or adult RPE cells of various passages. However, RPE cells in vivo, as judged from...... tissue sections, were positive for FasL, indicating a discrepancy between RPE cells in vitro and in vivo with regard to this molecule....

  1. Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models.

    Efstathia Papafragkou

    Full Text Available Human noroviruses are the most common cause of acute gastroenteritis worldwide. Recently, cell culture systems have been described using either human embryonic intestinal epithelial cells (Int-407 or human epithelial colorectal adenocarcinoma cells (Caco-2 growing on collagen-I porous micro carrier beads in a rotating bioreactor under conditions of physiological fluid shear. Here, we describe the efforts from two independent laboratories to implement this three dimensional (3D cell culture system for the replication of norovirus. Int-407 and Caco-2 were grown in a rotating bioreactor for up to 28 days. Prior to infection, cells were screened for the presence of microvilli by electron microscopy and stained for junction proteins (zonula occludens-1, claudin-1, and β-catenin. Differentiated 3D cells were transferred to 24-well plates and infected with bacteria-free filtrates of various norovirus genotypes (GI.1, GI.3, GI.8, GII.2, GII.4, GII.7, and GII.8. At 12 h, 24 h, and 48 h post inoculation, viral RNA from both cells and supernatants were collected and analyzed for norovirus RNA by real-time reverse transcription PCR. Despite observations of high expression of junction proteins and microvilli development in stained thin sections, our data suggest no significant increase in viral titer based on norovirus RNA copy number during the first 48 h after inoculation for the different samples and virus culture conditions tested. Our combined efforts demonstrate that 3D cell culture models using Int-407 or Caco-2 cells do not support norovirus replication and highlight the complexity and difficulty of developing a reproducible in vitro cell culture system for human norovirus.

  2. Heritable non-lethal damage to cultured human cells irradiated with heavy ions

    During interplanetary flights the nuclei of all of a crew member's cells could be traversed by at least one high-LET (linear energy transfer) cosmic-ray particle. In mammalian cells irradiated in vitro about 1 in 10,000 of the surviving cells traversed by heavy particles is transformed to malignancy or mutated. What, if anything, happens to the remaining >99% of surviving cells? A retrospective analysis of archived data and samples from heavy-ion irradiation experiments with cultured human cells in vitro indicated that heavy ions caused a dose- and LET-dependent reduction in growth rates of progeny of irradiated cells, based on colony-size distributions. The maximum action cross section for this effect is between 100 and 300 μm2, at least as large as the cell nuclear area and up to 3 times the cross section for cell killing. Thus, heritable slow growth is the most prevalent effect of high-LET radiations on cultured animal cells, which may have implications for crew health during deep space travel. (author)

  3. Metabolism Kinetics of Glucose in Anchorage-dependent Cell Cultures

    孙祥明; 张元兴


    The kinetic model of glucose metabolism was established and successfully applied to batchcultures of rCHO and rBHK cells. It was found that a large amount of glucose was utilized for cellmaintenance, and the overwhelming majority of maintenance energy from glucose was by its anaerobicmetabolism in both rBHK and rCHO cell cultures. The overall maintenance coefficients from aerobicmetabolism were 1.9×10-13 mmol/(cell.h) for rCHO cells and 7×10-13 mmol/(cell.h) for rBHK cells. Inaddition, all Go/T and Eo/T gradually increased with the same trend as the cell growth in the culture ofboth rCHO and rBHK cells. The overall molecule yield coefficients of lactate to glucose were 1.61 for rCHO cells and 1.38 for rBHK cells. The yield coefficients of cell to glucose were 4.5×108 cells/mmol for rCHO cells and 1.9 × 108 cells/mmol for rBHK cells, respectively.

  4. A Simple Hydrophilic Treatment of SU-8 Surfaces for Cell Culturing and Cell Patterning

    Wang, Zhenyu; Stangegaard, Michael; Dufva, Hans Martin;


    SU-8, an epoxy-based photoresist, widely used in constitution different mTAS systems, is incompatible with mammalian cell adhesion and culture in its native form. Here, we demonstrate a simple, cheap and robust two-step method to render a SU-8 surface hydrophilic and compatible with cell culture....... The contact angle of SU-8 surface was significantly reduced from 90° to 25° after the surface modification. The treated SU-8 surfaces provided a cell culture environment that was comparable with cell culture flask surface in terms of generation time and morphology....

