Representation and reasoning: a causal model approach
Nikolic, M.
2014-01-01
How do we represent our world and how do we use these representations to reason about it? The three studies reported in this thesis explored different aspects of the answer to this question. Even though these investigations offered diverse angles, they all originated from the same psychological theory of representation and reasoning. This is the idea that people represent the world and reason about it by constructing dynamic qualitative causal networks. The first study investigated how mock j...
A developmental approach to learning causal models for cyber security
Mugan, Jonathan
2013-05-01
To keep pace with our adversaries, we must expand the scope of machine learning and reasoning to address the breadth of possible attacks. One approach is to employ an algorithm to learn a set of causal models that describes the entire cyber network and each host end node. Such a learning algorithm would run continuously on the system and monitor activity in real time. With a set of causal models, the algorithm could anticipate novel attacks, take actions to thwart them, and predict the second-order effects flood of information, and the algorithm would have to determine which streams of that flood were relevant in which situations. This paper will present the results of efforts toward the application of a developmental learning algorithm to the problem of cyber security. The algorithm is modeled on the principles of human developmental learning and is designed to allow an agent to learn about the computer system in which it resides through active exploration. Children are flexible learners who acquire knowledge by actively exploring their environment and making predictions about what they will find,1, 2 and our algorithm is inspired by the work of the developmental psychologist Jean Piaget.3 Piaget described how children construct knowledge in stages and learn new concepts on top of those they already know. Developmental learning allows our algorithm to focus on subsets of the environment that are most helpful for learning given its current knowledge. In experiments, the algorithm was able to learn the conditions for file exfiltration and use that knowledge to protect sensitive files.
Renormalization group approach to causal bulk viscous cosmological models
Belinchon, J A [Grupo Inter-Universitario de Analisis Dimensional, Dept. Fisica ETS Arquitectura UPM, Av. Juan de Herrera 4, Madrid (Spain); Harko, T [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Mak, M K [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)
2002-06-07
The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor.
Renormalization group approach to causal bulk viscous cosmological models
The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor
Tian Ge
2009-11-01
Full Text Available Two main approaches in exploring causal relationships in biological systems using time-series data are the application of Dynamic Causal model (DCM and Granger Causal model (GCM. These have been extensively applied to brain imaging data and are also readily applicable to a wide range of temporal changes involving genes, proteins or metabolic pathways. However, these two approaches have always been considered to be radically different from each other and therefore used independently. Here we present a novel approach which is an extension of Granger Causal model and also shares the features of the bilinear approximation of Dynamic Causal model. We have first tested the efficacy of the extended GCM by applying it extensively in toy models in both time and frequency domains and then applied it to local field potential recording data collected from in vivo multi-electrode array experiments. We demonstrate face discrimination learning-induced changes in inter- and intra-hemispheric connectivity and in the hemispheric predominance of theta and gamma frequency oscillations in sheep inferotemporal cortex. The results provide the first evidence for connectivity changes between and within left and right inferotemporal cortexes as a result of face recognition learning.
Ge, Tian; Kendrick, Keith M.; Feng, Jianfeng
2009-01-01
Two main approaches in exploring causal relationships in biological systems using time-series data are the application of Dynamic Causal model (DCM) and Granger Causal model (GCM). These have been extensively applied to brain imaging data and are also readily applicable to a wide range of temporal changes involving genes, proteins or metabolic pathways. However, these two approaches have always been considered to be radically different from each other and therefore used independently. Here we present a novel approach which is an extension of Granger Causal model and also shares the features of the bilinear approximation of Dynamic Causal model. We have first tested the efficacy of the extended GCM by applying it extensively in toy models in both time and frequency domains and then applied it to local field potential recording data collected from in vivo multi-electrode array experiments. We demonstrate face discrimination learning-induced changes in inter- and intra-hemispheric connectivity and in the hemispheric predominance of theta and gamma frequency oscillations in sheep inferotemporal cortex. The results provide the first evidence for connectivity changes between and within left and right inferotemporal cortexes as a result of face recognition learning. PMID:19936225
Review of aerospace engineering cost modelling: The genetic causal approach
Curran, R.; Raghunathan, S.; Price, M.
2004-11-01
The primary intention of this paper is to review the current state of the art in engineering cost modelling as applied to aerospace. This is a topic of current interest and in addressing the literature, the presented work also sets out some of the recognised definitions of cost that relate to the engineering domain. The paper does not attempt to address the higher-level financial sector but rather focuses on the costing issues directly relevant to the engineering process, primarily those of design and manufacture. This is of more contemporary interest as there is now a shift towards the analysis of the influence of cost, as defined in more engineering related terms; in an attempt to link into integrated product and process development (IPPD) within a concurrent engineering environment. Consequently, the cost definitions are reviewed in the context of the nature of cost as applicable to the engineering process stages: from bidding through to design, to manufacture, to procurement and ultimately, to operation. The linkage and integration of design and manufacture is addressed in some detail. This leads naturally to the concept of engineers influencing and controlling cost within their own domain rather than trusting this to financers who have little control over the cause of cost. In terms of influence, the engineer creates the potential for cost and in a concurrent environment this requires models that integrate cost into the decision making process.
When One Model Casts Doubt on Another: A Levels-of-Analysis Approach to Causal Discounting
Khemlani, Sangeet S.; Oppenheimer, Daniel M.
2011-01-01
Discounting is a phenomenon in causal reasoning in which the presence of one cause casts doubt on another. We provide a survey of the descriptive and formal models that attempt to explain the discounting process and summarize what current models do not account for and where room for improvement exists. We propose a levels-of-analysis framework…
A Cognitive Mapping Approach to Business Models: Representing Causal Structures and Mechanisms
Furnari, S.
2015-01-01
Research has highlighted the cognitive nature of the business model intended as a cognitive representation describing a business’ value creation and value capture activities. Whereas the content of the business model has been extensively investigated from this perspective, less attention has been paid to the business model’s causal structure – i.e. the pattern of causeeffect relations that, in top managers’ or entrepreneurs’ understandings, link value creation and value capture activities. Bu...
