WorldWideScience

Sample records for cdii coii feiii

  1. Recovery of Cd(II), Co(II) and Ni(II) from Chloride Medium by Solvent Extraction Using CYANEX 923 and CYANEX 272 I

    International Nuclear Information System (INIS)

    Ahmed, M.; El Dessouky, S.I.; El-Nadi, Y.A.; Daoud, J.A.; Saad, E.A.

    2008-01-01

    The paper aims to study the extraction and separation of Cd(II), Co(II) and Ni(II) from their mixtures in hydrochloric acid medium with CYANEX 923 in kerosene. Preliminary investigations showed that only Cd(II) is extracted with CYANEX 923 while Co(II) and Ni(II) are not extracted. Different parameters affecting the extraction of Cd(II) with CYANEX 923 such as hydrochloric acid, hydrogen ion, extractant and metal concentrations, temperature investigations were also investigated. The stoichiometry of the extracted metal species investigated was found to be HCdCl 3 . 2 CYANEX 923. The stripping of the extracted Cd(II) species is obtained with 0.1 M HCl solution. Co(II) was found to be extracted with CYANEX 272 at ph 5.8 leaving Ni(II) in the solution. A developed process for the sequential of Cd(II), Co(II) and Ni(II) from their mixture in hydrochloric acid medium is proposed

  2. Adsorption of Cs(I), Sr(II), Eu(III), Co(II) and Cd(II) by Al2O3

    International Nuclear Information System (INIS)

    Shiao, S.Y.; Egozy, Y.; Meyer, R.E.

    1981-01-01

    Adsorption of Cs(I), Sr(II), Eu(III), Co(II) and Cd(II) by Al 2 O 3 was carried out over a wide range of NaCl concentration and solution pH. In the medium pH region (pH 5 to 9), adsorption depends strongly on pH and less on salt concentration. However, in the high pH region (pH above 9), the salt dependence of the distribution coefficient becomes important. (author)

  3. Solid Phase Extraction of Trace Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) Ions in Beverages on Functionalized Polymer Microspheres Prior to Flame Atomic Absorption Spectrometric Determinations.

    Science.gov (United States)

    Berber, Hale; Alpdogan, Güzin

    2017-01-01

    In this study, poly(glycidyl methacrylate-methyl methacrylate-divinylbenzene) was synthesized in the form of microspheres, and then functionalized by 2-aminobenzothiazole ligand. The sorption properties of these functionalized microspheres were investigated for separation, preconcentration and determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions using flame atomic absorption spectrometry. The optimum pH values for quantitative sorption were 2 - 4, 5 - 8, 6 - 8, 4 - 6, 2 - 6 and 2 - 3 for Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II), respectively, and also the highest sorption capacity of the functionalized microspheres was found to be for Cu(II) with the value of 1.87 mmol g -1 . The detection limits (3σ; N = 6) obtained for the studied metals in the optimal conditions were observed in the range of 0.26 - 2.20 μg L -1 . The proposed method was successfully applied to different beverage samples for the determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions, with the relative standard deviation of <3.7%.

  4. Radiotracer study of the adsorption of Fe(III), Cr(III) and Cd(II) on natural and chemically modified Slovak zeolite

    International Nuclear Information System (INIS)

    Foeldesova, M.; Dillinger, P.; Lukac, P.

    1998-01-01

    In order to minimize the contamination of environment with metals in ionic form the more types of natural and chemically modified zeolites were examined to their uptake of Fe(III), Cr(III) and Cd(II) from water solutions by batch radio-exchange equilibration method. In this study was used zeolitic tuff from deposit Nizny Hrabovec (content of clinoptilolite 50-70%) with the grain size from 1.2 to 2.2 mm. The granules of zeolite were modified with the following NaOH solutions: ).5, 1, 2 and 4 mol.l -1 at 80 grad C for 4 hours. The sorption of Fe, Cr and Cd ions on all types of zeolites was studied by radio-exchange method and the sorption of Fe and Cr also flame atomic absorption method. From sorption curves the sorption coefficients were calculated. The results obtained in this work show that zeolites modified with NaOH solution are suitable for adsorption of Fe(III), Cr(III) and Cd(II) from underwater, waste water, feed water and coolant water from nuclear plants. The adsorbed zeolites can be solidified by conventional way

  5. Synthesis, characterisation and catalytic activity of 4, 5-imidazoledicarboxylate ligated Co(II) and Cd(II) metal-organic coordination complexes

    Science.gov (United States)

    Gangu, Kranthi Kumar; Maddila, Suresh; Mukkamala, Saratchandra Babu; Jonnalagadda, Sreekantha B.

    2017-09-01

    Two mono nuclear coordination complexes, namely, [Co(4,5-Imdc)2 (H2O)2] (1) and [Cd(4,5-Imdc)2(H2O)3]·H2O (2) were constructed using Co(II) and Cd(II) metal salts with 4,5-Imidazoledicarboxylic acid (4,5-Imdc) as organic ligand. Both 1, 2 were structurally characterized by single crystal XRD and the results reveal that 1 belongs to P21/n space group with unit cell parameters [a = 5.0514(3) Å, b = 22.5786(9) Å, c = 6.5377(3) Å, β = 111.5°] whereas, 2 belongs to P21/c space group with unit cell parameters [a = 6.9116(1) Å, b = 17.4579(2) Å, c = 13.8941(2) Å, β = 97.7°]. While Co(II) in 1 exhibited a six coordination geometry with 4,5-Imdc and water molecules, Cd(II) ion in 2 showed a seven coordination with the same ligand and solvent. In both 1 and 2, the hydrogen bond interactions with mononuclear unit generated 3D-supramolecular structures. Both complexes exhibit solid state fluorescent emission at room temperature. The efficacy of both the complexes as heterogeneous catalysts was examined in the green synthesis of six pyrano[2,3,c]pyrazole derivatives with ethanol as solvent via one-pot reaction between four components, a mixture of aromatic aldehyde, malononitrile, hydrazine hydrate and dimethyl acetylenedicarboxylate. Both 1 and 2 have produced pyrano [2,3,c]pyrazoles in impressive yields (92-98%) at room temperature in short interval of times (<20 min), with no need for any chromatographic separations. With good stability, ease of preparation and recovery plus reusability up to six cycles, both 1 and 2 prove to be excellent environmental friendly catalysts for the value-added organic transformations using green principles.

  6. Biologically active new Fe(II, Co(II, Ni(II, Cu(II, Zn(II and Cd(II complexes of N-(2-thienylmethylenemethanamine

    Directory of Open Access Journals (Sweden)

    C. SPÎNU

    2008-04-01

    Full Text Available Iron(II, cobalt(II, nickel (II, copper (II, zinc(II and cadmium(II complexes of the type ML2Cl2, where M is a metal and L is the Schiff base N-(2-thienylmethylenemethanamine (TNAM formed by the condensation of 2-thiophenecarboxaldehyde and methylamine, were prepared and characterized by elemental analysis as well as magnetic and spectroscopic measurements. The elemental analyses suggest the stoichiometry to be 1:2 (metal:ligand. Magnetic susceptibility data coupled with electronic, ESR and Mössbauer spectra suggest a distorted octahedral structure for the Fe(II, Co(II and Ni(II complexes, a square-planar geometry for the Cu(II compound and a tetrahedral geometry for the Zn(II and Cd(II complexes. The infrared and NMR spectra of the complexes agree with co-ordination to the central metal atom through nitrogen and sulphur atoms. Conductance measurements suggest the non-electrolytic nature of the complexes, except for the Cu(II, Zn(II and Cd(II complexes, which are 1:2 electrolytes. The Schiff base and its metal chelates were screened for their biological activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and the metal chelates were found to possess better antibacterial activity than that of the uncomplexed Schiff base.

  7. SEPARATION OF Fe (III, Cr(III, Cu(II, Ni(II, Co(II, AND Pb(II METAL IONS USING POLY(EUGENYL OXYACETIC ACID AS AN ION CARRIER BY A LIQUID MEMBRANE TRANSPORT METHOD

    Directory of Open Access Journals (Sweden)

    La Harimu

    2010-06-01

    Full Text Available Fe (III, Cr(III, Cu(II, Ni(II, Co(II, and Pb(II  metal ions had been separated using poly(eugenyl oxyacetic acid as an ion carrier by bulk liquid membrane transport method. The effect of pH, polyeugenyl oxyacetic acid ion carrier concentration, nitric acid concentration in the stripping solution, transport time, and metal concentration were optimized. The result showed that the optimum condition for transport of metal ions was at pH 4 for ion Fe(III and at pH 5 for Cr(III, Cu(II, Ni(II, Co(II, and Pb(II ions. The carrier volumes were optimum with concentration of 1 x 10-3 M at 7.5 mL for Cr(III, Cu (II,  Ni(II, Co(II ions and at 8.5 mL for Fe(III and Pb(II ions. The concentration of HNO3 in stripping phase was optimum at 2 M for Fe(III and Cu(II ions, 1 M for Cr(III, Ni(II and Co(II ions, and 0.5 M for Pb(II ion. The optimum transport times were 36 h for Fe(III and Co(II ions, and 48 h for Cr(III, Cu (II, Ni(II, and Pb(II ions. The concentration of metal ions accurately transported were 2.5 x 10-4 M for Fe(III and Cr(III ions, and 1 M for Cu (II, Ni(II, Co(II, and Pb(II ions. Compared to other metal ions the transport of Fe(III was the highest with selectivity order of Fe(III > Cr(III > Pb(II > Cu(II > Ni(II > Co(II. At optimum condition, Fe(III ion was transported through the membrane at 46.46%.   Keywords: poly(eugenyl oxyacetic acid, transport, liquid membrane, Fe (III, Cr(III, Cu(II, Ni(II, Co(II, and Pb(II ions

  8. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    Science.gov (United States)

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  9. Application of proton induced x-ray emission (PIXE) in estimation of trace metals entrapped in silica matrix

    International Nuclear Information System (INIS)

    Jal, P.K.; Patel, Sabita; Mishra, B.K.; Sudarshan, M.; Saha, A.

    2005-01-01

    Proton induced x-ray emission technique is used for multielemental analysis of metal ions adsorbed on nanosilica surface. At pH 3.5, silica traps uranium selectively from a mixture of solutions of 13 different metal ions viz., K(I), Ca(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Sr(II), Cd(II). Ba(II), Hg(II) and UO 2 (VI). (author)

  10. Synthesis and characterization of chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), cadmium(II) and dioxouranium(VI) complexes of 4(2-pyridyl)-1-(2,4-dihydroxybenzaldehyde)-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    Abu El-Reash, G.M.; Ibrahim, M.M.; Kenawy; El-Ayaan, Usama; Khattab, M.A.

    1994-01-01

    A few complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and dioxouranium(VI) with 4(2-pyridyl)-1-(2,4-dihydroxybenzaldehyde)-3-thiosemicarbazone have been synthesised and characterized on the basis of elemental analysis, IR, electronic NMR, and magnetic moment data. An octahedral structure is proposed for the Cr(III), Fe(III), Co(II) and Ni(H 3 PBT) 2 Cl 2 .2H 2 O complexes; a tetrahedral structure for the Mn(II) and Ni 2 (PBT)OAc.H 2 0 complexes and a square planar structure for the Cu(II) complexes. The antimicrobial and antifungal activities of H 3 PBT and of its metal(II) complexes are investigated. The results reveal that H 3 PBT exhibits greater antimicrobial activities than its complexes. (author). 34 refs., 4 figs., 2 tabs

  11. Physico - chemical investigation on Co(II), Ni(II), Cu(II), Zn(II), Cd(II), UO2+2 and VO+2 ions-O-(-N-3,5-dichloro-α-pyridone imino)

    International Nuclear Information System (INIS)

    Mathur, Praveen; Trivedi, Pradeep; Mehta, R.K.

    1983-01-01

    Studies on the interaction of newly synthesised ligand, O-(N-3, 5-dichloro-α-pyridone imino) benzene sulphonic acid (H 2 PB) with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), UO 2 +2 and VO +2 have been carried out potentiometrically. Many physico-chemical studies on thermodynamics, elemental analysis, molecular weight, magnetic moment, conductance, electronic and IR spectra have also been made on the solid chelates and their adducts. The dissociation constants of H 2 PB and stabilities of its bivalent chelates have been evaluated potentiometrically at 25deg, 35deg and 45degC in aqueous medium (0.01M, 0.05M and 0.1M NaClO 4 ) by Bjerrum's method. The stability sequence is in agreement with the Irving-William's rule. (author)

  12. Preparation of Schiff s base complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) and their spectroscopic, magnetic, thermal, and antifungal studies

    International Nuclear Information System (INIS)

    Parekh, H.M.; Patel, M.N.

    2006-01-01

    The potassium salt of salicylidene-DL-alanine (KHL), bis(benzylidene)ethylenediamine (A 1 ), thiophene-o-carboxaldene-p-toluidine (A 2 ), and its metal complexes of the formula [(M II (L)(A)(H 2 O)] (M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II); A = A 1 or A 2 ) are prepared. They are characterized by elemental analysis, magnetic susceptibility measurements, thermogravimetric analysis, and infrared and electronic spectral studies. The electronic spectral and magnetic moment data suggest an octahedral geometry for the complexes. All of these complexes, metal nitrates, fungicides (bavistin and emcarb), and ligands are screened for their antifungal activity against Aspergillus niger, Fusarium oxysporum, and Aspergillus flavus using a plate poison technique. The complexes show higher activity than those of the free ligands, metal nitrate, and the control (DMSO) and moderate activity against bavistin and emcarb [ru

  13. Chemical speciation of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II binary complexes of l-methionine in 1,2-propanediol-water mixtures

    Directory of Open Access Journals (Sweden)

    M. Padma Latha

    2007-04-01

    Full Text Available Chemical speciation of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II complexes of L-methionine in 0.0-60 % v/v 1,2-propanediol-water mixtures maintaining an ionic strength of 0.16 M at 303 K has been studied pH metrically. The active forms of ligand are LH2+, LH and L-. The predominant species detected are ML, MLH, ML2, ML2H, ML2H2 and MLOH. Models containing different numbers of species were refined by using the computer program MINIQUAD 75. The best-fit chemical models were arrived at based on statistical parameters. The trend in variation of complex stability constants with change in the dielectric constant of the medium is explained on the basis of electrostatic and non-electrostatic forces.

  14. Synthesis, Characterization, and Biological Activity of Mn(II, Fe(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II Complexes of N-Thiophenoyl-N′-Phenylthiocarbohydrazide

    Directory of Open Access Journals (Sweden)

    M. Yadav

    2013-01-01

    Full Text Available Mn(II, Fe(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II complex of N-thiophenoyl -N′-phenylthiocarbohydrazide (H2 TPTH have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, infrared, NMR, electronic, and ESR spectral studies. The complexes were found to have compositions [Mn(H TPTH2], [Co(TPTH (H2O2], [Ni(TPTH (H2O2], [Cu(TPTH], [Zn(H TPTH], [Cd(H TPTH2], and [Fe(H TPTH2(EtOH]. The magnetic and electronic spectral studies suggest square planar geometry for [Cu(TPTH], tetrahedral geometry for [Zn(TPTH] and [Cd(H TPTH2], and octahedral geometry for rest of the complexes. The infrared spectral studies of the 1 : 1 deprotonated complexes suggest bonding through enolic oxygen, thiolato sulfur, and both the hydrazinic nitrogens. Thus, H2TPTH acts as a binegative tetradentate ligand. H2 TPTH and its metal complexes have been screened against several bacteria and fungi.

  15. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Celal [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Gundogdu, Ali [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Bulut, Volkan Numan [Department of Chemistry, Giresun Faculty of Art and Science, Karadeniz Technical University, 28049 Giresun (Turkey); Soylak, Mustafa [Department of Chemistry, Faculty of Art and Science, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: soylak@erciyes.edu.tr; Elci, Latif [Department of Chemistry, Faculty of Art and Science, Pamukkale University, 20020 Denizli (Turkey); Sentuerk, Hasan Basri [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Tuefekci, Mehmet [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2007-07-19

    A new method using a column packed with Amberlite XAD-2010 resin as a solid-phase extractant has been developed for the multi-element preconcentration of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), and Pb(II) ions based on their complex formation with the sodium diethyldithiocarbamate (Na-DDTC) prior to flame atomic absorption spectrometric (FAAS) determinations. Metal complexes sorbed on the resin were eluted by 1 mol L{sup -1} HNO{sub 3} in acetone. Effects of the analytical conditions over the preconcentration yields of the metal ions, such as pH, quantity of Na-DDTC, eluent type, sample volume and flow rate, foreign ions etc. have been investigated. The limits of detection (LOD) of the analytes were found in the range 0.08-0.26 {mu}g L{sup -1}. The method was validated by analyzing three certified reference materials. The method has been applied for the determination of trace elements in some environmental samples.

  16. Syntheses of polystyrene supported chelating resin containing the Schiff base derived from salicylaldehyde and triethylene tetramine and its copper(II), nickel(II), cobalt(II), iron(III), zinc(II), cadmium(II), molybdenum(VI), zirconium(IV) and uranium(VI) complexes

    International Nuclear Information System (INIS)

    Syamal, A.; Singh, M.M.

    1998-01-01

    A new polymer-anchored chelating ligand has been synthesized by the reaction of chloromethylated polystyrene (containing 0.94 mmol of Cl per gram of resin and 1% cross-linked with divinylbenzene) and the Schiff base derived from salicylaldehyde and triethylenetetramine. A new series of polystyrene supported, Cu(II), Ni(II), Co(II), Fe(III), Zn(II), Cd(II), Zr(IV), dioxomolybdenum (VI) and dioxouranium (VI) complexes of the formulae PS-LCu, PS-LNi, PS-LCo, PS-LFeCl.DMF, PS-LZn, PS-LCd, PS-LZr(OH) 2 . DMF, PS L MoO 2 and PS-LUO 2 (where PS-LH 2 = polymer-anchored Schiff base and DMF dimethyl-formamide) have been synthesized and characterised by elemental analysis, infrared, electronic spectra and magnetic susceptibility measurements. The complexes PS-LCu, PS-LNi and PS-LCo have square planar structure, PS-LFeCl.DMF, PS-LMoO 2 and PS-LUO 2 have octahedral structure, PS L Zn and PS-LCd are tetrahedral and PS-LZr(OH) 2 .DMF is pentagonal bipyramidal. The polymer-anchored Cu(II), Co(II) and Fe(III) complexes are paramagnetic while Ni(II), Zn(II), Cd(II), Zr(IV), dioxomolybdenum(VI) and dioxouranium(VI) complexes are diamagnetic. The negative shift of the v (C=N) (azomethine) and the positive shift of v (C--O)(phenolic) are indicative of ONNO donor behaviour of the polymer-anchored Schiff base. (author)

  17. Coligand-regulated assembly, fluorescence, and magnetic properties of Co(II) and Cd(II) complexes with a non-coplanar dicarboxylate

    International Nuclear Information System (INIS)

    Xin, Ling-Yun; Liu, Guang-Zhen; Ma, Lu-Fang; Wang, Li-Ya

    2013-01-01

    A non-coplanar dicarboxylate ndca (H 2 ndca=5-norbornene-2,3-dicarboxylic acid), combining with various dipyridyl-typed tectons, constructs six Cd(II)/Co(II) coordination polymers under hydrothermal conditions, namely [Co(ndca)(H 2 O)] n (1), ([Co(ndca)(bpe)(H 2 O)]·H 2 O) n (2), [Co(ndca)(bpa) 0.5 (H 2 O)] n (3), [Cd(ndca)(bpe)(H 2 O)] n (4), ([Cd(ndca)(bpa)(H 2 O)]·0.5H 2 O) n (5), and ([Cd(ndca)(bpp) (H 2 O)]·H 2 O) n (6) (bpe=1,2-di(4-pyridyl)ethylene, bpa=1,2-bi(4-pyridyl)ethane, and bpp=1,3-bis(4-pyridyl)propane). All these compounds contain various metal(II)–carboxylate motifs, including carboxylate binuclear (2, 4, 5), carboxylate chain (1, 6) and carboxylate layer (3), which are further extended by dipyridyl-typed coligands to afford a vast diversity of the structures with 2D pyknotic layers (1, 6), 2D open layer (5), 2D→3D interpenetrated networks (2,4), and 3D pillared-layer framework (3), respectively. In addition, fluorescent spectra of Cd(II) complexes and magnetic properties of Co(II) complexes are also given. - Graphical abstract: Six various cadmium(II)/cobalt(II)–organic frameworks were constructed by 5-norbornene-2,3-dicarboxylic acid and different bis(pyridine) rod-like tectons, and Cd (II) complexes exhibit blue–violet emissions, whereas Co (II) complexes show antiferromagnetic behaviours. Display Omitted

  18. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine

    Science.gov (United States)

    Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  19. Coligand-regulated assembly, fluorescence, and magnetic properties of Co(II) and Cd(II) complexes with a non-coplanar dicarboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Ling-Yun [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Liu, Guang-Zhen, E-mail: gzliuly@126.com [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Ma, Lu-Fang [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Wang, Li-Ya [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061 (China)

    2013-10-15

    A non-coplanar dicarboxylate ndca (H{sub 2}ndca=5-norbornene-2,3-dicarboxylic acid), combining with various dipyridyl-typed tectons, constructs six Cd(II)/Co(II) coordination polymers under hydrothermal conditions, namely [Co(ndca)(H{sub 2}O)]{sub n} (1), ([Co(ndca)(bpe)(H{sub 2}O)]·H{sub 2}O){sub n} (2), [Co(ndca)(bpa){sub 0.5}(H{sub 2}O)]{sub n} (3), [Cd(ndca)(bpe)(H{sub 2}O)]{sub n} (4), ([Cd(ndca)(bpa)(H{sub 2}O)]·0.5H{sub 2}O){sub n} (5), and ([Cd(ndca)(bpp) (H{sub 2}O)]·H{sub 2}O){sub n} (6) (bpe=1,2-di(4-pyridyl)ethylene, bpa=1,2-bi(4-pyridyl)ethane, and bpp=1,3-bis(4-pyridyl)propane). All these compounds contain various metal(II)–carboxylate motifs, including carboxylate binuclear (2, 4, 5), carboxylate chain (1, 6) and carboxylate layer (3), which are further extended by dipyridyl-typed coligands to afford a vast diversity of the structures with 2D pyknotic layers (1, 6), 2D open layer (5), 2D→3D interpenetrated networks (2,4), and 3D pillared-layer framework (3), respectively. In addition, fluorescent spectra of Cd(II) complexes and magnetic properties of Co(II) complexes are also given. - Graphical abstract: Six various cadmium(II)/cobalt(II)–organic frameworks were constructed by 5-norbornene-2,3-dicarboxylic acid and different bis(pyridine) rod-like tectons, and Cd (II) complexes exhibit blue–violet emissions, whereas Co (II) complexes show antiferromagnetic behaviours. Display Omitted.

  20. Computer augumented modelling studies of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II complexes of L-glutamic acid in 1,2-propanediol–water mixtures

    Directory of Open Access Journals (Sweden)

    MAHESWARA RAO VEGI

    2008-12-01

    Full Text Available Chemical speciation of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II complexes of L-glutamic acid was studied at 303 K in 0–60 vol. % 1,2-propanediol–water mixtures, whereby the ionic strength was maintained at 0.16 mol dm-3. The active forms of the ligand are LH3+, LH2 and LH–. The predominant detected species were ML, ML2, MLH, ML2H and ML2H2. The trend of the variation in the stability constants with changing dielectric constant of the medium is explained based on the cation stabilizing nature of the co-solvents, specific solvent–water interactions, charge dispersion and specific interactions of the co-solvent with the solute. The effect of systematic errors in the concentrations of the substances on the stability constants is in the order alkali > > acid > ligand > metal. The bioavailability and transportation of metals are explained based on distribution diagrams and stability constants.

  1. Thermal, spectral, magnetic and biological studies of thiosemicarbazones complexes with metal ions: Cu(II), Co(II), Ni(II), Fe(III), Zn(II), Mn(II) and UO2(VI)

    International Nuclear Information System (INIS)

    Mashaly, M.M.; Seleem, H.S.; El-Behairy, M.A.; Habib, H.A.

    2004-01-01

    Thiosemicarbazones ligands, isatin-3-thiosemicarbazone(HIT) and N-acetylisatin-3-thiosemicarbazone (HAIT), which have tridentate ONN coordinating sites were prepared. The complexes of both ligands with Cu(II), Co(II), Ni(II), Fe(III), Zn(II), Mn(II) and UO 2 (VI) ions were isolated. The ligands and their metal complexes were characterized by elemental analysis, IR, UV-Vis and mass spectra, also by conductance, magnetic moment and TG-DSC measurements. All the transition metal complexes have octahedral configurations, except Cu-complexes which have planar geometry and the UO 2 (VI) complexes which have coordination number 8 and may acquire the distorted dodecahedral geometry. Thermal studies explored the possibility of obtaining new complexes. Inversion from octahedral to square-planar configuration occurred upon heating the parent Ni-HIAT complex to form the corresponding pyrolytic product. The antifungal activity against the tested organisms showed that some metal complexes enhanced the activity with respect to the parent ligands. (author)

  2. Volatile hexafluoroacetylacetonates for the isolation and gas-chromatographic determination of trace metals. Pt. 1

    International Nuclear Information System (INIS)

    Hellmuth, K.H.; Mirzai, H.

    1985-01-01

    The optimization of the extraction of metal cations [Sc(III), Cr(III), Mn(II), Fe(III), Co(II), Cu(II), Zn(II), Y(III), Ag(I), Cd(II), La(IIII), Ce(III), Eu(III), Yb(III), Hg(II), Pb(II), Th(IV), U(IV, VI) and Am(III)] in the form of mixed-ligand complexes with hexafluoroacetylacetone and neutral donators with nitrogen atoms or P=O-groups is described. The thermal and gas-chromatographic characteristics of the extracted volatile compounds are reported. Optimal results were achieved using tri-n-butyl-phosphine oxide as donator. (orig.) [de

  3. Potentiometric studies on the complexes of tetracycline (TC) and oxytetracycline (OTC) with some metal ions

    International Nuclear Information System (INIS)

    Ghandour, M.A.; Azab, H.A.; Hassan, A.; Ali, A.M.

    1992-01-01

    The interaction of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II), Hg(II), Pb(II), Al(III), and UO 2 (II) ions with tetracycline (TC) were studied by potentiometric pH titrations. The formation constants of the different binary complexes formed in such systems have been determined at 25±0.1 deg C and μ=0.1 moll -1 (NaNO 3 ). Potentiometric pH equilibrium measurements have been made under the same conditions for the interaction of oxytetracycline (OTC) and Cu(II), Cd(II), Pb(II), and UO 2 (II). The formation of (1:1) binary complexes are inferred from the potentiometric pH titration curves. The protonation constants of TC and OTC were also determined under the same conditions and refined (ESAB2M computer program). The transition metal stability constants are consistent with the Irving-Williams series. (authors)

  4. Potentiometric studies on the complexes of tetracycline (TC) and oxytetracycline (OTC) with some metal ions. Potentiometrische Untersuchungen der Komplexe von Tetracyclin (TC) und Oxytetracyclin (OTC) mit einigen Metall-Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Ghandour, M A; Azab, H A; Hassan, A; Ali, A M [Assiut Univ. (Egypt)

    1992-01-01

    The interaction of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II), Hg(II), Pb(II), Al(III), and UO[sub 2](II) ions with tetracycline (TC) were studied by potentiometric pH titrations. The formation constants of the different binary complexes formed in such systems have been determined at 25[+-]0.1 deg C and [mu]=0.1 moll[sup -1] (NaNO[sub 3]). Potentiometric pH equilibrium measurements have been made under the same conditions for the interaction of oxytetracycline (OTC) and Cu(II), Cd(II), Pb(II), and UO[sub 2](II). The formation of (1:1) binary complexes are inferred from the potentiometric pH titration curves. The protonation constants of TC and OTC were also determined under the same conditions and refined (ESAB2M computer program). The transition metal stability constants are consistent with the Irving-Williams series. (authors).

  5. Cd(II), Cu(II)

    African Journals Online (AJOL)

    user

    Depending on the way goethite was pretreated with oxalic acid, affinity for Cd(II) varied ...... Effects and mechanisms of oxalate on Cd(II) adsorption on goethite at different ... precipitation, surfactant mediation, hydrothermal and micro-emulsion.

  6. Synergic effect of tribenzylamine on the extraction of Fe(III) with 2-thenoyltrifluoroacetone in chloroform

    International Nuclear Information System (INIS)

    Cheema, M.N.; Saeed, M.M.; Qureshi, I.H.

    1980-01-01

    Synergic effect of tribenzylamine (TBA) on the solvent extraction of Fe(III), Co(II) and Cu(II), by thenoyltrifluoracetone (HTTA) in chloroform from aqueous medium of ionic strength 0.33 M (H + ,NaClO 4 ) has been studied. For trivalent iron an enhanced extraction > 98% was observed at pH 2.5 and the equilibrium was attained within 5 minutes. Extraction parameters such as concentrations of HTTA, TBA and pH were optimised by a triangular co-ordinate graph. The stoichiometry of the extractable adduct Fe (TTA) 3 TBA was established by slope analysis. Extraction and formation constants of extractable species were computed. (orig.) [de

  7. Indolenine meso-substituted dibenzotetraaza[14]annulene and its coordination chemistry toward the transition metal ions Mn(III), Fe(III), Co(II), Ni(II), Cu(II), and Pd(II).

    Science.gov (United States)

    Khaledi, Hamid; Olmstead, Marilyn M; Ali, Hapipah Mohd; Thomas, Noel F

    2013-02-18

    A new dibenzotetraaza[14]annulene bearing two 3,3-dimethylindolenine fragments at the meso positions (LH(2)), has been synthesized through a nontemplate method. X-ray crystallography shows that the whole molecule is planar. The basicity of the indolenine ring permits the macrocycle to be protonated external to the core and form LH(4)(2+)·2Cl(-). Yet another structural modification having strong C-H···π interactions was found in the chloroform solvate of LH(2). The latter two modifications are accompanied by a degree of nonplanar distortion. The antiaromatic core of the macrocycle can accommodate a number of metal ions, Mn(III), Fe(III), Co(II), Ni(II) and Cu(II), to form complexes of [Mn(L)Br], [Mn(L)Cl], [Fe(LH(2))Cl(2)](+)·Cl(-), [Co(L)], [Ni(L)], and [Cu(L)]. In addition, the reaction of LH(2) with the larger Pd(II) ion leads to the formation of [Pd(2)(LH(2))(2)(OAc)(4)] wherein the macrocycle acts as a semiflexible ditopic ligand to coordinate pairs of metal ions via its indolenine N atoms into dinuclear metallocycles. The compounds LH(2), [Co(L)], and [Ni(L)] are isostructural and feature close π-stacking as well as linear chain arrangements in the case of the metal complexes. Variable temperature magnetic susceptibility measurements showed thermally induced paramagnetism in [Ni(L)].

  8. Synthesis, spectroscopic, biological activity and thermal characterization of ceftazidime with transition metals

    Science.gov (United States)

    Masoud, Mamdouh S.; Ali, Alaa E.; Elasala, Gehan S.; Kolkaila, Sherif A.

    2018-03-01

    Synthesis, physicochemical characterization and thermal analysis of ceftazidime complexes with transition metals (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)) were discussed. It's obtained that ceftazidime act as bidentate ligand. From magnetic measurement and spectral data, octahedral structures were proposed for all complexes except for cobalt, nickel and mercury had tetrahedral structural. Hyper chemistry program confirmed binding sites of ceftazidime. Ceftazidime complexes show higher activity than ceftazidime for some strains. From TG and DTA curves the thermal decomposition mechanisms of ceftazidime and their metal complexes were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides as a final product except in case of Hg complex.

  9. Silica gel modified with N-(3-propyl)-O-phenylenediamine: functionalization, metal sorption equilibrium studies and application to metal enrichment prior to determination by flame atomic absorption spectrometry.

    Science.gov (United States)

    Akl, Magda Ali Abd-elAziz; Kenawy, Ibraheim Mohamed; Lasheen, Rabab Ramadan

    2005-08-01

    The use of the chemically modified silica gel N-(3-propyl)-O-phenylenediamine (SiG-NPPDA) adsorbent, for the preconcentration and separation of trace heavy metals, was described. SiG-NPPDA sorbs quantitatively (90-100% recovery) trace amounts of nine heavy metals, viz., Cd(II), Zn(II), Fe(III), Cu(II), Pb(II), Mn(II), Cr(III), Co(II) and Ni(II) at pH 7-8. The sorption capacity varies from 350 to 450 micromol g(-1). Desorption was found to be quantitative with 1-2 M HNO3 or 0.05 M Na2EDTA. The distribution coefficient, Kd and the percentage concentration of the investigated metal ions on the adsorbent at equilibrium, C(M,eqm)% (Recovery, R%), were studied as a function of experimental parameters. The logarithmic values of the distribution coefficient, log Kd, ranges between 4.0 and 6.4. Some foreign ions caused little interference in the preconcentration and determination of the investigated nine metals by flame atomic absorption spectrometry (AAS). The adsorbent and its formed metal chelates were characterized by IR (absorbance and/or reflectance), potentiometric titrations and thermogravimetric analysis (TGA and DTG). The mode of chelation between the SiG-NPPDA adsorbent and the investigated metal ions is proposed to be due to the reaction of the investigated metal ions with the two nitrogen atoms of the SiG-NPPDA adsorbent. The present adsorbent coupled with flame AAS has been used to enrich and determine the nine metal ions in natural aqueous systems and in certified reference materials (RSD < or = 5%). The copper, iron, manganese and zinc present in some pharmaceutical vitamin samples were also preconcentrated on SiG-NPPDA adsorbent and determined by flame AAS (RSD < or = 4.2%). Nanogram concentrations (0.07-0.14 ng ml(-1)) of Cd(II), Zn(II), Fe(III), Pb(II), Cr(III), Mn(II), Cu(II), Co(II) and Ni(II) can be determined reliably with a preconcentration factor of 100.

  10. Evaluation of CNTs/MnO{sub 2} composite for adsorption of {sup 60}Co(II), {sup 65}Zn(II) and Cd(II) ions from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sharaf El-Deen, Sahar E.A.; Moussa, Saber I.; Mekawy, Zakaria A.; Shehata, Mohamed K.K.; Someda, Hanan H. [Atomic Energy Authority, Inshas (Egypt). Dept. of Nuclear Chemistry; Sadeek, Sadeek A. [Zagazig Univ. (Egypt). Dept. of Chemistry

    2017-03-01

    CNTs/MnO{sub 2} composite was synthesized by a co-precipitation method after preparation of carbon nanotubes (CNTs) using a chemical oxidation method and was characterized using Fourier transformer infrared (FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The synthesized CNTs/MnO{sub 2} composite was used as a sorbent for the removal of some radionuclides ({sup 60}Co and {sup 65}Zn-radioisotopes) and Cd (II) ions from aqueous solutions. Different parameters affecting the removal process including pH, contact time and metal ion concentration were investigated. Isotherm and kinetic models were studied. Adsorption data was interpreted in terms of both Freundlich and Langmuir isotherms and indicated that the CNTs/MnO{sub 2} composite complied well with both Langmuir and Freundlich models for {sup 60}Co and Cd(II) ions and with the Freundlich model only for the {sup 65}Zn radioisotope. A pseudo-second-order model was effectively employed to describe the adsorption behavior of {sup 60}Co, {sup 65}Zn and Cd(II) ions. Desorption of {sup 60}Co and {sup 65}Zn and Cd(II) ions from loaded samples was studied using different eluents.

  11. Simultaneous removal of Cd(II) and Sb(V) by Fe–Mn binary oxide: Positive effects of Cd(II) on Sb(V) adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruiping [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Liu, Feng [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Chengzhi, E-mail: czhu@rcees.ac.cn [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); He, Zan [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Huijuan; Qu, Jiuhui [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2015-12-30

    Highlights: • Fe–Mn binary oxide achieves the simultaneous removal of Cd(II) and Sb(V). • Cd(II) at above 0.25 mmol/L improves Sb(V) adsorption onto FMBO. • Cd(II) improves more significant Sb(V) adsorption than Ca{sup 2+} and Mn{sup 2+}. • Sb(V) adsorption decreases whereas Cd(II) adsorption increases with elevated pH. • The increased ζ-potential and Cd(II)–Sb(V) precipitation favors Sb(V) adsorption. - Abstract: The coexistence of cadmium ion (Cd(II)) and antimonate (Sb(V)) creates the need for their simultaneous removal. This study aims to investigate the effects of positively-charged Cd(II) on the removal of negative Sb(V) ions by Fe–Mn binary oxide (FMBO) and associated mechanisms. The maximum Sb(V) adsorption density (Q{sub max,Sb(V)}) increased from 1.02 to 1.32 and 2.01 mmol/g in the presence of Cd(II) at 0.25 and 0.50 mmol/L. Cd{sup 2+} exhibited a more significant positive effect than both calcium ion (Ca{sup 2+}) and manganese ion (Mn{sup 2+}). Cd{sup 2+} showed higher affinity towards FMBO and increased its ζ-potential more significantly compared to Ca{sup 2+} and Mn{sup 2+}. The simultaneous adsorption of Sb(V) and Cd(II) onto FMBO can be achieved over a wide initial pH (pH{sub i}) range from 2 to 9, and Q{sub Sb(V)} decreases whereas Q{sub Cd(II)} increases with elevated pH{sub i}. Their combined values, as expressed by Q{sub Sb(V)+Cd(II)}, amount to about 2 mmol/g and vary slightly in the pH{sub i} range 4–9. FTIR and XPS spectra indicate the significant synergistic effect of Cd(II) on Sb(V) adsorption onto FMBO, and that little chemical valence transformation occurs. These results may be valuable for the treatment of wastewater with coexisting heavy metals such as Cd(II) and Sb(V).

  12. Synthesis and characterization of a surface-grafted Cd(II) ion-imprinted polymer for selective separation of Cd(II) ion from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Min [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Feng, Changgen, E-mail: cgfeng@cast.org.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Li, Mingyu; Zeng, Qingxuan; Gan, Qiang [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Yang, Haiyan [Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2015-03-30

    Highlights: • Cd(II) ion-imprinted polymer (Cd(II)-IIP) is prepared. • Cd(II)-IIP shows high stability, good selectivity and reusability. • Cd(II)-IIP can be used as a sorbent for selective removal of Cd(II) ion. - Abstract: A novel Cd(II) ion-imprinted polymer (Cd(II)-IIP) was prepared with surface imprinting technology by using cadmium chloride as a template and allyl thiourea (ATU) as a functional monomer for on-line solid-phase extraction of trace Cd(II) ion and selective separation Cd(II) ion in water samples. The Cd(II)-IIP exhibited good chemical performance and thermal stability. Kinetics studies showed that the equilibrium adsorption was achieved within 8.0 min and the adsorption process can be described by pseudo-second-order kinetic model. Compared to the Cd(II) non-imprinted polymer (Cd(II)-NIP), the Cd(II)-IIP had a higher adsorption capacity and selectivity for Cd(II) ion. The maximum adsorption capacities of the Cd(II)-IIP and Cd(II)-NIP for Cd(II) were 38.30 and 13.21 mg g{sup −1}, respectively. The relative selectivity coefficients of the adsorbent for Cd(II) in the presence of Cu{sup 2+}, Ni{sup 2+}, Co{sup 2+}, Pb{sup 2+} and Zn{sup 2+} were 2.86, 6.42, 11.50, 9.46 and 3.73, respectively. In addition, the Cd(II) ion adsorbed was easy to remove from sorbent and the Cd(II)-IIP exhibited good stability and reusability. The adsorption capacity had no obvious decrease after being used six times. The accuracy of this method was verified by the standard reference material, it was then applied for cadmium ion determination in different types of water samples.

  13. Adsorption of heavy metal ions on molybdenum and molybdenum trioxide from dilute aqueous solution

    International Nuclear Information System (INIS)

    Utsunomiya, Taizo; Hoshino, Yoshio; Sakabe, Ken-ichi

    1984-01-01

    The adsorption of heavy metal ions such as Co(II), Cu(II) and Pb(II) on molybdenum powder has been investigated by the batch technique as a function of soaking time, concentration of heavy metal ions and coexisting salts, pH etc. Molybdenum trioxide was also used as an adsorbent for a comparison to discuss the adsorption mechanism. The amount of these heavy metal ions adsorbed was highly pH and coexisting salts dependent. These adsorbents have features of selective adsorption for Pb(II) and large adsorption rate. The adsorption of heavy metal ions on these adsorbents proceeds independently or concurrently by following complex mechanism; (1) cation exchange reaction by hydroxyl radical on the surface of Mo and MoO 3 is predominant for most of heavy metal ions except Pb(II) [Co(II), Mn(II), Fe(III), Ni(II), Zn(II), Cd(II) and Sr(II)], (2) reduction (electron exchange reaction) to low ionic or metallic state after cation exchange reaction [Cu(II) and Ag(I) on Mo] and (3) formation of a compound [Pb(II) on both Mo and MoO 3 ]. (author)

  14. Simultaneous removal of Cd(II) and Sb(V) by Fe–Mn binary oxide: Positive effects of Cd(II) on Sb(V) adsorption

    International Nuclear Information System (INIS)

    Liu, Ruiping; Liu, Feng; Hu, Chengzhi; He, Zan; Liu, Huijuan; Qu, Jiuhui

    2015-01-01

    Highlights: • Fe–Mn binary oxide achieves the simultaneous removal of Cd(II) and Sb(V). • Cd(II) at above 0.25 mmol/L improves Sb(V) adsorption onto FMBO. • Cd(II) improves more significant Sb(V) adsorption than Ca"2"+ and Mn"2"+. • Sb(V) adsorption decreases whereas Cd(II) adsorption increases with elevated pH. • The increased ζ-potential and Cd(II)–Sb(V) precipitation favors Sb(V) adsorption. - Abstract: The coexistence of cadmium ion (Cd(II)) and antimonate (Sb(V)) creates the need for their simultaneous removal. This study aims to investigate the effects of positively-charged Cd(II) on the removal of negative Sb(V) ions by Fe–Mn binary oxide (FMBO) and associated mechanisms. The maximum Sb(V) adsorption density (Q_m_a_x_,_S_b_(_V_)) increased from 1.02 to 1.32 and 2.01 mmol/g in the presence of Cd(II) at 0.25 and 0.50 mmol/L. Cd"2"+ exhibited a more significant positive effect than both calcium ion (Ca"2"+) and manganese ion (Mn"2"+). Cd"2"+ showed higher affinity towards FMBO and increased its ζ-potential more significantly compared to Ca"2"+ and Mn"2"+. The simultaneous adsorption of Sb(V) and Cd(II) onto FMBO can be achieved over a wide initial pH (pH_i) range from 2 to 9, and Q_S_b_(_V_) decreases whereas Q_C_d_(_I_I_) increases with elevated pH_i. Their combined values, as expressed by Q_S_b_(_V_)_+_C_d_(_I_I_), amount to about 2 mmol/g and vary slightly in the pH_i range 4–9. FTIR and XPS spectra indicate the significant synergistic effect of Cd(II) on Sb(V) adsorption onto FMBO, and that little chemical valence transformation occurs. These results may be valuable for the treatment of wastewater with coexisting heavy metals such as Cd(II) and Sb(V).

  15. Batch adsorptive removal of Fe(III), Cu(II) and Zn(II) ions in aqueous and aqueous organic–HCl media by Dowex HYRW2-Na Polisher resin as adsorbents

    OpenAIRE

    Aboul-Magd, Abdul-Aleem Soliman; Al-Husain, Salwa Al-Rashed; Al-Zahrani, Salma Ahmed

    2016-01-01

    Of the metal ions in tap, Nile, waste and sea water samples and some ores were carried out. Removal of heavy metal ions such as Fe(III), Cd(II), Zn(II), Cu(II), Mn(II), Mg(II), and Pb(II) from water and wastewater is obligatory in order to avoid water pollution. Batch shaking adsorption experiments to evaluate the performance of nitric and hydrochloric acid solutions in the removal of metal ions by cation exchange resin at the same conditions for both, such as the effect of initial metal ion ...

  16. Propyl phthalimide-modified thiacalixphenyl[4]arene as a “turn on” chemosensor for Hg(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Modi, Krunal; Panchal, Urvi; Mehta, Viren; Panchal, Manthan; Kongor, Anita; Jain, V.K., E-mail: drvkjain@hotmail.com

    2016-11-15

    Thiacalixphenyl[4]arene tetra N-(3-propyl) phthalimide (TPTN3PPh), a novel thiacalixarene bearing a N-(3-bromopropyl) phthalimide group, was synthesized and characterized by Electrospray Ionization Mass Spectrometry (ESI-MS) and NMR. The ability of TPTN3PPh to recognize the cations Fe(III), Cu(II), Cd(II), Zn(II), Cr(II), Ca(II), Co(II), Mg(II), Ag(I), Pb(II), Sr(II), Hg (II), Th(II), Ba(II), Bi(II), K(I), and Na(I) was evaluated. Only Hg(II) was selectively and sensitively detected using a spectrofluorimetric method, with a detection limit as low as 3.10×10{sup −9} M. Analysis of the binding behavior of TPTN3PPh with Hg(II) revealed 1:2 complex formation. Real sample analysis detected nano levels of mercury ions in a waste water samples.

  17. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes

    Science.gov (United States)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif

    2016-05-01

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.

  18. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes.

    Science.gov (United States)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M Arif

    2016-05-15

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Mechanisms for Fe(III) oxide reduction in sedimentary environments

    Science.gov (United States)

    Nevin, Kelly P.; Lovely, Derek R.

    2002-01-01

    Although it was previously considered that Fe(III)-reducing microorganisms must come into direct contact with Fe(III) oxides in order to reduce them, recent studies have suggested that electron-shuttling compounds and/or Fe(III) chelators, either naturally present or produced by the Fe(III)-reducing microorganisms themselves, may alleviate the need for the Fe(III) reducers to establish direct contact with Fe(III) oxides. Studies with Shewanella alga strain BrY and Fe(III) oxides sequestered within microporous beads demonstrated for the first time that this organism releases a compound(s) that permits electron transfer to Fe(III) oxides which the organism cannot directly contact. Furthermore, as much as 450 w M dissolved Fe(III) was detected in cultures of S. alga growing in Fe(III) oxide medium, suggesting that this organism releases compounds that can solublize Fe(III) from Fe(III) oxide. These results contrast with previous studies, which demonstrated that Geobacter metallireducens does not produce electron-shuttles or Fe(III) chelators. Some freshwater aquatic sediments and groundwaters contained compounds, which could act as electron shuttles by accepting electrons from G. metallireducens and then transferring the electrons to Fe(III). However, other samples lacked significant electron-shuttling capacity. Spectroscopic studies indicated that the electron-shuttling capacity of the waters was not only associated with the presence of humic substances, but water extracts of walnut, oak, and maple leaves contained electron-shuttling compounds did not appear to be humic substances. Porewater from a freshwater aquatic sediment and groundwater from a petroleum-contaminated aquifer contained dissolved Fe(III) (4-16 w M), suggesting that soluble Fe(III) may be available as an electron acceptor in some sedimentary environments. These results demonstrate that in order to accurately model the mechanisms for Fe(III) reduction in sedimentary environments it will be necessary

  20. Sequestration and Distribution Characteristics of Cd(II by Microcystis aeruginosa and Its Role in Colony Formation

    Directory of Open Access Journals (Sweden)

    Xiangdong Bi

    2016-01-01

    Full Text Available To investigate the sequestration and distribution characteristics of Cd(II by Microcystis aeruginosa and its role in Microcystis colony formation, M. aeruginosa was exposed to six different Cd(II concentrations for 10 days. Cd(II exposure caused hormesis in the growth of M. aeruginosa. Low concentrations of Cd(II significantly induced formation of small Microcystis colonies (P93% of Cd(II was sequestrated in the groups with lower added concentrations of Cd(II. More than 80% of the sequestrated Cd(II was bioadsorbed by bEPS. The Pearson correlation coefficients of exterior and interior factors related to colony formation of M. aeruginosa revealed that Cd(II could stimulate the production of IPS and bEPS via increasing Cd(II bioaccumulation and bioadsorption. Increased levels of cross-linking between Cd(II and bEPS stimulated algal cell aggregation, which eventually promoted the formation of Microcystis colonies.

  1. Removal of Co(II) from waste water using dry cow dung powder : a green ambrosia to soil

    Science.gov (United States)

    Bagla, Hemlata; Khilnani, Roshan

    2015-04-01

    Co(II) is one of the hazardous products found in the waste streams. The anthropogenic activities are major sources of Co(II) in our environment. Some of the well-established processes such as chemical precipitation, membrane process, liquid extraction and ion exchange have been applied as a tool for the removal of this metal ion [1]. All the above methods are not considered to be greener due to some of their shortcomings such as incomplete metal ion removal, high requirement of energy and reagents, generation of toxic sludge or other waste materials which in turn require further treatments for their cautious disposal. The present investigation entails the application of dry cow dung powder (DCP) as an indigenous, inexpensive and eco-friendly material for the removal of Co(II) from aqueous medium. DCP, is naturally available bio-organic, complex, polymorphic humified fecal matter of cow and is enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic-aromatic species such as 'Humic acid' (HA), Fulvic acid, Ulmic acid [2,3]. Batch biosorption experiments were conducted employing 60Co(II) as a tracer and effect of various process parameters such as pH (1-8), temperature (283-363K), amount of biosorbent (5-40 g/L), time of equilibration (0-30 min), agitation speed (0-4000 rpm), concentration of initial metal ions (0.5-20 mg/mL) and interfering effect of different organic as well as inorganic salts were studied. The Kinetic studies were carried out employing various models but the best fitting was given by Lagergren Pseudo-second order model [4] with high correlation coefficient R2 value of 0.999 and adsorption capacity of 2.31 mg/g. The thermodynamic parameters for biosorption were also evaluated which indicated spontaneous and exothermic process with high affinity of DCP for Co(II). Many naturally available materials are used for biosorption of hazardous metal pollutants, where most of them are physically or chemically modified. In this research

  2. Dissimilatory Fe(III) and Mn(IV) reduction.

    Science.gov (United States)

    Lovley, D R

    1991-06-01

    The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process.

  3. Efficient removal of Co(II) from aqueous solution by titanate sodium nanotubes

    Institute of Scientific and Technical Information of China (English)

    Dong-Mei Li; Ning Liu; Fei-Ze Li; Jia-Li Liao; Ji-Jun Yang; Bing Li; Yun-Ming Chen; Yuan-You Yang; Jin-Song Zhang; Jun Tang

    2016-01-01

    In this paper, a novel material for Co(II) adsorption, titanate sodium nanotubes (Na2Ti2O5-NTs) were synthesized and characterized, and then they were used to remove Co(II) from aqueous solution and compared with titanic acid nanotubes (H2Ti2O5-NTs) and potassium hexatitanate whiskers (K2Ti6O13). The results showed that the adsorption of Co(II) on the materials was dependent on pH values and was a spontaneous, endothermic process. Specifically, Na2Ti2O5-NTs exhibited much more efficient ability to adsorb Co(II) from aqueous solution, with the maximum adsorption capacity of 85.25 mg/g. Furthermore, Na2Ti2O5-NTs could selectively adsorb Co(II) from aque-ous solution containing coexisting ions (Na+, K+, Mg2+, and Ca2+). The results suggested that Na2Ti2O5-NTs were potential effective adsorbents for removal of Co(II) or cobalt-60 from wastewater.

  4. Sequestration and Distribution Characteristics of Cd(II) by Microcystis aeruginosa and Its Role in Colony Formation.

    Science.gov (United States)

    Bi, Xiangdong; Yan, Ran; Li, Fenxiang; Dai, Wei; Jiao, Kewei; Zhou, Qixing; Liu, Qi

    2016-01-01

    To investigate the sequestration and distribution characteristics of Cd(II) by Microcystis aeruginosa and its role in Microcystis colony formation, M. aeruginosa was exposed to six different Cd(II) concentrations for 10 days. Cd(II) exposure caused hormesis in the growth of M. aeruginosa . Low concentrations of Cd(II) significantly induced formation of small Microcystis colonies ( P bEPS) contents of M. aeruginosa significantly ( P 93% of Cd(II) was sequestrated in the groups with lower added concentrations of Cd(II). More than 80% of the sequestrated Cd(II) was bioadsorbed by bEPS. The Pearson correlation coefficients of exterior and interior factors related to colony formation of M. aeruginosa revealed that Cd(II) could stimulate the production of IPS and bEPS via increasing Cd(II) bioaccumulation and bioadsorption. Increased levels of cross-linking between Cd(II) and bEPS stimulated algal cell aggregation, which eventually promoted the formation of Microcystis colonies.

  5. Removal of Co(II) from aqueous solution by using hydroxyapatite

    International Nuclear Information System (INIS)

    Yan Huang; Liang Chen; Hualin Wang

    2012-01-01

    Herein, hydroxyapatite (HAP) was prepared by aqueous precipitation technique and was characterized by using FT-IR and XRD to determine its chemical functional groups and micro-structure. The removal of cobalt from aqueous solution to HAP was studied by batch technique as a function of various environmental parameters such as contact time, pH, ionic strength, foreign ions, fulvic acid (FA), and temperature under ambient conditions. The results indicated that the sorption of Co(II) on HAP was strongly dependent on pH and ionic strength. The presence of FA enhanced the sorption of Co(II) on HAP at low pH, whereas reduced Co(II) sorption on HAP at high pH. The Langmuir, Freundlich and D-R models were used to simulate the sorption isotherms at three different temperatures of 303.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔHdeg, ΔSdeg and ΔGdeg) calculated from the temperature dependent sorption isotherms indicated that the sorption process of Co(II) on HAP was spontaneous and endothermic. The sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The results suggest that the HAP is a suitable material in the preconcentration and solidification of Co(II) from large volumes of aqueous solutions. (author)

  6. Synthesis, physicochemical characterization, DFT calculation and biological activities of Fe(III) and Co(II)-omeprazole complexes. Potential application in the Helicobacter pylori eradication

    Science.gov (United States)

    Russo, Marcos G.; Vega Hissi, Esteban G.; Rizzi, Alberto C.; Brondino, Carlos D.; Salinas Ibañez, Ángel G.; Vega, Alba E.; Silva, Humberto J.; Mercader, Roberto; Narda, Griselda E.

    2014-03-01

    The reaction between the antiulcer agent omeprazole (OMZ) with Fe(III) and Co(II) ions was studied, observing a high ability to form metal complexes. The isolated microcrystalline solid complexes were characterized by elemental analysis, X-ray powder diffraction (XRPD), Scanning Electron Microscopy (SEM), magnetic measurements, thermal study, FTIR, UV-Visible, Mössbauer, electronic paramagnetic resonance (EPR), and DFT calculations. The metal-ligand ratio for both complexes was 1:2 determined by elemental and thermal analysis. FTIR spectroscopy showed that OMZ acts as a neutral bidentate ligand through the pyridinic nitrogen of the benzimidazole ring and the oxygen atom of the sulfoxide group, forming a five-membered ring chelate. Electronic, Mössbauer, and EPR spectra together with magnetic measurements indicate a distorted octahedral geometry around the metal ions, where the coordination sphere is completed by two water molecules. SEM and XRPD were used to characterize the morphology and the crystal nature of the complexes. The most favorable conformation for the Fe(III)-OMZ and Co(II)-OMZ complexes was obtained by DFT calculations by using B3LYP/6-31G(d)&LanL2DZ//B3LYP/3-21G(d)&LanL2DZ basis set. Studies of solubility along with the antibacterial activity against Helicobacter pylori for OMZ and its Co(II) and Fe(III) complexes are also reported. Free OMZ and both metal complexes showed antibacterial activity against H. pylori. Co(II)-OMZ presented a minimal inhibitory concentration ˜32 times lower than that of OMZ and ˜65 lower than Fe(III)-OMZ, revealing its promising potential use for the treatment of gastric pathologies associated with the Gram negative bacteria. The morphological changes observed in the cell membrane of the bacteria after the incubation with the metal-complexes were also analyzed by SEM microscopy. The antimicrobial activity of the complexes was proved by the viability test.

  7. The Adsorption of Cd(II on Manganese Oxide Investigated by Batch and Modeling Techniques

    Directory of Open Access Journals (Sweden)

    Xiaoming Huang

    2017-09-01

    Full Text Available Manganese (Mn oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999. The adsorption of Cd(II on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd at low pH and inner-sphere surface complexation sites (SOCd+ and (SO2CdOH− species at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface.

  8. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques.

    Science.gov (United States)

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong; Pan, Min

    2017-09-28

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R² > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X₂Cd) at low pH and inner-sphere surface complexation sites (SOCd⁺ and (SO)₂CdOH - species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water-mineral interface.

  9. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques

    Science.gov (United States)

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong

    2017-01-01

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd) at low pH and inner-sphere surface complexation sites (SOCd+ and (SO)2CdOH− species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface. PMID:28956849

  10. Synthesis, Spectral, Thermogravimetric, XRD, Molecular Modelling and Potential Antibacterial Studies of Dimeric Complexes with Bis Bidentate ON–NO Donor Azo Dye Ligands

    Directory of Open Access Journals (Sweden)

    Bipin Bihari Mahapatra

    2013-01-01

    Full Text Available The dimeric complexes of Co(II, Ni(II, Cu(II, Zn(II, Cd(II, and Hg(II with two new symmetrical ON–NO donor bis bidentate (tetradentate azo dye ligands, LH2 = 4,4′-bis(4′-hydroxyquinolinolinylazodiphenylsulphone, and L′H2 = 4,4′-bis(acetoacetanilideazodiphenylsulphone have been synthesized. The metal complexes have been characterised by elemental analytical, conductance, magnetic susceptibility, IR, electronic spectra, ESR, NMR, thermogravimetry, X-ray diffraction (powder pattern spectra, and molecular modelling studies. The Co(II and Ni(II complexes are found to be octahedral, Cu(II complexes are distorted octahedral, and a tetrahedral stereochemistry has been assigned to Zn(II, Cd(II, and Hg(II complexes. The thermogravimetric study indicates that compounds are quite stable. The energy optimized structures are proposed using the semiempirical ZINDO/1 quantum mechanical calculations. The potential antibacterial study of the ligands and some metal complexes has been made with one gram positive bacteria Staphylococcus aureus and one gram negative bacteria E. coli which gives encouraging results. Both the Co(II complexes are found to possess monoclinic crystal system.

  11. Cd(II) adsorption on various adsorbents obtained from charred biomaterials

    International Nuclear Information System (INIS)

    Li Zhenze; Katsumi, Takeshi; Imaizumi, Shigeyoshi; Tang Xiaowu; Inui, Toru

    2010-01-01

    Cadmium could cause severe toxicant impact to living beings and is especially mobile in the environment. Biomass is abundant and effective to adsorb heavy metals, but is easy to be decomposed biologically which affects the reliability of long-run application. Several biomasses were charred with and without additives at temperatures less than 200 deg. C in this study. The prepared adsorbents were further testified to remove Cd(II) from aqueous solution. Equilibrium and kinetic studies were performed in batch conditions. The effect of several experimental parameters on the cadmium adsorption kinetics namely: contact time, initial cadmium concentration, sorbent dose, initial pH of solution and ionic strength was evaluated. Kinetic study confirmed (1) the rapid adsorption of Cd(II) on GC within 10 min and (2) the following gradual intraparticle diffusion inwards the sorbent at neutral pH and outwards at strong acidic solution. The grass char (GC) was selected for further test according to its high adsorption capacity (115.8 mg g -1 ) and affinity (Langmuir type isotherm). The Cd(II) removal efficiency was increased with increasing solution pH while the highest achieved at sorbent dosage 10.0 g L -1 . The ionic strength affects the sorption of Cd(II) on GC to a limited extent whereas calcium resulted in larger competition to the sorption sites than potassium. Spectroscopic investigation revealed the adsorption mechanisms between Cd(II) and surface functional groups involving amine, carboxyl and iron oxide. The long-term stability of the pyrolyzed grass char and the potential application in engineering practices were discussed.

  12. Impact of Bioreduction on Remobilization of Adsorbed Cadmium on Iron Minerals in Anoxic Condition.

    Science.gov (United States)

    Ghorbanzadeh, Nasrin; Lakzian, Amir; Halajnia, Akram; Choi, Ui-Kyu; Kim, Ki-Hyun; Kim, Jong-Oh; Kurade, Mayur; Jeon, Byong-Hun

    2017-06-01

      The impact of bioreduction on the remobilization of adsorbed cadmium Cd(II) on minerals, including hematite, goethite, and two iron(III)-rich clay minerals nontronites (NAU-1 and NAU-2) under anoxic conditions was investigated. Langmuir isotherm equation better described the sorption of Cd(II) onto the all minerals. The maximum adsorption capacity was 6.2, 18.1, 3.6, and 4 mg g-1 for hematite, goethite, NAU-1 and NAU-2, respectively. The desorption of Cd(II) was due to the production of Fe(II) as a result of bioreduction of structural Fe(III) in the minerals by Shewanella putrefaciens. The bioreduction of Cd(II)-loaded Fe(III) minerals was negligible during the initial 5 days followed by a rapid increase up to 20 days. The amount of Cd(II) in solution phase at the end of 30 days increased up to 0.07 mmol L-1 for hematite, NAU-1, and NAU-2 and 0.02 mmol L-1 for goethite. The X-ray diffraction study showed negligible changes in bioreduced minerals phases.

  13. Solvent extraction of some metal ions by dithiocarbamate types of chemically modified lipophilic chitosan

    International Nuclear Information System (INIS)

    Inoue, K.; Nakagawa, H.; Naganawa, H.; Tachimori, S.

    2001-01-01

    Chitosan is a basic polysaccharide containing primary amino groups with high reactivity. we prepared O,O'-decanoyl chitosan and dithiocarbamate O,O'-decanoyl chitosan; the former was soluble in chloroform and toluene, while latter was soluble not only these diluents but also in some aliphatic diluents such as hexane and kerosene which are employed in commercial scale solvent extraction. Solvent extraction by dithiocarbamate O,O'-decanoyl chitosan in kerosene was tested for some base metal ions from sulfuric acid solution. The sequence of selectivity for these metal ions was found to be as follows: Cu(II) >> Ni(II) > Cd(II) ∼ Fe(III) > Co(II) ∼ Zn(II). Copper(II) was quantitatively extracted at pH > 1 and quantitatively stripped with 2 M sulfuric acid solution. Solvent extraction of silver(I) and gold(III) from hydrochloric acid as well as lanthanides and americium(III) from nitrate solution were also tested. Americium was selectively extracted over trivalent lanthanides, suggesting a high possibility for the final treatment of high level radioactive wastes. (authors)

  14. Extractive properties of benzohydroxamic and N-benzoyl-benzohydroxamic acids as analytical reagents towards six transition metal ions

    International Nuclear Information System (INIS)

    Mohamed, Mohamed Rafie Hamid

    1999-06-01

    Two hydroxamic acids were prepared: benzohydroxamic and N-benzoyl benzohydroxamic acids. The former was prepared by coupling the free hydrox amine with benzoyl chloride with the ratio 1:1 in alkaline medium, where as the latter by the same procedure with the ratio 1:2 respectively, they were identified by their melting points, elemental analysis of their nitrogen contents. infra-red spectrophotometry, as well as their nitrogen using elevation of boiling point and the titration method to determine their molecular weights. The two hydroxamic acids were used as analytical reagents for the extraction of the metals Cr(vi), Fe(III), Ti(iv), Co(II) and U(vi). Benzohydroxamic acid has a maximum extraction 99.55% for Cr.(vi) 3M H 2 SO 4 , of 90.16% for Ti(iv) at pH 2.0,of 80.56% for Co(II) at pH 8.0 and 98.01% for U(vi) at pH 6.0. N-benzoyl benzohydroxamic acid has a maximum extraction of 96.45% for Cr(vi) at 3M H 2 So 4 , of 90.82% for Fe(III) at pH 4.0, of 97.02% for V(v) at 3M H 2 So 4 , of 83.56% for Ti(iv) at pH 2.0, of 89.82% for Co(II) at pH 8.0 and of 97.16% for U(vi) at pH 6.0. at the same pH of maximum extraction using heavy matrix, synthetic sea-water, benzohydroxamic acid has maximum values of 91.08%, of 77.99%, of 91.39%, of 87.50 and of 93.17% for Cr(vi), Fe(III), V(v), Ti(iv), Co9II) and U(vi) respectively whereas n-benzoyl benzohydroxamic acid has maximum values of 86.17%, of 77.78%, of 89.61%, of 75.66%, of 79.63% and of 91.18% for Cr(vi), Fe(III), V(v), Ti(iv), Co(II) and U(vi) respectively. The ratio of metal to ligand was determined utilizing the continuous variation method. It was 1 :2, 1: 1, 1 : 1, 1 : 2, 1: 2 and 1 : 2 with respect to Cr(vi), fe(III), Ti(iv), Co(II) and U(vi) respectively.(Author)

  15. Microencapsulated Aliivibrio fischeri in Alginate Microspheres for Monitoring Heavy Metal Toxicity in Environmental Waters

    Directory of Open Access Journals (Sweden)

    Dedi Futra

    2014-12-01

    Full Text Available In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri encapsulated in alginate microspheres is described. Cu(II, Cd(II, Pb(II, Zn(II, Cr(VI, Co(II, Ni(II, Ag(I and Fe(II were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD range of 2.4–5.7% (n = 8. The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD for Cu(II (6.40 μg/L, Cd(II (1.56 μg/L, Pb(II (47 μg/L, Ag(I (18 μg/L than Zn(II (320 μg/L, Cr(VI (1,000 μg/L, Co(II (1700 μg/L, Ni(II (2800 μg/L, and Fe(III (3100 μg/L. Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples.

  16. Enhanced removal of Cd(II) and Pb(II) by composites of mesoporous carbon stabilized alumina

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weichun [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Lushan South Road 932, Changsha 410017 (China); Tang, Qiongzhi; Wei, Jingmiao; Ran, Yajun [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chai, Liyuan [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Lushan South Road 932, Changsha 410017 (China); Wang, Haiying, E-mail: haiyw25@163.com [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Lushan South Road 932, Changsha 410017 (China)

    2016-04-30

    Graphical abstract: - Highlights: • Mesoporous carbon stabilized alumina was prepared by one-pot hard-templating method. • MC/Al{sub 2}O{sub 3} showed excellent performance for Cd(II) and Pb(II) adsorption. • Enhanced adsorption was due to the high surface area and special functional groups. - Abstract: A novel adsorbent of mesoporous carbon stabilized alumina (MC/Al{sub 2}O{sub 3}) was synthesized through one-pot hard-templating method. The adsorption potential of MC/Al{sub 2}O{sub 3} for Cd(II) and Pb(II) from aqueous solution was investigated compared with the mesoporous carbon. The results indicated the MC/Al{sub 2}O{sub 3} showed excellent performance for Cd(II) and Pb(II) removal, the adsorption capacity reached 49.98 mg g{sup −1} for Cd(II) with initial concentration of 50 mg L{sup −1} and reached 235.57 mg g{sup −1} for Pb(II) with initial concentration of 250 mg L{sup −1}, respectively. The kinetics data of Cd(II) adsorption demonstrated that the Cd(II) adsorption rate was fast, and the removal efficiencies with initial concentration of 10 and 50 mg L{sup −1} can reach up 99% within 5 and 20 min, respectively. The pseudo-second-order kinetic model could describe the kinetics of Cd(II) adsorption well, indicating the chemical reaction was the rate-controlling step. The mechanism for Cd(II) and Pb(II) adsorption by MC/Al{sub 2}O{sub 3} was investigated by X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared spectroscopy (FTIR), and the results indicated that the excellent performance for Cd(II) and Pb(II) adsorption of MC/Al{sub 2}O{sub 3} was mainly attributed to its high surface area and the special functional groups of hydroxy-aluminum, hydroxyl, carboxylic through the formation of strong surface complexation or ion-exchange. It was concluded that MC/Al{sub 2}O{sub 3} can be recognized as an effective adsorbent for removal of Cd(II) and Pb(II) in aqueous solution.

  17. Preparation, characterization of electrospun meso-hydroxylapatite nanofibers and their sorptions on Co(II)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hualin, E-mail: hlwang@hfut.edu.cn [School of Chemical Technology, Hefei University of Technology, Hefei, Anhui 230009 (China); Zhang, Peng; Ma, Xingkong; Jiang, Suwei; Huang, Yan; Zhai, Linfeng [School of Chemical Technology, Hefei University of Technology, Hefei, Anhui 230009 (China); Jiang, Shaotong [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China)

    2014-01-30

    Highlights: • PVA/HA nanofibers could change into meso-HA nanofibers by calcination process. • Sorption of Co(II) on meso-HA was strongly dependent on pH and ionic strength. • Sorption kinetic data were well fitted by the pseudo-second-order rate equation. • Sorption isotherms could be well described by the Langmuir model. • Sorption process of Co(II) on meso-HA nanofibers was spontaneous and endothermic. -- Abstract: In this work, mesoporous hydroxylapatite (meso-HA) nanofibers were prepared via calcination process with polyvinyl alcohol/HA (PVA/HA) hybrid nanofibers fabricated by electrospinning technique as precursors, and the removal efficiency of meso-HA nanofibers toward Co(II) was evaluated via sorption kinetics and sorption isotherms. Furthermore, the sorption behaviors of Co(II) on meso-HA nanofibers were explored as a function of pH, ionic strength, and thermodynamic parameters. There existed hydrogen bonds between HA and PVA matrix in precursor nanofibers which could change into meso-HA nanofibers with main pore diameter at 27 nm and specific surface area at 114.26 m{sup 2}/g by calcination process. The sorption of Co(II) on meso-HA was strongly dependent on pH and ionic strength. Outer-sphere surface complexation or ion exchange was the main mechanisms of Co(II) adsorption on meso-HA at low pH, whereas inner-sphere surface complexation was the main adsorption mechanism at high pH. The sorption kinetic data were well fitted by the pseudo-second-order rate equation. The sorption isotherms could be well described by the Langmuir model. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature-dependent sorption isotherms suggested that the sorption process of Co(II) on meso-HA nanofibers was spontaneous and endothermic.

  18. Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of Co(II)- picolinate complex

    Energy Technology Data Exchange (ETDEWEB)

    Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Avcı, Davut; Atalay, Yusuf

    2015-11-15

    A cobalt(II) complex of picolinate was synthesized, and its structure was fully characterized by the applying of X-ray diffraction method as well as FT-IR, FT-Raman and UV–vis spectroscopies. In order to both support the experimental results and convert study to more advanced level, density functional theory calculations were performed by using B3LYP level. Single crystal X-ray structural analysis shows that cobalt(II) ion was located to the center of distorted octahedral geometry. The C=O, C=C and C=N stretching vibrations were found as highly active and strong peaks, inducing the molecular charge transfer within Co(II) complex. The small energy gap between frontier molecular orbital energies was another indicator of molecular charge transfer interactions within Co(II) complex. The nonlinear optical properties of Co(II) complex were investigated at DFT/B3LYP level, and the hypepolarizability parameter was found to be decreased due to the presence of inversion symmetry. The natural bond orbital (NBO) analysis was performed to investigate molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength for Co(II) complex. Finally, molecular electrostatic potential (MEP) and spin density distributions for Co(II) complex were evaluated. - Highlights: • Co(II) complex of picolinate was prepared. • Its FT-IR, FT-Raman and UV–vis spectra were measured. • DFT calculations were performed to support experimental results. • Small HOMO-LUMO energy gap is an indicator of molecular charge transfer. • Spin density localized on Co(II) as well as O and N atoms.

  19. Biosorption of Cd(II) and Zn(II) by nostoc commune: isotherm and kinetics studies

    Energy Technology Data Exchange (ETDEWEB)

    Morsy, Fatthy M. [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Hassan, Sedky H.A. [Department of Biological Environment, Kangwon National University, Kangwon-do (Korea, Republic of); Koutb, Mostafa [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Umm Al-Qura University, Faculty of Applied Science, Biology Department, Mecca (Saudi Arabia)

    2011-07-15

    In this study, Nostoc commune (cyanobacterium) was used as an inexpensive and efficient biosorbent for Cd(II) and Zn(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Zn(II) biosorption such as pH 2.0-7.0, initial metal concentration 0.0-300 mg/L and contact time 0-120 min were studied. Optimum pH for removal of Cd(II) and Zn(II) was 6.0, while the contact time was 30 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by infrared (IR) technique. IR analysis of bacterial biomass revealed the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for biosorption of Cd(II) and Zn (II). The maximum biosorption capacities for Cd(II) and Zn(II) biosorption by N. commune calculated from Langmuir biosorption isotherm were 126.32 and 115.41 mg/g, respectively. The biosorption isotherm for two biosorbents fitted well with Freundlich isotherm than Langmuir model with correlation coefficient (r{sup 2} < 0.99). The biosorption kinetic data were fitted well with the pseudo-second-order kinetic model. Thus, this study indicated that the N. commune is an efficient biosorbent for the removal of Cd(II) and Zn(II) from aqueous solutions. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Synthesis, Crystal Structure, Luminescence, Electrochemical and Antimicrobial Properties of Bis(salamo-Based Co(II Complex

    Directory of Open Access Journals (Sweden)

    Li Wang

    2017-09-01

    Full Text Available A newly designed Co(II complex, [Co3(L(OAc2(CH3OH2]·CH3OH, by the reaction of a bis(salamo-type tetraoxime ligand (H4L with Co(II acetate tetrahydrate was synthesized and characterized by elemental analyses, IR, UV-vis spectra and single-crystal X-ray crystallography. The UV-vis titration experiment manifested that a trinuclear (L:M = 1:3 complex was formed. It is worth noting that the two terminal Co(II (Co1 and Co3 atoms of the Co(II complex have different coordination modes and geometries unreported earlier. Furthermore, through intermolecular interactions (C–H···O, C–H···π and O–H···O, a 2D layer-like network is constructed. In addition, the fluorescence behaviors, antimicrobial activities and electrochemical properties of H4L and its Co(II complex were investigated.

  1. Particle Aggregation During Fe(III) Bioreduction in Nontronite

    Science.gov (United States)

    Jaisi, D. P.; Dong, H.; Hi, Z.; Kim, J.

    2005-12-01

    This study was performed to evaluate the rate and mechanism of particle aggregation during bacterial Fe (III) reduction in different size fractions of nontronite and to investigate the role of different factors contributing to particle aggregation. To achieve this goal, microbial Fe(III) reduction experiments were performed with lactate as an electron donor, Fe(III) in nontronite as an electron acceptor, and AQDS as an electron shuttle in bicarbonate buffer using Shewanella putrefaceins CN32. These experiments were performed with and without Na- pyrophosphate as a dispersant in four size fractions of nontronite (0.12-0.22, 0.41-0.69, 0.73-0.96 and 1.42-1.8 mm). The rate of nontronite aggregation during the Fe(III) bioreduction was measured by analyzing particle size distribution using photon correlation spectroscopy (PCS) and SEM images analysis. Similarly, the changes in particle morphology during particle aggregation were determined by analyses of SEM images. Changes in particle surface charge were measured with electrophoretic mobility analyzer. The protein and carbohydrate fraction of EPS produced by cells during Fe(III) bioreduction was measured using Bradford and phenol-sulfuric acid extraction method, respectively. In the presence of the dispersant, the extent of Fe(III) bioreduction was 11.5-12.2% within the first 56 hours of the experiment. There was no measurable particle aggregation in control experiments. The PCS measurements showed that the increase in the effective diameter (95% percentile) was by a factor of 3.1 and 1.9 for particle size of 0.12-0.22 mm and 1.42-1.80 mm, respectively. The SEM image analyses also gave the similar magnitude of increase in particle size. In the absence of the dispersant, the extent of Fe(III) bioreduction was 13.4-14.5% in 56 hours of the experiment. The rate of aggregation was higher than that in the presence of the dispersant. The increase in the effective diameter (95% percentile) was by a factor of 13.6 and 4.1 for

  2. New solid phase extractors for selective separation and preconcentration of mercury (II) based on silica gel immobilized aliphatic amines 2-thiophenecarboxaldehyde Schiff's bases

    International Nuclear Information System (INIS)

    Soliman, Ezzat M.; Saleh, Mohamed B.; Ahmed, Salwa A.