  5. Replica-moulded polydimethylsiloxane culture vessel lids attenuate osmotic drift in long-term cell cultures

    Axel Blau; Tanja Neumann; Christiane Ziegler; Fabio Benfenati


    An imbalance in medium osmolarity is a determinant that affects cell culture longevity. Even in humidified incubators, evaporation of water leads to a gradual increase in osmolarity overtime. We present a simple replica-moulding strategy for producing self-sealing lids adaptable to standard, small-size cell-culture vessels. They are made of polydimethylsiloxane (PDMS), a flexible, transparent and biocompatible material, which is gas-permeable but largely impermeable to water. Keeping cell cultures in a humidified 5% CO2 incubator at 37°C, medium osmolarity increased by +6.86 mosmol/kg/day in standard 35 mm Petri dishes, while PDMS lids attenuated its rise by a factor of four to changes of +1.72 mosmol/kg/ day. Depending on the lid membrane thickness, pH drifts at ambient CO2 levels were attenuated by a factor of 4 to 9. Comparative evaporation studies at temperatures below 60°C yielded a 10-fold reduced water vapour flux of 1.75 g/day/dm2 through PDMS lids as compared with 18.69 g/day/dm2 with conventional Petri dishes. Using such PDMS lids, about 2/3 of the cell cultures grew longer than 30 days in vitro. Among these, the average survival time was 69 days with the longest survival being 284 days under otherwise conventional cell culture conditions.

  6. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Özcan;


    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-4...

  7. Endothelial cell cultures as a tool in biomaterial research

    Kirkpatrick, CJ; Otto, M; Kooten, TV; Krump, [No Value; Kriegsmann, J; Bittinger, F


    Progress in biocompatibility and tissue engineering would today be inconceivable without the aid of in vitro techniques. Endothelial cell cultures represent a valuable tool not just in haemocompatibility testing, but also in the concept of designing hybrid organs. In the past endothelial cells (EC)

  8. Cell cultures from the symbiotic soft coral Sinularia flexibilis

    Khalesi, M.K.; Vera-Jimenez, N.I.; Aanen, D.K.; Beeftink, H.H.; Wijffels, R.H.


    The symbiotic octocoral Sinularia flexibilis is a producer of potential pharmaceuticals. Sustainable mass production of these corals as a source of such compounds demands innovative approaches, including coral cell culture. We studied various cell dissociation methodologies and the feasibility of cu

  9. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Ozcan;


    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-...

  10. Duchenne muscular dystrophy: normal ATP turnover in cultured cells

    This paper examines ATP metabolism in cultured muscle cells and fibroblasts from patients with Duchenne dystrophy. ATP and ADP levels were the same in cultured cells from normal subjects and patients and there was no difference in ATP synthesis or degradation. The ATP synthesis was measured by the incorporation of C 14-U-adenine into aTP and ADP. although there was a significant decrease in radioactively labelled ATP after incubation with deoxyglucose in Duchenne muscle cells, there was no difference in ATP concentration of ADP metabolism

  11. Schwann cell cultures from human fetal dorsal root ganglia

    Yaping Feng; Hui Zhu; Jiang Hao; Xinmin Wang; Shengping Wu; Li Bai; Xiangming Li; Yun Zha