A Causal, Data-driven Approach to Modeling the Kepler Data
Wang, Dun; Hogg, David W.; Foreman-Mackey, Daniel; Schölkopf, Bernhard
2016-09-01
Astronomical observations are affected by several kinds of noise, each with its own causal source; there is photon noise, stochastic source variability, and residuals coming from imperfect calibration of the detector or telescope. The precision of NASA Kepler photometry for exoplanet science—the most precise photometric measurements of stars ever made—appears to be limited by unknown or untracked variations in spacecraft pointing and temperature, and unmodeled stellar variability. Here, we present the causal pixel model (CPM) for Kepler data, a data-driven model intended to capture variability but preserve transit signals. The CPM works at the pixel level so that it can capture very fine-grained information about the variation of the spacecraft. The CPM models the systematic effects in the time series of a pixel using the pixels of many other stars and the assumption that any shared signal in these causally disconnected light curves is caused by instrumental effects. In addition, we use the target star’s future and past (autoregression). By appropriately separating, for each data point, the data into training and test sets, we ensure that information about any transit will be perfectly isolated from the model. The method has four tuning parameters—the number of predictor stars or pixels, the autoregressive window size, and two L2-regularization amplitudes for model components, which we set by cross-validation. We determine values for tuning parameters that works well for most of the stars and apply the method to a corresponding set of target stars. We find that CPM can consistently produce low-noise light curves. In this paper, we demonstrate that pixel-level de-trending is possible while retaining transit signals, and we think that methods like CPM are generally applicable and might be useful for K2, TESS, etc., where the data are not clean postage stamps like Kepler.
Pearl, Judea
2000-03-01
Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.
Causal reasoning with mental models
Khemlani, Sangeet S.; Barbey, Aron K.; Johnson-Laird, Philip N
2014-01-01
This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews e...
Causal reasoning with mental models.
Khemlani, Sangeet S; Barbey, Aron K; Johnson-Laird, Philip N
2014-01-01
This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex. PMID:25389398
Causal reasoning with mental models
Sangeet eKhemlani
2014-10-01
Full Text Available This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.
Causal Models for Risk Management
Neysis Hernández Díaz
2013-12-01
Full Text Available In this work a study about the process of risk management in major schools in the world. The project management tools worldwide highlights the need to redefine risk management processes. From the information obtained it is proposed the use of causal models for risk analysis based on information from the project or company, say risks and the influence thereof on the costs, human capital and project requirements and detect the damages of a number of tasks without tribute to the development of the project. A study on the use of causal models as knowledge representation techniques causal, among which are the Fuzzy Cognitive Maps (DCM and Bayesian networks, with the most favorable MCD technique to use because it allows modeling the risk information witho ut having a knowledge base either itemize.
A causal net approach to relativistic quantum mechanics
Bateson, R. D.
2012-05-01
In this paper we discuss a causal network approach to describing relativistic quantum mechanics. Each vertex on the causal net represents a possible point event or particle observation. By constructing the simplest causal net based on Reichenbach-like conjunctive forks in proper time we can exactly derive the 1+1 dimension Dirac equation for a relativistic fermion and correctly model quantum mechanical statistics. Symmetries of the net provide various quantum mechanical effects such as quantum uncertainty and wavefunction, phase, spin, negative energy states and the effect of a potential. The causal net can be embedded in 3+1 dimensions and is consistent with the conventional Dirac equation. In the low velocity limit the causal net approximates to the Schrodinger equation and Pauli equation for an electromagnetic field. Extending to different momentum states the net is compatible with the Feynman path integral approach to quantum mechanics that allows calculation of well known quantum phenomena such as diffraction.
A causal net approach to relativistic quantum mechanics
In this paper we discuss a causal network approach to describing relativistic quantum mechanics. Each vertex on the causal net represents a possible point event or particle observation. By constructing the simplest causal net based on Reichenbach-like conjunctive forks in proper time we can exactly derive the 1+1 dimension Dirac equation for a relativistic fermion and correctly model quantum mechanical statistics. Symmetries of the net provide various quantum mechanical effects such as quantum uncertainty and wavefunction, phase, spin, negative energy states and the effect of a potential. The causal net can be embedded in 3+1 dimensions and is consistent with the conventional Dirac equation. In the low velocity limit the causal net approximates to the Schrodinger equation and Pauli equation for an electromagnetic field. Extending to different momentum states the net is compatible with the Feynman path integral approach to quantum mechanics that allows calculation of well known quantum phenomena such as diffraction.
Stenner, A. Jackson; Fisher, William P.; Stone, Mark H.; Burdick, Donald S.
2013-01-01
Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates...
WilliamPFisher; A.JacksonStenner; MarkStone
2013-01-01
Rasch’s unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates...
A Complex Systems Approach to Causal Discovery in Psychiatry.
Glenn N Saxe
Full Text Available Conventional research methodologies and data analytic approaches in psychiatric research are unable to reliably infer causal relations without experimental designs, or to make inferences about the functional properties of the complex systems in which psychiatric disorders are embedded. This article describes a series of studies to validate a novel hybrid computational approach--the Complex Systems-Causal Network (CS-CN method-designed to integrate causal discovery within a complex systems framework for psychiatric research. The CS-CN method was first applied to an existing dataset on psychopathology in 163 children hospitalized with injuries (validation study. Next, it was applied to a much larger dataset of traumatized children (replication study. Finally, the CS-CN method was applied in a controlled experiment using a 'gold standard' dataset for causal discovery and compared with other methods for accurately detecting causal variables (resimulation controlled experiment. The CS-CN method successfully detected a causal network of 111 variables and 167 bivariate relations in the initial validation study. This causal network had well-defined adaptive properties and a set of variables was found that disproportionally contributed to these properties. Modeling the removal of these variables resulted in significant loss of adaptive properties. The CS-CN method was successfully applied in the replication study and performed better than traditional statistical methods, and similarly to state-of-the-art causal discovery algorithms in the causal detection experiment. The CS-CN method was validated, replicated, and yielded both novel and previously validated findings related to risk factors and potential treatments of psychiatric disorders. The novel approach yields both fine-grain (micro and high-level (macro insights and thus represents a promising approach for complex systems-oriented research in psychiatry.