    2004-01-01

    2-Thiophenecarboxaldhyde is chemically bonded to silica gel surface immobilized monoamine, ethylenediamine and diethylenetriamine by a simple Schiff's base reaction to produce three new SP-extractors, phases (I-III). The selectivity properties of these phases toward Hg(II) uptake as well as eight other metal ions: Ca(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) were extensively studied and evaluated as a function of pH of metal ion solution and equilibrium shaking time by the batch equilibrium technique. The data obtained clearly indicate that the new SP-extractors have the highest affinity for retention of Hg(II) ion. Their Hg(II) uptake in mmol g -1 and distribution coefficient as log K d values are always higher than the uptake of any other metal ion along the range of pH used (pH 1.0-10.0). The uptake of Hg(II) using phase I was 2.0 mmol g -1 (log K d 6.6) at pH 1.0 and 2.0. 1.8 mmol g -1 (log K d 4.25), 1.6 mmol g -1 (log K d 3.90) and 1.08 mmol g -1 (log K d 3.37) at pH 3.0, 5.0 and 8.0, respectively. Selective separation of Hg(II) from the other eight coexisting metal ions under investigation was achieved successfully using phase I at pH 2.0 either under static or dynamic conditions. Hg(II) was completely retained while Ca(II), Co(II) and Cd(II) ions were not retained. Ni(II), Cu(II), Zn(II), Pb(II) and Fe(III) showed very low percentage retention values to be 0.74, 0.97, 3.5 and 6.3%, respectively. Moreover, the high recovery values (95.5 ± 0.5, 95.8 ± 0.5 and 99.0% ± 1.0) of percolating two liters of doubly distilled water, drinking tap water and Nile river water spiked with 5 ng/l of Hg(II) over 100 mg of phase I packed in a minicolumn and used as a thin layer enrichment bed demonstrate the accuracy and validity of the new SP-extractors for preconcentration of the ultratrace amount of spiked Hg(II) prior to the determination by borohydride generation atomic absorption spectrometry (AAS) with no matrix interference. The detection

  3. Microbiological evidence for Fe(III) reduction on early Earth

    Science.gov (United States)

    Vargas, Madeline; Kashefi, Kazem; Blunt-Harris, Elizabeth L.; Lovley, Derek R.

    1998-09-01

    It is generally considered that sulphur reduction was one of the earliest forms of microbial respiration, because the known microorganisms that are most closely related to the last common ancestor of modern life are primarily anaerobic, sulphur-reducing hyperthermophiles. However, geochemical evidence indicates that Fe(III) is more likely than sulphur to have been the first external electron acceptor of global significance in microbial metabolism. Here we show that Archaea and Bacteria that are most closely related to the last common ancestor can reduce Fe(III) to Fe(II) and conserve energy to support growth from this respiration. Surprisingly, even Thermotoga maritima, previously considered to have only a fermentative metabolism, could grow as a respiratory organism when Fe(III) was provided as an electron acceptor. These results provide microbiological evidence that Fe(III) reduction could have been an important process on early Earth and suggest that microorganisms might contribute to Fe(III) reduction in modern hot biospheres. Furthermore, our discovery that hyperthermophiles that had previously been thought to require sulphur for cultivation can instead be grown without the production of toxic and corrosive sulphide, should aid biochemical investigations of these poorly understood organisms.

  4. Performance and mechanism of simultaneous removal of Cd(II) and Congo red from aqueous solution by hierarchical vaterite spherulites

    Science.gov (United States)

    Chen, Yuan-Yuan; Yu, Sheng-Hui; Jiang, Hao-Fan; Yao, Qi-Zhi; Fu, Sheng-Quan; Zhou, Gen-Tao

    2018-06-01

    Hierarchical vaterite spherulites, synthesized by a simple injection-precipitation method at room temperature, were applied for the simultaneous removal of heavy metal Cd(II) and dye Congo red (CR) from aqueous solution. Batch experiments reveal that the maximum removal capacities of as-prepared vaterite spherulites to Cd(II) and CR are 984.5 and 89.0 mg/g, respectively, showing excellent removal performance for Cd(II) and CR. Furthermore, in the binary Cd(II)-CR system, the removal capacity of vaterite to Cd(II) is significantly enhanced at lower CR concentration (100 mg/L). In contrast, the concurrent Cd(II) shows negligible effect on the CR removal. The simultaneous removal mechanism was investigated by FESEM, EDX, XRD, FT-IR and XPS techniques. The simultaneous removal of Cd(II) and CR in the binary system is shown to be a multistep process, involving the preferential adsorption of dye CR, stabilization of CR to vaterite, coordination of the adsorbed CR molecules with Cd(II), and transformation of vaterite into otavite. Given the facile and green synthesis procedure, and effective removal of Cd(II) and CR in the binary system, the obtained vaterite spherulites have considerable practical interest in integrative treatment of wastewater contaminated by heavy metals and dyes.

  5. PAN-Immobilized PVC-NPOE Membrane for Environmentally Friendly Sensing of Cd(II Ions

    Directory of Open Access Journals (Sweden)

    Moersilah Moersilah

    2017-04-01

    Full Text Available A simple, cheap and environmentally friendly analytical method of Cd(II in the aqueous system has been developed by immobilization of 1-(2-pyridilazo-2-naphtol (PAN in poly vinyl chloride (PVC matrix and nitrophenyl octyl ether (NPOE as a plasticizer. Upon contact with Cd(II in solution, the color of sensor membrane changes from dark yellow to dark red, which is due to the formation of Cd(II–PAN complex. The best sensing results were obtained at pH 8.0 and λmax 558 nm. The dimension of the proposed sensor membrane was 0.8 cm x 2 cm with a thickness of 0.05 mm, the volume of sample was 2 mL with the Cd(II concentration range of  0 – 1.2 ppm. The limit of detection of the method was found to be 0.432 + 0.104 ppm, which was reversible. The proposed methods have been applied in the determination of Cd(II in water samples after addition of internal standard.

  6. Synthesis, characterization and thermal study of some transition metal complexes of an asymmetrical tetradentate Schiff base ligand

    Directory of Open Access Journals (Sweden)

    ACHUT S. MUNDE

    2010-03-01

    Full Text Available Complexes of Cu(II, Ni(II, Co(II, Mn(II and Fe(III with an asymmetric tetradentate Schiff base ligand derived from dehydroacetic acid, 4-methyl-o-phenylenediamine and salicylic aldehyde were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV–Vis, IR, 1H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as a dibasic tetadentate ligand towards the central metal ion with an ONNO donor atoms sequence. From the microanalytical data, the stoichiometry of the complexes 1:1 (metal:ligand was found. The physico-chemical data suggested square planar geometry for the Cu(II and Ni(II complexes and octahedral geometry for the Co(II, Mn(II and Fe(III complexes. The thermal behaviour (TGA/DTA of the complexes was studied and kinetic parameters were determined by Horowitz–Metzger and Coats–Redfern methods. The powder X-ray diffraction data suggested a monoclinic crystal system for the Co(II, Mn(II and Fe(III complexes. The ligand and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli and fungicidal activity against Aspergillus niger and Trichoderma viride.

  7. Polarized Neutron Diffraction as a Tool for Mapping Molecular Magnetic Anisotropy: Local Susceptibility Tensors in Co(II) Complexes.

    Science.gov (United States)

    Ridier, Karl; Gillon, Béatrice; Gukasov, Arsen; Chaboussant, Grégory; Cousson, Alain; Luneau, Dominique; Borta, Ana; Jacquot, Jean-François; Checa, Ruben; Chiba, Yukako; Sakiyama, Hiroshi; Mikuriya, Masahiro

    2016-01-11

    Polarized neutron diffraction (PND) experiments were carried out at low temperature to characterize with high precision the local magnetic anisotropy in two paramagnetic high-spin cobalt(II) complexes, namely [Co(II) (dmf)6 ](BPh4 )2 (1) and [Co(II) 2 (sym-hmp)2 ](BPh4 )2 (2), in which dmf=N,N-dimethylformamide; sym-hmp=2,6-bis[(2-hydroxyethyl)methylaminomethyl]-4-methylphenolate, and BPh4 (-) =tetraphenylborate. This allowed a unique and direct determination of the local magnetic susceptibility tensor on each individual Co(II) site. In compound 1, this approach reveals the correlation between the single-ion easy magnetization direction and a trigonal elongation axis of the Co(II) coordination octahedron. In exchange-coupled dimer 2, the determination of the individual Co(II) magnetic susceptibility tensors provides a clear outlook of how the local magnetic properties on both Co(II) sites deviate from the single-ion behavior because of antiferromagnetic exchange coupling. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fulltext PDF

    Indian Academy of Sciences (India)

    Unknown

    Bile salt micelles. Small-angle neutron ... approach. 325. Cadmium. Can Co(II) or Cd(II) substitute for Zn(II) in zinc fingers? 35 ... Computer simulation study of water using a fluctuating charge ... chemical bond: “1/3” effect in the bond length of ...

  9. Effects of various metals on survival, growth, reproduction, and metabolism of Daphnia magna

    Energy Technology Data Exchange (ETDEWEB)

    Biesinger, K E; Christensen, G M

    1972-01-01

    The toxicities of various metals to Daphnia magna were evaluated on the basis of a 48-hr 50% lethal concentration (lc50) 3-week 16% reproductive impairment concentrations (In micrograms per liter) for the metal ions tested were: Na(I), 680,000; Ca(II), 116,000; Mg(II), 82,000; K(I), 53,000; Sr(II), 42,000; Ba(II), 5,800; Fe(III), 4,380; Mn(II), 4,100; As(V), 520; Sn(II), 350; Cr(III), 330; Al(III), 320; Zn(II), 70; Au(III), 60; Ni(II), 30; Pb(II), 30; Cu(II), 22; Pt(IV), 14; Co(II), 10; Hg(II), 3.4; and Cd(II), 0.17. At mental concentrations permitting survival but impairing reproduction, daphnids weighed less than control animals. Amounts of total protein and glutamic oxalacetic transaminase activity varied with the different metals. The negative logarithm of the solubility product constant 8 pksp of the metal sulfides, electronegativity, and the logarithm of the equilibrium constant (log keg) of the metal-ATP complex were positively correlated with toxicity to D. magna. Other physicochemical properties were considered, but no additional correlations were found.

  10. Determination of some metal ions in various meat and baby food samples by atomic spectrometry.

    Science.gov (United States)

    Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol

    2016-04-15

    In this paper, we report a simple and rapid solid phase extraction system for the separation/preconcentration and determination of Cd(II), Co(II), Cu(II), Fe(III), Cr(III), Pb(II), and Zn(II) ions by flame atomic absorption spectrometry (FAAS). This method is based upon the retention of metal ions on a column packed with poly[N-(3-methyl-1H-indole-1-yl)]-2-methacrylamide-co-2-acrylamido-2-methyl-1-propane sulphonic acid-co divinylbenzene] (MMAD) resin as a solid-phase extraction (SPE) sorbent at pH 8. At the optimized conditions, the limits of detection (3 s/b) between 0.12 and 1.6 μg L(-1), preconcentration factor of 100, and the relative standard deviation of ⩽1.8% were achieved (n=10). The accuracy of the method was verified by analyzing certified reference materials (CRMs) and performing recovery experiments. The developed method was successfully applied to the various natural water, meat products and baby food samples. The recoveries of analyte ions were found in added real samples and CRMs from 95% to 102%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Evaluation of a biomarker of Cd(II) exposure on Limnoperna fortunei

    International Nuclear Information System (INIS)

    Mariano, Belaich; Cristian, Oliver; Marcela, Pilloff; Porta, Andres

    2006-01-01

    The use of organisms to monitor contamination allows the access to information that cannot be acquired by chemical methods. Limnoperna fortunei, mussel frequently found in Rio de la Plata estuary, fulfils the requirements to be used as a biomonitoring organism. In this work we report that a polypeptide of 22 kDa of molecular weight (LF22) is induced when L. fortunei is exposed to Cd (II), Cu(II) and Hg(II) sublethal levels. To characterize LF22, mussels were sampled from a non-polluted region and whole soft tissue was homogenized, with and without previous exposure to 100 μg/L of Cd(II). The cytosolic proteins were evaluated by mono and bidimensional SDS-PAGE, and size exclusion chromatography. All the methods showed that LF22 triples its concentration in presence of Cd(II). Purification of LF22 was achieved by fractioned precipitation, salting-out, ionic exchange and size exclusion chromatography. We conclude that LF22 is a useful biomarker of heavy metal exposure. - Limnoperna fortunei induces a 22 kDa polypeptide in sublethal exposure to Cd(II)

  12. Fabrication of the tea saponin functionalized reduced graphene oxide for fast adsorptive removal of Cd(II) from water

    Science.gov (United States)

    Li, Zhigang; Liu, Zhifeng; Wu, Zhibin; Zeng, Guangming; Shao, Binbin; Liu, Yujie; Jiang, Yilin; Zhong, Hua; Liu, Yang

    2018-05-01

    A novel graphene-based material of tea saponin functionalized reduced graphene oxide (TS-RGO) was synthesized via a facil thermal method, and it was characterized as the absorbent for Cd(II) removal from aqueous solutions. The factors on adsorption process including solution pH, contact time, initial concentration of Cd(II) and background electrolyte cations were studied to optimize the conditions for maximum adsorption at room temperature. The results indicated that Cd(II) adsorption was strongly dependent on pH and could be strongly affected by background electrolytes and ionic strength. The optimal pH and required equilibrium time was 6.0 and 10 min, respectively. The Cd(II) removal decreased with the presence of background electrolyte cations (Na+ < Ca2+ < Al3+). The adsorption kinetics of Cd(II) followed well with the pseudo-second-order model. The adsorption isotherm fitted well to the Langmuir model, indicating that the adsorption was a monolayer adsorption process occurred on the homogeneous surfaces of TS-RGO. The maximum monolayer adsorption capacity was 127 mg/g at 313 K and pH 6.0. Therefore, the TS-RGO was considered to be a cost-effective and promising material for the removal of Cd(II) from wastewater.

  13. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism

    International Nuclear Information System (INIS)

    Zhu, Fang; Li, Luwei; Xing, Junde

    2017-01-01

    Highlights: • Microwave assisted inverse emulsion polymerization was applied to prepare Cd(II) imprinted polymers. • The adsorption capacity was evaluated by static adsorption experiments. • Pseudo-second-order model and Langmuir adsorption isotherm model had the best agreement with the experimental data. • The adsorption was a spontaneous and endothermic process. • Cd(II) imprinted polymers have specific identification for Cd(II). - Abstract: Microwave-assisted inverse emulsion polymerization method was used to prepare Cd(II) imprinted polymer (IIP) by using β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomer, epichlorohydrin (ECH) as crossing-linking agent, ammonium persulfate as initiator. The Cd(II) imprinted polymer was characterized by SEM, FTIR and TGA. The influences of initial concentration of Cd(II), pH values, temperature, time and competitive ions on adsorption capacity and recognition properties are investigated. Under the optimal conditions, the adsorption capacity could reach 107 mg/g. Furthermore, pseudo first order kinetic model, pseudo second order kinetic model and intra-particular diffusion model were used to describe the adsorption kinetic behavior. Results showed that the pseudo-second-order model (R"2 0.9928–0.9961) had the best agreement with the experimental data. Langmuir adsorption isotherm model described the experimental data well, which indicated that adsorption was mainly monolayer absorption. Moreover, the study of adsorption thermodynamics (ΔG"0 0, ΔS"0 > 0) suggested that the adsorption process was a spontaneous and endothermic process. Competitive selectivity experiment revealed that imprinted polymer could selectively recognize Cd(II). It provides a new idea for removing Cd(II) from aqueous solution.

  14. Adsorption of Cd(II) Metal Ion on Adsorbent beads from Biomass Saccharomycess cereviceae - Chitosan

    Science.gov (United States)

    Hasri; Mudasir

    2018-01-01

    The adsorbent beads that was preparation from Saccharomycess cereviceae culture strain FN CC 3012 and shrimp shells waste and its application for adsorption of Cd (II) metal ion has been studied. The study start with combination of Saccharomycess cereviceae biomass to chitosan (Sc-Chi), contact time, pH of solution and initial concentration of cations. Total Cd(II) metal ion adsorbed was calculated from the difference of metal ion concentration before and after adsorption by AAS. The results showed that optimum condition for adsorption of Cd(II) ions by Sc-Chi beads was achieved with solution pH of 4, contact time of 60 minutes and initial concentration adsorption 100mg/L. The hydroxyl (-OH) and amino (-NH2) functional groups were believed to be responsible for the adsorption of Cd(II) ions.

  15. Sorption mechanism of Cd(II) from water solution onto chicken eggshell

    Science.gov (United States)

    Flores-Cano, Jose Valente; Leyva-Ramos, Roberto; Mendoza-Barron, Jovita; Guerrero-Coronado, Rosa María; Aragón-Piña, Antonio; Labrada-Delgado, Gladis Judith

    2013-07-01

    The mechanism and capacity of eggshell for sorbing Cd(II) from aqueous solution was examined in detail. The eggshell was characterized by several techniques. The eggshell was mainly composed of Calcite (CaCO3). The surface charge distribution was determined by acid-base titration and the point of zero charge (PZC) of the eggshell was found to be 11.4. The sorption equilibrium data were obtained in a batch adsorber, and the adsorption isotherm of Langmuir fitted the data quite well. The sorption capacity of eggshell increased while raising the pH from 4 to 6, this tendency was attributed to the electrostatic interaction between the Cd2+ in solution and the surface of the eggshell. Furthermore, the sorption capacity was augmented by increasing the temperature from 15 to 35 °C because the sorption was endothermic. The sorption of Cd(II) occurred mainly onto the calcareous layer of the eggshell, but slightly on the membrane layer. It was demonstrated that the sorption of Cd(II) was not reversible, and the main sorption mechanisms were precipitation and ion exchange. The precipitation of (Cd,Ca)CO3 on the surface of the eggshell was corroborated by SEM and XRD analysis.

  16. Cd(II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan

    International Nuclear Information System (INIS)

    Yang, Guide; Tang, Lin; Lei, Xiaoxia; Zeng, Guangming; Cai, Ye; Wei, Xue; Zhou, Yaoyu; Li, Sisi; Fang, Yan; Zhang, Yi

    2014-01-01

    The present study developed an α-ketoglutaric acid-modified magnetic chitosan (α-KA-Fe 3 O 4 /CS) for highly efficient adsorption of Cd(II) from aqueous solution. Several techniques, including transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and vibrating sample magnetometer (VSM), were applied to characterize the adsorbent. Batch tests were conducted to investigate the Cd(II) adsorption performance of α-KA-Fe 3 O 4 /CS. The maximum adsorption efficiency of Cd(II) appeared at pH 6.0 with the value of 93%. The adsorption amount was large and even reached 201.2 mg/g with the initial Cd(II) concentration of 1000 mg/L. The adsorption equilibrium was reached within 30 min and commendably described by pseudo-second-order model, and Langmuir model fitted the adsorption isotherm better. Furthermore, thermodynamic parameters, free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) of Cd(II) adsorption were also calculated and showed that the overall adsorption process was endothermic and spontaneous in nature because of positive ΔH values and negative ΔG values, respectively. Moreover, the Cd(II)-loaded α-KA-Fe 3 O 4 /CS could be regenerated by 0.02 mol/L NaOH solution, and the cadmium removal capacity could still be kept around 89% in the sixth cycle. All the results indicated that α-KA-Fe 3 O 4 /CS was a promising adsorbent in environment pollution cleanup.

  17. Fabrication of titanate nanotubes/iron oxide magnetic composite for the high efficient capture of radionuclides: a case investigation of 109Cd(II)

    International Nuclear Information System (INIS)

    Lei Dai; Jun Zheng; Lijie Wang

    2013-01-01

    In this paper, the capture of radiocadmium (Cd(II)) by adsorption onto the titanate nanotube/iron oxide (TNT/IOM) magnetic composite as a function of contact time, pH, ionic strength, foreign cation and anion ions, humic acid (HA) and fulvic acid (FA) was studied using batch technique. The results indicated that the adsorption of Cd(II) onto the TNT/IOM magnetic composite was dependent on ionic strength at pH 9.0. Outer-sphere surface complexation were the main mechanism of Cd(II) adsorption onto the TNT/IOM magnetic composite at low pH values, whereas the adsorption was mainly dominated via inner-sphere surface complexation at high pH values. The adsorption of Cd(II) onto the TNT/IOM magnetic composite was dependent on foreign cation and anion ions at low pH values, but was independent of foreign cation and anion ions at high pH values. A positive effect of HA/FA on Cd(II) adsorption onto the TNT/IOM magnetic composite was found at low pH values, while a negative effect was observed at high pH values. From the results of Cd(II) removal by the TNT/IOM magnetic composite, the optimum reaction conditions can be obtained for the maximum removal of Cd(II) from water. It is clear that the best pH values of the system to remove Cd(II) from solution by using the TNT/IOM magnetic composite are 7.0-8.0. Considering the low cost and effective disposal of Cd(II)-contaminated wastewaters, the best condition for Cd(II) capture by the TNT/IOM magnetic composite is at room temperature and solid content of 0.5 g L -1 . These results are quite important for estimating and optimizing the removal of Cd(II) and related metal ions by the TNT-based magnetic composite. (author)

  18. Complex formation of hypoxanthine and 6-mercaptopurine with Cd(II) ion

    International Nuclear Information System (INIS)

    Perello, L.; Borras, J.; Soto, L.; Gordo, F.J.; Gordo, J.C.

    1984-01-01

    Reaction of Cd(II) ion with hypoxanthine (H 2 Y) and with 6-mercaptopurine (H 2 MP) in dioxane-water (50%) leads to the formation of CdY x 2H 2 O and Cd(HMP) 2 x 2H 2 O, respectively. In methanolic medium Cd(II) and H 2 MP give Cd(MP) x H 2 O. These compounds have been characterized by chemical analysis, IR spectra and thermogravimetric analysis. The stability constant of CdY complex at 25 +- 0.1 0 C and 1M ionic strength with NaClO 4 in dioxane-water medium is logβ = 10.25 +- 0.05. (Author)

  19. Mono- and polynuclear Co(II) silanethiolates with aliphatic diamines

    Science.gov (United States)

    Pladzyk, Agnieszka; Baranowska, Katarzyna

    2014-01-01

    Four Co(II) complexes, [Co{SSi(OtBu)3}2(dmpda)] 1, [Co{SSi(OtBu)3}2(bda)2]n2 [Co{SSi(OtBu)3}2(pda)2]n3 and [Co{SSi(OtBu)3}2(hda)2]n4 [dmpda = 3-(dimethylamino)-1-propylamine; bda = 1.4-butanediamine; pda = 1.5-pentanediamine; had = 1.6-hexanediamine] have been synthesized and characterized using X-ray diffraction. Complex 1 is mononuclear and contains Co(II) coordinated by dmpda molecule in chelating mode, whereas compounds 3 and 4 are one-dimensional polymers with pda and hda diamines as bridges between the metallic centers respectively. In all complexes tri-tert-butoxysilanethiolate residue acts as terminal S-donor ligand. Full characterization of obtained compounds 1-4 was additionally carried out with the use of IR and UV-vis spectroscopy, elemental and thermal analysis.

  20. AMINO AND MERCAPTO-SILICA HYBRID FOR Cd(II ADSORPTION IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Buhani Buhani

    2010-06-01

    Full Text Available Modification of silica gel with 3-aminopropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane through sol-gel technique producing amino-silica hybrid (HAS and mercapto-silica hybrid (HMS, respectively, has been carried out using tetraethylorthosilicate (TEOS as silica source. The adsorbents were characterized using infrared spectroscopy (IR, and X-ray energy dispersion spectroscopy (EDX. Adsorption of Cd(II individually as well as its binary mixture with Ni(II, Cu(II, and Zn(II in solution was performed in a batch system. Adsorption capacities of Cd(II ion on adsorbent of silica gel (SG, HAS, and HMS are 86.7, 256.4 and 319.5 μmol/g with the adsorption energies are 24.60, 22.61 and 23.15 kJ/mol, respectively. Selectivity coefficient (α of Cd(II ion toward combination of Cd(II/Ni(II, Cd(II/Cu(II, and Cd(II/Zn(II ions on HAS adsorbent is relatively smaller than those on HMS adsorbent which has α > 1.   Keywords: adsorption, amino-silica hybrid, mercapto-silica

  1. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Fang, E-mail: zhufang@tyut.edu.cn [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China); Li, Luwei [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China); Xing, Junde [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China)

    2017-01-05

    Highlights: • Microwave assisted inverse emulsion polymerization was applied to prepare Cd(II) imprinted polymers. • The adsorption capacity was evaluated by static adsorption experiments. • Pseudo-second-order model and Langmuir adsorption isotherm model had the best agreement with the experimental data. • The adsorption was a spontaneous and endothermic process. • Cd(II) imprinted polymers have specific identification for Cd(II). - Abstract: Microwave-assisted inverse emulsion polymerization method was used to prepare Cd(II) imprinted polymer (IIP) by using β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomer, epichlorohydrin (ECH) as crossing-linking agent, ammonium persulfate as initiator. The Cd(II) imprinted polymer was characterized by SEM, FTIR and TGA. The influences of initial concentration of Cd(II), pH values, temperature, time and competitive ions on adsorption capacity and recognition properties are investigated. Under the optimal conditions, the adsorption capacity could reach 107 mg/g. Furthermore, pseudo first order kinetic model, pseudo second order kinetic model and intra-particular diffusion model were used to describe the adsorption kinetic behavior. Results showed that the pseudo-second-order model (R{sup 2} 0.9928–0.9961) had the best agreement with the experimental data. Langmuir adsorption isotherm model described the experimental data well, which indicated that adsorption was mainly monolayer absorption. Moreover, the study of adsorption thermodynamics (ΔG{sup 0} < 0, ΔH{sup 0} > 0, ΔS{sup 0} > 0) suggested that the adsorption process was a spontaneous and endothermic process. Competitive selectivity experiment revealed that imprinted polymer could selectively recognize Cd(II). It provides a new idea for removing Cd(II) from aqueous solution.

  2. Sorption kinetics and chemical forms of Cd(II) sorbed by thiol-functionalized 2:1 clay minerals

    International Nuclear Information System (INIS)

    Malferrari, D.; Brigatti, M.F.; Laurora, A.; Pini, S.; Medici, L.

    2007-01-01

    The interaction between Cd(II) in aqueous solution and two 2:1 expandable clay minerals (i.e., montmorillonite and vermiculite), showing different layer charge, was addressed via batch sorption experiments on powdered clay minerals both untreated and amino acid (cysteine) treated. Reaction products were characterized via X-ray powder diffraction (XRDP), chemical analysis (elemental analysis and atomic absorption spectrophotometry), thermal analysis combined with evolved gasses mass spectrometry (TGA-MSEGA) and synchrotron-based X-ray absorption spectroscopy via extended X-ray absorption fine structure (EXAFS) characterization. Sorption isotherms for Cd(II) in presence of different substrates, shows that Cd(II) uptake depends both on Cd(II) starting concentration and the nature of the substrate. Thermal decomposition of Cd-cysteine treated clay minerals evidences the evolution of H 2 O, H 2 S, NO 2 , SO 2 , and N 2 O 3 . These results are well consistent with XRDP data collected both at room and at increasing temperature and further stress the influence of the substrate, in particular cysteine, on the interlayer. EXAFS studies suggest that Cd(II) coordinates with oxygen atoms, to give monomer complexes or CdO molecules, either on the mineral surface and/or in the interlayer. For Cd-cysteine complexes EXAFS data agree with the existence of Cd-S clusters, thus suggesting a predominant role of the thiol group in the bonding of Cd with the amino acid

  3. Separation of Co(II) from dilute aqueous solutions by precipitate and adsorbing colloid flotation

    International Nuclear Information System (INIS)

    Aziz, M.; Benyamin, K.; Shakir, K.; Atomic Energy Establishment, Cairo

    1993-01-01

    Ion, precipitate and adsorbing colloid flotation of cobalt(II) have been investigated at different pH values, using N-dodecylpyridinium chloride (DPCl). A strong cationic surfactant, and sodium lauryl sulfate (NaLS), a strong anionic surfactant, as collectors. In case of adsorbing colloid flotation, hydrous manganese dioxide was used as an adsorbent. The precipitate flotation curves experimentally obtained with the two tested collectors were compared with the corresponding theoretical one calculated from the data published for Co(II) hydrolysis. The effects of the collector concentration, ageing of the water-MnO 2 -Co(II) system, bubbling time period, cobalt(II) concentration and foreign salts on the percent removal of Co(II) by adsorbing colloid flotation using DPCl as collector were determined. Removals approaching 100% could be achieved under the optimum conditions. (author) 44 refs.; 6 figs

  4. Sequestration of Cu(II), Ni(II), and Co(II) by ethyleneimine immobilized on silica

    International Nuclear Information System (INIS)

    Arakaki, Luiza N.H.; Alves, Ana Paula M.; Silva Filho, Edson C. da; Fonseca, Maria G.; Oliveira, Severino F.; Espinola, Jose Geraldo P.; Airoldi, Claudio

    2007-01-01

    Thermodynamic data on interaction of Cu(II), Ni(II), and Co(II) with silica modified with ethyleneimine are obtained by calorimetric titration. The amount of ethyleneimine anchored on silica surface was estimated to be 0.70 mmol g -1 . The enthalpies of binding Ni(II), Cu(II) and Co(II), are -3.59 ± 0.001, -4.88 ± 0.001, and -7.75 ± 0.003 kJ mol -1 , respectively

  5. Complex formation of hypoxanthine and 6-mercaptopurine with Cd(II) ion

    Energy Technology Data Exchange (ETDEWEB)

    Perello, L.; Borras, J.; Soto, L.; Gordo, F.J.; Gordo, J.C. (Valencia Univ. (Spain))

    1984-01-01

    Reaction of Cd(II) ion with hypoxanthine (H/sub 2/Y) and with 6-mercaptopurine (H/sub 2/MP) in dioxane-water (50%) leads to the formation of CdY x 2H/sub 2/O and Cd(HMP)/sub 2/ x 2H/sub 2/O, respectively. In methanolic medium Cd(II) and H/sub 2/MP give Cd(MP) x H/sub 2/O. These compounds have been characterized by chemical analysis, IR spectra and thermogravimetric analysis. The stability constant of CdY complex at 25 +- 0.1/sup 0/C and 1M ionic strength with NaClO/sub 4/ in dioxane-water medium is log..beta.. = 10.25 +- 0.05.

  6. Selective transport of Fe(III) using ionic imprinted polymer (IIP) membrane particle

    Science.gov (United States)

    Djunaidi, Muhammad Cholid; Jumina, Siswanta, Dwi; Ulbricht, Mathias

    2015-12-01

    The membrane particles was prepared from polyvinyl alcohol (PVA) and polymer IIP with weight ratios of 1: 2 and 1: 1 using different adsorbent templates and casting thickness. The permeability of membrane towards Fe(III) and also mecanism of transport were studied. The selectivity of the membrane for Fe(III) was studied by performing adsorption experiments also with Cr(III) separately. In this study, the preparation of Ionic Imprinted Polymer (IIP) membrane particles for selective transport of Fe (III) had been done using polyeugenol as functional polymer. Polyeugenol was then imprinted with Fe (III) and then crosslinked with PEGDE under alkaline condition to produce polyeugenol-Fe-PEGDE polymer aggregates. The agrregates was then crushed and sieved using mesh size of 80 and the powder was then used to prepare the membrane particles by mixing it with PVA (Mr 125,000) solution in 1-Methyl-2-pyrrolidone (NMP) solvent. The membrane was obtained after casting at a speed of 25 m/s and soaking in NaOH solution overnight. The membrane sheet was then cut and Fe(III) was removed by acid to produce IIP membrane particles. Analysis of the membrane and its constituent was done by XRD, SEM and size selectivity test. Experimental results showed the transport of Fe(III) was faster with the decrease of membrane thickness, while the higher concentration of template ion correlates with higher Fe(III) being transported. However, the transport of Fe(III) was slower for higher concentration of PVA in the membrane. IImparticles works through retarded permeation mechanism, where Fe(III) was bind to the active side of IIP. The active side of IIP membrane was dominated by the -OH groups. The selectivity of all IIP membranes was confirmed as they were all unable to transport Cr (III), while NIP (Non-imprinted Polymer) membrane was able transport Cr (III).

  7. Cd(II) removal and recovery enhancement by using acrylamide–titanium nanocomposite as an adsorbent

    International Nuclear Information System (INIS)

    Sharma, Ajit; Lee, Byeong-Kyu

    2014-01-01

    Graphical abstract: - Highlights: • Acrylamide doping initiated 10–20% increase in the particle size. • R-NH 2 Cd 2+ and Cd-O onto the nanocomposite improved Cd(II) adsorption. • Coexisting cations did not make any significant interference of Cd(II) removal. • Increased Ti nanoparticles leads to decrease in mass swelling of acrylamide. - Abstract: Acrylamide (AM) was in-situ doped into titanium during sol–gel reaction and used as an adsorbent for cadmium removal from aqueous solution. The resulting TiO 2 -AM nanocomposite was characterized by particle size distribution (PSD) and thermogravimetric analysis (TGA). After cadmium adsorption, the nanocomposite was also characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) and X-ray photoelectron spectroscopy (XPS) analyses. The adsorption behavior of the nanocomposite was examined by kinetic and equilibrium studies in batch conditions. The maximum cadmium binding capacity of TiO 2 -AM was 322.58 mg g −1 at an optimum pH of 8.0, compared to 86.95 mg g −1 for nano-titanium. Cadmium sorption showed pseudo-second-order kinetics with a rate constant of 4.0 × 10 −4 and 9.4 × 10 −5 g mg −1 min −1 at an initial Cd(II) concentration of 100 and 500 mg L −1 , respectively. Cd (II) adsorption interference of cations (Pb 2+ , Cu 2+ , Co 2+ and Zn +2 ) and anions (Cl − , SO 4 2− , CO 3 2− ) at pH 8 was very nominal because of favorable complex formation of Cd(II) and amide. The Cd(II) adsorption of 27% that was achieved in the fifth cycle was regenerated with 0.05 N acidic solutions

  8. Radiation grafting of acrylamide and maleic acid on chitosan and effective application for removal of Co(II) from aqueous solutions

    Science.gov (United States)

    Saleh, Alaaeldine Sh.; Ibrahim, Ahmed G.; Elsharma, Emad M.; Metwally, Essam; Siyam, Tharwat

    2018-03-01

    The graft copolymerization has been proven as a superior polymerization technique because it combines the functional advantages of the grafted and base polymers. In this work, the radiation-induced grafting of acrylamide (AAm) and maleic acid (MA) onto chitosan (CTS) was developed and optimized by determining the grafting percentage and efficiency as a function of grafting conditions such as AAm, MA, and CTS concentrations, and absorbed dose. Fourier transform infrared spectroscopic analysis (FTIR) confirmed the graft copolymerization. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) further characterized the grafted copolymers and showed their high thermal stability. Using batch sorption experiments and 60Co as a radiotracer, poly(CTS-AAm) and poly(CTS-MA) were evaluated for Co(II) removal from aqueous solutions. The Co(II) removal increases with increasing time, pH, polymer, and Co(II) concentrations. Experimentally, P(CTS-AAm) and P(CTS-MA) show high sorption capacities of Co(II), i.e. 150 mg g-1 and 421 mg g-1, respectively, which makes them potential sorbents of Co(II) for water and wastewater treatment. Finally, the Co(II) sorption was examined using sorption isotherm and kinetic models. The sorption was best fitted to Langmuir model which suggests the sorption is of chemisorption type. On the other hand, the sorption kinetics was best represented by Elovich model which also indicates the chemical nature of Co(II) sorption on P(CTS-AAm) and P(CTS-MA).

  9. Molecular Underpinnings of Fe(III Oxide Reduction by Shewanella oneidensis MR-1

    Directory of Open Access Journals (Sweden)

    Liang eShi

    2012-02-01

    Full Text Available In the absence of O2 and other electron acceptors, the Gram-negative bacterium Shewanella oneidensis MR-1 can use ferric [Fe(III] (oxy(hydroxide minerals as the terminal electron acceptors for anaerobic respiration. At circumneutral pH and in the absence of strong complexing ligands, Fe(III oxides are relatively insoluble and thus are external to the bacterial cells. S. oneidensis MR-1 has evolved the machinery (i.e., metal-reducing or Mtr pathway for transferring electrons across the entire cell envelope to the surface of extracellular Fe(III oxides. The protein components identified to date for the Mtr pathway include CymA, MtrA, MtrB, MtrC and OmcA. CymA is an inner-membrane tetraheme c-type cytochrome (c-Cyt that is proposed to oxidize the quinol in the inner-membrane and transfers the released electrons to redox proteins in the periplasm. Although the periplasmic proteins receiving electrons from CymA during Fe(III oxidation have not been identified, they are believed to relay the electrons to MtrA. A decaheme c-Cyt, MtrA is thought to be embedded in the trans outer-membrane and porin-like protein MtrB. Together, MtrAB deliver the electrons across the outer-membrane to the MtrC and OmcA on the outmost bacterial surface. Functioning as terminal reductases, the outer membrane and decaheme c-Cyts MtrC and OmcA can bind the surface of Fe(III oxides and transfer electrons directly to these minerals. To increase their reaction rates, MtrC and OmcA can use the flavins secreted by S. oneidensis MR-1 cells as diffusible co-factors for reduction of Fe(III oxides. MtrC and OmcA can also serve as the terminal reductases for soluble forms of Fe(III. Although our understanding of the Mtr pathway is still far from complete, it is the best characterized microbial pathway used for extracellular electron exchange. Characterizations of the Mtr pathway have made significant contributions to the molecular understanding of microbial reduction of Fe(III oxides.

  10. SYNTHESES, SPECTROSCOPIC AND MAGNETIC PROPERTIES ...

    African Journals Online (AJOL)

    Preferred Customer

    suspension of II reacts with Mn(II), Ni(II), Cd(II), Fe(III) and UO2(VI) ions and ... There has been considerable interest in the synthesis and use of ... chelating abilities in recent years due to their practical convenience, operational flexibility and.

  11. Synthesis and Characterization of 4-Benzyloxybenzaldehyde-4-methyl-3-thiosemicarbazone (Containing Sulphur and Nitrogen Donor Atoms and Its Cd(II Complex

    Directory of Open Access Journals (Sweden)

    Lakshmi Narayana Suvarapu

    2015-12-01

    Full Text Available A chelating agent, 4-benzyloxybenzaldehyde-4-methyl-3-thiosemicarbazone (BBMTSC, containing sulphur and nitrogen donor atoms was synthesized and applied as a ligand for the chelation of Cd(II. Both the BBMTSC and its Cd(II complex were characterized by elemental analysis, UV-Vis absorption spectra, Fourier transform infrared spectroscopy (FT-IR, mass spectra, nuclear magnetic resonance spectroscopy (NMR, X-ray powder diffraction (XRD, and field emission scanning electron microscopy (FESEM. The FTIR spectra confirmed the formation of both BBMTSC and its Cd(II complex. XRD revealed the polycrystalline nature of the synthesized compounds. BBMTSC exhibited a flake-like micro-rod morphology, whereas the Cd(II complex had a flower-like nanorod structure.

  12. Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge.

    Science.gov (United States)

    Li, Xiang; Huang, Yong; Liu, Heng-Wei; Wu, Chuan; Bi, Wei; Yuan, Yi; Liu, Xin

    2018-02-01

    In recent years, there have been a number of reports on the phenomenon in which ferric iron (Fe(III)) is reduced to ferrous iron [Fe(II)] in anaerobic environments, accompanied by simultaneous oxidation of ammonia to NO 2 - , NO 3 - , or N 2. However, studies on the relevant reaction characteristics and mechanisms are rare. Recently, in research on the effect of Fe(III) on the activity of Anammox sludge, excess ammonia oxidization has also been found. Hence, in the present study, Fe(III) was used to serve as the electron acceptor instead of NO 2 - , and the feasibility and characteristics of Anammox coupled to Fe(III) reduction (termed Feammox) were investigated. After 160days of cultivation, the conversion rate of ammonia in the reactor was above 80%, accompanied by the production of a large amount of NO 3 - and a small amount of NO 2 - . The total nitrogen removal rate was up to 71.8%. Furthermore, quantities of Fe(II) were detected in the sludge fluorescence in situ hybridization (FISH) and denaturated gradient gel electrophoresis (DGGE) analyses further revealed that in the sludge, some Anammox bacteria were retained, and some microbes were enriched during the acclimatization process. We thus deduced that in Anammox sludge, Fe(III) reduction takes place together with ammonia oxidation to NO 2 - and NO 3 - along with the Anammox process. Copyright © 2017. Published by Elsevier B.V.

  13. Microbial Reduction of Fe(III) in Acidic Sediments: Isolation of Acidiphilium cryptum JF-5 Capable of Coupling the Reduction of Fe(III) to the Oxidation of Glucose

    Science.gov (United States)

    Küsel, Kirsten; Dorsch, Tanja; Acker, Georg; Stackebrandt, Erko

    1999-01-01

    To evaluate the microbial populations involved in the reduction of Fe(III) in an acidic, iron-rich sediment, the anaerobic flow of supplemental carbon and reductant was evaluated in sediment microcosms at the in situ temperature of 12°C. Supplemental glucose and cellobiose stimulated the formation of Fe(II); 42 and 21% of the reducing equivalents that were theoretically obtained from glucose and cellobiose, respectively, were recovered in Fe(II). Likewise, supplemental H2 was consumed by acidic sediments and yielded additional amounts of Fe(II) in a ratio of approximately 1:2. In contrast, supplemental lactate did not stimulate the formation of Fe(II). Supplemental acetate was not consumed and inhibited the formation of Fe(II). Most-probable-number estimates demonstrated that glucose-utilizing acidophilic Fe(III)-reducing bacteria approximated to 1% of the total direct counts of 4′,6-diamidino-2-phenylindole-stained bacteria. From the highest growth-positive dilution of the most-probable-number series at pH 2.3 supplemented with glucose, an isolate, JF-5, that could dissimilate Fe(III) was obtained. JF-5 was an acidophilic, gram-negative, facultative anaerobe that completely oxidized the following substrates via the dissimilation of Fe(III): glucose, fructose, xylose, ethanol, glycerol, malate, glutamate, fumarate, citrate, succinate, and H2. Growth and the reduction of Fe(III) did not occur in the presence of acetate. Cells of JF-5 grown under Fe(III)-reducing conditions formed blebs, i.e., protrusions that were still in contact with the cytoplasmic membrane. Analysis of the 16S rRNA gene sequence of JF-5 demonstrated that it was closely related to an Australian isolate of Acidiphilium cryptum (99.6% sequence similarity), an organism not previously shown to couple the complete oxidation of sugars to the reduction of Fe(III). These collective results indicate that the in situ reduction of Fe(III) in acidic sediments can be mediated by heterotrophic Acidiphilium

  14. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose.

    Science.gov (United States)

    Küsel, K; Dorsch, T; Acker, G; Stackebrandt, E

    1999-08-01

    To evaluate the microbial populations involved in the reduction of Fe(III) in an acidic, iron-rich sediment, the anaerobic flow of supplemental carbon and reductant was evaluated in sediment microcosms at the in situ temperature of 12 degrees C. Supplemental glucose and cellobiose stimulated the formation of Fe(II); 42 and 21% of the reducing equivalents that were theoretically obtained from glucose and cellobiose, respectively, were recovered in Fe(II). Likewise, supplemental H(2) was consumed by acidic sediments and yielded additional amounts of Fe(II) in a ratio of approximately 1:2. In contrast, supplemental lactate did not stimulate the formation of Fe(II). Supplemental acetate was not consumed and inhibited the formation of Fe(II). Most-probable-number estimates demonstrated that glucose-utilizing acidophilic Fe(III)-reducing bacteria approximated to 1% of the total direct counts of 4', 6-diamidino-2-phenylindole-stained bacteria. From the highest growth-positive dilution of the most-probable-number series at pH 2. 3 supplemented with glucose, an isolate, JF-5, that could dissimilate Fe(III) was obtained. JF-5 was an acidophilic, gram-negative, facultative anaerobe that completely oxidized the following substrates via the dissimilation of Fe(III): glucose, fructose, xylose, ethanol, glycerol, malate, glutamate, fumarate, citrate, succinate, and H(2). Growth and the reduction of Fe(III) did not occur in the presence of acetate. Cells of JF-5 grown under Fe(III)-reducing conditions formed blebs, i.e., protrusions that were still in contact with the cytoplasmic membrane. Analysis of the 16S rRNA gene sequence of JF-5 demonstrated that it was closely related to an Australian isolate of Acidiphilium cryptum (99.6% sequence similarity), an organism not previously shown to couple the complete oxidation of sugars to the reduction of Fe(III). These collective results indicate that the in situ reduction of Fe(III) in acidic sediments can be mediated by heterotrophic

  15. Analytical applications of some macro-schiff's bases for spectrophotometric determination of some metal ions

    International Nuclear Information System (INIS)

    Ahmed, N. A. M.

    2005-06-01

    In this research three schiff's bases PAD, N, NBPAD and N, NBHPAD were synthesized by condensation of o-phenylenediamine with p-aminoacetophenone, to give an intermediate which then further condensed with benzil, and 2,5 hexanedione, respectively, in ethanol to give macro schiff's bases. These schiff's bases were identified using I.R spectra, UV/VIS spectrophotometer, elemental analyzer, and melting point. Their applications as analytical reagents were studied using UV/VIS spectrophotometer with Pb(II), Cr(VI), Cu(II), Cd(II), V(V), Ni(II), Hg(II), Zn(II), Co(II), Fe(II) and Fe(III). Various parameters were investigated in order to find their optimum conditions for the analytical application of these schiff's bases. These include the effect of solvent, the effect of micelle as well as the presence of foreign metal ions. Good results were obtained for determination of Cr(VI), and V(V) with N, NBPAD in terms of linearity detection limit, and interference, and for the determination of Fe(II) with N, NBHPAD. The stoichiometry of some these complexes was determined. The study also showed a good results for the determination of Hg(II), and Pb(II) (two serious environmental pollutants) if interference is removed.(Author)

  16. Microbial removal of Fe(III) impurities from clay using dissimilatory iron reducers.

    Science.gov (United States)

    Lee, E Y; Cho, K S; Ryu, H W; Chang, Y K

    1999-01-01

    Fe(III) impurities, which detract refractoriness and whiteness from porcelain and pottery, could be biologically removed from low-quality clay by indigenous dissimilatory Fe(III)-reducing microorganisms. Insoluble Fe(III) in clay particles was leached out as soluble Fe(II), and the Fe(III) reduction reaction was coupled to the oxidation of sugars such as glucose, maltose and sucrose. A maximum removal of 44-45% was obtained when the relative amount of sugar was 5% (w/w; sugar/clay). By the microbial treatment, the whiteness of the clay was increased from 63.20 to 79.64, whereas the redness was clearly decreased from 13.47 to 3.55.

  17. Cd(II) removal and recovery enhancement by using acrylamide–titanium nanocomposite as an adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ajit; Lee, Byeong-Kyu, E-mail: bklee@ulsan.ac.kr

    2014-09-15

    Graphical abstract: - Highlights: • Acrylamide doping initiated 10–20% increase in the particle size. • R-NH{sub 2}Cd{sup 2+} and Cd-O onto the nanocomposite improved Cd(II) adsorption. • Coexisting cations did not make any significant interference of Cd(II) removal. • Increased Ti nanoparticles leads to decrease in mass swelling of acrylamide. - Abstract: Acrylamide (AM) was in-situ doped into titanium during sol–gel reaction and used as an adsorbent for cadmium removal from aqueous solution. The resulting TiO{sub 2}-AM nanocomposite was characterized by particle size distribution (PSD) and thermogravimetric analysis (TGA). After cadmium adsorption, the nanocomposite was also characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) and X-ray photoelectron spectroscopy (XPS) analyses. The adsorption behavior of the nanocomposite was examined by kinetic and equilibrium studies in batch conditions. The maximum cadmium binding capacity of TiO{sub 2}-AM was 322.58 mg g{sup −1} at an optimum pH of 8.0, compared to 86.95 mg g{sup −1} for nano-titanium. Cadmium sorption showed pseudo-second-order kinetics with a rate constant of 4.0 × 10{sup −4} and 9.4 × 10{sup −5} g mg{sup −1} min{sup −1} at an initial Cd(II) concentration of 100 and 500 mg L{sup −1}, respectively. Cd (II) adsorption interference of cations (Pb{sup 2+}, Cu{sup 2+}, Co{sup 2+} and Zn{sup +2}) and anions (Cl{sup −}, SO{sub 4}{sup 2−}, CO{sub 3}{sup 2−}) at pH 8 was very nominal because of favorable complex formation of Cd(II) and amide. The Cd(II) adsorption of 27% that was achieved in the fifth cycle was regenerated with 0.05 N acidic solutions.

  18. Sandwich-like nano-system for simultaneous removal of Cr(VI) and Cd(II) from water and soil.

    Science.gov (United States)

    Wang, Dongfang; Zhang, Guilong; Dai, Zhangyu; Zhou, Linglin; Bian, Po; Zheng, Kang; Wu, Zhengyan; Cai, Dongqing

    2018-05-07

    In this work, a novel nano-system with sandwich-like structure was synthesized via face-to-face combination of two pieces of waste cotton fabrics (CFs) carrying ferrous sulfide (FeS) and carboxyl-functionalized ferroferric oxide (CFFM) respectively, and the obtained nano system was named as FeS/CFFM/CF. Therein, FeS has high reduction and adsorption capabilities for hexavalent chromium (Cr(VI)), CFFM possesses a high adsorption ability on cadmium ion (Cd(II)) through electrostatics attraction and chelation, and CF displays high immobilization ability for FeS and CFFM and adsorption performance on Cd(II). FeS/CFFM/CF could simultaneously remove Cr(VI) and Cd(II) from water, inhibit the uptake of Cr and Cd by fish and water spinach, ensuring the food safety. Besides, this technology could efficiently control migration of Cr(VI) and Cd(II) in sand-soil mixture, which was favorable to prevent their wide diffusion. Importantly, FeS/CFFM/CF possessed a high flexibility and could be conveniently produced with needed scale and shape, and easily separated from water and soil, displaying a promising approach to remediate Cr(VI)/Cd(II)-contaminated water and soil and a huge application potential.

  19. Selective Iron(III ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry

    Directory of Open Access Journals (Sweden)

    Rahman Mohammed M

    2012-12-01

    Full Text Available Abstract Background CuO-TiO2 nanosheets (NSs, a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the synthesis of CuO-TiO2 nanosheets by the wet-chemically technique is reported. Methods CuO-TiO2 NSs were prepared by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS, powder X-ray diffraction (XRD, and field-emission scanning electron microscopy (FE-SEM etc. Results The structural and optical evaluation of synthesized NSs were measured by XRD pattern, Fourier transform infrared (FT-IR and UV–vis spectroscopy, respectively which confirmed that the obtained NSs are well-crystalline CuO-TiO2 and possessing good optical properties. The morphological analysis of CuO-TiO2 NSs was executed by FE-SEM, which confirmed that the doped products were sheet-shaped and growth in large quantity. Here, the analytical efficiency of the NSs was applied for a selective adsorption of iron(III ion prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES. The selectivity of NSs towards various metal ions, including Au(III, Cd(II, Co(II, Cr(III, Fe(III, Pd(II, and Zn(II was analyzed. Conclusions Based on the selectivity study, it was confirmed that the selectivity of doped NSs phase was the most towards Fe(III ion. The static adsorption capacity for Fe(III was calculated to be 110.06 mgg−1. Results from adsorption isotherm also verified that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of CuO-TiO2 NSs adsorption sites.

  20. On the ortho-positronium quenching reactions promoted by Fe(II), Fe(III), Co(III), Ni(II), Zn(II) and Cd(II) cyanocomplexes

    Science.gov (United States)

    Fantola Lazzarini, Anna L.; Lazzarini, Ennio

    The o-Ps quenching reactions promoted in aqueous solutions by the following six cyanocomplexes: [Fe(CN) 6] 4-; [Co(CN) 6] 3-; [Zn(CN) 4] 2-; [Cd(CN) 6] 2-; [Fe(CN) 6] 3-; [Ni(CN) 4] 2- were investigated. The first four reactions probably consist in o-Ps addition across the CN bond, their rate constants at room temperature, Tr, being ⩽(0.04±0.02) × 10 9 M -1 s -1, i.e. almost at the limit of experimental errors. The rate constant of the fifth reaction, in o-Ps oxydation, at Tr is (20.3±0.4) × 10 9 M -1 s -1. The [Ni(CN) 4] 2-k value at Tr, is (0.27±0.01) × 10 9 M -1 s -1, i.e. 100 times less than the rate constants of o-Ps oxydation, but 10 times larger than those of the o-Ps addition across the CN bond. The [Ni(CN) 4] 2- reaction probably results in formation of the following positronido complex: [Ni(CN) 4Ps] 2-. However, it is worth noting that the existence of such a complex is only indirectly deduced. In fact it arises from comparison of the [Ni(CN) 4] 2- rate constant with those of the Fe(II), Zn(II), Cd(II), and Co(III) cyanocomplexes, which, like the Ni(II) cyanocomplex, do not promote o-Ps oxydation or spin exchange reactions.

  1. Spectrophotometric determination of metal complexes of 1-nitroso-2-naphthol in micellar medium

    International Nuclear Information System (INIS)

    Shar, G.A.; Bhanger, M.I.

    2002-01-01

    Spectrophotometric determination of iron(III), nickel(II) and cobalt(II) is carried out with 1-nitroso-2-naphthol as complexing reagent in aqueous phase using non-ionic surfactant Tween 40. This replaces a tedious and time consuming solvent extraction method, because these solvents are costly and also toxic. Beer's law was obeyed, for Fe(III), Ni(II) and Co(II) over the range 0.5 - 4.0, 0.5 - 4.0 and 0.12 - 3.0 micro g ml/sup -1/ with detection limit (2 sigma ) of 3.3, 5.8 and 3.1 ng ml/sup -1/ respectively. The lambda /sub max/ molar absorption, molar absorptivity and Sandell's sensitivity of Fe(III), Ni(II) and Co(II) were (lambda /sub max/ 446 nm), (lambda/sub max/ 483.5 nm) and (lambda/sub max/ 444.5 nm); sigma/sub max/ x 10/sp 4/ mol/sp -1/ cm/sup -1/) is 1.69, 1.0 and 1.86, 3.3, 5.8 and 3.1 ng cm/sup -2/, respectively. The pH at which the complex is formed for Fe(III), Ni(II) and Co(II) is 1, 8 and 5 respectively. The critical micelle concentration (cmc) of 1-nitroso-2-naphthol is 5% solution. The present method is compared with that of atomic absorption spectroscopy and no significant difference is noted between the two methods at 95% confidence level. The method has been applied to the determination of iron(III), nickel(II) and cobalt(II) in pharmaceutical and industrial wastewater samples. (author)

  2. Three-dimensional tetranuclear Cd(II) coordination network based on a 1,3-alternate calix[4]arene derivative

    International Nuclear Information System (INIS)

    Lee, Eun Ji; Ju, Hui Yeong; Park, Ki Min; Moon, ASuk Hee; Kang, Young Jin

    2015-01-01

    Polynuclear coordination polymers can exhibit more intriguing network topologies and better functionalities than those of common complexes because they have metal-cluster nodes for the construction of multidimensional frameworks and the potential applications induced by collaborative activities between metal ions. New tetranuclear Cd(II) coordination polymer 1 based on 1,3-alternate calix arene derivative (H_4 CTA) with four carboxyl pendant arms has been synthesized by the solvo thermal reaction at 110 .deg. C for 2 days. Compound 1 shows a 3-D framework consisting of tetranuclear Cd(II) cluster core as a metal-cluster node and 1,3-alternate H_4CTA as a multidentate linker. The coordination polymer 1 displays intense blue emission, implying that this tetranuclear Cd(II) coordination polymer could be a suitable material in the area of luminescence research

  3. Preconcentration of trace elements by using 1-(2-Pyridylazo-2-naphthol functionalized Amberlite XAD-1180 resin and their determination by FAAS

    Directory of Open Access Journals (Sweden)

    Tokalioglu Serife

    2006-01-01

    Full Text Available In this study, Amberlite XAD-1180 resin functionalized by 1-(2-pyridylazo-2-naphthol (PAN was synthesized and the resulting resin was used for preconcentration of Cr(III, Mn(II, Fe(III, Ni(II, Cu(II, Cd(II and Pb(II elements present at trace levels in different matrices. For this purpose, the copolymer was nitrated, reduced to the corresponding amine, converted to the diazonium salt with nitrite and reacted with PAN to produce the XAD-1180-PAN chelating resin. For the described method, the effect of some analytical parameters, such as pH, sample volume, resin amount, flow rates of uptake and stripping, volume and type of eluent, on the recovery of the trace elements was investigated. The metals retained on the XAD-1180-PAN resin were eluted by 2 mol L-1 HNO3. The influence of matrix ions, i.e., Na(I, K(I, Ca(II and Mg(II, on the recovery of trace elements was also examined by using the developed method when they occurred both individually and together. The repeatability of the method at the optimum conditions determined experimentally was investigated. The recovery values for all the elements, except for Cr(III, were found to be >92% and the relative standard deviation was <8.5%. The 3s/b detection limits for Cr(III, Mn(II, Fe(III, Ni(II, Cu(II, Cd(II and Pb(II were found to be 4.1, 0.13, 2.7, 1.2, 0.19, 0.06 and 0.13 µg L-1, respectively. The developed method was utilized for preconcentration and determination of Mn(II, Fe(III, Ni(II, Cu(II, Cd(II and Pb(II in tap water, rain water, and stream water, and of Ni(II, Cd(II and Pb(II in a certified reference material (RM 8704 Buffalo river sediment by flame atomic absorption spectrometry (FAAS.

  4. Synthesis, spectroscopic characterization and antimicrobial activity evaluation of new tridentate Schiff bases and their Co(II complexes

    Directory of Open Access Journals (Sweden)

    Ganesh More

    2017-12-01

    Full Text Available A series of Schiff base tridentate ligands and their respective Co(II complexes have been synthesized and characterized by elemental analysis, magnetic susceptibility, IR, NMR and UV–Visible spectra, thermal studies. The IR spectral data suggested that all the ligands acted as monobasic tridentate towards central Co(II ion with an ONO donor atoms sequentially. Analytical data and magnetic susceptibility revealed 1:2 metal to ligand stoichiometry and octahedral geometry for all Co(II complexes. All the prepared compounds were also screened for antimicrobial activity against 5 ESBL (Extended Spectrum β-lactamase and 5 MBL (Metallo β-lactamase producing uropathogens and for antitubercular activity against Mycobacterium tuberculosis (H37Rv strain. Keywords: Schiff base, Antitubercular, Antimicrobial, ESBL, MBL, Metal complex, o-hydroxyl aldehyde, Aminothiophene

  5. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes.

    Science.gov (United States)

    Li, Bing; Yang, Lan; Wang, Chang-Quan; Zhang, Qing-Pei; Liu, Qing-Cheng; Li, Yi-Ding; Xiao, Rui

    2017-05-01

    In order to deal with cadmium (Cd(II)) pollution, three modified biochar materials: alkaline treatment of biochar (BC-NaOH), KMnO 4 impregnation of biochar (BC-MnO x ) and FeCl 3 magnetic treatment of biochar (BC-FeO x ), were investigated. Nitrogen adsorption-desorption isotherms, Fourier transform infrared spectroscopy (FTIR), Boehm titration, and scanning electron microscopy (SEM) were used to determine the characteristics of adsorbents and explore the main adsorption mechanism. The results show that manganese oxide particles are carried successfully within the biochar, contributing to micropore creation, boosting specific surface area and forming innersphere complexes with oxygen-containing groups, while also increasing the number of oxygen-containing groups. The adsorption sites created by the loaded manganese oxide, rather than specific surface areas, play the most important roles in cadmium adsorption. Batch adsorption experiments demonstrate a Langmuir model fit for Cd(II), and BC-MnO x provided the highest sorption capacity (81.10 mg g -1 ). The sorption kinetics of Cd(II) on adsorbents follows pseudo-second-order kinetics and the adsorption rate of the BC-MnO x material was the highest (14.46 g (mg·h) -1 ). Therefore, biochar modification methods involving KMnO 4 impregnation may provide effective ways of enhancing Cd(II) removal from aqueous solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dispersive liquid-liquid microextraction for simultaneous determination of cadmium, cobalt, lead and nickel in water samples by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Dos Santos Silva, E.; Correia, L.O.; Dos Santos, L.O.; Dos Santos Vieira, E.V.; Lemos, V.A.

    2012-01-01

    We report on a new method for the dispersive liquid-liquid microextraction of Cd(II), Co(II), Pb(II) and Ni (II) from water samples prior to their simultaneous determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The procedure is based on the injection of a ternary solvent system composed of appropriate quantities of extraction solvent (trichloroethylene), dispersive solvent (ethanol), and the chelating reagent 2-(2'-benzothiazolylazo)-p-cresol into the sample solution. The solution turns turbid immediately after injection, and the analytes are extracted into the droplets of the organic phase which was dried and dissolved in a mixture of Triton X-114, nitric acid, and ethanol. The metal ions in this mixture were quantified by ICP-OES. The detection limits under optimized conditions are 0.2, 0.3, 0.2 and 0.7 μg L -1 for Cd(II), Co(II), Pb(II) and Ni(II), respectively. The enrichment factors were also calculated for Cd (13), Co (11), Pb (11) and Ni (8). The procedure was applied to the determination of cadmium, cobalt, lead and nickel in certified reference material (waterway sediment) and water samples. (author)

  7. Three-dimensional tetranuclear Cd(II) coordination network based on a 1,3-alternate calix[4]arene derivative

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Ji; Ju, Hui Yeong; Park, Ki Min [Dept. of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju (Korea, Republic of); Moon, ASuk Hee [Dept. of Food and Nutrition, Kyungnam College of Inform ation and Technology, Busan (Korea, Republic of); Kang, Young Jin [Div. of cience Education, Kangwon National University, Chuncheon (Korea, Republic of)

    2015-08-15

    Polynuclear coordination polymers can exhibit more intriguing network topologies and better functionalities than those of common complexes because they have metal-cluster nodes for the construction of multidimensional frameworks and the potential applications induced by collaborative activities between metal ions. New tetranuclear Cd(II) coordination polymer 1 based on 1,3-alternate calix arene derivative (H{sub 4} CTA) with four carboxyl pendant arms has been synthesized by the solvo thermal reaction at 110 .deg. C for 2 days. Compound 1 shows a 3-D framework consisting of tetranuclear Cd(II) cluster core as a metal-cluster node and 1,3-alternate H{sub 4}CTA as a multidentate linker. The coordination polymer 1 displays intense blue emission, implying that this tetranuclear Cd(II) coordination polymer could be a suitable material in the area of luminescence research.

  8. Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments

    Science.gov (United States)

    Snoeyenbos-West, O.L.; Nevin, K.P.; Anderson, R.T.; Lovely, D.R.

    2000-01-01

    Engineered stimulation of Fe(III) has been proposed as a strategy to enhance the immobilization of radioactive and toxic metals in metal-contaminated subsurface environments. Therefore, laboratory and field studies were conducted to determine which microbial populations would respond to stimulation of Fe(III) reduction in the sediments of sandy aquifers. In laboratory studies, the addition of either various organic electron donors or electron shuttle compounds stimulated Fe(III) reduction and resulted in Geobacter sequences becoming important constituents of the Bacterial 16S rDNA sequences that could be detected with PCR amplification and denaturing gradient gel electrophoresis (DGGE). Quantification of Geobacteraceae sequences with a PCR most-probable-number technique indicated that the extent to which numbers of Geobacter increased was related to the degree of stimulation of Fe(III) reduction. Geothrix species were also enriched in some instances, but were orders of magnitude less numerous than Geobacter species. Shewanella species were not detected, even when organic compounds known to be electron donors for Shewanella species were used to stimulate Fe(III) reduction in the sediments. Geobacter species were also enriched in two field experiments in which Fe(III) reduction was stimulated with the addition of benzoate or aromatic hydrocarbons. The apparent growth of Geobacter species concurrent with increased Fe(III) reduction suggests that Geobacter species were responsible for much of the Fe(III) reduction in all of the stimulation approaches evaluated in three geographically distinct aquifers. Therefore, strategies for subsurface remediation that involve enhancing the activity of indigenous Fe(III)-reducing populations in aquifers should consider the physiological properties of Geobacter species in their treatment design.

  9. 3d-4f {Co(II)3Ln(OR)4} Cubanes as Bio-Inspired Water Oxidation Catalysts.

    Science.gov (United States)

    Evangelisti, Fabio; Moré, René; Hodel, Florian; Luber, Sandra; Patzke, Greta Ricarda

    2015-09-02

    Although the {CaMn4O5} oxygen evolving complex (OEC) of photosystem II is a major paradigm for water oxidation catalyst (WOC) development, the comprehensive translation of its key features into active molecular WOCs remains challenging. The [Co(II)3Ln(hmp)4(OAc)5H2O] ({Co(II)3Ln(OR)4}; Ln = Ho-Yb, hmp = 2-(hydroxymethyl)pyridine) cubane WOC series is introduced as a new springboard to address crucial design parameters, ranging from nuclearity and redox-inactive promoters to operational stability and ligand exchange properties. The {Co(II)3Ln(OR)4} cubanes promote bioinspired WOC design by newly combining Ln(3+) centers as redox-inactive Ca(2+) analogues with flexible aqua-/acetate ligands into active and stable WOCs (max. TON/TOF values of 211/9 s(-1)). Furthermore, they open up the important family of 3d-4f complexes for photocatalytic applications. The stability of the {Co(II)3Ln(OR)4} WOCs under photocatalytic conditions is demonstrated with a comprehensive analytical strategy including trace metal analyses and solution-based X-ray absorption spectroscopy (XAS) investigations. The productive influence of the Ln(3+) centers is linked to favorable ligand mobility, and the experimental trends are substantiated with Born-Oppenheimer molecular dynamics studies.

  10. Improvement of the Separation Efficiency of Ion Flotation and Adsorbing Colloid Flotation by the Synergistic Effect of Mixed Surfactant Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.H.; Seo, E.J.; Choi, S.J. [Dept. of. Env. Eng., Kyungpook National University, Taegu (Korea)

    1999-02-01

    Experimental investigations on the removal of Cd(II) from aqueous ablution were carried out through two foam separation techniques : ion floatation and adsorbing colloid flotation with Fe(III). The optimum pH for good removal was found to be about 6.4 for the former and about 11 for the latter. The effect of flotation time. pH, surfactant(sodium lauryl sulfate), foreign ions(Na{sup +}, Ca{sup 2+}, No{sub 3}{sup -}, SO{sub 2}{sup -4} ) on the efficiency of Cd(II) removal were discussed. The presence of foreign ions inhibit the Cd(II) removal by foam flotation. It was suggested that the limitation of foam flotation on Cd(II) removal may be overcome by the surface activity of mixed surfactant solution. The application of the synergistic effect of mixed surfactant solutions to the improvement of the removal efficiency of foam flotation was experimentally verified in this work. 19 refs., 7 figs., 3 tabs.

  11. A coordination polymer of CdII with benzene-1,3-dicarboxylate and 1,4-bis[1-(2-pyridylmethylbenzimidazol-2-yl]butane

    Directory of Open Access Journals (Sweden)

    Wei-Ping Zhang

    2009-11-01

    Full Text Available The title CdII coordination polymer, catena-poly[[{1,4-bis[1-(2-pyridylmethylbenzimidazol-2-yl]butane}cadmium(II]-μ-benzene-1,3-dicarboxylato], [Cd(C8H4O4(C30H28N6]n, was obtained by reaction of CdCO3, benzene-1,3-dicarboxylic acid (H2btc and 1,4-bis[1-(2-pyridylmethylbenzimidazol-2-yl]butane (L. The CdII cation is six-coordinated by an N2O4-donor set. L acts as a bidentate ligand and btc anions link CdII centers into a chain propagating parallel to [010].

  12. Microbial reduction of Fe(III) in the presence of oxygen under low pH conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kusel, K.; Roth, U.; Drake, H.L. [University of Bayreuth, Bayreuth (Germany)

    2002-07-01

    In acidic, coal mining lake sediments, facultatively anaerobic Acidiphilium species are probably involved in the reduction of Fe(III). Previous results indicate that these bacteria can co-respire O{sub 2} and Fe(III). In this study, we investigated the capacity of the sediment microbiota to reduce Fe(III) in the presence of O{sub 2} at pH 3. In sediment microcosms with 4% O{sub 2} in the headspace, the concentration of Fe(II) increased at a rate of 1.03 {mu}mol (g wet sediment){sup -1} day{sup -1} within the first 7 days of incubation which was similar to the rate obtained with controls incubated under anoxic conditions. However, in microcosms incubated under air, Fe(II) was consumed after a lag phase of 8 h with a rate of 2.66 {mu}mol (g wet sediment){sup -1} day{sup -1}. Acidiphilium cryptum JF-5, isolated from this sediment, reduced soluble Fe(III) with either 4 or 21% O{sub 2} in the headspace, and concomitantly consumed O{sub 2}. However, the rate of Fe(II) formation normalized for cell density decreased under oxic conditions. Schwertmannite, the predominant Fe(III)-mineral of this sediment, was also reduced by A. cryptum JF-5 under oxic conditions. The rate of Fe(II) formation by A. cryptum JF-5 decreased after transfer from preincubation under air in medium lacking Fe(III). Acidiphilium cryptum JF-5 did not form Fe(II) when preincubated under air and transferred to anoxic medium containing Fe(III) and chloramphenicol, an inhibitor of protein synthesis. These results indicate that: (i) the reduction of Fe(III) can occur at low O{sub 2} concentrations in acidic sediments; (ii) Fe(II) can be oxidized at O{sub 2} concentrations near saturation; and (iii) the enzyme(s) responsible for the reduction of Fe(III) in A. cryptum JF-5 are not constitutive.

  13. Emulsification based dispersive liquid microextraction prior to flame atomic absorption spectrometry for the sensitive determination of Cd(II) in water samples

    International Nuclear Information System (INIS)

    Rahimi-Nasrabadi, Mehdi; Banan, Alireza; Zahedi, Mir Mahdi; Pourmortazavi, Seied Mahdi; Nazari, Zakieh; Asghari, Alireza

    2013-01-01

    We report on the application of emulsification-based dispersive liquid micro extraction (EB-DLME) to the preconcentration of Cd(II). This procedure not only possesses all the advantages of routine DLLME, but also results in a more stable cloudy state which is particularly useful when coupling it to FAAS. In EB-DLME, appropriate amounts of the extraction solvent (a solution of dithizone in chloroform) and an aqueous solution of sodium dodecyl sulfate (SDS; acting as a disperser) are injected into the samples. A stable cloudy microemulsion is formed and Cd(II) ion is extracted by chelation. After phase separation, the sedimented phase is subjected to FAAS. Under optimized conditions, the calibration curve for Cd(II) is linear in the range from 0.1 to 25 μg L −1 , the limit of detection (at S/N = 3) is 30 pg L −1 , the relative standard deviations for seven replicate analyses (at 0.56 μg L −1 of Cd(II)) is 4.6 %, and the enrichment factor is 151. EB-DLME in our opinion is a simple, efficient and rapid method for the preconcentration of Cd(II) (and most likely of many other ions) prior to FAAS determination. (author)

  14. Cadmium, cobalt and lead cause stress response, cell cycle deregulation and increased steroid as well as xenobiotic metabolism in primary normal human bronchial epithelial cells which is coordinated by at least nine transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Glahn, Felix; Wiese, Jan; Foth, Heidi [Martin-Luther-University, Halle-Wittenberg, Institute of Environmental Toxicology, Halle/Saale (Germany); Schmidt-Heck, Wolfgang; Guthke, Reinhard [Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena (Germany); Zellmer, Sebastian; Gebhardt, Rolf [University of Leipzig, Institute of Biochemistry, Medical Faculty, Leipzig (Germany); Golka, Klaus; Degen, Gisela H.; Hermes, Matthias; Schormann, Wiebke; Brulport, Marc; Bauer, Alexander; Bedawy, Essam [IfADo, Leibniz Research Centre for Working Environment and Human Factors, Dortmund (Germany); Hergenroeder, Roland [ISAS, Institute for Analytical Sciences, Dortmund (Germany); Lehmann, Thomas [Translational Centre for Regenerative Medicine, Leipzig (Germany); Hengstler, Jan G. [IfADo, Leibniz Research Centre for Working Environment and Human Factors, Dortmund (Germany)

    2008-08-15

    Workers occupationally exposed to cadmium, cobalt and lead have been reported to have increased levels of DNA damage. To analyze whether in vivo relevant concentrations of heavy metals cause systematic alterations in RNA expression patterns, we performed a gene array study using primary normal human bronchial epithelial cells. Cells were incubated with 15{mu}g/l Cd(II), 25{mu}g/l Co(II) and 550{mu}g/l Pb(II) either with individual substances or in combination. Differentially expressed genes were filtered out and used to identify enriched GO categories as well as KEGG pathways and to identify transcription factors whose binding sites are enriched in a given set of promoters. Interestingly, combined exposure to Cd(II), Co(II) and Pb(II) caused a coordinated response of at least seven stress response-related transcription factors, namely Oct-1, HIC1, TGIF, CREB, ATF4, SRF and YY1. A stress response was further corroborated by up regulation of genes involved in glutathione metabolism. A second major response to heavy metal exposure was deregulation of the cell cycle as evidenced by down regulation of the transcription factors ELK-1 and the Ets transcription factor GABP, as well as deregulation of genes involved in purine and pyrimidine metabolism. A third and surprising response was up regulation of genes involved in steroid metabolism, whereby promoter analysis identified up regulation of SRY that is known to play a role in sex determination. A forth response was up regulation of xenobiotic metabolising enzymes, particularly of dihydrodiol dehydrogenases 1 and 2 (AKR1C1, AKR1C2). Incubations with individual heavy metals showed that the response of AKR1C1 and AKR1C2 was predominantly caused by lead. In conclusion, we have shown that in vivo relevant concentrations of Cd(II), Co(II) and Pb(II) cause a complex and coordinated response in normal human bronchial epithelial cells. This study gives an overview of the most responsive genes. (orig.)

  15. Microbial Reducibility of Fe(III Phases Associated with the Genesis of Iron Ore Caves in the Iron Quadrangle, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Ceth W. Parker

    2013-11-01

    Full Text Available The iron mining regions of Brazil contain thousands of “iron ore caves” (IOCs that form within Fe(III-rich deposits. The mechanisms by which these IOCs form remain unclear, but the reductive dissolution of Fe(III (hydroxides by Fe(III reducing bacteria (FeRB could provide a microbiological mechanism for their formation. We evaluated the susceptibility of Fe(III deposits associated with these caves to reduction by the FeRB Shewanella oneidensis MR-1 to test this hypothesis. Canga, an Fe(III-rich duricrust, contained poorly crystalline Fe(III phases that were more susceptible to reduction than the Fe(III (predominantly hematite associated with banded iron formation (BIF, iron ore, and mine spoil. In all cases, the addition of a humic acid analogue enhanced Fe(III reduction, presumably by shuttling electrons from S. oneidensis to Fe(III phases. The particle size and quartz-Si content of the solids appeared to exert control on the rate and extent of Fe(III reduction by S. oneidensis, with more bioreduction of Fe(III associated with solid phases containing more quartz. Our results provide evidence that IOCs may be formed by the activities of Fe(III reducing bacteria (FeRB, and the rate of this formation is dependent on the physicochemical and mineralogical characteristics of the Fe(III phases of the surrounding rock.

  16. Artificial intelligence and regression analysis for Cd(II) ion biosorption from aqueous solution by Gossypium barbadense waste.

    Science.gov (United States)

    Fawzy, Manal; Nasr, Mahmoud; Nagy, Heba; Helmi, Shacker

    2018-02-01

    In this study, batch biosorption experiments were conducted to determine the removal efficiency of Cd(II) ion from aqueous solutions by Gossypium barbadense waste. The biosorbent was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) connected with energy dispersive X-ray (EDX). The sorption mechanism was described by complexation/chelation of Cd 2+ with the functional groups of O-H, C=O, -COO-, and C-O, as well as, cation-exchange with Mg 2+ and K + . At initial Cd(II) ion concentration (C o ), 50 mg/L, the adsorption equilibrium of 89.2% was achieved after 15 min under the optimum experimental factors of pH 6.0, biosorbent dosage 10 g/L, and particle diameter 0.125-0.25 mm. Both Langmuir and Freundlich models fitted well to the sorption data, suggesting the co-existence of monolayer coverage along with heterogenous surface biosorption. Artificial neural network (ANN) with a structure of 5-10-1 was performed to predict the Cd(II) ion removal efficiency. The ANN model provided high fit (R 2 0.923) to the experimental data and indicated that C o was the most influential input. A pure-quadratic model was developed to determine the effects of experimental factors on Cd(II) ion removal efficiency, which indicated the limiting nature of pH and biosorbent dosage on Cd(II) adsorption. Based on the regression model (R 2 0.873), the optimum experimental factors were pH 7.61, biosorbent dosage 24.74 g/L, particle size 0.125-0.25 mm, and adsorption time 109.77 min, achieving Cd 2+ removal of almost 100% at C o 50 mg/L.

  17. Development of Wood Apple Shell (Feronia acidissima Powder Biosorbent and Its Application for the Removal of Cd(II from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ch. Suresh

    2014-01-01

    Full Text Available A biosorbent was prepared by using wood apple shell (WAS powder and studied its application for the removal of Cd(II from aqueous solution by a batch method. The biosorbent was characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and elemental analysis. WAS is principally made up of lignin and cellulose, containing functional groups such as alcoholic, ketonic, and carboxylic groups which can be involved in complexation reactions with Cd(II. The effect of experimental parameters like initial pH, contact time, metal ion concentration, and sorbent dose on adsorption was investigated. The optimum pH for biosorption of Cd(II onto WAS was found to be pH 5.0 and the quantitative removal of Cd(II ions was achieved in 30 min. The kinetic study showed that the biosorption process followed the pseudo-second-order rate. Experimental data were analyzed by Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. Desorption studies were carried out using HCl solution.