    BACKGROUND:Previous studies have used many methods for in vitro Schwann cells (SCs) cul-tures and purification,such as single cell suspension and cytosine arabinoside.However,it has been difficult to obtain sufficient cellular density,and the procedures have been quite tedious.OBJECTIVE:To investigate the feasibility of culturing high-density SCs using fetal human dorsal root ganglion tissue explants.DESIGN,TIME AND SETTING:Cell culture and immunohistochemistry were performed at the Cen-tral Laboratory of Kunming General Hospital of Chinese PLA between March 2001 and October 2008.MATERIALS:Culture media containing 10% fetal bovine serum,as well as 0.2% collagenase and 0.25% trypsin were purchased from Gibco,USA;mouse anti-human S-100 monoclonal antibody and goat anti-mouse IgG labeled with horseradish peroxidase were provided by Beijing Institute of Bi-ological Products,China.METHODS:Primarily cultured SCs were dissociated from dorsal root ganglia of human aborted fe-tuses at 4-6 months pregnancy.Following removal of the dorsal root ganglion perineurium,the gan-glia were dissected into tiny pieces and digested with 0.2% collagenase and 0.25% trypsin (volume ratio 1:1),then explanted and cultured.SC purification was performed with 5 mL 10% fetal bovine serum added to the culture media,followed by differential adhesion.MAIN OUTCOME MEASURES:SCs morphology was observed under inverted phase contrast light microscopy.SC purity was evaluated according to percentage of S-100 immunostained cells.RESULTS:SCs were primarily cultured for 5-6 days and then subcultured for 4-5 passages.The highly enriched SC population reached > 95% purity and presented with normal morphology.CONCLUSION:A high purity of SCs was obtained with culture methods using human fetal dorsal root ganglion tissue explants.

  12. Miniature Bioreactor System for Long-Term Cell Culture

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.


    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  13. Culture and immortalization of pancreatic ductal epithelial cells.

    Lawson, Terence; Ouellette, Michel; Kolar, Carol; Hollingsworth, Michael


    Some populations of the epithelial cells from the duct and ductular network of the mammalian pancreas have been isolated and maintained in vitro for up to 3 mo. These cells express many of the surface factors that are unique to them in vivo. They also retain significant drug- and carcinogen-metabolizing capacity in vitro. In this chapter we review the progression of the methods for the isolation, culture and maintenance in vitro for these cells from the earliest when only duct/ductular fragments were obtainable to the current ones which provide epithelial cells. The critical steps in the isolation process are identified and strategies are provided to facilitate these steps. These include the selection of tissue digestive enzymes, the importance of extensive mincing before culture and the importance of roles of some co-factors used in the culture medium. PMID:15542901

  14. Microfluidic bioreactors for culture of non-adherent cells

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota;


    Microfluidic bioreactors (μBR) are becoming increasingly popular for cell culture, sample preparation and analysis in case of routine genetic and clinical diagnostics. We present a novel μBR for non-adherent cells designed to mimic in vivo perfusion of cells based on diffusion of media through a...... sandwiched membrane. The culture chamber and perfusion chamber are separated by a sandwiched membrane and each chamber has separate inlet/outlets for easy loading/unloading of cells and perfusion of the media. The perfusion of media and exchange of nutrients occur through the sandwiched membrane, which was...... of CFSE staining and subsequent counting in a flow cytometer. To conclude on the applicability of μBR for genetic diagnostics, we prepare chromosome spreads on glass slides from the cultured samples, which is the primary step for metaphase FISH analysis....

  15. Dose verification by OSLDs in the irradiation of cell cultures

    The determination of value of irradiation dose presents difficulties when targets are irradiated located in regions where electronic equilibrium of charged particle is not reached, as in the case of irradiation -in vitro- of cell lines monolayer-cultured, in culture dishes or flasks covered with culture medium. The present study aimed to implement a methodology for dose verification in irradiation of cells in culture media by optically stimulated luminescence dosimetry (OSLD). For the determination of the absorbed dose in terms of cell proliferation OSL dosimeters of aluminum oxide doped with carbon (Al2O3:C) were used, which were calibrated to the irradiation conditions of culture medium and at doses that ranged from 0.1 to 15 Gy obtained with a linear accelerator of 6 MV photons. Intercomparison measurements were performed with an ionization chamber of 6 cm3. Different geometries were evaluated by varying the thicknesses of solid water, air and cell culture medium. The results showed deviations below 2.2% when compared with the obtained doses of OSLDs and planning system used. Also deviations were observed below 3.4% by eccentric points of the irradiation plane, finding homogeneous dose distribution. Uncertainty in the readings was less than 2%. The proposed methodology contributes a contribution in the dose verification in this type of irradiations, eliminating from the calculation uncertainties, potential errors in settling irradiation or possible equipment failure with which is radiating. It also provides certainty about the survival curves to be plotted with the experimental data. (Author)