Estimating causal structure using conditional DAG models
Oates, Chris J.; Smith, Jim Q.; Mukherjee, Sach
2014-01-01
This paper considers inference of causal structure in a class of graphical models called "conditional DAGs". These are directed acyclic graph (DAG) models with two kinds of variables, primary and secondary. The secondary variables are used to aid in estimation of causal relationships between the primary variables. We give causal semantics for this model class and prove that, under certain assumptions, the direction of causal influence is identifiable from the joint observational distribution ...
Bayesian Discovery of Linear Acyclic Causal Models
Hoyer, Patrik O
2012-01-01
Methods for automated discovery of causal relationships from non-interventional data have received much attention recently. A widely used and well understood model family is given by linear acyclic causal models (recursive structural equation models). For Gaussian data both constraint-based methods (Spirtes et al., 1993; Pearl, 2000) (which output a single equivalence class) and Bayesian score-based methods (Geiger and Heckerman, 1994) (which assign relative scores to the equivalence classes) are available. On the contrary, all current methods able to utilize non-Gaussianity in the data (Shimizu et al., 2006; Hoyer et al., 2008) always return only a single graph or a single equivalence class, and so are fundamentally unable to express the degree of certainty attached to that output. In this paper we develop a Bayesian score-based approach able to take advantage of non-Gaussianity when estimating linear acyclic causal models, and we empirically demonstrate that, at least on very modest size networks, its accur...
Linear causal modeling with structural equations
Mulaik, Stanley A
2009-01-01
Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal
Spin foam models as energetic causal sets
Cortês, Marina; Smolin, Lee
2016-04-01
Energetic causal sets are causal sets endowed by a flow of energy-momentum between causally related events. These incorporate a novel mechanism for the emergence of space-time from causal relations [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014); Phys. Rev. D 90, 044035 (2014)]. Here we construct a spin foam model which is also an energetic causal set model. This model is closely related to the model introduced in parallel by Wolfgang Wieland in [Classical Quantum Gravity 32, 015016 (2015)]. What makes a spin foam model also an energetic causal set is Wieland's identification of new degrees of freedom analogous to momenta, conserved at events (or four-simplices), whose norms are not mass, but the volume of tetrahedra. This realizes the torsion constraints, which are missing in previous spin foam models, and are needed to relate the connection dynamics to those of the metric, as in general relativity. This identification makes it possible to apply the new mechanism for the emergence of space-time to a spin foam model. Our formulation also makes use of Markopoulou's causal formulation of spin foams [arXiv:gr-qc/9704013]. These are generated by evolving spin networks with dual Pachner moves. This endows the spin foam history with causal structure given by a partial ordering of the events which are dual to four-simplices.
Compact Representations of Extended Causal Models
Halpern, Joseph Y.; Hitchcock, Christopher
2013-01-01
Judea Pearl (2000) was the first to propose a definition of actual causation using causal models. A number of authors have suggested that an adequate account of actual causation must appeal not only to causal structure but also to considerations of "normality." In Halpern and Hitchcock (2011), we offer a definition of actual causation…
Arup Kumar Baksi
2012-08-01
Full Text Available Information technology induced communications (ICTs have revolutionized the operational aspects of service sector and have triggered a perceptual shift in service quality as rapid dis-intermediation has changed the access-mode of services on part of the consumers. ICT-enabled services further stimulated the perception of automated service quality with renewed dimensions and there subsequent significance to influence the behavioural outcomes of the consumers. Customer Relationship Management (CRM has emerged as an offshoot to technological breakthrough as it ensured service-encapsulation by integrating people, process and technology. This paper attempts to explore the relationship between automated service quality and its behavioural consequences in a relatively novel business-philosophy – CRM. The study has been conducted on the largest public sector bank of India - State bank of India (SBI at Kolkata which has successfully completed its decade-long operational automation in the year 2008. The study used structural equation modeling (SEM to justify the proposed model construct and causal loop diagramming (CLD to depict the negative and positive linkages between the variables.
Dental Caries Risk Studies Revisited: Causal Approaches Needed for Future Inquiries
Dorthe Holst
2009-11-01
Full Text Available Prediction of high-risk individuals and the multi-risk approach are common inquiries in caries risk epidemiology. These studies prepared the ground for future studies; specific hypotheses about causal patterns can now be formulated and tested applying advanced statistical methods designed for causal studies, such as structural equation modeling, path analysis and multilevel modeling. Causal studies should employ measurements, analyses and interpretation of findings, which are in accordance to causal aims. Examples of causal empirical studies from medical and oral research are presented.
The role of causal links in performance measurement models
Kasperskaya, Yulia; Tayles, Michael
2013-01-01
Abstract Purpose: Several well-known managerial accounting performance measurement models rely on causal assumptions. Whilst users of the models express satisfaction and link them with improved organizational performance, academic research, of the realworld applications, shows few reliable statistical associations. This paper provides a discussion on the"problematic" of causality in a performance measurement setting. Design/methodology/approach: This is a conceptual study based on an analysis...
Ten simple rules for dynamic causal modeling.
Stephan, K.E.; Penny, W.D.; Moran, R.J.; Ouden, H.E.M. den; Daunizeau, J.; Friston, K.J.
2010-01-01
Dynamic causal modeling (DCM) is a generic Bayesian framework for inferring hidden neuronal states from measurements of brain activity. It provides posterior estimates of neurobiologically interpretable quantities such as the effective strength of synaptic connections among neuronal populations and
Dental Caries Risk Studies Revisited: Causal Approaches Needed for Future Inquiries
Dorthe Holst; Vilma Brukienė; Jolanta Aleksejūnienė
2009-01-01
Prediction of high-risk individuals and the multi-risk approach are common inquiries in caries risk epidemiology. These studies prepared the ground for future studies; specific hypotheses about causal patterns can now be formulated and tested applying advanced statistical methods designed for causal studies, such as structural equation modeling, path analysis and multilevel modeling. Causal studies should employ measurements, analyses and interpretation of findings, which are in accordance to...