  18. Biosorption of Cd(II) and Cs(I) from aqueous solution by live and dead cells of Saccharomyces carlsbergensis PTCC 5051.

    Science.gov (United States)

    Sayyadi, Shayan; Ahmady-Asbchin, Salman; Kamali, Kasra

    2018-02-01

    The biosorption characteristics of Cd(II) and Cs(I) using live and dead cells of Saccharomyces carlsbergensis PTCC 5051 as biosorbents have been investigated in the present research. The influence of different experimental parameters such as initial pH (pHi), shaking rate, sorption time and initial metal concentration was evaluated. The optimum pH was obtained as 4 for Cd(II) and 7 for Cs(I). The experimental adsorption data were fitted to the Langmuir linear equation adsorption model. The highest metal uptake values of 0.593 and 0.473 mmol g -1 were calculated for Cd(II) and Cs(I), respectively. The results of Fourier transform infrared analysis suggested the involvement of amine, carboxyl and hydroxyl groups during the biosorption process and also indicated that more functional groups were involved in the biosorption process of live adsorbents, compared with those linked to dead biomass. The results showed that the biomass of S. carlsbergensis PTCC 5051 is a suitable biosorbent for the removal of Cd(II) and Cs(I) from the aqueous solutions.

  19. Semi-interpenetrating hybrid membranes containing ADOGEN{sup ®} 364 for Cd(II) transport from HCl media

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Tamez, Lucía; Rodríguez de San Miguel, Eduardo; Briones-Guerash, Ulrich; Munguía-Acevedo, Nadia M.; Gyves, Josefina de, E-mail: degyves@unam.mx

    2014-09-15

    Graphical abstract: - Highlights: • Semi-interpenetrating hybrid membranes are used for quantitative cadmium(II) recovery. • Optimization of membrane and solutions compositions is performed. • Membranes present increased stability respect to polymer inclusion membranes. • Models for cadmium (II) extraction and transport are proposed. • Excellent selectivity for Cd(II) over Ni(II), Cu(II) and Pb(II) was achieved. - Abstract: Cd(II) transport from 1 mol dm{sup −3} HCl media was investigated across semi-interpenetrating hybrid membranes (SIHMs) that were prepared by mixing an organic matrix composed of ADOGEN{sup ®} 364 as an extracting agent, cellulose triacetate as a polymeric support and nitrophenyloctyl ether as a plasticizer with an organic/inorganic network (silane phase, SP) composed of polydimethylsiloxane and a crosslinking agent. The stripping phase used was a 10{sup −2} mol dm{sup −3} ethanesulfonic acid solution. The effects of tetraorthoethoxysilane, phenyltrimethoxysilane and N′,N′-bis[3-tri(methoxysilyl)propyl]ethylendiamine as crosslinking agents on the transport were studied. H{sub 3}PO{sub 4} was used as an acid catalyst during the SP synthesis and optimized for transport performance. Solid–liquid extraction experiments were performed to determine the model that describe the transport of Cd(II) via ADOGEN{sup ®} 364. The transport was found to be chained-carrier controlled with a percolation threshold of 0.094 mmol g{sup −1}. The selective recovery of Cd(II) was studied with respect to Ni(II), Zn(II), Cu(II), and Pb(II) at a 1:1 molar ratio, and the optimized membrane system was applied for the recovery of Cd(II) from a real sample consisting of a Ni/Cd battery with satisfactory results. Finally, stability experiments were performed using the same membrane for 14 cycles. The results obtained showed that SIHMs had excellent stability and selectivity, with permeabilities comparable to those of PIMs.

  20. Combined cation-exchange and solid phase extraction for the selective separation and preconcentration of zinc, copper, cadmium, mercury and cobalt among others using azo-dye functionalized resin.

    Science.gov (United States)

    Chatterjee, Mousumi; Srivastava, Bhavya; Barman, Milan K; Mandal, Bhabatosh

    2016-04-01

    A facile synthesis of an ion exchange material (FSG-PAN) has been achieved by functionalizing silica gel with an azo-dye. Its composition and structure are well assessed by systematic analysis. Extractor possesses high BET surface area (617.794m(2)g(-1)), exchange capacity and break-through capacity (BTC) (Q0 Zn(II): 225; Cd(II): 918; Hg(II): 384, Cu(II): 269 and Co(II): 388μMg(-1)). The sorption process was endothermic (+ΔH), entropy-gaining (+ΔS) and spontaneous (-ΔG) in nature. Preconcentration factor has been optimized at 172(Zn(II)); 157.2(Cd(II)); 193.6(Hg(II)); 176(Cu(II)); 172.4(Co(II)). Density functional theory calculation has been performed to analyze the sorption pathway. BTC (μMg(-1)) of FSG-PAN was found to be the product of its frontier orbitals and state of sorbed metal ion species, x (at x=1, mononuclear and x>1, a polynuclear species; i.e., BTC=[amount of HOMO]×x). FSG-PAN is used for the selective separation and preconcentration of Zn(II), Cd(II), Hg(II), Cu(II),Co(II) from large volume sample (800mL) of low concentration (0.017-0.40mML(-1)) in presence of foreign ions (50-300mML(-1)) at optimum conditions (pH: 7.0±1.5, flow rate: 2.5mLmin(-1), temperature: 27°C, equilibration-time: 5min). The method was found to be effective for real samples also. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Spectral, thermal, electrochemical and analytical studies on Cd(II) and Hg(II) thiosemicarbazone complexes

    Science.gov (United States)

    El-Asmy, A. A.; El-Gammal, O. A.; Saleh, H. S.

    2008-11-01

    The coordination characteristic of the investigated thiosemicarbazones towards hazard pollutants, Cd(II) and Hg(II), becomes the first goal. Their complexes have been studied by microanalysis, thermal, electrochemical and spectral (electronic, IR and MS) studies. The substitutent (salicylaldehyde, acetophenone, benzophenone, o-hydroxy- p-methoxybenzophenone or diacetylmonoxime) plays an important role in the complex formation. The coordination sites were the S for thiosemicarbazide (HTS); NN for benzophenone thiosemicarbazone (HBTS); NS for acetophenone thiosemicarbazone (HATS) and salicylaldehyde thiosemicarbazone (H 2STS); NNS or NSO for diacetylmonoxime thiosemicarbazone (H 2DMTS). The stability constants of Hg(II) complexes were higher than Cd(II). The kinetic and thermodynamic parameters for the different thermal decomposition steps in the complexes have been evaluated. The activation energy values of the first step ordered the complexes as: [Cd(H 2STS)Cl 2]H 2O > [Cd(H 2DAMTS)Cl 2] > [Cd(HBTS) 2Cl 2]2H 2O > [Cd(HATS) 2Cl 2]. The CV of [Cd(H 2STS)Cl 2]H 2O and [Hg(HBTS)Cl 2] were recorded. The use of H 2DMTS as a new reagent for the separation and determination of Cd(II) ions from water and some synthetic samples using flotation technique is aimed to be discussed.

  2. Ultrasonic-assisted synthesis of novel nanocomposite of poly(vinyl alcohol) and amino-modified MCM-41: A green adsorbent for Cd(II) removal.

    Science.gov (United States)

    Soltani, Roozbeh; Dinari, Mohammad; Mohammadnezhad, Gholamhossein

    2018-01-01

    Amino-modified MCM-41/poly(vinyl alcohol) nanocomposite (M-MCM-41/PVOH NC) was developed for the adsorption of Cd(II) from aqueous media. M-MCM-41/PVOH NC was prepared through ultrasonic-assisted and simple blending procedure with economical and environmentally friendly polymer. The as-prepared adsorbent was characterized by FT-IR, TEM, FE-SEM and TGA. The contact time, solution pH and initial concentration of Cd(II) were found to affect the adsorption of Cd(II) from aqueous media. Kinetic studies were carried out and pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich, and intra-particle diffusion (IPD) reaction kinetic models were examined. The kinetic results revealed that the adsorption of Cd(II) onto M-MCM-41/PVOH NC followed PSO kinetic model and is a chemical adsorption. The equilibrium adsorption data were evaluated by different isotherms viz. Langmuir, Freundlich, and Dubinin Radushkevich (D-R) equations. The equilibrium data fitted better with the Langmuir isotherm and the maximum adsorption capacity of M-MCM-41/PVOH NC at 298K was calculated to be 46.73mgg -1 for Cd(II) on a typical saturated monomolecular layer with a fixed number of localized adsorption sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Equilibrium Sorption studies of Fe, Cu and Co ions in aqueous ...

    African Journals Online (AJOL)

    Recinius Communis Linn a commonly found herbal plant was used to prepare activated carbon by physicochemical activation method. The sorption capacity of this bio-resource material to remove Fe(III), Cu(II) and Co(II) from aqueous solutions was determined by batch tests. The influences of important parameters such as ...

  4. Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils.

    Science.gov (United States)

    Küsel, Kirsten; Wagner, Christine; Trinkwalter, Tanja; Gössner, Anita S; Bäumler, Rupert; Drake, Harold L

    2002-04-01

    Soils contain anoxic microzones, and acetate is an intermediate during the turnover of soil organic carbon. Due to negligible methanogenic activities in well-drained soils, acetate accumulates under experimentally imposed short-term anoxic conditions. In contrast to forest, agricultural, and prairie soils, grassland soils from Hawaii rapidly consumed rather than formed acetate when incubated under anoxic conditions. Thus, alternative electron acceptors that might be linked to the anaerobic oxidation of soil organic carbon in Hawaiian soils were assessed. Under anoxic conditions, high amounts of Fe(II) were formed by Hawaiian soils as soon as soils were depleted of nitrate. Rates of Fe(II) formation for different soils ranged from 0.01 to 0.31 micromol (g dry weight soil)(-1) h(-1), but were not positively correlated to increasing amounts of poorly crystallized iron oxides. In general, sulfate-reducing and methanogenic activities were negligible. Supplemental acetate was rapidly oxidized to CO2 via the sequential reduction of nitrate and Fe(III) in grassland soil (obtained near Kaena State Park). Supplemental H2 stimulated the formation of Fe(II), but H2-utilizing acetogens appeared to also be involved in the consumption of H2. Approximately 270 micromol Fe(III) (g dry weight soil)(-1) was available for Fe(III)-reducing bacteria, and acetate became a stable end product when Fe(III) was depleted in long-term incubations. Most-probable-number estimates of H2- and acetate-utilizing Fe(III) reducers and of H2-utilizing acetogens were similar. These results indicate that (i) the microbial reduction of Fe(III) is an important electron-accepting process for the anaerobic oxidation of organic matter in Fe(III)-rich Hawaiian soils of volcanic origin, and (ii) acetate, formed by the combined activity of fermentative and acetogenic bacteria, is an important trophic link in anoxic microsites of these soils.

  5. Study of new rubber to steel adhesive systems based on Co(II and Cu(II sulphides coats

    Directory of Open Access Journals (Sweden)

    Labaj Ivan

    2018-01-01

    Full Text Available The presented paper deals with the preparation of new rubber to steel adhesive systems using the steel surface treatment with deposition of adhesive coats based on Co(II and Cu(II sulphides. Efficiency of new prepared adhesive systems containing Co(II and Cu(II sulphides has been compared with the efficiency of double layer adhesive system commonly used in industry. The chemical composition of prepared adhesive systems was determined using the EDX analysis. Scanning Electron Microscopy (SEM was used for study of topography and microstructure of prepared rubber to steel adhesive systems (Co(II, Cu(II sulphide, double layer adhesive system. For determination of adhesion strength between rubber blends and metal pieces with various adhesive systems deposited on these pieces, the test according to ASTM D429 standard relating to Rubber to metal adhesion, method A was used. For all test samples, the same type of rubber blend and the same curing conditions have been used.

  6. Effect of the oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation

    Science.gov (United States)

    Senko, John M.; Dewers , Thomas A.; Krumholz, Lee R.

    2005-01-01

    A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems.

  7. Impact of a commercial glyphosate formulation on adsorption of Cd(II) and Pb(II) ions on paddy soil.

    Science.gov (United States)

    Divisekara, T; Navaratne, A N; Abeysekara, A S K

    2018-05-01

    Use of glyphosate as a weedicide on rice cultivation has been a controversial issue in Sri Lanka, due to the hypothesis that the metal complexes of commercial glyphosate is one of the causative factors of Chronic Kidney Disease of unknown aetiology (CKDu) prevalent in some parts of Sri Lanka. The effect of commercial glyphosate on the adsorption and desorption of Cd(II) and Pb(II) ions on selective paddy soil studied using batch experiments, over a wide concentration range, indicates that the Langmuir adsorption isotherm model is obeyed at low initial metal ion concentrations while the Freundlich adsorption isotherm model obeys at high metal ion concentrations in the presence and absence of glyphosate. For all cases, adsorption of both Cd(II) and Pb(II) ions obeys pseudo second order kinetics, suggesting that initial adsorption is a chemisorption process. In the presence of glyphosate formulation, the extent of adsorption of Cd(II) and Pb(II) ions on soil is decreased, while their desorption is increased at high concentrations of glyphosate. Low concentrations of glyphosate formulation do not significantly affect the desorption of metal ions from soil. Reduction of adsorption leads to enhance the concentration of Cd(II) and Pb(II) ions in the aqueous phase when in contact with soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: spectral, thermal, XRD and antimicrobial studies.

    Science.gov (United States)

    Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B

    2014-10-15

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Physicochemical properties of 3,4,5-trimethoxybenzoates of Mn(II, Co(II, Ni(II and Zn(II

    Directory of Open Access Journals (Sweden)

    W. FERENC

    2005-09-01

    Full Text Available The complexes of Mn(II, Co(II, Ni(II, Cu(II and Zn(II with 3,4,5-trimethoxybenzoic acid anion of the formula: M(C10H11O52·nH2O, where n = 6 for Ni(II, n = 1 for Mn(II, Co(II, Cu(II, and n = 0 for Zn, have been synthesized and characterized by elemental analysis, IR spectroscopy, X–ray diffraction measurements, thermogravimetry and magnetic studies. They are crystalline compounds characterized by various symmetry. They decompose in various ways when heated in air to 1273 K. At first, they dehydrate in one step and form anhydrous salts. The final products of decomposition are oxides of the respective metals (Mn2O3, Co3O4, NiO, CuO, ZnO. The solubilities of the analysed complexes in water at 293 K are in the orders of 10-2 – 10-4 mol dm-3. The magnetic susceptibilities of the Mn(II, Co(II, Ni(II and Cu(II complexes were measured over the range of 76–303 K and the magnetic moments were calculated. The results show that the 3,4,5-trimethoxybenzoates of Mn(II, Co(II and Ni(II are high-spin complexes but that of Cu(II forms a dimer [Cu2(C10H11O54(H2O2]. The carboxylate groups bind as monodentate or bidentate chelating or bridging ligands.

  10. Synthesis of Co9S8 and CoS nanocrystallites using Co(II ...

    Indian Academy of Sciences (India)

    Synthesis of Co9S8 and CoS nanocrystallites using Co(II) ... hydrothermal processing,24,25 etc. However, the ..... Cobalt sulphide nanoparticles were prepared by refluxing .... CdS nanostructures in ethylenediamine.28,29 Figure 2a shows.

  11. Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species.

    Science.gov (United States)

    Muehe, E Marie; Obst, Martin; Hitchcock, Adam; Tyliszczak, Tolek; Behrens, Sebastian; Schröder, Christian; Byrne, James M; Michel, F Marc; Krämer, Ute; Kappler, Andreas

    2013-12-17

    Fe(III) (oxyhydr)oxides affect the mobility of contaminants in the environment by providing reactive surfaces for sorption. This includes the toxic metal cadmium (Cd), which prevails in agricultural soils and is taken up by crops. Fe(III)-reducing bacteria can mobilize such contaminants by Fe(III) mineral dissolution or immobilize them by sorption to or coprecipitation with secondary Fe minerals. To date, not much is known about the fate of Fe(III) mineral-associated Cd during microbial Fe(III) reduction. Here, we describe the isolation of a new Geobacter sp. strain Cd1 from a Cd-contaminated field site, where the strain accounts for 10(4) cells g(-1) dry soil. Strain Cd1 reduces the poorly crystalline Fe(III) oxyhydroxide ferrihydrite in the presence of at least up to 112 mg Cd L(-1). During initial microbial reduction of Cd-loaded ferrihydrite, sorbed Cd was mobilized. However, during continuous microbial Fe(III) reduction, Cd was immobilized by sorption to and/or coprecipitation within newly formed secondary minerals that contained Ca, Fe, and carbonate, implying the formation of an otavite-siderite-calcite (CdCO3-FeCO3-CaCO3) mixed mineral phase. Our data shows that microbially mediated turnover of Fe minerals affects the mobility of Cd in soils, potentially altering the dynamics of Cd uptake into food or phyto-remediating plants.

  12. Advanced Experimental Analysis of Controls on Microbial Fe(III) Oxide Reduction - Final Report - 09/16/1996 - 03/16/2001; FINAL

    International Nuclear Information System (INIS)

    Roden, Eric E.

    2001-01-01

    Considering the broad influence that microbial Fe(III) oxide reduction can have on subsurface metal/organic contaminant biogeochemistry, understanding the mechanisms that control this process is critical for predicting the behavior and fate of these contaminants in anaerobic subsurface environments. Knowledge of the factors that influence the rates of growth and activity of Fe(III) oxide-reducing bacteria is critical for predicting (i.e., modeling) the long-term influence of these organisms on the fate of contaminants in the subsurface, and for effectively utilizing Fe(III) oxide reduction and associated geochemical affects for the purpose of subsurface metal/organic contamination bioremediation. This research project will refine existing models for microbiological and geochemical controls on Fe(III) oxide reduction, using laboratory reactor systems that mimic, to varying degrees, the physical and chemical conditions of the subsurface. Novel experimental methods for studying the kinetics of microbial Fe(III) oxide reduction and measuring growth rates of Fe(III) oxide-reducing bacteria will be developed. These new methodologies will be directly applicable to studies on subsurface contaminant transformations directly coupled to or influenced by microbial Fe(III) oxide reduction

  13. SPECIATION OF BINARY COMPLEXES OF Pb(II) AND Cd(II) WITH ...

    African Journals Online (AJOL)

    ABSTRACT. Chemical speciation of L-Asparagine complexes of Pb(II) and Cd(II) in presence of (0-50% v/v) dimethyl sulfoxide(DMSO)-water mixtures has been studied potentiometrically at 303.0 K and at an ionic strength of 0.16 mol L-1. The models containing different number of species were refined by using the ...

  14. Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel

    Science.gov (United States)

    Manjuladevi, M.; Anitha, R.; Manonmani, S.

    2018-03-01

    The adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II), ions from aqueous solutions by Cucumis melo peel-activated carbon was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto CMAC was analyzed with Elovich, intra-particle diffusion rate equations and pseudo-first-order model. The rate constant of Elovich and intra-particle diffusion on CMAC increased in the sequence of Cr(VI) > Ni(II) > Cd(II) > Pb(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo-first-order model compared to the second-order Lagergren's model with R 2 > 0.957. The maximum adsorption of metal ions onto the CMAC was found to be 97.95% for Chromium(VI), 98.78% for Ni(II), 98.55% for Pb(II) and 97.96% for Cd(II) at CMAC dose of 250 mg. The adsorption capacities followed the sequence Ni(II) ≈ Pb(II) > Cr(VI) ≈ Cd(II) and Ni(II) > Pb(II) > Cd(II) > Cr(VI). The optimum adsorption conditions selected were adsorbent dosage of 250 mg, pH of 3.0 for Cr(VI) and 6.0 for Ni(II), Cd(II) and Pb(II), adsorption concentration of 250 mg/L and contact time of 180.

  15. Kajian Termodinamika Adsorpsi Hibrida Merkapto-Silika dari Abu Sekam Padi Terhadap Ion Co(II

    Directory of Open Access Journals (Sweden)

    Dwi Rasy Mujiyanti

    2017-03-01

    Full Text Available AbstrakTelah dilakukan penelitian tentang kajian termodinamika adsorpsi hibrida merkapto-silika dari abu sekam padi terhadap ion Co(II. Penelitian ini bertujuan untuk menentukan kapasitas dan energi adsorpsi hibrida merkapto-silika (HMS dan silika gel (SG terhadap ion Co(II. Pada penelitian ini, silika gel dibuat menggunakan natrium silikat dari abu sekam padi. Selanjutnya, senyawa organik 3-(trimetoksisilil-1-propantiol diimobilisasi pada SG menghasilkan HMS. Adsorben dikarakterisasi menggunakan difraktometer sinar-X dan spektrofotometer FTIR. Larutan Co(II kemudian dikontakkan dengan SG dan HMS pada variasi pH, waktu, dan konsentrasi awal. Hasil penelitian kapasitas adsorpsi yang diperoleh HMS hampir tiga kali lebih besar dibandingkan dengan SG, dengan besarnya kapasitas adsorpsi masing-masing yaitu 250,00 mg/g dan 90,91 mg/g. Sedangkan energi adsorpsi yang diperoleh adalah 51,69 KJ/mol untuk SG, dan 23,65 KJ/mol untuk HMS.Kata kunci : sekam padi, hibrida merkapto-silika, adsorpsi, ion Co(IIAbstractA research on the study of the thermodynamics of adsorption mercapto-silica hybrid from rice husk ash to the ions Co (II has been done. This study aims to determine capacity and energy adsorption of hybrid mercapto-silica (HMS and silica gel (SG to the ions Co (II . In this study, silica gel was made using sodium silicate from rice husk ash. Furthermore, the organic compound 3-(trimethoxysilil -1-prophantiol immobilized on SG to HMS produced. Adsorbents were characterized using X-ray diffraction and FTIR spectrophotometer. Solution of Co (II is then contacted with the SG and HMS at the variation of pH, time , and initial concentration. The results obtained by HMS adsorption capacity is almost three times larger than the SG, the magnitude of adsorption capacity of each is 250.00 mg / g and 90.91 mg / g . While the adsorption energy obtained is 51.69 KJ / mol for SG , and 23.65 KJ / mol for HMS.Keywords : rice husk, mercapto-silica hybrid , adsorption

  16. Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions

    International Nuclear Information System (INIS)

    Zuo, Yanan; Chen, Guiqiu; Zeng, Guangming; Li, Zhongwu; Yan, Ming; Chen, Anwei; Guo, Zhi; Huang, Zhenzhen; Tan, Qiong

    2015-01-01

    Highlights: • Appropriate concentration of AgNPs can stimulate the biological removal of Cd(II). • Added AgNPs were oxidatively dissolved and transported to the surface of fungus. • AgNPs have undergone coarsening in the process of transport. • Amino, carboxyl, hydroxyl, and other reducing groups were involved in transportion. - Abstract: Despite the knowledge about increasing discharge of silver nanoparticles (AgNPs) into wastewater and its potential toxicity to microorganisms, the interaction of AgNPs with heavy metals in the biological removal process remains poorly understood. This study focused on the effect of AgNPs (hydrodynamic diameter about 24.3 ± 0.37 nm) on the removal of cadmium (Cd(II)) by using a model white rot fungus species, Phanerochaete chrysosporium. Results showed that the biological removal capacity of Cd(II) increased with the concentration of AgNPs increasing from 0.1 mg/L to 1 mg/L. The maximum removal capacity (4.67 mg/g) was located at 1 mg/L AgNPs, and then decreased with further increasing AgNPs concentration, suggesting that an appropriate concentration of AgNPs has a stimulating effect on the removal of Cd(II) by P. chrysosporium instead of an inhibitory effect. Results of Ag + and total Ag concentrations in the solutions together with those of SEM and XRD demonstrated that added AgNPs had undergone oxidative dissolution and transported from the solution to the surface of fungal mycelia (up to 94%). FTIR spectra confirmed that amino, carboxyl, hydroxyl, and other reducing functional groups were involved in Cd(II) removal, AgNPs transportation, and the reduction of Ag + to AgNPs

  17. Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Yanan [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen, Guiqiu, E-mail: gqchen@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Zhongwu; Yan, Ming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen, Anwei [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Guo, Zhi; Huang, Zhenzhen; Tan, Qiong [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2015-03-21

    Highlights: • Appropriate concentration of AgNPs can stimulate the biological removal of Cd(II). • Added AgNPs were oxidatively dissolved and transported to the surface of fungus. • AgNPs have undergone coarsening in the process of transport. • Amino, carboxyl, hydroxyl, and other reducing groups were involved in transportion. - Abstract: Despite the knowledge about increasing discharge of silver nanoparticles (AgNPs) into wastewater and its potential toxicity to microorganisms, the interaction of AgNPs with heavy metals in the biological removal process remains poorly understood. This study focused on the effect of AgNPs (hydrodynamic diameter about 24.3 ± 0.37 nm) on the removal of cadmium (Cd(II)) by using a model white rot fungus species, Phanerochaete chrysosporium. Results showed that the biological removal capacity of Cd(II) increased with the concentration of AgNPs increasing from 0.1 mg/L to 1 mg/L. The maximum removal capacity (4.67 mg/g) was located at 1 mg/L AgNPs, and then decreased with further increasing AgNPs concentration, suggesting that an appropriate concentration of AgNPs has a stimulating effect on the removal of Cd(II) by P. chrysosporium instead of an inhibitory effect. Results of Ag{sup +} and total Ag concentrations in the solutions together with those of SEM and XRD demonstrated that added AgNPs had undergone oxidative dissolution and transported from the solution to the surface of fungal mycelia (up to 94%). FTIR spectra confirmed that amino, carboxyl, hydroxyl, and other reducing functional groups were involved in Cd(II) removal, AgNPs transportation, and the reduction of Ag{sup +} to AgNPs.

  18. Electrochemistry of carbonaceous materials; 1. Oxidation of Sardinian coal by Fe(III) ions

    Energy Technology Data Exchange (ETDEWEB)

    Tomat, R.; Salmaso, R.; Zecchin, S. (CNR-Instituto di Polarografia ed Elettrochimica Preparativa, Padova (Italy))

    1992-04-01

    Oxidation of subbitiminous coal (Sulcis basin, Sardinia, Italy) by Fe(III) ions in aqueous H{sub 2}SO{sub 4} solution was investigated over a wide temperature range (20-80{degree}C). Experimental results are in accord with a reaction scheme involving a reversible complex between coal particles and Fe(III) ions as a first step in the oxidation process. At low coal concentration, the reaction rate follows first-order kinetics in both coal and ferric ions (overall second order), while at sufficiently high coal concentration, the reaction rate is consistent with first-order kinetics in Fe(III) concentration, appearing to be independent of coal concentration. The kinetic results obtained give preliminary information on the advantageous use of the Fe(III)/slurried coal reaction system to depolarize the anodic compartment of an electrolysis cell, for the production of H{sub 2}. 11 refs., 5 figs.

  19. Solid phase extraction of Cd(II) and Pb(II) using a magnetic metal-organic framework, and their determination by FAAS

    International Nuclear Information System (INIS)

    Sohrabi, Mahmoud Reza; Matbouie, Zahra; Asgharinezhad, Ali Akbar; Dehghani, Ali

    2013-01-01

    We describe a novel magnetic metal-organic framework (MOF) for the preconcentration of Cd(II) and Pb(II) ions. The MOF was prepared from the Fe 3 O 4 -pyridine conjugate and the copper(II) complex of trimesic acid. The MOF was characterized by IR spectroscopy, elemental analysis, SEM and XRD. A Box-Behnken design through response surface methodology and experimental design was used to identify the optimal parameters for preconcentration. Extraction time, amount of magnetic MOF and pH value were found to be critical factors for uptake, while type, volume, concentration of eluent, and elution time are critical in the elution step. The ions were then determined by FAAS. The limits of detection are 0.2 and 1.1 μg L −1 for Cd(II), and Pb(II) ions, respectively, relative standard deviations are −1 of Cd(II) and Pb(II) ions), and the enrichment capacity of the MOF is at around 190 mg g −1 for both ions which is higher than the conventional Fe 3 O 4 -pyridine material. The magnetic MOF was successfully applied to the rapid extraction of trace quantities of Cd(II) and Pb(II) ions in fish, sediment, and water samples. (author)

  20. Fe(III) mobilisation by carbonate in low temperature environments: Study of the solubility of ferrihydrite in carbonate media and the formation of Fe(III) carbonate complexes

    International Nuclear Information System (INIS)

    Grivé, Mireia; Duro, Lara; Bruno, Jordi

    2014-01-01

    Graphical abstract: - Highlights: • We have determined thermodynamic stabilities of Fe(III)-carbonate species. • We have determined the effect of those species on the solubility of ferrihydrite. • Results. • Highlight the importance of two Fe(III)-carbonate: FeOHCO 3 and Fe(CO 3 ) 3 3− . - Abstract: The linkage between the iron and the carbon cycles is of paramount importance to understand and quantify the effect of increased CO 2 concentrations in natural waters on the mobility of iron and associated trace elements. In this context, we have quantified the thermodynamic stability of mixed Fe(III) hydroxo-carbonate complexes and their effect on the solubility of Fe(III) oxihydroxides. We present the results of carefully performed solubility measurements of 2-line ferrihydrite in the slightly acidic to neutral–alkaline pH ranges (3.8–8.7) under constant pCO 2 varying between (0.982–98.154 kPa) at 25 °C. The outcome of the work indicates the predominance of two Fe(III) hydroxo carbonate complexes FeOHCO 3 and Fe(CO 3 ) 3 3− , with formation constants log * β° 1,1,1 = 10.76 ± 0.38 and log β° 1,0,3 = 24.24 ± 0.42, respectively. The solubility constant for the ferrihydrite used in this study was determined in acid conditions (pH: 1.8–3.2) in the absence of CO 2 and at T = (25 ± 1) °C, as log * K s,0 = 1.19 ± 0.41. The relative stability of the Fe(III)-carbonate complexes in alkaline pH conditions has implications for the solubility of Fe(III) in CO 2 -rich environments and the subsequent mobilisation of associated trace metals that will be explored in subsequent papers

  1. Synthesis and structural characterization of nickel(II), cobalt(II), Zinc(II), manganese(II), cadmium(II) and uranium(VI) complexes of α-oximinoacetoacet-o/p-anisidide thiosemicarbazone

    International Nuclear Information System (INIS)

    Patel, P.S.; Patel, M.M.; Ray, R.M.

    1993-01-01

    A few metal complexes of α-oximinoacetoacet-o/p-anisidide thiosemicarbazones (OAOATS)/(OAPATS) with Ni(II), Co(II), Zn(II), Mn(II), Hg(II), Cd(II) and UO 2 (II) have been prepared and characterized by elemental analyses, conductivity, differential scanning calorimetry study, thermogravimetric analyses and infrared and electronic spectral measurements in conjunction with magnetic susceptibility measurements at room temperature. They have also been tested for their antimicrobial activities. (author). 24 refs., 2 tabs

  2. Identification of Multiple Soluble Fe(III Reductases in Gram-Positive Thermophilic Bacterium Thermoanaerobacter indiensis BSB-33

    Directory of Open Access Journals (Sweden)

    Subrata Pal

    2014-01-01

    Full Text Available Thermoanaerobacter indiensis BSB-33 has been earlier shown to reduce Fe(III and Cr(VI anaerobically at 60°C optimally. Further, the Gram-positive thermophilic bacterium contains Cr(VI reduction activity in both the membrane and cytoplasm. The soluble fraction prepared from T. indiensis cells grown at 60°C was found to contain the majority of Fe(III reduction activity of the microorganism and produced four distinct bands in nondenaturing Fe(III reductase activity gel. Proteins from each of these bands were partially purified by chromatography and identified by mass spectrometry (MS with the help of T. indiensis proteome sequences. Two paralogous dihydrolipoamide dehydrogenases (LPDs, thioredoxin reductase (Trx, NADP(H-nitrite reductase (Ntr, and thioredoxin disulfide reductase (Tdr were determined to be responsible for Fe(III reductase activity. Amino acid sequence and three-dimensional (3D structural similarity analyses of the T. indiensis Fe(III reductases were carried out with Cr(VI reducing proteins from other bacteria. The two LPDs and Tdr showed very significant sequence and structural identity, respectively, with Cr(VI reducing dihydrolipoamide dehydrogenase from Thermus scotoductus and thioredoxin disulfide reductase from Desulfovibrio desulfuricans. It appears that in addition to their iron reducing activity T. indiensis LPDs and Tdr are possibly involved in Cr(VI reduction as well.

  3. Synthesis of peptide templated copper nanoclusters for fluorometric determination of Fe(III) in human serum

    International Nuclear Information System (INIS)

    Tang, Ting; Ouyang, Jiang; Hu, Lanshuang; Guo, Linyan; Yang, Minghui; Chen, Xiang

    2016-01-01

    Copper nanoclusters (Cu-NCs) were prepared by reducing CuCl 2 with ascorbic acid in the presence of the short peptide template Cys-Cys-Cys-Asp-Leu. They were characterized by UV-vis absorption and fluorescence spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The Cu-NCs have a size of ∼2 nm, can be well dispersed in water and are photostable. Their fluorescence (peaking at 425 nm under 365-nm excitation) is quenched by Fe(III) ions. Based on this finding, a sensitive and selective fluorescence assay for the detection of Fe(III) was developed. Under optimized conditions and a pH value of 2.0, the assay displays a linear response in the 0.05 to 30 μM Fe(III) concentration range, with a detection limit of 20 nM based on an S/N ratio of 3. The assay was successfully applied to the determination of Fe(III) in spiked human serum where is gave recoveries that ranged from 96.2 % to 98.3 %. (author)

  4. Bioavailability of Fe(III) in Natural Soils and the Impact on Mobility of Inorganic Contaminants (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Kosson, David S. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering; Cowan, Robert M. [Rutgers Univ., New Brunswick, NJ (United States). Dept. of Environmental Science; Young, Lily Y. [Rutgers Univ., New Brunswick, NJ (United States). Center for Agriculture and the Environment; Hatcherl, Eric L. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering; Scala, David J. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering

    2005-08-02

    Inorganic contaminants, such as heavy metals and radionuclides, can adhere to insoluble Fe(III) minerals resulting in decreased mobility of these contaminants through subsurface environments. Dissimilatory Fe(III)-reducing bacteria (DIRB), by reducing insoluble Fe(III) to soluble Fe(II), may enhance contaminant mobility. The Savannah River Site, South Carolina (SRS), has been subjected to both heavy metal and radionuclide contamination. The overall objective of this project is to investigate the release of inorganic contaminants such as heavy metals and radionuclides that are bound to solid phase soil Fe complexes and to elucidate the mechanisms for mobilization of these contaminants that can be associated with microbial Fe(III) reduction. This is being accomplished by (i) using uncontaminated and contaminated soils from SRS as prototype systems, (ii) evaluating the diversity of DIRBs within the samples and isolating cultures for further study, (iii) using batch microcosms to evaluate the bioavailability of Fe(III) from pure minerals and SRS soils, (iv) developing kinetic and mass transfer models that reflect the system dynamics, and (v) carrying out soil column studies to elucidate the dynamics and interactions amongst Fe(III) reduction, remineralization and contaminant mobility.

  5. Spectrophotometric speciation of Fe(II) and Fe(III) using hydrazone-micelle systems and flow injections

    International Nuclear Information System (INIS)

    Khojali, Inas Osman

    1999-04-01

    Two hydrazones were synthesised, namely salicylhyrazone (SH) and trihydroxyacetophenone (THAPH) were synthesised with the objective of developing a method for determining of Fe(II) and Fe(III) in the presence of each other and hence the total iron.those hydrazones were selected so as to combine the ability of phenolic compounds to complex Fe(III) ions and the complexing characteristics of hydrazones. The complexes of Fe(II) S H and Fe(III) S H as well those of Fe(II)-THAPH and Fe(III)-THAPH had shown maximum absorbance at λ=412 nm which was not not modified by presence of micelles i.e. sodium n-dodecyl sulphate (SDS) and n-hexa dodecyl pyridinium bromide. The maximum absorbance for all complexes takes place around a neutral pH. Generally, in addition, of n-hexa dodecylpyridinium bromide to fe(II)-SH and Fe(III)-SH absorbance of the complexes increases with increasing the concentration of the micelle. The effects of the addition of sodium n-dodecyle sulphate (SDS) to Fe(III)-SH is also studied. Generally, increasing the concentration of the micelle decrease the absorbance of the complexes. To study the effect of the presence of Fe(II) and Fe(III) on the determination of each other,mixtures of Fe(II)-SH and Fe(III)-SH are studied. However, the use of ascorbic acid as a reducing reagent for Fe(III) did not produce the needed results but non reducible results, which may be due to the masking effect of ascorbic acid and thus making the metal not available to the ligand. However, conversion of Fe(II) to Fe(III) prior to the determination was avoided as this requires the use of oxidant, which will oxidise the ligand as well. To establish the condition for the maximum absorbance of THAPH complexes, the effect of the base was investigated by using sodium and ammonium hydroxide. Generally, increasing the concentration of the base decreases the abosrbance. as expected, ammonium hydroxide produced positive results than sodium hydroxide. After establishing the optimum Fi

  6. Batch adsorptive removal of Fe(III, Cu(II and Zn(II ions in aqueous and aqueous organic–HCl media by Dowex HYRW2-Na Polisher resin as adsorbents

    Directory of Open Access Journals (Sweden)

    Abdul-Aleem Soliman Aboul-Magd

    2016-09-01

    Full Text Available Of the metal ions in tap, Nile, waste and sea water samples and some ores were carried out. Removal of heavy metal ions such as Fe(III, Cd(II, Zn(II, Cu(II, Mn(II, Mg(II, and Pb(II from water and wastewater is obligatory in order to avoid water pollution. Batch shaking adsorption experiments to evaluate the performance of nitric and hydrochloric acid solutions in the removal of metal ions by cation exchange resin at the same conditions for both, such as the effect of initial metal ion concentration, different proportions of some organic solvents, H+-ion concentrations and reaction temperature on the partition coefficients. The metal adsorption for the cation exchanger was found to be significant in different media for both nitric and hydrochloric acids, i.e., the adsorption up take of metal ions presented in this work is very significant depending on the characteristics of ions and on the external concentrations of solute. The presence of low ionic strength or low concentration of acids does have a significant adsorption of metal ions on ion-exchange resin. The results show that the ion exchanger could be employed for the preconcentration, separation and the determination.

  7. Biogenic Fe(III) minerals lower the efficiency of iron-mineral based commercial filter systems for arsenic removal

    DEFF Research Database (Denmark)

    Kleinert, Susanne; Muehe, Eva M.; Posth, Nicole

    2011-01-01

    Millions of people worldwide are affected by As (arsenic) contaminated groundwater. Fe(III) (oxy)hydroxides sorb As efficiently and are therefore used in water purification filters. Commercial filters containing abiogenic Fe(III) (oxy)hydroxides (GEH) showed varying As removal, and it was unclear...

  8. COII "long fragment" reliability in characterisation and classification of forensically important flies

    Science.gov (United States)

    Aly, Sanaa M; Mahmoud, Shereen M

    2016-01-01

    Molecular identification of collected flies is important in forensic entomological analysis guided with accurate evaluation of the chosen genetic marker. The selected mitochondrial DNA segments can be used to properly identify species. The aim of the present study was to determine the reliability of the 635-bp-long cytochrome oxidase II gene (COII) in identification of forensically important flies. Forty-two specimens belonging to 11 species (Calliphoridae: Chrysomya albiceps, C. rufifacies, C. megacephala, Lucilia sericata, L. cuprina; Sarcophagidae: Sarcophaga carnaria, S. dux, S. albiceps, Wohlfahrtia nuba; Muscidae: Musca domestica, M. autumnalis) were analysed. The selected marker was amplified using PCR followed by sequencing. Nucleotide sequence divergences were calculated using the K2P (Kimura two-parameter) distance model, and a NJ (neighbour-joining) phylogenetic tree was constructed. All examined specimens were assigned to the correct species, formed distinct monophyletic clades and ordered in accordance with their taxonomic classification. Intraspecific variation ranged from 0 to 1% and interspecific variation occurred between 2 and 20%. The 635-bp-long COII marker is suitable for clear differentiation and identification of forensically relevant flies.

  9. In situ tetrazole templated chair-like decanuclear azido-cobalt(II) SMM containing both tetra- and octa-hedral Co(II) ions.

    Science.gov (United States)

    Zhang, Yuan-Zhu; Gao, Song; Sato, Osamu

    2015-01-14

    An azido-bridged chair-like decanuclear cluster: [Co(II)10(bzp)8(Metz)2(N3)18]·4MeOH·3H2O (1, bzp = 2-benzoylpyridine and HMetz = 5-methyl-1H-tetrazole) was prepared with in situ tetrazolate anions as templates in a sealed system. 1 containing both octahedral and tetrahedral Co(II) ions exhibited slow relaxation of magnetization with an effective barrier of 26 K under an applied dc field of 1 kOe.

  10. Complexes of Cu(II), Ni(II), Co(II), oxovanadium(IV) and dioxouranium(VI) with N,N'-ethylenebis (2-hydroxy-4-methylpropiophenoneimine)

    International Nuclear Information System (INIS)

    Patel, M.M.; Patel, M.R.; Patel, M.N.; Patel, R.P.

    1982-01-01

    Complexes of Cu(II), Ni(II), Co(II), oxovanadium(IV) and dioxouranium(VI) with the schiff base, N,N'-ethylenebis(2-hydroxy-4-methylpropiophenoneimine)(4-MeOHPEN), have been synthesised and characterised on the basis of elemental analyses, conductivity, magnetic moment, electronic and infrared spectral data. Square-planar structures are suggested for Cu(II), Ni(II) and Co(II) complexes while a distorted square-pyramidal structure is suggested for the oxovanadium(IV) complex. (author)

  11. Synthesis and Structural Studies on Transition Metal Complexes Derived from 4-Hydroxy-4-methyl–2-pentanone-1H-benzimidazol-2-yl-hydrazone

    Directory of Open Access Journals (Sweden)

    M. Neelamma

    2011-01-01

    Full Text Available Transition metal complexes of Cr(III, Fe(III, Mn(II, Co(II, Ni(II, Cu(II and Zn(II with a tridentate ligand, 4-hydroxy-4-methyl-2-pentanone-1H-benzimidazole-2yl-hydrazone (H-HPBH derived from the condensation of 2-hydrazinobenzimidazole and diacetone alcohol was synthesized. Characterization has been done on the basis of analytical, conductance, thermal and magnetic data, infrared, 1H NMR, electronic, mass and ESR spectral data. From analytical and thermal data, the stoichiometry of the complexes has been found to be 1:1 (metal: ligand. Divalent complexes have the general formula [M(HPBHCl(H2O2] in octahedral geometry, [M(HPBHCl] in tetrahedral and square planar stereochemistries and trivalent complexes [M(HPBHCl2(H2O] in octahedral disposition. Infrared spectral data suggest that the ligand HPBH behaves as a monobasic tridentate ligand with N: N: O donor sequence towards the metal ions. On the basis of the above physicochemical data, octahedral, tetrahedral and square planar geometries were assigned for the complexes. The ligand and metal complexes were screened for their physiological activities against E. coli and S. aureus. The order of physiological activity has been found to be Cu(II > Ni(II > Zn(II > Co(II > Cr(III > Mn(II > Fe (III > ligand against E.coli and Ni(II > Cu(II > Zn(II > Mn(II > Cr(III > Fe(III > Co(II > ligand against S. aureus.

  12. Development of Wood Apple Shell (Feronia acidissima) Powder Biosorbent and Its Application for the Removal of Cd(II) from Aqueous Solution

    OpenAIRE

    Ch. Suresh; D. Harikisore Kumar Reddy; Yapati Harinath; B. Ramesh Naik; K. Seshaiah; Annareddy V. Ramana Reddy

    2014-01-01

    A biosorbent was prepared by using wood apple shell (WAS) powder and studied its application for the removal of Cd(II) from aqueous solution by a batch method. The biosorbent was characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and elemental analysis. WAS is principally made up of lignin and cellulose, containing functional groups such as alcoholic, ketonic, and carboxylic groups which can be involved in complexation reactions with Cd(II). The effect of...

  13. Preparation and Evaluation of Adsorbents from Coal and Irvingia gabonensis Seed Shell for the Removal of Cd(II and Pb(II Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mercy A. Ezeokonkwo

    2018-01-01

    Full Text Available Cd(II and Pb(II ions removal using adsorbents prepared from sub-bituminous coal, lignite, and a blend of coal and Irvingia gabonensis seed shells was investigated. Fourier transform infrared, scanning electron microscope and X-ray fluorescence analyses implicated hydroxyl, carbonyl, Al2O3, and SiO2 as being responsible for attaching the metal ions on the porous adsorbents. The optimum adsorption of carbonized lignite for the uptake of Cd(II and Pb(II ions from aqueous media were 80.93 and 87.85%, respectively. Batch adsorption was done by effect of adsorbent dosage, pH, contact time, temperature, particle size, and initial concentration. Equilibrium for the removal of Pb(II and Cd(II was established within 100 and 120 min respectively. Blending the lignite-derived adsorbent with I. gabonensis seed shell improved the performance significantly. More improvement was observed on modification of the blend using NaOH and H3PO4. Pb(II was preferentially adsorbed than Cd(II in all cases. Adsorption of Cd(II and Pb(II ions followed Langmuir isotherm. The adsorption kinetics was best described by pseudo-second order model. The potential for using a blend of coal and agricultural byproduct (I. gabonensis seed shell was found a viable alternative for removal of toxic heavy metals from aqueous solutions.

  14. Single peak parameters technique for simultaneous measurements: Spectrophotometric sequential injection determination of Fe(II) and Fe(III).

    Science.gov (United States)

    Kozak, J; Paluch, J; Węgrzecka, A; Kozak, M; Wieczorek, M; Kochana, J; Kościelniak, P

    2016-02-01

    Spectrophotometric sequential injection system (SI) is proposed to automate the method of simultaneous determination of Fe(II) and Fe(III) on the basis of parameters of a single peak. In the developed SI system, sample and mixture of reagents (1,10-phenanthroline and sulfosalicylic acid) are introduced into a vessel, where in an acid environment (pH≅3) appropriate compounds of Fe(II) and Fe(III) with 1,10-phenanthroline and sulfosalicylic acid are formed, respectively. Then, in turn, air, sample, EDTA and sample again, are introduced into a holding coil. After the flow reversal, a segment of air is removed from the system by an additional valve and as EDTA replaces sulfosalicylic acid forming a more stable colorless compound with Fe(III), a complex signal is registered. Measurements are performed at wavelength 530 nm. The absorbance measured at minimum of the negative peak and the area or the absorbance measured at maximum of the signal can be used as measures corresponding to Fe(II) and Fe(III) concentrations, respectively. The time of the peak registration is about 2 min. Two-component calibration has been applied to analysis. Fe(II) and Fe(III) can be determined within the concentration ranges of 0.04-4.00 and 0.1-5.00 mg L(-1), with precision less than 2.8% and 1.7% (RSD), respectively and accuracy better than 7% (RE). The detection limit is 0.04 and 0.09 mg L(-1) for Fe(II) and Fe(III), respectively. The method was applied to analysis of artesian water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Structure and dynamics of hydrated Fe(II) and Fe(III) ions. Quantum mechanical and molecular mechanical simulations

    International Nuclear Information System (INIS)

    Remsungnen, T.

    2002-11-01

    Classical molecular dynamics (MD) and combined em ab initio quantum mechanical/molecular mechanical molecular dynamics (QM/MM-MD) simulations have been performed to investigate structural, dynamical and energetical properties of Fe(II), and Fe(III) transition metal ions in aqueous solution. In the QM/MM-MD simulations the ion and its first hydration sphere were treated at the Hartree-Fock ab initio quantum mechanical level, while ab initio generated pair plus three-body potentials were employed for the remaining system. For the classical MD simulation the pair plus three-body potential were employed for all ion-water interactions. The coordination number of the first hydration shell is 100 % of 6 in both cases. The number of waters in the second hydration shell obtained from classical simulations are 13.4 and 15.1 for Fe(II) and Fe(III), respectively, while QM/MM-MD gives the values of 12.4 and 13.4 for Fe(II) and Fe(III). The energies of hydration obtained from MD and QM/MM-MD for Fe(II) are 520 and 500 kcal/mol, and for Fe(III) 1160 and 1100 kcal/mol respectively. The mean residence times of water in the second shell obtained from QM/MM-MD are 24 and 48 ps for Fe(II) and Fe(III), respectively. In contrast to the data obtained from classical MD simulation, the QM/MM-MD values are all in good agreement with the experimental data available. These investigations and results clearly indicate that many-body effects are essential for the proper description of all properties of the aqueous solution of both Fe(II) and Fe(III) ions. (author)

  16. Synthesis, characterization, antimicrobial and anthelmentic activities of some metal complexes with a new Schiff base 3-[(Z)-5-amino-1,3,3-trimethyl cyclohexylmethylimino]-1,3-dihydroindol-2-one

    International Nuclear Information System (INIS)

    Reddy, K. R. K; Mahendra, K.N.

    2008-01-01

    The complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), dioxouranium(VI), and Th(IV) with a new Schiff base, 3-[(Z)-5-amino-1,3,3-trimethyl cyclohexylmethylimino]-1,3-dihydroindol-2-one formed by the condensation of isatin (Indole-2.3-dione) with isophoronediamine(5-amino-1,3,3-trimethyl-cyclohexane methylamine) were synthesized and characterized by microanalysis, conductivity, UV-visible, FT-IR, 1 H NMR, TGA, and magnetic susceptibility measurements. All the complexes exhibit 1: 1 metal to ligand ratio except for the dioxouranium(VI) and thorium(IV) complexes, where the metal: ligand stoichiometry is 1: 2. The spectral data revealed that the ligand acts as monobasic bidentate, coordinating to the metal ion through the azomethine nitrogen and carbonyl oxygen of the isatin moiety. Tetrahedral geometry for Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) complexes, square planar geometry for Cu(II) complexes, and the coordination numbers 6 and 8 for UO 2 (VI) and Th(IV) complexes, respectively, are proposed. Both the ligand and the metal complexes were screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa, and the complexes are more potent bactericides than the ligand. The anthelmintic activity of the ligand and its complexes against earthworms was also investigated [ru

  17. Preconcentration of Co, Ni, Cd and Zn on naphthalene–2,4,6-trimorpholino-1,3,5-triazin adsorbent and flame atomic absorption determination

    Directory of Open Access Journals (Sweden)

    TAYYEBEH MADRAKIAN

    2010-05-01

    Full Text Available A preconcentration method was developed for the determination of trace amounts of Co, Ni, Cd and Zn by atomic absorption spectrometry. The method is based on the retention of the metal cations by naphthalene–2,4,6-trimorpholino-1,3,5-triazin adsorbent in a column. The adsorbed metals were then eluted from the column with hydrochloric acid and the Co, Ni, Cd and Zn were determined by flame atomic absorption spectrometry. The optimal extraction and elution conditions were studied. The effects of diverse ions on the preconcentration were also investigated. A preconcentration factor of 250 for Co(II, Ni(II and Zn(II, and 400 for Cd(II can easily be achieved. Calibration graphs were obtained and the detection limits of the method for Co(II, Ni(II, Cd(II and Zn(II were 0.51, 0.49, 0.17 and 0.10 ng mL-1, respectively. The relative standard deviations (RSD of 0.37–2.31 % for Co, 0.37–3.73 % for Ni, 2.20–2.40 % for Cd and 1.50–2.56 % for Zn were obtained. The method was also used for the simultaneous preconcentration of these elements and the method was successfully applied to their preconcentration and determination. The method was applied to the determination of Co, Ni, Cd and Zn in several real samples.

  18. Azadirachta indica (Neem) leaf powder as a biosorbent for removal of Cd(II) from aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Arunima [Department of chemistry, Gauhati University, Guwahati 781014, Assam (India); Bhattacharyya, Krishna G. [Department of chemistry, Gauhati University, Guwahati 781014, Assam (India)]. E-mail: krishna2604@sify.com

    2005-10-17

    A biosorbent, Neem leaf powder (NLP), was prepared from the mature leaves of the Azadirachta indica (Neem) tree by initial cleaning, drying, grinding, washing to remove pigments and redrying. The powder was characterized with respect to specific surface area (21.45 m{sup 2} g{sup -1}), surface topography and surface functional groups and the material was used as an adsorbent in a batch process to remove Cd(II) from aqueous medium under conditions of different concentrations, NLP loadings, pH, agitation time and temperature. Adsorption increased from 8.8% at pH 4.0 to 70.0% at pH 7.0 and 93.6% at pH 9.5, the higher values in alkaline medium being due to removal by precipitation. The adsorption was very fast initially and maximum adsorption was observed within 300 min of agitation. The kinetics of the interactions was tested with pseudo first order Lagergren equation (mean k {sub 1} = 1.2 x 10{sup -2} min{sup -1}), simple second order kinetics (mean k {sub 2} = 1.34 x 10{sup -3} g mg{sup -1} min{sup -1}), Elovich equation, liquid film diffusion model (mean k = 1.39 x 10{sup -2} min{sup -1}) and intra-particle diffusion mechanism. The adsorption data gave good fits with Langmuir and Freundlich isotherms and yielded Langmuir monolayer capacity of 158 mg g{sup -1} for the NLP and Freundlich adsorption capacity of 18.7 L g{sup -1}. A 2.0 g of NLP could remove 86% of Cd(II) at 293 K from a solution containing 158.8 mg Cd(II) per litre. The mean values of the thermodynamic parameters, {delta}H, {delta}S and {delta}G, at 293 K were -73.7 kJ mol{sup -1}, -0.24 J mol{sup -1} K{sup -1} and -3.63 kJ mol{sup -1}, respectively, showing the adsorption process to be thermodynamically favourable. The results have established good potentiality for the Neem leaf powder to be used as a biosorbent for Cd(II)

  19. Complexos metálicos com o herbicida glifosato: revisão

    OpenAIRE

    Coutinho,Cláudia F. B.; Mazo,Luiz Henrique

    2005-01-01

    We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature.

  20. Metallic complexes with glyphosate: a review

    OpenAIRE

    Coutinho, Cláudia F. B.; Mazo, Luiz Henrique

    2005-01-01

    We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature.

  1. Modelling the magnetic behaviour of square-pyramidal Co(II)5 aggregates: tuning SMM behaviour through variations in the ligand shell.

    Science.gov (United States)

    Klöwer, Frederik; Lan, Yanhua; Nehrkorn, Joscha; Waldmann, Oliver; Anson, Christopher E; Powell, Annie K

    2009-07-27

    Three new mu4-bridged Co(II)5 clusters with similar core motifs have been synthesised with the use of N-tert-butyldiethanolamine (tbdeaH2) and pivalic acid (piv): [Co(II)5(mu4-N3)(tbdea)2(mu-piv)4(piv)(CH3CN)2].CH3CN (1), [Co(II)5(mu4-Cl)(Cl)(tbdea)2(mu-piv)4(pivH)2] (2) and [Co(II)5(mu4-N3)(Cl)(tbdea)2(mu-piv)4(pivH)2] (3). Magnetic measurements were performed for all three compounds. It was found that while the chloride-bridged cluster 2 does not show an out-of-phase signal, which excludes single-molecule magnet (SMM) behaviour, the azide-bridged compounds 1 and 3 show out-of-phase signals as well as frequency dependence of the ac susceptibility, as expected for SMMs. We confirmed that 1 is a SMM with zero-field quantum tunnelling of the magnetisation at 1.8 K. Compound 3 is likely a SMM with a blocking temperature well below 1.8 K. We established a physical model to fit the chiT versus T and M versus B curves of the three compounds to reproduce the observed SMM trend. The analysis showed that small changes in the ligand shell modify not only the magnitude of exchange constants, but also affect the J and g matrices in a non-trivial way.

  2. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy

    Science.gov (United States)

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere. PMID:29386985

  3. Impact of two iron(III) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics.

    Science.gov (United States)

    Mihucz, Victor G; Csog, Árpád; Fodor, Ferenc; Tatár, Enikő; Szoboszlai, Norbert; Silaghi-Dumitrescu, Luminiţa; Záray, Gyula

    2012-04-15

    Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [Univ. of Massachusetts, Amherst, MA (United States)

    2015-03-09

    The purpose of these studies was to aid the Department of Energy in its goal of understanding how microorganisms involved in the bioremediation of metals and radionuclides sustain their activity in the subsurface. This information is required in order to incorporate biological processes into decision making for environmental remediation and long-term stewardship of contaminated sites. The proposed research was designed to elucidate the mechanisms for electron transfer to Fe(III) oxides in Geobacter species because Geobacter species are abundant dissimilatory metal-reducing microorganisms in a diversity of sites in which uranium is undergoing natural attenuation via the reduction of soluble U(VI) to insoluble U(IV) or when this process is artificially stimulated with the addition of organic electron donors. This study investigated the novel, but highly controversial, concept that the final conduit for electron transfer to Fe(III) oxides are electrically conductive pili. The specific objectives were to: 1) further evaluate the conductivity along the pili of Geobacter sulfurreducens and related organisms; 2) determine the mechanisms for pili conductivity; and 3) investigate the role of pili in Fe(III) oxide reduction. The studies demonstrated that the pili of G. sulfurreducens are conductive along their length. Surprisingly, the pili possess a metallic-like conductivity similar to that observed in synthetic organic conducting polymers such as polyaniline. Detailed physical analysis of the pili, as well as studies in which the structure of the pili was genetically modified, demonstrated that the metallic-like conductivity of the pili could be attributed to overlapping pi-pi orbitals of aromatic amino acids. Other potential mechanisms for conductivity, such as electron hopping between cytochromes associated with the pili were definitively ruled out. Pili were also found to be essential for Fe(III) oxide reduction in G. metallireducens. Ecological studies demonstrated

  5. Comparison of the performance of different modified graphene oxide nanosheets for the extraction of Pb(II) and Cd(II) from natural samples

    International Nuclear Information System (INIS)

    Sayar, Omid; Mehrani, Kheirollah; Mehrani, Azadeh; Hoseinzadeh, Fatemeh; Sadeghi, Omid

    2014-01-01

    Graphene nanosheets were modified with amino groups and the resulting material was used as a sorbent for the extraction of cadmium and lead ions. The nanosheets were characterized by IR spectroscopy, transmission electron microscopy, thermal gravimetric analysis and elemental analysis. The effects of sample pH, eluent parameters (type, concentration and volume of eluent), flow rates (of both sample and eluent), and of a variety of other ions on the efficiency of the extraction of Cd(II) and Pb(II) were optimized. Following solid phase extraction, the elements were determined by FAAS. The limits of detection are <0.9 μg L −1 for Pb(II) and <5 ng L −1 for Cd(II). The relative standard deviations are <2.2 %. The method was validated by analyzing several certified reference materials and was then used for Pb(II) and Cd(II) determination in natural waters and vegetables. (author)

  6. Synthesis, spectral, thermal and biological studies of mixed ligand complexes with newly prepared Schiff base and 1,10-phenanthroline ligands

    Science.gov (United States)

    Abd El-Halim, Hanan F.; Mohamed, Gehad G.; Khalil, Eman A. M.

    2017-10-01

    A series of mixed ligand complexes were prepared from the Schiff base (L1) as a primary ligand, prepared by condensation of oxamide and furan-2-carbaldehyde, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. The Schiff base ligand and its mixed ligand chelates were characterized based on elemental analysis, IR, 1H NMR, thermal analysis, UV-Visible, mass, molar conductance, magnetic moment. X-ray diffraction, solid reflectance and ESR also have been studied. The mixed ligand complexes were found to have the formulae of [M(L1) (1,10-phen)]Clm.nH2O (M = Cr(III) and Fe(III) (m = 3) (n = 0); M = Mn(II), Cu(II) and Cd(II) (m = 2) (n = 0); and M = Co(II) (m = 2) (n = 1), Ni(II) (m = 2) (n = 2) and Zn(II) (m = 2) (n = 3)) and that the geometrical structure of the complexes were octahedral. The parameters of thermodynamic using Coats-Redfern and Horowitz-Metzger equations were calculated. The synthesized Schiff base ligand, 1,10-phenanthroline ligand and Their mixed ligand complexes were also investigated for their antibacterial and antifungal activity against bacterial species (Gram-Ve bacteria: Pseudomonas aeruginosa and Escherichia coli) and (Gram + Ve bacteria: Bacillus subtilis and Streptococcus pneumonia) and fungi (Aspergillus fumigates and Candida albicans). The anticancer activity of the new compounds had been tested against breast (MFC7) and colon (HCT-116) cell lines. The results showed high activity for the synthesized compounds.

  7. Assessment of heavy metal tolerance and hexavalent chromium reducing potential of Corynebacterium paurometabolum SKPD 1204 isolated from chromite mine seepage

    Directory of Open Access Journals (Sweden)

    Amal Kanti Paul

    2016-07-01

    Full Text Available Corynebacterium paurometabolum SKPD 1204 (MTCC 8730, a heavy metal tolerant and chromate reducing bacterium isolated from chromite mine seepage of Odisha, India has been evaluated for chromate reduction under batch culture. The isolate was found to tolerate metals like Co(II, Cu(II, Ni(II, Mn(II, Zn(II, Fe(III and Hg(II along with Cr(VI and was resistant to different antibiotics as evaluated by disc-diffusion method. The isolate, SKPD 1204 was found to reduce 62.5% of 2 mM Cr(VI in Vogel Bonner broth within 8 days of incubation. Chromate reduction capability of SKPD 1204 decreased with increase in Cr(VI concentration, but increased with increase in cell density and attained its maximum at 1010 cells/mL. Chromate reducing efficiency of SKPD 1204 was promoted in the presence of glycerol and glucose, while the highest reduction was recorded at pH 7.0 and 35 °C. The reduction process was inhibited by divalent cations Zn(II, Cd(II, Cu(II, and Ni(II, but not by Mn(II. Anions like nitrate, phosphate, sulphate and sulphite was found to be inhibitory to the process of Cr(VI reduction. Similarly, sodium fluoride, carbonyl cyanide m-chlorophenylhydrazone, sodium azide and N, N,-Di cyclohexyl carboiimide were inhibitory to chromate reduction, while 2,4-dinitrophenol appeared to be neither promotive nor inhibitory to the process.

  8. Uptake of Cd(II) and Pb(II) by microalgae in presence of colloidal organic matter from wastewater treatment plant effluents

    International Nuclear Information System (INIS)

    Worms, Isabelle A.M.; Traber, Jacqueline; Kistler, David; Sigg, Laura; Slaveykova, Vera I.

    2010-01-01

    The present study addresses the key issue of linking the chemical speciation to the uptake of priority pollutants Cd(II) and Pb(II) in the wastewater treatment plant effluents, with emphasis on the role of the colloidal organic matter (EfOM). Binding of Cd(II) and Pb(II) by EfOM was examined by an ion exchange technique and flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry in parallel to bioassays with green microalga Chlorella kesslerii in ultrafiltrate (<1 kDa) and colloidal isolates (1 kDa to 0.45 μm). The uptake of Cd by C. kesslerii was consistent with the speciation analysis and measured free metal ion concentrations, while Pb uptake was much greater than that expected from the speciation measurement. Better understanding of the differences in the effects of the EfOM on Cd(II) and Pb(II) uptake required to take into account the size dependence of metal binding by EfOM. - Colloids isolated from WWTP effluents decrease Cd uptake, but increase Pb uptake by microalga Chlorella kesslerii.

  9. Uptake of Cd(II) and Pb(II) by microalgae in presence of colloidal organic matter from wastewater treatment plant effluents

    Energy Technology Data Exchange (ETDEWEB)

    Worms, Isabelle A.M. [Environmental Biophysical Chemistry, IIE-ENAC, Ecole Polytechnique Federale de Lausanne (EPFL), Station 2, CH-1015 Lausanne (Switzerland); Traber, Jacqueline; Kistler, David; Sigg, Laura [Eawag, Swiss Federal Institute of Aquatic Science and Technology, P.O. Box 611, CH-8600 Duebendorf (Switzerland); Slaveykova, Vera I., E-mail: vera.slaveykova@epfl.c [Environmental Biophysical Chemistry, IIE-ENAC, Ecole Polytechnique Federale de Lausanne (EPFL), Station 2, CH-1015 Lausanne (Switzerland)

    2010-02-15

    The present study addresses the key issue of linking the chemical speciation to the uptake of priority pollutants Cd(II) and Pb(II) in the wastewater treatment plant effluents, with emphasis on the role of the colloidal organic matter (EfOM). Binding of Cd(II) and Pb(II) by EfOM was examined by an ion exchange technique and flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry in parallel to bioassays with green microalga Chlorella kesslerii in ultrafiltrate (<1 kDa) and colloidal isolates (1 kDa to 0.45 mum). The uptake of Cd by C. kesslerii was consistent with the speciation analysis and measured free metal ion concentrations, while Pb uptake was much greater than that expected from the speciation measurement. Better understanding of the differences in the effects of the EfOM on Cd(II) and Pb(II) uptake required to take into account the size dependence of metal binding by EfOM. - Colloids isolated from WWTP effluents decrease Cd uptake, but increase Pb uptake by microalga Chlorella kesslerii.

  10. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue.

    Science.gov (United States)

    Ensafi, Ali A; Ghaderi, Ali R

    2007-09-05

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5M HNO(3) and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 microg of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5M HNO(3) solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ngmL(-1) Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ngmL(-1) Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments.

  11. Column dynamic studies and breakthrough curve analysis for Cd(II) and Cu(II) ions adsorption onto palm oil boiler mill fly ash (POFA).

    Science.gov (United States)

    Aziz, Abdul Shukor Abdul; Manaf, Latifah Abd; Man, Hasfalina Che; Kumar, Nadavala Siva

    2014-01-01

    This paper investigates the adsorption characteristics of palm oil boiler mill fly ash (POFA) derived from an agricultural waste material in removing Cd(II) and Cu(II) from aqueous solution via column studies. The performance of the study is described through the breakthrough curves concept under relevant operating conditions such as column bed depths (1, 1.5, and 2 cm) and influent metal concentrations (5, 10, and 20 mg/L). The Cd(II) and Cu(II) uptake mechanism is particularly bed depth- and concentration-dependant, favoring higher bed depth and lower influent metal concentration. The highest bed capacity of 34.91 mg Cd(II)/g and 21.93 mg Cu(II)/g of POFA was achieved at 20 mg/L of influent metal concentrations, column bed depth of 2 cm, and flow rate of 5 mL/min. The whole breakthrough curve simulation for both metal ions were best described using the Thomas and Yoon–Nelson models, but it is apparent that the initial region of the breakthrough for Cd(II) was better described using the BDST model. The results illustrate that POFA could be utilized effectively for the removal of Cd(II) and Cu(II) ions from aqueous solution in a fixed-bed column system.

  12. Microbial Fe(III) Oxide Reduction in Chocolate Pots Hot Springs, Yellowstone National Park

    Science.gov (United States)

    Fortney, N. W.; Roden, E. E.; Boyd, E. S.; Converse, B. J.

    2014-12-01

    Previous work on dissimilatory iron reduction (DIR) in Yellowstone National Park (YNP) has focused on high temperature, low pH environments where soluble Fe(III) is utilized as an electron acceptor for respiration. Much less attention has been paid to DIR in lower temperature, circumneutral pH environments, where solid phase Fe(III) oxides are the dominant forms of Fe(III). This study explored the potential for DIR in the warm (ca. 40-50°C), circumneutral pH Chocolate Pots hot springs (CP) in YNP. Most probable number (MPN) enumerations and enrichment culture studies confirmed the presence of endogenous microbial communities that reduced native CP Fe(III) oxides. Enrichment cultures demonstrated sustained DIR coupled to acetate and lactate oxidation through repeated transfers over ca. 450 days. Pyrosequencing of 16S rRNA genes indicated that the dominant organisms in the enrichments were closely affiliated with the well known Fe(III) reducer Geobacter metallireducens. Additional taxa included relatives of sulfate reducing bacterial genera Desulfohalobium and Thermodesulfovibrio; however, amendment of enrichments with molybdate, an inhibitor of sulfate reduction, suggested that sulfate reduction was not a primary metabolic pathway involved in DIR in the cultures. A metagenomic analysis of enrichment cultures is underway in anticipation of identifying genes involved in DIR in the less well-characterized dominant organisms. Current studies are aimed at interrogating the in situ microbial community at CP. Core samples were collected along the flow path (Fig. 1) and subdivided into 1 cm depth intervals for geochemical and microbiological analysis. The presence of significant quantities of Fe(II) in the solids indicated that DIR is active in situ. A parallel study investigated in vitro microbial DIR in sediments collected from three of the coring sites. DNA was extracted from samples from both studies for 16S rRNA gene and metagenomic sequencing in order to obtain a

  13. Adsorption and desorption of Cd(II) onto titanate nanotubes and efficient regeneration of tubular structures

    International Nuclear Information System (INIS)

    Wang, Ting; Liu, Wen; Xu, Nan; Ni, Jinren

    2013-01-01

    Highlights: ► Satisfactory reuse of TNTs due to easy regeneration of tubular structures. ► TNTs regeneration using only 2% of NaOH needed for virgin TNTs preparation. ► Excellent regeneration attributed to steady TNTs skeleton and complex form of TNTs-OCd + OH − onto adsorbed TNTs. -- Abstract: Efficient regeneration of desorbed titanate nanotubes (TNTs) was investigated with cycled Cd(II) adsorption and desorption processes. After desorption of Cd (II) from TNTs using 0.1 M HNO 3 , regeneration could be simply achieved with only 0.2 M NaOH at ambient temperature, i.e. 2% of the NaOH needed for virgin TNTs preparation at 130 °C. The regenerated TNTs displayed similar adsorption capacity of Cd(II) even after six recycles, while significant reduction could be detected for desorbed TNTs without regeneration. The virgin TNTs, absorbed TNTs, desorbed TNTs and regenerated TNTs were systematically characterized. As results, the ion-exchange mechanism with Na + in TNTs was convinced with obvious change of -TiO(ONa) 2 by FTIR spectroscopy. The easy recovery of the damaged tubular structures proved by TEM and XRD was ascribed to asymmetric distribution of H + and Na + on the surface side and interlayer region of TNTs. More importantly, the cost-effective regeneration was found possibly related to complex form of TNTs-OCd + OH − onto the adsorbed TNTs, which was identified with help of X-ray photoelectron spectroscopy, and further indicated due to high relevance to an unexpected mole ratio of 1:1 between exchanged Na + and absorbed Cd(II)

  14. In situ immobilization on the silica gel surface and adsorption capacity of polymer-based azobenzene on toxic metal ions

    Science.gov (United States)

    Savchenko, Irina; Yanovska, Elina; Sternik, Dariusz; Kychkyruk, Olga; Ol'khovik, Lidiya; Polonska, Yana

    2018-03-01

    In situ immobilization of poly[(4-methacryloyloxy-(4'-carboxy)azobenzene] on silica gel surface has been performed by radical polymerization of monomer. The fact of polymer immobilization is confirmed by IR spectroscopy. TG and DSC-MS analysis showed that the mass of the immobilized polymer was 10.61%. The SEM-microphotograph-synthesized composite analysis showed that the immobilized polymer on the silica gel surface is placed in the form of fibers. It has been found that the synthesized composite exhibits the sorption ability in terms of microquantities of Cu(II), Cd(II), Pb(II), Mn(II) and Fe(III) ions in a neutral aqueous medium. The quantitative sorption of microquantities of Pb(II) and Fe(III) ions has been recorded. It has been found that immobilization of the silica gel surface leads to an increase in its sorption capacitance for Fe(III), Cu(II) and Pb(II) ions by half.

  15. Equilibrium and kinetic modelling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2006-01-01

    In this study an industrial algal waste from agar extraction has been used as an inexpensive and effective biosorbent for cadmium (II) removal from aqueous solutions. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction. Equilibrium data follow both Langmuir and Redlich-Peterson models. The parameters of Langmuir equilibrium model are q(max)=18.0 mgg(-1), b=0.19 mgl(-1) and q(max)=9.7 mgg(-1), b=0.16 mgl(-1), respectively for Gelidium and the algal waste. Kinetic experiments were conducted at initial Cd(II) concentrations in the range 6-91 mgl(-1). Data were fitted to pseudo-first- and second-order Lagergren models. For an initial Cd(II) concentration of 91 mgl(-1) the parameters of the pseudo-first-order Lagergren model are k(1,ads)=0.17 and 0.87 min(-1); q(eq)=16.3 and 8.7 mgg(-1), respectively, for Gelidium and algal waste. Kinetic constants vary with the initial metal concentration. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model. The model successfully predicts Cd(II) concentration profiles and provides significant insights on the biosorbents performance. The homogeneous diffusivity, D(h), is in the range 0.5-2.2 x10(-8) and 2.1-10.4 x10(-8)cm(2)s(-1), respectively, for Gelidium and algal waste.

  16. Comparison of adsorption of Cd(II and Pb(II ions on pure and chemically modified fly ashes

    Directory of Open Access Journals (Sweden)

    Sočo Eleonora

    2016-06-01

    Full Text Available The study investigates chemical modifications of coal fly ash (FA treated with HCl or NH4HCO3 or NaOH or Na2edta, based on the research conducted to examine the behaviour of Cd(II and Pb(II ions adsorbed from water solution on treated fly ash. In laboratory tests, the equilibrium and kinetics were examined applying various temperatures (293 - 333 K and pH (2 - 11 values. The maximum Cd(II and Pb(II ions adsorption capacity obtained at 293 K, pH 9 and mixing time 2 h from the Langmuir model can be grouped in the following order: FA-NaOH > FA-NH4HCO3 > FA > FA-Na2edta > FA-HCl. The morphology of fly ash grains was examined via small-angle X-ray scattering (SAXS and images of scanning electron microscope (SEM. The adsorption kinetics data were well fitted by a pseudo-second-order rate model but showed a very poor fit for the pseudofirst order model. The intra-particle model also revealed that there are two separate stages in the sorption process, i.e. the external diffusion and the inter-particle diffusion. Thermodynamics parameters such as free energy, enthalpy and entropy were also determined. A laboratory test demonstrated that the modified coal fly ash worked well for the Cd(II and Pb(II ion uptake from polluted waters.

  17. Adsorption of Cd(II) and Cu(II) from aqueous solution by carbonate hydroxylapatite derived from eggshell waste

    International Nuclear Information System (INIS)

    Zheng Wei; Li Xiaoming; Yang Qi; Zeng Guangming; Shen Xiangxin; Zhang Ying; Liu Jingjin

    2007-01-01

    Carbonate hydroxylapatite (CHAP) synthesized by using eggshell waste as raw material has been investigated as metal adsorption for Cd(II) and Cu(II) from aqueous solutions. The effect of various parameters on adsorption process such as contact time, solution pH, amount of CHAP and initial concentration of metal ions was studied at room temperature to optimize the conditions for maximum adsorption. The results showed that the removal efficiency of Cd(II) and Cu(II) by CHAP could reach 94 and 93.17%, respectively, when the initial Cd(II) concentration 80 mg/L and Cu(II) 60 mg/L and the liquid/solid ratio was 2.5 g/L. The equilibrium sorption data for single metal systems at room temperature could be described by the Langmuir and Freundlich isotherm models. The highest value of Langmuir maximum uptake, (b), was found for cadmium (111.1 mg/g) and copper (142.86 mg/g). Similar Freundlich empirical constants, K, were obtained for cadmium (2.224) and copper (7.925). Ion exchange and surface adsorption might be involved in the adsorption process of cadmium and copper. Desorption experiments showed that CaCl 2 , NaCl, acetic acid and ultrasonic were not efficient enough to desorb substantial amount of metal ions from the CHAP. The results obtained show that CHAP has a high affinity to cadmium and copper

  18. Solid phase extraction-inductively coupled plasma spectrometry for adsorption of Co(II) and Ni(II) from radioactive wastewaters by natural and modified zeolites

    International Nuclear Information System (INIS)

    Akbar Malekpour; Mohammad Edrisi; Shamsollah Shirzadi; Saeed Hajialigol

    2011-01-01

    Natural and modified clinoptilolite as low-cost adsorbents have been used for adsorption of Co(II) and Ni(II) from nuclear wastewaters both in batch and continuous experiments. Zeolite X was also synthesized and its ability towards the selected cations was examined. Kinetic and thermodynamic behaviors for the process were investigated and adsorption equilibrium was interpreted in term of Langmuir and Freundlich equations. The effect of various parameters including the initial concentration, temperature, ionic strength and pH of solution were examined to achieve the optimized conditions. The clinoptilolite was shown good sorption potential for Co(II) and Ni(II) ions at pH values 4-6. Based on desorption studies, nearly 74 and 85% of adsorbed Co(II) and Ni(II) were removed from clinoptilolite by HCl. The Na + and NH 4 + forms of clinoptilolite were the best modified forms for the removal of investigated cations. It is concluded that the selectivity of clinoptilolite is higher for Co(II) than Ni(II). The synthesized zeolite showed more ability to remove cobalt and nickel ions from aqueous solution than the natural clinoptilolite. The microwave irradiation was found to be more rapid and effective for ion exchange compared to conventional ion exchange process. (author)

  19. Crystal structure of a looped-chain CoII coordination polymer: catena-poly[[bis(nitrato-κOcobalt(II]bis[μ-bis(pyridin-3-ylmethylsulfane-κ2N:N′

    Directory of Open Access Journals (Sweden)

    Suk-Hee Moon

    2017-11-01

    Full Text Available The asymmetric unit of the title compound, [Co(NO32(C12H12N2S2]n, contains a bis(pyridin-3-ylmethylsulfane (L ligand, an NO3− anion and half a CoII cation, which lies on an inversion centre. The CoII cation is six-coordinated, being bound to four pyridine N atoms from four symmetry-related L ligands. The remaining coordination sites are occupied by two O atoms from two symmetry-related nitrate anions in a monodentate manner. Thus, the CoII centre adopts a distorted octahedral geometry. Two symmetry-related L ligands are connected by two symmetry-related CoII cations, forming a 20-membered cyclic dimer, in which the CoII atoms are separated by 10.2922 (7 Å. The cyclic dimers are connected to each other by sharing CoII atoms, giving rise to the formation of an infinite looped chain propagating along the [101] direction. Intermolecular C—H...π (H...ring centroid = 2.89 Å interactions between one pair of corresponding L ligands and C—H...O hydrogen bonds between the L ligands and the nitrate anions occur in the looped chain. In the crystal, adjacent looped chains are connected by intermolecular π–π stacking interactions [centroid-to-centroid distance = 3.8859 (14 Å] and C—H...π hydrogen bonds (H...ring centroid = 2.65 Å, leading to the formation of layers parallel to (101. These layers are further connected through C—H...O hydrogen bonds between the layers, resulting in the formation of a three-dimensional supramolecular architecture.