  16. Radiosensitivity of cultured insect cells: I. Lepidoptera

    The radiosensitivity of five lepidopteran insect cell lines representing five different genera has been investigated. These lines are: (1) TN-368, Trichoplusia ni; (2) IPLB-SF-1254, Spodoptera frugiperda; (3) IPLB-1075, Heliothis zea; (4) MRRL-CHl, clone GVl, Manduca sexta; and (5) IAL-PID2, Plodia interpunctella. The cell lines grew at different rates and had population doubling times that ranged from 19 to 52 hr. All of the lines are highly heteroploid and have approximate chromosome numbers near or above 100. The chromosomes are very small. All of the lines are extremely radioresistant; cell populations are able to recover from 260 kVp X-ray exposures up to and including 400 Gy, the highest dose examined. Cell survival curves were obtainable for only the TN-368 and IPLB-SF-1254 lines. The TN-368 cells displayed a biphasic survival response with D0, d/sub q/, and n values of 65.7 and 130.2 Gy, 9.0 and -36.1 Gy, and 1.2 and 0.8, respectively, for the steep and shallow portions of the curve. The IPLB-SF-1254 cells had a D0 of 63.9 Gy. D/sub q/ of 19.0 Gy, and n value of 1.4. These studies provide definitive evidence of the radioresistance of lepidopteran cells, and suggest that this radioresistance is a characteristic of lepidopteran insects

  17. Establishing a stem cell culture laboratory for clinical trials

    Elíseo Joji Sekiya


    Full Text Available Adult stem/progenitor cells are found in different human tissues. An in vitro cell culture is needed for their isolation or for their expansion when they are not available in a sufficient quantity to regenerate damaged organs and tissues. The level of complexity of these new technologies requires adequate facilities, qualified personnel with experience in cell culture techniques, assessment of quality and clear protocols for cell production. The rules for the implementation of cell therapy centers involve national and international standards of good manufacturing practices. However, such standards are not uniform, reflecting the diversity of technical and scientific development. Here standards from the United States, the European Union and Brazil are analyzed. Moreover, practical solutions encountered for the implementation of a cell therapy center appropriate for the preparation and supply of cultured cells for clinical studies are described. Development stages involved the planning and preparation of the project, the construction of the facility, standardization of laboratory procedures and development of systems to prevent cross contamination. Combining the theoretical knowledge of research centers involved in the study of cells with the practical experience of blood therapy services that manage structures for cell transplantation is presented as the best potential for synergy to meet the demands to implement cell therapy centers.

  18. The replacement of serum by hormones in cell culture media.

    Sato, G; Hayashi, I


    The replacement of serum by hormones in cell culture media. (Reemplazo del suero por hormonas en el medio de cultivo de células). Arch. Biol. Med. Exper. 10: 120-121, 1976. The serum used in cell culture media can be replaced by a mixture of hormones and some accesory blood factors. The pituitary cell line GH3 can be grown in a medium in which serum is replaced by triiodothyronine, transferrin, parathormone, tyrotrophin releasing hormone and somatomedins. Hela and BHK cell strains can also be grown in serum free medium supplemented with hormones. Each cell type appears to have different hormonal requirements yet it may found that some hormones are required for most cell types. PMID:1026199

  19. Continuous culture of immobilized streptomyces cells for kasugamycin production.

    Kim, C J; Chang, Y K; Chun, G T; Jeong, Y H; Lee, S J


    Continuous cultures of immobilized Streptomyces kasugaensis, a kasugamycin producer, were carried out on Celite beads. When using a prototype separator for immobilized-cell separation and recycling, the continuous operation could not be sustained for an extended period as a result of an excessive loss of immobilized cells caused by the poor performance of the separator. Accordingly, the immobilized-cell separator was revised to provide better immobilized-cell settling and thus recycling into the reactor. In a subsequent culture using the revised separator, a stable operation was maintained for over 820 h with a high kasugamycin productivity. The kasugamycin productivity ranged from 9.8 to 16.1 mg/L/h, which was about 14- to 23-fold higher than that in a batch suspended-cell culture. When the original feeding medium concentration was doubled at the end of the continuous culture, the productivity became severely impaired for several reasons, which will be discussed. An excessive formation of free cells and loss of immobilized cells through the separator were also observed. PMID:11386865