A Causal Model for Diagnostic Reasoning
PENG Guoqiang; CHENG Hu
2000-01-01
Up to now, there have been many methods for knowledge representation and reasoning in causal networks, but few of them include the research on the coactions of nodes. In practice, ignoring these coactions may influence the accuracy of reasoning and even give rise to incorrect reasoning. In this paper, based on multilayer causal networks, the definitions on coaction nodes are given to construct a new causal network called Coaction Causal Network, which serves to construct a model of neural network for diagnosis followed by fuzzy reasoning, and then the activation rules are given and neural computing methods are used to finish the diagnostic reasoning. These methods are proved in theory and a method of computing the number of solutions for the diagnostic reasoning is given. Finally, the experiments and the conclusions are presented.
Dynamic causal models and autopoietic systems.
David, Olivier
2007-01-01
Dynamic Causal Modelling (DCM) and the theory of autopoietic systems are two important conceptual frameworks. In this review, we suggest that they can be combined to answer important questions about self-organising systems like the brain. DCM has been developed recently by the neuroimaging community to explain, using biophysical models, the non-invasive brain imaging data are caused by neural processes. It allows one to ask mechanistic questions about the implementation of cerebral processes. In DCM the parameters of biophysical models are estimated from measured data and the evidence for each model is evaluated. This enables one to test different functional hypotheses (i.e., models) for a given data set. Autopoiesis and related formal theories of biological systems as autonomous machines represent a body of concepts with many successful applications. However, autopoiesis has remained largely theoretical and has not penetrated the empiricism of cognitive neuroscience. In this review, we try to show the connections that exist between DCM and autopoiesis. In particular, we propose a simple modification to standard formulations of DCM that includes autonomous processes. The idea is to exploit the machinery of the system identification of DCMs in neuroimaging to test the face validity of the autopoietic theory applied to neural subsystems. We illustrate the theoretical concepts and their implications for interpreting electroencephalographic signals acquired during amygdala stimulation in an epileptic patient. The results suggest that DCM represents a relevant biophysical approach to brain functional organisation, with a potential that is yet to be fully evaluated. PMID:18575681
Imposing causality on a matrix model
We introduce a new matrix model that describes Causal Dynamical Triangulations (CDT) in two dimensions. In order to do so, we introduce a new, simpler definition of 2D CDT and show it to be equivalent to the old one. The model makes use of ideas from dually weighted matrix models, combined with multi-matrix models, and can be studied by the method of character expansion.
Causality in Psychiatry: A Hybrid Symptom Network Construct Model.
Young, Gerald
2015-01-01
Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved) that inform approaches to nosology, or classification, such as in the DSM-5 [Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; (1)]. However, network approaches to symptom interaction [i.e., symptoms are formative of the construct; e.g., (2), for posttraumatic stress disorder (PTSD)] are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth non-linear dynamical systems theory (NLDST). The article applies the concept of emergent circular causality (3) to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning) and universal (e.g., causal) processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments. PMID:26635639
Causal models for performance evaluation of added-value operations
Zuñiga Alcaraz, Catya Atziry
2012-01-01
The present PhD thesis report has been elaborated as a compendium of publications, in which diverse Causal Models have been developed to assist in the decision making process using a cause-effect relationship approach inherent in the system. A brief description of the items included in the doctoral thesis. The document is organized in four different parts. First, the Chapter called “Basic Notions” introduces the basic notions and a general perspective on the systems approach. Particular in...
Ten simple rules for dynamic causal modeling
Stephan, K E; Penny, W.D.; Moran, R. J.; den Ouden, H.E.M.; Daunizeau, J.; Friston, K J
2010-01-01
Dynamic causal modeling (DCM) is a generic Bayesian framework for inferring hidden neuronal states from measurements of brain activity. It provides posterior estimates of neurobiologically interpretable quantities such as the effective strength of synaptic connections among neuronal populations and their context-dependent modulation. DCM is increasingly used in the analysis of a wide range of neuroimaging and electrophysiological data. Given the relative complexity of DCM, compared to convent...
Hazan, Amaury
2010-01-01
We develop in this thesis a computational model of music expectation, which may be one of the most important aspects in music listening. Many phenomenons related to music listening such as preference, surprise or emo- tions are linked to the anticipatory behaviour of listeners. In this thesis, we concentrate on a statistical account to music expectation, by modelling the processes of learning and predicting spectro-temporal regularities in a causal fashion. The principle of statistical mo...
Diagnostic reasoning using qualitative causal models
The application of expert systems to reasoning problems involving real-time data from plant measurements has been a topic of much research, but few practical systems have been deployed. One obstacle to wider use of expert systems in applications involving real-time data is the lack of adequate knowledge representation methodologies for dynamic processes. Knowledge bases composed mainly of rules have disadvantages when applied to dynamic processes and real-time data. This paper describes a methodology for the development of qualitative causal models that can be used as knowledge bases for reasoning about process dynamic behavior. These models provide a systematic method for knowledge base construction, considerably reducing the engineering effort required. They also offer much better opportunities for verification and validation of the knowledge base, thus increasing the possibility of the application of expert systems to reasoning about mission critical systems. Starting with the Signed Directed Graph (SDG) method that has been successfully applied to describe the behavior of diverse dynamic processes, the paper shows how certain non-physical behaviors that result from abstraction may be eliminated by applying causal constraint to the models. The resulting Extended Signed Directed Graph (ESDG) may then be compiled to produce a model for use in process fault diagnosis. This model based reasoning methodology is used in the MOBIAS system being developed by Duke Power Company under EPRI sponsorship. 15 refs., 4 figs
The aim of this paper is to re-examine the relationship between electricity consumption, economic growth, and employment in Portugal using the cointegration and Granger causality frameworks. This study covers the sample period from 1971 to 2009. We examine the presence of a long-run equilibrium relationship using the bounds testing approach to cointegration within the Unrestricted Error-Correction Model (UECM). Moreover, we examine the direction of causality between electricity consumption, economic growth, and employment in Portugal using the Granger causality test within the Vector Error-Correction Model (VECM). As a summary of the empirical findings, we find that electricity consumption, economic growth, and employment in Portugal are cointegrated and there is bi-directional Granger causality between the three variables in the long-run. With the exception of the Granger causality between electricity consumption and economic growth, the rest of the variables are also bi-directional Granger causality in the short-run. Furthermore, we find that there is unidirectional Granger causality running from economic growth to electricity consumption, but no evidence of reversal causality. - Highlights: → We re-examine the relationship between electricity consumption, economic growth, and employment in Portugal. → The electricity consumption and economic growth is causing each other in the long-run. → In the short-run, economic growth Granger-cause electricity consumption, but no evidence of reversal causality. → Energy conservation policy will deteriorate the process of economic growth in the long-run. → Portugal should increase investment on R and D to design new energy savings technology.