  20. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Huang, Liping, E-mail: lipinghuang@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Pan, Yuzhen [College of Chemistry, Dalian University of Technology, Dalian 116024 (China); Quan, Xie [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Li Puma, Gianluca, E-mail: g.lipuma@lboro.ac.uk [Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2017-01-05

    Highlights: • Fe(III) shuttles electrons for enhanced reduction of Cr(VI) in MFCs. • The coulombic efficiency increases by 1.6 fold in the presence of Fe(III). • The reduction of Cr(VI) occurs via an indirect Fe(III) mediation mechanism. • Fe(III) decreases the diffusional resistances and the cathode overpotentials. - Abstract: The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO{sub 4}{sup −}) and dichromate (Cr{sub 2}O{sub 7}{sup 2−}) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy.

  1. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials

    International Nuclear Information System (INIS)

    Wang, Qiang; Huang, Liping; Pan, Yuzhen; Quan, Xie; Li Puma, Gianluca

    2017-01-01

    Highlights: • Fe(III) shuttles electrons for enhanced reduction of Cr(VI) in MFCs. • The coulombic efficiency increases by 1.6 fold in the presence of Fe(III). • The reduction of Cr(VI) occurs via an indirect Fe(III) mediation mechanism. • Fe(III) decreases the diffusional resistances and the cathode overpotentials. - Abstract: The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO_4"−) and dichromate (Cr_2O_7"2"−) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy.

  2. A porous Cd(II) metal-organic framework with high adsorption selectivity for CO2 over CH4

    Science.gov (United States)

    Zhu, Chunlan

    2017-05-01

    Metal-organic frameworks (MOFs) have attracted a lot of attention in recent decades. We applied a semi-rigid four-carboxylic acid linker to assemble with Cd(II) ions to generate a novel microporous Cd(II) MOF material. Single crystal X-ray diffraction study reveals the different two dimension (2D) layers can be further packed together with an AB fashion by hydrogen bonds (O4sbnd H4⋯O7 = 1.863 Å) to construct a three dimension (3D) supermolecular architecture. The resulting sample can be synthesized under solvothermal reactions successfully, which exhibits high selectivity adsorption of CO2 over CH4 at room temperature. In addition, the obtained sample was characterized by thermal gravimetric analyses (TGA), Fourier-transform infrared spectra (FT-IR), elemental analysis (CHN) and powder X-ray diffraction (PXRD).

  3. Metallic complexes with glyphosate: a review; Complexos metalicos com o herbicida glifosato: revisao

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, Claudia F.B.; Mazo, Luiz Henrique [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: claudiabreda@iqsc.usp.br

    2005-11-15

    We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature. (author)

  4. Metallic complexes with glyphosate: a review

    International Nuclear Information System (INIS)

    Coutinho, Claudia F.B.; Mazo, Luiz Henrique

    2005-01-01

    We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature. (author)

  5. N-donor co-ligands driven two new Co(II)- coordination polymers with bi- and trinuclear units: Crystal structures, and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhi-Hang [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Non-metallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002 (China); Han, Min-Le [College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022 (China); Wu, Ya-Pan; Dong, Wen-Wen [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Non-metallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002 (China); Li, Dong-Sheng, E-mail: lidongsheng1@126.com [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Non-metallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002 (China); Lu, Jack Y., E-mail: lu@uhcl.edu [Department of Chemistry, University of Houstons-Clear Lake, Houston, TX 77058 (United States)

    2016-10-15

    Two new Co(II) coordination polymers(CPs), namely [Co{sub 2}(bpe){sub 2}(Hbppc)]{sub n} (1) and [Co{sub 3}(μ{sub 3}-OH)(bppc)(bpm)(H{sub 2}O)]·3H{sub 2}O (2) (H{sub 5}bppc=biphenyl-2,4,6,3′,5′-pentacarboxylic acid, bpe=1,2-bis(4-pyridyl)ethene, bpm=bis(4-pyridyl)amine), have been obtained and characterized by elemental analysis, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), IR spectra and thermogravimetric analysis (TGA). 1 shows a binodal (4,6)-connected fsc net with a (4{sup 4}·6{sup 10}·8)(4{sup 4}·6{sup 2}) topology, while 2 shows a binodal (5,7)-connected 3D network based on trinuclear [Co{sub 3}(μ{sub 3}-OH)]{sup 5+} units with unusual (3.4{sup 6}.5{sup 2}.6)(3{sup 2}.4{sup 6}.5{sup 7}.6{sup 5}.7) topology. Variable-temperature magnetic susceptibility measurements reveals that complex 1 shows ferromagnetic interactions between the adjacent Co(II) ions, whereas 2 is a antiferromagnetic system. - Graphical abstract: Two new Co(II) coordination polymers with bi- and trinuclear units have been obtained. 1 shows a binodal (4,6)-connected fsc net with a (4{sup 4}·6{sup 10}·8)(4{sup 4}·6{sup 2}) topology and antiferromagnetic interactions between the adjacent Co(II) ions, while 2 is a binodal (5,7)-connected 3D network with unusual (3.4{sup 6}.5{sup 2}.6)(3{sup 2}.4{sup 6}.5{sup 7}.6{sup 5}.7) topology and a ferromagnetic system. - Highlights: • Two Co(II) coordination polymers with different multimetallic clusters as building units. • A (4,6)-connected fsc net and a (5,7)-connected 3D network. • A antiferromagnetic coupling for 1 and A ferromagnetic coupling for 2.

  6. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A. [College of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)], E-mail: Ensafi@cc.iut.ac.ir; Ghaderi, Ali R. [College of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2007-09-05

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5 M HNO{sub 3} and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 {mu}g of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5 M HNO{sub 3} solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ng mL{sup -1} Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ng mL{sup -1} Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments.

  7. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Ghaderi, Ali R.

    2007-01-01

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5 M HNO 3 and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 μg of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5 M HNO 3 solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ng mL -1 Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ng mL -1 Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments

  8. Synthesis and characterization of some metal complexes of a Schiff base derived from ninhydrin and α,L-alanine

    Directory of Open Access Journals (Sweden)

    Mehabaw Getahun Derebe

    2002-06-01

    Full Text Available Complexes of Mn(II, Fe(III, Co(II, Ni(II and Zn(II with an intermediate Schiff base derived from ninhydrin and α,L-alanine (indane-1,3-dione-2-imine-N-2-propionate, IDIP were successfully synthesized. All complexes were distinctly colored and were characterized by elemental analysis, molar conductance, magnetic susceptibility, infrared and electronic spectral studies. The ligand (Schiff base was shown to behave as a monobasic tridentate ONO donor. The Mn(II and Fe(III complexes contain only one ligand molecule plus water and chloride(s per metal ion, while all the others contain two ligand molecules per metal ion. An octahedral geometry is proposed for the metal complexes.

  9. Defect-induced luminescence in sol-gel silica samples doped with Co(II) at different concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Sandoval, S. [Centro de Investigacion y Estudios Avanzados, Queretaro, Apdo. Postal 1-798, Queretaro, Qro. 76001 (Mexico); Estevez, M. [Fisica Aplicada y Tecnologia Avanzada, UNAM, Apdo. Postal 1-1010, Queretaro, Qro. 76000 (Mexico); Pacheco, S. [Instituto Mexicano del Petroleo, Av. 100 metros (Mexico); Vargas, S. [Fisica Aplicada y Tecnologia Avanzada, UNAM, Apdo. Postal 1-1010, Queretaro, Qro. 76000 (Mexico); Rodriguez, R. [Fisica Aplicada y Tecnologia Avanzada, UNAM, Apdo. Postal 1-1010, Queretaro, Qro. 76000 (Mexico)], E-mail: rogelior@servidor.unam.mx

    2007-12-20

    The defect-induced luminescence properties of silica samples prepared by the sol-gel method and doped with Co(II) are reported. Silica monoliths doped with different concentrations of Co(II) were laser irradiated (He-Ne 632.8 nm) producing fluorescence. However, this fluorescence is exponentially reduced with the irradiation time, to practically disappear. The rate the fluorescence decays can be well modeled with a double exponential function of the irradiation time, containing two different relaxation times; a baseline is also required to take into account some residual fluorescence. The characteristic times involved in this luminescence quenching process are in the range of seconds. This luminescence suppression can be associated to the local heating produced by the laser irradiation when focused in a small area (2 {mu}m in diameter) on the sample. This heating process reduces physical (grain boundaries, surface states) and chemical (oxygen vacancies produced by the dopant) defects in the sample.

  10. Flow Velocity Effects on Fe(III Clogging during Managed Aquifer Recharge Using Urban Storm Water

    Directory of Open Access Journals (Sweden)

    Xinqiang Du

    2018-03-01

    Full Text Available Storm water harvesting and storage has been employed for nearly a hundred years, and using storm water to recharge aquifers is one of the most important ways to relieve water scarcity in arid and semi-arid regions. However, it cannot be widely adopted because of clogging problems. The risk of chemical clogging is mostly associated with iron oxyhydroxide precipitation; anhydrous ferric oxide (HFO clogging remains a problem in many wellfields. This paper investigates Fe(III clogging levels at three flow velocities (Darcy velocities, 0.46, 1.62 and 4.55 m/d. The results indicate that clogging increases with flow velocity, and is mostly affected by the first 0–3 cm of the column. The highest water velocity caused full clogging in 35 h, whereas the lowest took 53 h to reach an stable 60% reduction in hydraulic conductivity. For the high flow velocity, over 90% of the HFO was deposited in the 0–1 cm section. In contrast, the lowest flow velocity deposited only 75% in this section. Fe(III deposition was used as an approximation for Fe(OH3. High flow velocity may promote Fe(OH3 flocculent precipitate, thus increasing Fe(III deposition. The main mechanism for a porous matrix interception of Fe(III colloidal particles was surface filtration. Thus, the effects of deposition, clogging phenomena, and physicochemical mechanisms, are more significant at higher velocities.

  11. CNDO/2 calculations for α-oximino-acetoacetanilide thiosemicarbazone and synthesis and characterization of some metal chelates derived from it

    International Nuclear Information System (INIS)

    Patel, P.S.; Ray, A.; Patel, M.M.

    1992-01-01

    Solid complexes of α-oximinoacetoacetanilide thiosemicarbazone (OAATS) with Ni(II), Co(II), Zn(II), Mn(II), Cd(II), Hg(II) and UO 2 (II) have been prepared and characterized on the basis of their elemental analyses, conductivity, differential scanning calorimetry, thermogravimetric analysis, infrared and electronic spectral measurements, in conjunction with magnetic susceptibility measurements. Molecular orbital calculations employing the CNDO/2 method have been made for a number of conformations of the ligand molecule to ascertain the most stable one. (author). 24 refs., 3 figs., 2 tabs

  12. Synthesis and spectral studies of manganese(II), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II) and mercury(II) complexes of 4-oxo-4H-1-benzopyran-3-carboxaldehyde hydrazone derivatives

    International Nuclear Information System (INIS)

    Nawar, N.; Khattab, M.A.; Bekheit, M.M.; El-Kaddah, A.H.

    1996-01-01

    A few complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) with 4-oxo-4H-1-benzopyran-3-(carboxaldehyde-4-chlorobenzylhydrazone) (BCBH) and 4-oxo-4H-1-benzopyran-3-(carboxaldehyde-4-methylbenzylhydrazone) (BMBH) have been synthesised and characterized by elemental analysis, molar conductivities, magnetic measurements and infrared (IR) and visible spectral studies. The IR spectra show that BCBH and BMBH behave as bidentate ligands either in the keto or enol form. (author). 24 refs., 2 tabs

  13. Adsorption of Cd(II) by Mg–Al–CO{sub 3}- and magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Ran-ran; Yan, Liang-guo, E-mail: yanyu-33@163.com; Yang, Kun; Hao, Yuan-feng; Du, Bin

    2015-12-15

    Highlights: • The Mg–Al–CO{sub 3}- and magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}–LDH can efficiently remove Cd(II) from aqueous solutions. • The adsorption mechanisms of Cd(II) were discussed in detail. • The adsorption kinetic, isothermal and thermodynamic properties of Cd(II) were studied. • Magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}–LDH can be quickly and easily separated using a magnet. - Abstract: Understanding the adsorption mechanisms of metal cations on the surfaces of solids is important for determining the fate of these metals in water and wastewater treatment. The adsorption kinetic, isothermal, thermodynamic and mechanistic properties of cadmium (Cd(II)) in an aqueous solution containing Mg–Al–CO{sub 3}- and magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}-layered double hydroxide (LDH) were studied. The results demonstrated that the adsorption kinetic and isotherm data followed the pseudo-second-order model and the Langmuir equation, respectively. The adsorption process of Cd(II) was feasible, spontaneous and endothermic in nature. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to explain the adsorption mechanisms. The characteristic XRD peaks and FTIR bands of CdCO{sub 3} emerged in the LDH spectra after Cd(II) adsorption, which indicated that the adsorption of Cd(II) by LDHs occurred mainly via CdCO{sub 3} precipitation, surface adsorption and surface complexation. Furthermore, the magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}-LDH can be quickly and easily separated using a magnet before and after the adsorption process.

  14. Temperature-controlled two new Co(II) compounds with distinct topological networks: Syntheses, crystal structures and catalytic properties

    Science.gov (United States)

    Meng, Qing-Hua; Long, Xu; Liu, Jing-Li; Zhang, Shuan; Zhang, Guang-Hui

    2018-04-01

    Two new Co(II) coordination compounds, namely [Co2(bptc)(bpp)2]n (1) and [Co(bptc)0.5(bpp)]n (2) (H4bptc = biphenyl-3,3‧,5,5‧-tetracarboxylic acid, bpp = 1,3-di(4-pyridyl)propane), have been hydrothermally synthesized from the same reactants via tuning the reaction temperature. Single crystal X-ray diffraction analyses revealed that both 1 and 2 feature 2D sheet motifs. Topological analyses revealed that compounds 1 and 2 show distinct topological networks. Under the weak Van der Waals interactions, the 2D sheet motifs of compounds 1 and 2 are further packed into 2D→3D interdigitated supramolecular frameworks. Moreover, the two Co(II) compounds show high catalytic activities for degradation of methyl orange (MO) in a Fenten-like process.

  15. COII ”long fragment” reliability in characterisation and classification of forensically important flies

    Directory of Open Access Journals (Sweden)

    Sanaa M. Aly

    2017-01-01

    Full Text Available Introduction : Molecular identification of collected flies is important in forensic entomological analysis guided with accurate evaluation of the chosen genetic marker. The selected mitochondrial DNA segments can be used to properly identify species. The aim of the present study was to determine the reliability of the 635-bp-long cytochrome oxidase II gene (COII in identification of forensically important flies. Material and methods: Forty-two specimens belonging to 11 species ( Calliphoridae: Chrysomya albiceps , C. rufifacies , C. megacephala , Lucilia sericata , L. cuprina ; Sarcophagidae: Sarcophaga carnaria , S. dux , S. albiceps , Wohlfahrtia nuba ; Muscidae: Musca domestica , M. autumnalis were analysed. The selected marker was amplified using PCR followed by sequencing. Nucleotide sequence divergences were calculated using the K2P (Kimura two-parameter distance model, and a NJ (neighbour-joining phylogenetic tree was constructed. Results : All examined specimens were assigned to the correct species, formed distinct monophyletic clades and ordered in accordance with their taxonomic classification. Intraspecific variation ranged from 0 to 1% and interspecific variation occurred between 2 and 20%. Conclusions : The 635-bp-long COII marker is suitable for clear differentiation and identification of forensically relevant flies.

  16. Tartrazine modified activated carbon for the removal of Pb(II), Cd(II) and Cr(III).

    Science.gov (United States)

    Monser, Lotfi; Adhoum, Nafaâ

    2009-01-15

    A two in one attempt for the removal of tartrazine and metal ions on activated carbon has been developed. The method was based on the modification of activated carbon with tartrazine then its application for the removal of Pb(II), Cd(II) and Cr(III) ions at different pH values. Tartrazine adsorption data were modelled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacities qm were 121.3, 67 and 56.7mgg(-1) at initial pH values of 1.0, 6.0 and 10, respectively. The adsorption of tartrazine onto activated carbon followed second-order kinetic model. The equilibrium time was found to be 240min at pH 1.0 and 120min at pH 10 for 500mgL(-1) tartrazine concentration. A maximum removal of 85% was obtained after 1h of contact time. The presence of tartrazine as modifier enhances attractive electrostatic interactions between metal ions and carbon surface. The adsorption capacity for Pb(II), Cd(II) and Cr(III) ions has been improved with respect to non-modified carbon reaching a maximum of 140%. The adsorption capacity was found to be a pH dependent for both modified and non-modified carbon with a greater adsorption at higher pH values except for Cr(III). The enhancement percent of Pb(II), Cd(II) and Cr(III) at different pH values was varied from 28% to 140% with respect to non-modified carbon. The amount of metal ions adsorbed using static regime was 11-40% higher than that with dynamic mode. The difference between adsorption capacities could be attributed to the applied flow rate.

  17. Synthesis and spectroscopic studies of biologically active tetraazamacrocyclic complexes of Mn(II, Co(II, Ni(II, Pd(II and Pt(II

    Directory of Open Access Journals (Sweden)

    Monika Tyagi

    2014-01-01

    Full Text Available Complexes of Mn(II, Co(II, Ni(II, Pd(II and Pt(II were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II, Co(II and Ni(II complexes in DMF correspond to non electrolyte nature, whereas Pd(II and Pt(II complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II, Co(II and Ni(II complexes, whereas square planar geometry assigned for Pd(II and Pt(II. In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola and some compounds found to be more active as commercially available fungicide like Chlorothalonil.

  18. Mechanistic investigation of Fe(III) oxide reduction by low molecular weight organic sulfur species

    Science.gov (United States)

    Eitel, Eryn M.; Taillefert, Martial

    2017-10-01

    Low molecular weight organic sulfur species, often referred to as thiols, are known to be ubiquitous in aquatic environments and represent important chemical reductants of Fe(III) oxides. Thiols are excellent electron shuttles used during dissimilatory iron reduction, and in this capacity could indirectly affect the redox state of sediments, release adsorbed contaminants via reductive dissolution, and influence the carbon cycle through alteration of bacterial respiration processes. Interestingly, the reduction of Fe(III) oxides by thiols has not been previously investigated in environmentally relevant conditions, likely due to analytical limitations associated with the detection of thiols and their oxidized products. In this study, a novel electrochemical method was developed to simultaneously determine thiol/disulfide pair concentrations in situ during the reduction of ferrihydrite in batch reactors. First order rate laws with respect to initial thiol concentration were confirmed for Fe(III) oxyhydroxide reduction by four common thiols: cysteine, homocysteine, cysteamine, and glutathione. Zero order was determined for both Fe(III) oxyhydroxide and proton concentration at circumneutral pH. A kinetic model detailing the molecular mechanism of the reaction was optimized with proposed intermediate surface structures. Although metal oxide overall reduction rate constants were inversely proportional to the complexity of the thiol structure, the extent of metal reduction increased with structure complexity, indicating that surface complexes play a significant role in the ability of these thiols to reduce iron. Taken together, these results demonstrate the importance of considering the molecular reaction mechanism at the iron oxide surface when investigating the potential for thiols to act as electron shuttles during dissimilatory iron reduction in natural environments.

  19. Microbial reductive transformation of phyllosilicate Fe(III) and U(VI) in fluvial subsurface sediments.

    Science.gov (United States)

    Lee, Ji-Hoon; Fredrickson, James K; Kukkadapu, Ravi K; Boyanov, Maxim I; Kemner, Kenneth M; Lin, Xueju; Kennedy, David W; Bjornstad, Bruce N; Konopka, Allan E; Moore, Dean A; Resch, Charles T; Phillips, Jerry L

    2012-04-03

    The microbial reduction of Fe(III) and U(VI) was investigated in shallow aquifer sediments collected from subsurface flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and (57)Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in subsurface sediments incubated in sulfate-containing synthetic groundwater with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without, and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction of phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.

  20. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris

    International Nuclear Information System (INIS)

    Taty-Costodes, V. Christian; Fauduet, Henri; Porte, Catherine; Delacroix, Alain

    2003-01-01

    Fixation of heavy metal ions (Cd(II) and Pb(II)) onto sawdust of Pinus sylvestris is presented in this paper. Batch experiments were conducted to study the main parameters such as adsorbent concentration, initial adsorbate concentration, contact time, kinetic, pH solution, and stirring velocity on the sorption of Cd(II) and Pb(II) by sawdust of P. sylvestris. Kinetic aspects are studied in order to develop a model which can describe the process of adsorption on sawdust. The equilibrium of a solution between liquid and solid phases is described by Langmuir model. Scanning electronic microscopy (SEM) coupled with energy dispersive X-ray analysis (EDAX) and X-ray photoelectron spectroscopy (XPS) shows that the process is controlled by a porous diffusion with ion-exchange. The capacity of the metal ions to bind onto the biomass was 96% for Cd(II), and 98% for Pb(II). The sorption followed a pseudo-second-order kinetics. The adsorption of these heavy metals ions increased with the pH and reached a maximum at a 5.5 value. From these results, it can be concluded that the sawdust of P. sylvestris could be a good adsorbent for the metal ions coming from aqueous solutions. Moreover, this material could also be used for purification of water before rejection into the natural environment

  1. Removal of Pb(II), Cu(II) and Cd(II) from aqueous solution by some fungi and natural adsorbents in single and multiple metal systems

    International Nuclear Information System (INIS)

    Shoaib, A.; Badar, T.; Aslam, N.

    2011-01-01

    Six fungal and 10 natural biosorbents were analyzed for their Cu(II), Cd(II) and Pb(II) uptake capacity from single, binary and ternary metal ion system. Preliminary screening biosorption of assays revealed 2 fungi (Aspergillus niger and Cunninghamella echinulata) and three natural [Cicer arietinum husk, Moringa oleifera flower and soil (clay)] adsorbents hold considerable high adsorption efficiency and capacity for 3 meta l ions amongst the adsorbents. Further biosorption trials with five elected adsorbents showed a considerable reduction in metal uptake capability of adsorbents in binary- and ternary systems as compared to singly metal system. Cd(II) manifested the highest inhibitory effect on the biosorption of other metal ions, followed by Pb(II) and Cu(II). On account of metal preference, the selectivity order for metal ion towards the studied biomass matrices was Pb(II) (40-90%) > Cd(II) (2-53%) > Cu(II) (2-30%). (author)

  2. PVC-membrane potentiometric sensors based on a recently synthesized Schiff base for Fe(III ion

    Directory of Open Access Journals (Sweden)

    S. Yousef Ebrahimipur

    2012-12-01

    Full Text Available A potentiometric iron sensor based on the use 3-(2-diethylamino-ethylimino-1,3-dihydro-indol-2-one (DEDIO as an ionophore in poly(vinyl chloride (PVC matrix, is reported. The plasticized membrane sensor exhibits a Nernstian response for Fe(III ions over a wide concentration range (2.0 × 10-6 - 5.0 × 10-2 M with a super Nernstian slope of 26(plus or minus 1 mV per decade. It has a fast response time of less than 12 s and can be used for ten weeks without any considerable divergences in its potentials the electrode can be used in the pH range 4.5-8.0. The proposed sensor shows fairly good discriminating ability towards Fe(III ion in comparison with a large number of alkali, alkaline earth, transition and heavy metal ions. The sensor was used as indicator electrode in potentiometric titration of Fe(III ions vs. EDTA.DOI: http://dx.doi.org/10.4314/bcse.v26i1.7

  3. Study on the extraction characteristics of Fe(III) with trialkylphosphine oxide

    International Nuclear Information System (INIS)

    Zhang Qiwei; Jiao Rongzhou; Song Chongli

    1994-08-01

    The extractive properties of TRPO (trialkyephosphine oxide) as the extractant for the Fe(III) have been studied. Under this experiment condition, the distribution ratio D of Fe (III) with the changes of extraction equilibrium time, temperature, nitric acid concentration and Fe 3+ concentration in aqueous solution have been determined. The ΔH degree, ΔS degree and apparent equilibrium constant K of the reaction in which Fe (III) is extracted by TRPO have been calculated. The experiment results show that the third phase appearance in 30% TRPO extractive system has close relations with Fe 3+ concentration in aqueous solution. When nitric acid concentration is 1.5 mol/L and Fe 3+ initial concentration is higher than 8.0 g/L in aqueous solution, the extractant system appears third phase. Two organic phase volume ratio and Fe(III) concentration ratio in the organic phases have been determined respectively, and they vary with the Fe 3+ concentration in aqueous solution

  4. Removal of Industrial Pollutants From Wastewater's By Graft Copolymers

    International Nuclear Information System (INIS)

    Hegazy El-Sayed, A.; El-Nagar Abdel-Wahab, M.; Senna Magdy, M.; Zahran Abdel-Hamid, H.

    1999-01-01

    Graft copolymers that obtained by radiation grafting of acrylic acid and acrylamide onto LDPE film were converted to N-hydroxy ethyl amide and hydroxamic acid derivatives respectively. The possible application for the different prepared chemical derivatives of LDPE graft copolymers in metal adsorption from solutions containing a single cation or simulated medium active waste has been investigated. The results showed that the adsorption of Cu(II) metal by different chemical derivatives was greatly affected by different factors such as graft yield, ph value, concentration of metal in the feed solution, immersion time and treatment temperature. The affinity of N-hydroxy ethyl amide derivative toward the different metals was found to be in the order of; Cu(II) >Pd(II) > Cd(II)> Co(II). However, for hydroxamic acid derivative , the affinity order was: Cd(II) > Cu(II) > Co(II). The ESR and IR analysis revealed that the metal ions are chelated through the lone pair of electrons on the -OH and -NH- groups forming a ring structure. The measured metal ion uptake from simulated medium active waste mixture by N-hydroxy ethyl amide derivative was found to follow the following order: Fe> U> Ni> Zr> Zn> Cr. On the other hand, the measured metal uptake by hydroxamic acid derivative was found to follow: Fe>U> Zr> Ca. It is concluded that the prepared grafted copolymers are of interest for metal chelation and could be applied in the field of waste treatment

  5. Accumulation and distribution of iron, cadmium, lead and nickel in cucumber plants grown in hydroponics containing two different chelated iron supplies.

    Science.gov (United States)

    Csog, Árpád; Mihucz, Victor G; Tatár, Eniko; Fodor, Ferenc; Virág, István; Majdik, Cornelia; Záray, Gyula

    2011-07-01

    Cucumber plants grown in hydroponics containing 10 μM Cd(II), Ni(II) and Pb(II), and iron supplied as Fe(III) EDTA or Fe(III) citrate in identical concentrations, were investigated by total-reflection X-ray fluorescence spectrometry with special emphasis on the determination of iron accumulation and distribution within the different plant compartments (root, stem, cotyledon and leaves). The extent of Cd, Ni and Pb accumulation and distribution were also determined. Generally, iron and heavy-metal contaminant accumulation was higher when Fe(III) citrate was used. The accumulation of nickel and lead was higher by about 20% and 100%, respectively, if the iron supply was Fe(III) citrate. The accumulation of Cd was similar. In the case of Fe(III) citrate, the total amounts of Fe taken up were similar in the control and heavy-metal-treated plants (27-31 μmol/plant). Further, the amounts of iron transported from the root towards the shoot of the control, lead- and nickel-contaminated plants were independent of the iron(III) form. Although Fe mobility could be characterized as being low, its distribution within the shoot was not significantly affected by the heavy metals investigated. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Kinetics of microbial Fe(III) oxyhydroxidereduction: The role of mineral properties

    NARCIS (Netherlands)

    Bonneville, Steeve

    2005-01-01

    In many soils, sediments and groundwaters, ferric iron is a major potential electron acceptor for the oxidation of organic matter. In contrast to other terminal electron acceptors (e.g. nitrate or sulfate), the concentration of Fe3+(aq), is limited by the low solubility of Fe(III) oxyhydroxides

  7. Impact of Fe(III)-OM complexes and Fe(III) polymerization on SOM pools reactivity under different land uses

    Science.gov (United States)

    Giannetta, B.; Plaza, C.; Zaccone, C.; Siebecker, M. G.; Rovira, P.; Vischetti, C.; Sparks, D. L.

    2017-12-01

    Soil organic matter (SOM) protection and long-term accumulation are controlled by adsorption to mineral surfaces in different ways, depending on its molecular structure and pedo-climatic conditions. Iron (Fe) oxides are known to be key regulators of the soil carbon (C) cycle, and Fe speciation in soils is highly dependent on environmental conditions and chemical interactions with SOM. However, the molecular structure and hydrolysis of Fe species formed in association with SOM is still poorly described. We hypothesize the existence of two pools of Fe which interact with SOM: mononuclear Fe(III)-SOM complexes and precipitated Fe(III) hydroxides. To verify our hypothesis, we investigated the interactions between Fe(III) and physically isolated soil fractions by means of batch experiments at pH 7. Specifically, we examined the fine silt plus clay (FSi+C) fraction, obtained by ultrasonic dispersion and wet sieving. The soil samples spanned several land uses, including coniferous forest (CFS), grassland (GS), technosols (TS) and agricultural (AS) soils. Solid phase products and supernatants were analyzed for C and Fe content. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis were also performed. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to assess the main C functional groups involved in C complexation and desorption experiments. Preliminary linear combination fitting (LCF) of Fe K-edge extended X-ray absorption fine structure (EXAFS) spectra suggested the formation of ferrihydrite-like polymeric Fe(III) oxides in reacted CFS and GS samples, with higher C and Fe concentration. Conversely, mononuclear Fe(III) OM complexes dominated the speciation for TS and AS samples, characterized by lower C and Fe concentration, inhibiting the hydrolysis and polymerization of Fe (III). This approach will help revealing the mechanisms by which SOM pools can control Fe(III) speciation, and will elucidate how both Fe

  8. Adsorption of Zn(II) and Cd(II) ions in batch system by using the Eichhornia crassipes.

    Science.gov (United States)

    Módenes, A N; Espinoza-Quiñones, F R; Borba, C E; Trigueros, D E G; Lavarda, F L; Abugderah, M M; Kroumov, A D

    2011-01-01

    In this work, the displacement effects on the sorption capacities of zinc and cadmium ions of the Eichornia crassipes-type biosorbent in batch binary system has been studied. Preliminary single metal sorption experiments were carried out. An improvement on the Zn(II) and Cd(II) ions removal was achieved by working at 30 °C temperature and with non-uniform biosorbent grain sizes. A 60 min equilibrium time was achieved for both Zn(II) and Cd(II) ions. Furthermore, it was found that the overall kinetic data were best described by the pseudo second-order kinetic model. Classical multi-component adsorption isotherms have been tested as well as a modified extended Langmuir isotherm model, showing good agreement with the equilibrium binary data. Around 0.65 mequiv./g maximum metal uptake associated with the E. crassipes biosorbent was attained and the E. crassipes biosorbent has shown higher adsorption affinity for the zinc ions than for the cadmium ones in the binary system.

  9. The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co(II) ions from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Karkeh-abadi, Fatemeh [Department of Chemistry, University of Kashan, Kashan (Iran, Islamic Republic of); Saber-Samandari, Samaneh, E-mail: samaneh.saber@gmail.com [Department of Chemistry, Eastern Mediterranean University, Gazimagusa, TRNC via Mersin 10 (Turkey); Saber-Samandari, Saeed, E-mail: saeedss@aut.ac.ir [New Technologies Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2016-07-15

    Highlights: • The sodium alginate-hydroxyapatite-CNT nanocomposite beads were prepared. • Amide functionalized CNT imprinted in the network of sodium alginate containing HAp. • The prepared beads were used as adsorbents of cobalt ions from an aqueous solution. • The adsorption was fit with the Freundlich isotherm and second-order kinetic models. • The endothermic adsorption process is spontaneous and thermodynamically favorable. - Abstract: Significant efforts have been made to develop highly efficient adsorbents to remove radioactive Co(II) ion pollutants from medical and industrial wastewaters. In this study, amide group functionalized multi-walled carbon nanotube (CNT-CONH{sub 2}) imprinted in the network of sodium alginate containing hydroxyapatite, and new nanocomposite beads were synthesized. Then, they were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The prepared nanocomposite beads were used as an adsorbent of Co(II) ions from an aqueous solution. The presence and distribution of Co(II) ions in the surface of the nanocomposite beads was confirmed using FESEM, EDS and metal mapping analysis. The effect of various experimental conditions such as time, pH, and initial concentration of the adsorbate solution and temperature on the adsorption capacity of the nanocomposite beads were explored. The maximum Co(II) ions adsorption capacity of the prepared nanocomposite beads with the largest surface area of 163.4 m{sup 2} g{sup −1} was 347.8 mg g{sup −1} in the optimized condition. The adsorption mechanism followed a pseudo-second-order kinetic model. Furthermore, the Freundlich appears to produce better fit than the Langmuir adsorption isotherm. Finally, thermodynamic studies suggest that endothermic adsorption process of Co(II) ions is spontaneous and

  10. Simultaneous determination of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry based on graphite nanofibers-Nafion composite modified bismuth film electrode.

    Science.gov (United States)

    Li, Dongyue; Jia, Jianbo; Wang, Jianguo

    2010-12-15

    A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L(-1) for Cd(II) and 0.02 μg L(-1) for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    International Nuclear Information System (INIS)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-01-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL 2 (H 2 O) 2 ] n ·2nH 2 O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H 2 adbc), terephthalic acid (H 2 tpa), thiophene-2,5-dicarboxylic acid (H 2 tdc) and 1,4-benzenedithioacetic acid (H 2 bdtc), four 3D structures [Co 2 L 2 (adbc)] n ·nH 2 O (2), [Co 2 L 2 (tpa)] n (3), [Co 2 L 2 (tdc)] n (4), [Co 2 L 2 (bdtc)(H 2 O)] n (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions

  12. Boletus edulis loaded with γ-Fe2O3 nanoparticles as a magnetic sorbent for preconcentration of Co(II) and Sn(II) prior to their determination by ICP-OES.

    Science.gov (United States)

    Ozdemir, Sadin; Serkan Yalcin, M; Kilinc, Ersin; Soylak, Mustafa

    2017-12-20

    The authors show that the fungus Boletus edulis loaded with γ-Fe 2 O 3 nanoparticles is a viable sorbent for magnetic solid phase extraction of trace levels of Co(II) and Sn(II). The surface structure of immobilized magnetized B. edulis was characterized by FT-IR, SEM and EDX. Experimental parameters were optimized. Following elution with 1 M HCl, the ions were quantified by ICP-OES. The limits of detection are 21 pg·mL -1 for Co(II), and 19 pg·mL -1 for Sn(II). The preconcentration factors are 100 for both ions. The sorption capacities of the sorbent are 35.8 mg·g -1 for Co(II) and 29.6 mg·g -1 for Sn(II). The method was applied to the analysis of certificated reference materials and gave ≥95% recoveries with low RSDs. It was also successfully applied to the quantification of Co(II) and Sn(II) in spiked environmental and food samples. Graphical abstract The fungus Boletus edulis loaded with γ-Fe 2 O 3 nanoparticles is a viable biosorbent for magnetic solid phase extraction (MSPE) of trace levels of Co(II) and Sn(II). The surface structure of immobilized magnetized B. edulis was characterized by FT-IR, SEM and EDX. Experimental parameters were optimized.

  13. Comparative studies on P-vanillin and O-vanillin of 2-hydrazinyl-2-oxo-N-phenylacetamide and their Mn(II) and Co(II) complexes

    Science.gov (United States)

    Yousef, T. A.; El-Reash, G. M. Abu; El-Tabai, M. N.

    2018-05-01

    Synthesis of complexes derived from hydrazones derived from both P-vanillin (H2L1) and its isomer O-vanillin (H2L2) of 2-hydrazinyl-2-oxo-N-phenylacetamide that coordinated with high magnetic metal ions of both Mn(II) and Co(II) were performed and characterized by different physicochemical methods, elemental analysis, (1H NMR, IR, and UV-visible spectra), also thermal analysis (TG and DTG) techniques and magnetic measurements. The molecular structures of the ligands and their Mn(II) and Co(II) complexes were optimized theoretically and the quantum chemical parameters were calculated. IR spectra suggest that the H2L1 behaved in a mononegative bidentate manner with both but H2L2 coordinated as mononegative tridentate with both Mn(II) and Co(II). The electronic spectra of the complexes as well as their magnetic moments suggested octahedral geometries for all the isolated complexes. The calculated values of binding energies indicated the stability of complexes is higher than that of ligand. The kinetic and thermodynamic parameters for the different decomposition steps in complexes were calculated using Coats-Redfern and Horowitz-Metzger equations. Moreover, the prepared ligands and their Mn(II) and Co(II) complexes were individually tested against a panel of gram positive Bacillus Subtilis and negative Escherichia coli microscopic organisms. Additionally cytotoxicity assay of two human tumor cell lines namely; hepatocellular carcinoma (liver) HePG-2, and mammary gland (breast) MCF-7 were tested.

  14. New method for simultaneous determination of Fe(II) and Fe(III) in water using flow injection technique

    International Nuclear Information System (INIS)

    Kozak, J.; Gutowski, J.; Kozak, M.; Wieczorek, M.; Koscielniak, P.

    2010-01-01

    The method exploits the possibilities of flow injection gradient titration in a system of reversed flow with spectrophotometric detection. In the developed approach a small amount of titrant (EDTA) is injected into a stream of sample containing a mixture of indicators (sulfosalicylic acid and 1,10-phenanthroline). In acid environment sulfosalicylic acid forms a complex with Fe(III), whereas 1,10-phenanthroline forms a complex with Fe(II). Measurements are performed at wavelength λ = 530 nm when radiation is absorbed by both complexes. After injection EDTA replaces sulfosalicylic acid and forms with Fe(III) more stable colourless complex. As a result, a characteristic 'cut off' peak is registered with a width corresponding to the Fe(III) concentration and with a height corresponding to the Fe(II) concentration. Calibration was performed by titration of four two-component standard solutions of the Fe(II)/Fe(III) concentrations established in accordance with 2 2 factorial plan. The method was tested with the use of synthetic samples and then it was applied to the analysis of water samples taken from artesian wells. Under optimized experimental conditions Fe(II) and Fe(III) were determined with precision less than 0.8 and 2.5% (RSD) and accuracy less than 3.2 and 5.1% (relative error) within the concentration ranges of 0.1-3.0 and 0.9-3.5 mg L -1 of both analytes, respectively.

  15. THE INFLUENCES OF Fe(III ION and Fe(OH3 COLLOID ON THE PHOTODEGRADATION of p-CHLOROPHENOL CATALYZED BY TiO2

    Directory of Open Access Journals (Sweden)

    Endang Tri Wahyuni

    2010-06-01

    Full Text Available The influences of ionic Fe(III and colloidal Fe(OH3 on the effectiveness of p-chlorophenol photodegradation catalyzed by TiO2 has been studied. Photodegradation was carried out in a batch system by irradiating a suspension of TiO2, p-chlorophenol, and Fe(III as ionic or colloidal forms, using UV lamp for a period of time accompanied by magnetic stirring. Concentration of photodegraded p-chlorophenol was calculated by subtracting the initial concentration with that of undegraded p-chlorophenol. Concentration of undegraded p-chlorophenol was determined by gas chromatography. In this study, TiO2 mass and the photodegradation time were optimized. The influences of concentration of Fe(III solution, mass of Fe(OH3, and pH of the solution have also been systematically studied. The research results showed that the presence of Fe(III ions improved the effectiveness of photocatalytical degradation of p-chlorophenol, which was proportional to the concentrations of Fe(III ion. In contrast, the increasing mass of Fe(OH3 led to a decrease in the degree of p-chlorophenol photodegradation. Furthermore, it was observed that increasing pH of the solution resulted in a decrease in the photodegradation of p-chlorophenol. This phenomena may be due to the different species of TiO2 available at the surface of photocatalyst and of ionic Fe(III and colloidal Fe(OH3 in the solution resulted from the pH alteration. The highest photodegradation degree, ca. 80 % was obtained when 20 mg of TiO2 was applied in the photodegradation of 50 mL of 100 ppm p-chlorophenol solution in the presence of 100 ppm Fe3+ irradiated by UV-light for 25 hours.    Keywords: p-chlorophenol photodegradation, TiO2, Fe(III species

  16. Use of the cation exchange equilibrium method for the determination of stability constants of Co(II) with soil humic and fulvic acids

    International Nuclear Information System (INIS)

    Du, J.Z.; Zhou, C.Y.; Dong, W.M.; Tao, Z.Y.

    1999-01-01

    The stability constants for tracer concentrations of Co(II) complexes with both the red earth humic and fulvic acids were determined at pH 5.9 and ionic strength 0.010 mol/l by using the ARDAKANI-STEVENSON cation exchange equilibrium method and the radiotracer 60 Co. It was found that the 1:1 complexes of Co(II) with the red earth humic and fulvic acids were formed and that the average values of logβ (stability constant) of humic and fulvic acid complexes were 5.76±0.19 and 4.42±0.03, respectively. (author)

  17. Pb(II), Cd(II) and Zn(II) adsorption on low grade manganese ore ...

    African Journals Online (AJOL)

    Low grade manganese ore (LMO) of Orissa containing 58.37% SiO2, 25.05% MnO2, 8.8% Al2O3, and 5.03% Fe2O3 as the main constituents was taken to study its adsorption behaviour for Pb(II), Cd(II) and Zn(II) from aqueous solutions. The XRD studies showed the crystalline phases to be quartz, ß-MnO2, d-MnO2 and ...

  18. Studies of Binary Complexes of Tripodal Ligand cis,cis-1,3,5-tris(methylaminocyclohexane with Cr(III and Fe(III

    Directory of Open Access Journals (Sweden)

    S. Esakki Muthu

    2005-01-01

    Full Text Available The formation of binary complexes of Cr(III and Fe(III with a tripodal ligand cis,cis-1,3,5-tris(methylaminocyclohexane (tmach (L has been investigated in solution. The overall stability constants of tmach with Cr(III and Fe(III were determined by potentiometric method at an ionic strength of 0.1 M NaClO4 at 25±1°C in aqueous medium. The formation of species like MLH25+, MLH4+, ML3+, ML(OH2+ and ML(OH3 were observed. Fe(III was found to form more stable complexes than Cr(III. Molecular mechanics calculations were performed to explain the mode of coordination in solution.

  19. Sensitive stripping voltammetric determination of Cd(II) and Pb(II) by a Bi/multi-walled carbon nanotube-emeraldine base polyaniline-Nafion composite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Zhao, Guo; Yin, Yuan; Wang, Hui; Liu, Gang; Wang, Zhiqiang

    2016-01-01

    Highlights: • A MWCNT-EBP-NA composite film modified GCE was fabricated and characterized. • The GCE modified with the MWCNT-EBP-NA composite film exhibited excellent performance in the analysis of Cd(II) and Pb(II) by SWASV. • The Cd(II) and Pb(II) detection limits of the developed electrode were approximately 0.06 μg/L and 0.08 μg/L, respectively. • Bi/MWCNT-EBP-NA/GCE was successfully used to determine metal ions in soil samples. - Abstract: In this study, a multi-walled carbon nanotube (MWCNT)-emeraldine base polyaniline (EBP)-Nafion (NA) composite modified glassy carbon electrode (MWCNT-EBP-NA/GCE) was prepared and used for the sensitive detection of trace Pb(II) and Cd(II), with a detection limit of 0.06 μg/L for Cd(II) and 0.08 μg/L for Pb(II) (S/N = 3), by square wave anodic stripping voltammetry (SWASV). A bismuth film was prepared through the in situ plating of bismuth on the MWCNT-EBP-NA/GCE. The morphologies and electrochemical properties of the modified electrode were characterized by SWASV, scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The parameters affecting the stripping current response were investigated and optimized. The formed MWCNTs in the composite film enlarged the specific surface area of the electrode and significantly promoted electron transferring, and the formed polyaniline (PANI) enhanced the ion-exchange capacity and prevented the macromolecules in real samples from absorbing onto the surface of the electrode. The presence of NA effectively increased the stability and adhesion of the composite film, enhanced the cation-exchange capacity and improved the ability to preconcentrate metal ions. Under the optimized conditions, a linear range of 1.0 to 50.0 μg/L was achieved for both metal ions, with a detection limit of 0.06 μg/L for Cd(II) and 0.08 μg/L for Pb(II) (S/N = 3), offering good repeatability. Finally, the Bi/MWCNT-EBP-NA/GCE was used for the

  20. SPECTROSCOPIC, STRUCTURAL, THERMAL AND ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    and characterize the complexes of Mn(II), Fe(III), Co(II) and Ni(II) with L in order to ... Studies on 4,6-bis (4-chlorophenyl)-2-oxo-1,2-dihydropyridine-3-carbonitrile ..... Mass spectra of (A) L, (B) [Mn(L)2(H2O)2]SO4,(C) [Fe(L)2(H2O)2](NO3)3, (D) .... S.A. Sadeek et al. Bull. Chem. Soc. Ethiop. 2015, 29(1). 86. Thermal analysis.

  1. Development of flow injection method for indirect copper determination with amperometric detection in drinking water samples

    Directory of Open Access Journals (Sweden)

    Nikolić-Mandić Snežana

    2012-01-01

    Full Text Available A gas-diffusion flow injection method with amperometric detection for indirect copper determination on a silver electrode is developed. The flow through system is equipped with two injection valves and a gas-diffusion unit. In the first step, a signal of cyanide solution was recorded. In the following step a signal of cyanide in the presence of copper was measured. Interferences (Cd(II, Co(II, Ag(I, Ni(II, Fe(III, Hg(II and Zn(II were investigated and successfully removed. The calibration graph is linear in the range 1-90 μmol dm-3 of copper, correlation coefficient is 0.993, the regression equation is I = (0.0455±0.0015c + (0.4611±0.0671, I is relative signal decrease in μA and c is concentration in μmol dm-3. Relative standard deviation for six consecutive injections of 30 μmol dm-3 copper(II was 1.47 % and for 1 μmol dm-3 copper(II was 3.40 %. The detection limit, calculated as 3 s/m (where s is a standard deviation of nine measurement of a reagent blank and m is the slope of the calibration curve, was 0.32 μmol dm-3, which corresponds to 2.44 ng of copper(II (loop volume was 0.12 cm3. The method enables 60 analyses per hour and it was successfully applied on determination of copper in drinking water samples. [Acknowledgements. The authors acknowledge the grant from the Ministry of Education and Science of the Republic of Serbia, Project number 172051

  2. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); He, Yan, E-mail: yhe2006@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); Feng, Xiaoli [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); Liang, Luyi [Experiment Teaching Center for Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Xu, Jianming, E-mail: jmxu@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); Brookes, Philip C.; Wu, Jianjun [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China)

    2014-03-01

    A novel Fe(III) reducing bacterium, Clostridium beijerinckii Z, was isolated from glucose amended paddy slurries, and shown to dechlorinate pentachlorophenol (PCP). Fifty percent of added PCP was removed by C. beijerinckii Z alone, which increased to 83% in the presence of both C. beijerinckii Z and ferrihydrite after 11 days of incubation. Without C. beijerinckii Z, the surface-bound Fe(II) also abiotically dechlorinated more than 40% of the added PCP. This indicated that the biotic dechlorination by C. beijerinckii Z is a dominant process causing PCP transformation through anaerobic dechlorination, and that the dechlorination rates can be accelerated by simultaneous reduction of Fe(III). A biochemical electron transfer coupling process between sorbed Fe(II) produced by C. beijerinckii Z and reductive dehalogenation is a possible mechanism. This finding increases our knowledge of the role of Fe(III) reducing genera of Clostridium in dechlorinating halogenated organic pollutants, such as PCP, in anaerobic paddy soils. - Highlights: • A novel Fe(III) reducing bacterium Clostridium beijerinckii Z was isolated and could dechlorinate pentachlorophenol. • Anaerobic transformation of PCP by C. beijerinckii Z could be accelerated by simultaneous reduction of Fe(III). • Biochemical electron transfer coupling between Fe redox cycling and reductive dechlorination was the mechanism involved. • The finding increases our knowledge of Clostridium sp. regarding their multiple functions for dechlorinating pollutants.

  3. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z

    International Nuclear Information System (INIS)

    Xu, Yan; He, Yan; Feng, Xiaoli; Liang, Luyi; Xu, Jianming; Brookes, Philip C.; Wu, Jianjun

    2014-01-01

    A novel Fe(III) reducing bacterium, Clostridium beijerinckii Z, was isolated from glucose amended paddy slurries, and shown to dechlorinate pentachlorophenol (PCP). Fifty percent of added PCP was removed by C. beijerinckii Z alone, which increased to 83% in the presence of both C. beijerinckii Z and ferrihydrite after 11 days of incubation. Without C. beijerinckii Z, the surface-bound Fe(II) also abiotically dechlorinated more than 40% of the added PCP. This indicated that the biotic dechlorination by C. beijerinckii Z is a dominant process causing PCP transformation through anaerobic dechlorination, and that the dechlorination rates can be accelerated by simultaneous reduction of Fe(III). A biochemical electron transfer coupling process between sorbed Fe(II) produced by C. beijerinckii Z and reductive dehalogenation is a possible mechanism. This finding increases our knowledge of the role of Fe(III) reducing genera of Clostridium in dechlorinating halogenated organic pollutants, such as PCP, in anaerobic paddy soils. - Highlights: • A novel Fe(III) reducing bacterium Clostridium beijerinckii Z was isolated and could dechlorinate pentachlorophenol. • Anaerobic transformation of PCP by C. beijerinckii Z could be accelerated by simultaneous reduction of Fe(III). • Biochemical electron transfer coupling between Fe redox cycling and reductive dechlorination was the mechanism involved. • The finding increases our knowledge of Clostridium sp. regarding their multiple functions for dechlorinating pollutants

  4. Structural and biological evaluation of some metal complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone

    Science.gov (United States)

    Yousef, T. A.; Abu El-Reash, G. M.; Al-Jahdali, M.; El-Rakhawy, El-Bastawesy R.

    2013-12-01

    The synthesis and characterization of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and U(VI)O2 complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone (H2PVT) are reported. Theoretical calculations have been performed to obtain IR spectra of ligand and its complexes using AM1, Zindo/1, MM+ and PM3, methods. The Schiff base and its metal complexes have been screened for antibacterial Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus saprophyticus. H2VPT shows no apparent digestion effect on the egg albumin while Mn(II), Hg(II) and Cu(II) complexes exhibited a considerable digestion effect following the order Cu(II) > Mn(II) > Hg(II). Moreover, Ni(II) and Co(II) complexes revealed strong digestion effect. Fe(II), Mn(II), Cu(II), Zn(II) and Ni(II) acted as metal co- SOD enzyme factors, which are located in different compartments of the cell.

  5. Iron oxide impregnated Morus alba L. fruit peel for biosorption of Co(II): biosorption properties and mechanism.

    Science.gov (United States)

    Koduru, Janardhan Reddy; Chang, Yoon-Young; Yang, Jae-Kyu; Kim, Im-Soon

    2013-01-01

    Biosorption is an ecofriendly wastewater treatment technique with high efficiency and low operating cost involving simple process for the removal of heavy metal ions from aqueous solution. In the present investigation, Morus alba L. fruit peel powder (MAFP) and iron oxide impregnated Morus alba L. fruit peel powder (IO-MAFP) were prepared and used for treating Co(II) contaminated aqueous solutions. Further the materials were characterized by using FTIR and SEM-EDX analysis. From FT-IR analysis it was found that hydroxyl, methoxy, and carbonyl groups are responsible for Co(II) biosorption. The kinetic data obtained for both biosorbents was well fitted with pseudo-second-order kinetic model. The equilibrium data was in tune with the Langmuir and Freundlich isotherm models. The thermodynamic studies were also carried and it was observed that sorption process was endothermic at 298-328 K. These studies demonstrated that both biosorbents were promising, efficient, economic, and biodegradable sorbents.

  6. Kinetics of microbial Fe(III) oxyhydroxide reduction : The role of mineral properties

    NARCIS (Netherlands)

    Bonneville, S.C.

    2005-01-01

    In many soils, sediments and groundwaters, ferric iron is a major potential electron acceptor for the oxidation of organic matter. In contrast to other terminal electron acceptors (e.g. nitrate or sulfate), the concentration of Fe3+(aq), is limited by the low solubility of Fe(III) oxyhydroxides

  7. Catalysts of Cu(II) and Co(II) ions adsorbed in chitosan used in transesterification of soy bean and babassu oils - a new route for biodiesel syntheses.

    Science.gov (United States)

    da Silva, Rondinelly Brandão; Lima Neto, Alcides Fernandes; Soares Dos Santos, Lucas Samuel; de Oliveira Lima, José Renato; Chaves, Mariana Helena; Dos Santos, José Ribeiro; de Lima, Geraldo Magela; de Moura, Edmilson Miranda; de Moura, Carla Verônica Rodarte

    2008-10-01

    Catalysts of Cu(II) and Co(II) adsorbed in chitosan was used in transesterification of soy bean and babassu oils. The catalysts were characterized by infrared, atomic absorption and TG, and biodiesels was characterized by infrared, NMR, CG, TG, physic chemistry analysis. The maximum adsorption values found for copper and cobalt cations were 1.584 and 1.260mgg(-1), respectively, in 180min. However, conversion of oils in biodiesel was better when used Co(II) adsorbed in chitosan.

  8. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals

    Science.gov (United States)

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  9. Crystal structures and luminescence properties of two Cd(II) complexes based on 2-(1H-imidazol-1methyl)-6-methyl-1H-benzimidazole

    International Nuclear Information System (INIS)

    Zhang, Yuhong; Meng, Xiangru; Wen, Yu; Li, Peng; Ma, Lin; Zhang, Qiuju

    2015-01-01

    Two new complexes, {[Cd(immb)I 2 ].DMF} n (1) and {[Cd 3 (immb)(btc) 2 ]. H 2 O} n (2) (immb = 2-(1H-imidazol- 1-methyl)-6-methyl-1H-benzimidazole, btc = 1,2,3-benzenetricarboxylate, DMF = dimethyl formamide), have been synthesized and characterized. Single crystal X-ray diffraction shows that 1 exhibits a chain structure constructed by immb ligands bridging Cd(II) ions. In 2, Cd(II) ions are linked by immb ligands with bridging mode and btc3- anions with the μ 2 -η 2 :η 1 bonding pattern leading to a 2D structure. Luminescent properties have been investigated in the solid state at room temperature.

  10. Determination of gold by substoichiometric extraction with N-thioacetyl benzamide

    International Nuclear Information System (INIS)

    Madhumita Bag; Pabitra Chattopadhyay; Sukalyan Basu

    2011-01-01

    Estimation of gold has been successfully carried out by substoichiometric radiochemical solvent extraction method using a newly designed organic moiety, N-thioacetyl benzamide as extractant and chloroform as solvent at aqueous pH 4. The interference effects of different closely related diverse ions like Fe(III), Cu(II), Co(II), Zn(II), Ni(II) etc. were also critically studied. The validity of this method has been verified by the study of recovery of gold in mud samples. (author)

  11. Screen-Printed Electrode Modified by Bismuth /Fe3O4 Nanoparticle/Ionic Liquid Composite Using Internal Standard Normalization for Accurate Determination of Cd(II in Soil

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2017-12-01

    Full Text Available The quality and safety of agricultural products are threatened by heavy metal ions in soil, which can be absorbed by the crops, and then accumulated in the human body through the food chain. In this paper, we report a low-cost and easy-to-use screen-printed electrode (SPE for cadmium ion (Cd(II detection based on differential pulse voltammetry (DPV, which decorated with ionic liquid (IL, magnetite nanoparticle (Fe3O4, and deposited a bismuth film (Bi. The characteristics of Bi/Fe3O4/ILSPE were investigated using scanning electron microscopy, cyclic voltammetry, impedance spectroscopy, and linear sweep voltammetry. We found that the sensitivity of SPE was improved dramatically after functionalized with Bi/Fe3O4/IL. Under optimized conditions, the concentrations of Cd(II are linear with current responses in a range from 0.5 to 40 µg/L with the lowest detection limit of 0.05 µg/L (S/N = 3. Additionally, the internal standard normalization (ISN was used to process the response signals of Bi/Fe3O4/ILSPE and established a new linear equation. For detecting three different Cd(II concentrations, the root-mean-square error using ISN (0.25 is lower than linear method (0.36. Finally, the proposed electrode was applied to trace Cd(II in soil samples with the recovery in the range from 91.77 to 107.83%.

  12. Metal chelates of some transition and non-transition metal ions with Schiff base derived from isatin with o-phenylenediamine

    International Nuclear Information System (INIS)

    Hassaan, A.M.A.; Khalifa, M.A.

    1993-01-01

    New Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) chelates of the Schiff base derived from isatin with o-phenylenediamine have been synthesized and characterized on the basis of elemental analyses, electronic, IR and 1 H NMR spectra, and also by aid of molar conductivity and magnetic moment measurements. It has been found that the Schiff base behaves as ONNO tetradentate dibasic ligand forming chelates with 1:1 (metal:ligand) stoichiometry. Square planar environment is suggested for nickel(II) chelate. All the metal chelates show non-electrolytic behaviour

  13. Environmentally-relevant concentrations of Al(III) and Fe(III) cations induce aggregation of free DNA by complexation with phosphate group.

    Science.gov (United States)

    Qin, Chao; Kang, Fuxing; Zhang, Wei; Shou, Weijun; Hu, Xiaojie; Gao, Yanzheng

    2017-10-15

    Environmental persistence of free DNA is influenced by its complexation with other chemical species and its aggregation mechanisms. However, it is not well-known how naturally-abundant metal ions, e.g., Al(III) and Fe(III), influence DNA aggregation. This study investigated aggregation behaviors of model DNA from salmon testes as influenced by metal cations, and elucidated the predominant mechanism responsible for DNA aggregation. Compared to monovalent (K + and Na + ) and divalent (Ca 2+ and Mg 2+ ) cations, Al(III) and Fe(III) species in aqueous solution caused rapid DNA aggregations. The maximal DNA aggregation occurred at 0.05 mmol/L Al(III) or 0.075 mmol/L Fe(III), respectively. A combination of atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy revealed that Al(III) and Fe(III) complexed with negatively charged phosphate groups to neutralize DNA charges, resulting in decreased electrostatic repulsion and subsequent DNA aggregation. Zeta potential measurements and molecular computation further support this mechanism. Furthermore, DNA aggregation was enhanced at higher temperature and near neutral pH. Therefore, DNA aggregation is collectively determined by many environmental factors such as ion species, temperature, and solution pH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A novel sensitive Cu(II) and Cd(II) nanosensor platform: Graphene oxide terminated p-aminophenyl modified glassy carbon surface

    International Nuclear Information System (INIS)

    Gupta, Vinod Kumar; Yola, Mehmet Lütfi; Atar, Necip; Ustundag, Zafer; Solak, Ali Osman

    2013-01-01

    Graphical abstract: - Highlights: • We electrochemically prepared sensor based on graphene oxide. • The prepared electrode was characterized by using various techniques. • The proposed nanosensor showed good stability, selectivity and high sensitivity. • The proposed nanosensor electrode was used for the analysis of Cd(II) and Cu(II). - Abstract: Graphene oxide (GO) based glassy carbon (GC) electrode has been prepared. Firstly, p-nitrophenyl (NP) modified GC (NP/GC) electrode was prepared via the electrochemical reduction of its tetraflouroborate diazonium salt. After the formation of NP/GC electrode, the negative potential was applied to NP/GC electrode to reduce the nitro groups to amine. p-Aminophenyl (AP) modified GC (AP/GC) electrode was immersed into a graphene oxide solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide. Hence, we constructed GO terminated AP modified GC (GO/AP/GC) electrode. NP/GC, AP/GC and GO/AP/GC electrodes were characterized sequentially using cyclic voltammetry (CV) in the presence of 1.0 mM of potassium ferricyanide in 0.1 M KCl. In addition, GO and GO/AP/GC surfaces were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The GO/AP/GC electrode was used for the analysis of Cd(II) and Cu(II) ions by adsorptive stripping voltammetry. The linearity range and the detection limit of Cd(II) and Cu(II) ions were 1.0 × 10 −11 –5.0 × 10 −10 M and 3.3 × 10 −12 M (S/N = 3), respectively

  15. Speciation of Co(II) and Ni(II) in anaerobic bioreactors measured by competitive ligand exchange - adsorptive stripping voltammetry

    NARCIS (Netherlands)

    Jansen, S.; Steffen, F.; Threels, W.F.; Leeuwen, van H.P.

    2005-01-01

    Competitive ligand exchange-adsorptive stripping voltammetry is applied to speciation analysis of dissolved Ni(II) and Co(II) in an anaerobic bioreactor and similar batch media. Co and Ni speciation in these media can be measured down to concentration levels of ca. 1 nM. Sulfide interference is

  16. Differential Binding of Co(II) and Zn(II) to Metallo-beta-Lactamase Bla2 from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, M.; Breece, R; Hajdin, C; Bender, K; Hu, Z; Costello, A; Bennett, B; Tierney, D; Crowder, M

    2009-01-01

    In an effort to probe the structure, mechanism, and biochemical properties of metallo-{beta}-lactamase Bla2 from Bacillus anthracis, the enzyme was overexpressed, purified, and characterized. Metal analyses demonstrated that recombinant Bla2 tightly binds 1 equiv of Zn(II). Steady-state kinetic studies showed that mono-Zn(II) Bla2 (1Zn-Bla2) is active, while di-Zn(II) Bla2 (ZnZn-Bla2) was unstable. Catalytically, 1Zn-Bla2 behaves like the related enzymes CcrA and L1. In contrast, di-Co(II) Bla2 (CoCo-Bla2) is substantially more active than the mono-Co(II) analogue. Rapid kinetics and UV-vis, 1H NMR, EPR, and EXAFS spectroscopic studies show that Co(II) binding to Bla2 is distributed, while EXAFS shows that Zn(II) binding is sequential. To our knowledge, this is the first documented example of a Zn enzyme that binds Co(II) and Zn(II) via distinct mechanisms, underscoring the need to demonstrate transferability when extrapolating results on Co(II)-substituted proteins to the native Zn(II)-containing forms.

  17. Selective recognition by novel calix system: ICT based chemosensor for metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Keyur D.; Makwana, Bharat A.; Vyas, Disha J.; Mishra, Divya R.; Jain, Vinod K., E-mail: drvkjain@hotmail.com

    2014-02-15

    A new calix[4]pyrrole derivative bearing four dansyl groups through hydroxyl groups has been synthesized and duly characterized by FT-IR, NMR and ESI-MS. Tetra dansylated calix[4]pyrrole (TDCP) shows selective behavior for U(VI), Th(IV) and Fe(III) ions among all other metal ions, e.g. Li(I), Na(I), K(I), Ca(II), Ni(II), Cd(II), Cu(II), Zn(II), Pb(II), Hg(II) and Ag(I), in the absorption spectra as well as in the emission spectra. The absorption spectra show a bathochromic shift while the emission spectra along with red-shift exhibit quenching for U(VI), Th(IV) and Fe(III) ions. The binding constants, stoichiometry and quantum yields have been determined. The mechanism of quenching by Stern–Vohmer equation has also been discussed. -- highlights: • A new selective turn-off fluorescent sensor i.e. tetra dansylated calix[4]pyrrole (TDCP) was synthesized and characterized. • The sensor shows selective behavior for U(VI), Th(IV) and Fe(III) ions among various other metal ions. • The absorption spectra show a bathochromic shift while the emission spectra along with red-shift exhibit quenching for U(VI), Th(IV) and Fe(III) ions. • The sensor binds metal ions in 1:1 stoichiometry with good binding constant.

  18. Selective recognition by novel calix system: ICT based chemosensor for metal ions

    International Nuclear Information System (INIS)

    Bhatt, Keyur D.; Makwana, Bharat A.; Vyas, Disha J.; Mishra, Divya R.; Jain, Vinod K.

    2014-01-01

    A new calix[4]pyrrole derivative bearing four dansyl groups through hydroxyl groups has been synthesized and duly characterized by FT-IR, NMR and ESI-MS. Tetra dansylated calix[4]pyrrole (TDCP) shows selective behavior for U(VI), Th(IV) and Fe(III) ions among all other metal ions, e.g. Li(I), Na(I), K(I), Ca(II), Ni(II), Cd(II), Cu(II), Zn(II), Pb(II), Hg(II) and Ag(I), in the absorption spectra as well as in the emission spectra. The absorption spectra show a bathochromic shift while the emission spectra along with red-shift exhibit quenching for U(VI), Th(IV) and Fe(III) ions. The binding constants, stoichiometry and quantum yields have been determined. The mechanism of quenching by Stern–Vohmer equation has also been discussed. -- highlights: • A new selective turn-off fluorescent sensor i.e. tetra dansylated calix[4]pyrrole (TDCP) was synthesized and characterized. • The sensor shows selective behavior for U(VI), Th(IV) and Fe(III) ions among various other metal ions. • The absorption spectra show a bathochromic shift while the emission spectra along with red-shift exhibit quenching for U(VI), Th(IV) and Fe(III) ions. • The sensor binds metal ions in 1:1 stoichiometry with good binding constant

  19. Evaluation of selectivity and radiolysis behavior of some promising isonicotinamids and dipicolinamides as extractants

    Energy Technology Data Exchange (ETDEWEB)

    Mowafy, E.A. [Atomic Energy Authority, Cairo (Egypt). Hot Labs. Center

    2007-07-01

    A series of long chain isonicotinamides (pyridine-4-carboxamides) and dipicolinamides (pyridine-2,6-dicarboxamides) have been prepared with different substituting groups and the extracting ability for Fe(III), Am(III), Eu(III), Sr(II), Co(II) and Cs(I) from nitric acid solutions has been studied. Distribution ratios of Fe(III) as function of nitric acid concentration, extractants concentration and salting-out agent have been measured by using N,N'-dioctylisonicotinamide (DOINA) and N,N,N',N'-tetraoctyldipicolinamide (TODPA) which were chosen for further studies. Irradiation of DOINA and TOBPA by different gamma doses showed a different extraction behavior for Fe(III). The radiolytic degradation of the investigated amides has been estimated by quantitive IR spectroscopy. The results indicated that the radiolytic stability is influenced by the structure of the investigated amides. Symmetrical isonicotinamides or dipicolinamide seems to be less affected by radiation compared with unsymmetrical isonicotiniamides or dipicolinamides. The extraction of iron from aqueous solutions with the investigated extractants is fast. Separation of iron(III) based on kinetic basis was carried out. (orig.)

  20. Synthesis, structure and magnetic properties of CoFe_2O_4 nanomaterial by coprecipitation method

    International Nuclear Information System (INIS)

    Nguyen Anh Tien; Hoang Thi Tuyet

    2015-01-01

    CoFe_2O_4 spinel nanomaterial has been synthesized by coprecipitation method through the hydrolysis of Co(II) and Fe(III) cations in boiling water. The results of DTA/TGA/DrTGA, XRD, TEM methods showed that CoFe_2O_4 crystals formed after a calcination at 700 °C exhibited structure of cubic with the particles size of 30-50 nm, H_c = 1526.89 Oe, M_s = 41.703 emu/g, M_r = 19.545 emu/g. (author)

  1. Synthesis and Crystal Structures of Luminescent Mononuclear Ni(ii and Cd(ii Complexes with 1,10-phenanthroline

    Directory of Open Access Journals (Sweden)

    Ecaterina Tocana

    2017-12-01

    Full Text Available New supramolecular systems of Ni(II and Cd(II with 1,10-phenanthroline constructed by non-covalent interactions have been synthesized and characterized by single-crystal X-ray diffractometry. The smaller nickel(II ion forms a cis complex with outer-sphere perchlorates, while the cadmium(II ion forms a trans complex involving inner-sphere perchlorates. Both compoundsrevealintraligand-basedluminescentproperties.

  2. Reduction of Fe(III) oxides by phylogenetically and physiologically diverse thermophilic methanogens.

    Science.gov (United States)

    Yamada, Chihaya; Kato, Souichiro; Kimura, Satoshi; Ishii, Masaharu; Igarashi, Yasuo

    2014-09-01

    Three thermophilic methanogens (Methanothermobacter thermautotrophicus, Methanosaeta thermophila, and Methanosarcina thermophila) were investigated for their ability to reduce poorly crystalline Fe(III) oxides (ferrihydrite) and the inhibitory effects of ferrihydrite on their methanogenesis. This study demonstrated that Fe(II) generation from ferrihydrite occurs in the cultures of the three thermophilic methanogens only when H2 was supplied as the source of reducing equivalents, even in the cultures of Mst. thermophila that do not grow on and produce CH4 from H2/CO2. While supplementation of ferrihydrite resulted in complete inhibition or suppression of methanogenesis by the thermophilic methanogens, ferrihydrite reduction by the methanogens at least partially alleviates the inhibitory effects. Microscopic and crystallographic analyses on the ferrihydrite-reducing Msr. thermophila cultures exhibited generation of magnetite on its cell surfaces through partial reduction of ferrihydrite. These findings suggest that at least certain thermophilic methanogens have the ability to extracellularly transfer electrons to insoluble Fe(III) compounds, affecting their methanogenic activities, which would in turn have significant impacts on materials and energy cycles in thermophilic anoxic environments. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Dissociation kinetics of Fe(III)- and Al(III)-natural organic matter complexes at pH 6.0 and 8.0 and 25 °C

    Science.gov (United States)

    Jones, Adele M.; Pham, A. Ninh; Collins, Richard N.; Waite, T. David

    2009-05-01

    The rate at which iron- and aluminium-natural organic matter (NOM) complexes dissociate plays a critical role in the transport of these elements given the readiness with which they hydrolyse and precipitate. Despite this, there have only been a few reliable studies on the dissociation kinetics of these complexes suggesting half-times of some hours for the dissociation of Fe(III) and Al(III) from a strongly binding component of NOM. First-order dissociation rate constants are re-evaluated here at pH 6.0 and 8.0 and 25 °C using both cation exchange resin and competing ligand methods for Fe(III) and a cation exchange resin method only for Al(III) complexes. Both methods provide similar results at a particular pH with a two-ligand model accounting satisfactorily for the dissociation kinetics results obtained. For Fe(III), half-times on the order of 6-7 h were obtained for dissociation of the strong component and 4-5 min for dissociation of the weak component. For aluminium, the half-times were on the order of 1.5 h and 1-2 min for the strong and weak components, respectively. Overall, Fe(III) complexes with NOM are more stable than analogous complexes with Al(III), implying Fe(III) may be transported further from its source upon dilution and dispersion.

  4. Polarized Neutron Diffraction to Probe Local Magnetic Anisotropy of a Low-Spin Fe(III) Complex.

    Science.gov (United States)

    Ridier, Karl; Mondal, Abhishake; Boilleau, Corentin; Cador, Olivier; Gillon, Béatrice; Chaboussant, Grégory; Le Guennic, Boris; Costuas, Karine; Lescouëzec, Rodrigue

    2016-03-14

    We have determined by polarized neutron diffraction (PND) the low-temperature molecular magnetic susceptibility tensor of the anisotropic low-spin complex PPh4 [Fe(III) (Tp)(CN)3]⋅H2O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo-axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the Fe(III) ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear-cut way to establish magneto-structural correlations in paramagnetic molecular complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Physico-Chemical and In-vitro Microbial Studies of Newly Synthesis Organometallic Complexes

    Directory of Open Access Journals (Sweden)

    Isam Hussain Al-Karkhi

    2014-05-01

    Full Text Available Drugs normally synthesized to use as medication to treat diseases like cancer and microbial infections, these synthesized drugs were interested more than naturally-derived drugs which have been shows low activity or not as efficient against diseases. A new ligand 3-methylbenzyl (2Z-2-[1-(pyridin-4-ylethylidene]hydrazine carbodithioate (PE3MBC and its Cd(II, Cu(II, Co(II and Zn(II metal complexes. The new ligand and metal complexes were characterized via various physico-chemical and spectroscopic techniques. Cd(II complex show more activity against microbes and against cancer cell line MCF-7, while other complexes does not shows activity like cadmium complex, all the complexes does not shows any activity against MDAMB-231 cell line. The fatal of the cancer and the microbes cell was due to inhibition of DNA synthesis which was probably due to chelating with metals complexes, or could be referred to lipophilicity, presence of hydrophobic moiety in the complex molecule, also could be due to steric effects and electronic effects.

  6. Ultraviolet spectroscopy and metal ions detection

    International Nuclear Information System (INIS)

    Chaudry, M.A.

    1995-01-01

    The spectrochemical analysis is based on the interaction of radiation with the chemical species and depends on their nature, having pi, sigma or electrons, or d and f electrons, UV. Visible spectrophotometry has been used extensively in the detection and determination of both organics and inorganics. In UV detection the sensitivity is proportional to the bath length and the excitation coefficient of the given sample. It may be insensitive to many species unless these are converted to UV, absorbing derivatives. The technique has been applied for the monitoring of the effluents from HPLC, as chlorides or other complexes of various elements in this article the utility of HCl as reagent for the spectrophotometric determination of the metal ions like Al(III), As(III,IV), Ba(II), Cd(II), Ca(II) Ce(III), Cs(i), Cr(III,VI), Co(II), Cu(II), Dy(III), Eu(III), Gd(III), Au(III), Hf(IV), Ho(III), In(III), Fe(III), La(III), Pb(II), Lu (III), Mg(II), Mn(II), Hg(II), Mo(VI), Ni(II), Pd(II), Pt(IV), K(I), Pr(III), Re(VII), Ru(IV), Sm(III), Sc(III), Ag(I), Sr(II) Te(III), Th(IV), Sn(II,IV), Ti(III,IV), W(VI), U(VI), V(IV,V), Yb(III), Zn(II) AND Zr(IV) Ions i.e. for meta ions from d of the most of these metal ions has been found sufficient permit their detection in HPLC. Their molar absorptive have also been reported. Reference has also been provided to post column derivatization of some metal ions from d and f block elements for their detection in HPLC. (author) 12 figs.; 6 tabs.; 27 refs

  7. A two-dimensional bilayered Cd(II) coordination polymer with a three-dimensional supramolecular architecture incorporating 1,2-bis(pyridin-4-yl)ethene and 2,2'-(diazenediyl)dibenzoic acid.

    Science.gov (United States)

    Liu, Lei-Lei; Zhou, Yan; Li, Ping; Tian, Jiang-Ya

    2014-02-01

    In poly[[μ2-1,2-bis(pyridin-4-yl)ethene-κ(2)N:N'][μ2-2,2'-(diazenediyl)dibenzoato-κ(3)O,O':O'']cadmium(II)], [Cd(C14H8N2O4)(C12H10N2)]n, the asymmetric unit contains one Cd(II) cation, one 2,2'-(diazenediyl)dibenzoate anion (denoted L(2-)) and one 1,2-bis(pyridin-4-yl)ethene ligand (denoted bpe). Each Cd(II) centre is six-coordinated by four O atoms of bridging/chelating carboxylate groups from three L(2-) ligands and by two N atoms from two bpe ligands, forming a distorted octahedron. The Cd(II) cations are bridged by L(2-) and bpe ligands to give a two-dimensional (4,4) layer. The layers are interlinked through bridging carboxylate O atoms from L(2-) ligands, generating a two-dimensional bilayered structure with a 3(6)4(13)6(2) topology. The bilayered structures are further extended to form a three-dimensional supramolecular architecture via a combination of hydrogen-bonding and aromatic stacking interactions.