  20. Isolation, culture and characterization of primary mouse RPE cells.

    Fernandez-Godino, Rosario; Garland, Donita L; Pierce, Eric A


    Mouse models are powerful tools for the study of ocular diseases. Alterations in the morphology and function of the retinal pigment epithelium (RPE) are common features shared by many ocular disorders. We report a detailed protocol to collect, seed, culture and characterize RPE cells from mice. We describe a reproducible method that we previously developed to collect and culture murine RPE cells on Transwells as functional polarized monolayers. The collection of RPE cells takes ∼3 h, and the cultures mimic in vivo RPE cell features within 1 week. This protocol also describes methods to characterize the cells on Transwells within 1-2 weeks by transmission and scanning electron microscopy (TEM and SEM, respectively), immunostaining of vibratome sections and flat mounts, and measurement of transepithelial electrical resistance. The RPE cell cultures are suitable to study the biology of the RPE from wild-type and genetically modified strains of mice between the ages of 10 d and 12 months. The RPE cells can also be manipulated to investigate molecular mechanisms underlying the RPE pathology in the numerous mouse models of ocular disorders. Furthermore, modeling the RPE pathology in vitro represents a new approach to testing drugs that will help accelerate the development of therapies for vision-threatening disorders such as macular degeneration (MD). PMID:27281648

  1. Differential heat shock response of primary human cell cultures and established cell lines

    Richter, W W; Issinger, O G


    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized a...

  2. Formation and action of oxygen activated species in cell cultures

    The differences of hydrogen peroxide sensibility of mammal cell lineages (man, mouse, chinese hamster) in culture are studied. The cellular survival and the frequency of DNA induced breaks by hydrogen peroxide are analysed. The efficiency of elimination of DNA breaks by cells is determined. The possible relation between the cell capacity of repair and its survival to hydrogen peroxide action is also discussed. (M.A.)

  3. Polyphosphoinositides are present in plant tissue culture cells

    Polyphosphoinositides have been isolated from wild carrot cells grown in suspension culture. This is the first report of polyphosphoinositides in plant cells. The phospholipids were identified by comigration with known standards on thin-layer plates. After overnight labeling of the cells with myo-[2-3H] inositol, the phosphoinositides as percent recovered inositol were 93% phosphatidylinositol., 3.7% lysophosphatidylinositol, 1.7% phosphatidylinositol monophosphate, 0.8% phosphatidylinositol bisphosphate

  4. Culture of Neural Stem Cells in Calcium-alginate Microbeads

    Li-Song YAO; Tian-Qing LIU; Dan GE; Xue-Hu MA; Zhan-Feng CUI


    @@ 1 Introduction Recent research shows that neural stem cells may play an important role in the nerve injury reparation and nerve disease treatment. The shortage of the source and the number of NSCs, however, is the main challenge for its clinic application. In this situation, expansion of NSCs in large scale and culture in three dimensional environment are very worth of exploration. Notablely, the shear stress existed in bioreactors can cause serious cell injury especially for the shear sensitive cells like NSCs.

  5. Culture of Neural Stem Cells in Calcium-alginate Microbeads


    1 Introduction Recent research shows that neural stem cells may play an important role in the nerve injury reparation and nerve disease treatment. The shortage of the source and the number of NSCs, however, is the main challenge for its clinic application. In this situation, expansion of NSCs in large scale and culture in three dimensional environment are very worth of exploration. Notablely, the shear stress existed in bioreactors can cause serious cell injury especially for the shear sensitive cells like ...

  6. Epithelial morphogenesis in three-dimensional cell culture system

    Liu, Mengfei; 刘梦菲


    In human body, the most common structures formed by epithelial cells are hollow cysts or tubules. The key feature of the cysts and tubules is the central lumen, which is lined by epithelial cell sheets. The central lumen allows material exchange, thus it is indispensable for the proper function of the epithelial tissue. In order to understand the way that the epithelial cells form highly specialized structure, an in vitro three-dimensional (3D) culture system was established. The Caco-2 c...