Manifest Variable Granger Causality Models for Developmental Research: A Taxonomy
von Eye, Alexander; Wiedermann, Wolfgang
2015-01-01
Granger models are popular when it comes to testing hypotheses that relate series of measures causally to each other. In this article, we propose a taxonomy of Granger causality models. The taxonomy results from crossing the four variables Order of Lag, Type of (Contemporaneous) Effect, Direction of Effect, and Segment of Dependent Series…
Causal transmission in reduced-form models
Vassili Bazinas; Bent Nielsen
2015-01-01
We propose a method to explore the causal transmission of a catalyst variable through two endogenous variables of interest. The method is based on the reduced-form system formed from the conditional distribution of the two endogenous variables given the catalyst. The method combines elements from instru- mental variable analysis and Cholesky decomposition of structural vector autoregressions. We give conditions for uniqueness of the causal transmission.
Blossfeld, Hans-Peter; Mills, Melinda
2001-01-01
FrenchOne of the most important advances brought about by life course and eventhistory studies is the use of parallel or independent processes as explaining history factors intransition rate models. The purpose of this paper is to demonstrate a causal approach to the study ofinterrelated family events. Various types of interdependent processes are described first, followed bytwo event history perspectives: the "system" and "causal" approaches. The authors assert that thecausal approach is mor...
Causal reasoning and models of cognitive tasks for naval nuclear power plant operators
In complex industrial process control, causal reasoning appears as a major component in operators' cognitive tasks. It is tightly linked to diagnosis, prediction of normal and failure states, and explanation. This work provides a detailed review of literature in causal reasoning. A synthesis is proposed as a model of causal reasoning in process control. This model integrates distinct approaches in Cognitive Science: especially qualitative physics, Bayesian networks, knowledge-based systems, and cognitive psychology. Our model defines a framework for the analysis of causal human errors in simulated naval nuclear power plant fault management. Through the methodological framework of critical incident analysis we define a classification of errors and difficulties linked to causal reasoning. This classification is based on shallow characteristics of causal reasoning. As an origin of these errors, more elementary component activities in causal reasoning are identified. The applications cover the field of functional specification for man-machine interfaces, operators support systems design as well as nuclear safety. In addition of this study, we integrate the model of causal reasoning in a model of cognitive task in process control. (authors). 106 refs., 49 figs., 8 tabs
The stochastic system approach to causality with a view toward lifecourse epidemiology
Commenges, Daniel
2012-01-01
The approach of causality based on physical laws and systems is revisited. The issue of "levels", the relevance to epidemiology and the definition of effects are particularly developed. Moreover it is argued that this approach that we call the stochastic system approach is particularly well fitted to study lifecourse epidemiology. A hierarchy of factors is described that could be modeled using a suitable multivariate stochastic process. To illustrate this approach, a conceptual model for coronary heart disease mixing continuous and discrete state-space processes is proposed.
Causal mediation analyses with rank preserving models.
Have, Thomas R Ten; Joffe, Marshall M; Lynch, Kevin G; Brown, Gregory K; Maisto, Stephen A; Beck, Aaron T
2007-09-01
We present a linear rank preserving model (RPM) approach for analyzing mediation of a randomized baseline intervention's effect on a univariate follow-up outcome. Unlike standard mediation analyses, our approach does not assume that the mediating factor is also randomly assigned to individuals in addition to the randomized baseline intervention (i.e., sequential ignorability), but does make several structural interaction assumptions that currently are untestable. The G-estimation procedure for the proposed RPM represents an extension of the work on direct effects of randomized intervention effects for survival outcomes by Robins and Greenland (1994, Journal of the American Statistical Association 89, 737-749) and on intervention non-adherence by Ten Have et al. (2004, Journal of the American Statistical Association 99, 8-16). Simulations show good estimation and confidence interval performance by the proposed RPM approach under unmeasured confounding relative to the standard mediation approach, but poor performance under departures from the structural interaction assumptions. The trade-off between these assumptions is evaluated in the context of two suicide/depression intervention studies. PMID:17825022
Gul, Sehrish; Zou, Xiang; Hassan, Che Hashim; Azam, Muhammad; Zaman, Khalid
2015-12-01
This study investigates the relationship between energy consumption and carbon dioxide emission in the causal framework, as the direction of causality remains has a significant policy implication for developed and developing countries. The study employed maximum entropy bootstrap (Meboot) approach to examine the causal nexus between energy consumption and carbon dioxide emission using bivariate as well as multivariate framework for Malaysia, over a period of 1975-2013. This is a unified approach without requiring the use of conventional techniques based on asymptotical theory such as testing for possible unit root and cointegration. In addition, it can be applied in the presence of non-stationary of any type including structural breaks without any type of data transformation to achieve stationary. Thus, it provides more reliable and robust inferences which are insensitive to time span as well as lag length used. The empirical results show that there is a unidirectional causality running from energy consumption to carbon emission both in the bivariate model and multivariate framework, while controlling for broad money supply and population density. The results indicate that Malaysia is an energy-dependent country and hence energy is stimulus to carbon emissions. PMID:26282441
Dark matter perturbations and viscosity: a causal approach
Acquaviva, Giovanni; John, Anslyn; Pénin, Aurélie
2016-01-01
The inclusion of dissipative effects in cosmic fluids modifies their clustering properties and could have observable effects on the formation of large scale structures. We analyse the evolution of density perturbations of cold dark matter endowed with causal bulk viscosity. The perturbative analysis is carried out in the Newtonian approximation and the bulk viscosity is described by the causal Israel-Stewart (IS) theory. In contrast to the non-causal Eckart theory, we obtain a third order evo...