  8. Synthesis, characterization and biological activity of symmetric dinuclear complexes derived from a novel macrocyclic compartmental ligand

    Energy Technology Data Exchange (ETDEWEB)

    Mruthyunjayaswamy, B.H.M.; Ijare, Omkar B.; Jadegoud, Y. [Gulbarga University (India). Dept. of Chemistry]. E-mail: bhmmswamy53@rediffmail.com

    2005-07-15

    A phenol based novel macrocyclic binucleating compartmental ligand N,N-bis(2,6-diiminomethyl-4-methyl-1-hydroxyphenyl)malonoyldicarboxamide was prepared. The complexes were prepared by template method by reacting 2,6-diformyl-4-methylphenol, malonoyl dihydrazide and the metal chlorides of Cu(II), Ni(II), Co(II), Cd(II), Zn(II) and Hg(II) in methanol to get a series of dinuclear complexes. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility data, IR, UV-Vis, ESR, NMR and FAB mass spectral data. The dinuclear nature of the complexes was confirmed on the basis of elemental analyses, magnetic susceptibility, ESR and FAB mass spectral data. The ligand as well as Cu(II), Ni(II), Co(II) and Zn(II) complexes were tested for their antibacterial and antifungal properties against Escherichia coli, Staphyloccocus aureus, Aspergillus niger and Fusarium oxysporum. Magnetic susceptibility measurements of Cu(II), Ni(II) and Co(II) complexes reveal that these complexes exhibit antiferromagnetic coupling behavior due to the presence of two metal ions in close proximity. FAB mass spectrum of the Cu(II) complex gave a clear evidence for the dinuclear nature. The ligand and the complexes were found to be less active against the tested bacteria, but the ligand alone was found active against the fungus Fusarium oxysporum. (author)

  9. Synthesis, characterization and biological activity of symmetric dinuclear complexes derived from a novel macrocyclic compartmental ligand

    International Nuclear Information System (INIS)

    Mruthyunjayaswamy, B.H.M.; Ijare, Omkar B.; Jadegoud, Y.

    2005-01-01

    A phenol based novel macrocyclic binucleating compartmental ligand N,N-bis(2,6-diiminomethyl-4-methyl-1-hydroxyphenyl)malonoyldicarboxamide was prepared. The complexes were prepared by template method by reacting 2,6-diformyl-4-methylphenol, malonoyl dihydrazide and the metal chlorides of Cu(II), Ni(II), Co(II), Cd(II), Zn(II) and Hg(II) in methanol to get a series of dinuclear complexes. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility data, IR, UV-Vis, ESR, NMR and FAB mass spectral data. The dinuclear nature of the complexes was confirmed on the basis of elemental analyses, magnetic susceptibility, ESR and FAB mass spectral data. The ligand as well as Cu(II), Ni(II), Co(II) and Zn(II) complexes were tested for their antibacterial and antifungal properties against Escherichia coli, Staphyloccocus aureus, Aspergillus niger and Fusarium oxysporum. Magnetic susceptibility measurements of Cu(II), Ni(II) and Co(II) complexes reveal that these complexes exhibit antiferromagnetic coupling behavior due to the presence of two metal ions in close proximity. FAB mass spectrum of the Cu(II) complex gave a clear evidence for the dinuclear nature. The ligand and the complexes were found to be less active against the tested bacteria, but the ligand alone was found active against the fungus Fusarium oxysporum. (author)

  10. Separation/preconcentration of trace Pb(II and Cd(II with 2-mercaptobenzothiazole impregnated Amberlite XAD-1180 resin and their determination by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Şerife Tokalıoğlu

    2017-01-01

    Full Text Available A new chelating resin, 2-mercaptobenzothiazole loaded Amberlite XAD-1180 was prepared and used for separation and preconcentration of Cd(II and Pb(II ions prior to their determinations by flame atomic absorption spectrometry. The optimum pH for simultaneous retention of the elements and the best elution means for their simultaneous elution were 9.5 and 2 mol L−1 HNO3, respectively. The detection limits for Cd(II and Pb(II were 0.35 and 5.0 μg L−1, respectively. The accuracy of the method was confırmed both by analyzing the certified reference material (RM 8704 Buffalo river sediment and performing recovery studies.

  11. Microbial Reduction of Fe(III) in Acidic Sediments: Isolation of Acidiphilium cryptum JF-5 Capable of Coupling the Reduction of Fe(III) to the Oxidation of Glucose

    OpenAIRE

    Küsel, Kirsten; Dorsch, Tanja; Acker, Georg; Stackebrandt, Erko

    1999-01-01

    To evaluate the microbial populations involved in the reduction of Fe(III) in an acidic, iron-rich sediment, the anaerobic flow of supplemental carbon and reductant was evaluated in sediment microcosms at the in situ temperature of 12°C. Supplemental glucose and cellobiose stimulated the formation of Fe(II); 42 and 21% of the reducing equivalents that were theoretically obtained from glucose and cellobiose, respectively, were recovered in Fe(II). Likewise, supplemental H2 was consumed by acid...

  12. Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Teh, Geok Bee [Department of Bioscience and Chemistry, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia)]. E-mail: tehgb@mail.utar.edu.my; Nagalingam, Saravanan [Department of Bioscience and Chemistry, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia); Jefferson, David A. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2007-01-15

    The sol-gel preparative method was employed to synthesise Co(II) and Co(III)-substituted barium ferrite. This method was attempted to achieve higher homogeneity of the final product. Samples of substituted ferrites were characterised by various experimental techniques including high resolution transmission electron microscopy, X-ray diffraction analysis, magnetometry and thermal gravimetric analysis. The microstructural changes induced by such substitution are also discussed.

  13. Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by sol-gel method

    International Nuclear Information System (INIS)

    Teh, Geok Bee; Nagalingam, Saravanan; Jefferson, David A.

    2007-01-01

    The sol-gel preparative method was employed to synthesise Co(II) and Co(III)-substituted barium ferrite. This method was attempted to achieve higher homogeneity of the final product. Samples of substituted ferrites were characterised by various experimental techniques including high resolution transmission electron microscopy, X-ray diffraction analysis, magnetometry and thermal gravimetric analysis. The microstructural changes induced by such substitution are also discussed

  14. Removal of Cobalt Ion by Adsorbing Colloidal Flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Lee, Jung Won [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-09-30

    Simulated waste liquid containing 50 ppm cobalt ion was treated by adsorbing colloidal flotation using Fe(III) or Al(III) as flocculant and a sodium lauryl sulfate as a collector. Parameters such as pH, surfactant concentration, Fe(III) or Al(III) concentration, gas flow rate, etc., were considered. The flotation with Fe(III) showed 99.8% removal efficiency of cobalt on the conditions of initial cobalt ion concentration 50 ppm, pH 9.5, gas flow rate 70 ml/min, and flotation time 30 min. When the waste solution was treated with 35% H{sub 2}O{sub 2} prior to adsorbing colloidal flotation, the optimal pH for removing cobalt shifted to weak alkaline range and flotation could be applied in wider range of pH as compared to non-use of H{sub 2}O{sub 2}. Additional use of 20 ppm Al(III) after precipitation of 50 ppm Co(II) with 50 ppm Fe(III) made the optimal pH range for preferable flotation wider. Foreign ions such as, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, Ca{sup 2+} were adopted and their effects were observed, Of which sulfate ion was found to be detrimental to removal of cobalt ion by flotation. Coprecipitation of Co ion with Fe(III) and Al(III) resulted in better removal efficiency of cobalt ion in the presence of sulfate ion. (author). 14 refs., 13 figs.

  15. Simultaneous separation of copper, cadmium and cobalt from sea-water by co-flotation with octadecylamine and ferric hydroxide as collectors.

    Science.gov (United States)

    Cabezon, L M; Caballero, M; Cela, R; Perez-Bustamante, J A

    1984-08-01

    A method is proposed for the simultaneous quantitative separation of traces ofCu(II), Cd(II) and Co(II) from sea-water samples by means of the co-flotation (adsorbing colloid flotation) technique with ferric hydroxide as co-precipitant and octadecylamine as collector. The experimental parameters have been studied and optimized. The drawbacks arising from the low solubility of octadecylamine and the corresponding sublates in water have been avoided by use of a 6M hydrochloric acid-MIBK-ethanol (1:2:2 v v ) mixture. The results obtained by means of the proposed method have been compared with those given by the usual ammonium pyrrolidine dithiocarbamate/MIBK extraction method.

  16. Sorption of Co2+ on modified inorganic materials

    International Nuclear Information System (INIS)

    Hanzel, R.; Rajec, P.

    1999-01-01

    The aim of this study was preparation and characterization of sorbents on the base a silica-gel matrix with immobilized functional group (imidazole or crown-ether). Sorption of cobalt from aqueous solutions on prepared sorbents in static conditions (by 'batch' method) in the dependence of concentration, pH value,, as well as kinetics of sorption were studied. The influence of heavy or toxic metals [Hg(II), Cd(II), Mn(II), Zn(II), Cu(II), Fe(III), Cr(III), Al(III), Na and K] on sorption of cobalt was studied, too

  17. Synthesis, Characterization and Antimicrobial Activity of Cu(II, Co(II and Ni(II Complexes with O, N, and S Donor Ligands

    Directory of Open Access Journals (Sweden)

    Vidyavati Reddy

    2008-01-01

    Full Text Available The complexes of the type ML2 [where M = Cu(II, Co(II, and Ni(II] L = 1-phenyl-1-ene-3-(2-hydroxyphenyl-prop-2-ene with 3- substituted-5-mercapto-4-amino-1,2,4-triazoles. Schiff base ligands have been prepared by reacting 3-(2-hydroxyphenyl-1-phenylprop-2-en-1-one and 3-phenyl/pyridyl-4-amino-5-mercapto-1,2,4-triazoles in an alcoholic medium. The complexes are non-electrolytes in DMF. The resulting complexes were characterized by elemental analysis, magnetic measurements, conductivity measurements and spectral studies. The Schiff base acts as a tridentate dibasic and coordinating through the deprotonated oxygen, thioenolic sulphur and azomethine nitrogen atoms. It is found that Cu(II, Co(II, and Ni(II complexes exhibited octahedral geometry. The antimicrobial activities of ligands and its complexes were screened by cup plate method.

  18. New Mn(II, Ni(II, Cd(II, Pb(II complexes with 2-methylbenzimidazole and other ligands. Synthesis, spectroscopic characterization, crystal structure, magnetic susceptibility and biological activity studies

    Directory of Open Access Journals (Sweden)

    Shayma A. Shaker

    2016-11-01

    Full Text Available Synthesis and characterization of Mn(II, Ni(II, Cd(II and Pb(II mixed ligand complexes of 2-methylbenzimidazole with other ligands have been reported. The structure of the ligands and their complexes was investigated using elemental analysis, IR, UV–Vis, (1H, 13C NMR spectroscopy, molar conductivity and magnetic susceptibility measurements. In all the studies of complexes, the 2-methylbenzimidazole behaves as a neutral monodentate ligand which is coordinated with the metal ions through the N atom. While benzotriazole behaves as a neutral bidentate ligand which is coordinated with the Ni(II ion through the two N atoms. Moreover, the N-acetylglycine behaves as a bidentate ligand which is coordinated with the Mn(II, Ni(II and Pb(II ions through the N atom and the terminal carboxyl oxygen atom. The magnetic and spectral data indicate the tetrahedral geometry for Mn(II complex, irregular tetrahedral geometry for Pb(II complex and octahedral geometry for Ni(II complex. The X-ray single crystal diffraction method was used to confirm a centrosymmetric dinuclear Cd(II complex as each two metal ions are linked by a pair of thiocyanate N = S bridge. Two 2-methylbenzimidazole N-atom donors and one terminal thiocyanate N atom complete a highly distorted square pyramid geometry around the Cd atom. Besides, different cell types were used to determine the inhibitory effect of Mn(II, Ni(II, Cd(II and Pb(II complexes on cell growth using MTT assay. Cd(II complex showed cytotoxic effect on various types of cancer cell lines with different EC50 values.

  19. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1

    International Nuclear Information System (INIS)

    Fredrickson, J.K.; Kostandarithes, H.M.; Li, S.W.; Plymake, A.E.; Daly, M.J.

    2000-01-01

    Deinococcus radiodurans is an exceptionally radiation-resistant microorganism capable of surviving acute exposures to ionizing radiation doses of 15,000 Gy and previously described as having a strictly aerobic respiratory metabolism. Under strict anaerobic conditions, D. radiodurans R1 reduced Fe(III)-nitrilotriacetic acid coupled to the oxidation of lactate to CO 2 and acetate but was unable to link this process to growth. D. radiodurans reduced the humic acid analog anthraquinone-2,6-disulfonate (AQDS) to its dihydroquinone form, AH 2 DS, which subsequently transferred electrons to the Fe(III) oxides hydrous ferric oxide and goethite via a previously described electron shuttle mechanism. D. radiodurans reduced the solid-phase Fe(III) oxides in the presence of either 0.1 mM AQDS or leonardite humic acids (2 mg ml -1 ) but not in their absence. D. radiodurans also reduced U(VI) and Tc(VII) in the presence of AQDS. In contrast, Cr(VI) was directly reduced in anaerobic cultures with lactate although the rate of reduction was higher in the presence of AQDS. The results are the first evidence that D. radiodurans can reduce Fe(III) coupled to the oxidation of lactate or other organic compounds. Also, D. radiodurans, in combination with humic acids or synthetic electron shuttle agents, can reduce U and Tc and thus has potential applications for remediation of metal- and radionuclide-contaminated sites where ionizing radiation or other DNA-damaging agents may restrict the activity of more sensitive organisms

  20. Study on the removal of fluoride from drinking water and effluents

    International Nuclear Information System (INIS)

    Charbel, M.Y.

    1990-01-01

    A study for removal of excess fluoride from drinking water and aqueous effluents from nuclear power plants is presented. Inorganic and organic ion exchangers were used for this purpose: 1. Alumina microspheres form, granular alumina and zirconium oxide (powder or granular form with the aid of agglutinants) were experimented. 2. Strong cation exchange resins as Al-III, Fe-III, Zr-IV, RE-III, Ca-II and Mg-II salt form were examined. 3. Retention on hydrous oxide of Al-III, Fe-III, Zr-IV and RE-III supported on strong cation ion exchanger was performed. 4. Strong anion exchange resins in the form of OH sup(-), Cl sup(-), NO3 sup(-), CO3 sup(2-), SO4 sup(2-), ClO4 sup(-) and Zr(SO4)3 sup(2-) were examined. For the experiments pure fluoride solutions or dilute solutions containing the cations of Fe-III, Ca-II, Mn-II, Cu-II, Al-III, Cd-II and U-VI were used. Cation exchange resin loaded with zirconium, anion exchange resin as hydroxyl and zirconium sulfate complex form exhibited very good results, but the last performed best and we suggest it for industrial application. (author)

  1. A voltammetric method for Fe(iii) in blood serum using a screen-printed electrode modified with a Schiff base ionophore.

    Science.gov (United States)

    Mittal, Susheel K; Rana, Sonia; Kaur, Navneet; Banks, Craig E

    2018-05-23

    Herein, a potent electrochemical ionophore (SMS-2) based on a Schiff base has been used for the modification of a screen-printed electrode (SPE). The modified disposable electrode can selectively detect ferric ions in an aqueous medium. Redox behavior of the proposed strip was characterized using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Incorporation of the ligand in the ink of the SPE enhanced the analytical performance of the electrode, and its surface modification was confirmed by SEM and EDX analysis. Shifting/quenching of the cathodic peak potential of the ionophore after binding with Fe(iii) ions was used to detect and measure the ferric ion concentration. This sensor can identify Fe(iii) in the detection range from 0.625 μM to 7.5 μM. The modified SPE can selectively detect ferric ions in the presence of many other interfering ions and has been successfully used to determine the Fe(iii) content in blood serum samples. The metal-ionophore complex structure was optimized using DFT calculations to study the energetics of the metal-ionophore interactions.

  2. Solvent-Induced Change of Electronic Spectra and Magnetic Susceptibility of Co(II) Coordination Polymer with 2,4,6-Tris(4-pyridyl)-1,3,5-triazine.

    Science.gov (United States)

    Polunin, Ruslan A; Burkovskaya, Nataliya P; Satska, Juliya A; Kolotilov, Sergey V; Kiskin, Mikhail A; Aleksandrov, Grigory G; Cador, Olivier; Ouahab, Lahcène; Eremenko, Igor L; Pavlishchuk, Vitaly V

    2015-06-01

    One-dimensional coordination polymer [Co(Piv)2(4-ptz)(C2H5OH)2]n (compound 1, Piv(-) = pivalate, 4-ptz = 2,4,6-tris(4-pyridyl)-1,3,5-triazine) was synthesized by interaction of Co(II) pivalate with 4-ptz. Desolvation of 1 led to formation of [Co(Piv)2(4-ptz)]n (compound 2), which adsorbed N2 and H2 at 78 K as a typical microporous sorbent. In contrast, absorption of methanol and ethanol by 2 at 295 K led to structural transformation probably connected with coordination of these alcohols to Co(II). Formation of 2 from 1 was accompanied by change of color of sample from orange to brown and more than 2-fold decrease of molar magnetic susceptibility (χM) in the temperature range from 2 to 300 K. Resolvation of 2 by ethanol or water resulted in restoration of spectral characteristics and χM values almost to the level of that of 1. χMT versus T curves for 1 and samples, obtained by resolvation of 2 by H2O or C2H5OH, were fitted using a model for Co(II) complex with zero-field splitting of this ion.

  3. Structure, magnetism, and theoretical study of a mixed-valence Co(II)3Co(III)4 heptanuclear wheel: lack of SMM behavior despite negative magnetic anisotropy.

    Science.gov (United States)

    Chibotaru, Liviu F; Ungur, Liviu; Aronica, Christophe; Elmoll, Hani; Pilet, Guillaume; Luneau, Dominique

    2008-09-17

    A mixed-valence Co(II)/Co(III) heptanuclear wheel [Co(II)3Co(III)4(L)6(MeO)6] (LH2 = 1,1,1-trifluoro-7-hydroxy-4-methyl-5-aza-hept-3-en-2-one) has been synthesized and its crystal structure determined using single-crystal X-ray diffraction. The valence state of each cobalt ion was established by bond valence sum calculations. Studies of the temperature dependence of the magnetic susceptibility and the field dependence of the magnetization evidence ferromagnetic interactions within the compound. In order to understand the magnetic properties of this Co7 wheel, we performed ab initio calculations for each cobalt fragment at the CASSCF/CASPT2 level, including spin-orbit coupling effects within the SO-RASSI approach. The four Co(III) ions were found to be diamagnetic and to give a significant temperature-independent paramagnetic contribution to the susceptibility. The spin-orbit coupling on the three Co(II) sites leads to separations of approximately 200 cm(-1) between the ground and excited Kramers doublets, placing the Co7 wheel into a weak-exchange limit in which the lowest electronic states are adequately described by the anisotropic exchange interaction between the lowest Kramers doublets on Co(II) sites. Simulation of the exchange interaction was done within the Lines model, keeping the fully ab initio treatment of magnetic anisotropy effects on individual cobalt fragments using a recently developed methodology. A good description of the susceptibility and magnetization was obtained for nearest-neighbor (J1) and next-nearest-neighbor (J2) exchange parameters (1.5 and 5.5 cm(-1), respectively). The strong ferromagnetic interaction between distant cobalt ions arises as a result of low electron-promotion energies in the exchange bridges containing Co(III) ions. The calculations showed a large value of the magnetization along the main magnetic axis (10.1 mu(B)), which is a combined effect of the ferromagnetic exchange interaction and negative magnetic anisotropy on

  4. Preparation and characterisation of mixed ligand complexes of Co(III), Fe(III) and Cr(III) containing phthalimide and phenols

    International Nuclear Information System (INIS)

    Miah, M.A.J.; Islam, M.S.; Pal, S.C.; Barma, T.K.

    1996-01-01

    Some novel mixed ligand complexes of Co(III), Fe(III) and Cr(III) containing phthalimide as primary and 2-aminophenol and 3-aminophenol as secondary ligands have been synthesized and characterised on the basis of elemental analyses, conductivity and magnetic measurements and infrared and electronic spectral studies. Complexes containing 2-aminophenol are 1:1 electrolyte in N,N dimethylformamide. Spectral studies indicate that all the complexes exhibit octahedral geometry. The complexes have the general composition; K[M(pim)/sub 2/(L)/sub 2/]; where m=Co(III), Fe(III) and Cr(III), pim-anion of phthalimamide and L=anion of 2-aminophenol and 3-aminophenol. (author)

  5. Anion mediated polytype selectivity among the basic salts of Co(II)

    Science.gov (United States)

    Ramesh, T. N.; Rajamathi, Michael; Vishnu Kamath, P.

    2006-08-01

    Basic salts of Co(II) crystallize in the rhombohedral structure. Two different polytypes, 3R 1 and 3R 2, with distinct stacking sequences of the metal hydroxide slabs, are possible within the rhombohedral structure. These polytypes are generated by simple translation of successive layers by (2/3, 1/3, z) or (1/3, 2/3, z). The symmetry of the anion and the mode of coordination influences polytype selection. Cobalt hydroxynitrate crystallizes in the structure of the 3R 2 polytype while the hydroxytartarate, hydroxychloride and α-cobalt hydroxide crystallize in the structure of the 3R 1 polytype. Cobalt hydroxysulfate is turbostratically disordered. The turbostratic disorder is a direct consequence of the mismatch between the crystallographically defined interlayer sites generated within the crystal and the tetrahedral symmetry of the SO 42- ions.

  6. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B

    DEFF Research Database (Denmark)

    Dideriksen, Knud; Baker, Joel A.; Stipp, Susan Louise Svane

    2008-01-01

    be controlled by isotope fractionation between the free and complexed iron.We have determined the equilibrium Fe isotope fractionation induced by organic ligand activity in experiments with solutions having co-existing inorganic Fe(III) species and siderophore complexes, Fedesferrioxamine B (at pH 2). The two......-type fractionation during precipitation, this experiment yielded an isotope fractionation factor of a56Fesolution-solid=1.00027. Calculations based on these results indicate that isotopic re-equilibration is unlikely to significantly affect our determined equilibrium Fe isotope fractionation between inorganically...... and organically complexed Fe. To determine the equilibrium Fe isotope fractionation between inorganically and organically bound Fe(III), experiments with variable proportions of inorganic Fe were carried out at 25 °C. Irrespective of the proportion of inorganic Fe, equilibrium fractionation factors were within...

  7. N-donor co-ligands driven two new Co(II)- coordination polymers with bi- and trinuclear units: Crystal structures, and magnetic properties

    Science.gov (United States)

    Zhou, Zhi-Hang; Han, Min-Le; Wu, Ya-Pan; Dong, Wen-Wen; Li, Dong-Sheng; Lu, Jack Y.

    2016-10-01

    Two new Co(II) coordination polymers(CPs), namely [Co2(bpe)2(Hbppc)]n (1) and [Co3(μ3-OH)(bppc)(bpm)(H2O)]·3H2O (2) (H5bppc=biphenyl-2,4,6,3‧,5‧-pentacarboxylic acid, bpe=1,2-bis(4-pyridyl)ethene, bpm=bis(4-pyridyl)amine), have been obtained and characterized by elemental analysis, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), IR spectra and thermogravimetric analysis (TGA). 1 shows a binodal (4,6)-connected fsc net with a (44·610·8)(44·62) topology, while 2 shows a binodal (5,7)-connected 3D network based on trinuclear [Co3(μ3-OH)]5+ units with unusual (3.46.52.6)(32.46.57.65.7) topology. Variable-temperature magnetic susceptibility measurements reveals that complex 1 shows ferromagnetic interactions between the adjacent Co(II) ions, whereas 2 is a antiferromagnetic system.

  8. Synthesis and structural studies of first row transition metal complexes of N-(2-nitro-benzilidine-3-hydrazino quinoxaline-2-one

    Directory of Open Access Journals (Sweden)

    P.V. Anantha Lakshmi

    2008-12-01

    Full Text Available Cr(III, Mn(II, Fe(III, Co(II, Ni(II and Cu(II complexes of N-(2-nitro-benzilidene-3-hydrazino quinoxaline-2-one (NBHQO have been synthesized and characterized by elemental analysis, conductance, thermal, spectral and magnetic data. NBHQO acts as a bidentate ON donor in all the complexes except in Ni(II complex in which it acts as a tridentate ONO donor. Octahedral geometries have been proposed for all the complexes except for Cu(II complex to which the square planar geometry is assigned.

  9. Stability of the Cadmium Complex with the Bacterial Trihydroxamate Siderophore Desferrioxamine B at Seawater Ionic Strength

    Science.gov (United States)

    Christenson, E. A.; Schijf, J.

    2010-12-01

    The divalent transition metal cadmium occurs in seawater at ultra-trace levels. In the open ocean, dissolved Cd(II) displays a nutrient-like profile characterized by a strong gradient from low picomolar concentrations in surface waters to a mid-depth maximum of around 1 nM. Its vertical distribution is highly correlated with that of dissolved phosphate, seemingly at odds with the general perception that Cd is a very toxic element. On the other hand, in Zn-depleted waters Cd(II) has been found to replace Zn(II) or Co(II) in a functional, albeit less efficient form of carbonic anhydrase, a key enzyme enabling the assimilation of bicarbonate into organic matter. Considering these opposing roles, it is likely that phytoplankton regulates the toxicity and/or bioavailability of Cd(II) through the production of certain strong organic ligands, as it has been shown to do for example in the case of Cu(II). Siderophores are a fascinating class of organic ligands excreted by microorganisms to facilitate the acquisition of micronutrient Fe(III), preciously scarce due to its extremely low solubility in seawater. The linear trihydroxamic acid desferrioxamine B (DFOB) is naturally present in open ocean surface waters at picomolar concentrations and, because of its use as a pharmaceutical agent in the treatment of human iron overload disorders, the only purified siderophore commercially available in practicable quantities. The optimal spacing of three bidentate O-bearing functional groups along a flexible carbon frame allows the molecule to wrap around the Fe3+ ion in a polydentate heterocyclic structure that perfectly matches its ionic radius and preferred coordination. Despite its resultant exceptional affinity and selectivity for Fe3+ (β ~ 1031), DFOB also forms very stable complexes with an array of differently sized and charged cations. The only previous report on the stability constant of the Cd(II)-DFOB complex, dating from 1963, proposes a values of 108 at 0.1 M ionic

  10. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)] metals

    OpenAIRE

    Nahid Nishat; Ashraf Malik

    2016-01-01

    A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). All the polymeric compounds were characterized by (FT-IR) spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA) and antibacterial activities. Polymer complexes of Mn(II), Co(II) and Ni(II) show octahedral geometry, wh...

  11. Can Co(II) or Cd(II) substitute for Zn(II) in zinc fingers?

    Indian Academy of Sciences (India)

    Unknown

    Cysme) and histidine methylester (Hisme) has been studied as a model for the zinc core. ... obtained from the Sigma Chemical Company (USA). ..... entropy loss from the metal-binding site organization is expected to surpass the entropy.

  12. Effectively simultaneous naked-eye detection of Cu(II), Pb(II), Al(III) and Fe(III) using cyanidin extracted from red cabbage as chelating agent

    Science.gov (United States)

    Khaodee, Warangkhana; Aeungmaitrepirom, Wanlapa; Tuntulani, Thawatchai

    Simultaneous determination of Cu(II), Pb(II), Al(III) and Fe(III) using cyanidin as a chelating agent was investigated in terms of both quantitative and qualitative detections. Cyanidin was extracted and purified from red cabbage which is a local plant in Thailand. The selectivity of this method was examined by regulating the pH of cyanidin solution operated together with masking agents. It was found that Cu(II), Pb(II), Al(III) and Fe(III) simultaneously responded with the color change at pH 7, pH 6, pH 5 and pH 4, respectively. KF, DMG and the mixture of KF and DMG were used as masking agents for the determination of Fe(III), Al(III) and Pb(II), respectively. Results from naked-eye detection were evaluated by comparing with those of inductively coupled plasma (ICP), and there was no significant difference noticed. Cyanidin using as a multianalyte reagent could be employed for simultaneous determination of Cu(II), Pb(II), Al(III) and Fe(III) at the lowest concentration at 50, 80, 50 and 200 μM, respectively, by slightly varying pHs. Moreover, the proposed method could be potentially applied for real water samples with simplicity, rapidity, low cost and environmental safety.

  13. IR, UV-Vis, magnetic and thermal characterization of chelates of some catecholamines and 4-aminoantipyrine with Fe(III) and Cu(II)

    Science.gov (United States)

    Mohamed, Gehad G.; Zayed, M. A.; El-Dien, F. A. Nour; El-Nahas, Reham G.

    2004-07-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. α-Methyldopa (α-MD) in tablets is used in medication of hypertension. The Fe(III) and Cu(II) chelates with coupled products of adrenaline hydrogen tartarate (AHT), levodopa (LD), α-MD and carbidopa (CD) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical methods like IR, magnetic and UV-Vis spectra are used to investigate the structure of these chelates. Fe(III) form 1:2 (M:catecholamines) chelates while Cu(II) form 1:1 chelates. Catecholamines behave as a bidentate mono- or dibasic ligands in binding to the metal ions. IR spectra show that the catecholamines are coordinated to the metal ions in a bidentate manner with O,O donor sites of the phenolic - OH. Magnetic moment measurements reveal the presence of Fe(III) chelates in octahedral geometry while the Cu(II) chelates are square planar. The thermal decomposition of Fe(III) and Cu(II) complexes is studied using thermogravimetric (TGA) and differential thermal analysis (DTA) techniques. The water molecules are removed in the first step followed immediately by decomposition of the ligand molecules. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  14. Effect of metal ion Fe(III on the performance of chlorophyll as photosensitizers on dye sensitized solar cell

    Directory of Open Access Journals (Sweden)

    Harsasi Setyawati

    Full Text Available The energy crisis is a major problem facing the world today and will need a renewable energy source that is environmentally friendly; one of these is the dye sensitized solar cell (DSSC. DSSC is photochemical electric cell that can convert solar energy into electrical energy. This research aims to study the characteristics of chlorophyll compounds with the addition of metal ions Fe(III and to determine the effect of Fe(III on the performance of chlorophyll as a photosensitizer in the DSSC. The formation of complex compounds of Fe(III-chlorophyll is shown by the phenomenon of metal ligand charge transfer (MLCT at a wavelength of 263.00 nm and absorption transition d-d at 745.00 nm. Fourier transform infrared characterization of the binding of Fe-O complex compounds appears at 486.06 cm−1. The complex compound of Fe(III-chlorophyll has a magnetic moment value of 9.62 Bohr Magneton (BM. The existence of ion Fe(III in chlorophyll can improve the performance of chlorophyll as a dye sensitizer with a maximum current of 4.00 mA/cm2, maximum voltage of 0.18 volts and efficiency values of 1.35%. Keywords: Fe(III-chlorophyll, Dye sensitized solar cell, Metal ligand charge transfer, Photosensitizer

  15. A Simple Small Size and Low Cost Sensor Based on Surface Plasmon Resonance for Selective Detection of Fe(III

    Directory of Open Access Journals (Sweden)

    Nunzio Cennamo

    2014-03-01

    Full Text Available A simple, small size, and low cost sensor based on a Deferoxamine Self Assembled Monolayer (DFO-SAM and Surface Plasmon Resonance (SPR transduction, in connection with a Plastic Optical Fiber (POF, has been developed for the selective detection of Fe(III. DFO-SAM sensors based on appropriate electrochemical techniques can be frequently found in the scientific literature. In this work, we present the first example of a DFO-SAM sensor based on SPR in an optical fiber. The SPR sensing platform was realized by removing the cladding of a plastic optical fiber along half the circumference, spin coating a buffer of Microposit S1813 photoresist on the exposed core, and finally sputtering a thin gold film. The hydroxamate siderophore deferoxamine (DFO, having high binding affinity for Fe(III, is then used in its immobilized form, as self-assembled monolayer on the gold layer surface of the POF sensor. The results showed that the DFO-SAM-POF-sensor was able to sense the formation of the Fe(III/DFO complex in the range of concentrations between 1 μm and 50 μm with a linearity range from 0 to 30 μm of Fe(III. The selectivity of the sensor was also proved by interference tests.

  16. A simple small size and low cost sensor based on surface plasmon resonance for selective detection of Fe(III).

    Science.gov (United States)

    Cennamo, Nunzio; Alberti, Giancarla; Pesavento, Maria; D'Agostino, Girolamo; Quattrini, Federico; Biesuz, Raffaela; Zeni, Luigi

    2014-03-07

    A simple, small size, and low cost sensor based on a Deferoxamine Self Assembled Monolayer (DFO-SAM) and Surface Plasmon Resonance (SPR) transduction, in connection with a Plastic Optical Fiber (POF), has been developed for the selective detection of Fe(III). DFO-SAM sensors based on appropriate electrochemical techniques can be frequently found in the scientific literature. In this work, we present the first example of a DFO-SAM sensor based on SPR in an optical fiber. The SPR sensing platform was realized by removing the cladding of a plastic optical fiber along half the circumference, spin coating a buffer of Microposit S1813 photoresist on the exposed core, and finally sputtering a thin gold film. The hydroxamate siderophore deferoxamine (DFO), having high binding affinity for Fe(III), is then used in its immobilized form, as self-assembled monolayer on the gold layer surface of the POF sensor. The results showed that the DFO-SAM-POF-sensor was able to sense the formation of the Fe(III)/DFO complex in the range of concentrations between 1 μm and 50 μm with a linearity range from 0 to 30 μm of Fe(III). The selectivity of the sensor was also proved by interference tests.

  17. Preparation, spectral, X-ray powder diffraction and computational studies and genotoxic properties of new azo-azomethine metal chelates

    Science.gov (United States)

    Bitmez, Şirin; Sayin, Koray; Avar, Bariş; Köse, Muhammet; Kayraldız, Ahmet; Kurtoğlu, Mükerrem

    2014-11-01

    A new tridentate azo-azomethine ligand, N‧-[{2-hydroxy-5-[(4-nitrophenyl)diazenyl]phenyl}methylidene]benzohydrazidemonohydrate, (sbH·H2O) (1), is prepared by condensation of benzohydrazide and 2-hydroxy-5-[(4-nitrophenyl)diazenyl]benzaldehyde (a) with treatment of a solution of diazonium salt of p-nitroaniline and 2-hydroxybenzaldehyde in EtOH. The five coordination compounds, [Co(sb)2]·4H2O (2), [Ni(sb)2]·H2O (3), [Cu(sb)2]·4H2O (4), [Zn(sb)2]·H2O (5) and [Cd(sb)2]·H2O (6) are prepared by reacting the Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) ions with the ligand. The structures of the compounds are elucidated from the elemental analyses data and spectroscopic studies. It is found the ligand acts as a tridentate bending through phenolic and carbonyl oxygens and nitrogen atom of the Cdbnd Nsbnd group similar to the most of salicylaldimines. Comparison of the infrared spectra of the ligand and its metal complexes confirm that azo-Schiff base behaves as a monobasic tridentate ligand towards the central metal ion with an ONO donor sequence. Upon complexation with the ligand, the Cd(II), and Zn(II) ions form monoclinic structures, while Co(II), Cu(II) and Ni(II) ions form orthorhombic structures. Quantum chemical calculations are performed on tautomers and its metal chelates by using DFT/B3LYP method. Most stable tautomer is determined as tautomer (1a). The geometrical parameters of its metal chelates are obtained as theoretically. The NLO properties of tautomer (1a) and its metal complexes are investigated. Finally, the ligand and its metal complexes are assessed for their genotoxicity.

  18. Syntheses, spectroscopic and magnetic properties of polystyrene-anchored coordination compounds of thiazolidinone

    Directory of Open Access Journals (Sweden)

    D. Kumar

    2014-01-01

    Full Text Available The reaction between polystyrene 3-formylsalicylate and furoic acid hydrazide in DMF in the presence of ethyl acetate results in the formation of polystyrene N-(2-carbamoylfuranyl-3'-carboxy-2'-hydroxybenzylideneimine (I. A benzene suspension of I reacts with mercaptoacetic acid and forms the polystyrene N-(2-carbamoylfuranyl-C-(3'-carboxy-2'-hydroxyphenylthiazolidin-4-one, PSCH2–LH2 (II. A DMF suspension of II reacts with Mn(II, Ni(II, Cd(II, Fe(III and UO2(VI ions and forms the polystyrene-anchored coordination compounds of the types, [PSCH2–LMn(DMF3], [PSCH2–LNi(DMF3], [PSCH2–LCd(DMF], [PSCH2–LH2FeCl3] and [PSCH2–LHUO2(NO3(DMF]. The polystyrene-anchored coordination compounds have been characterized on the basis of elemental analyses, spectral (IR, reflectance studies and magnetic susceptibility measurements. II acts as a neutral tridentate ONO donor ligand in [PSCH2–LH2FeCl3], a monobasic tridentate ONO donor ligand in [PSCH2–LHUO2(NO3(DMF], a dibasic tridentate ONO donor ligand in [PSCH2–LMn(DMF3], [PSCH2–LNi(DMF3] and [PSCH2–LCd(DMF]. A tetrahedral structure for Cd(II and an octahedral structure for Mn(II, Ni(II, Fe(III and a square-antiprism geometry for UO2(VI complex are suggested. DOI: http://dx.doi.org/10.4314/bcse.v28i1.4

  19. Synthesis of Cd/(Al+Fe) layered double hydroxides and characterization of the calcination products

    International Nuclear Information System (INIS)

    Perez, M.R.; Barriga, C.; Fernandez, J.M.; Rives, V.; Ulibarri, M.A.

    2007-01-01

    Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method at a constant pH value of 8. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange at pH 9. The samples have been characterized by elemental chemical analysis, powder X-ray diffraction (PXRD), and FT-IR spectroscopy. Their thermal stability has been assessed by thermogravimetric and differential thermal analyses (TG-DTA) and mass spectrometric analysis of the evolved gases. The PXRD patterns of the solids calcined at 800 deg. C show diffraction lines corresponding to Cd(Al)O and spinel-type materials, which precise nature (CdAl 2 O 4 , Cd 1-x Fe 2+x O 4 , or Cd x Fe 2.66 O 4 ) depends on location and concentration of iron in the parent material or precursor. - Graphical abstract: Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange. Calcination at 800 deg. C shows diffraction lines corresponding to CdO and to spinel-type materials. SEM micrograph of sample CdAlFe-N-0

  20. Cd(II and Pb(II complexes of the polyether ionophorous antibiotic salinomycin

    Directory of Open Access Journals (Sweden)

    Tanabe Makoto

    2011-09-01

    Full Text Available Abstract Background The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II ions in in vivo experiments, despite so far no Pb(II-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their in vitro complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II and lead(II. Results New metal(II complexes of the polyether ionophorous antibiotic salinomycin with Cd(II and Pb(II ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa undergoes a reaction with heavy metal(II ions to form [Cd(Sal2(H2O2] (1 and [Pb(Sal(NO3] (2, respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield 1. Two salinomycin anions occupy the equatorial plane of the Cd(II center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II cation. Complex 2 consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation. Conclusion The formation of the salinomycin heavy metal(II complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock

  1. Cd(II) and Pb(II) complexes of the polyether ionophorous antibiotic salinomycin

    Science.gov (United States)

    2011-01-01

    Background The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II) ions in in vivo experiments, despite so far no Pb(II)-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their in vitro complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II) and lead(II). Results New metal(II) complexes of the polyether ionophorous antibiotic salinomycin with Cd(II) and Pb(II) ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa) undergoes a reaction with heavy metal(II) ions to form [Cd(Sal)2(H2O)2] (1) and [Pb(Sal)(NO3)] (2), respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II) ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield 1. Two salinomycin anions occupy the equatorial plane of the Cd(II) center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II) cation. Complex 2 consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation. Conclusion The formation of the salinomycin heavy metal(II) complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock farming

  2. Heavy metal / polyacid interaction : an electrochemical study of the binding of Cd(II), Pb(II) and Zn(II) to polycarboxylic and humic acids

    NARCIS (Netherlands)

    Cleven, R.F.M.J.

    1984-01-01

    Polyelectrolyte effects in the interaction of heavy metal ions with model polycarboxylic acids have been described, in order to establish the relevance of these effects in the interaction of heavy metal ions with naturally occurring humic and fulvic acids. The model systems consisted of Cd(II),

  3. The potential impact of microbial Fe(III) reduction on subsurface U(VI) mobility at a low level radioactive waste storage site

    International Nuclear Information System (INIS)

    Wilkins, M.J.; Livens, F.R.; Vaughan, D.J.; Lloyd, J.R.; Beadle, I.; Small, J.S.

    2005-01-01

    Full text of publication follows: Fe(III) oxy-hydroxides have the potential to be utilised as terminal electron acceptors by indigenous microbial communities in the British Nuclear Fuels (BNFL) low level radioactive waste storage site at Drigg (Cumbria, UK) and these organisms may have a critical control on the biogeochemical cycling of several environmentally important radionuclides. In terms of radiological impact at Drigg, uranium is the most significant contributor to radiological impact and it is strongly influenced by biogeochemical processes. In terms of mass (moles) it is also the most abundant radionuclide in the Drigg inventory. Thus, the potential biotic and abiotic effects of Fe(III) reduction on U(VI) mobility in the Drigg subsurface are of interest. Culture-dependent and molecular techniques showed that the sediments in and around the Drigg site contained a diversity of Fe(III)-reducing bacteria. A series of microcosm experiments were utilised to create environmentally relevant experimental conditions. Microcosms set up using Drigg sediment and synthetic ground water were spiked with 100 μM U(VI) and acetate as an electron donor. U(VI) concentrations in groundwater were measured using a chemical assay while total U levels were determined using ICP-MS. Fe(II) levels were determined using the ferrozine method. Sediment surface areas were measured using BET analysis. The low surface area of the sediments resulted in only a small proportion of the 100 μM U(VI) spike sorbing onto mineral surfaces. The addition of ferri-hydrite to some microcosms resulted in an immediate lowering of soluble U(VI) concentrations, suggesting that the formation of soluble U(VI) complexes were not responsible for the minimal adsorption. The presence of biogenic Fe(II) in the microcosms did not affect the soluble U(VI) concentration. Similarly, soluble U(VI) levels remained unchanged when sediments were spiked with U(VI) post-microbial Fe(III) reduction. However, a lowering in

  4. Functionalisation of mesoporous silica gel with 2-[(phosphonomethyl)-amino]acetic acid functional groups. Characterisation and application

    Energy Technology Data Exchange (ETDEWEB)

    Caldarola, Dario [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Australian Centre for Research on Separation Sciences (ACROSS), University of Tasmania, Hobart, Tasmania 7001 (Australia); Mitev, Dimitar P. [Australian Centre for Research on Separation Sciences (ACROSS), University of Tasmania, Hobart, Tasmania 7001 (Australia); Marlin, Lucile [Ecole Nationale Superieure des Ingenieurs en Arts Chimiques et Technologiquesm, Toulouse (France); Irish Separation Science Cluster, Dublin City University, Dublin (Ireland); Nesterenko, Ekaterina P. [Irish Separation Science Cluster, Dublin City University, Dublin (Ireland); Paull, Brett [Australian Centre for Research on Separation Sciences (ACROSS), University of Tasmania, Hobart, Tasmania 7001 (Australia); Onida, Barbara [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); CR-INSTM for Materials with Controlled Porosity (Italy); Bruzzoniti, Maria Concetta; Carlo, Rosa Maria De; Sarzanini, Corrado [Analytical Chemistry Department, University of Torino, Via P. Giuria 5, 10125 Torino (Italy); Nesterenko, Pavel N., E-mail: Pavel.Nesterenko@utas.edu.au [Australian Centre for Research on Separation Sciences (ACROSS), University of Tasmania, Hobart, Tasmania 7001 (Australia)

    2014-01-01

    A new complexing adsorbent was prepared by chemical modification of mesoporous silica Kieselgel 60 (d{sub p} = 37–63 μm, average pore size 6 nm, specific surface area 425 m{sup 2} g{sup −1}) with 3-glycidoxypropyltrimethoxysilane and 2-[(phosphonomethyl)amino]acetic acid (PMA), commonly known as glyphosate. The prepared adsorbent was fully characterised using elemental analysis, thermal gravimetric analysis (TGA), acid–base potentiometric titration, Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption isotherms at 77 K (BET), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The concentration of bonded PMA groups calculated from the nitrogen content was 0.38 mmol per gram. The adsorption of transition metal ions on PMA functionalised silica (HEPMAS) was studied from aqueous solutions having different pH and the following selectivity was established, Zn(II) < Co(II) < Cd(II) < Mn(II) < Ni(II) < Cu(II). The calculated values of distribution coefficients D for the adsorption of ecotoxic metal ions on HEPMAS are 5.0 × 10{sup 4}, 4.9 × 10{sup 5} and 2.6 × 10{sup 4} for Zn(II), Pb(II) and Cd(II), respectively.

  5. Functionalisation of mesoporous silica gel with 2-[(phosphonomethyl)-amino]acetic acid functional groups. Characterisation and application

    Science.gov (United States)

    Caldarola, Dario; Mitev, Dimitar P.; Marlin, Lucile; Nesterenko, Ekaterina P.; Paull, Brett; Onida, Barbara; Bruzzoniti, Maria Concetta; Carlo, Rosa Maria De; Sarzanini, Corrado; Nesterenko, Pavel N.

    2014-01-01

    A new complexing adsorbent was prepared by chemical modification of mesoporous silica Kieselgel 60 (dp = 37-63 μm, average pore size 6 nm, specific surface area 425 m2 g-1) with 3-glycidoxypropyltrimethoxysilane and 2-[(phosphonomethyl)amino]acetic acid (PMA), commonly known as glyphosate. The prepared adsorbent was fully characterised using elemental analysis, thermal gravimetric analysis (TGA), acid-base potentiometric titration, Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption isotherms at 77 K (BET), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The concentration of bonded PMA groups calculated from the nitrogen content was 0.38 mmol per gram. The adsorption of transition metal ions on PMA functionalised silica (HEPMAS) was studied from aqueous solutions having different pH and the following selectivity was established, Zn(II) < Co(II) < Cd(II) < Mn(II) < Ni(II) < Cu(II). The calculated values of distribution coefficients D for the adsorption of ecotoxic metal ions on HEPMAS are 5.0 × 104, 4.9 × 105 and 2.6 × 104 for Zn(II), Pb(II) and Cd(II), respectively.

  6. The separation of trace elements in manganese dioxide

    International Nuclear Information System (INIS)

    Jones, E.A.; Dixon, K.

    1981-01-01

    Separations from manganese are discribed for (a)Al(III), Mo(VI), V(V), and Ti(IV), and (b)trace elements in general. In the first separation, a combined anion-cation exchange, the oxalate complexes are absorbed onto the anionic BIO.RAD 1-X8 resin. V(V) and Al(III) are then eluted into a cation-exchange column from which they are eluted successively, Mo(VI) and Ti(IV) then being eluted from the anionic resin. In the second separation, up to 2g of manganese is absorbed onto BIO.RAD AG 50W-X8 resin, from which V(V) is eluted with dilute hydrochloric acid prior to the elution of Co(II), Cu(II), Zn(II), Cd(II), Fe(III), As(III), Sb(III), Mo(VI), W(VI), and Sn(II) with a mixture of 1 M hydrochloric acid, 80 per cent acetone, and 0,1 per cent hydrogen peroxide. Mn(11) is eluted next with a mixture of 0,75M hydrochloric acid and 90 per cent acetone, after which the remaining cations are eluted with 4M hydrochloric acid. Satisfactory recoveries ranging from 0,8 to 60 mg/l were obtained for 18 of the 21 elements tested. After concentration by evaporation, final measurements were made by the use of atomic-absorption spectrophotometry, or direct-reading spectrometry with excitation from an inductively coupled plasma source. Comparative results were obtained with atomic-absorption procedures where the manganese was not separated. However, the separation procedure can reduce the time required for analysis by the direct method because it limits the number of dilutions necessary and eliminates the need for the use of the method of additions to compensate for interferences from manganese

  7. Mechanisms for Reduction of Natural Waters Technogenic Pollution by Metals due to Complexions with Humus Substances (Zoning: Western Siberia and the European Territory of Russia)

    Science.gov (United States)

    Dinu, M. I.

    2017-11-01

    The article described the complexation of metal ions with humus substances in natural waters (small lakes). Humus substances as the major biochemical components of natural water have a significant impact on the forms and migration of metals and the toxicity of natural objects. This article presents the results of large-scale chemical experiments: the study of the structural features (zonal aspects) of humus substances extracted from soil and water natural climatic zones (more than 300 objects) in Russia (European Russia and West Siberia); the influence of structural features on the physic-chemical parameters of humus acids and, in particular, on their complexing ability. The functional specifics of humus matter extracted from soils is estimated using spectrometric techniques. The conditional stability constants for Fe(III), Cu(II), Pb(II), Cd(II), Zn(II), Ni(II), Co(II), Mn(II), Cr(III), Ca(II), Mg(II), Sr(II), and Al(III) are experimentally determined with the electrochemical, spectroscopic analysis methods. The activities of metals are classified according to their affinity to humus compounds in soils and water. The determined conditional stability constants of the complexes are tested by model experiments, and it is demonstrated that Fe and Al ions have higher conditional stability constants than the ions of alkali earth metals, Pb, Cu, and Zn. Furthermore, the influence of aluminium ions and iron on the complexation of copper and lead as well as the influence of lead and copper on complexation of cobalt and nickel have been identified. The metal forms in a large number of lakes are calculated basing on the experiments’ results. The main chemical mechanisms of the distribution of metals by forms in the water of the lakes in European Russia and West Siberia are described.

  8. Studies on chelation properties of ampicillin with trace metal ions and comparison with penicillin complexes

    International Nuclear Information System (INIS)

    Rehmani, F.S.; Hameed, W.

    2003-01-01

    The penicillin is highly effective antibiotic with extremely wide margin of safety. Ampicillin e is the penicillin group of antibiotic in which side chain is phenyl group i.e. D-amino benzyl penicillin. The side chain determines many of anti bacterial and pharmacological characteristics. They inhibit the protein synthesis in bacterial cell wall. The chelating properties of the antibiotic may be used in the metal transport across the membrane. The present investigations are helpful in drug metabolism and their effects on minerals contents of the body. The complex formation between Ampicillin and penicillin with trace metal ions such as Fe(III), Cr(III), Al(III), Mn(II), Ni(II), Co(II), Ca(II), Mg(II), Cu(III) and Zn(II) were studied by potentiometric titrations and spectrophotometric methods. Stoichiometry of these complexes were studied by mole ratio method. It was found that the Fe(III) and Cu(II) ions form most stable complexes near physiological pH and the mole ratio was 1:1. (author)

  9. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates

    NARCIS (Netherlands)

    Delaire, Caroline; van Genuchten, Case M.; Amrose, Susan E.; Gadgil, Ashok J.

    2016-01-01

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment

  10. Pb(II) and Cd(II) removal from aqueous solution, shipyard wastewater, and landfill leachate by modified Rhizopus oryzae biomass

    Science.gov (United States)

    Naeimi, Behrouz; Foroutan, Rauf; Ahmadi, Bahram; Sadeghzadeh, Farzaneh; Ramavandi, Bahman

    2018-04-01

    This study was designed to remove Pb(II) and Cd(II) from aqueous solution, shipyard wastewater, and sanitary landfill leachate using an alkaline-modified Rhizopus oryzae biomass. According to the Fourier transform infrared test, different functional groups like O–H, N–H, C=O, and P–O were detected in the bioadsorbent. The x-ray fluorescence (XRF) analysis showed that CaO, P2O3, and SO3 oxides have the highest content in the bioadsorbent. The surface area of modified Rhizopus oryzae was obtained as 20.32 m2 g‑1. The effect of initial pH, temperature, contact time, and bioadsorbent dose on the metals removal was discussed. At optimal conditions, maximum Pb(II) and Cd(II) removal was obtained 95.66% and 94.55%, respectively. Freundlich model was well- accurately described the equilibrium data. Among four studied models, the pseudo-second-order was better able to describe the kinetic behavior of the bioadsorption process. The amount of enthalpy, free energy of Gibbs, and entropy parameters indicated that the bioadsorption process of studied heavy metals is negative, exothermic, and spontaneous. The amount of heavy metals in a shipyard wastewater and sanitary landfill leachate was significantly decreased by using the developed bioadsorbent.

  11. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  12. X-ray diffraction patterns of metal aurocyanides

    International Nuclear Information System (INIS)

    Selig, W.S.; Smith, G.S.; Harding, K.K.; Summers, L.J.

    1989-06-01

    Aurocyanides of the following metal cations have been prepared: Ag, Hg(II), Ga, Fe(III), Tl(I), Bi, Pb, Mn(II), Ni, Zn, Cu(II), Cd, In, and Co(II). Most of the aurocyanides are of the type M[Au(CN) 2 ] x where M is the metal cation and x its valence. However, under some conditions mixed aurocyanides containing K may be formed, such as KCo[Au(CN) 2 ] 3 . Only Ag and Hg(II) form aurocyanides which are sufficiently insoluble for the potentiometric determination of the aurocyanide anion. The diffraction patterns of the various aurocyanides are reported. 12 refs., 16 tabs

  13. Equilibrium and kinetic studies of Pb(II, Cd(II and Zn(II sorption by Lagenaria vulgaris shell

    Directory of Open Access Journals (Sweden)

    Mitić-Stojanović Dragana-Linda

    2012-01-01

    Full Text Available The sorption of lead, cadmium and zinc ions from aqueous solution by Lagenaria vulgaris shell biosorbent (LVB in batch system was investigated. The effect of relevant parameters such as contact time, biosorbent dosage and initial metal ions concentration was evaluated. The Pb(II, Cd(II and Zn(II sorption equilibrium (when 98% of initial metal ions were sorbed was attained within 15, 20 and 25 min, respectively. The pseudo first, pseudo-second order, Chrastil’s and intra-particle diffusion models were used to describe the kinetic data. The experimental data fitted the pseudo-second order kinetic model and intra-particle diffusion model. Removal efficiency of lead(II, cadmium(II and zinc(II ions rapidly increased with increasing biosorbent dose from 0.5 to 8.0 g dm-3. Optimal biosorbent dose was set to 4.0 g dm-3. An increase in the initial metal concentration increases the sorption capacity. The sorption data of investigated metal ions are fitted to Langmuir, Freundlich and Temkin isotherm models. Langmuir model best fitted the equilibrium data (r2 > 0.99. Maximal sorption capacities of LVB for Pb(II, Cd(II and Zn(II at 25.0±0.5°C were 0.130, 0.103 and 0.098 mM g-1, respectively. The desorption experiments showed that the LVB could be reused for six cycles with a minimum loss of the initial sorption capacity.

  14. Anion mediated polytype selectivity among the basic salts of Co(II)

    International Nuclear Information System (INIS)

    Ramesh, T.N.; Rajamathi, Michael; Vishnu Kamath, P.

    2006-01-01

    Basic salts of Co(II) crystallize in the rhombohedral structure. Two different polytypes, 3R 1 and 3R 2 , with distinct stacking sequences of the metal hydroxide slabs, are possible within the rhombohedral structure. These polytypes are generated by simple translation of successive layers by (2/3, 1/3, z) or (1/3, 2/3, z). The symmetry of the anion and the mode of coordination influences polytype selection. Cobalt hydroxynitrate crystallizes in the structure of the 3R 2 polytype while the hydroxytartarate, hydroxychloride and α-cobalt hydroxide crystallize in the structure of the 3R 1 polytype. Cobalt hydroxysulfate is turbostratically disordered. The turbostratic disorder is a direct consequence of the mismatch between the crystallographically defined interlayer sites generated within the crystal and the tetrahedral symmetry of the SO 4 2- ions. - Graphical abstract: (a) Observed PXRD pattern of cobalt hydroxytartarate compared with the DIFFaX simulated patterns of (b) 3R 1 and (c) 3R 2 polytypes, respectively

  15. Use of Fe(III) oxalate for oxidativewastewater treatment; Einsatz von Fe(III)-Oxalat zur chemisch-oxidativen Abwasserbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.M.; Vogelpohl, A. [Clausthal Univ., Clausthal-Zellerfeld (Germany). Inst. fuer Thermische Verfahrenstechnik

    1998-08-01

    Iron(III)-oxalate was used as an iron catalyst for the Photo Fenton reaction. Iron(III) oxalations ([Fe(C{sub 2}O{sub 4}){sub 3}]{sup 3-}) are reduced to Fe(II) by irradiation using near UV-light ({lambda} = 300 - 400 nm) or visible light ({lambda} > 400 nm). At the same time, CO{sub 2}{sup -} or C{sub 2}O{sub 4}{sup -}-radicals originate, which cause the secondary reduction of Fe(III) to Fe(II). By means of the photolytically regenerated Fe(II) ions, hydroxyl radicals are increasingly formed, so that the degradation of organic substances is accelerated. The work aimed to assess the catalytic effect of Fe(III) oxalate for photochemical oxidation processes and to establish the parameters influencing further treatment of leachate from a municipal waste sanitary landfill by means of technical-scale experiments. (orig.) [Deutsch] In der vorliegenden Arbeit wurde Eisen(III)-Oxalat als Eisenkatalysator fuer die Photo-Fenton-Reaktion eingesetzt. Eisen(III)-Oxalationen ([Fe(C{sub 2}O{sub 4}){sub 3}]{sup 3-}) werden durch Strahlung mit nahem UV-Licht ({lambda}=300 bis 400 nm) oder mit sichtbarem Licht ({lambda}>400 nm) zu Fe(II) reduziert. Gleichzeitig entstehen CO{sub 2}{sup .-} oder C{sub 2}O{sub 4}{sup .-}-Radikale, die eine sekundaere Reduktion von Fe(III) zu Fe(II) bewirken. Mit Hilfe der photolytiisch regenerierten Fe(II)-Ionen werden vermehrt Hydroxylradikale gebildet und damit die Abbaugeschwindigkeit der organischen Substanzen beschleunigt. Ziel der hier vorgestellten Arbeit war es, die katalytische Wirkung von Fe(III)-Oxalat fuer photochemische Oxidationsverfahren abzuschaetzen und die Einflussparameter zur weitergehenden Behandlung eines Deponiesickerwassers aus Hausmuelldeponie anhand von Technikumsversuchen zu ermitteln. (orig.)

  16. Penicillamine-modified sensor for the voltammetric determination of Cd(II) and Pb(II) ions in natural samples.

    Science.gov (United States)

    Pérez-Ràfols, Clara; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2015-11-01

    A new penicillamine-GCE was developed based on the immobilization of d-penicillamine on aryl diazonium salt monolayers anchored to the glassy carbon electrode (GCE) surface and it was applied for the first time to the simultaneous determination of Cd(II) and Pb(II) ions by stripping voltammetric techniques. The detection and quantification limits at levels of µg L(-1) suggest that the penicillamine-GCE could be fully suitable for the determination of the considered ions in natural samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Detection of mitochondrial COII DNA sequences in ant guts as a method for assessing termite predation by ants

    Czech Academy of Sciences Publication Activity Database

    Fayle, Tom Maurice; Scholtz, O.; Dumbrell, A. J.; Russell, S.; Segar, Simon Tristram; Eggleton, P.

    2015-01-01

    Roč. 10, č. 4 (2015), e0122533 E-ISSN 1932-6203 R&D Projects: GA ČR GA14-32302S Grant - others:European Social Fund(CZ) CZ1.07/2.3.00/20.0064; European Social Fund(CZ) CZ.1.07/2.3.00/30.0006 Institutional support: RVO:60077344 Keywords : mitochondrial COII DNA sequences Subject RIV: EH - Ecology, Behaviour Impact factor: 3.057, year: 2015 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122533

  18. A metal-organic framework nanocomposite made from functionalized magnetite nanoparticles and HKUST-1 (MOF-199) for preconcentration of Cd(II), Pb(II), and Ni(II)

    International Nuclear Information System (INIS)

    Ghorbani-Kalhor, Ebrahim

    2016-01-01

    The author describes the preparation of a magnetic metal organic framework of type MOF-199 containing magnetite (Fe 3 O 4 ) nanoparticles carrying covalently immobilized 4-(thiazolylazo) resorcinol (Fe 3 O 4 -TAR). This material is shown to represent a viable sorbent for separation and preconcentration of Cd(II), Pb(II), and Ni(II) ions. Box-Behnken design was applied to optimize the parameters affecting preconcentration. Following elution with 0.6 mol L −1 EDTA, the ions were quantified by FAAS. The capacity of the sorbent ranged between 185 and 210 mg g −1 . The limits of detection are 0.15, 0.40, and 0.8 ng mL −1 for Cd(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations are <8.5 %. The method was successfully applied to the rapid extraction of trace amounts of these ions from sea food and agri food. (author)

  19. Adsorption studies of Cd(II) onto Al{sub 2}O{sub 3}/Nb{sub 2}O{sub 5} mixed oxide dispersed on silica matrix and its on-line preconcentration and determination by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca Costa, Lucimara [Programa de Pos-Graduacao em Quimica da Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas-MG, CEP 37130-000 (Brazil); Ribeiro, Emerson Schwingel [Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, CEP 21941-909 (Brazil); Segatelli, Mariana Gava [Departamento de Quimica, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitario, Londrina-PR, CEP 86051-990 (Brazil); Nascimento, Danielle Raphael do [Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, CEP 21941-909 (Brazil); Midori de Oliveira, Fernanda [Departamento de Quimica, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitario, Londrina-PR, CEP 86051-990 (Brazil); Tarley, Cesar Ricardo Teixeira, E-mail: tarley@uel.br [Programa de Pos-Graduacao em Quimica da Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas-MG, CEP 37130-000 (Brazil); Departamento de Quimica, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitario, Londrina-PR, CEP 86051-990 (Brazil)

    2011-05-15

    The present study describes the adsorption characteristic of Cd(II) onto Nb{sub 2}O{sub 5}/Al{sub 2}O{sub 3} mixed oxide dispersed on silica matrix. The characterization of the adsorbent has been carried out by infrared spectroscopy (IR), scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS), energy dispersive X-ray fluorescence analysis (EDXRF) and specific surface area (S{sub BET}). From batch experiments, adsorption kinetic of Cd(II) was described by a pseudo-second-order kinetic model. The Langmuir linear isotherm fitted to the experimental adsorption isotherm very well, and the maximum adsorption capacity was found to be 17.88 mg g{sup -1}. Using the effective material, a method for Cd(II) preconcentration at trace level was developed. The method was based on on-line adsorption of Cd(II) onto SiO{sub 2}/Al{sub 2}O{sub 3}/Nb{sub 2}O{sub 5} at pH 8.64, in which the quantitative desorption occurs with 1.0 mol L{sup -1} hydrochloric acid towards FAAS detector. The experimental parameters related to the system were studied by means of multivariate analysis, using 2{sup 4} full factorial design and Doehlert matrix. The effect of SO{sub 4}{sup 2-}, Cu{sup 2+}, Zn{sup 2+} and Ni{sup 2+} foreign ions showed no interference at 1:100 analyte:interferent proportion. Under the most favorable experimental conditions, the preconcentration system provided a preconcentration factor of 18.4 times, consumption index of 1.08 mL, sample throughput of 14 h{sup -1}, concentration efficiency of 4.35 min{sup -1}, linear range from 5.0 up to 35.0 {mu}g L{sup -1} and limits of detection and quantification of 0.19 and 0.65 {mu}g L{sup -1} respectively. The feasibility of the proposed method for Cd(II) determination was assessed by analysis of water samples, cigarette sample and certified reference materials TORT-2 (Lobster hepatopancreas) and DOLT-4 (Dogfish liver).

  20. Integrated ion imprinted polymers-paper composites for selective and sensitive detection of Cd(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kai [State Key Laboratory of Environment Health - Incubation, Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health Wuhan, Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Hubei, 430030, Wuhan (China); Chen, Ying [Hubei Center for Disease Control and Prevention, No. 6 ZhuoDao Quan North Road, 430079, Wuhan (China); Zhou, Feng [State Key Laboratory of Environment Health - Incubation, Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health Wuhan, Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Hubei, 430030, Wuhan (China); Zhao, Xiaoya [Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, No.588 Qingtaidadao Road, Hubei, 430022, Wuhan (China); Liu, Jiafa [Hubei Center for Disease Control and Prevention, No. 6 ZhuoDao Quan North Road, 430079, Wuhan (China); Mei, Surong; Zhou, Yikai [State Key Laboratory of Environment Health - Incubation, Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health Wuhan, Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Hubei, 430030, Wuhan (China); Jing, Tao, E-mail: jingtao@hust.edu.cn [State Key Laboratory of Environment Health - Incubation, Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health Wuhan, Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Hubei, 430030, Wuhan (China)

    2017-07-05

    Highlights: • IIPs are first grafted on the low-cost A4 print paper to develop an integrated paper-based device. • As an imprinted composite, the adsorption capacity is 155.2 mg g{sup –1} and the imprinted factor is more than 3.0. • As an analytical method, the limit of detection is 0.4 ng mL{sup –1}. • Based on the water quality standards, it could be used to determine Cd(II) ions in drinking water. - Abstract: Paper-based sensor is a new alternative technology to develop a portable, low-cost, and rapid analysis system in environmental chemistry. In this study, ion imprinted polymers (IIPs) using cadmium ions as the template were directly grafted on the surface of low-cost print paper based on the reversible addition-fragmentation chain transfer polymerization. It can be applied as a recognition element to selectively capture the target ions in the complex samples. The maximum adsorption capacity of IIPs composites was 155.2 mg g{sup –1} and the imprinted factor was more than 3.0. Then, IIPs-paper platform could be also applied as a detection element for highly selective and sensitive detection of Cd(II) ions without complex sample pretreatment and expensive instrument, due to the selective recognition, formation of dithizone-cadmium complexes and light transmission ability. Under the optimized condition, the linear range was changed from 1 to 100 ng mL{sup –1} and the limit of detection was 0.4 ng mL{sup –1}. The results were in good agreement with the classic ICP-MS method. Furthermore, the proposed method can also be developed for detection of other heavy metals by designing of new IIPs.

  1. Determinação voltamétrica de metais em águas e fluidos biológicos empregando mineralização de amostras com radiação ultravioleta Voltammetric determination of metals in waters and biological fluids using sample mineralization with ultraviolet radiation

    Directory of Open Access Journals (Sweden)

    Leandro M. de Carvalho

    2008-01-01

    Full Text Available This work describes the optimization of pretreatment steps for the destruction of organic matter in samples of waters and biological fluids, by using an UV irradiation system with a high power UV radiation source (400 W. The efficiency of the system constructed for the photo-decomposition of samples of model waters, natural waters and biological fluids was investigated by performing recovery experiments of the metallic species Zn(II, Cd(II, Pb(II, Cu(II, Al(III and Fe(III. The use of UV irradiation allowed the liberation of metals bound to the organic matrix and the determination of the total content of elements in the samples.

  2. Extraction studies of Cd(II), Cu(II), Mn(II), Ni(II) and Zn(II) using N, N', N, N' -Bis((2-hydroxy-3,5-di-tert-butylbenzyl) (2-pyridylmethyl)) -ethylenediamine as a novel ligand

    International Nuclear Information System (INIS)

    Laus, R.; Anjos, A.D.; Naves, A.

    2008-01-01

    In the present study, the use of N,N',N,N'-bis((2-hydroxy-3,5-di-tert-butylbenzyl) (2- pyridylmethyl))-ethylenediamine (H2L) as ligand was evaluated in the liquid-liquid (water- chloroform) extraction of Cd(II), Cu(II), Mn(II), Ni(II) and Zn(II). Experiments were carried out to determine the pH for maximum extraction for each metal ion by ligand, maximum extraction capacity, extraction kinetics and extraction selectivity. The results revealed that the extraction of metal ions is dependent on the pH: maximum extraction maximum was obtained in the pH range of 4.5 - 6.0 for Cu(II) and 8.0 - 9.0 for Zn(II). Cd(II) and Mn(II) were best extracted at pH 9.0 and Ni(II) at 10.0. The ligand H2L was effective for the extraction of Cd(II), Cu(II) and Zn(II) (extraction efficient, %E equal 100%), whereas %E of 76% and 23.5% were observed for Mn(II) and Ni(II), respectively. The ligand presented high selectivity for the extraction of Cu(II) at pH 4.0. (author)

  3. The Role of Coulomb Interactions for Spin Crossover Behaviors and Crystal Structural Transformation in Novel Anionic Fe(III Complexes from a π-Extended ONO Ligand

    Directory of Open Access Journals (Sweden)

    Suguru Murata

    2016-05-01

    Full Text Available To investigate the π-extension effect on an unusual negative-charged spin crossover (SCO FeIII complex with a weak N2O4 first coordination sphere, we designed and synthesized a series of anionic FeIII complexes from a π-extended naphthalene derivative ligand. Acetonitrile-solvate tetramethylammonium (TMA salt 1 exhibited an SCO conversion, while acetone-solvate TMA salt 2 was in a high-spin state. The crystal structural analysis for 2 revealed that two-leg ladder-like cation-anion arrays derived from π-stacking interactions between π-ligands of the FeIII complex anion and Coulomb interactions were found and the solvated acetone molecules were in one-dimensional channels between the cation-anion arrays. A desolvation-induced single-crystal-to-single-crystal transformation to desolvate compound 2’ may be driven by Coulomb energy gain. Furthermore, the structural comparison between quasi-polymorphic compounds 1 and 2 revealed that the synergy between Coulomb and π-stacking interactions induces a significant distortion of coordination structure of 2.

  4. Spectroscopic evaluation of Co(II), Ni(II) and Cu(II) complexes derived from thiosemicarbazone and semicarbazone

    Science.gov (United States)

    Chandra, Sulekh; Kumar, Anil

    2007-12-01

    Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.

  5. Factors affecting the line-shape of the EPR signal of high-spin Fe(III) in soybean lipoxygenase-1

    NARCIS (Netherlands)

    Slappendel, S.; Aasa, R.; Malmström, B.G.; Verhagen, J.; Veldink, G.A.; Vliegenthart, J.F.G.

    1982-01-01

    The yellow form of soybean lipoxygenase-1 (linoleate:oxygen oxidoreductase, EC 1.13.11.12), obtained upon addition of one molar equivalent of acid (13--HPOD) to the native enzyme, shows a complex EPR signal around g 6 which results from contributions of different high-spin Fe(III) species with

  6. Effect of process parameters on removal and recovery of Cd(II) and Cu(II) from electroplating wastewater by fixed-bed column of nano-dimensional titanium (IV) oxide agglomerates

    CSIR Research Space (South Africa)

    Debnath, S

    2014-01-01

    Full Text Available Removal performances of Cd(II) and Cu(II) from water was investigated using agglomerated nanoparticle of hydrous titanium(IV) oxide (NTO) packed fixed bed. The parameters varied were the bed depth, flow rate and feed solution concentrations...

  7. Optimization of simultaneous electrochemical determination of Cd(II), Pb(II), Cu(II) and Hg(II) at carbon nanotube-modified graphite electrodes.

    Science.gov (United States)

    Pikna, L'ubomír; Heželová, Mária; Kováčová, Zuzana

    2015-01-01

    The health of the environment is worsening every day. Monitoring of potentially toxic elements and remediation of environmental pollution are necessary. Therefore, the research and development of simple, inexpensive, portable and effective sensors is important. Electrochemistry is a useful component of the field of environment monitoring. The present study focuses on evaluating and comparing three types of electrodes (PIGE, PIGE/MWCNT/HNO3 and PIGE/MWCNT/EDTA/HNO3) employed for the simultaneous electrochemical determination of four potentially toxic elements: Cd(II), Pb(II), Cu(II) and Hg(II). Cyclic voltammograms were measured in an acetate buffer. The LOD, LOQ, the standard and relative precisions of the method and a prediction intervals were calculated (according to the technical procedure DIN 32 645) for the three electrodes and for each measured element. The LOD for PIGE/CNT/HNO3 (the electrode with narrowest calculated prediction intervals) was 2.98 × 10(-7) mol L(-1) for Cd(II), 4.83 × 10(-7) mol L(-1) for Pb(II), 3.81 × 10(-7) mol L(-1) for Cu(II), 6.79 × 10(-7) mol L(-1) for Hg(II). One of the benefits of this study was the determination of the amount of Hg(II) in the mixture of other elements.

  8. Biosorption of Cd(II), Ni(II) and Pb(II) from aqueous solution by dried biomass of aspergillus niger: application of response surface methodology to the optimization of process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Malihe; Younesi, Habibollah [Department of Environmental Science, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor (Iran)

    2009-10-15

    In this study, the biosorption of Cd(II), Ni(II) and Pb(II) on Aspergillus niger in a batch system was investigated, and optimal condition determined by means of central composite design (CCD) under response surface methodology (RSM). Biomass inactivated by heat and pretreated by alkali solution was used in the determination of optimal conditions. The effect of initial solution pH, biomass dose and initial ion concentration on the removal efficiency of metal ions by A. niger was optimized using a design of experiment (DOE) method. Experimental results indicated that the optimal conditions for biosorption were 5.22 g/L, 89.93 mg/L and 6.01 for biomass dose, initial ion concentration and solution pH, respectively. Enhancement of metal biosorption capacity of the dried biomass by pretreatment with sodium hydroxide was observed. Maximal removal efficiencies for Cd(II), Ni(III) and Pb(II) ions of 98, 80 and 99% were achieved, respectively. The biosorption capacity of A. niger biomass obtained for Cd(II), Ni(II) and Pb(II) ions was 2.2, 1.6 and 4.7 mg/g, respectively. According to these observations the fungal biomass of A. niger is a suitable biosorbent for the removal of heavy metals from aqueous solutions. Multiple response optimization was applied to the experimental data to discover the optimal conditions for a set of responses, simultaneously, by using a desirability function. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  9. Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic characterization and anticancer activity

    Science.gov (United States)

    El-Boraey, Hanaa A.

    2012-11-01

    Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N4] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate dx2-y2 ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC50 = 25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.

  10. Studies in stability constants of schiff base hydrazone complexes with transition metal ions. Effect of ligand on seed germination

    Science.gov (United States)

    Meshram, U. P.; Pethe, G. B.; Yaul, A. R.; Khobragade, B. G.; Narwade, M. L.

    2017-10-01

    Spectrophotometric investigation of Cu (II), Ni(II), Co(II), and Fe(III) complexes with 2,4-dihydroxyacetophonone 2,4-dichlorobenzoylhydrazone (H2L1) and 2,4-didydroxy-5-nitroacetophenone 2,4-dichlorobenzoylhydrazone (H2L2) shows 1: 1 and 1: 2 complex formation between the pH range of 3.0 to 6.0 and also studied by jobs variation method at 0.1 M ionic strength at 30 ± 1°C specrtophotometrically. The conditional stability constants are determined for 1: 1 complexes. Effect of H2L1 and H2L2 ligand and its complexes on seed germination is studied.

  11. Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(II)

    International Nuclear Information System (INIS)

    Lack, J.G.; Chaudhuri, S.K.; Kelly, S.D.; Kemner, K.M.; O'Connor, S.M.; Coates, J.D.

    2002-01-01

    Adsorption of heavy metals and radionuclides (HMR) onto iron and manganese oxides has long been recognized as an important reaction for the immobilization of these compounds. However, in environments containing elevated concentrations of these HMR the adsorptive capacity of the iron and manganese oxides may well be exceeded, and the HMR can migrate as soluble compounds in aqueous systems. Here we demonstrate the potential of a bioremediative strategy for HMR stabilization in reducing environments based on the recently described anaerobic nitrate-dependent Fe(II) oxidation by Dechlorosoma species. Bio-oxidation of 10 mM Fe(II) and precipitation of Fe(III) oxides by these organisms resulted in rapid adsorption and removal of 55 μM uranium and 81 μM cobalt from solution. The adsorptive capacity of the biogenic Fe(III) oxides was lower than that of abiotically produced Fe(III) oxides (100 μM for both metals), which may have been a result of steric hindrance by the microbial cells on the iron oxide surfaces. The binding capacity of the biogenic oxides for different heavy metals was indirectly correlated to the atomic radius of the bound element. X-ray absorption spectroscopy indicated that the uranium was bound to the biogenically produced Fe(III) oxides as U(VI) and that the U(VI) formed bidentate and tridentate inner-sphere complexes with the Fe(III) oxide surfaces. Dechlorosoma suillum oxidation was specific for Fe(II), and the organism did not enzymatically oxidize U(IV) or Co(II). Small amounts (less than 2.5 μM) of Cr(III) were reoxidized by D. suillum; however, this appeared to be inversely dependent on the initial concentration of the Cr(III). The results of this study demonstrate the potential of this novel approach for stabilization and immobilization of HMR in the environment.

  12. Adsorption of aqueous Cd(II) and Pb(II) on activated carbon nanopores prepared by chemical activation of doum palm shell

    OpenAIRE

    Gaya, Umar Ibrahim; Otene, Emmanuel; Abdullah, Abdul Halim

    2015-01-01

    Non-uniformly sized activated carbons were derived from doum palm shell, a new precursor, by carbonization in air and activation using KOH, NaOH and ZnCl2. The activated carbon fibres were characterised by X-ray diffraction, N2 adsorption–desorption, scanning electron microscopy, particle size analysis and evaluated for Cd(II) and Pb(II) removal. The 40–50 nm size, less graphitic, mesoporous NaOH activated carbon yielded high adsorption efficiency, pointing largely to the influence surface ar...

  13. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides.

    Science.gov (United States)

    Jong, Tony; Parry, David L

    2004-07-01

    The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.