  7. Carbon Nanotubes-Based Electrochemical Sensing for Cell Culture Monitoring

    Boero, Cristina; Carrara, Sandro; Del Vecchio, Giovanna; Albini, Giuseppe D.; Calzà, Laura; De Micheli, Giovanni


    Monitoring of metabolic compounds, such as glucose and lactate, is extensively reported in literature, especially for clinical purposes. Instead, the application of such technologies for monitoring metabolites in cell cultures has not been explored. From one side, such devices can provide information to the current state-of-the-art of cell lines, particularly those which are not fully known, as stem and embryonic cells. On the other hand, those systems can pave the way to fully automation for...

  8. Optimization of Seeding Density in Microencapsulated Recombinant CHO Cell Culture

    Zhang, Ying; Zhou, Jing; Zhang, Xulang; Yu, Weiting; Guo, Xin; Wang, Wei; Ma, Xiaojun


    Microencapsulation technology is an alternative large-scale mammalian cell culture method. The semi-permeable membrane of the microcapsule allows free diffusion of nutrients, oxygen and toxic metabolites to support cell growth, and the microcapsule membrane can protect the cells from the mechanical damage of shear forces associated with agitation and aeration. Many polymers have been used to make microcapsules, such as chitosan, polyacrylates, alginate, polyamino acids, and polyamides. One of...

  9. Culturing Human Pluripotent and Neural Stem Cells in an Enclosed Cell Culture System for Basic and Preclinical Research

    Stover, Alexander E.; Herculian, Siranush; Banuelos, Maria G.; Navarro, Samantha L.; Jenkins, Michael P.; Schwartz, Philip H.


    This paper describes how to use a custom manufactured, commercially available enclosed cell culture system for basic and preclinical research. Biosafety cabinets (BSCs) and incubators have long been the standard for culturing and expanding cell lines for basic and preclinical research. However, as the focus of many stem cell laboratories shifts from basic research to clinical translation, additional requirements are needed of the cell culturing system. All processes must be well documented and have exceptional requirements for sterility and reproducibility. In traditional incubators, gas concentrations and temperatures widely fluctuate anytime the cells are removed for feeding, passaging, or other manipulations. Such interruptions contribute to an environment that is not the standard for cGMP and GLP guidelines. These interruptions must be minimized especially when cells are utilized for therapeutic purposes. The motivation to move from the standard BSC and incubator system to a closed system is that such interruptions can be made negligible. Closed systems provide a work space to feed and manipulate cell cultures and maintain them in a controlled environment where temperature and gas concentrations are consistent. This way, pluripotent and multipotent stem cells can be maintained at optimum health from the moment of their derivation all the way to their eventual use in therapy. PMID:27341536

  10. Specimen Sample Preservation for Cell and Tissue Cultures

    Meeker, Gabrielle; Ronzana, Karolyn; Schibner, Karen; Evans, Robert


    The era of the International Space Station with its longer duration missions will pose unique challenges to microgravity life sciences research. The Space Station Biological Research Project (SSBRP) is responsible for addressing these challenges and defining the science requirements necessary to conduct life science research on-board the International Space Station. Space Station will support a wide range of cell and tissue culture experiments for durations of 1 to 30 days. Space Shuttle flights to bring experimental samples back to Earth for analyses will only occur every 90 days. Therefore, samples may have to be retained for periods up to 60 days. This presents a new challenge in fresh specimen sample storage for cell biology. Fresh specimen samples are defined as samples that are preserved by means other than fixation and cryopreservation. The challenge of long-term storage of fresh specimen samples includes the need to suspend or inhibit proliferation and metabolism pending return to Earth-based laboratories. With this challenge being unique to space research, there have not been any ground based studies performed to address this issue. It was decided hy SSBRP that experiment support studies to address the following issues were needed: Fixative Solution Management; Media Storage Conditions; Fresh Specimen Sample Storage of Mammalian Cell/Tissue Cultures; Fresh Specimen Sample Storage of Plant Cell/Tissue Cultures; Fresh Specimen Sample Storage of Aquatic Cell/Tissue Cultures; and Fresh Specimen Sample Storage of Microbial Cell/Tissue Cultures. The objective of these studies was to derive a set of conditions and recommendations that can be used in a long duration microgravity environment such as Space Station that will permit extended storage of cell and tissue culture specimens in a state consistent with zero or minimal growth, while at the same time maintaining their stability and viability.