Khan, Haider
2008-01-01
The purpose of this note is to clarify how the idea of "causal depth" can play a role in finding the more "approximately true" explanation through causal comparisons. It is not an exhaustive treatment but rather focuses on a few aspects that may be the most critical in evaluating the explanatory strengths of a theory in the social sciences. It presents a general argument which is anti-Humean on the critical side and scientific realist on the positive side. It also elucidates how explanations ...
THE CAUSAL RELATIONSHIP BETWEEN UNEMPLOYMENT RATE AND U.S. SHADOW ECONOMY. A TODA-YAMAMOTO APPROACH
Adriana Ana-Maria DAVIDESCU; Dobre, Ion
2012-01-01
The paper analyses the causal relationship between U.S. shadow economy (SE) and unemployment rate (UR) using Toda-Yamamoto approach for quarterly data covering the period 1980-2009. The size of the shadow economy as % of official GDP is estimated using a MIMIC model with four causal variables (taxes on corporate income, contributions for government social insurance, unemployment rate and self-employment) and two indicators (index of real GDP and civilian labour force partici...
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio
2016-01-01
We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…
Sizochenko, Natalia; Gajewicz, Agnieszka; Leszczynski, Jerzy; Puzyn, Tomasz
2016-03-01
In this paper, we suggest that causal inference methods could be efficiently used in Quantitative Structure-Activity Relationships (QSAR) modeling as additional validation criteria within quality evaluation of the model. Verification of the relationships between descriptors and toxicity or other activity in the QSAR model has a vital role in understanding the mechanisms of action. The well-known phrase ``correlation does not imply causation'' reflects insight statistically correlated with the endpoint descriptor may not cause the emergence of this endpoint. Hence, paradigmatic shifts must be undertaken when moving from traditional statistical correlation analysis to causal analysis of multivariate data. Methods of causal discovery have been applied for broader physical insight into mechanisms of action and interpretation of the developed nano-QSAR models. Previously developed nano-QSAR models for toxicity of 17 nano-sized metal oxides towards E. coli bacteria have been validated by means of the causality criteria. Using the descriptors confirmed by the causal technique, we have developed new models consistent with the straightforward causal-reasoning account. It was proven that causal inference methods are able to provide a more robust mechanistic interpretation of the developed nano-QSAR models.In this paper, we suggest that causal inference methods could be efficiently used in Quantitative Structure-Activity Relationships (QSAR) modeling as additional validation criteria within quality evaluation of the model. Verification of the relationships between descriptors and toxicity or other activity in the QSAR model has a vital role in understanding the mechanisms of action. The well-known phrase ``correlation does not imply causation'' reflects insight statistically correlated with the endpoint descriptor may not cause the emergence of this endpoint. Hence, paradigmatic shifts must be undertaken when moving from traditional statistical correlation analysis to causal
Causal Analysis for Performance Modeling of Computer Programs
Jan Lemeire
2007-01-01
Full Text Available Causal modeling and the accompanying learning algorithms provide useful extensions for in-depth statistical investigation and automation of performance modeling. We enlarged the scope of existing causal structure learning algorithms by using the form-free information-theoretic concept of mutual information and by introducing the complexity criterion for selecting direct relations among equivalent relations. The underlying probability distribution of experimental data is estimated by kernel density estimation. We then reported on the benefits of a dependency analysis and the decompositional capacities of causal models. Useful qualitative models, providing insight into the role of every performance factor, were inferred from experimental data. This paper reports on the results for a LU decomposition algorithm and on the study of the parameter sensitivity of the Kakadu implementation of the JPEG-2000 standard. Next, the analysis was used to search for generic performance characteristics of the applications.
Developing a Causal Model from Liver Function Test Data
Inada, Masanori; Terano, Takao
As Active Mining is a new concept among data mining and/or knowledge discovery in databases communities, in order to validate the effectiveness, it is important to carry out empirical studies using practical data. Based on the concept of Active User Reaction, this paper develops a causal model from liver function test data in a medical domain. To develop the model, we have set a problem to predict the values of ICG (indocyanine green) test from given observation data and experts' background knowledge. We therefore employ a framework of meta-learning and structural equation modeling. In this paper meta-learning means learning about mined results from multiple data-mining techniques. Structural equation modeling enables us to describe flexible models from background knowledge. The construction of the causal model contains two phases: meta-learning and the model building. The meta-learning phase utilizes both the linear regression and the neural network as data mining techniques, then examines the predictability on the given data set. Mining models are n-folded learned from the training data set. Each of the prediction accuracy of the mining models is compared using with the testing data. On the model building phase, we use structural equation modeling to develop a causal model based on results of meta-learning and background knowledge. We again compare the accuracy of the causal model with each of the mining models. Consequently we have developed the causal model, which is comprehensible and have good predictive performance, via the meta-learning phase. Through the empirical study, we have got the conclusion that the framework of meta-learning is effective in data mining in a difficult medical domain.
Enhancing scientific reasoning by refining students' models of multivariable causality
Keselman, Alla
Inquiry learning as an educational method is gaining increasing support among elementary and middle school educators. In inquiry activities at the middle school level, students are typically asked to conduct investigations and infer causal relationships about multivariable causal systems. In these activities, students usually demonstrate significant strategic weaknesses and insufficient metastrategic understanding of task demands. Present work suggests that these weaknesses arise from students' deficient mental models of multivariable causality, in which effects of individual features are neither additive, nor constant. This study is an attempt to develop an intervention aimed at enhancing scientific reasoning by refining students' models of multivariable causality. Three groups of students engaged in a scientific investigation activity over seven weekly sessions. By creating unique combinations of five features potentially involved in earthquake mechanism and observing associated risk meter readings, students had to find out which of the features were causal, and to learn to predict earthquake risk. Additionally, students in the instructional and practice groups engaged in self-directed practice in making scientific predictions. The instructional group also participated in weekly instructional sessions on making predictions based on multivariable causality. Students in the practice and instructional conditions showed small to moderate improvement in their attention to the evidence and in their metastrategic ability to recognize effective investigative strategies in the work of other students. They also demonstrated a trend towards making a greater number of valid inferences than the control group students. Additionally, students in the instructional condition showed significant improvement in their ability to draw inferences based on multiple records. They also developed more accurate knowledge about non-causal features of the system. These gains were maintained
The TETRAD Project: Constraint Based Aids to Causal Model Specification.