  14. COMPARATIVE STUDY OF DEGRADATION OF ISOPROTURON (3-(4-isopropylphenyl-1,1dimethylurea PHOTOINDUCED BY FE(III AND FE(III-PHOTOINDUCED SONOCHEMICAL IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    S Azizi

    2014-05-01

    Full Text Available The degradation of isoproturon 3-(4-isopropylphenyl-1,1dimethylurea photoinduced by Fe(III in aqueous solution has been investigated. The rate of degradation depends on the concentration of Fe(OH2+, the most photoreactive species in terms of .OH radical formation. These .OH radicals are able to degrade isoproturon until total mineralisation. The formation  of  Fe(II in the irradiated solution was monitored. The sonophotochemical degradation of isoproturon has been found to be dependent on the intensity of sonication. The combination of ultrasound and photochemistry has been used to degrade an aqueous solution of Isoproturon (IP. The degradation of IP in aqueous solution was investigated under sonolysis at         500 kHz and in the presence of Fe(III, as well as under simultaneous sonolysis and photoinduced Fe(III. Coupling photolysis with ultrasound for degradation of IP has been developed. The photosonochemical decomposition rate constant is greater than the additive rate constants of the two processes. Degradation products were analysed by CG/MS performed in the electron-impact (EI mode, at 70 eV potential using full scan mode. Degradation photoproducts were identified and a mechanism of degradation is proposed for two processes.

  15. Separation of some metal ions using coupled transport supported liquid membranes

    International Nuclear Information System (INIS)

    Chaudhary, M.A.

    1993-01-01

    Liquid membrane extraction processes has become very popular due to their superiority in many ways over other separation techniques. In coupled transport membranes the metal ions can be transported across the membrane against their concentration gradient under the influence of chemical potential difference. Liquid membranes consisting of a carrier-cum-diluent, supported in microporous polymeric hydrophobic films have been studied for transport of metal ions like U(VI), Cr(VI), Be(II), V(V), Ti(IV), Zn(II), Cd(II), Hf(IV), W(VI), and Co(II). The present paper presents basic data with respect to flux and permeabilities of these metal ions across membranes based on experimental results and theoretical equations, using different carriers and diluents and provides a brief reference to possibility of such membranes for large scale applications. (author)

  16. Cloud point extraction for the determination of heavy metals by nonionic surfactant Triton X-100 and PAN

    International Nuclear Information System (INIS)

    Cabrera Puig, I.; Perez Gramatges, A.

    2006-01-01

    A novel methodology for extraction and preconcentration of trace metals based on cloud point phenomenon was applied to the analysis of Co(II), Cu(II), Cd(II), Pb(II) y Ni(II) in a certified reference material (CRM), using Triton X-100 as nonionic surfactant, and AAS for the determination. Different parameters that can influence the extraction efficiency were studied, such as pH and ionic strength of the solution. The precision, accuracy and detection limits of the method were determined using a CRM from the Environmental Analysis Laboratory of InSTEC. We applied our methodology to the detection of the metals in naturals waters (Almendares river and tap water) . The data obtained presented in this work is part of the validation file of the proposed analytical procedure for the determination of heavy metals

  17. SPE coupled to AAS trace determination of Cd(II) and Zn(II) in food samples using amine functionalized GMA-MMA-EGDMA terpolymer: Isotherm and kinetic studies.

    Science.gov (United States)

    Islam, Aminul; Kumar, Suneel; Zaidi, Noushi; Ahmad, Hilal

    2016-12-15

    An ethylenediamine functionalized glycidyl methacrylate (GMA) based terpolymeric chelating resin was synthesized for the separation and preconcentration of Cd(II) and Zn(II) by SPE from bread, rice and fruit juice prior to FAAS determination. The resin was characterized by FT-IR, TGA/DTA, SEM, BET analysis and EDS. Synthesized resin shows a good capacity of 53.96mgg(-1) for Cd(II) and 24.19mgg(-1) for Zn(II) at pH 8.0. Five isotherm equilibrium models were studied to explain the sorption phenomenon out of which Langmuir, Dubinin-Radushkevich, Scatchard and Temkin models were found to be the best fitted. The limit of detection (LOD) and limit of quantification (LOQ) were observed to be 1.5 and 5.1μgL(-1) for Cd and 1.2 and 4.1μgL(-1) for Zn. The reliability of the method was investigated by the analysis of SRM and the recovery of analytes from various spiked food samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Direct Involvement of ombB, omaB and omcB Genes in Extracellular Reduction of Fe(III by Geobacter sulfurreducens PCA

    Directory of Open Access Journals (Sweden)

    Yimo eLiu

    2015-10-01

    Full Text Available The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III-citrate and ferrihydrite [a poorly crystalline Fe(III oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS, a porin-like outer-membrane protein (OmbB/OmbC, a periplasmic c-type cytochrome (c-Cyt, OmaB/OmaC and an outer-membrane c-Cyt (OmcB/OmcC. The individual roles of OmbB, OmaB and OmcB in extracellular reduction of Fe(III, however, have remained either uninvestigated or controversial. Here, we showed that replacements of ombB, omaB, omcB and ombB-omaB with an antibiotic gene in the presence of ombC-omaC-omcC had no impact on reduction of Fe(III-citrate by G. sulfurreducens PCA. Disruption of ombB, omaB, omcB and ombB-omaB in the absence of ombC-omaC-omcC, however, severely impaired the bacterial ability to reduce Fe(III-citrate as well as ferrihydrite. These results unequivocally demonstrate an overlapping role of ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III reduction by G. sulfurreducens PCA. Involvement of both ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III reduction reflects the importance of these trans-outer membrane protein complexes in the physiology of this bacterium. Moreover, the kinetics of Fe(III-citrate and ferrihydrite reduction by these mutants in the absence of ombC-omaC-omcC were nearly identical, which suggests that absence of any protein subunit eliminates function of OmaB/OmbB/OmcB protein complex. Finally, orfS was found to have a negative impact on the extracellular reduction of Fe(III-citrate and ferrihydrite in G. sulfurreducens PCA probably by serving as a transcriptional repressor.

  19. Uptake of Cd(II Using Natural Zeolite: Batch and Continuous Fixed-Bed Studies

    Directory of Open Access Journals (Sweden)

    Luna M. LMarashdeh

    2009-12-01

    Full Text Available Uptake of Cd(II ions by natural phillipsite tuff was investigated both in shake-flask and fixed-bed columns. Equilibrium uptake, qe, was found to best fit Langmuir adsorption isotherm with a maximum value of 25.78 mg/g. Percent removal of Cd ions was close to 100% from initial metal ion concentrations in the range 50 - 75 mg/L at 5.0 g zeolite/L. Also, qe was found to vary exponentially with zeolite dose. Break points as high as 350 minutes were obtained from bed treatment at favorable conditions of a low solution flow rate and high bed depth. In batch experiments, equilibrium pH increased to < 8.0 excluding chemical precipitation as part of the removal while in fixed-beds the final pH exceeded 9.0. It is suggested that a sieve action of zeolite porous structure plays a role as an uptake mechanism in addition to the ion exchange.

  20. Synthesis, structural studies and antimicrobial activity of N'-((2Z, 3E)-3-(hydroxyimino)butan-2-ylidene)-2-phenylacetohydrazide and its Co(II), Ni(II) complexes

    Science.gov (United States)

    Karadeniz, Şeyma; Ataol, Cigdem Yuksektepe; Şahin, Onur; İdil, Önder; Bati, Hümeyra

    2018-06-01

    A new aroylhydrazoneoxime, N'-((2Z, 3E)-3-(hydroxyimino)butan-2-ylidene)-2-phenylacetohydrazide ligand (LH2) and its Ni(II) and Co(II) complexes, have been synthesized and characterized by elemental and thermal analyses, IR and UV-vis spectroscopy, magnetic moment and X-ray diffraction. The antimicrobial activities of these compounds were tested by using minimal inhibitory concentration method (MIC). The ligand-containing aroylhydrazone and oxime groups and its Ni complex crystallize in the triclinic system and P 1 - space group, while its Co complex crystallizes in the monoclinic system and the C 2/c space group. X-ray results show that the ligand in the keto form is transformed into enolic form when it forms coordination. From elemental analysis data, the stoichiometry of Co(II) complex was found to be 1:2 (metal/ligand), but 1:1 for Ni(II). IR spectra indicate that the ligand acts as monoanionic NNO- tridentate and coordination takes place form through the oxime nitrogen, imine nitrogen, and enolate oxygen atoms.

  1. Biological activity of Fe(III) aquo-complexes towards ferric chelate reductase (FCR).

    Science.gov (United States)

    Escudero, Rosa; Gómez-Gallego, Mar; Romano, Santiago; Fernández, Israel; Gutiérrez-Alonso, Ángel; Sierra, Miguel A; López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J

    2012-03-21

    In this study we have obtained experimental evidence that confirms the high activity of aquo complexes III and IV towards the enzyme FCR, responsible for the reduction of Fe(III) to Fe(II) in the process of iron acquisition by plants. The in vivo FCR assays in roots of stressed cucumber plants have shown a higher efficiency of the family of complexes III and a striking structure-activity relationship with the nature of the substituent placed in a phenyl group far away from the metal center. The results obtained in this work demonstrate that all the aquo compounds tested interact efficiently with the enzyme FCR and hence constitute a new concept of iron chelates that could be of great use in agronomy.

  2. Dissolution of Fe(III) (hydr) oxides by metal-EDTA complexes

    Science.gov (United States)

    Ngwack, Bernd; Sigg, Laura

    1997-03-01

    The dissolution of Fe(III)(hydr)oxides (goethite and hydrous ferric oxide) by metal-EDTA complexes occurs by ligand-promoted dissolution. The process is initiated by the adsorption of metal-EDTA complexes to the surface and is followed by the dissociation of the complex at the surface and the release of Fe(III)EDTA into solution. The dissolution rate is decreased to a great extent if EDTA is complexed by metals in comparison to the uncomplexed EDTA. The rate decreases in the order EDTA CaEDTA ≫ PbEDTA > ZnEDTA > CuEDTA > Co(II)EDTA > NiEDTA. Two different rate-limiting steps determine the dissolution process: (1) detachment of Fe(III) from the oxide-structure and (2) dissociation of the metal-EDTA complexes. In the case of goethite, step 1 is slower than step 2 and the dissolution rates by various metals are similar. In the case of hydrous ferric oxide, step 2 is rate-limiting and the effect of the complexed metal is very pronounced.

  3. Modification of Natural Zeolite with Fe(III) and Its Application as Adsorbent Chloride and Carbonate ions

    Science.gov (United States)

    Suhartana; Sukmasari, Emmanuella; Azmiyawati, Choiril

    2018-04-01

    The aim of the research is to natural zeolite with Fe(III) using anion exchange process to improve the anion exchange capacity. Natural zeolite was activated using HNO3 1 N and then mixed with FeCl3 solution and refluxed followed by oven and calcination at a temperature of 550°C. The influence of Fe(III) to zeolite was characterized by FTIR while presence of Fe in zeolite characterized by AAS. Zeolite and Zeolite-Fe adsorption capacity of chloride and carbonate anions were determined through adsorption test by variation of pH and contact time. In advanced, and then to determining the Fe adsorbed concentration at Zeolite using UV-Vis spectrophotometer. FTIR analysis result showed that the addition of Fe does not affect the zeolite’s structure but change the intensity of the zeolite spectra. The Fe concentration in Zeolite-Fe of 714 mg L-1, indicate that Fe was present in the zeolite. Both Zeolite and Zeolite-Fe adsorbtion results showed that optimum pH of Chloride anion is 2, with adsorption capacity 2,33 x 10-3 gg-1 and optimum contact time is 8 minutes. While Zeolite and Zeolite-Fe adsorbtion results showed that optimum pH of Carbonate anion is 5, with adsorption capacity 5,31 x 10-3 gg-1 and optimum contact time is 8 minutes.

  4. Structural and thermal characterization of ternary complexes of piroxicam and alanine with transition metals: Uranyl binary and ternary complexes of piroxicam. Spectroscopic characterization and properties of metal complexes

    Science.gov (United States)

    Mohamed, Gehad G.

    2005-12-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO 2(II) complexes with piroxicam (Pir) drug (H 2L 1) and dl-alanine (Ala) (HL 2) and also the binary UO 2(II) complex with Pir were studied. The structures of the complexes were elucidated using elemental, IR, molar conductance, magnetic moment, diffused reflectance and thermal analyses. The UO 2(II) binary complex was isolated in 1:2 ratio with the formula [UO 2(H 2L) 2](NO 3) 2. The ternary complexes were isolated in 1:1:1 (M:H 2L 1:L 2) ratios. The solid complexes were isolated in the general formulae [M(H 2L)(L 2)(Cl) n(H 2O) m]· yH 2O (M = Fe(III) ( n = 2, m = 0, y = 1), Co(II) ( n = 1, m = 1, y = 2) and Ni(II) ( n = 1, m = 1, y = 0)); [M(H 2L)(L 2)](X) z· yH 2O (M = Cu(II) (X = AcO, z = 1, y = 0), Zn(II) (X = AcO, z = 1, y = 3) and UO 2(II) (X = NO 3, z = 1, y = 2)). Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data show that the complexes have octahedral geometry except Cu(II) and Zn(II) complexes have tetrahedral structures. The thermal decomposition of the complexes was discussed in relation to structure, and the thermodynamic parameters of the decomposition stages were evaluated.

  5. Preliminary study on the photoproduction of hydroxyl radicals in aqueous solution with Aldrich humic acid, algae and Fe(III) under high-pressure mercury lamp irradiation.

    Science.gov (United States)

    Liu, Xianli; Xu, Dong; Wu, Feng; Liao, Zhenhuan; Liu, Jiantong; Deng, Nansheng

    2004-03-01

    Under a high-pressure mercury lamp (HPML) and using an exposure time of 4 h, the photoproduction of hydroxyl radicals (*OH) could be induced in an aqueous solution containing humic acid (HA). Hydroxyl radicals were determined by high-performance liquid chromatography using benzene as a probe. The results showed that *OH photoproduction increased from 1.80 to 2.74 microM by increasing the HA concentration from 10 to 40 mg L(-1) at an exposure time of 4 h (pH 6.5). Hydroxyl radical photoproduction in aqueous solutions of HA containing algae was greater than that in the aqueous solutions of HA without algae. The photoproduction of *OH in the HA solution with Fe(III) was greater than that of the solution without Fe(III) at pH ranging from 4.0 to 8.0. The photoproduction of *OH in HA solution with algae with or without Fe(III) under a 250 W HPML was greater than that under a 125 W HPML. The photoproduction of *OH in irradiated samples was influenced by the pH. The results showed that HPML exposure for 4 h in the 4-8 pH range led to the highest *OH photoproduction at pH 4.0.

  6. Anti-inflammatory drugs interacting with Zn(II), Cd(II) and Pt(II) metal ions.

    Science.gov (United States)

    Dendrinou-Samara, C; Tsotsou, G; Ekateriniadou, L V; Kortsaris, A H; Raptopoulou, C P; Terzis, A; Kyriakidis, D A; Kessissoglou, D P

    1998-09-01

    Complexes of Zn(II), Cd(II) and Pt(II) metal ions with the anti-inflammatory drugs, 1-methyl-5-(p-toluoyl)-1H-pyrrole-2-acetic acid (Tolmetin), alpha-methyl-4-(2-methylpropyl)benzeneacetic acid (Ibuprofen), 6-methoxy-alpha-methylnaphthalene-2-acetic acid (Naproxen) and 1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-acetic acid (indomethacin) have been synthesized and characterized. In the structurally characterized Cd(naproxen)2 complex the anti-inflammatory drugs acts as bidentate chelate ligand coordinatively bound to metal ions through the deprotonated carboxylate group. Crystal data for 1: [C32H26O8Cd], orthorhombic, space group P22(1)2(1), a = 5.693(2) (A), b = 8.760(3) (A), c = 30.74(1) (A), V = 1533(1) A3, Z = 2. Antibacterial and growth inhibitory activity is higher than that of the parent ligands or the platinum(II) diamine compounds.

  7. A two-dimensional layered Cd(II) coordination polymer with a three-dimensional supramolecular architecture incorporating mixed multidentate N- and O-donor ligands.

    Science.gov (United States)

    Huang, Qiu-Ying; Su, Ming-Yang; Meng, Xiang-Ru

    2015-06-01

    The combination of N-heterocyclic and multicarboxylate ligands is a good choice for the construction of metal-organic frameworks. In the title coordination polymer, poly[bis{μ2-1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole-κ(2)N(3):N(4)}(μ4-butanedioato-κ(4)O(1):O(1'):O(4):O(4'))(μ2-butanedioato-κ(2)O(1):O(4))dicadmium], [Cd(C4H4O4)(C9H8N6)]n, each Cd(II) ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from three carboxylate groups of three succinate (butanedioate) ligands and two N atoms from two 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole (bimt) ligands. Cd(II) ions are connected by two kinds of crystallographically independent succinate ligands to generate a two-dimensional layered structure with bimt ligands located on each side of the layer. Adjacent layers are further connected by hydrogen bonding, leading to a three-dimensional supramolecular architecture in the solid state. Thermogravimetric analysis of the title polymer shows that it is stable up to 529 K and then loses weight from 529 to 918 K, corresponding to the decomposition of the bimt ligands and succinate groups. The polymer exhibits a strong fluorescence emission in the solid state at room temperature.

  8. Synthesis, spectroscopic characterization, biological studies and DFT calculations on some transition metal complexes of NO donor ligand

    Science.gov (United States)

    Zordok, W. A.; Sadeek, S. A.

    2018-04-01

    Seven new complexes of2-oxo-4,6-diphenyl-1,2-dihyropyridine-3-carbonitrile (L) with Fe(III), Co(II), Cu(II), Zn(II), Y(III), Zr(IV) and La(III) were synthesized. The isolated solid compounds were elucidated from micro analytical, IR, electronic, mass, 1H NMR, magnetic susceptibility measurements and TG/DTG, DTA analyses. The intensity of ν(Ctbnd N) was changed to strong and shifted to around 2200 cm-1. Also, the ν(Cdbnd O) was shifted to higher frequency value (1644 cm-1). The spectra of the complexes indicate that the free ligand is coordinated to the metal ions via nitrogen of carbonitrile group and oxygen of keto group. From DFT calculations the Cu(II) and Fe(III) complexes behave as regular octahedral, while other complexes are distorted octahedral. The value of energy gap of the free ligand (ΔE = 0.3343 eV) is greater than all new complexes, so they are more reactive than free ligand, also the Fe(III) complex (ΔE = 0.0985 eV) is the most reactive complex, while Cu(II) complex (ΔE = 0.3219 eV) is the least reactive complex. The LMCT in case of Zr(IV) complex was resulted from transitions from HOMO-2 (62%), HOMO-1 (16%)and HOMO (25%), while the d-d transition in Fe(III) complex was resulted from HOMO-1(30%), HOMO-2(62%) and HOMO(30%). Also, the metal complexes exhibit antibacterial activity for Gram-positive and Gram-negative and antifungal activity. The Y(III) and Cu(II) complexes are highly significant for Escherichia coli and salmonella typhimurium.

  9. Cr(III,Mn(II,Fe(III,Co(II,Ni(II,Cu(II and Zn(II Complexes with Diisobutyldithiocarbamato Ligand

    Directory of Open Access Journals (Sweden)

    Mohammad Tarique

    2011-01-01

    Full Text Available The synthesis of sulphur and nitrogen containing dithiocarbamato ligand derived from diisobutylamine as well as its coordination compounds with 3d series transition metals is presented. These synthesized compounds were characterized on the basis of elemental analysis, conductometric measurements and IR spectral studies. The analytical data showed the stoichiometry 1:2 and 1:3 for the compounds of the types ML2 {M=Mn(II, Co(II, Ni(II, Cu(II and Zn(II} and M'L3{M'=Cr(III and Fe(III} respectively. The conductometric measurements proved the non-electrolytic behaviour of all the compounds. The bidentate nature of dithiocarbamato moiety was confirmed on the basis of IR spectral data.

  10. Batch desorption studies and multiple sorption-regeneration cycles in a fixed-bed column for Cd(II) elimination by protonated Sargassum muticum

    International Nuclear Information System (INIS)

    Lodeiro, P.; Herrero, R.; Sastre de Vicente, M.E.

    2006-01-01

    The protonated alga Sargassum muticum was employed in batch desorption studies to find the most appropriate eluting agent for Cd(II)-laden biomass regeneration. Eleven types of eluting solutions at different concentrations were tested, finding elution efficiencies higher than 90% for most of the desorbents studied. Total organic carbon and biomass weight loss measurements were made. The reusability of the protonated alga was also studied using a fixed-bed column. Eleven consecutive sorption-regeneration cycles at a flow rate of 10 mL min -1 were carried out for the removal of 50 mg L -1 Cd(II) solution. A 0.1 M HNO 3 solution was employed as desorbing agent. The column was operated during 605 h for sorption and 66 h for desorption, equivalent to a continuous use during 28 days, with no apparent loss of sorption performance. In these cycles, no diminution of the breakthrough time was found; although, a relative loss of sorption capacity, regarding the found in the first cycle, was observed. The slope of the breakthrough curves experiments a gradual increase reaching its maximum value for the last cycle tested (40% greater than for the first one). The maximum Cd(II) concentration elution peak was achieved in 5 min or less, and the metal effluent concentration was always lower than 0.9 mg L -1 after 1 h of elution. The maximum concentration factor was determined to be between 55 and 109

  11. Frequency dependent magneto-transport in charge transfer Co(II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Bikash Kumar; Saha, Shyamal K., E-mail: cnssks@iacs.res.in

    2014-09-01

    A charge transfer chelated system containing ferromagnetic metal centers is the ideal system to investigate the magneto-transport and magneto-dielectric effects due to the presence of both electronic as well as magnetic properties and their coupling. Magneto-transport properties in materials are usually studied through dc charge transport under magnetic field. As frequency dependent conductivity is an essential tool to understand the nature of carrier wave, its spatial extension and their mutual interaction, in the present work, we have investigated frequency dependent magneto-transport along with magnetization behavior in [Co{sub 2}(II)-(5-(4-PhMe)-1,3,4-oxadiazole-H{sup +}-2-thiolate){sub 5}](OAc){sub 4} metal complex to elucidate the nature of above quantities and their response under magnetic field in the transport property. We have used the existing model for ac conduction incorporating the field dependence to explain the frequency dependent magneto-transport. It is seen that the frequency dependent magneto-transport could be well explained using the existing model for ac conduction. -Highlights: • Chelated Co(II) complex is synthesized for magneto-transport applications. • Frequency dependent magneto-transport and magnetization behavior are studied. • Nature of carrier wave, its spatial extension is investigated under magnetic field. • Existing model for ac conduction is used with magnetic field dependence.

  12. Removal of Cd(II) and Pb(II) from aqueous solution using dried water hyacinth as a biosorbent

    Science.gov (United States)

    Ibrahim, Hanan S.; Ammar, Nabila S.; Soylak, Mustafa; Ibrahim, Medhat

    2012-10-01

    Possible usages of dried water hyacinth as biosorbent for metal ions were investigated. A model describing the plant is presented on density functional theory DFT and verified experimentally with FTIR. The model shows that water hyacinth is a mixture of cellulose and lignin. Dried shoot and root were found as good sorbent for Cd(II) and Pb(II) at optimum dosage of 5.0 g/l and pH 5.0; equilibrium time was attained within 30-60 min. The removal using root and shoot were nearly equal and reached more than 75% for Cd and more than 90% for Pb. Finally the second-order kinetics was the applicable model. Hydrogen bonds of reactive functional groups like COOH play the key role in the removal process.

  13. Purification of Industrial Phosphoric Acid using Silica Produced from Rice Husk (Part 1)

    International Nuclear Information System (INIS)

    Gad, H.M.H.; Awwad, N.S.; El-Khalafawy, A.; Daifullah, A.A.M.; El-Reefy, S.A.; Aly, H.F.

    2008-01-01

    In this work, silica was extracted from rice husk (RH) by different techniques and used for removal of some heavy metals from industrial phosphoric acid. The data obtained, showed that removal of Cu(II), Cd(II) and Pb(II) is efficient when the silica used is obtained by acidic treatment, while the removal of Fe(III) and Zn(II) is efficient when the silica used was obtained by alkaline treatment of RH. On the other hand, if silica used is obtained from rice husk ash (RHA) it was found more efficient for the removal of Mn. In all cases, the concentration of silica has been characterized by UV-Spectrophotometry. FTIR, SEM and EDX were used for predication of sorption mechanism

  14. Structural and magnetic characterization of mixed valence Co(II, III)xZn1−xO epitaxial thin films

    International Nuclear Information System (INIS)

    Negi, D.S.; Loukya, B.; Dileep, K.; Sahu, R.; Shetty, S.; Kumar, N.; Ghatak, J.; Pachauri, N.; Gupta, A.; Datta, R.

    2014-01-01

    In this article, we report on the Co atom incorporation, secondary phase formation and composition-dependent magnetic and optical properties of mixed valence Co(II, III) x Zn 1−x O epitaxial thin films grown by pulsed laser deposition. The intended total Co concentration is varied between ∼6–60 at.% with relatively higher concentration of +3 over +2 charge state. Mixed valence Co(II, III) shows high solubility in ZnO (up to 38 at.%) and ferromagnetism is observed in samples with total Co incorporation of ∼29 and 38 at.%. Electron diffraction pattern and high resolution transmission electron microscopy images reveal single crystalline nature of the thin films with wurtzite structure. Co oxide interlayer, with both rock salt and spinel structure, are observed to be formed between the substrate and wurtzite film for total Co concentration at ∼17 at.% and above. Magnetization shows composition dependence with a saturation moment value of ∼93 emu cm −3 and a coercive field of ∼285 Oe observed for ∼38 at.% Co:ZnO films. Ferromagnetism was not observed for films with Co concentration 17 and 9 at.%. The Co oxide interlayer does not show any ferromagnetism. All the films are n-type with carrier concentration ∼10 19 cm −3 . The observed magnetism is probably resulting from direct antiferromagntic exchange interaction between Co 2+ and Co 3+ ions favored by heavy Co alloying giving rise to ferrimagnetism in the system. - Highlights: • Mixed valence Co doped ZnO ferromagnetic single crystal thin film. • Secondary phase formation in terms of CoO and Co3O4 and magnetism is observed only for high Co alloying. • Cathodoluminescence (CL) data showing increase in band gap with Co concentrations

  15. Microbial Reduction of Fe(III) and SO42- and Associated Microbial Communities in the Alluvial Aquifer Groundwater and Sediments.

    Science.gov (United States)

    Lee, Ji-Hoon; Lee, Bong-Joo

    2017-11-25

    Agricultural demands continuously increased use of groundwater, causing drawdown of water table and need of artificial recharge using adjacent stream waters. River water intrusion into groundwater can alter the geochemical and microbiological characteristics in the aquifer and subsurface. In an effort to investigate the subsurface biogeochemical activities before operation of artificial recharge at the test site, established at the bank of Nakdong River, Changwon, South Korea, organic carbon transported from river water to groundwater was mimicked and the effect on the indigenous microbial communities was investigated with the microcosm incubations of the groundwater and subsurface sediments. Laboratory incubations indicated microbial reduction of Fe(III) and sulfate. Next-generation Illumina MiSeq sequences of V4 region of 16S rRNA gene provided that the shifts of microbial taxa to Fe(III)-reducing and/or sulfate-reducing microorganisms such as Geobacter, Albidiferax, Desulfocapsa, Desulfuromonas, and Desulfovibrio were in good correlation with the sequential flourishment of microbial reduction of Fe(III) and sulfate as the incubations progressed. This suggests the potential role of dissolved organic carbons migrated with the river water into groundwater in the managed aquifer recharge system on the indigenous microbial community composition and following alterations of subsurface biogeochemistry and microbial metabolic activities.

  16. Extraction of Eu(III) and Co(II) by dihexyl N,N-diethyl carbamoyl methyl phosphonate (DHDECMP) and thenoyl trifluoroacetone (HTTA)

    International Nuclear Information System (INIS)

    Someda, H.H.; El-Zahhar, A.A.; Shehata, M.K.; El-Naggar, H.A.

    2001-01-01

    The extraction of Eu(III) has been carried out from nitrate solution using DHDECMP. Different parameters affecting the distribution of metal ion have been studied. The distribution of Eu(III) was found to be first order dependent on pH and second order with respect to [DHDECMP]. DHDECMP showed high stability towards γ-radiation dose up to 26.5 megarad. The extraction of Co(II) by either DHDECMP or HTTA from acetate solution showed that it is second order dependent on both the extractant concentration and the pH. Based on the data of the distribution ratio obtained and the calculated thermodynamic parameters; reaction mechanisms are suggested. (author)

  17. Catalytic activity of γ-irradiated transition metal ions in the decomposition of hydrogen peroxide

    International Nuclear Information System (INIS)

    Arnikar, H.J.; Kapadi, A.H.; Gohad, A.S.; Bhosale, S.B.

    1988-01-01

    The catalystic decomposition of hydrogen peroxide by transition metal ions, Fe 2+ , Fe 3+ , Co 2+ and Cu 2+ , adsorbed on neutral α-alumina was studied over the temperature range of 295-313 K. γ-irradiation of the catalysts to a dose of 0.12 MGy enhanced markedly the first order decomposition rate. Negligible in the case of Cu 2+ , the radiation effect increased roughly in the order of the number of unpaired d electrons in these ions: Cu(II), Fe(II), Co(II) and Fe(III). Results are explained on the basis of Kremer's mechanism of electron induced heterogeneous decomposition of H 2 O 2 . The radiation effect is attributed to the initial excess of electrons released from traps in the beginning of the reaction

  18. Desulfovibrio frigidus sp. nov. and Desulfovibrio ferrireducens sp. nov., psychrotolerant bacteria isolated from Arctic fjord sediments (Svalbard) with the ability to reduce Fe(III)

    DEFF Research Database (Denmark)

    Vandieken, Verona; Knoblauch, Christian; Jørgensen, Bo Barker

    2006-01-01

    fermentation products such as hydrogen, formate and lactate with sulfate as the electron acceptor. Sulfate could be replaced by sulfite, thiosulfate or elemental sulfur. Poorly crystalline and soluble Fe(III) compounds were reduced in sulfate-free medium, but no growth occurred under these conditions...

  19. Determination of trace impurities in high-purity iron using salting-out of polyoxyethylene-type surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Matsumiya, Hiroaki, E-mail: h-matsu@numse.nagoya-u.ac.jp [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Sakane, Yuto; Hiraide, Masataka [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2009-10-19

    To an iron sample solution was added polyoxyethylene-4-isononylphenoxy ether (PONPE, nonionic surfactant, average number of ethylene oxides 7.5) and the surfactant was aggregated by the addition of lithium chloride. The iron(III) matrix was collected into the condensed surfactant phase in >99.9% yields, leaving trace metals [e.g., Ti(IV), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II), and Bi(III)] in the aqueous phase. After removing the surfactant phase by centrifugation, the remaining trace metals were concentrated onto an iminodiacetic acid-type chelating resin. The trace metals were desorbed with dilute nitric acid for the determination by inductively coupled plasma-mass spectrometry or graphite-furnace atomic absorption spectrometry. The proposed separation method allowed the analysis of high-purity iron metals for trace impurities at low {mu}g g{sup -1} to ng g{sup -1} levels.

  20. Graphite electrodes modified by 8-hydroxyquinolines and its application for the determination of copper in trace levels

    Directory of Open Access Journals (Sweden)

    Sousa Eliane R. de

    2006-01-01

    Full Text Available Surface modification by 8-hydroxyquinoline-5-sulfonic acid (8-HQS or 8-hydroxyquinoline (8-HQ on a graphite electrode through irreversible adsorption is reported in this paper. Cyclic voltammetry was used to characterize the surface behavior. The modified surface exhibited an affinity to chelating Cu(II in the solution, forming a Cu(II complex, which was employed for Cu(II trace analysis. Of the metals Zn, Ni, Pb, Co, and Cd, none presented interference until excess concentration of 10 times. Significant interference could be observed from Co(II, Cd(II and Fe(II for an excess concentration of 100 times on the analyte. A differential pulse voltammetry, combined with a preconcentrating-stripping process and a standard addition method was used for the analysis. A detection limit for trace copper determination in water, such as 5.110-9 mol L-1, was obtained.

  1. INFLUENCIA DEL pH SOBRE LA ADSORCIÓN EN CARBÓN ACTIVADO DE Cd(II) Y Ni(II) DESDE SOLUCIONES ACUOSAS

    OpenAIRE

    Paola Rodríguez; Liliana Giraldo; Juan Carlos Moreno

    2011-01-01

    La adsorción de iones Cd(II) y Ni(II) desde soluciones acuosas sobre carbón activado se estudia con diferentes valores de pH. La adsorción de los iones se realiza en dos condiciones de pH de la solución: en la primera el pH varía en el transcurso del proceso a medida que los iones se adsorben y en la segunda el pH se mantiene fijo durante la adsorción. Cuando no se realiza un control en el pH de la solución se observan incrementos en la concentración de los io...

  2. Synthesis of Novel Polymeric Resins by Gamma Irradiation for Separation of In(III) ions from Cd(II) in Aqueous Media

    International Nuclear Information System (INIS)

    Massoud, A.; Abou El-Nour, F.; Killa, H.

    2012-01-01

    In this work, Zn(II)polymethacrylates and poly(acrylamide-acrylic acid) were prepared by gamma irradiation polymerization technique of the corresponding monomer at 30 kGy. The polymeric resins were mixed with Indium ions to determine its capacity in aqueous solutions using batch experiment. The adsorption efficiency of obtained polymeric resins toward In(III) and Cd(II) in different experimental conditions was established. Batch and column methods were applied for separation of indium and cadmium. The effects of various eluants such as H 2 SO 4 , NH 4 NO 3 , HNO 3 and HCl on the recovery of both metal ions were studied. The polymeric resins may be regenerated using 3M HCl solutions.

  3. Fluorometric determination of aluminium (III) and cadmium (II) by solvent extraction of the ternary complex composed of metal ion, 8-hydroxy-5-quinolinesulfonic acid, and methyltrioctylammonium ion

    International Nuclear Information System (INIS)

    Kondoh, Yukihiro; Kataoka, Masamitsu; Kambara, Tomihito

    1982-01-01

    A fluorometric micro determination of aluminium (III) and cadmium (II) using the formation of metal-8-hydroxy-5-quinolinesulfonic acid-capriquat (methyltrioctylammonium) ternary complex is described. These complexes are easily extracted into chloroform phase and the extract emits a strong fluorescence. Spectra of aluminium (III) and cadmium (II) ternary complexes have the excitation maximum at 396 nm and 400 nm, and emission maximum at 501 nm and 524 nm, respectively. Fluorescence intensity of the aluminium (III) and cadmium (II) ternary complexes extracted into chloroform showed the constant and maximum values in the pH range of aqueous phase from 5.3 to 8.5 and 8.1 to 8.5, respectively. The calibration curves for aluminium (III) and cadmium (II) show good proportionality int the concentration range from 0.5 to 5.0 and 1.0 to 50.0 μg, respectively. The relative standard deviation observed with four measurements was found to be 1.8% for 0.5 μg of aluminium (III) and 1.1% for 10.0 μg of cadmium (II). The effect of diverse ions is studied and a 25-fold amount of Cu(II), Ni(II), Fe(II), Fe(III) in weight gave errors, however, the interferences were easily eliminated by the addition of appropriate masking agent. In the determination of cadmium (II), an equal amount of Co(II), Ni(II), Mn(II), Fe(III) and twice amount of Al(III) gave negative errors, however, the interference of Fe(III) and Al(III) were also eliminated as above. (author)

  4. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation.

    Directory of Open Access Journals (Sweden)

    Lavinia Liliana Ruta

    Full Text Available In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I, Zn(II or Cd(II. The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3 were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyperaccumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II, Zn(II or Cd(II, but also non-canonical metal ions, such as Co(II, Mn(II or Ni(II, myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.

  5. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.; Stemmler, T.L.; Gil, J.A.; Mateos, L.M.; Rosen, B.P.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.

  6. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation.

    Science.gov (United States)

    Ruta, Lavinia Liliana; Lin, Ya-Fen; Kissen, Ralph; Nicolau, Ioana; Neagoe, Aurora Daniela; Ghenea, Simona; Bones, Atle M; Farcasanu, Ileana Cornelia

    2017-01-01

    In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP) and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyper)accumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II), Zn(II) or Cd(II), but also non-canonical metal ions, such as Co(II), Mn(II) or Ni(II), myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.

  7. Electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clays. Role in U and Hg(II) transformations

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Michelle [Univ. of Iowa, Iowa City, IA (United States)

    2016-08-31

    During this project, we investigated Fe electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clay minerals. We used selective chemical extractions, enriched Fe isotope tracer experiments, computational molecular modeling, and Mössbauer spectroscopy. Our findings indicate that structural Fe(III) in clay minerals is reduced by aqueous Fe(II) and that electron transfer occurs when Fe(II) is sorbed to either basal planes and edge OH-groups of clay mineral. Findings from highly enriched isotope experiments suggest that up to 30 % of the Fe atoms in the structure of some clay minerals exhanges with aqueous Fe(II). First principles calculations using a small polaron hopping approach suggest surprisingly fast electron mobility at room temperature in a nontronite clay mineral and are consistent with temperature dependent Mössbauer data Fast electron mobility suggests that electrons may be able to conduct through the mineral fast enough to enable exchange of Fe between the aqueous phase and clay mineral structure. over the time periods we observed. Our findings suggest that Fe in clay minerals is not as stable as previously thought.

  8. Synthesis, characterization and biological activity of some transition metals with Schiff base derived from 2-thiophene carboxaldehyde and aminobenzoic acid

    Science.gov (United States)

    Mohamed, Gehad G.; Omar, M. M.; Hindy, Ahmed M. M.

    2005-12-01

    Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 °C and ionic strength μ = 0.1 (1 M NaCl). The complexes are found to have the formulae [M(HL) 2](X) n· yH 2O (where M = Fe(III) (X = Cl, n = 3, y = 3), Co(II) (X = Cl, n = 2, y = 1.5), Ni(II) (X = Cl, n = 2, y = 1) and UO 2(II) (X = NO 3, n = 2, y = 0)) and [M(L) 2] (where M = Cu(II) (X = Cl) and Zn(II) (X = AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO 2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, Δ H*, Δ S* and Δ G* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.

  9. Predictive modelling of Fe(III) precipitation in iron removal process for bioleaching circuits.

    Science.gov (United States)

    Nurmi, Pauliina; Ozkaya, Bestamin; Kaksonen, Anna H; Tuovinen, Olli H; Puhakka, Jaakko A

    2010-05-01

    In this study, the applicability of three modelling approaches was determined in an effort to describe complex relationships between process parameters and to predict the performance of an integrated process, which consisted of a fluidized bed bioreactor for Fe(3+) regeneration and a gravity settler for precipitative iron removal. Self-organizing maps were used to visually evaluate the associations between variables prior to the comparison of two different modelling methods, the multiple regression modelling and artificial neural network (ANN) modelling, for predicting Fe(III) precipitation. With the ANN model, an excellent match between the predicted and measured data was obtained (R (2) = 0.97). The best-fitting regression model also gave a good fit (R (2) = 0.87). This study demonstrates that ANNs and regression models are robust tools for predicting iron precipitation in the integrated process and can thus be used in the management of such systems.

  10. Synthesis, spectral, antitumor, antioxidant and antimicrobial studies on Cu(II), Ni(II) and Co(II) complexes of 4-[(1H-Benzoimidazol-2-ylimino)-methyl]-benzene-1,3-diol.

    Science.gov (United States)

    El-wakiel, Nadia; El-keiy, Mai; Gaber, Mohamed

    2015-08-05

    A new Schiff base of 2-aminobenzimidazole with 2,4-dihydroybezaldehyde (H₃L), and its Cu(II), Ni(II) and Co(II) complexes have been synthesized and characterized by elemental analyses, molar conductance, thermal analysis (TGA), inductive coupled plasma (ICP), magnetic moment measurements, IR, EI-mass, UV-Vis. and ESR spectral studies. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as dibasic tridentate ligand coordinating via deprotonated OH, NH and azomethine nitrogen atom. The results showed that Co(II) and Ni(II) complexes have tetrahedral structure while Cu(II) complexes has octahedral geometry. The kinetic and thermodynamic parameters of the thermal decomposition stages have been evaluated. The studied complexes were tested for their in vitro antimicrobial activities against some bacterial strains. The anticancer activity of the ligand and its metal complexes is evaluated against human liver Carcinoma (HEPG2) cell. These compounds exhibited a moderate and weak activity against the tested HEPG2 cell lines with IC₅₀ of 9.08, 18.2 and 19.7 μg/ml for ligand, Cu(II) and Ni(II) complexes, respectively. In vitro antioxidant activity of the newly synthesized compounds has also been evaluated. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Two new Zn(II) and Cd(II) coordinastion polymers based on amino-tetrazole and phenylcarboxylate: Syntheses, topological structures and photoluminescent properties

    International Nuclear Information System (INIS)

    Liu, Dong-Sheng; Sui, Yan; Chen, Weng-Tong; Huang, Jian-Gen; Chen, Jian-Zhong; Huang, Chang-Cang

    2012-01-01

    Two Zn(II) and Cd(II) compounds with the in-situ generated ligand of 5-amino-tetrazolate (atz − ) were prepared from the hydrothermal reactions of the corresponding Cd or Zn(II) salts with phenylcarboxylate, and characterized by elemental analysis, IR spectroscopy, and TGA. The results of X-ray crystallographic analysis reveal that compound [Zn 2 (BZA)(atz) 2 (OH)] n (1) (BZA=benzoic acid) presents a two-dimensional (2D) “hcb” topological network constructed from the ZnN 2 O 2 tetrahedra. In compound [Cd 6 (atz) 6 (PTA) 3 ] n (2) (PTA=terephthalic acid), the identical [Cd 3 (atz) 3 )] 3+ n clusters are connected by atz ligands to generate a 2D cationic layer, and the neighboring cationic layers are pillared by PTA giving birth to 3D network. After simplifying, the complicated 3D network of 2 can be presented as an unprecedented (4, 4, 10)-connected trinodal topology. The formations of the structures show a good example that using the combination of the in-situ generated ligand and other coligand synthetic strategy can construct interesting topological structures. The thermal stabilities and fluorescent properties of the complexes have also been studied. - Graphical abstract: Two d 10 metal complexes have been synthesized by employing mixed-ligand synthetic approach. Complex 1 presents a 2D “hcb” topological network. Complex 2 shows an unprecedented (4, 4, 10)-connected trinodal topology. Highlights: ► Coligand synthetic strategy was applied to obtain new MOFs with useful properties. ► Two new Zn(II) and Cd(II) complexes were constructed from the mixed-ligand. ► Topologically, compound 2 presented an unprecedented (4, 4, 10)-connected trinodal topology. ► The two compounds may be excellent candidates for potential photoactive material.

  12. Influencia del ph sobre la adsorción en carbón activado de cd(ii) y ni(ii) desde soluciones acuosas

    OpenAIRE

    Rodríguez, Paola; Giraldo, Liliana; Moreno, Juan Carlos

    2011-01-01

    La adsorción de iones Cd(II) y Ni(II) desde soluciones acuosas sobre carbón activado se estudia con diferentes valores de pH. La adsorción de los iones se realiza en dos condiciones de pH de la solución: en la primera el pH varía en el transcurso del proceso a medida que los iones se adsorben y en la segunda el pH se mantiene fijo durante la adsorción. Cuando no se realiza un control en el pH de la solución se observan incrementos en la concentración de los io...

  13. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.

    Science.gov (United States)

    Garg, Shikha; Wang, Kai; Waite, T David

    2017-05-16

    Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.

  14. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate

    Science.gov (United States)

    Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia

    2015-10-01

    Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.

  15. Zeolite-encapsulated Co(II), Mn(II), Cu(II) and Cr(III) salen complexes as catalysts for efficient selective oxidation of benzyl alcohol

    Science.gov (United States)

    Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.

    2018-01-01

    Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.

  16. Separation of thorium and uranium by liquid-liquid extraction from mixed aqueous nitric acidic-methanolic solutions

    International Nuclear Information System (INIS)

    Schmid, E.R.; Kenndler, E.

    1976-01-01

    A method is described for the separation of Th and U from each other and from other elements, usually occuring in minerals, by liquid-liquid extraction with Aliquat Nitrate (tricaprylmethyl ammoniumnitrate, 6 vol%) in benzene from a mixed solution of 2.5 M HNO 3 and methanol (1:1 volume ratio). Permissible upper concentration ratios of interfering elements, such as Li, Na, K, Mg, Ca, Al, Cu, Co(II), Fe(III), Mn(II), Ti(IV), La(III), U(VI), Cl - , ClO 4 - , SO 4 2- , PO 4 3- , have been determined. Following the separation, Th has been determined by spectrophotometry using Thorin, and U by fluorometry. Results for yield under varying conditions, together with elemental concentrations in the ppm range for U and Th in minerals, are given. (B.T.)

  17. The Nature of the intermediates in the reactions of Fe(III)- and Mn(III)-microperoxidase-8 with H2O2 : a rapid kinetic study

    NARCIS (Netherlands)

    Primus, J.L.; Grunenwald, S.; Hagedoorn, P.L.; Albrecht-Gary, A.M.; Mandon, D.; Veeger, C.

    2002-01-01

    Kinetic studies were performed with microperoxidase-8 (Fe(III)MP-8), the proteolytic breakdown product of horse heart cytochrome c containing an octapeptide linked to an iron protoporphyrin IX. Mn(III) was substituted for Fe(III) in Mn(III)MP-8.The mechanism of formation of the reactive metal-oxo

  18. Cu(II) and Co(II) complexes of benzimidazole derivative: Structures, catecholase like activities and interaction studies with hydrogen peroxide

    Science.gov (United States)

    Kumari, Babli; Adhikari, Sangita; Matalobos, Jesús Sanmartín; Das, Debasis

    2018-01-01

    Present study describes the synthesis and single crystal X-ray structures of two metal complexes of benzimidazole derivative (PBI), viz. the Cu(II) complex, [Cu(PBI)2(NCS)]ClO4 (1) and a Co(II) complex, [Co(PBI)2(NCS)1.75Cl0.25] (2). The Cu(II) complex (1) shows catecholase like activity having Kcat = 1.84 × 104 h-1. Moreover, interactions of the complexes with hydrogen peroxide have been investigated using fluorescence spectroscopy. The interaction constant of 1 and 2 for H2O2 are 6.67 × 102 M-1 and 1.049 × 103 M-1 while their detection limits for H2O2 are 3.37 × 10-7 M and 2.46 × 10-7 M respectively.

  19. The formation of light absorbing insoluble organic compounds from the reaction of biomass burning precursors and Fe(III)

    Science.gov (United States)

    Lavi, Avi; Lin, Peng; Bhaduri, Bhaskar; Laskin, Alexander; Rudich, Yinon

    2017-04-01

    Dust particles and volatile organic compounds from fuel or biomass burning are two major components that affect air quality in urban polluted areas. We characterized the products from the reaction of soluble Fe(III), a reactive transition metal originating from dust particles dissolution processes, with phenolic compounds , namely, guaiacol, syringol, catechol, o- and p- cresol that are known products of incomplete fuel and biomass combustion but also from other natural sources such as humic compounds degradation. We found that under acidic conditions comparable to those expected on a dust particle surface, phenolic compounds readily react with dissolved Fe(III), leading to the formation of insoluble polymeric compounds. We characterized the insoluble products by x-ray photoelectron microscopy, UV-Vis spectroscopy, mass spectrometry, elemental analysis and thermo-gravimetric analysis. We found that the major chromophores formed are oligomers (from dimers to pentamers) of the reaction precursors that efficiently absorb light between 300nm and 500nm. High variability of the mass absorption coefficient of the reaction products was observed with catechol and guaiacol showing high absorption at the 300-500nm range that is comparable to that of brown carbon (BrC) from biomass burning studies. The studied reaction is a potential source for the in-situ production of secondary BrC material under dark conditions. Our results suggest a reaction path for the formation of bio-available iron in coastal polluted areas where dust particles mix with biomass burning pollution plumes. Such mixing can occur, for instance in the coast of West Africa or North Africa during dust and biomass burning seasons

  20. Development of a C3-symmetric benzohydroxamate tripod: Trimetallic complexation with Fe(III), Cr(III) and Al(III)

    Science.gov (United States)

    Baral, Minati; Gupta, Amit; Kanungo, B. K.

    2016-06-01

    The design, synthesis and physicochemical characterization of a C3-symmetry Benzene-1,3,5-tricarbonylhydroxamate tripod, noted here as BTHA, are described. The chelator was built from a benzene as an anchor, symmetrically extended by three hydroxamate as ligating moieties, each bearing O, O donor sites. A combination of absorption spectrophotometry, potentiometry and theoretical investigations are used to explore the complexation behavior of the ligand with some trivalent metal ions: Fe(III), Cr(III), and Al(III). Three protonation constants were calculated for the ligand in a pH range of 2-11 in a highly aqueous medium (9:1 H2O: DMSO). A high rigidity in the molecular structure restricts the formation of 1:1 (M/L) metal encapsulation but shows a high binding efficiency for a 3:1 metal ligand stoichiometry giving formation constant (in β unit) 28.73, 26.13 and 19.69 for [M3L]; Mdbnd Fe(III), Al(III) and Cr(III) respectively, and may be considered as an efficient Fe-carrier. The spectrophotometric study reveals of interesting electronic transitions occurred during the complexation. BTHA exhibits a peak at 238 nm in acidic pH and with the increase of pH, a new peak appeared at 270 nm. A substantial shifting in both of the peaks in presence of the metal ions implicates a s coordination between ligand and metal ions. Moreover, complexation of BTHA with iron shows three distinct colors, violet, reddish orange and yellow in different pH, enables the ligand to be considered for the use as colorimetric sensor.

  1. Experimental and theoretical investigation of vibrational spectra of coordination polymers based on TCE-TTF.

    Science.gov (United States)

    Olejniczak, Iwona; Lapiński, Andrzej; Swietlik, Roman; Olivier, Jean; Golhen, Stéphane; Ouahab, Lahcène

    2011-08-01

    The room-temperature infrared and Raman spectra of a series of four isostructural polymeric salts of 2,3,6,7-tetrakis(2-cyanoethylthio)-tetrathiafulvalene (TCE-TTF) with paramagnetic (Co(II), Mn(II)) and diamagnetic (Zn(II), Cd(II)) ions, together with BF(4)(-) or ClO(4)(-) anions are reported. Infrared and Raman-active modes are identified and assigned based on theoretical calculations for neutral and ionized TCE-TTF using density functional theory (DFT) methods. It is confirmed that the TCE-TTF molecules in all the materials investigated are fully ionized and interact in the crystal structure through cyanoethylthio groups. The vibrational modes related to the C=C stretching vibrations of TCE-TTF are analyzed assuming the occurrence of electron-molecular vibration coupling (EMV). The presence of the antisymmetric C=C dimeric mode provides evidence that charge transfer takes place between TCE-TTF molecules belonging to neighboring polymeric networks. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Column Chromatography Of Co(II), Zn(II) And Eu(III) Using Pistachio Shell And Different Mobile Phases

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.A.

    2009-01-01

    Pistachio shell particles (0.5-1 mm) have been applied as the stationary phase for studying the column chromatography of Co(II), Zn(II) and Eu(III) at room temperature; 26 + - 1 oC. This solid sorbent has been characterized by thermogravimetric analysis, infra-red spectroscopy and X-ray diffraction. Its surface area and percent of swelling have been also determined. Different eluting agents have been used for eluting the sorbed elements. The elution curves have been done from which the distribution coefficients (K d ), number of theoretical plates (N) and heights equivalent to theoretical plates (H) have been determined. Column performance studies have been conducted for a representative system under certain experimented conditions and Van Deemter equation has been applied. Thermodynamic studies have been applied and thermodynamic functions ( δG 0 ,δH 0 andδ S 0 ) have been calculated for this representative system by determining K d at three different room temperatures (18, 26 and 37 + - 1o C).

  3. Structural characterization and Hirshfeld surface analysis of a CoII complex with imidazo[1,2-a]pyridine

    Directory of Open Access Journals (Sweden)

    Saikat Kumar Seth

    2018-05-01

    Full Text Available A new mononuclear tetrahedral CoII complex, dichloridobis(imidazo[1,2-a]pyridine-κN1cobalt(II, [CoCl2(C7H6N22], has been synthesized using a bioactive imidazopyridine ligand. X-ray crystallography reveals that the solid-state structure of the title complex exhibits both C—H...Cl and π–π stacking interactions in building supramolecular assemblies. Indeed, the molecules are linked by C—H...Cl interactions into a two-dimensional framework, with finite zero-dimensional dimeric units as building blocks, whereas π–π stacking plays a crucial role in building a supramolecular layered network. An exhaustive investigation of the diverse intermolecular interactions via Hirshfeld surface analysis enables contributions to the crystal packing of the title complex to be quantified. The fingerprint plots associated with the Hirshfeld surface clearly display each significant interaction involved in the structure, by quantifying them in an effective visual manner.

  4. Chemical Stability of Cd(II and Cu(II Ionic Imprinted Amino-Silica Hybrid Material in Solution Media

    Directory of Open Access Journals (Sweden)

    Buhani, Narsito, Nuryono, Eko Sri Kunarti

    2015-12-01

    Full Text Available Chemical stability of Cd(II and Cu(II ionic imprinted hybrid material of (i-Cd-HAS and i-Cu-HAS derived from silica modification with active compound (3-aminopropyl-trimethoxysilane (3-APTMS has been studied in solution media. Stability test was performed with HNO3 0.1 M (pH 1.35 to investigate material stability at low pH condition, CH3COONa 0.1 M (pH 5.22 for adsorption process optimum pH condition, and in the water (pH 9.34 for base condition. Material characteristics were carried out with infrared spectrophotometer (IR and atomic absorption spectrophotometer (AAS. At interaction time of 4 days in acid and neutral condition, i-Cd-HAS is more stable than i-Cu-HAS with % Si left in material 95.89 % (acid media, 43.82 % (close to neutral, and 9.39 % (base media.Keywords: chemical stability, amino-silica hybrid, ionic imprinting technique

  5. Chemical Stability of Cd(II and Cu(II Ionic Imprinted Amino-Silica Hybrid Material in Solution Media

    Directory of Open Access Journals (Sweden)

    Buhani Buhani

    2012-02-01

    Full Text Available Chemical stability of Cd(II and Cu(II ionic imprinted amino-silica (HAS material of (i-Cd-HAS and i-Cu-HAS derived from silica modification with active compound (3-aminopropyl-trimethoxysilane (3-APTMS has been studied in solution media.  Stability test was performed with HNO3 0.1 M (pH 1.35 to investigate material stability at low pH condition, acetat buffer at pH 5.22 for adsorption process optimum pH condition, and in the water (pH 9.34 for base condition.  Material characteristics were carried out with infrared spectrophotometer (IR and atomic absorption spectrophotometer (AAS.  At interaction time of 4 days in acid and neutral condition, i-Cd-HAS is more stable than i-Cu-HAS with % Si left in material 95.89 % (acid media, 43.82 % (close to neutral, and 9.39 % (base media.Keywords: chemical stability, amino-silica hybrid, ionic imprinting technique.

  6. Kinetics and mechanism of ligand-exchange reactions of Cd(II) chelates

    Energy Technology Data Exchange (ETDEWEB)

    Nivorozhkin, L.E.; Kalabin, G.A.; Nivorozhkin, A.L.; Valeev, R.B.; Minkin, V.I.

    1987-03-01

    Tetrahedral Cd(II) bis(5-thio(or seleno)pyrazole-4-carboxaldiminates) of types II and III have been synthesized for the first time. The kinetics of the degenerate ligand exchange and enantiomerization of the complexes obtained have been studied by dynamic /sup 111/Cd, /sup 77/Se, and /sup 1/H (s = 1/2) NMR. The rate of intramolecular enantiomerization (k = 1/tau) is more than an order of magnitude greater than the corresponding values for processes of degenerate ligand exchange (a second-order reaction) determined from the dynamics of the averaging of the /sup 111/Cd-/sup 77/Se and /sup 111/Cd-N=CH spin-spin coupling constants. The cleavage and formation processes of the Cd-Se and Cd-N bonds are isoenergetic (..delta.. G/sub 298//sup not equal to/ = 14.4 kcal/mole for chelate II with X = Se and R = CH/sub 2/C/sub 6/H/sub 5/). The free energies of activation of degenerate ligand exchange determined form the dynamics of the averaging of the /sup 111/Cd N=CH spin-spin coupling constant increase from 12.7 to 17.9 kcal/mole along the following series for R: C/sub 2/H/sub 5/ < Ar < CH/sub 2/C/sub 6/H/sub 5/ < t-C/sub 4/H/sub 9/ < cyclo-C/sub 6/H/sub 11/. Replacement of the sulfur atom in the chelate ring by selenium results in increases in the rates of ligand exchange. A mechanism of degenerate ligand exchange has been proposed.

  7. Detoxification of Pesticide-Containing Wastewater with FeIII, Activated Carbon and Fenton Reagent and Its Control Using Three Standardized Bacterial Inhibition Tests

    Directory of Open Access Journals (Sweden)

    Eduard Rott

    2017-12-01

    Full Text Available Discharge of toxic industrial wastewaters into biological wastewater treatment plants may result in inhibition of activated sludge bacteria (ASB. In order to find an appropriate method of detoxification, the wastewater of a pesticide-processing plant in Vietnam was treated with three different methods (FeIII, powdered activated carbon (PAC, Fenton (FeII/H2O2 analyzing the detoxification effect with the nitrification inhibition test (NIT, respiration inhibition test (RIT and luminescent bacteria test (LBT. The heterotrophic ASB were much more resistant to the wastewater than the autotrophic nitrificants. The NIT turned out to be more suitable than the RIT since the NIT was less time-consuming and more reliable. In addition, the marine Aliivibrio fischeri were more sensitive than the nitrificants indicating that a lack of inhibition in the very practical and time-efficient LBT correlates with a lack of nitrification inhibition. With 95%, the Fenton method showed the highest efficiency regarding the chemical oxygen demand (COD removal. Although similar COD removal (60–65% was found for both the FeIII and the PAC method, the inhibitory effect of the wastewater was reduced much more strongly with PAC. Both the NIT and the LBT showed that the PAC and Fenton methods led to a similar reduction in the inhibitory effect.

  8. Cd(II) and Zn(II) Complexes Containing N,N'-Bidentate N-(Pyridin-2-ylmethylene)cyclopentanamine: Synthesis, Characterisation and Methyl Methacrylate Polymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yu Jin; Lee, Ha Jun; Lee, Hyo Sun [Kyungpook National University, Daeju (Korea, Republic of)

    2014-09-15

    The reaction between [CdBr{sub 2}·4H{sub 2}O] and anhydrous [ZnCl{sub 2}] with N,N'-bidentate N-(pyridin-2-ylmethylene)- cyclopentanamine (impy) in ethanol yields dimeric [(impy)Cd(μ-Br)Br]2 and monomeric [(impy)ZnCl{sub 2}] complexes, respectively. The X-ray crystal structure of Cd(II) and Zn(II) complexes revealed that the cadmium atom in [(impy)Cd(μ-Br)Br]2 and zinc in [(impy)ZnCl{sub 2}] formed a distorted trigonal–bipyramidal and tetrahedral geometry, respectively. Both complexes showed moderate catalytic activity for the polymerisation of methyl methacrylate (MMA) in the presence of modified methylaluminoxane (MMAO), with polymethylmethacrylate (PMMA) syndiotacticity of about 0.70.

  9. Synthesis, spectral and thermal studies of pyridyl adducts of Zn(II) and Cd(II) dithiocarbamates, and their use as single source precursors for ZnS and CdS nanoparticles

    OpenAIRE

    Onwudiwe, Damian C.; Strydom, Christien A.; Jordaan, Anine; Oluwafemi, Oluwatobi S.; Hosten, Eric

    2014-01-01

    The synthesis, spectroscopic characterisation, and thermal studies of pyridyl adducts of Zn(II) and Cd(II) complexes of N-ethyl-N-phenyl dithiocarbamate, represented as [ZnL2py] and [CdL2py2], are reported. Single-crystal X-ray structural analysis of the Zn compound showed that it is five-coordinate with four sulphurs from dithiocarbamate and one nitrogen from pyridine in a distorted square pyramidal geometry. The thermogravimetric studies indicate that the zinc and cadmium compou...

  10. Antibacterial Co(II, Ni(II, Cu(II and Zn(II complexes with biacetyl-derived Schiff bases

    Directory of Open Access Journals (Sweden)

    MUHAMMAD IMRAN

    2010-08-01

    Full Text Available The condensation reactions of biacetyl with ortho-hydroxyaniline and 2-aminobenzoic acid to form bidendate NO donor Schiff bases were studied. The prepared Schiff base ligands were further utilized for the formation of metal chelates having the general formula [ML2(H2O2] where M = Co(II, Ni(II, Cu(II and Zn(II and L = HL1 and HL2. These new compounds were characterized by conductance measurements, magnetic susceptibility measurements, elemental analysis, and IR, 1H-NMR, 13C-NMR and electronic spectroscopy. Both Schiff base ligands were found to have a mono-anionic bidentate nature and octahedral geometry was assigned to all metal complexes. All the complexes contained coordinated water which was lost at 141–160 °C. These compounds were also screened for their in vitro antibacterial activity against four bacterial species, namely: Escherichia coli, Staphylococcus aureus, Salmonella typhi and Bacillus subtilis. The metal complexes were found to have greater antibacterial activity than the uncomplexed Schiff base ligands.

  11. Synthesis, Spectral and Antimicrobial Studies of Some Co(II, Ni(II and Cu(II Complexes Containing 2-Thiophenecarboxaldehyde Moiety

    Directory of Open Access Journals (Sweden)

    A. P. Mishra

    2012-01-01

    Full Text Available Some new Schiff base metal complexes of Co(II, Ni(II and Cu(II derived from 3-chloro-4-fluoroaniline (HL1 and 4-fluoroaniline (HL2 with 2-thiophenecarboxaldehyde have been synthesized and characterized by elemental analysis, FT-IR, FAB-mass, molar conductance, electronic spectra, ESR and magnetic susceptibility. The complexes exhibit coordination number 4 or 6. The complexes are colored and stable in air. Analytical data revealed that all the complexes exhibited 1:2 (metal: ligand ratio. FAB-mass data show degradation pattern of the complexes. The Schiff base and metal complexes show a good activity against the bacteria; B. subtilis, E. coli and S. aureus and fungi A. niger, A. flavus and C. albicans. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases.

  12. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction.

    Science.gov (United States)

    Beliaev, A S; Saffarini, D A

    1998-12-01

    Iron and manganese oxides or oxyhydroxides are abundant transition metals, and in aquatic environments they serve as terminal electron acceptors for a large number of bacterial species. The molecular mechanisms of anaerobic metal reduction, however, are not understood. Shewanella putrefaciens is a facultative anaerobe that uses Fe(III) and Mn(IV) as terminal electron acceptors during anaerobic respiration. Transposon mutagenesis was used to generate mutants of S. putrefaciens, and one such mutant, SR-21, was analyzed in detail. Growth and enzyme assays indicated that the mutation in SR-21 resulted in loss of Fe(III) and Mn(IV) reduction but did not affect its ability to reduce other electron acceptors used by the wild type. This deficiency was due to Tn5 inactivation of an open reading frame (ORF) designated mtrB. mtrB encodes a protein of 679 amino acids and contains a signal sequence characteristic of secreted proteins. Analysis of membrane fractions of the mutant, SR-21, and wild-type cells indicated that MtrB is located on the outer membrane of S. putrefaciens. A 5.2-kb DNA fragment that contains mtrB was isolated and completely sequenced. A second ORF, designated mtrA, was found directly upstream of mtrB. The two ORFs appear to be arranged in an operon. mtrA encodes a putative 10-heme c-type cytochrome of 333 amino acids. The N-terminal sequence of MtrA contains a potential signal sequence for secretion across the cell membrane. The amino acid sequence of MtrA exhibited 34% identity to NrfB from Escherichia coli, which is involved in formate-dependent nitrite reduction. To our knowledge, this is the first report of genes encoding proteins involved in metal reduction.

  13. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.

    Science.gov (United States)

    Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung

    2016-03-15

    Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Synthesis, characterization and biological studies of 2-(4-nitro phenylaminocarbonyl)benzoic acid and its complexes with Cr(III), Co(II), Ni(II), Cu(II) and Zn(II)

    International Nuclear Information System (INIS)

    Aqeel Ashraf, M.; Jamil Maah, M.; Yusuf, I.

    2012-01-01

    Cr(III), Co(II), Ni(II), Cu(II) and Zn(II) salts of 2-(4-nitro phenylaminocarbonyl)benzoic acid were characterized by physical, analytical and spectroscopic studies and checked for their in-vitro antimicrobial activity against three bacterial strains, Mycobacterium smegmatis (Gram +ve), Escherichia coli (Gram -ve), Pseudomonas aeuroginosa (Gram -ve) and three fungal strains, Nigrospora oryzae, Aspergillus niger and Candida albicans. The antimicrobial activities of the metal complexes - were found to be greater than those of 2-(4-nitro phenylaminocarbonyl)benzoic acid alone.

  15. Synthesis and characterization of polychelates of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), oxovanadium(IV) and dioxouranium(VI) with 2,4-dihydroxybenzaldehyde-urea-formaldehyde polymer

    International Nuclear Information System (INIS)

    Patel, G.C.; Pancholi, H.B.; Patel, M.M.

    1991-01-01

    Polychelates of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), oxovandium(IV) and dioxouranium(VI) with 2,4-dihydroxybenzaldehyde (2,4-DB)-urea(U)-formaldehyde(F) polymer (2,4-DBUF) have been prepared. Elemental analyses of the polychelates indicate a metal:ligand ratio of 1:2. The structures of the polychelates have been assigned on the basis of their elemental analyses, IR, reflectance spectra, magnetic moment, thermal data and their electrical conductivity behaviour. (author). 1 tab., 18 refs

  16. Determination of Optimal Temperature for Biosorption of Heavy Metal Mixture from Aqueous Solution by Pretreated Biomass of Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Javad Yousefi

    2012-01-01

    Full Text Available Biosorption is a novel technology that uses dead and inactive biomass for removal of heavy metals from aqueous solution. Some parameters such as temperature, contact time, solution pH, initial metal concentration, biosorbent dose and also agitating speed of solution and biosorbent mixing can affect the amount of metal sorption by biosorbent. The aim of this study was to investigate the effects of different treatments of temperatures (25, 35, 45 and 55oC on biosorption of metals mixture in order to determine optimal temperature for more metals removal from aqueous solution. This study uses dead and pretreated biomass of Aspergillus niger with 0.5N NaOH for removal of Zn(II, Co(II and Cd(II. In all temperature treatments and in the case of all of heavy metals, maximum amount of metal sorption and concentration decrease was occurred in first 5 minutes and achieved to equilibrium after 20 minute. The percent of metals sorption show growth trend with temperature increase. Between 4 experimental treatments, 55oC treatment was shown maximum sorption and 25oC was shown minimum sorption amount. The percent of Cr(II sorption was increase from 28.5% in 25oC to 44.7% in 55oC. Also, this increase was from 40% to 58% for Cd(II and from 37.7% to 65.6% for Zn(II. About 60% of increase in sorption by A. niger was due to increase in temperature. Therefore the amount of metals sorption can be increase, only with temperature increase and without any biomass addition.

  17. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II, Co(II, Ni(II, Cu(II, and Zn(II] metals

    Directory of Open Access Journals (Sweden)

    Nahid Nishat

    2016-09-01

    Full Text Available A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II, Co(II, Ni(II, Cu(II and Zn(II. All the polymeric compounds were characterized by (FT-IR spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA and antibacterial activities. Polymer complexes of Mn(II, Co(II and Ni(II show octahedral geometry, while polymer complexes of Cu(II and Zn(II show square planar and tetrahedral geometry, respectively. The TGA revealed that all the polymer metal complexes are more thermally stable than their parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM-D-5338-93 standards of biodegradable polymers by CO2 evolution method which says that coordination decreases biodegradability. The antibacterial activity was screened with the agar well diffusion method against some selected microorganisms. Among all the complexes, the antibacterial activity of the Cu(II polymer–metal complex showed the highest zone of inhibition because of its higher stability constant.

  18. Concurrent nitrate and Fe(III) reduction during anaerobic biodegradation of phenols in a sandstone aquifer

    DEFF Research Database (Denmark)

    Broholm, Mette; Crouzet, C.; Arvin, Erik

    2000-01-01

    The biodegradation of phenols (similar to 5, 60, 600 mg 1(-1)) under anaerobic conditions (nitrate enriched and unamended) was studied in laboratory microcosms with sandstone material and groundwater from within an anaerobic ammonium plume in an aquifer, The aqueous phase was sampled and analyzed...... for phenols and selected redox sensitive parameters on a regular basis. An experiment with sandstone material from specific depth intervals from a vertical profile across the ammonium plume was also conducted. The miniature microcosms used in this experiment were sacrificed for sampling for phenols...... and selected redox sensitive parameters at the end of the experiment. The sandstone material was characterized with respect to oxidation and reduction potential and Fe(II) and Fe(III) speciation prior to use for all microcosms and at the end of the experiments for selected microcosms. The redox conditions...

  19. Fixation of metallic sulfosalicylate complexes on an anionic exchange resin

    International Nuclear Information System (INIS)

    Cahuzac, S.

    1969-06-01

    Since sulfosalicylate ions have acid-base properties, sulfosalicylate complexes have an apparent stability which varies with the ph. As a result, the fixation of sulfo-salicylates on an anionic exchange resin depends on the ph of the solution in equilibrium with the resin. This research has been aimed at studying the influence of the ph on the fixation on an anionic exchange resin (Dowex 1 x 4) of sulfosalicylate anions on the one hand, and of metallic sulfosalicylate complexes on the other hand. In the first part of this work, a determination has been made, by frontal analysis of the distribution of sulfosalicylate ions in the resin according to the total sulfosalicylate I concentration in the aqueous solution in equilibrium with the resin. The exchange constants of these ions between the resin and the solution have been calculated. In the second part, a study has been made of the fixation of anionic sulfosalicylate complexes of Fe(III), Al(III), Cr(III), Cu(II), Ni(II), Co(II), Zn(II), Mn(II), Cd(II), Fe(II) and UO 2 2+ . By measuring the partition coefficients of these different elements between the resin and the solution it has been possible to give interpretation for the modes of fixation of the metallic ions, and to calculate their exchange constant between the resin and the solution. The relationship has been established for each metallic element studied, between its partition coefficient, the ph and the total concentration of the complexing agent in solution. Such a relationship makes it possible to predict, for given conditions, the nature of the species in solution and in the resin, as well as the partition coefficient of a metallic, element. Finally, in the third part of the work, use has been made of results obtained previously, to carry out some separations (Ni 2+ - Co 2+ ; Ni 2+ - Co 2+ - Cu 2+ ; UO 2 2+ - Fe 3+ ; UO 2 2+ - Cr 3+ ; UO 2 2+ - Cu 2+ ; UO 2 2+ - Ni 2+ ; UO 2 2+ - Co 2+ ; UO 2 2+ - Mn 2+ and UO 2 2+ - Cd 2+ ), as well as the purification

  20. Synthesis, structural, spectroscopic and biological studies of Schiff base complexes

    Science.gov (United States)

    Diab, M. A.; El-Sonbati, A. Z.; Shoair, A. F.; Eldesoky, A. M.; El-Far, N. M.

    2017-08-01

    Schiff base ligand 4-((pyridin-2- yl)methyleneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (PDMP) and its complexes were prepared and characterized on the basis of elemental analysis, IR, mass spectra and thermogravimetric analysis. All results confirm that the complexes have 1:1 (M: PMDP) stoichiometric formula [M(PMDP)Cl2H2O ] (M = Cu(II), Co(II), Ni(II) and Mn(II)), [Cd(PMDP)Cl2] and the ligand behaves as a bi/tridentate forming five-membered chelating ring towards the metal ions, bonding through azomethine nitrogen/exocyclic carbonyl oxygen, azomethine pyridine nitrogen and exocyclic carbonyl oxygen. The shift in the band positions of the groups involved in coordination has been utilized to estimate the metal-nitrogen and/or oxygen bond lengths. The complexes of Co(II), Ni(II) and Cu(II) are paramagnetic and the magnetic as well as spectral data suggest octahedral geometry, whereas the Cd(II) complex is tetrahedral. The XRD studies show that both the ligand and its metal complexes (1 and 3) show polycrystalline with crystal structure. Molecular docking was used to predict the binding between PMDP ligand and the receptors. The corrosion inhibition of mild steel in 2 M HCl solution by PDMP was explored utilizing potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and (EFM) electrochemical frequency modulation method. Potentiodynamic polarization demonstrated that PDMP compound is mixed-type inhibitor. EIS spectra exhibit one capacitive loop and confirm the protective ability. The percentage of inhibition efficiency was found to increase with increasing the inhibitor concentration.

  1. Synthesis and characterization of ligational behavior of curcumin drug towards some transition metal ions: Chelation effect on their thermal stability and biological activity

    Science.gov (United States)

    Refat, Moamen S.

    2013-03-01

    Complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with curcumin ligand as antitumor activity were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-Vis, IR, Raman, ESR, 1H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as a monobasic bidentate ligand towards the central metal ion with an oxygen's donor atoms sequence of both sbnd OH and Cdbnd O groups under keto-enol structure. From the microanalytical data, the stoichiometry of the complexes 1:2 (metal:ligand) was found. The ligand and their metal complexes were screened for antibacterial activity against Escherichia Coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa and fungicidal activity against Aspergillus flavus and Candida albicans.

  2. Uptake of metal ions by a silica-based tetraphenylporphyrin sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Pyrzynska, K.; Sadowska, M.; Trojanowicz, M.

    1999-09-01

    The [5-p-carboxyphenyl-10,15,20-triphenyl]porphyrin (TPP) covalently attached to aminopropyl silica gel was examined with respect to the sorption of transition metal ions. The distribution coefficients (K{sub d}) are reported for some metal ions with this new sorbent as a function of pH. It was found that in optimum pH conditions the sorption of Cu(II) and Fe(III) is much faster than that of Co(II) and Cr(III). The binding of metal ions is strongly affected by the presence of various species accelerating the complex formation. The application of porphyrin ligands for preconcentration and metal-matrix separation was also examined using complex formation in solution coupled with an anion exchange resin and column chelation procedure, e.g. sorption of metal on an anion exchanger previously loaded with tetra(4-carboxyphenyl)porphyrin.

  3. Mandelazo I as a reagent for Zr(IV) determination

    International Nuclear Information System (INIS)

    Rakha, T.H.; Filip, P.; Stefan, N.

    1984-01-01

    A spectrometric study of the reaction of the Zr(IV) ions with Mandelazo I was carried out. Absorption spectra revealed that the maximum absorption of the zirconium compound appears at a wavelength (316 nm) different from the maxima of the reagent (253 and 390 nm). Beer-Lambert law is followed for zirconium concentrations of the order of 8.8 x 10 -5 M (i.e. 8 μg Zr(IV)/mL). Possible interferences of ions such as Be(II), Cu(II), Zn(II), Al(III), Th(IV), U(VI), Mn(II), Fe(III), Co(II) and Ni(II) were investigated in connection with some masking agents such as SO 4 2- and C 2 O 4 2- . Also, the solid state Zr(IV)- Mandelazo I compound was prepared and characterized by nitrogen and thermogravimetric analyses

  4. Reductive immobilization of U(VI) in Fe(III) oxide-reducing subsurface sediments: Analysis of coupled microbial-geochemical processes in experimental reactive transport systems. Final Scientific/Technical Report-EMSP 73914

    International Nuclear Information System (INIS)

    Eric E. Roden Matilde M. Urrutia Mark O. Barnett Clifford R. Lange

    2005-01-01

    The purpose of this research was to provide information to DOE on microbiological and geochemical processes underlying the potential use of dissimilatory metal-reducing bacteria (DMRB) to create subsurface redox barriers for immobilization of uranium and other redox-sensitive metal/radionuclide contaminants that were released to the environment in large quantities during Cold War nuclear weapons manufacturing operations. Several fundamental scientific questions were addressed in order to understand and predict how such treatment procedures would function under in situ conditions in the subsurface. These questions revolved the coupled microbial-geochemical phenomena which are likely to occur within a redox barrier treatment zone, and on the dynamic interactions between hydrologic flux and biogeochemical process rates. First, we assembled a robust conceptual understanding and numerical framework for modeling the kinetics of microbial Fe(III) oxide reduction and associated DMRB growth in sediments. Development of this framework is a critical prerequisite for predicting the potential effectiveness of DMRB-promoted subsurface bioremediation, since Fe(III) oxides are expected to be the primary source of electron-accepting capacity for growth and maintenance of DMRB in subsurface environments. We also defined in detail the kinetics of microbial (enzymatic) versus abiotic, ferrous iron-promoted reduction of U(VI) in the presence and absence of synthetic and natural Fe(III) oxide materials. The results of these studies suggest that (i) the efficiency of dissolved U(VI) scavenging may be influenced by the kinetics of enzymatic U(VI) reduction in systems with relative short fluid residence times; (2) association of U(VI) with diverse surface sites in natural soils and sediments has the potential to limit the rate and extent of microbial U(VI) reduction, and in turn modulate the effectiveness of in situ U(VI) bioremediation; and (3) abiotic, ferrous iron (Fe(II)) drive n U

  5. Column Chromatography Of Co(II), Zn(II) And Eu(III) Using Pistachio Shell And Different Mobile Phases

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, A A [Nuclear Chemistry Department, Radioisotopes Production Division, Hot Laboratories Centre, Atomic Energy Authority, Cairo (Egypt)

    2009-07-01

    Pistachio shell particles (0.5-1 mm) have been applied as the stationary phase for studying the column chromatography of Co(II), Zn(II) and Eu(III) at room temperature; 26{sup +}-{sup 1}oC. This solid sorbent has been characterized by thermogravimetric analysis, infra-red spectroscopy and X-ray diffraction. Its surface area and percent of swelling have been also determined. Different eluting agents have been used for eluting the sorbed elements. The elution curves have been done from which the distribution coefficients (K{sub d}), number of theoretical plates (N) and heights equivalent to theoretical plates (H) have been determined. Column performance studies have been conducted for a representative system under certain experimented conditions and Van Deemter equation has been applied. Thermodynamic studies have been applied and thermodynamic functions ( {delta}G{sup 0} ,{delta}H{sup 0} and{delta} S{sup 0}) have been calculated for this representative system by determining K{sub d} at three different room temperatures (18, 26 and 37{sup +}-{sup 1o}C)

  6. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17.