Scheines, Richard; Spirtes, Peter; Glymour, Clark; Meek, Christopher; Richardson, Thomas
1998-01-01
The TETRAD for constraint-based aids to causal model specification project and related work in computer science aims to apply standards of rigor and precision to the problem of using data and background knowledge to make inferences about a model's specifications. Several algorithms that are implemented in the TETRAD II program are presented. (SLD)
Causal Model Progressions as a Foundation for Intelligent Learning Environments.
White, Barbara Y.; Frederiksen, John R.
This paper describes the theoretical underpinnings and architecture of a new type of learning environment that incorporates features of microworlds and of intelligent tutoring systems. The environment is based on a progression of increasingly sophisticated causal models that simulate domain phenomena, generate explanations, and serve as student…
Chain graph models and their causal interpretations
Lauritzen, Steffen Lilholt; Richardson, Thomas S.
2002-01-01
equilibrium distributions of dynamic models with feed-back. These dynamic interpretations lead to a simple theory of intervention, extending the theory developed for directed acyclic graphs. Finally, we contrast chain graph models under this interpretation with simultaneous equation models which have......Chain graphs are a natural generalization of directed acyclic graphs and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are many simple and apparently plausible, but ultimately fallacious......, interpretations of chain graphs that are often invoked, implicitly or explicitly. These interpretations also lead to flawed methods for applying background knowledge to model selection. We present a valid interpretation by showing how the distribution corresponding to a chain graph may be generated from the...
Causal Models for Safety Assurance Technologies Project
National Aeronautics and Space Administration — Fulfillment of NASA's System-Wide Safety and Assurance Technology (SSAT) project at NASA requires leveraging vast amounts of data into actionable knowledge. Models...
Causality in 1+1-dimensional Yukawa model-II
Asrarul Haque; Satish D Joglekar
2013-10-01
The limits → large, $M →$ large with ($g^{3}/M$) = const. of the 1+1-dimensional Yukawa model are discussed. The conclusion of the results on bound states of the Yukawa model in this limit (obtained in arXiv:0908.4510v3 [hep-th]) is taken into account. It is found that model reduces to an effective non-local 3 theory in this limit. Causality violation also is observed in this limit.
Dark matter perturbations and viscosity: a causal approach
Acquaviva, Giovanni; Pénin, Aurélie
2016-01-01
The inclusion of dissipative effects in cosmic fluids modifies their clustering properties and could have observable effects on the formation of large scale structures. We analyse the evolution of density perturbations of cold dark matter endowed with causal bulk viscosity. The perturbative analysis is carried out in the Newtonian approximation and the bulk viscosity is described by the causal Israel-Stewart (IS) theory. In contrast to the non-causal Eckart theory, we obtain a third order evolution equation for the density contrast that depends on three free parameters. For certain parameter values, the density contrast and growth factor in IS mimic their behaviour in $\\Lambda$CDM when $z \\geq 1$. Interestingly, and contrary to intuition, certain sets of parameters lead to an increase of the clustering.
Causal Models for Mediation Analysis: An Introduction to Structural Mean Models.
Zheng, Cheng; Atkins, David C; Zhou, Xiao-Hua; Rhew, Isaac C
2015-01-01
Mediation analyses are critical to understanding why behavioral interventions work. To yield a causal interpretation, common mediation approaches must make an assumption of "sequential ignorability." The current article describes an alternative approach to causal mediation called structural mean models (SMMs). A specific SMM called a rank-preserving model (RPM) is introduced in the context of an applied example. Particular attention is given to the assumptions of both approaches to mediation. Applying both mediation approaches to the college student drinking data yield notable differences in the magnitude of effects. Simulated examples reveal instances in which the traditional approach can yield strongly biased results, whereas the RPM approach remains unbiased in these cases. At the same time, the RPM approach has its own assumptions that must be met for correct inference, such as the existence of a covariate that strongly moderates the effect of the intervention on the mediator and no unmeasured confounders that also serve as a moderator of the effect of the intervention or the mediator on the outcome. The RPM approach to mediation offers an alternative way to perform mediation analysis when there may be unmeasured confounders. PMID:26717122
Measured, modeled, and causal conceptions of fitness
Abrams, Marshall
2012-01-01
This paper proposes partial answers to the following questions: in what senses can fitness differences plausibly be considered causes of evolution?What relationships are there between fitness concepts used in empirical research, modeling, and abstract theoretical proposals? How does the relevance of different fitness concepts depend on research questions and methodological constraints? The paper develops a novel taxonomy of fitness concepts, beginning with type fitness (a property of a genoty...
Measured, Modeled, and Causal Conceptions of Fitness
Marshall eAbrams
2012-01-01
This paper proposes partial answers to the following questions: In what senses can fitness differences plausibly be considered causes of evolution? What relationships are there between fitness concepts used in empirical research, modeling, and abstract theoretical proposals? How does the relevance of different fitness concepts depend on research questions and methodological constraints? The paper develops a novel taxonomy of fitness concepts, beginning with type fitness (a property of a ge...
Causal Set Dynamics: A Toy Model
Criscuolo, A.; Waelbroeck, H.
1998-01-01
We construct a quantum measure on the power set of non-cyclic oriented graphs of N points, drawing inspiration from 1-dimensional directed percolation. Quantum interference patterns lead to properties which do not appear to have any analogue in classical percolation. Most notably, instead of the single phase transition of classical percolation, the quantum model displays two distinct crossover points. Between these two points, spacetime questions such as "does the network percolate" have no d...
Dynamical Causal Modeling from a Quantum Dynamical Perspective
Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called ''Quantum Harmonical Form (QHF)''. QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, this limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.