    Science.gov (United States)

    Li, Xiaomin; Liu, Liang; Liu, Tongxu; Yuan, Tian; Zhang, Wei; Li, Fangbai; Zhou, Shungui; Li, Yongtao

    2013-06-01

    Quinone groups in exogenous electron shuttles can accelerate extracellular electron transfer (EET) from bacteria to insoluble terminal electron acceptors, such as Fe(III) oxides and electrodes, which are important in biogeochemical redox processes and microbial electricity generation. However, the relationship between quinone-mediated EET performance and electron-shuttling properties of the quinones remains incompletely characterized. This study investigates the effects of a series of synthetic quinones (SQs) on goethite reduction and current generation by a fermenting bacterium Klebsiella pneumoniae L17. In addition, the voltammetric behavior and electron transfer capacities (ETCs) of SQ, including electron accepting (EAC) and donating (EDC) capacities, is also examined using electrochemical methods. The results showed that SQ can significantly increase both the Fe(III) reduction rates and current outputs of L17. Each tested SQ reversibly accepted and donated electrons as indicated by the cyclic voltammograms. The EAC and EDC results showed that Carmine and Alizarin had low relative capacities of electron transfer, whereas 9,10-anthraquinone-2,6-disulfonic acid (AQDS), 2-hydroxy-1,4-naphthoquinone (2-HNQ), and 5-hydroxy-1,4-naphthoquinone (5-HNQ) showed stronger relative ETC, and 9,10-anthraquinone-2-carboxylic acid (AQC) and 9,10-anthraquinone-2-sulfonic acid (AQS) had high relative ETC. Enhancement of microbial goethite reduction kinetics and current outputs by SQ had a good linear relationship with their ETC, indicating that the effectiveness of quinone-mediated EET may be strongly dependent on the ETC of the quinones. Therefore, the presence of quinone compounds and fermenting microorganisms may increase the diversity of microbial populations that contribute to element transformation in natural environments. Moreover, ETC determination of different SQ would help to evaluate their performance for microbial EET under anoxic conditions. Copyright © 2013 Elsevier

  7. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water

    International Nuclear Information System (INIS)

    Guo, Xiaoyao; Du, Bin; Wei, Qin; Yang, Jian; Hu, Lihua; Yan, Liangguo; Xu, Weiying

    2014-01-01

    Highlights: • Graphenes magnetic composite nanoparticles (Fe 3 O 4 -GS) were used to adsorb metal ions. • The adsorption of metal ions onto Fe 3 O 4 -GS could be well interpreted by the Freundlich equation. • The adsorption of metal ions onto Fe 3 O 4 -GS fit pseudo-second order kinetic model. • Thermodynamic studies illustrated that the adsorption process was endothermic and spontaneous in nature. - Abstract: In the present study, a kind of graphenes magnetic material (Fe 3 O 4 -GS) was prepared by compositing graphene sheet with ferroferric oxide, and shown to be effictive for removing Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) ions from aqueous solution. The synthesized sorbent was characterized by SEM, TEM, FTIR, XRD, XPS and BET, respectively. The pH ZPC value of the sorbent was estimated to be 3.5 by alkaline-titration methods. Fe 3 O 4 -GS can be simply recovered from water with magnetic separation at low magnetic field within one minute. The sorption capacities of the metals were 17.29, 27.95, 23.03, 27.83 and 22.07 mg g −1 for Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II), respectively. Kinetic data showed good correlation with pseudo-second-order equation and the Freundlich model was found to fit for the isotherm data of all the heavy metal ions. It was found that the metals sorption was accomplished mainly via chelation or ion exchange. The results of thermodynamic studies illustrate that the adsorption process was endothermic and spontaneous in nature

  8. Formation of Rosette-Shaped Cd(II) Thiolate Coordination Polymer in Aqueous Solution and Conversion to CdS by Calcination

    International Nuclear Information System (INIS)

    Han, Sung June; Lee, Myung Han; Jeon, Young Jin

    2010-01-01

    We have synthesized rosette-shaped Cd-MSA CPs by a reaction between Cd(II) ions and MSA in aqueous solution and calcined the obtained CPs to obtain CdS microstructures. Upon calcination, the morphology of the CPs does not undergo any significant change, but the particle diameter decreases by 74%. This indicates that our strategy can be used for the synthesis of CPs from other metal thiolates as well. We expect this strategy to be suitable for the preparation of important metal chalcogenide nanostructures and microstructures that can be used in future applications. Coordination polymers (CPs) have attracted considerable attention because of their potential applications in gas storage, catalysis, ion exchange, separation, biomedicine, etc. For use in the above mentioned applications, the structure and morphology of these CPs have been controlled by judicious choice of metals, ligands, and reaction conditions. Recently, Oh and coworkers have reported that CPs can be successfully converted into metal oxides by calcination without causing any significant change in their morphology

  9. Micellar effect on metal-ligand complexes of Co(II, Ni(II, Cu(II and Zn(II with citric acid

    Directory of Open Access Journals (Sweden)

    Nageswara Rao Gollapalli

    2009-12-01

    Full Text Available Chemical speciation of citric acid complexes of Co(II, Ni(II, Cu(II and Zn(II was investigated pH-metrically in 0.0-2.5% anionic, cationic and neutral micellar media. The primary alkalimetric data were pruned with SCPHD program. The existence of different binary species was established from modeling studies using the computer program MINIQUAD75. Alkalimetric titrations were carried out in different relative concentrations (M:L:X = 1:2:5, 1:3:5, 1:5:3 of metal (M to citric acid. The selection of best chemical models was based on statistical parameters and residual analysis. The species detected were MLH, ML2, ML2H and ML2H2. The trend in variation of stability constants with change in mole fraction of the medium is explained on the basis of electrostatic and non-electrostatic forces. Distributions of the species with pH at different compositions of micellar media are also presented.

  10. Carbonised jackfruit peel as an adsorbent for the removal of Cd(II) from aqueous solution.

    Science.gov (United States)

    Inbaraj, B Stephen; Sulochana, N

    2004-08-01

    The fruit of the jack (Artocarpus heterophyllus) is one of the popular fruits in India, where the total area under this fruit is about 13,460 ha. A significant amount of peel (approximately 2,714-11,800 kg per tree per year) is discarded as agricultural waste, as apart from its use as a table fruit, it is popular in many culinary preparations. Treatment of jackfruit peel with sulphuric acid produced a carbonaceous product which was used to study its efficiency as an adsorbent for the removal of Cd(II) from aqueous solution. Batch experiments were performed as a function of process parameters; agitation time, initial metal concentration, adsorbent concentration and pH. Kinetic analyses made with Lagergren pseudo-first-order, Ritchie second-order and modified Ritchie second-order models showed better fits with modified Ritchie second-order model. The Langmuir-Freundlich (Sips equation) model best defined the experimental equilibrium data among the three isotherm models (Freundlich, Langmuir and Langmuir-Freundlich) tested. Taking a particular metal concentration, the optimum dose and pH required for the maximum metal removal was established. A complete recovery of the adsorbed metal ions from the spent adsorbent was achieved by using 0.01 M HCl.

  11. Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Kim, Doo Won; Kim, Bohye; Yang, Kap Seung [Chonnam National Univ., Gwangju (Korea, Republic of); Lim, Yongkyun; Park, Eun Nam [Microfilter Co., Ltd, Seoul (Korea, Republic of)

    2013-02-15

    The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents.

  12. Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

    International Nuclear Information System (INIS)

    Kim, Dae Ho; Kim, Doo Won; Kim, Bohye; Yang, Kap Seung; Lim, Yongkyun; Park, Eun Nam

    2013-01-01

    The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents

  13. Polymerization of Methyl Methacrylate Catalyzed by Co(II), Cu(II), and Zn(II) Complexes Bearing N-Methyl-N-((pyridin-2-yl)methyl) cyclohexanamine

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Seoung Hyun; Lee, Hyosun [Kyungpook National University, Daegu (Korea, Republic of); Shin, Jongwon [POSTECH, Pohang (Korea, Republic of); Nayab, Saira [Shaheed Benazir Bhutto University, Sheringal (Pakistan)

    2016-05-15

    We demonstrated the synthesis and characterization of Co(II), Cu(II), and Zn(II) complexes ligated to N-methyl-N-((pyridin-2-yl)methyl)cyclohexanamine. The complex [Co(nmpc)Cl{sub 2}] in the presence of MMAO showed the highest catalytic activity for MMA polymerization at 60 °C compared with its Zn(II) and Cu(II) analogs. The metal center showed an obvious influence on the catalytic activity, although this appeared to have no effect on the stereo-regularity of the resultant PMMA. X-ray diffraction analysis revealed that [Co(nmpc)Cl{sub 2}] and [Zn(nmpc)Cl{sub 2}] crystallized in the monoclinic system with space group P2{sub 1}/c and existed as monomeric and solvent-free complexes.

  14. [Fe(III)(dmbpy)(CN)4]-: a new building block for designing single-chain magnets.

    Science.gov (United States)

    Toma, Luminita Marilena; Pasán, Jorge; Ruiz-Pérez, Catalina; Lloret, Francesc; Julve, Miguel

    2012-11-28

    We herein present the synthesis and magneto-structural study of a new family of heterobimetallic chains of general formula {[Fe(III)(dmbpy)(CN)(4)](2)M(II)(H(2)O)(2)}(n)·pnH(2)O [dmbpy = 4,4'-dimethyl-2,2'-bipyridine; M = Mn (2), Cu (3), Ni (4) and Co (5) with p = 4 (2), 3 (3), 9 (4) and 3.5 (5)] which were prepared by using the mononuclear PPh(4)[Fe(III)(dmbpy)(CN)(4)]·3H(2)O (1) building block (PPh(4)(+) = tetraphenylphosphonium) as a ligand toward fully solvated M(II) ions. The structure of 1 consists of discrete [Fe(III)(dmbpy)(CN)(4)](-) anions, tetraphenylphosphonium cations and noncoordinated water molecules. Complexes 2-5 are isostructural compounds whose structure consists of neutral 4,2-wave like heterobimetallic chains of formula {[Fe(III)(dmbpy)(CN)(4)](2)M(II)(H(2)O)(2)}(n) where the [Fe(III)(dmbpy)(CN)(4)](-) entity adopts a bis-monodentate coordination mode toward trans-[M(II)(H(2)O)(2)] units through two of its four cyanide groups in cis positions. 1 exhibits the magnetic behaviour of magnetically isolated six-coordinate low-spin Fe(III) complexes with an important orbital contribution. 2 behaves as ferrimagnetic Fe(III)(2)Mn(II) chains, whereas 3-5 exhibit intrachain ferromagnetic couplings between the low-spin Fe(III) and either Cu(II) (3), Ni (4) or Co(II) (5) as well as frequency-dependence of the out-of-phase ac susceptibility signals below 3.0 (3), 5.5 (4) and 5.0 K (5). The relaxation time and the energy to reverse the magnetization of 3-5 are related to the anisotropy of the M(II) center and to the intra- and interchain magnetic interactions. Unprecedentedly in the world of cyanide-bearing complexes, 5 exhibits a double slow relaxation of the magnetization.

  15. Flow injection spectrophotometric determination of Fe(III) and V(v)

    International Nuclear Information System (INIS)

    Elrahman, Azza Mohamed

    2000-01-01

    Phenylflourone was synthesized with the objective of developing a method for determining Fe(III) and V(V) in the pressence of micelles using flow injectoin technique. Phenylflourone showed a wavelength of maximum absorption at 412 nm which was not affected by the presence of miccelles i.e. n-hexadodecylpyridinum bromide and sodium n-dodecylsulphate, but they have different effects on the absorbance of PHF. The example of PHF-Fe(III) and PHF-V(V) showed the wavelength of the maximum absorption at 4428 nm and 412 nm, respectively. Presence of micelles shifted the wavelength of the two complexes to a lower one. Generally the addition of micelles increased the absorbance of phenylflourone metal ions complexes except for PHF-V(V) with hexadodecylpyridinum bromide. With flow injection technique two approaches were practiced the use of micelle as a carrier or water as a carrier. Sodium n-dodecylsulphate increased the absorbance of the two complexes when it was used as a carrier or added to the metal ions using water as carrier. On the other hand, the use of n-hexadodecylpyridinum bromide as carrieer increased the absorbance of the complexes but it decreased the absorbance when it was used in conjunction with metal ions and water as a carrier. After establishing the optimum FI conditions for PHF-Fe(III) and PHF-V(V) complexes, the calibration curves were construction and produced semiliner response in the concentration range studied. Ti(IV) III, Mo(VI) showed a positive interference in PHF-Fe(III) and PHF-V(V) complexes, respectively.(Author)

  16. Speciative Determination of Dissolved Inorganic Fe(II), Fe(III) and Total Fe in Natural Waters by Coupling CPE with FAAS

    International Nuclear Information System (INIS)

    Gurkan, R.; Altunay, N.

    2013-01-01

    A new cloud point extraction (CPE) method for the preconcentration of trace iron speciation in natural waters prior to determination by flame atomic absorption spectrometry (FAAS) was developed in the present study. In this method, Fe(II) sensitively and selectively reacts with Calcon carboxylic acid (CCA) in presence of cetylpyridinium chloride (CPC) yielding a hydrophobic complex at pH 10.5, which is then entrapped in surfactant-rich phase. Total Fe was accurately and reliably determined after the reduction of Fe(III) to Fe(II) with sulfite. The amount of Fe(III) in samples was determined from the difference between total Fe and Fe(II). CPC was used not only as an auxiliary ligand in CPE, but also as sensitivity enhancement agent in FAAS. The nonionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114) was used as an extracting agent. The analytical variables affecting CPE efficiency were investigated in detail. The preconcentration/enhancement factors of 50 and 82 respectively, were obtained for the preconcentration of Fe(II) with 50 mL solution. Under the optimized conditions, the detection limit of Fe(II) in linear range of 0.2-60 μg L/sup -1/ was 0.06 μg L/sup -1/. The relative standard deviation was 2.7 percentage (20 μg L/sup -1/, N: 5), recoveries for Fe(II) were in range of 99.0-102.0 percentage for all water samples including certified reference materials (CRMs). In order to verify its accuracy, two CRMs were analyzed and the results obtained were statistically in good agreement with the certified values. (author)

  17. Zeolite-Y entrapped Ru(III and Fe(III complexes as heterogeneous catalysts for catalytic oxidation of cyclohexane reaction

    Directory of Open Access Journals (Sweden)

    Chetan K. Modi

    2017-02-01

    Full Text Available Catalysis is probably one of the greatest contributions of chemistry to both economic growth and environmental protection. Herein we report the catalytic behavior of zeolite-Y entrapped Ru(III and Fe(III complexes with general formulae [M(VTCH2·2H2O]+-Y and [M(VFCH2·2H2O]+-Y [where, VTCH = vanillin thiophene-2-carboxylic hydrazone and VFCH = vanillin furoic-2-carboxylic hydrazone] over the oxidation of cyclohexane forming cyclohexanone and cyclohexanol. The samples were corroborated by various physico-chemical techniques. These zeolite-Y based complexes are stable and recyclable under current reaction conditions. Amongst them, [Ru(VTCH2⋅2H2O]+-Y showed higher catalytic activity (41.1% with cyclohexanone (84.6% selectivity.

  18. Speciation of binary complexes of Pb(II and Cd(II with L-asparagine in dimethyl sulfoxide - water mixtures

    Directory of Open Access Journals (Sweden)

    C. N. Rao

    2016-02-01

    Full Text Available Chemical speciation of L-Asparagine complexes of Pb(II and Cd(II in presence of (0-50% v/v dimethyl sulfoxide(DMSO-water mixtures has been studied potentiometrically at 303.0 K and at an ionic strength of 0.16 mol L-1. The models containing different number of species were refined by using the computer program MINIQUAD75. The number of species in the models is chosen based on exhaustive modeling. The predominant species formed are of the type ML2, ML2H, and ML2H2. The best fit chemical models were chosen based on statistical parameters. The convenience of the models is ascertained by studying the effect of errors in concentrations of ingredients. The trend in variation of stability constants with change in the composition of medium is explained on the basis of predominant electrostatic and non-electrostatic forces. Chemical speciation was discussed based on the distribution diagrams. DOI: http://dx.doi.org/10.4314/bcse.v30i1.6

  19. 31P and 1H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: Relaxation measurements with Mn(II) and Co(II)

    International Nuclear Information System (INIS)

    Jarori, G.K.; Ray, B.D.; Rao, B.D.N.

    1989-01-01

    The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of 31 P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the δ protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of 31 P relaxation rates in E-MnADP and E-MnATP yields activation energies (ΔE) in the range 6-10 kcal/mol. Thus, the 31 P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E-CoADP and E-CoATP exhibit frequency dependence and ΔE values in the range 1-2 kcal/mol; i.e., these rates depend upon 31 P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 angstrom, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the 1 H spin-lattice relaxation rate of the δ protons of arginine in the E-MnADP-Arg complex was also measured at three frequencies. From the frequency dependence of the relaxation rate an effective τ C of 0.6 ns has also been calculated, which is most likely to be the electron spin relaxation rate (τ S1 ) for Mn(II) in this complex. The distance estimated on the basis of the reciprocal sixth root of the average relaxation rate of the δ protons was 10.9 ± 0.3 angstrom

  20. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    International Nuclear Information System (INIS)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua; Yu, Hai-Tao

    2016-01-01

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H_2bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2′-bipy)(H_2O)]_n (1), [Cd(bzgluO)(2,4′-bipy)_2(H_2O)·3H_2O]_n (2), [Cd(bzgluO)(phen)·H_2O]_n (3), [Cd(bzgluO)(4,4′-bipy)(H_2O)]_n (4), [Cd(bzgluO)(bpp)(H_2O)·2H_2O]_n (5) were synthesized (2,2′-bipy=2,2′-bipyridine, 2,4′-bipy=2,4′-bipyridine, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1–2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π–π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π–π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H_2bzgluO. Luminescent properties of 1–5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated. - Graphical abstract: Five new Cd(II) metal coordination compounds with H_2bzgluO and different N-donor ligands were synthesized and characterized. Compounds 1, 2 and 3 present 1D structures, compounds 4 and 5 display 2D networks. Results indicate that auxiliary ligands and coordination modes of H_2bzgluO play an important role in governing the formation of final frameworks, and the hydrogen-bonding and π–π stacking interactions contribute the formation of the diverse supramolecular architectures. Furthermore, the different crystal structures influence the emission spectra significantly. - Highlights: • It is rarely reported that complexes prepared with N-benzoyl-L-glutamic acid. • Each complex displays diverse structures and different supramolecular

  1. Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India

    Directory of Open Access Journals (Sweden)

    Ghanshyam Kumar Satyapal

    2018-03-01

    Full Text Available In middle Gangetic plain, high arsenic concentration is present in water, which causes a significant health risk. Total 48 morphologically distinct arsenite resistant bacteria were isolated from middle Gangetic plain. The minimum inhibitory concentration (MIC values of arsenite varied widely in the range 1–15 mM of the isolates. On the basis of their MIC, two isolates, AK1 (KY569423 and AK9 (KY569424 were selected. The analysis of the 16S rRNA gene sequence of selected isolates revealed that they are belong to the genus Pseudomonas. The AgNO3 test based microplate method revealed that isolates, AK1 and AK9, have potential in transformation of arsenic species. Further, the presence of aoxR, aoxB and aoxC genes in the both isolated strain AK1 and AK9 was confirmed, which play an important role in arsenic bioremediation by arsenite oxidation. Isolated strains also showed heavy metal resistance against Cr(IV, Ni(II, Co(II, Pb(II, Cu(II, Hg(II, Ag(I and Cd(II.

  2. Laser-ignited frontal polymerization of shape-controllable poly(VI-co-AM) hydrogels based on 3D templates toward adsorption of heavy metal ions

    Science.gov (United States)

    Fan, Suzhen; Liu, Sisi; Wang, Xiao-Qiao; Wang, Cai-Feng; Chen, Su

    2016-06-01

    Given the increasing heavy metal pollution issue, fast preparation of polymeric hydrogels with excellent adsorption property toward heavy metal ions is very attractive. In this work, a series of poly( N-vinylimidazole-co-acrylamide) (poly(VI-co-AM)) hydrogels were synthesized via laser-ignited frontal polymerization (LIFP) for the first time. The dependence of frontal velocity and temperature on two factors monomer ratios and initiator concentrations was systematically investigated. Poly(VI-co-AM) hydrogels with any self-supporting shapes can be synthesized by a one-step LIFP in seconds through the application of 3D templates. These shape-persistent hydrogels are pH-responsive and exhibit excellent adsorption/desorption characteristics toward Mn(II), Zn(II), Cd(II), Ni(II), Cu(II) and Co(II) ions, and the adsorption conformed to the pseudo-second-order kinetic model. The reusability of the hydrogels toward mental ions adsorption was further researched, which suggested that the hydrogels can be reused without serious decrease in adsorption capacity. This work might open a promising strategy to facilely prepare shape-controllable hydrogels and expand the application of LIFP.

  3. Radiochemical separation and their application to neutron activation analysis technique

    International Nuclear Information System (INIS)

    Turel, Z.R.

    2013-01-01

    The present paper discusses the development of some new, rapid and selective method for the radiochemical separation and estimation of elements such as, Co(II) 2-3 , Ir(III) 4 , Au(III) 5 , Pt(IV), Pd(II), Os(IV) 6 , Cu(II), Ag(I), Mo(VI), Ni(II), Zn(II), Cd(II), Hg(II), Cs(I), Sb(III), La(III), Sc(III) etc. using various reagents. Various parameters such as pH, time of equilibrium, effect of anions and cations, effect of reagent etc. has been determined employing tracers of the elements under consideration and will be discussed. The method is made highly selective by the use of appropriate masking agent. The stoichiometry of metal reagent is determined by the substoichiometric method. Some examples of multielemental radiochemical separation methods thus developed which have been applied in determining the elements by radiochemical thermal neutron activation analysis will be presented and discussed. The implications of the results on the reference system will also be accounted. Statistical evaluation with reference to accuracy, precision and sensitivity will also be presented

  4. New 14-membered octaazamacrocyclic complexes of divalent transition metal ions with their antimicrobial and spectral studies

    Science.gov (United States)

    Singh, D. P.; Kumar, Krishan; Sharma, Chetan

    2010-01-01

    A novel series of macrocyclic complexes of the type [M(C 18H 14N 10S 2)X 2]; where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); X = Cl -, NO 3-, CH 3COO - has been synthesized by [2+2] condensation of thiocarbohydrazide and isatin in the presence of divalent metal salts in methanolic medium. The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic measurements, electronic, NMR and infrared spectral studies. The low value of molar conductance indicates them to be non-electrolytes. On the basis of various studies a distorted octahedral geometry may be proposed for all of these complexes. These metal complexes were also tested for their in vitro antimicrobial activities against some Gram-positive bacteria viz. Staphylococcus aureus, Bacillus subtilis, and some Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and some fungal strains Aspergillus niger, Aspergillus flavus (molds), Candida albicans, Saccharomyces cerevisiae (yeasts). The results obtained were compared with standard antibiotic: Ciprofloxacin and the standard antifungal drug: Amphotericin-B.

  5. Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes

    Science.gov (United States)

    Sakthivel, A.; Rajasekaran, K.

    2007-01-01

    New N2O2 donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and 1H NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of 10~31 µg/ml. PMID:24015086

  6. Template synthesis and characterization of biologically active transition metal complexes comprising 14-membered tetraazamacrocyclic ligand

    Directory of Open Access Journals (Sweden)

    DHARMPAL SINGH

    2010-02-01

    Full Text Available A novel series of complexes of the type [M(C28H24N4X2], whereM = Co(II, Ni(II, Cu(II, Zn(II and Cd(II, X = Cl–, NO3–, CH3COO– and (C28H24N4 corresponds to the tetradentate macrocyclic ligand, were synthe¬sized by template condensation of 1,8-diaminonaphthalene and diacetyl in the presence of divalent metal salts in methanolic medium. The complexes were characterized by elemental analyses, conductance and magnetic measurements, as well as by UV/Vis, NMR, IR and MS spectroscopy. The low values of the molar conductance indicate non-electrolyte type of complexes. Based on these spectral data, a distorted octahedral geometry may be proposed for all of these complexes. All the synthesized macrocyclic complexes were tested for in vitro antibacterial activity against some pathogenic bacterial strains, viz Bacillus cereus, Salmonella typhi, Escherichia coli and Staphylococcus aureus. The MIC values shown by the complexes against these bacterial strains were compared with the MIC shown by the standard antibiotics linezolid and cefaclor.

  7. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials.

    Science.gov (United States)

    Repo, Eveliina; Warchoł, Jolanta K; Bhatnagar, Amit; Sillanpää, Mika

    2011-06-01

    Novel adsorbents were synthesized by functionalizing chitosan-silica hybrid materials with (ethylenediaminetetraacetic acid) EDTA ligands. The synthesized adsorbents were found to combine the advantages of both silica gel (high surface area, porosity, rigid structure) and chitosan (surface functionality). The Adsorption potential of hybrid materials was investigated using Co(II), Ni(II), Cd(II), and Pb(II) as target metals by varying experimental conditions such as pH, contact time, and initial metal concentration. The kinetic results revealed that the pore diffusion process played a key role in adsorption kinetics, which might be attributed to the porous structure of synthesized adsorbents. The obtained maximum adsorption capacities of the hybrid materials for the metal ions ranged from 0.25 to 0.63 mmol/g under the studied experimental conditions. The adsorbent with the highest chitosan content showed the best adsorption efficiency. Bi-Langmuir and Sips isotherm model fitting to experimental data suggested the surface heterogeneity of the prepared adsorbents. In multimetal solutions, the hybrid adsorbents showed the highest affinity toward Pb(II). Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Stability of binary complexes of Pb(II, Cd(II and Hg(II with maleic acid in TX100-water mixtures

    Directory of Open Access Journals (Sweden)

    M. Ramanaiah

    2014-09-01

    Full Text Available Binary complexes of maleic acid with toxic metal ions such as Pb(II, Cd(II and Hg(II have been studied in 0.0-2.5% v/v tritonX-100 (TX100 - water media at 303 K at an ionic strength of 0.16 M. The active forms of the ligand are LH2, LH- and L2-. The derived ‘best fit’ chemical speciation models are based on crystallographic R-factors, χ2 and Skewness and Kurtosis factors. The predominant species formed are of the type ML2, ML2H and ML3. The trend in variation of complex stability constants with change in the mole fraction of the medium is explained on the basis of prevailing electrostatic and non-electrostatic forces. The species distribution as a function of pH at different compositions of TX100-water mixtures and plausible speciation equilibria are presented and discussed. DOI: http://dx.doi.org/10.4314/bcse.v28i3.7

  9. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands

    Science.gov (United States)

    Sumathi, S.; Tharmaraj, P.; Sheela, C. D.; Anitha, C.

    2012-11-01

    Transition metal complexes of various acetylacetone based ligands of the type ML [where M = Cu(II), Ni(II), Co(II); L = 3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, 1H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).

  10. Structural and antimicrobial studies of coordination compounds of VO(II, Co(II, Ni(II and Cu(II with some Schiff bases involving 2-amino-4-chlorophenol

    Directory of Open Access Journals (Sweden)

    A. P. MISHRA

    2009-05-01

    Full Text Available Complexes of tailor-made ligands with life essential metal ions may be an emerging area to answer the problem of multi-drug resistance (MDR. The coordination complexes of VO(II, Co(II, Ni(II and Cu(II with the Schiff bases derived from 2-hydroxyacetophenone/2-chlorobenzaldehyde with 2-ami¬no-4-chlorophenol were synthesized and characterized by elemental analysis, molar conductance, electronic spectra, FT-IR, ESR, FAB mass, thermal and magnetic susceptibility measurements. The FAB mass and thermal data show degradation of the complexes. The ligand A (2-hydroxyacetophenone-2amino-4-chlorophenol behaved as tridentate and ligand B (2-chlorobenzylidene-2-amino-4-chlorophenol as bidentate, coordinating through O and N donors. The complexes [VO(A(H2O]×xH2O, [M(A(H2On]×xH2O for Co and Ni, [Cu(A(H2O] and [VO(B2]×xH2O, [M(B2(H2On] for Co and Cu and [Ni(B2] exhibited coordination numbers 4, 5 or 6. X-ray powder diffraction data (a = 11.00417 Å, b = 11.706081 Å and c = 54.46780 Å showed that [Cu(CACP2(H2O2], complex 8, crystallized in the orthorhombic system. The in vitro biological screening effects of the investigated compounds were tested against the bacteria Escherichia coli, Staphylococcus aureus and Streptococcus fecalis and the fungi Aspergillus niger, Trichoderma polysporum and Candida albicans by the serial dilution method. A comparative study of the MIC values of the Schiff base and their [M(B2(H2O2] complexes (Co(II, complex 6 and Cu(II, complex 8, indicated that the metal complexes exhibited a higher or lower antimicrobial activity than 2-chlorobenzylidene-2-amino-4-chlorophenol as the free ligand (B.

  11. Application of Zr/Ti-Pic in the adsorption process of Cu(II), Co(II) and Ni(II) using adsorption physico-chemical models and thermodynamics of the process; Aplicacao de Zr/Ti-PILC no processo de adsorcao de Cu(II), Co(II) e Ni(II) utilizando modelos fisico-quimicos de adsorcao e termodinamica do processo

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Denis Lima; Airoldi, Claudio [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Inorganica]. E-mail: dlguerra@iqm.unicamp.br; Lemos, Vanda Porpino; Angelica, Romulo Simoes [Universidade Federal do Para (UFPa), Belem (Brazil); Viana, Rubia Ribeiro [Universidade Federal do Mato Grosso (UFMT), Cuiaba (Brazil). Inst. de Ciencias Exatas e da Terra. Dept. de Recursos Minerais

    2008-07-01

    The aim of this investigation is to study how Zr/Ti-Pic adsorbs metals. The physico-chemical proprieties of Zr/Ti-Pic have been optimized with pillarization processes and Cu(II), Ni(II) and Co(II) adsorption from aqueous solution has been carried out, with maximum adsorption values of 8.85, 8.30 and 7.78 x-1 mmol g{sup -1}, respectively. The Langmuir, Freundlich and Temkin adsorption isotherm models have been applied to fit the experimental data with a linear regression process. The energetic effect caused by metal interaction was determined through calorimetric titration at the solid-liquid interface and gave a net thermal effect that enabled the calculation of the exothermic values and the equilibrium constant. (author)

  12. Microbial Mn(IV) and Fe(III) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition

    DEFF Research Database (Denmark)

    Nickel, Maren; Vandieken, Verona; Brüchert, Volker

    2008-01-01

    station, with seasonally extended ice cover, low organic carbon content and sedimentation rate combined with relatively high concentrations of Mn and Fe(III) oxides favored dissimilatory Fe and Mn reduction (98% of anaerobic carbon oxidation) over sulfate reduction in the top 12 cm of the sediment....... In contrast, in a sediment that had not been ice covered for at least 12 months and with more organic carbon and a higher sedimentation rate, sulfate reduction was the most important anaerobic electron-accepting process (>80% of anaerobic carbon oxidation). In the upper 3 cm, microbial Fe and sulfate...

  13. Interaction of Vimang (Mangifera indica L. extract) with Fe(III) improves its antioxidant and cytoprotecting activity.

    Science.gov (United States)

    Pardo-Andreu, Gilberto L; Sánchez-Baldoquín, Carlos; Avila-González, Rizette; Yamamoto, Edgar T Suzuki; Revilla, Andrés; Uyemura, Sérgio Akira; Naal, Zeki; Delgado, René; Curti, Carlos

    2006-11-01

    A standard aqueous stem bark extract from selected species of Mangifera indica L. (Anacardiaceae)--Vimang, whose major polyphenolic component is mangiferin, displays potent in vitro and in vivo antioxidant activity. The present study provides evidence that the Vimang-Fe(III) mixture is more effective at scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals, as well as in protecting against t-butyl hydroperoxide-induced mitochondrial lipid peroxidation and hypoxia/reoxygenation-induced hepatocytes injury, compared to Vimang alone. Voltammetric assays demonstrated that Vimang, in line with the high mangiferin content of the extract, behaves electrochemically like mangiferin, as well as interacts with Fe(III) in close similarity with mangiferin's interaction with the cation. These results justify the high efficiency of Vimang as an agent protecting from iron-induced oxidative damage. We propose Vimang as a potential therapy against the deleterious action of reactive oxygen species generated during iron-overload, such as that occurring in diseases like beta-thalassemia, Friedreich's ataxia and haemochromatosis.

  14. Thiophene-based rhodamine as selectivef luorescence probe for Fe(III) and Al(III) in living cells.

    Science.gov (United States)

    Wang, Kun-Peng; Chen, Ju-Peng; Zhang, Si-Jie; Lei, Yang; Zhong, Hua; Chen, Shaojin; Zhou, Xin-Hong; Hu, Zhi-Qiang

    2017-09-01

    The thiophene-modified rhodamine 6G (GYJ) has been synthesized as a novel chemosensor. The sensor has sufficiently high selectivity and sensitivity for the detection of Fe 3+ and Al 3+ ions (M 3+ ) by fluorescence and ultraviolet spectroscopy with a strong ability for anti-interference performance. The binding ratio of M 3+ -GYJ complex was determined to be 2:1 according to the Job's plot. The binding constants for Fe 3+ and Al 3+ were calculated to be 3.91 × 10 8 and 5.26 × 10 8  M -2 , respectively. All these unique features made it particularly favorable for cellular imaging applications. The obvious fluorescence microscopy experiments demonstrated that the probes could contribute to the detection of Fe 3+ and Al 3+ in related cells and biological organs with satisfying resolution. Graphical abstract GYJ has high selectivity and sensitivity for the detection of Fe(III) and Al(III) with the binding ratio of 2:1.

  15. Turn-on fluorogenic and chromogenic detection of Fe(III) and its application in living cell imaging

    International Nuclear Information System (INIS)

    Sivaraman, Gandhi; Sathiyaraja, Vijayaraj; Chellappa, Duraisamy

    2014-01-01

    Two rhodamine-based sensors RDI-1, RDI-2 was designed and synthesized by incorporation of the rhodamine 6G fluorophore and 2-formyl imidazole as the recognizing unit via the imine linkages. RDI-1, RDI-2 exhibits very high selectivity and an excellent sensitivity towards Fe(III) ions in aqueous buffer solution on compared with other probes. The color change from colorless to pink and turn-on fluorescence after binding with iron (III) was observed. Based on jobs plot and ESI-MS studies, the 1:1 binding mode was proposed. Live cell imaging experiments with each probe showed that these probes widely applicable to detect Fe 3+ in living cells. -- Highlights: • Two rhodamine based probes was synthesized and used to recognize iron (III). • The chemosensors can be applied to detect iron(III) ions by color and turn-on fluorescent changes. • The very low detection limit was reported. • The applicability of these probes for live cell fluorescence imaging was studied

  16. Turn-on fluorogenic and chromogenic detection of Fe(III) and its application in living cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, Gandhi; Sathiyaraja, Vijayaraj; Chellappa, Duraisamy, E-mail: dcmku123@gmail.com

    2014-01-15

    Two rhodamine-based sensors RDI-1, RDI-2 was designed and synthesized by incorporation of the rhodamine 6G fluorophore and 2-formyl imidazole as the recognizing unit via the imine linkages. RDI-1, RDI-2 exhibits very high selectivity and an excellent sensitivity towards Fe(III) ions in aqueous buffer solution on compared with other probes. The color change from colorless to pink and turn-on fluorescence after binding with iron (III) was observed. Based on jobs plot and ESI-MS studies, the 1:1 binding mode was proposed. Live cell imaging experiments with each probe showed that these probes widely applicable to detect Fe{sup 3+} in living cells. -- Highlights: • Two rhodamine based probes was synthesized and used to recognize iron (III). • The chemosensors can be applied to detect iron(III) ions by color and turn-on fluorescent changes. • The very low detection limit was reported. • The applicability of these probes for live cell fluorescence imaging was studied.

  17. Purification of Anthocyanins with o-Dihydroxy Arrangement by Sorption in Cationic Resins Charged with Fe(III

    Directory of Open Access Journals (Sweden)

    Araceli Castañeda-Ovando

    2014-01-01

    Full Text Available In the present work, a new purification method of anthocyanins with o-dihydroxy arrangement is proposed. This method is based on a ligand-exchange mechanism, using a cationic exchange resin loaded with metallic ions in order to increase the affinity of the resin to the anthocyanin(s with o-dihydroxy arrangement. This method was used to purify the main anthocyanin (cyanidin-3-glucoside; Cy-3-glc from the anthocyanic methanolic extract of blue corn. The best sorption result was using Fe(III in its ion form. The purification procedure begins with the formation of a metal-anthocyanin complex (Cy-3-glc-Fe which was optimal at pH 5, followed by a NaOH 0.1 M elution process in order to eliminate anthocyanins without o-dihydroxy arrangement, sugars, and organic acids. Finally, the pure anthocyanin is obtained by adding HCl 0.1 M which breaks the metal-anthocyanin complex.

  18. A series of Cd(II) complexes with π-π stacking and hydrogen bonding interactions: Structural diversities by varying the ligands

    International Nuclear Information System (INIS)

    Wang Xiuli; Zhang Jinxia; Liu Guocheng; Lin Hongyan

    2011-01-01

    Seven new Cd(II) complexes consisting of different phenanthroline derivatives and organic acid ligands, formulated as [Cd(PIP) 2 (dnba) 2 ] (1), [Cd(PIP)(ox)].H 2 O (2), [Cd(PIP)(1,4-bdc)(H 2 O)].4H 2 O (3), [Cd(3-PIP) 2 (H 2 O) 2 ].4H 2 O (4), [Cd 2 (3-PIP) 4 (4,4'-bpdc)(H 2 O) 2 ].5H 2 O (5), [Cd(3-PIP)(nip)(H 2 O)].H 2 O (6), [Cd 2 (TIP) 4 (4,4'-bpdc)(H 2 O) 2 ].3H 2 O (7) (PIP=2-phenylimidazo[4,5-f]1,10-phenanthroline, 3-PIP=2-(3-pyridyl)imidazo[4,5-f]1,10-phenanthroline, TIP=2-(2-thienyl)imidazo[4,5-f]1,10-phenanthroline, Hdnba=3,5-dinitrobenzoic acid, H 2 ox=oxalic acid, 1,4-H 2 bdc=benzene-1,4-dicarboxylic acid, 4,4'-H 2 bpdc=biphenyl-4,4'-dicarboxylic acid, H 2 nip=5-nitroisophthalic acid) have been synthesized under hydrothermal conditions. Complexes 1 and 4 possess mononuclear structures; complexes 5 and 7 are isostructural and have dinuclear structures; complexes 2 and 3 feature 1D chain structures; complex 6 contains 1D double chain, which are further extended to a 3D supramolecular structure by π-π stacking and hydrogen bonding interactions. The N-donor ligands with extended π-system and organic acid ligands play a crucial role in the formation of the final supramolecular frameworks. Moreover, thermal properties and fluorescence of 1-7 are also investigated. -- Graphical abstract: Seven new supramolecular architectures have been successfully isolated under hydrothermal conditions by reactions of different phen derivatives and Cd(II) salts together with organic carboxylate anions auxiliary ligands. Display Omitted Research highlights: → Complexes 1-7 are 0D or 1D polymeric structure, the π-π stacking and H-bonding interactions extend the complexes into 3D supramolecular network. To our knowledge, systematic study on π-π stacking and H-bonding interactions in cadmium(II) complexes are still limited. → The structural differences among the title complexes indicate the importance of N-donor chelating ligands for the creation of molecular

  19. Petrophilic, Fe(III Reducing Exoelectrogen Citrobacter sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems

    Directory of Open Access Journals (Sweden)

    Krishnaveni Venkidusamy

    2018-03-01

    Full Text Available Exoelectrogenic biofilms capable of extracellular electron transfer are important in advanced technologies such as those used in microbial electrochemical remediation systems (MERS Few bacterial strains have been, nevertheless, obtained from MERS exoelectrogenic biofilms and characterized for bioremediation potential. Here we report the identification of one such bacterial strain, Citrobacter sp. KVM11, a petrophilic, iron reducing bacterial strain isolated from hydrocarbon fed MERS, producing anodic currents in microbial electrochemical systems. Fe(III reduction of 90.01 ± 0.43% was observed during 5 weeks of incubation with Fe(III supplemented liquid cultures. Biodegradation screening assays showed that the hydrocarbon degradation had been carried out by metabolically active cells accompanied by growth. The characteristic feature of diazo dye decolorization was used as a simple criterion for evaluating the electrochemical activity in the candidate microbe. The electrochemical activities of the strain KVM11 were characterized in a single chamber fuel cell and three electrode electrochemical cells. The inoculation of strain KVM11 amended with acetate and citrate as the sole carbon and energy sources has resulted in an increase in anodic currents (maximum current density of 212 ± 3 and 359 ± mA/m2 with respective coulombic efficiencies of 19.5 and 34.9% in a single chamber fuel cells. Cyclic voltammetry studies showed that anaerobically grown cells of strain KVM11 are electrochemically active whereas aerobically grown cells lacked the electrochemical activity. Electrobioremediation potential of the strain KVM11 was investigated in hydrocarbonoclastic and dye detoxification conditions using MERS. About 89.60% of 400 mg l-1 azo dye was removed during the first 24 h of operation and it reached below detection limits by the end of the batch operation (60 h. Current generation and biodegradation capabilities of strain KVM11 were examined using an

  20. Petrophilic, Fe(III) Reducing Exoelectrogen Citrobacter sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems

    Science.gov (United States)

    Venkidusamy, Krishnaveni; Hari, Ananda Rao; Megharaj, Mallavarapu

    2018-01-01

    Exoelectrogenic biofilms capable of extracellular electron transfer are important in advanced technologies such as those used in microbial electrochemical remediation systems (MERS) Few bacterial strains have been, nevertheless, obtained from MERS exoelectrogenic biofilms and characterized for bioremediation potential. Here we report the identification of one such bacterial strain, Citrobacter sp. KVM11, a petrophilic, iron reducing bacterial strain isolated from hydrocarbon fed MERS, producing anodic currents in microbial electrochemical systems. Fe(III) reduction of 90.01 ± 0.43% was observed during 5 weeks of incubation with Fe(III) supplemented liquid cultures. Biodegradation screening assays showed that the hydrocarbon degradation had been carried out by metabolically active cells accompanied by growth. The characteristic feature of diazo dye decolorization was used as a simple criterion for evaluating the electrochemical activity in the candidate microbe. The electrochemical activities of the strain KVM11 were characterized in a single chamber fuel cell and three electrode electrochemical cells. The inoculation of strain KVM11 amended with acetate and citrate as the sole carbon and energy sources has resulted in an increase in anodic currents (maximum current density) of 212 ± 3 and 359 ± mA/m2 with respective coulombic efficiencies of 19.5 and 34.9% in a single chamber fuel cells. Cyclic voltammetry studies showed that anaerobically grown cells of strain KVM11 are electrochemically active whereas aerobically grown cells lacked the electrochemical activity. Electrobioremediation potential of the strain KVM11 was investigated in hydrocarbonoclastic and dye detoxification conditions using MERS. About 89.60% of 400 mg l-1 azo dye was removed during the first 24 h of operation and it reached below detection limits by the end of the batch operation (60 h). Current generation and biodegradation capabilities of strain KVM11 were examined using an initial

  1. Synthesis and characterization of heterobimetallic complexes of the type [Cu(pn2][MCl4] where M = Co(II, Ni(II, Cu(II, Zn(II, Cd(II, and Hg(II

    Directory of Open Access Journals (Sweden)

    Seema Yadav

    2016-11-01

    Full Text Available A series of new bimetallic transition metal complexes of the type [Cu(pn2] [MCl4] have been synthesized (where M = Co(II, Ni(II, Cu(II, Zn(II, Cd(II and Hg(II, pn = 1,3-diaminopropane and characterized by elemental analysis, molar conductance, TGA, IR and electronic spectra. All the compounds are 1:1 electrolyte in DMF. The Cu(II ion is square-planar while metal ions in the anionic moiety acquire their usual tetrahedral arrangement. On the basis of these studies it is concluded that anionic moiety is electrically stabilized by its cationic counterpart.

  2. Characterization of hydroxybenzoic acid chelating resins: equilibrium, kinetics, and isotherm profiles for Cd(II and Pb(II uptake

    Directory of Open Access Journals (Sweden)

    BHAVNA A. SHAH

    2011-06-01

    Full Text Available Chelating ion-exchange resins were synthesized by polycondensation of ortho/para hydroxybenzoic acid with resorcinol/catechol employing formaldehyde as cross-linking agent at 80±5 °C in DMF. The resins were characterized by FTIR and XRD. The uptake behaviour of synthesized resins for Cd(II and Pb(II ions have been studied depending on contact time, pH, metal ion concentration and temperature. The sorption data obtained at optimized conditions were analyzed by the Langmuir and Freundlich isotherms. Experimental data of all metal–resin system were best represented by the Freundlich isotherm. The maximum obtained sorption capacity for cadmium was 69.53 mg g-1 and 169.32 mg g-1 for Lead. The adsorption process follows first order kinetics and the specific rate constant Kr was obtained by the application of the Lagergan equation. Thermodynamic parameters ∆Gads, ∆Sads and ∆Hads were calculated for the metal–resin systems. The external diffusion rate constant (KS and the intra-particle diffusion rate constant (Kid were calculated by the Spahn–Schlunder and Weber–Morris models, respectively. The sorption process was found to follow an intra-particle diffusion phenomenon.

  3. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua, E-mail: songhuihua@mail.hebtu.edu.cn; Yu, Hai-Tao, E-mail: haitaoyu@mail.hebtu.edu.cn

    2016-01-15

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H{sub 2}bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2′-bipy)(H{sub 2}O)]{sub n} (1), [Cd(bzgluO)(2,4′-bipy){sub 2}(H{sub 2}O)·3H{sub 2}O]{sub n} (2), [Cd(bzgluO)(phen)·H{sub 2}O]{sub n} (3), [Cd(bzgluO)(4,4′-bipy)(H{sub 2}O)]{sub n} (4), [Cd(bzgluO)(bpp)(H{sub 2}O)·2H{sub 2}O]{sub n} (5) were synthesized (2,2′-bipy=2,2′-bipyridine, 2,4′-bipy=2,4′-bipyridine, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1–2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π–π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π–π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H{sub 2}bzgluO. Luminescent properties of 1–5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated. - Graphical abstract: Five new Cd(II) metal coordination compounds with H{sub 2}bzgluO and different N-donor ligands were synthesized and characterized. Compounds 1, 2 and 3 present 1D structures, compounds 4 and 5 display 2D networks. Results indicate that auxiliary ligands and coordination modes of H{sub 2}bzgluO play an important role in governing the formation of final frameworks, and the hydrogen-bonding and π–π stacking interactions contribute the formation of the diverse supramolecular architectures. Furthermore, the different crystal structures influence the emission spectra significantly. - Highlights: • It is rarely reported that complexes prepared with N-benzoyl-L-glutamic acid

  4. Synthesis, characterization and biological studies of 2-(4-nitrophenylamino-carbonyl)benzoic acid and its complexes with Cr(III), Co(II), Ni(II), Cu(II) and Zn(II)

    International Nuclear Information System (INIS)

    Imran, M; Nazir, S.; Latif, S.; Mahmood, Z.

    2010-01-01

    Cr(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of 2-(4-Nitrophenyl aminocarbonyl)benzoic acid were synthesized and characterized on the basis of physical, analytical and spectroscopic data. The ligands, as well as its metal complexes were checked for their in-vitro antimicrobial activity against three bacterial strains, Mycobacterium smegmatis, Escherichia coli, Pseudomonas aeuroginosa, and three fungal strains, Nigrospora oryzae, Aspergillus niger and Candida albicans. Disc diffusion method and Tube diffusion test were used for antibacterial and antifungal activities, respectively. The synthesized complexes only show significant antifungal activity but inactive for antibacterial, however, in general, the metal complexes were found to be more active against antimicrobial activities as compared to their un complexed ligand. (author)

  5. Potential of ethylenediaminedi(o-hydroxyphenylacetic acid) and N,N'-bis(hydroxybenzyl)ethylenediamine-N,N'-diacetic acid for the determination of metal ions by capillary electrophoresis.

    Science.gov (United States)

    Krokhin, O V; Kuzina, O V; Hoshino, H; Shpigun, O A; Yotsuyanagi, T

    2000-08-25

    Two aromatic polyaminocarboxylate ligands, ethylenediaminedi(o-hydroxyphenylacetic acid) (EDDHA) and N,N'-bis(hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED), were applied for the separation of transition and heavy metal ions by the ion-exchange variant of electrokinetic chromatography. EDDHA structure contains two chiral carbon centers. It makes it impossible to use the commercially available ligand. All the studied metal ions showed two peaks, which correspond to meso and rac forms of the ligand. The separation of metal-HBED chelates was performed using poly(diallyldimethylammonium) polycations in mixed acetate-hydroxide form. Simultaneous separation of nine single- and nine double-charged HBED chelates, including In(III), Ga(III), Co(II)-(III) and Mn(II)-(III) pairs demonstrated the efficiency of 40,000-400,000 theoretical plates. The separation of Co(III), Fe(III) complexes with different arrangements of donor groups and oxidation of Co(II), Mn(H), Fe(II) ions in reaction with HBED have been discussed.

  6. Recovery of molybdenum using alumina microspheres and precipitation with selective organic reagents

    International Nuclear Information System (INIS)

    Carvalho, Fatima Maria Sequeira de; Abrao, Alcidio

    1998-01-01

    In this paper is presented a study for the optimization of dissolution of the UAL x plates used for irradiation and production of radiomolybdenum. The alloy is dissolved in nitric acid with mercury as catalyst. The separation and concentration of the molybdenum was achieved using a chromatographic grade alumina microspheres column. the purified eluted molybdenum is finally precipitated using one of the selective reagents: alizarine blue, α,α'- bipyridine and 1,10-phenanthroline. Any one of the obtained precipitate can be fired to the molybdenum trioxide. The interference of the following elements was studied: Re(VII), U(VI), Cr(VI), W(VI), V(V), Te(IV), Ti(IV), Zr(IV), Th(IV), Fe(III), Au(III), Ru(III), Al(III), Bi(III), Sb(III), Ce(IV), Pr(III), Sc(III), Y(III), Sm(III), Ba(II), Sr(II), Ni(II), Co(II), Cs(I). The molybdenum precipitates were characterized by gravimetric, CHN, TG, DTG, IR and X-ray diffraction analyses. (author)

  7. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site.

    Science.gov (United States)

    Ding, Weixuan; Stewart, Douglas I; Humphreys, Paul N; Rout, Simon P; Burke, Ian T

    2016-01-15

    Cr(VI) is an important contaminant found at sites where chromium ore processing residue (COPR) is deposited. No low cost treatment exists for Cr(VI) leaching from such sites. This study investigated the mechanism of interaction of alkaline Cr(VI)-containing leachate with an Fe(II)-containing organic matter rich soil beneath the waste. The soil currently contains 0.8% Cr, shown to be present as Cr(III)(OH)3 in EXAFS analysis. Lab tests confirmed that the reaction of Cr(VI) in site leachate with Fe(II) present in the soil was stoichiometrically correct for a reductive mechanism of Cr accumulation. However, the amount of Fe(II) present in the soil was insufficient to maintain long term Cr(VI) reduction at historic infiltration rates. The soil contains a population of bacteria dominated by a Mangroviflexus-like species, that is closely related to known fermentative bacteria, and a community capable of sustaining Fe(III) reduction in alkaline culture. It is therefore likely that in situ fermentative metabolism supported by organic matter in the soil produces more labile organic substrates (lactate was detected) that support microbial Fe(III) reduction. It is therefore suggested that addition of solid phase organic matter to soils adjacent to COPR may reduce the long term spread of Cr(VI) in the environment. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry.

    Science.gov (United States)

    Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol

    2015-05-01

    A relatively rapid, accurate and precise solid phase extraction method is presented for the determination of cadmium(II) and lead(II) in various food and water samples. Quantitation is carried out by flame atomic absorption spectrometry (FAAS). The method is based on the retention of the trace metal ions on Dowex Marathon C, a strong acid cation exchange resin. Some important parameters affecting the analytical performance of the method such as pH, flow rate and volume of the sample solution; type, concentration, volume, flow rate of the eluent; and matrix effects on the retention of the metal ions were investigated. Common coexisting ions did not interfere on the separation and determination of the analytes. The detection limits (3 σb) for Cd(II) and Pb(II) were found as 0.13 and 0.18 μg L(-1), respectively, while the limit of quantification values (10 σb) were computed as 0.43 and 0.60 μg L(-1) for the same sequence of the analytes. The precision (as relative standard deviation was lower than 4% at 5 μg L(-1) Cd(II) and 10 μg L(-1) Pb(II) levels, and the preconcentration factor was found to be 250. The accuracy of the proposed procedure was verified by analysing the certified reference materials, SPS-WW2 Batch 108 wastewater level 2 and INCT-TL-1 tea leaves, with the satisfactory results. In addition, for the accuracy of the method the recovery studies (⩾ 95%) were carried out. The method was applied to the determination of the analytes in the various natural waters (lake water, tap water, waste water with boric acid, waste water with H2SO4) and food samples (pomegranate flower, organic pear, radish leaf, lamb meat, etc.), and good results were obtained. While the food samples almost do not contain cadmium, they have included lead at low levels of 0.13-1.12 μg g(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Crystal structure of a dinuclear CoII complex with bridging fluoride ligands: di-μ-fluorido-bis{tris[(6-methylpyridin-2-ylmethyl]amine}dicobalt(II bis(tetrafluoridoborate

    Directory of Open Access Journals (Sweden)

    Masataka Inomata

    2014-11-01

    Full Text Available Reaction of Co(BF42·6H2O with tris[(6-methylpyridin-2-ylmethyl]amiine in methanol results in a fluoride abstraction from BF4−, yielding the unexpected title compound, [Co2F2(C21H24N42](BF42. The complex cation consists of two inversion-related [Co(C21H24N4]2+ moieties bridged by a pair of fluoride ligands. The CoII cation is six-coordinated in a distorted octahedral geometry and forms a +II high-spin state. In the crystal, the complex cation and the BF4− anion are connected by C—H...F hydrogen bonds, forming a three-dimensional network. An intramolecular C—H...F hydrogen bond is also observed.

  10. Adsorption of aqueous Cd(II) and Pb(II) on activated carbon nanopores prepared by chemical activation of doum palm shell.

    Science.gov (United States)

    Gaya, Umar Ibrahim; Otene, Emmanuel; Abdullah, Abdul Halim

    2015-01-01

    Non-uniformly sized activated carbons were derived from doum palm shell, a new precursor, by carbonization in air and activation using KOH, NaOH and ZnCl2. The activated carbon fibres were characterised by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, particle size analysis and evaluated for Cd(II) and Pb(II) removal. The 40-50 nm size, less graphitic, mesoporous NaOH activated carbon yielded high adsorption efficiency, pointing largely to the influence surface area. The performance of the KOH based activated carbon was arguably explained for the first time in terms of crystallinity. The efficiencies of the mesoporous ZnCl2-formulated activated carbon diminished due to the presence of larger particles. Batch adsorption of divalent metals revealed dependence on adsorbent dose, agitation time, pH and adsorbate concentrations with high adsorption efficiencies at optimum operating parameters. The equilibrium profiles fitted Langmuir and Freundlich isotherms, and kinetics favoured pseudo-second order model. The study demonstrated the practicability of the removal of alarming levels of cadmium and lead ions from industrial effluents.

  11. Effects of 12 metal ions on iron regulatory protein 1 (IRP-1) and hypoxia-inducible factor-1 alpha (HIF-1α) and HIF-regulated genes

    International Nuclear Information System (INIS)

    Li Qin; Chen Haobin; Huang Xi; Costa, Max

    2006-01-01

    Several metal ions that are carcinogenic affect cellular iron homeostasis by competing with iron transporters or iron-regulated enzymes. Some metal ions can mimic a hypoxia response in cells under normal oxygen tension, and induce expression of HIF-1α-regulated genes. This study investigated whether 12 metal ions altered iron homeostasis in human lung carcinoma A549 cells as measured by an activation of IRP-1 and ferritin level. We also studied hypoxia signaling by measuring HIF-1α protein levels, hypoxia response element (HRE)-driven luciferase reporter activity, and Cap43 protein level (an HIF-1α responsive gene). Our results show the following: (i) Ni(II), Co(II), V(V), Mn(II), and to a lesser extent As(III) and Cu(II) activated the binding of IRP-1 to IRE after 24 h, while the other metal ions had no effect; (ii) 10 of 12 metal ions induced HIF-1α protein but to strikingly different degrees. Two of these metal ions, Al(III) and Cd(II), did not induce HIF-1α protein; however, as indicated below, only Ni(II), Co (II), and to lesser extent Mn(II) and V(V) activated HIF-1α-dependent transcription. The combined effects of both [Ni(II) + As(III)] and [Ni(II) + Cr(VI)] on HIF-1α protein were synergistic; (iii) Addition of Fe(II) with Ni(II), Co(II), and Cr(VI) attenuated the induction of HIF-1α after 4 h treatment; (iv) Ni(II), Co(II), and Mn(II) significantly decrease ferritin level after 24 h exposure; (v) Ni(II), Co(II), V(V), and Mn(II) activated HRE reporter gene after 20 h treatment; (vi) Ni(II), Co(II), V(V), and Mn(II) increased the HIF-1-dependent Cap43 protein level after 24 h treatment. In conclusion, only Ni (II), Co (II), and to a lesser extent Mn(II) and V(V) significantly stabilized HIF-1α protein, activated IRP, decreased the levels of ferritin, induced the transcription of HIF-dependent reporter, and increased the expression of Cap43 protein levels (HIF-dependent gene). The mechanism for the significant stabilization and elevation of HIF-1

  12. Effect of dissimilatory Fe(III) reducers on bio-reduction and nickel-cobalt recovery from Sukinda chromite-overburden.

    Science.gov (United States)

    Esther, Jacintha; Panda, Sandeep; Behera, Sunil K; Sukla, Lala B; Pradhan, Nilotpala; Mishra, Barada K

    2013-10-01

    The effect of an adapted dissimilatory iron reducing bacterial consortium (DIRB) towards bio-reduction of Sukinda chromite overburden (COB) with enhanced recovery of nickel and cobalt is being reported for the first time. The remarkable ability of DIRB to utilize Fe(III) as terminal electron acceptor reducing it to Fe(II) proved beneficial for treatment of COB as compared to previous reports for nickel leaching. XRD studies showed goethite as the major iron-bearing phase in COB. Under facultative anaerobic conditions, goethite was reduced to hematite and magnetite with the exposure of nickel oxide. FESEM studies showed DIRB to be associated with COB through biofilm formation with secondary mineral precipitates of magnetite deposited as tiny globular clusters on the extra polymeric substances. The morphological and mineralogical changes in COB, post DIRB application, yielded a maximum of 68.5% nickel and 80.98% cobalt in 10 days using 8M H2SO4. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Synthesis, Structural Characterization and Antimicrobial Activity of Cu(II and Fe(III Complexes Incorporating Azo-Azomethine Ligand

    Directory of Open Access Journals (Sweden)

    Mohammad Azam

    2018-04-01

    Full Text Available We are reporting a novel azo-azomethine ligand, HL and its complexes with Cu(II and Fe(III ions. The ligand and its complexes are characterized by various physico-chemical techniques using C,H,N analyses, FT-IR, 1H-NMR, ESI-MS and UV-Vis studies. TGA analyses reveal complexes are sufficiently stable and undergo two-step degradation processes. The redox behavior of the complexes was evaluated by cyclic voltammetry. Furthermore, the ligand and its complexes were tested for antimicrobial activity against bacterial and fungal strains by determining inhibition zone, minimal inhibitory concentration (MIC and minimal bactericidal concentration (MBC. The complexes showed moderate antimicrobial activity when tested against Gram +ve and Gram −ve bacterial strains. To obtain insights into the structure of ligand, DFT studies are recorded. The results obtained are quite close to the experimental results. In addition, the energy gap, chemical hardness, softness, electronegativity, electrophilic index and chemical potential were calculated using HOMO, LUMO energy value of ligand.

  14. Alumina physically loaded by thiosemicarbazide for selective preconcentration of mercury(II) ion from natural water samples

    International Nuclear Information System (INIS)

    Ahmed, Salwa A.

    2008-01-01

    The multifunctional ligand, thiosemicarbazide, was physically loaded on neutral alumina. The produced alumina-modified solid phase (SP) extractor named, alumina-modified thiosemicarbazide (AM-TSC), experienced high thermal and medium stability. This new phase was identified based on surface coverage determination by thermal desorption method to be 0.437 ± 0.1 mmol g -1 . The selectivity of AM-TSC phase towards the uptake of different nine metal ions was checked using simple, fast and direct batch equilibration technique. AM-TSC was found to have the highest capacity in selective extraction of Hg(II) from aqueous solutions all over the range of pH used (1.0-7.0), compared to the other eight tested metal ions. So, Hg(II) uptake was 1.82 mmol g -1 (distribution coefficient log K d = 5.658) at pH 1.0 or 2.0 and 1.78, 1.73, 1.48, 1.28 and 1.28 mmol g -1 (log K d = 4.607, 4.265, 3.634, 3.372 and 3.372), at pH 3.0, 4.0, 5.0, 6.0 and 7.0, respectively. On the other hand, the metal ions Ca(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) showed low uptake values in range 0.009-0.720 mmol g -1 (log K d < 3.0) at their optimum pH values. A mechanism was suggested to explain the unique uptake of Hg(II) ions based on their binding as neutral and chloroanionic species predominate at pH values ≤3.0 of a medium rich in chloride ions. Application of the new phase for the preconcentration of ultratrace amounts of Hg(II) ions spiked natural water samples: doubly distilled water (DDW), drinking tap water (DTW) and Nile river water (NRW) using cold vapor atomic absorption spectroscopy (CV-AAS) was studied. The high recovery values obtained using AM-TSC (98.5 ± 0.5, 98.0 ± 0.5 and 103.0 ± 1.0) for DDW, DTW and NRW samples, respectively based on excellent enrichment factor 1000, along with a good precision (R.S.D.% 0.51-0.97%, n 3) demonstrate the accuracy and validity of the new modified alumina sorbent for preconcentrating ultratrace amounts of Hg(II) with no

  15. Crystal structure of the coordination polymer [FeIII2{PtII(CN4}3

    Directory of Open Access Journals (Sweden)

    Maksym Seredyuk

    2015-01-01

    Full Text Available The title complex, poly[dodeca-μ-cyanido-diiron(IIItriplatinum(II], [FeIII2{PtII(CN4}3], has a three-dimensional polymeric structure. It is built-up from square-planar [PtII(CN4]2− anions (point group symmetry 2/m bridging cationic [FeIIIPtII(CN4]+∞ layers extending in the bc plane. The FeII atoms of the layers are located on inversion centres and exhibit an octahedral coordination sphere defined by six N atoms of cyanide ligands, while the PtII atoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octahedral and square-planar coordination, respectively, lead to a corrugated organisation of the layers. The distance between neighbouring [FeIIIPtII(CN4]+∞ layers corresponds to the length a/2 = 8.0070 (3 Å, and the separation between two neighbouring PtII atoms of the bridging [PtII(CN4]2− groups corresponds to the length of the c axis [7.5720 (2 Å]. The structure is porous with accessible voids of 390 Å3 per unit cell.

  16. Flame atomic absorption spectrometric determination of heavy metals in aqueous solution and surface water preceded by co-precipitation procedure with copper(II) 8-hydroxyquinoline

    Science.gov (United States)

    Ipeaiyeda, Ayodele Rotimi; Ayoade, Abisayo Ruth

    2017-12-01

    Co-precipitation procedure has widely been employed for preconcentration and separation of metal ions from the matrices of environmental samples. This is simply due to its simplicity, low consumption of separating solvent and short duration for analysis. Various organic ligands have been used for this purpose. However, there is dearth of information on the application of 8-hydroxyquinoline (8-HQ) as ligand and Cu(II) as carrier element. The use of Cu(II) is desirable because there is no contamination and background adsorption interference. Therefore, the objective of this study was to use 8-HQ in the presence of Cu(II) for coprecipitation of Cd(II), Co(II), Cr(III), Ni(II) and Pb(II) from standard solutions and surface water prior to their determinations by flame atomic absorption spectrometry (FAAS). The effects of pH, sample volume, amount of 8-HQ and Cu(II) and interfering ions on the recoveries of metal ions from standard solutions were monitored using FAAS. The water samples were treated with 8-HQ under the optimum experimental conditions and metal concentrations were determined by FAAS. The metal concentrations in water samples not treated with 8-HQ were also determined. The optimum recovery values for metal ions were higher than 85.0%. The concentrations (mg/L) of Co(II), Ni(II), Cr(III), and Pb(II) in water samples treated with 8-HQ were 0.014 ± 0.002, 0.03 ± 0.01, 0.04 ± 0.02 and 0.05 ± 0.02, respectively. These concentrations and those obtained without coprecipitation technique were significantly different. Coprecipitation procedure using 8-HQ as ligand and Cu(II) as carrier element enhanced the preconcentration and separation of metal ions from the matrix of water sample.

  17. Estimation of redox potentials of Fe(III)- gallic acid complexes at different pH by spectrophotometric titration with ascorbate

    International Nuclear Information System (INIS)

    Iqbal, M.; Tasneem, Z.; Kazmi, S.A.

    1993-01-01

    Fe(III) is strongly chelated by Gallic acid. This equilibrium as well as the kinetics of reduction of the complex is strongly pH dependent. The complex was prepared in acetate buffers of pH 4.6, 5.0 and 5.6 and in Tris buffer of pH 7.0.The complex was reduced by ascorbate. The reduced absorbance was taken to be a measure of reaction. Nernst equation was then applied to determine the standard redox potentials of the complex taking the literature values of the redox potentials of ascorbate at different pH. The values of redox potentials of complex were found to be 0.197 V at pH 4.6. 0.181 V at pH 5.0 1.132 V at pH 5.6 and 0.092 V at pH 7.0. (author)

  18. Influence of Reactive Transport on the Reduction of U(VI) in the Presence of Fe(III) and Nitrate: Implications for U(VI) Immobilization by Bioremediation/Biobarriers - Final Report

    International Nuclear Information System (INIS)

    B.D. Wood

    2007-01-01

    Subsurface contamination by metals and radionuclides represent some of the most challenging remediation problems confronting the Department of Energy (DOE) complex. In situ remediation of these contaminants by dissimilatory metal reducing bacteria (DMRB) has been proposed as a potential cost effective remediation strategy. The primary focus of this research is to determine the mechanisms by which the fluxes of electron acceptors, electron donors, and other species can be controlled to maximize the transfer of reductive equivalents to the aqueous and solid phases. The proposed research is unique in the NABIR portfolio in that it focuses on (i) the role of flow and transport in the initiation of biostimulation and the successful sequestration of metals and radionuclides [specifically U(VI)], (ii) the subsequent reductive capacity and stability of the reduced sediments produced by the biostimulation process, and (iii) the potential for altering the growth of biomass in the subsurface by the addition of specific metabolic uncoupling compounds. A scientifically-based understanding of these phenomena are critical to the ability to design successful bioremediation schemes. The laboratory research will employ Shewanella putrefaciens (CN32), a facultative DMRB that can use Fe(III) oxides as a terminal electron acceptor. Sediment-packed columns will be inoculated with this organism, and the reduction of U(VI) by the DMRB will be stimulated by the addition of a carbon and energy source in the presence of Fe(III). Separate column experiments will be conducted to independently examine: (1) the importance of the abiotic reduction of U(VI) by biogenic Fe(II); (2) the influence of the transport process on Fe(III) reduction and U(VI) immobilization, with emphasis on methods for controlling the fluxes of aqueous species to maximize uranium reduction; (3) the reductive capacity of biologically-reduced sediments (with respect to re-oxidation by convective fluxes of O2 and NO3-) and

  19. Studies on the rates of exchange of Hg(II), Cd(II), La(III) and Ce(III) ions in sodium nitrite-aqueous acetone media using an anion-exchanger Dowex-1x8(NO3-)

    International Nuclear Information System (INIS)

    Bhatnagar, R.P.; Bhardwaj, Archana; Bhardwaj, S.D.

    1998-01-01

    Rate of exchange has been studied on Hg(II), Cd(II), La(III) and Ce(III) ions in sodium nitrite-aqueous acetone media using an anion exchanger Dowex-1 x 8(NO 3 - ). Acetone was used to provide solvent media of 10%, 30% and 50% and temperature was used in rate studies, carried out at 30 deg, 40 deg, 50 degC. Always 1 g. of Dowex-1x8 in nitrate form was used for distribution studies to get rate data. After suitable time intervals aliquots (1 ml) were withdrawn and metal ion concentration was found out. (author)

  20. DNA binding and biological activity of mixed ligand complexes of Cu(II, Ni(II and Co(II with quinolones and N donor ligand

    Directory of Open Access Journals (Sweden)

    S.M M Akram

    2015-10-01

    Full Text Available  AbstractMixed ligand complexes of  Cu(II, Ni(II and Co(II have been synthesized by using levofloxacin and bipyridyl and characterized using spectral and analytical techniques. The binding behavior of the Ni(II and Cu(II complexes with herring sperm DNA(Hs-DNA were determined using electronic absorption titration, viscometric measurements and cyclic voltammetry measurements. The binding constant calculated  for Cu(II and Ni(II complexes are 2.0 x 104 and 4.0 x 104 M-1 respectively. Detailed analysis reveals that these metal complexes interact with DNA through intercalative binding mode. The nuclease activity of  Cu(II and Ni(II complexes with ct-DNA was carried out using agarose gel electrophoresis technique. The antioxidant activities for the synthesized complexes have been tested and the antibacterial activity for Ni(II complex was also checked.Key words: Intercalation, hypochromism, red shift and  peak potential.

  1. A multi-element solid-phase extraction method for trace metals determination in environmental samples on Amberlite XAD-2000

    International Nuclear Information System (INIS)

    Bulut, Volkan Numan; Gundogdu, Ali; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa; Elci, Latif; Tufekci, Mehmet

    2007-01-01

    A method for the preconcentration of some transition elements at trace level was proposed using a column filled with Amberlite XAD-2000 resin. Metal ions were adsorbed on XAD-2000 as their diethyldithiocarbamate chelates, then analytes retained on the resin were eluted by 1 mol L -1 nitric acid in acetone and determined by flame atomic absorption spectrometry (FAAS). The influences of some analytical parameters including pH of sample solution, ligand amount, the type, concentration and volume of elution solution, flow rates of the sample and eluent solutions, adsorption capacity of the resin and sample volume on the preconcentration efficiency have been investigated. The influences of some matrix elements were also examined. The detection limit (N = 20, 3 sigma) for Mn(II), Fe(II), Co(II), Cu(II), Cd(II), Zn(II), Pb(II) and Ni(II) were found as 0.20, 0.35, 0.25, 0.20, 0.20, 0.15, 0.45 and 0.25 μg L -1 , respectively. The validation of the procedure was carried out by analysis of certified reference materials. The proposed method was applied to natural waters and kale vegetable (Brassica oleracea var. acephala)

  2. Biosorption of heavy metal ions from aqueous solution by red macroalgae.

    Science.gov (United States)

    Ibrahim, Wael M

    2011-09-15

    Biosorption is an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high biosorption capacities for a number of heavy metal ions. In this study, four species of red seaweeds Corallina mediterranea, Galaxaura oblongata, Jania rubens and Pterocladia capillacea were examined to remove Co(II), Cd(II), Cr(III) and Pb(II) ions from aqueous solution. The experimental parameters that affect the biosorption process such as pH, contact time and biomass dosage were studied. The maximum biosorption capacity of metal ions was 105.2mg/g at biomass dosage 10 g/L, pH 5 and contact time 60 min. The biosorption efficiency of algal biomass for the removal of heavy metal ions from industrial wastewater was evaluated for two successive cycles. Galaxaura oblongata biomass was relatively more efficient to remove metal ions with mean biosorption efficiency of 84%. This study demonstrated that these seaweeds constitute a promising, efficient, cheap and biodegradable sorbent biomaterial for lowering the heavy metal pollution in the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. A multi-element solid-phase extraction method for trace metals determination in environmental samples on Amberlite XAD-2000

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, Volkan Numan [Department of Chemistry, Giresun Faculty of Arts and Sciences, Karadeniz Technical University, 28049 Giresun (Turkey); Gundogdu, Ali [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Duran, Celal [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Senturk, Hasan Basri [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Soylak, Mustafa [Department of Chemistry, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: msoylak@gmail.com; Elci, Latif [Department of Chemistry, Faculty of Arts and Sciences, Pamukkale University, 20020 Denizli (Turkey); Tufekci, Mehmet [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2007-07-19

    A method for the preconcentration of some transition elements at trace level was proposed using a column filled with Amberlite XAD-2000 resin. Metal ions were adsorbed on XAD-2000 as their diethyldithiocarbamate chelates, then analytes retained on the resin were eluted by 1 mol L{sup -1} nitric acid in acetone and determined by flame atomic absorption spectrometry (FAAS). The influences of some analytical parameters including pH of sample solution, ligand amount, the type, concentration and volume of elution solution, flow rates of the sample and eluent solutions, adsorption capacity of the resin and sample volume on the preconcentration efficiency have been investigated. The influences of some matrix elements were also examined. The detection limit (N = 20, 3 sigma) for Mn(II), Fe(II), Co(II), Cu(II), Cd(II), Zn(II), Pb(II) and Ni(II) were found as 0.20, 0.35, 0.25, 0.20, 0.20, 0.15, 0.45 and 0.25 {mu}g L{sup -1}, respectively. The validation of the procedure was carried out by analysis of certified reference materials. The proposed method was applied to natural waters and kale vegetable (Brassica oleracea var. acephala)

  4. The nature of the exchange coupling between high-spin Fe(III) heme o3 and CuBII in Escherichia coli quinol oxidase, cytochrome bo3: MCD and EPR studies.

    Science.gov (United States)

    Cheesman, Myles R; Oganesyan, Vasily S; Watmough, Nicholas J; Butler, Clive S; Thomson, Andrew J

    2004-04-07

    Fully oxidized cytochrome bo3 from Escherichia coli has been studied in its oxidized and several ligand-bound forms using electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopies. In each form, the spin-coupled high-spin Fe(III) heme o3 and CuB(II) ion at the active site give rise to similar fast-relaxing broad features in the dual-mode X-band EPR spectra. Simulations of dual-mode spectra are presented which show that this EPR can arise only from a dinuclear site in which the metal ions are weakly coupled by an anisotropic exchange interaction of J 1 cm-1. A variable-temperature and magnetic field (VTVF) MCD study is also presented for the cytochrome bo3 fluoride and azide derivatives. New methods are used to extract the contribution to the MCD of the spin-coupled active site in the presence of strong transitions from low-spin Fe(III) heme b. Analysis of the MCD data, independent of the EPR study, also shows that the spin-coupling within the active site is weak with J approximately 1 cm-1. These conclusions overturn a long-held view that such EPR signals in bovine cytochrome c oxidase arise from an S' = 2 ground state resulting from strong exchange coupling (J > 10(2) cm-1) within the active site.

  5. New complexes of Co(II, Ni(II, Cu(II with Schiff base N,N’-bis-(3-methoxy-saliciliden-3,3’-dimethylbenzidine

    Directory of Open Access Journals (Sweden)

    Alan Ionela

    2013-01-01

    Full Text Available The new N,N’-bis-(3-methoxy-saliciliden-3,3’-dimetilbenzidine (H2L Schiff base and complexes with Co(II, Ni(II and Cu(II of type [M(HLCl(H2O] (M=Co(II, Cu(II [M2L(H2O4]X2 (M=Co(II, X=ClO4 and M=Cu(II, X=NO3 and [M2L(CH3COO2] (M=Co(II, Ni(II, Cu(II were synthesised. The ligand and complexes were characterized by elemental analysis, conductibility measurements, magnetic moments at room temperature, IR, NMR, UV-VIS-NIR, EPR spectra and thermogravimetric analysis. A molar ratio of 1:1 or 1:2 between ligand and metal was determined from the elemental analysis. Except for perchlorate complex that behave as electrolyte, the rest of complexes are non-electrolytes. The spectral data suggest a tetrahedral, pseudo-tetrahedral or square-planar stereochemistry respectively, data confirmed by magnetic behaviour of complexes. The antimicrobial tests indicate a fungicide effect both for ligand and complexes.

  6. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification.

    Science.gov (United States)

    Braga, Mauro S; Jaimes, Ruth F V V; Borysow, Walter; Gomes, Osmar F; Salcedo, Walter J

    2017-07-28

    This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView ® ). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution.

  7. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification

    Directory of Open Access Journals (Sweden)

    Mauro S. Braga

    2017-07-01

    Full Text Available This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array technology and software based on virtual instrumentation (NI LabView®. The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo-2-naphthol (PAN. The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II, Cd(II, Zn(II, Cu(II, Fe(III and Ni(II ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS spectrophotometers of high spectral resolution.

  8. Carrier-facilitated transport of Cd(II) through a supported liquid membrane containing thiacalix[4]arene derivatives as ionophore

    International Nuclear Information System (INIS)

    Zaghbani, Asma; Tayeb, Rafik; Dhahbi, Mahmoud

    2009-01-01

    The feasibility of a facilitated transport process of cadmium ions through a SLM system incorporating new extractant agents, thiacalix[4]arenes, was studied. These molecules have sulfur atoms instead of usual methylene bridges. The chemical modification of the upper or the lower rim provides a great variety of supra molecules having different complexation ability and different conformational behaviour. The efficiency of the transport across the inner membrane organic liquid phase is shown to depend on the chemical (affinity) and structural (conformational states possible) parameters of these complexing molecules. In this work, two different thiacalix[4]arenes were selected as effective ionophore for the treatment of liquid media loaded in Cd(II). The results show that these thiacalix[4]arenes derivative ensure facilitated transport of cadmium cations through supported liquid membranes. Especially, the non-substituted thiacalix[4]arene can be considered as an effective extractant agent. The incidence of several parameters on transport efficiency such as pH of both aqueous solutions and carrier concentration was studied. The permeation of the species is due to a proton potential gradient (the driving force of the process) existing between the two opposite sides of the SLM. The initial flux, J, is found to be equal to 6.7.10 -7 mol.m -2 .s -1 , under optimal experimental conditions.

  9. Substrate specificity, metal binding properties, and spectroscopic characterization of the DapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae.

    Science.gov (United States)

    Bienvenue, David L; Gilner, Danuta M; Davis, Ryan S; Bennett, Brian; Holz, Richard C

    2003-09-16

    The catalytic and structural properties of divalent metal ion cofactor binding sites in the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae were investigated. Co(II)-substituted DapE enzyme was 25% more active than the Zn(II)-loaded form of the enzyme. Interestingly, Mn(II) can activate DapE, but only to approximately 20% of the Zn(II)-loaded enzyme. The order of the observed k(cat) values are Co(II) > Zn(II) > Cd(II) > Mn(II) >Ni(II) approximately equal Cu(II) approximately equal Mg(II). DapE was shown to only hydrolyze L,L-N-succinyl-diaminopimelic acid (L,L-SDAP) and was inactive toward D,L-, L,D-, and D,D-SDAP. DapE was also inactive toward several acetylated amino acids as well as D,L-succinyl aminopimelate, which differs from the natural substrate, L,L-SDAP, by the absence of the amine group on the amino acid side chain. These data imply that the carboxylate of the succinyl moiety and the amine form important interactions with the active site of DapE. The affinity of DapE for one versus two Zn(II) ions differs by nearly 2.2 x 10(3) times (K(d1) = 0.14 microM vs K(d2) = 300 microM). In addition, an Arrhenius plot was constructed from k(cat) values measured between 16 and 35 degrees C and was linear over this temperature range. The activation energy for [ZnZn(DapE)] was found to be 31 kJ/mol with the remaining thermodynamic parameters calculated at 25 degrees C being DeltaG(++) = 64 kJ/mol, DeltaH(++) = 28.5 kJ/mol, and DeltaS(++) = -119 J mol(-1) K(-1). Electronic absorption and EPR spectra of [Co_(DapE)] and [CoCo(DapE)] indicate that the first Co(II) binding site is five-coordinate, while the second site is octahedral. In addition, any spin-spin interaction between the two Co(II) ions in [CoCo(DapE)] is very weak. The kinetic and spectroscopic data presented herein suggest that the DapE from H. influenzae has similar divalent metal binding properties to the aminopeptidase from Aeromonas proteolytica (AAP), and

  10. Influence of Ni(II) and Fe(III) complexes of 1,2 dihydroxy 9,10 anthraquinone on the modification in calf thymus DNA upon gamma irradiation

    International Nuclear Information System (INIS)

    Das, Saurabh; Mandal, Parikshit C.

    2009-01-01

    Ionizing radiation when allowed to fall upon cells or DNA, the radicals produced modify the base-pair region of the double strands. Radiation-induced double-strand modifications in calf thymus DNA were detected using Ni(II) and Fe(III) complexes of 1,2 dihydroxy 9,10 anthraquinone (DHA). 60 Co was used as the source for γ-radiation and ethidium bromide (EB) as the fluorescent dye for detecting double-strand modifications caused in DNA. Results show that the Fe(III)-DHA complex is more efficient in modifying the base-pair region in double-stranded DNA in comparison to DHA or the Ni(II)-DHA complex

  11. Sustainable synthesis of magnetically separable SiO2/Co@Fe2O4 nanocomposite and its catalytic applications for the benzimidazole synthesis

    Science.gov (United States)

    Jithendra Kumara, K. S.; Krishnamurthy, G.; Sunil Kumar, N.; Naik, Nagaraja; Praveen, T. M.

    2018-04-01

    The Co(II) and Fe(III) centres magnetically separable two new mesoporous nanocatalyst were synthesised via chemical synthesis method. The transmission electron microscopic studies (TEM) show that, the particles are spherical shape with mean size of 20 nm. The Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) reveals that SiO2 is coating on the surface of the cobalt ferrate nanoparticle (CoFe2O4). The SiO2 coating is efficiently preventing the aggregated collision of nanoparticles. Magnetic measurements show that diamagnetic character of the SiO2 is unaffected to the coercivity of SiO2 coated CoFe2O4 particles. In addition, these nanoparticles are used as nanocatalyst for high yielding, facile and expeditious synthesis of various functionalized 2-arylbenzimidazoles via one-pot condensation. The cascade including imine formation, cyclization, condensation, and aromatization occurs, without addition of any reducing or oxidizing agents. In all situations, the desired product was synthesised with excellent yield. The shorter reaction time, mild reaction condition, simplicity, non-toxicity, safe reaction and easy workup are the impotent merits of this protocol.

  12. Liquid-liquid extraction (LLE) of Fe(III) and Ti(IV) by bis-(2-ethyl-hexyl) phosphoric acid (D2EHPA) in sulfuric acid medium; Extracao liquido-liquido de ferro (III) e titanio (IV) pelo acido bis-(2-etil-hexil) fosforico (D2EHPA) em meio de acido sulfurico

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Glauco Correa da; Cunha, Jose Waldemar Silva Dias da [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil). Dept. de Quimica e Materiais Nucleares; Dweck, Jo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica. Dept. de Processos Inorganicos; Afonso, Julio Carlos [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica]. E-mail: julio@iq.ufrj.br

    2008-07-01

    This work presents a study on the separation of Fe(III) and Ti(IV) from sulfuric acid leaching solutions of ilmenite (FeTiO{sub 3}) using liquid-liquid extraction with D2EHPA in n-dodecane as extracting agent. The distribution coefficients (K{sub D}) of the elements related to free acidity and concentration of Fe(III) and Ti(IV) were determined. Free acidity was changed from 3x10{sup -2} to 11.88 mol L{sup -1} and D2EHPA concentration was fixed at 1.5 mol L{sup 1}. Recovery of final products as well as recycling of wastes generated in the process were also investigated. The LLE process as a feasible alternative to obtain high-purity TiO{sub 2}. (author)

  13. Synthesis, spectroscopic properties, molecular docking, anti-colon cancer and anti-microbial studies of some novel metal complexes for 2-amino-4-phenylthiazole derivative

    Science.gov (United States)

    Al-Harbi, Sami A.; Bashandy, Mahmoud S.; Al-Saidi, Hammed M.; Emara, Adel A. A.; Mousa, Tarek A. A.

    2015-06-01

    This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, 1H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.) = 21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value = 13.30, while Zn(II) complex with S.I. value = 10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme.

  14. Synthesis of a 3D lanthanum(III) MOFs as a multi-chemosensor to Cr(VI)-containing anion and Fe(III) cation based on a flexible ligand

    Science.gov (United States)

    Ma, Yang-Min; Liu, Tong; Huang, Wen-Huan

    2018-02-01

    Based on La(NO3)3·6H2O and 4,4‧-((5-carboxy-1,3-phenylene)bis(oxy))dibenzoic acid (H3cpbda), a 3D porous MOFs, [La(cpbda)(H2O)1.5]n (1), was synthesized by hydrothermal method and further characterized by single-crystal X-ray diffraction, power X-ray diffraction, IR spectroscopy, thermal-gravimetric analysis and fluorescence spectroscopy. Owing to its good stabilities and fluorescence property, the sensing experiments on sixteen cations and eleven anions were implemented. Moreover, the further titration processes show 1 can sensitively detect the Fe(III) cation and Cr(VI)-containing anions by quenching responses.

  15. Enhanced sorption of radiocobalt from water by Bi(III) modified montmorillonite: A novel adsorbent

    International Nuclear Information System (INIS)

    Guo Zhiqiang; Li Yuan; Zhang Shouwei; Niu Haihong; Chen Zhesheng; Xu Jinzhang

    2011-01-01

    Highlights: → Bi-Mt has higher surface area than Ca-Mt. → The sorption of Co(II) on Bi-Mt is dependent on ionic strength and pH. → The sorption of Co(II) on Bi-Mt is an spontaneous and endothermic process. → Bi-Mt has good practical application potential in wastewater disposal. - Abstract: In this study, Ca-montmorillonite (Ca-Mt) modified with Bi 3+ was used as a novel adsorbent for the sorption of Co(II) from aqueous solutions. The sorption of Co(II) on Bi-montmorillonite (Bi-Mt) was investigated as a function of contact time, pH, ionic strength, adsorbent content, Co(II) concentrations, fulvic acid (FA) and temperature. Compared to Ca-Mt, Bi-Mt showed a higher affinity to bind Co(II) ions. The sorption percentage of Co(II) on Bi-Mt increased with increasing pH at pH 3.0-8.5, and then maintained the high level at pH 8.5-12. The sorption of Co(II) on Bi-Mt was dependent on ionic strength at low pH, and independent of ionic strength at high pH. The presence of FA enhanced Co(II) sorption at low pH, but suppressed Co(II) sorption at high pH. The thermodynamic data derived from temperature dependent sorption isotherms suggested that the sorption of Co(II) on Bi-Mt was spontaneous and endothermic process. Outer-sphere surface complexation and/or ion exchange were the main mechanisms of Co(II) sorption on Bi-Mt at low pH, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. From the experimental results, it is possible to conclude that Bi-Mt is suitable for application of Co(II) removal from aqueous solutions.

  16. Structural diversification and photocatalytic properties of three Cd(II) coordination polymers decorated with different auxiliary ligands

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Wen-Yu; Zhuang, Guo-Yong; Huang, Zuo-Long; Cheng, Hong-Jian; Zhou, Li; Ma, Man-Hong; Wang, Hao; Tang, Xiao-Yan, E-mail: xytang@cslg.edu.cn; Ma, Yun-Sheng; Yuan, Rong-Xin, E-mail: yuanrx@cslg.edu.cn

    2016-03-15

    Three cadmium coordination polymers, [Cd(bismip)]{sub n} (1), {[Cd(bismip)(phen)]·H_2O}{sub n} (2) and {[Cd_2(bismip)_2(4,4′-bipy)]·2H_2O}{sub n} (3) (H{sub 2}bismip=5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine) have been prepared under solvothermal conditions. In 1, the [Cd{sub 4}(bismip){sub 3}] units are jointed by bismip ligands to afford a three-dimensional (3D) architecture. Complex 2 exhibits a 3D supramolecular framework based on the interconnection of 1D chains through hydrogen bonding interactions and π-π packing interactions. 3 is a two-fold interpenetrating 3D architecture with a (4·8{sup 2})(4{sup 2}·8{sup 4}) Schläfli symbol in which 2D layers are interlinked by 4,4′-bipy ligands. The diverse structures of compounds 1–3 indicate that the auxiliary ligands have significant effects on the final structures. The photoluminescent properties and photocatalytic properties of these coordination polymers in the solid state were also investigated. Remarkably, 3 shows the wide gap semiconductor nature and exhibit excellent photocatalytic performance. - Graphical abstract: Three cadmium coordination polymers with different architectures based on 5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid have been prepared. Their photoluminescent properties were also investigated. - Highlights: • Three new Cd(II) Cps were synthesized based on H{sub 2}bismip. • Compounds 1 and 3 show 3D networks and 2 exhibits a 1D chain. • Compoud 3 exhibits good catalytic activity of methylene blue photodegradation.

  17. Preparation, spectroscopic, thermal, antihepatotoxicity, hematological parameters and liver antioxidant capacity characterizations of Cd(II), Hg(II), and Pb(II) mononuclear complexes of paracetamol anti-inflammatory drug

    Science.gov (United States)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2014-10-01

    Keeping in view that some metal complexes are found to be more potent than their parent drugs, therefore, our present paper aimed to synthesized Cd(II), Hg(II) and Pb(II) complexes of paracetamol (Para) anti-inflammatory drug. Paracetamol complexes with general formula [M(Para)2(H2O)2]·nH2O have been synthesized and characterized on the basis of elemental analysis, conductivity, IR and thermal (TG/DTG), 1H NMR, electronic spectral studies. The conductivity data of these complexes have non-electrolytic nature. Comparative antimicrobial (bacteria and fungi) behaviors and molecular weights of paracetamol with their complexes have been studied. In vivo the antihepatotoxicity effect and some liver function parameters levels (serum total protein, ALT, AST, and LDH) were measured. Hematological parameters and liver antioxidant capacities of both Para and their complexes were performed. The Cd2+ + Para complex was recorded amelioration of antioxidant capacities in liver homogenates compared to other Para complexes treated groups.

  18. Synthesis, Characterization and Thermal Decomposition Studies of Cr(III, Mn(II and Fe(III Complexes of N, N '-Bis[1,3-benzodioxol-5-ylmethylene]butane-1,4-diamine

    Directory of Open Access Journals (Sweden)

    Prasad M. Alex

    2009-01-01

    Full Text Available A bidentate Schiff base ligand namely, N,N'-bis-1,3-benzodioxol-5-ylmethylene]butane-1,4-diamine was synthesised by condensing piperonal (3,4-dioxymethylenebenzaldehyde with butane-1,4-diamine. Cr(III, Mn(II, Fe(III complexes of this chelating ligand were synthesised using acetates, chlorides, bromides, nitrates and perchlorates of these metals. The ligand and the complexes were characterised by elemental analysis, 1H NMR, UV-Vis and IR spectra, conductance and magnetic susceptibility measurements and thermogravimetric analysis. The thermograms of three complexes were analysed and the kinetic parameters for the different stages of decompositions were determined.

  19. Síntese e caracterização de compósito magnético nanoestruturado contendo óxido de manganês para remoção de íons Cd(II do meio aquoso

    Directory of Open Access Journals (Sweden)

    A. P. Heitmann

    2014-09-01

    Full Text Available O tratamento de efluentes contendo cádmio é de grande interesse devido à persistência desse contaminante no meio ambiente e às graves doenças que pode causar ao homem. No presente trabalho, foi utilizado o compósito magnético Mn3O4/Fe3O4 como adsorvente do íon cádmio (II em meio aquoso. O material adsorvente foi sintetizado e caracterizado segundo as técnicas de difração de raios X (DRX, espectroscopia Raman, microscopia eletrônica de transmissão e sorção de N2 (BET. Ênfase foi dada à quantificação das fases do compósito pela análise de DRX combinada ao método Rietveld. O estudo de adsorção foi realizado variando o pH do meio e a concentração do íon cádmio em solução. A análise dos resultados possibilitou verificar que a remoção de Cd(II utilizando compósito magnético Mn3O4/Fe3O4 em meio aquoso é dependente do pH duplicando a medida que o pH varia de 3 para 7. O estudo de imobilização do íon contaminante em solução apresentou valores significativos de capacidade máxima de adsorção, de 12,3 mgCd/g no pH 6 e 13,6 mgCd/g no pH 7, indicando uma remoção de até 98% para concentrações baixas do íon, sugerindo que o adsorvente apresenta elevado potencial para remoção de Cd(II em meio aquoso.

  20. The outer membrane protein Omp35 affects the reduction of Fe(III, nitrate, and fumarate by Shewanella oneidensis MR-1

    Directory of Open Access Journals (Sweden)

    Myers Charles R

    2004-06-01

    Full Text Available Abstract Background Shewanella oneidensis MR-1 uses several electron acceptors to support anaerobic respiration including insoluble species such as iron(III and manganese(IV oxides, and soluble species such as nitrate, fumarate, dimethylsulfoxide and many others. MR-1 has complex branched electron transport chains that include components in the cytoplasmic membrane, periplasm, and outer membrane (OM. Previous studies have implicated a role for anaerobically upregulated OM electron transport components in the use of insoluble electron acceptors, and have suggested that other OM components may also contribute to insoluble electron acceptor use. In this study, the role for an anaerobically upregulated 35-kDa OM protein (Omp35 in the use of anaerobic electron acceptors was explored. Results Omp35 was purified from the OM of anaerobically grown cells, the gene encoding Omp35 was identified, and an omp35 null mutant (OMP35-1 was isolated and characterized. Although OMP35-1 grew on all electron acceptors tested, a significant lag was seen when grown on fumarate, nitrate, and Fe(III. Complementation studies confirmed that the phenotype of OMP35-1 was due to the loss of Omp35. Despite its requirement for wild-type rates of electron acceptor use, analysis of Omp35 protein and predicted sequence did not identify any electron transport moieties or predicted motifs. OMP35-1 had normal levels and distribution of known electron transport components including quinones, cytochromes, and fumarate reductase. Omp35 is related to putative porins from MR-1 and S. frigidimarina as well as to the PorA porin from Neisseria meningitidis. Subcellular fraction analysis confirmed that Omp35 is an OM protein. The seven-fold anaerobic upregulation of Omp35 is mediated post-transcriptionally. Conclusion Omp35 is a putative porin in the OM of MR-1 that is markedly upregulated anaerobically by a post-transcriptional mechanism. Omp35 is required for normal rates of growth on Fe(III

  1. The synthesis and characterization of 1,2-dihydroxyimino-3,6-di-aza-8,9-O-iso-butylidene nonane and its complexes with Ni(II), Cu(II), Zn(II) and Cd(II)

    International Nuclear Information System (INIS)

    Canpolat, E.; Kaya, M.; Gorgulu, A.O.

    2002-01-01

    1,2-dihydroxyimino-3,6-di-aza-8,9-O-iso-butylidene nonane (H 2 L) was synthesized starting from 1,2-O-iso-butylidene-4-aza-6-amino hexane (RNH 2 ) and antichloroglyoxime. Ni(II) and Cu(II) complexes of H 2 L have a metal:ligand ratio 1:2 and the ligand coordinates through two N atoms, as do most of the vic-dioximes. However, Zn(II) and Cd(II) complexes of H 2 L have a metal: ligand ratio 1:1 and one chloride ion and one water molecule are also coordinated to the metal ion. Structures of the ligand and its transition-metal complexes are proposed, according to elemental analysis, IR, 13 C and 1 H NMR spectra, magnetic susceptibility measurements and thermogravimetric analyses (TGA). (author)

  2. Multinuclear NMR characterization of CTAB-hexanol-water, sodium oleate-butanol-water and triton X-100-decanol-water microemulsions

    International Nuclear Information System (INIS)

    Nagy, J.B.; Bodart-Ravet, I.; Derouane, E.G.; Gourgue, A.; Verfaillie, J.P.

    1989-01-01

    Multinuclear NMR is a very valuable tool to characterize micellar systems or microemulsions. It allows one to determine c.m.c. values, to study the dissolution of organic molecules, the solvation of cations and anions, the structural changes occurring in a ternary diagram, the mobility of the molecules, etc. This review paper essentially deals with the characterization of cationic (CTAB-hexanol-water), anionic (sodium oleate-butanol-water) and neutral (Triton X-100-decanol-water) reversed micelles. The use of paramagnetic ions [Ni(II), CO(II), Fe(III), etc.] is particularly emphasized to characterize the site of solubilization and their interaction with surfactant and cosurfactant molecules 13 C-NMR). It is concluded, that the metallic ions are basically solvated in the inner water cores and one or more hexanol molecules are included in their first coordination shells in the CTAB-hexanol-water microemulsions. In the Triton X-100-decanol-water microemulsions, both decanol and Triton X-100 molecules enter the first coordination shell of Co(II) ions which are dissolved in both aqeous water cores and the organic medium. 19 F-NMR of a fluorinated probe molecule is particularly useful to study the size of the inner water cores. The method is based on the partition of the molecules between the interface and the organic medium. However, this method has to be applied with great care, and the computed data have to be compared to other physico-chemical results. Both 19 F- and 23 Na-NMR results show a great variation of the behaviour of the sodium oleate-butanol-water system in the so-called bicontinuous region. The Na + ions are oriented independently on a hypothetical inverse micellar droplet. (author). 43 refs.; 18 figs.; 7 tabs

  3. Selective and Efficient Solvent Extraction of Copper(II Ions from Chloride Solutions by Oxime Extractants

    Directory of Open Access Journals (Sweden)

    Zahra Kaboli Tanha

    2016-06-01

    Full Text Available Oxime extractants 3-tert-butyl-2-hydroxy-5-methyl benzaldehyde oxime (HL1 and 3-tert-butyl-2-hydroxy-5-methoxy benzaldehyde oxime (HL2 were synthesized and characterized by conventional spectroscopic methods. Suitable lipophilic nature of the prepared extractants allowed examining the ability of these molecules for extraction-separation of copper from its mixture with normally associated metal ions by performing competitive extraction experiments of Cu(II, Co(II, Ni(II, Zn(II, Cd(II and Pb(II ions from chloride solutions. Both ligands transfer selectively the copper ions into dichloromethane by a cation exchange mechanism. Conventional log-log analysis and isotherm curves showed that Cu(II ions are extracted as the complexes with 1:2 metal to ligand ratio by both extractants. Verification of the effect of the organic diluent used in the extraction of copper ions by HL1 and HL2 demonstrated that the extraction efficiency varies as: dichloromethane ~ dichloroethane > toluene > xylene > ethylacetate. Time dependency investigation of the extraction processes revealed that the kinetics of the extraction of copper by HL2 is more rapid than that of HL1. The application of the ligands for extraction-separation of copper ions from leach solutions of cobalt and nickel-cadmium filter-cakes of a zinc production plants was evaluated.

  4. Preparation and characterization of magnetic allylamine modified graphene oxide-poly(vinyl acetate-co-divinylbenzene) nanocomposite for vortex assisted magnetic solid phase extraction of some metal ions.

    Science.gov (United States)

    Khan, Mansoor; Yilmaz, Erkan; Sevinc, Basak; Sahmetlioglu, Ertugrul; Shah, Jasmin; Jan, Muhammad Rasul; Soylak, Mustafa

    2016-01-01

    Magnetic allylamine modified graphene oxide-poly(vinyl acetate-co-divinylbenzene) (MGO-DVB-VA) was synthesized and used for magnetic solid phase extraction of Pb(II), Cd(II), Cu(II), Ni(II) and Co(II) prior to their determination by flame atomic absorption spectroscopy. The adsorbent surface functional group was characterized by using FT-IR and Raman spectroscopy. XRD pattern was used to determine the layers of GO. Surface morphology and elemental composition of the adsorbent were evaluated by using SEM and EDX analysis. Various parameters, effecting adsorption efficiency like initial solution pH, adsorbent dose, type and volume of eluent, volume of sample and diverse ions effects were optimized. The preconcentration factor (PF) is 40 for all the metals and the limits of detection for Pb, Cd, Cu, Ni and Co are in the range of 0.37-2.39 µg L(-1) and relative standard deviation below 3.1%. The method was validated by using the method for certified reference materials (Tobacco Leaves (INCT-OBTL-5), Tomato Leaves (1573a), Certified Water (SPS-ww2) and Certified Water (TMDA 64-2)). The method was successfully applied for natural water and food samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Preparation and Spectral Properties of Mixed-Ligand Complexes of VO(IV, Ni(II, Zn(II, Pd(II, Cd(II and Pb(II with Dimethylglyoxime and N-acetylglycine

    Directory of Open Access Journals (Sweden)

    Shayma A. Shaker

    2010-01-01

    Full Text Available A number of mixed-ligand complexes of the general formula [M(D(G] where D=dimethylglyoximato monoanion, G=N-acetylglycinato and M=VO(IV, Ni(II, Zn(II, Pd(II, Cd(II and Pb(II were prepared. Each complex was characterized by elemental analysis, determination of metal, infrared spectra, electronic spectra, (1H and 13C NMR spectra, conductivity and magnetic moments. All these complexes were not soluble in some of the organic solvent but highly soluble in dimethylformamide. The conductivity data showed the non-electrolytic nature of the complexes. The electronic spectra exhibited absorption bands in the visible region caused by the d-d electronic transition such as VO(IV, Ni(II and Pd(II. The IR and (1H, 13C NMR spectra which have indicate that the dimethylglyoxime was coordinated with the metal ions through the N and O atoms of the oxime group and N-acetylglycine was coordinated with metal ions through the N atom and terminal carboxyl oxygen atom.

  6. 4,4′-Bipyridine-aided synthesis and characterization of Zn(II) and Cd(II) 2-sulfoterephthalate complexes

    International Nuclear Information System (INIS)

    Xiao, Shan-Shan; Li, Xin-Xin; Zheng, Xiang-Jun; Jia, Tian-Jing; Jin, Lin-Pei

    2013-01-01

    Six d 10 complexes, [Zn 1.5 (stp)(bpy) 0.5 (H 2 O) 2 ]·0.5H 2 O (1), Cd 1.5 (stp)(bpy) 0.5 (H 2 O) 2 (2), [Cd 1.5 (stp)(bpy)(H 2 O)]·H 2 O (3), [Zn 0.5 (bpy) 0.5 (H 2 O) 2 ][Zn(stp)(bpy)(H 2 O)]·0.5H 2 O (4), Cd 3 (stp) 2 (bpy) 3 (H 2 O) 3 (5), Hbpy·[Zn 0.5 (bpy)(H 2 O) 2 ][Zn 0.5 (stp)(H 2 O)]·H 2 O (6) based on 2-sulfoterephthalate (stp 3− ) and 4,4′-bipyridine (bpy) have been synthesized under hydro/solvo-thermal conditions and structurally characterized. Complex 1 exhibits a three-fold interpenetrated 3D porous architecture. Complexes 2 and 3 possess helices with different chirality arranging alternately. 4 and 6 are addition compounds, which compose of complex cation and complex anion. Complex 5 features a 3D layer-pillar framework in which a (4, 4) grid layer is constructed by stp 3− ligands and Cd(II) ions, and the layers are further connected by bpy pillars. The solid-state luminescent properties of the coordination polymers have also been investigated. - Graphical abstract: Display Omitted - Highlights: • Complexes 1–3 possess helices with different chirality arranging alternately. • The structural diversity can be attributed to various coordination modes of ligands. • The formation of helical structure is related to the adjacent carboxyl and sulfonate groups. • Bpy exhibits three roles: bridge, hydrogen bonding acceptor, and template

  7. Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature, and type of chelate.

    Science.gov (United States)

    Schönherr, Jörg; Fernández, Victoria; Schreiber, Lukas

    2005-06-01

    Time courses of cuticular penetration of FeCl3 and Fe(III) complexes of citric acid, EDTA, EDDHA (Sequestrene 138Fe), imidodisuccinic acid (IDHA), and ligninsulfonic acid (Natrel) were studied using astomatous cuticular membranes (CMs) isolated from Populus x canescens leaves. At 100% relative humidity, the Fe(III) chelates disappeared exponentially with time from the surface of the CMs; that is, penetration was a first-order process that can be described using rate constants or half-times of penetration (t(1/2)). Half-times ranged from 20 to 30 h. At 90% humidity, penetration rates were insignificant with the exception of Natrel, for which t(1/2) amounted to 58 h. Rate constants were independent of temperature (15, 25, and 35 degrees C). Permeability decreased with increasing Fe chelate concentration (IDHA and EDTA). At 100% humidity, half-times measured with FeIDHA were 11 h (2 mmol L(-1)), 17 h (10 mmol L(-1)) and 36 h (20 mmol L(-1)), respectively. In the presence of FeEDTA, penetration of CaCl2 was slowed greatly. Half-times for penetration of CaCl2, which were 1.9 h in the absence of FeEDTA, rose to 3.12 h in the presence of an equimolar concentration of EDTA and 13.3 h when the FeEDTA concentration was doubled. Hence, Fe chelates reduced permeability of CMs to CaCl2 and to the Fe chelates themselves. It is suggested that Fe chelates reduced the size of aqueous pores. This view is supported by the fact that rate constants for calcium salts were about 5 times higher than for Fe chelates with the same molecular weights. Adding Tween 20 (5 g L(-1)) as a humectant did not increase permeability to FeIDHA at 90% humidity and below, while addition of glycine betaine did. Penetration of FeCl3 applied at 5 g L(-1) (pH 1.5) was not a first order process as rate constants decreased rapidly with time. Only 2% of the dose penetrated during the first 2 h and less than that in the subsequent 8 h. Recovery was only 70%. This was attributed to the formation of insoluble Fe

  8. Kinetic and equilibrium studies of Pb(II and Cd(II adsorption on African wild mango (Irvingia gabonensis shell

    Directory of Open Access Journals (Sweden)

    F. A. Adekola

    2016-08-01

    Full Text Available The adsorption behavior of NaOH-activated African wild mango (Irvingia gabonensis shell with respect to Pb2+ and Cd2+ has been studied in order to consider its application to purify metal finishing waste water. The optimum conditions of adsorption were determined by investigating the initial metal ions concentration, contact time, adsorbent dose, pH value of aqueous solution and temperature. The extent of adsorption of metal ions was investigated by batch method using metal concentrations in solution ranging from 5-200 mg/L. The adsorption efficiencies were found to be pH dependent, with maximum metals uptake recorded at pH of 5. The equilibrium adsorption capacity for lead and cadmium ions were obtained from Freundlich, Langmuir, Temkin and DRK isotherms and the experimental data were found to fit best the Langmuir isotherm with values of 21.28 and 40.00 mg/g for Cd(II and Pb(II ions, respectively. The Pseudo-second order kinetics model had the best fitting for lead and cadmium adsorption kinetic data. The thermodynamic investigation showed that the adsorption processes of both metals are exothermic. An optimum concentration of 0.05 M HCl was found to be adequate for the regeneration of the spent adsorbent with recovery values of 78% and 71% for Pb2+ and Cd2+ respectively from the spent adsorbent. The results revealed that lead and cadmium are considerably adsorbed on the adsorbent and could be an economic method for the removal of these metals from aqueous solutions.

  9. Removal of cadmium (II) from aqueous solution: A comparative study of raw attapulgite clay and a reusable waste–struvite/attapulgite obtained from nutrient-rich wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Wang, Xuejiang, E-mail: wangxj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Ma, Jinxing, E-mail: jinxing.ma@unsw.edu.au [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Xia, Peng; Zhao, Jianfu [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2017-05-05

    Highlights: • Both nutrient recovery and Cd(II) removal were achieved by MAP/APT. • The nutrient recovery process was used as a novel method of modification. • Compared with raw APT, MAP/APT enhanced Cd(II) adsorption capacity. • Cd(II) adsorption mechanisms from aqueous solution were extensively investigated. - Abstract: In this study, raw attapulgite (APT) and a novel adsorbent, struvite/attapulgite (MAP/APT) obtained from nutrient-rich wastewater treated by MgO modified APT, were applied as the absorbent for Cd(II) ion removal from aqueous solution. The two adsorbents were characterized by BET, SEM-EDS, XRD, FT-IR. Raw APT and MAP/APT separately presented the maximum Cd(II) adsorption capacities of 10.38 mg/g and 121.14 mg/g at pH of 5.45. The Cd(II) adsorption on raw APT and MAP/APT could be well fitted by Freundlich isotherm and Langmuir isotherm, respectively. Pseudo-second order equation was able to properly describe the kinetics of Cd(II) adsorption by raw APT and MAP/APT. The calculated thermodynamic parameters indicated that Cd(II) adsorption onto raw APT and MAP/APT were spontaneous and endothermic. An economic evaluation revealed that the treatment costs of the adsorption process by raw APT and MPA/APT were 0.013 $ per 1000 mg Cd and 0.004 $ per 1000 mg Cd, respectively.

  10. The bipyridine adducts of N-phenyldithiocarbamato complexes of Zn(II) and Cd(II); synthesis, spectral, thermal decomposition studies and use as precursors for ZnS and CdS nanoparticles

    Science.gov (United States)

    Onwudiwe, Damian C.; Strydom, Christien A.

    2015-01-01

    Bipyridine adducts of N-phenyldithiocarbamato complexes, [ML12L2] (M = Cd(II), Zn(II); L1 = N-phenyldithiocarbamate, L2 = 2,2‧ bipyridine), have been synthesized and characterised. The decomposition of these complexes to metal sulphides has been investigated by thermogravimetric analysis (TGA). The complexes were used as single-source precursors to synthesize MS (M = Zn, Cd) nanoparticles (NPs) passivated by hexadecyl amine (HDA). The growth of the nanoparticles was carried out at two different temperatures: 180 and 220 °C, and the optical and structural properties of the nanoparticles were studied using UV-Vis spectroscopy, photoluminescence spectroscopy (PL), transmission emission microscopy (TEM) and powdered X-ray diffraction (p-XRD). Nanoparticles, whose average diameters are 2.90 and 3.54 nm for ZnS, and 8.96 and 9.76 nm for CdS grown at 180 and 220 °C respectively, were obtained.

  11. Influence of differences in resin-matrix structure on ion-exchange adsorption of trace amounts of Ag(I), Co(II) and Cr(III)

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Wadachi, Yoshiki

    1975-01-01

    The influence of differences in resin-matrix structure on the ion-exchange adsorption of trace amounts of Ag(I), Co(II) and Cr(III) was studied by using both macroreticular and gel-type resins. The results indicate that the rate-determining step of the exchange mechanism of these ions is film diffusion under conditions of finite volume and at an ionic strengh of 1x10 -4 . The diffusion coefficient decreases with increasing size of the hydrated ions - in the order Dsub(Ag)>Dsub(Co)>Dsub(Cr). It may be said that the faster rate of exchange in the macroreticular resin is due to the larger surface area and pore size of this resin. Also, in a column system - as opposed to batch operation, it is assumed that the rate-determining step of the exchange reaction is film diffusion. With both resins, the kinetic coefficient β decreases in the order: βsub(Ag)>βsub(Co)>βsub(Cr). For the same linear velocity, a higher β-value is obtained with the macroreticular than with the gel-type resin. Consequently, a higher separating efficiency may be expected from the macroreticular resin for concentrating and separating trace amounts of cations from aqueous solution. (auth.)

  12. Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters

    International Nuclear Information System (INIS)

    Sheng, Guodong; Dong, Huaping; Li, Yimin

    2012-01-01

    Clay minerals have been extensively studied because of their strong sorption and complexation ability. In this work, diatomite was characterized by using acid–base titration. Retention of radionuclide 60 Co(II) from aqueous solution by sorption onto diatomite was investigated by using batch technique under various environmental conditions such as pH, ionic strength, humic acid (HA), fulvic acid (FA), and temperature. The results indicated that the sorption of Co(II) onto diatomite was strongly dependent on pH. At low pH value, the sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na + /H + on diatomite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH value. The D–R model fitted the sorption isotherms better than the Langmuir and Freundlich models. The thermodynamic parameters (ΔH 0 , ΔS 0 and ΔG 0 ) calculated from the temperature-dependent sorption isotherms suggested that the sorption of Co(II) was an endothermic and spontaneous process. In addition, diatomite showed higher sorption capacity than that of lots of the sorbents reported in the literatures we surveyed. From the results of Co(II) removal by diatomite, the optimum reaction conditions can be obtained for the maximum removal of Co(II) from water. It is clear that the best pH values of the system to remove Co(II) from solution by using diatomite are 7–8. Considering the low cost and effective disposal of Co(II)-contaminated wastewaters, the best condition for Co(II) removal is at room temperature and solid content of 0.5 g/L. The results might be important for assessing the potential of practical application of diatomite in Co(II) and related radionuclide pollution management. - Highlights: ► The sorption of Co(II) was strongly dependent on ionic strength at low pH, but independent of ionic strength at high pH. ► A positive effect of HA/FA on Co(II) sorption was found at low pH, whereas a negative effect

  13. Protective effects of blueberries (Vaccinium corymbosum L.) extract against cadmium-induced hepatotoxicity in mice.

    Science.gov (United States)

    Gong, Pin; Chen, Fu-xin; Wang, Lan; Wang, Jing; Jin, Sai; Ma, Yang-min

    2014-05-01

    The oxidative status and morphological changes of mouse liver exposed to cadmium chloride (Cd(II)) and therapeutic potential of blueberry (Vaccinium corymbosum L.) extract against Cd(II)-induced hepatic injury were investigated. A variety of parameters were evaluated, including lipid peroxidation (LPO), protein carbonyl (PCO) level, DNA fragment, as well as antioxidative defense system (i.e., superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH)). Elemental analysis and evaluation of morphological changes and NO levels were also performed. Exposure to Cd(II) led to increased LPO and PCO as well as DNA fragment and a reduction of SOD and CAT activities, however, the content of GSH elevated probably due to biological adaptive-response. In contrast, co-treatment of anthocyanin (Ay) inhibited the increased oxidative parameters as well as restored the activities of antioxidative defense system in a dose-dependent manner. Ay administration regained these morphological changes caused by intoxication of Cd(II) to nearly normal levels. Moreover, the accumulation of Cd(II) in liver may be one of the reasons for Cd(II) toxicity and Ay can chelate with Cd(II) to reduce Cd(II) burden. The influence of Cd(II) on the Zn and Ca levels can also be adjusted by the co-administration of Ay. Exposure to Cd(II) led to an increase of NO and Ay reduced NO contents probably by directly scavenging. Potential mechanisms for the protective effect of Ay have been proposed, including its anti-oxidative and anti-inflammatory effect along with the metal-chelating capacity. These results suggest that blueberry extract may be valuable as a therapeutic agent in combating Cd(II)-induced tissue injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Synthesis, spectroscopic and DNA binding ability of CoII, NiII, CuII and ZnII complexes of Schiff base ligand (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol. X-ray crystal structure determination of cobalt (II) complex.

    Science.gov (United States)

    Yarkandi, Naeema H; El-Ghamry, Hoda A; Gaber, Mohamed

    2017-06-01

    A novel Schiff base ligand, (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol (HL), has been designed and synthesized in addition to its metal chelates [Co(L) 2 ]·l2H 2 O, [Ni(L)Cl·(H 2 O) 2 ].5H 2 O, [Cu(L)Cl] and [Zn(L)(CH 3 COO)]. The structures of the isolated compounds have been confirmed and identified by means of different spectral and physicochemical techniques including CHN analysis, 1 H & 13 C NMR, mass spectral analysis, molar conductivity measurement, UV-Vis, infrared, magnetic moment in addition to TGA technique. The infrared spectral results ascertained that the ligand acts as monobasic tridentate binding to the metal centers via deprotonated hydroxyl oxygen, azomethine and imidazole nitrogen atoms. The UV-Vis, magnetic susceptibility and molar conductivity data implied octahedral geometry for Co(II) & Ni(II) complexes, tetrahedral for Zn(II) complex and square planar for Cu(II) complex. X-ray structural analysis of Co(II) complex 1 has been reported and discussed. Moreover, the type of interaction between the ligand & its complexes towards salmon sperm DNA (SS-DNA) has been examined by the measurement of absorption spectra and viscosity which confirmed that the ligand and its complexes interact with DNA via intercalation interaction as concluded from the values of binding constants (K b ). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    Science.gov (United States)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua; Yu, Hai-Tao

    2016-01-01

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H2bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2‧-bipy)(H2O)]n (1), [Cd(bzgluO)(2,4‧-bipy)2(H2O)·3H2O]n (2), [Cd(bzgluO)(phen)·H2O]n (3), [Cd(bzgluO)(4,4‧-bipy)(H2O)]n (4), [Cd(bzgluO)(bpp)(H2O)·2H2O]n (5) were synthesized (2,2‧-bipy=2,2‧-bipyridine, 2,4‧-bipy=2,4‧-bipyridine, phen=1,10-phenanthroline, 4,4‧-bipy=4,4‧-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1-2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π-π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π-π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H2bzgluO. Luminescent properties of 1-5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated.

  16. Comparative Study of Catalytic Oxidation of Ethanol to Acetaldehyde Using Fe(III Dispersed on Sb2O5 Grafted on SiO2 and on Untreated SiO2 Surfaces

    Directory of Open Access Journals (Sweden)

    Benvenutti Edilson V.

    1998-01-01

    Full Text Available Fe(III was supported on Sb(V oxide grafted on the silica gel surface and directly on the silica gel surface using ion-exchange and impregnation processes producing Fe/Sb/SiO2 and Fe/SiO2, respectively. The catalytic conversion of ethanol to acetaldehyde was much more efficient using Fe/Sb/SiO2 than Fe/SiO2 as catalyst. This higher efficiency of the former catalyst takes into account two aspects: a the new phase FeSbO4 formed when Fe/Sb/SiO2 is heat treated and, b it is higher dispersion on the matrix.

  17. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)

    International Nuclear Information System (INIS)

    Shao, Jihai; Gu, Ji-Dong; Peng, Liang; Luo, Si; Luo, Huili; Yan, Zhiyong; Wu, Genyi

    2014-01-01

    Highlights: • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). - Abstract: Cyanobacterial biomass shows high adsorption capacity toward heavy metal ions. However, the cyanotoxins in the cyanobacterial biomass inhibit its application in heavy metals removal. In order to safely and effectively remove Cd(II) from water using cyanobacterial bloom-derived biomass (CBDB), KMnO 4 was used to modify CBDB. The results indicated that the microcystins in the CBDB were successfully removed by KMnO 4 . Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB, and formed manganese dioxide on the surface of CBDB. The oxidized CBDB showed higher adsorption capacity toward Cd(II) than that of unoxidized treatment. The optimal KMnO 4 concentration for increasing the adsorption capacity of CBDB toward Cd(II) was 0.2 g/L. The adsorption isotherm of Cd(II) by oxidized- or unoxidized-CBDB was well fitted by Langmuir model, indicating that the adsorption of Cd(II) by CBDB was monolayer adsorption. The desorption ratio of Cd(II) from oxidized CBDB was higher than that from unoxidized CBDB in the desorption process using NH 4 NO 3 and EDTA as desorbent. The results presented in this study suggest that KMnO 4 modified CBDB may be used as a safe and high efficient adsorbent in Cd(II) removal from water

  18. Poly[triaqua(μ-butane-1,2,3,4-tetracarboxylatodicadmium(II

    Directory of Open Access Journals (Sweden)

    Yong-Sheng Yan

    2009-12-01

    Full Text Available The asymmetric unit of the title CdII coordination polymer, [Cd2(C8H6O8(H2O3]n, contains two crystallographically independent CdII cations, one-half each of two independent anionic butane-1,2,3,4-tetracarboxylate units (L and three water molecules. Both anionic units lie on inversion centers. One of the CdII ions is six-coordinated by four carboxylate O atoms from four L anions and two water O atoms in a distorted octahedral coordination environment. The other CdII ion is eight-coordinated by seven carboxylate O atoms from four L anions and one water O atom. The anionic units bridge neighboring CdII centers, forming a three-dimensional framework. O—H...O hydrogen-bonding interactions between the water molecules and carboxylate O atoms further stabilize the structure.

  19. Extração líquido-líquido de ferro(III e titânio(IV pelo ácido bis-(2-etil-hexil fosfórico (D2EHPA em meio de ácido sulfúrico Liquid-liquid extraction (LLE of Fe(III and Ti(IV by bis-(2-ethyl-hexyl phosphoric acid (D2EHPA in sulfuric acid medium

    Directory of Open Access Journals (Sweden)

    Glauco Corrêa da Silva

    2008-01-01

    Full Text Available This work presents a study on the separation of Fe(III and Ti(IV from sulfuric acid leaching solutions of ilmenite (FeTiO3 using liquid-liquid extraction with D2EHPA in n-dodecane as extracting agent. The distribution coefficients (K D of the elements related to free acidity and concentration of Fe(III and Ti(IV were determined. Free acidity was changed from 3x10-2 to 11.88 mol L-1 and D2EHPA concentration was fixed at 1.5 mol L-1. Recovery of final products as well as recycling of wastes generated in the process were also investigated. The LLE process as a feasible alternative to obtain high-purity TiO2.

  20. DNA incision evaluation, binding investigation and biocidal screening of Cu(II), Ni(II) and Co(II) complexes with isoxazole Schiff bases.

    Science.gov (United States)

    Ganji, Nirmala; Chityala, Vijay Kumar; Marri, Pradeep Kumar; Aveli, Rambabu; Narendrula, Vamsikrishna; Daravath, Sreenu; Shivaraj

    2017-10-01

    Two new series of binary metal complexes [M(L 1 ) 2 ] and [M(L 2 ) 2 ] where, M=Cu(II), Ni(II) & Co(II) and L 1 =4-((3,4-dimethylisoxazol-5-ylimino)methyl)benzene-1,3-diol; L 2 =2-((3,4-dimethylisoxazol-5-ylimino)methyl)-5-methoxyphenol were synthesized and characterized by elemental analysis, 1 H NMR, 13 C NMR, FT-IR, ESI mass, UV-Visible, magnetic moment, ESR, SEM and powder XRD studies. Based on these results, a square planar geometry is assigned for all the metal complexes where the Schiff base acts as uninegatively charged bidentate chelating agent via the hydroxyl oxygen and azomethine nitrogen atoms. DNA binding studies of all the complexes with calf thymus DNA have been comprehensively investigated using electronic absorption spectroscopy, fluorescence quenching and viscosity studies. The oxidative and photo cleavage affinity of metal complexes towards supercoiled pBR322 DNA has been ascertained by agarose gel electrophoresis assay. From the results, it is observed that all the metal complexes bind effectively to CT-DNA via an intercalative mode of binding and also cleave pBR322 DNA in a promising manner. Further the Cu(II) complexes have shown better binding and cleavage properties towards DNA. The antimicrobial activities of the Schiff bases and their metal complexes were studied on bacterial and fungal strains and the results denoted that the complexes are more potent than their Schiff base ligands. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Simultaneous Oxidation and Sequestration of As(III) from Water by Using Redox Polymer-Based Fe(III) Oxide Nanocomposite.

    Science.gov (United States)

    Zhang, Xiaolin; Wu, Mengfei; Dong, Hao; Li, Hongchao; Pan, Bingcai

    2017-06-06

    Water decontamination from As(III) is an urgent but still challenging task. Herein, we fabricated a bifunctional nanocomposite HFO@PS-Cl for highly efficient removal of As(III), with active chlorine covalently binding spherical polystyrene host for in situ oxidation of As(III) to As(V), and Fe(III) hydroxide (HFO) nanoparticles (NPs) embedded inside for specific As(V) removal. HFO@PS-Cl could work effectively in a wide pH range (5-9), and other substances like sulfate, chloride, bicarbonate, silicate, and humic acid exert insignificant effect on As(III) removal. As(III) sequestration is realized via two pathways, that is, oxidation to As(V) by the active chlorine followed by specific As(V) adsorption onto HFO NPs, and As(III) adsorption onto HFO NPs followed by oxidation to As(V). The exhausted HFO@PS-Cl could be refreshed for cyclic runs with insignificant capacity loss by the combined regeneration strategy, that is, alkaline solution to rinse the adsorbed As(V) and NaClO solution to renew the host oxidation capability. In addition, fixed-bed experiments demonstrated that the HFO@PS-Cl column could generate >1760 bed volume (BV) effluent from a synthetic As(III)-containing groundwater to meet the drinking water standard (nanocomposites, HFO@PS-N and HFO@D201 could only generate 450 and 600 BV effluents under otherwise identical conditions.

  2. Comparative study of adsorption properties of Turkish fly ashes II. The case of chromium (VI) and cadmium (II)

    International Nuclear Information System (INIS)

    Bayat, Belgin

    2002-01-01

    The purpose of the study described in this paper was to compare the removal of Cr(VI) and Cd(II) from an aqueous solution using two different Turkish fly ashes; Afsin-Elbistan and Seyitomer as adsorbents. The influence of four parameters (contact time, solution pH, initial metal concentration in solution and ash quality) on the removal at 20±2 deg. C was studied. Fly ashes were found to have a higher adsorption capacity for the adsorption of Cd(II) as compared to Cr(VI) and both Cr(VI) and Cd(II) required an equilibrium time of 2 h. The adsorption of Cr(VI) was higher at pH 4.0 for Afsin-Elbistan fly ash (25.46%) and pH 3.0 for Seyitomer fly ash (30.91%) while Cd(II) was adsorbed to a greater extent (98.43% for Afsin-Elbistan fly ash and 65.24% for Seyitomer fly ash) at pH 7.0. The adsorption of Cd(II) increased with an increase in the concentrations of these metals in solution while Cr(VI) adsorption decreased by both fly ashes. The lime (crystalline CaO) content in fly ash seemed to be a significant factor in influencing Cr(VI) and Cd(II) ions removal. The linear forms of the Langmuir and Freundlich equations were utilised for experiments with metal concentrations of 55±2 mg/l for Cr(VI) and 6±0.2 mg/l for Cd(II) as functions of solution pH (3.0-8.0). The adsorption of Cr(VI) on both fly ashes was not described by both the Langmuir and Freundlich isotherms while Cd(II) adsorption on both fly ashes satisfied only the Langmuir isotherm model. The adsorption capacities of both fly ashes were nearly three times less than that of activated carbon for the removal of Cr(VI) while Afsin-Elbistan fly ash with high-calcium content was as effective as activated carbon for the removal of Cd(II). Therefore, there are possibilities for use the adsorption of Cd(II) ions onto fly ash with high-calcium content in practical applications in Turkey

  3. Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe(III) and Cr(VI) ions.

    Science.gov (United States)

    Habiba, Umma; Siddique, Tawsif A; Talebian, Sepehr; Lee, Jacky Jia Li; Salleh, Areisman; Ang, Bee Chin; Afifi, Amalina M

    2017-12-01

    In this study, effect of degree of deacetylation on property and adsorption capacity of chitosan/polyvinyl Alcohol electrospun membrane has been investigated. Resulting nanofibers were characterized by FESEM, FTIR, XRD, TGA, tensile testing, weight loss test and adsorption test. FESEM result shows, finer nanofiber was fabricated from 42h hydrolyzed chitosan and PVA blend solution. FTIR and XRD result showed a strong interaction between chitosan and polyvinyl alcohol. Higher tensile strength was observed for the nanofiber having 42h hydrolyzed chitosan. Blend solution of chitosan/PVA having low DD chitosan had higher viscosity. The nanofibrous membrane was stable in distilled water, acidic and basic medium. The isotherm study shows that the adsorption capacity (q m ) of nanofiber containing higher DD chitosan was higher for Cr(VI). In contrary, the membrane containing chitosan with lower DD showed the higher adsorption capacity for Fe(III) and methyl orange. Moreover, the effect of DD on removal percentage of adsorbate was dependent on the initial concentration of the adsorbate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Jihai [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Gu, Ji-Dong [Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Peng, Liang; Luo, Si; Luo, Huili [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Yan, Zhiyong, E-mail: zhyyan111@163.com [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Wu, Genyi, E-mail: wugenyi99@163.com [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China)

    2014-05-01

    Highlights: • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). - Abstract: Cyanobacterial biomass shows high adsorption capacity toward heavy metal ions. However, the cyanotoxins in the cyanobacterial biomass inhibit its application in heavy metals removal. In order to safely and effectively remove Cd(II) from water using cyanobacterial bloom-derived biomass (CBDB), KMnO{sub 4} was used to modify CBDB. The results indicated that the microcystins in the CBDB were successfully removed by KMnO{sub 4}. Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB, and formed manganese dioxide on the surface of CBDB. The oxidized CBDB showed higher adsorption capacity toward Cd(II) than that of unoxidized treatment. The optimal KMnO{sub 4} concentration for increasing the adsorption capacity of CBDB toward Cd(II) was 0.2 g/L. The adsorption isotherm of Cd(II) by oxidized- or unoxidized-CBDB was well fitted by Langmuir model, indicating that the adsorption of Cd(II) by CBDB was monolayer adsorption. The desorption ratio of Cd(II) from oxidized CBDB was higher than that from unoxidized CBDB in the desorption process using NH{sub 4}NO{sub 3} and EDTA as desorbent. The results presented in this study suggest that KMnO{sub 4} modified CBDB may be used as a safe and high efficient adsorbent in Cd(II) removal from water.

  5. Bioadsorption characteristics of Pseudomonas aeruginosa PAOI

    Directory of Open Access Journals (Sweden)

    Kőnig-Péter Anikó

    2014-01-01

    Full Text Available Biosorption of Cd(II and Pb(II ions from aqueous solution using lyophilized Pseudomonas aeruginosa (PAOI cells were observed under various experimental conditions. The effect of pH, initial metal concentration, equilibration time and temperature on bioadsorption was investigated. The optimum pH value for Pb(II adsorption was found to be 5.0, and for Cd(II 5.0 − 6.0. The Pb(II and Cd(II bioadsorption equilibrium were analyzed by using Freundlich and Langmuir model using nonlinear least-squares estimation. The experimental maximum uptake capacity of Pb(II and Cd(II was estimated to be 164 mg g-1 and 113 mg g-1, respectively. For biosorption kinetic study the pseudo second-order kinetic model was applied at various temperatures. The temperature had no significant effect on Pb(II bioadsorption. In case of Cd(II bioadsorption the adsorbed amount decreased with increasing temperature.

  6. Synthesis and characterisation of 8-hydroxyquinoline-bovine serum albumin conjugates as metal ion chelating proteins

    International Nuclear Information System (INIS)

    Giraudi, G.; Baggiani, C.; Giovannoli, C.; Marletto, C.; Vanni, A.

    1999-01-01

    A derivative of 8-hydroxyquinoline (8-quinolinol, oxine) with a linking bridge containing a carboxylic group was covalently coupled to bovine serum albumin by the N-hydroxysuccinimide method to obtain stable monomeric conjugates with oxine to protein mole ratios up to 37. These conjugates were characterised spectrophotometrically and their complexation properties were confirmed by spectral analysis with and without the addition of Al(III), Cd(II), Co(II), Cu(II), Hg(II), Mn(II), Ni(II), Pb(II), V(IV), U(VI) and Zn(II) ions added. The maximum number of ions bound by these chelating proteins was determined spectrophotometrically by titration with metal ions at pH 6.0. The conjugates with a substitution ratio (moles of 8-hydroxyquinoline bound/mole of albumin) less than about 8 showed 1:1 binding with metal ions, while conjugates with higher substitution ratios were able to complex with 2:1 ratio of 8-hydroxyquinoline to metal ion. Association and dissociation kinetics of complexation with copper(II) ions showed a complex mechanism. The spectral and binding properties of these metal ion-binding proteins confirm that the coupling of the 8-hydroxyquinoline derivative to bovine serum albumin gives stable, water soluble, macromolecular chelating agents that retain the complexing ability of the original ligand. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Iminodiacetic acid functionalised organopolymer monoliths: application to the separation of metal cations by capillary high-performance chelation ion chromatography.

    Science.gov (United States)

    Moyna, Áine; Connolly, Damian; Nesterenko, Ekaterina; Nesterenko, Pavel N; Paull, Brett

    2013-03-01

    Lauryl methacrylate-co-ethylene dimethacrylate monoliths were polymerised within fused silica capillaries and subsequently photo-grafted with varying amounts of glycidyl methacrylate (GMA). The grafted monoliths were then further modified with iminodiacetic acid (IDA), resulting in a range of chelating ion-exchange monoliths of increasing capacity. The IDA functional groups were attached via ring opening of the epoxy group on the poly(GMA) structure. Increasing the amount of attached poly(GMA), via photo-grafting with increasing concentrations of GMA, from 15 to 35%, resulted in a proportional and controlled increase in the complexation capacity of the chelating monoliths. Scanning capacitively coupled contactless conductivity detection (sC(4)D) was used to characterise and verify homogenous distribution of the chelating ligand along the length of the capillaries non-invasively. Chelation ion chromatographic separations of selected transition and heavy metals were carried out, with retention factor data proportional to the concentration of grafted poly(GMA). Average peak efficiencies of close to 5,000 N/m were achieved, with the isocratic separation of Na, Mg(II), Mn(II), Co(II), Cd(II) and Zn(II) possible on a 250-mm-long monolith. Multiple monolithic columns produced to the same recipes gave RSD data for retention factors of ions). The monolithic chelating ion-exchanger was applied to the separation of alkaline earth and transition metal ions spiked in natural and potable waters.

  8. Selective separation of uranium using alizarin red S (ARS)-modified anion-exchange resin or by flotation of U-ARS chelate

    International Nuclear Information System (INIS)

    Khalifa, M.E.

    1998-01-01

    An alizarin red S (ARS)-modified anion exchange resin was prepared by a simple reaction of ARS with the anion exchange Doulite A101 and used for the efficient sorption of uranium from aqueous media. The effect of various parameters on the sorption of U(VI) (pH effect, sorption kinetics, resin capacity and breakthrough curves) was investigated. The modified resin sorbs U(VI) over a wide range of pH (2.8--5) with a maximum sorption capacity of 0.68 mmol/g at pH 3.2 to 4.0. Iron(III), Zr(IV), Ti(IV), Cu(II), and Th(IV) ions are also sorbed to different extents, but Be(II), Bi(III), Ca(II), Mg(II), Pb(II), Hg(II), Zn(II), Cd(II), Al(III), Mn(II), Co(II) and Ni(II) are not sorbed; thus, conditions for separating U(VI) from these metal ions have been identified. For eluting U(VI) from the resin, 0.2 mol/L HCl was used and the recovery recorded was as high as 99.9%. The use of ARS is extended to float uranium quantitatively and selectively from aqueous media at pH ∼ 4 by using oleic acid as a surfactant. The different parameters affecting the flotation process have also been investigated. Uranium(VI) has been effectively separated from natural water samples and certified uranium ores using both procedures

  9. Study of the oxidation-reduction kinetics involved in the Np(V) + Fe(II) in equilibrium Np(IV) + Fe(III) system in nitric acid solutions

    International Nuclear Information System (INIS)

    Jao, Y.

    1975-08-01

    Ferrous nitrate-hydrazine is one of the more attractive alternate reactants to the currently used reagent, ferrous sulfamate, for partitioning plutonium from neptunium and uranium. An understanding of the kinetics of the reduction of Np(VI) to Np(IV) by ferrous nitrate-hydrazine is needed before a satisfactory evaluation of the feasibility of this reductant in actinide element separations can be made. The purpose of this work was to study the kinetics and mechanisms of the reduction of Np(V) by Fe(II) and the oxidation of Np(IV) by Fe(III) in 1-2 M nitric acid solutions. The acid concentration range was chosen to include that typically used in the separation of plutonium from neptunium and uranium by solvent extraction with tributylphosphate. The forward and reverse rate constants, hydrogen ion dependence, temperature dependence, ionic strength effects and nitrate ion influence were determined. The proposed reaction mechanisms involve protonation of the NpO 2 + ions and hydroxyoxygenation of Np 4 + ions. (LK)

  10. Three-Dimensional Cadmium(II Cyanide Coordination Polymers with Ethoxy-, Butoxy- and Hexyloxy-ethanol

    Directory of Open Access Journals (Sweden)

    Takeshi Kawasaki

    2016-08-01

    Full Text Available The three novel cadmium(II cyanide coordination polymers with alkoxyethanols, [Cd(CN2(C2H5OCH2CH2OH]n (I, [{Cd(CN2(C4H9OCH2CH2OH}3{Cd(CN2}]n (II and [{Cd(CN2(H2O2}{Cd(CN2}3·2(C6H13OCH2CH2OH]n (III, were synthesized and charcterized by structural determination. Three complexes have three-dimensional Cd(CN2 frameworks; I has distorted tridymite-like structure, and, II and III have zeolite-like structures. The cavities of Cd(CN2 frameworks of the complexes are occupied by the alkoxyethanol molecules. In I and II, hydroxyl oxygen atoms of alkoxyethanol molecules coordinate to the Cd(II ions, and the Cd(II ions exhibit slightly distort trigonal-bipyramidal coordination geometry. In II, there is also tetrahedral Cd(II ion which is coordinated by only the four cyanides. The hydroxyl oxygen atoms of alkoxyethanol connects etheric oxygen atoms of the neighboring alkoxyethanol by hydrogen bond in I and II. In III, hexyloxyethanol molecules do not coordinate to the Cd(II ions, and two water molecules coordnate to the octahedral Cd(II ions. The framework in III contains octahedral Cd(II and tetrahedral Cd(II in a 1:3 ratio. The Cd(CN2 framework structures depended on the difference of alkyl chain for alkoxyethanol molecules.

  11. Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Fang [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000 (China); Kong, Lingtao, E-mail: ltkong@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Jiarui [College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000 (China); Wu, Shibiao [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039 (China); Zhang, Kaisheng [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wang, Xuelong [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039 (China); Sun, Bai; Jin, Zhen; Wang, Jin [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Xing-Jiu, E-mail: xjhuang@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Jinhuai, E-mail: jhliu@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-04-01

    Highlights: • A newly designed GO-NH{sub 2}: Higher adsorption capability than that of activated carbon. • Very quick adsorption property: More than 90% of Co(II) can be removed within 5 min. • One of the highest adsorption capabilities of today's nanomaterials for Co(II) (116.35 mg/g). • GO-NH{sub 2} membrane can remove more than 98% Co(II) from the water. - Abstract: A newly designed amination graphene oxide (GO-NH{sub 2}), a superior adsorption capability to that of activated carbon, was fabricated by graphene oxide (GO) combining with aromatic diazonium salt. The resultant GO-NH{sub 2} maintained a high surface area of 320 m{sup 2}/g. When used as an adsorbent, the GO-NH{sub 2} demonstrated a very quick adsorption property for the removal of Co(II) ions, more than 90% of Co(II) ions could be removed within 5 min for dilute solutions at 0.3 g/L adsorbent dose. The adsorption capability approaches 116.35 mg/g, which is one of the highest capabilities of today's materials. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that the Co(II) ions adsorption on GO-NH{sub 2} was a spontaneous process. Considering the superior adsorption capability, the GO-NH{sub 2} filter membrane was fabricated for the removal of Co(II) ions. Membrane filtration experiments revealed that the removal capabilities of the materials for cobalt ions depended on the membrane's thickness, flow rate and initial concentration of Co(II) ions. The highest percentage removal of Co(II) exceeds 98%, indicating that the GO-NH{sub 2} is one of the very suitable membrane materials in environmental pollution management.

  12. Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters.

    Science.gov (United States)

    Sheng, Guodong; Dong, Huaping; Li, Yimin

    2012-11-01

    Clay minerals have been extensively studied because of their strong sorption and complexation ability. In this work, diatomite was characterized by using acid-base titration. Retention of radionuclide (60)Co(II) from aqueous solution by sorption onto diatomite was investigated by using batch technique under various environmental conditions such as pH, ionic strength, humic acid (HA), fulvic acid (FA), and temperature. The results indicated that the sorption of Co(II) onto diatomite was strongly dependent on pH. At low pH value, the sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na(+)/H(+) on diatomite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH value. The D-R model fitted the sorption isotherms better than the Langmuir and Freundlich models. The thermodynamic parameters (ΔH(0), ΔS(0) and ΔG(0)) calculated from the temperature-dependent sorption isotherms suggested that the sorption of Co(II) was an endothermic and spontaneous process. In addition, diatomite showed higher sorption capacity than that of lots of the sorbents reported in the literatures we surveyed. From the results of Co(II) removal by diatomite, the optimum reaction conditions can be obtained for the maximum removal of Co(II) from water. It is clear that the best pH values of the system to remove Co(II) from solution by using diatomite are 7-8. Considering the low cost and effective disposal of Co(II)-contaminated wastewaters, the best condition for Co(II) removal is at room temperature and solid content of 0.5 g/L. The results might be important for assessing the potential of practical application of diatomite in Co(II) and related radionuclide pollution management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Effects of polyamines on the DNA-reactive properties of dimeric mithramycin complexed with cobalt(II): implications for anticancer therapy.

    Science.gov (United States)

    Hou, Ming-Hon; Lu, Wen-Je; Huang, Chun-Yu; Fan, Ruey-Jane; Yuann, Jeu-Ming P

    2009-06-09

    Few studies have examined the effects of polyamines on the action of DNA-binding anticancer drugs. Here, a Co(II)-mediated dimeric mithramycin (Mith) complex, (Mith)(2)-Co(II), was shown to be resistant to polyamine competition toward the divalent metal ion when compared to the Fe(II)-mediated drug complexes. Surface plasmon resonance experiments demonstrated that polyamines interfered with the binding capacity and association rates of (Mith)(2)-Co(II) binding to DNA duplexes, while the dissociation rates were not affected. Although (Mith)(2)-Co(II) exhibited the highest oxidative activity under physiological conditions (pH 7.3 and 37 degrees C), polyamines (spermine in particular) inhibited the DNA cleavage activity of the (Mith)(2)-Co(II) in a concentration-dependent manner. Depletion of intracellular polyamines by methylglyoxal bis(guanylhydrazone) (MGBG) enhanced the sensitivity of A549 lung cancer cells to (Mith)(2)-Co(II), most likely due to the decreased intracellular effect of polyamines on the action of (Mith)(2)-Co(II). Our study suggests a novel method for enhancing the anticancer activity of DNA-binding metalloantibiotics through polyamine depletion.

  14. Synthesis, spectral and thermal studies of pyridyl adducts of Zn(II) and Cd(II) dithiocarbamates, and their use as single source precursors for ZnS and CdS nanoparticles.

    Science.gov (United States)

    Onwudiwe, Damian C; Strydom, Christien A; Oluwafemi, Oluwatobi S; Hosten, Eric; Jordaan, Anine

    2014-06-21

    The synthesis, spectroscopic characterisation, and thermal studies of pyridyl adducts of Zn(II) and Cd(II) complexes of N-ethyl-N-phenyl dithiocarbamate, represented as [ZnL2py] and [CdL2py2], are reported. Single-crystal X-ray structural analysis of the Zn compound showed that it is five-coordinate with four sulphurs from dithiocarbamate and one nitrogen from pyridine in a distorted square pyramidal geometry. The thermogravimetric studies indicate that the zinc and cadmium compounds undergo fast weight loss, and the temperature at maximum rate of decomposition is at 277 °C and 265 °C respectively, to give the metal (Zn or Cd) sulphide residues. These compounds were used as single molecule precursors to produce nanocrystalline MS (M = Zn, Cd) after thermolysis in hexadecylamine. The morphological and optical properties of the resulting MS nanocrystallites were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-Vis absorption and photoluminescence (PL) spectroscopy, and powdered X-ray diffraction (XRD). By varying the growth time, the temporal evolution of the optical properties and morphology of the nanocrystals were investigated.

  15. Design and characterization of sulfide-modified nanoscale zerovalent iron for cadmium(II) removal from aqueous solutions

    Science.gov (United States)

    Lv, Dan; Zhou, Xiaoxin; Zhou, Jiasheng; Liu, Yuanli; Li, Yizhou; Yang, Kunlun; Lou, Zimo; Baig, Shams Ali; Wu, Donglei; Xu, Xinhua

    2018-06-01

    Nanoscale zero-valent iron (nZVI) has high removal efficiency and strong reductive ability to organic and inorganic contaminants, but concerns over its stability and dispersity limit its application. In this study, nZVI was modified with sulfide to enhance Cd(II) removal from aqueous solutions. TEM and SEM analyses showed that sulfide-modified nZVI (S-nZVI) had a core-shell structure of nano-sized spherical particles, and BET results proved that sulfide modification doubled the specific surface area from 26.04 to 50.34 m2 g-1 and inhibited the aggregation of nZVI. Mechanism analysis indicated that Cd(II) was immobilized through complexation and precipitation. Cd(II) removal rate on nZVI was only 32% in 2 h, while complete immobilization could be achieved in 15 min on S-nZVI, and S-nZVI with an optimal S/Fe molar ratio of 0.3 offered a cadmium removal capacity of about 150 mg g-1 at pH 7 and 303 K. The process of Cd(II) immobilization on S-nZVI was fitted well with pseudo-second-order kinetic model, and the increase of temperature favored Cd(II) immobilization, suggesting an endothermic process. The presence of Mg2+ and Ca2+ hindered Cd(II) removal while Cu2+ did the opposite, which led to the order as Cu2+ > control > Mg2+ > Ca2+. The removal rate of 20 mg L-1 Cd(II) maintained a high level with the fluctuation of environmental conditions such as pH, ion strength and presence of HA. This study demonstrated that S-nZVI could be a promising adsorbent for Cd(II) immobilization from cadmium-contaminated water.

  16. A new family of NxOy pyridine-containing macrocycles: synthesis and characterization of their Y(III), Ln(III), Zn(II), and Cd(II) coordination compounds

    International Nuclear Information System (INIS)

    Lodeiro, C.; Bastida, R.; Bertolo, E.; Rodriguez, A.

    2004-01-01

    Reaction between 2,6-bis(2-formylphenoxymethyl)pyridine and N,N-bis(3-aminopropyl)methylamine or tris(2-aminoethyl)amine has been used as the starting point for the synthesis of seven oxa-aza macrocyclic ligands, five of them never reported previously. They all feature different pendant arms, which provide a wide range of coordination possibilities. The Schiff base macrocycles L 1 and L 4 and their reduced ligands L 2 and L 5 are derived from 2,6-bis(2-formylphenoxymethyl)pyridine and tris(2-aminoethyl)amine or N,N-bis(3-aminopropyl)methylamine, respectively. The reaction of L 1 with salicylaldehyde forms L 3 , which features an imine bond in the pendant arm. The ligand L 5 has been the precursor for the pendant-armed L 6 and L 7 , by alkylation of the free NH groups with methyl-imidazole or methyl-indole. By a template or a nontemplate approach, we have synthesized different mono- and dinuclear complexes with Y(III), Ln(III), Zn(II), and Cd(II) cations. Both the free macrocyclic ligands and their corresponding metal complexes have been characterized by microanalysis, IR, UV-vis, 1 H and 13 C NMR spectroscopy, FAB mass spectrometry, MS electrospray, and conductivity measurements. (author)

  17. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    Science.gov (United States)

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations. © 2014 John Wiley & Sons Ltd.

  18. Coordination polymers of Fe(iii) and Al(iii) ions with TCA ligand: distinctive fluorescence, CO2 uptake, redox-activity and oxygen evolution reaction.

    Science.gov (United States)

    Dhara, Barun; Sappati, Subrahmanyam; Singh, Santosh K; Kurungot, Sreekumar; Ghosh, Prasenjit; Ballav, Nirmalya

    2016-04-28

    Fe and Al belong to different groups in the periodic table, one from the p-block and the other from the d-block. In spite of their different groups, they have the similarity of exhibiting a stable 3+ oxidation state. Here we have prepared Fe(iii) and Al(iii) based coordination polymers in the form of metal-organic gels with the 4,4',4''-tricarboxyltriphenylamine (TCA) ligand, namely Fe-TCA and Al-TCA, and evaluated some important physicochemical properties. Specifically, the electrical conductivity, redox-activity, porosity, and electrocatalytic activity (oxygen evolution reaction) of the Fe-TCA system were noted to be remarkably higher than those of the Al-TCA system. As for the photophysical properties, almost complete quenching of the fluorescence originating from TCA was observed in case of the Fe-TCA system, whereas for the Al-TCA system a significant retention of fluorescence with red-shifted emission was observed. Quantum mechanical calculations based on density functional theory (DFT) were performed to unravel the origin of such discriminative behaviour of these coordination polymer systems.

  19. Cadmium (II) imprinted 3-mercaptopropyltrimethoxysilane coated stir bar for selective extraction of trace cadmium from environmental water samples followed by inductively coupled plasma mass spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Nan [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin, E-mail: binhu@whu.edu.cn [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2012-04-20

    Graphical abstract: Ion imprinted 3-mercaptopropyltrimethoxysilane (MPTS) coated stir bar for selective extraction of trace Cd(II). Highlights: Black-Right-Pointing-Pointer Ion imprinted polymers were proposed as the coating for SBSE for the first time. Black-Right-Pointing-Pointer Cd(II) imprinted MPTS-silica coating was prepared by a double-imprinting concept. Black-Right-Pointing-Pointer A novel method of SBSE-ICP-MS was developed for the determination of Cd in waters. Black-Right-Pointing-Pointer This method is rapid, selective, sensitive and applicable for determining trace Cd(II) in waters. - Abstract: Cd(II) imprinted 3-mercaptopropyltrimethoxysilane (MPTS)-silica coated stir bar was prepared by sol-gel technique combining with a double-imprinting concept for the first time and was employed for stir bar sorptive extraction (SBSE) of trace Cd(II) from water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. A tetramethoxysilane (TMOS) coating was first in situ created on the glass bar surface. Afterward, a sol solution containing MPTS as the functional precursor, ethanol as the solvent and both Cd(II) and surfactant micelles (cetyltrimethylammonium bromide, CTAB) as the template was again coated on the TMOS bar. The structures of the stir bar coating were characterized by FT-IR spectroscopy. Round-bottom vial was used for the extraction of Cd(II) by SBSE to avoid abrasion of stir bar coatings. The factors affecting the extraction of Cd(II) by SBSE such as pH, stirring rate and time, sample/elution volume and interfering ions have been investigated in detail, and the optimized experimental parameters were obtained. Under the optimized conditions, the adsorption capacities of non-imprinted and imprinted coating stir bars were found to be 0.5 {mu}g and 0.8 {mu}g bar{sup -1}. The detection limit (3{sigma}) based on three times standard deviations of the method blanks by 7 replicates was 4.40 ng L{sup -1} and the relative standard

  20. Cadmium (II) imprinted 3-mercaptopropyltrimethoxysilane coated stir bar for selective extraction of trace cadmium from environmental water samples followed by inductively coupled plasma mass spectrometry detection

    International Nuclear Information System (INIS)

    Zhang Nan; Hu Bin

    2012-01-01

    Graphical abstract: Ion imprinted 3-mercaptopropyltrimethoxysilane (MPTS) coated stir bar for selective extraction of trace Cd(II). Highlights: ► Ion imprinted polymers were proposed as the coating for SBSE for the first time. ► Cd(II) imprinted MPTS-silica coating was prepared by a double-imprinting concept. ► A novel method of SBSE–ICP-MS was developed for the determination of Cd in waters. ► This method is rapid, selective, sensitive and applicable for determining trace Cd(II) in waters. - Abstract: Cd(II) imprinted 3-mercaptopropyltrimethoxysilane (MPTS)-silica coated stir bar was prepared by sol–gel technique combining with a double-imprinting concept for the first time and was employed for stir bar sorptive extraction (SBSE) of trace Cd(II) from water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. A tetramethoxysilane (TMOS) coating was first in situ created on the glass bar surface. Afterward, a sol solution containing MPTS as the functional precursor, ethanol as the solvent and both Cd(II) and surfactant micelles (cetyltrimethylammonium bromide, CTAB) as the template was again coated on the TMOS bar. The structures of the stir bar coating were characterized by FT-IR spectroscopy. Round-bottom vial was used for the extraction of Cd(II) by SBSE to avoid abrasion of stir bar coatings. The factors affecting the extraction of Cd(II) by SBSE such as pH, stirring rate and time, sample/elution volume and interfering ions have been investigated in detail, and the optimized experimental parameters were obtained. Under the optimized conditions, the adsorption capacities of non-imprinted and imprinted coating stir bars were found to be 0.5 μg and 0.8 μg bar −1 . The detection limit (3σ) based on three times standard deviations of the method blanks by 7 replicates was 4.40 ng L −1 and the relative standard deviation (RSD) was 3.38% (c = 1 μg L −1 , n = 7). The proposed method was successfully applied for the