Causality between regional stock markets: A frequency domain approach
Gradojević Nikola
2013-01-01
Full Text Available Using a data set from five regional stock exchanges (Serbia, Croatia, Slovenia, Hungary and Germany, this paper presents a frequency domain analysis of a causal relationship between the returns on the CROBEX, SBITOP, CETOP and DAX indices, and the return on the major Serbian stock exchange index, BELEX 15. We find evidence of a somewhat dominant effect of the CROBEX and CETOP stock indices on the BELEX 15 stock index across a range of frequencies. The results also indicate that the BELEX 15 index and the SBITOP index interact in a bi-directional causal fashion. Finally, the DAX index movements consistently drive the BELEX 15 index returns for cycle lengths between 3 and 11 days without any feedback effect.
Dark matter perturbations and viscosity: A causal approach
Acquaviva, Giovanni; John, Anslyn; Pénin, Aurélie
2016-08-01
The inclusion of dissipative effects in cosmic fluids modifies their clustering properties and could have observable effects on the formation of large-scale structures. We analyze the evolution of density perturbations of cold dark matter endowed with causal bulk viscosity. The perturbative analysis is carried out in the Newtonian approximation and the bulk viscosity is described by the causal Israel-Stewart (IS) theory. In contrast to the noncausal Eckart theory, we obtain a third-order evolution equation for the density contrast that depends on three free parameters. For certain parameter values, the density contrast and growth factor in IS mimic their behavior in Λ CDM when z ≥1 . Interestingly, and contrary to intuition, certain sets of parameters lead to an increase of the clustering.
Scientific realism in particle physics a causal approach
Egg, Matthias
2014-01-01
Does particle physics really describe the basic constituents of the material world or is it just a useful tool for deriving empirical predictions? This book proposes a novel answer to that question, emphasizing the importance of causal reasoning for the justification of scientific claims. It thereby responds to general worries about scientific realism as well as to more specific challenges stemming from the interpretation of quantum physics.
The connected brain: Causality, models and intrinsic dynamics
A razi; Friston, K.
2016-01-01
Recently, there have been several concerted international efforts - the BRAIN initiative, European Human Brain Project and the Human Connectome Project, to name a few - that hope to revolutionize our understanding of the connected brain. Over the past two decades, functional neuroimaging has emerged as the predominant technique in systems neuroscience. This is foreshadowed by an ever increasing number of publications on functional connectivity, causal modeling, connectomics, and multivariate ...
There aren't plenty more fish in the sea: a causal network approach.
Nikolic, Milena; Lagnado, David A
2015-11-01
The current research investigated how lay representations of the causes of an environmental problem may underlie individuals' reasoning about the issue. Naïve participants completed an experiment that involved two main tasks. The causal diagram task required participants to depict the causal relations between a set of factors related to overfishing and to estimate the strength of these relations. The counterfactual task required participants to judge the effect of counterfactual suppositions based on the diagrammed factors. We explored two major questions: (1) what is the relation between individual causal models and counterfactual judgments? Consistent with previous findings (e.g., Green et al., 1998, Br. J. Soc. Psychology, 37, 415), these judgments were best explained by a combination of the strength of both direct and indirect causal paths. (2) To what extent do people use two-way causal thinking when reasoning about an environmental problem? In contrast to previous research (e.g., White, 2008, Appl. Cogn. Psychology, 22, 559), analyses based on individual causal networks revealed the presence of numerous feedback loops. The studies support the value of analysing individual causal models in contrast to consensual representations. Theoretical and practical implications are discussed in relation to causal reasoning as well as environmental psychology. PMID:25597224
Causal Dynamical Triangulation of 3D Tensor Model
Kawabe, Hiroshi
2016-01-01
We extend the string field theory of the two dimensional (2D) generalized causal dynamical triangulation (GCDT) with the Ishibashi-Kawai (IK-) type interaction formulated by the matrix model, to the three dimensional (3D) model of the surface field theory. Based on the loop gas model, we construct a tensor model for the discretized surface field and then apply it the stochastic quantization method. In the double scaling limit, the model is characterized by two scaling dimensions $D$ and $D_N$, the power indices of the minimal length as the scaling parameter. The continuum GCDT model with the IK-type interaction is realized with the similar restriction in the $D_N$-$D$ space, to the 2D model. The distinct property in the 3D model is that the quantum effect contains the IK-type interaction only, while the ordinary splitting interaction is excluded.
Salazar-Ferrer, P.
1995-06-01
In complex industrial process control, causal reasoning appears as a major component in operators` cognitive tasks. It is tightly linked to diagnosis, prediction of normal and failure states, and explanation. This work provides a detailed review of literature in causal reasoning. A synthesis is proposed as a model of causal reasoning in process control. This model integrates distinct approaches in Cognitive Science: especially qualitative physics, Bayesian networks, knowledge-based systems, and cognitive psychology. Our model defines a framework for the analysis of causal human errors in simulated naval nuclear power plant fault management. Through the methodological framework of critical incident analysis we define a classification of errors and difficulties linked to causal reasoning. This classification is based on shallow characteristics of causal reasoning. As an origin of these errors, more elementary component activities in causal reasoning are identified. The applications cover the field of functional specification for man-machine interfaces, operators support systems design as well as nuclear safety. In addition of this study, we integrate the model of causal reasoning in a model of cognitive task in process control. (authors). 106 refs., 49 figs., 8 tabs.
A hierarchical causal modeling for large industrial plants supervision
A supervision system has to analyse the process current state and the way it will evolve after a modification of the inputs or disturbance. It is proposed to base this analysis on a hierarchy of models, witch differ by the number of involved variables and the abstraction level used to describe their temporal evolution. In a first step, special attention is paid to causal models building, from the most abstract one. Once the hierarchy of models has been build, the most detailed model parameters are estimated. Several models of different abstraction levels can be used for on line prediction. These methods have been applied to a nuclear reprocessing plant. The abstraction level could be chosen on line by the operator. Moreover when an abnormal process behaviour is detected a more detailed model is automatically triggered in order to focus the operator attention on the suspected subsystem. (authors). 11 refs., 11 figs
Luque, David; Cobos, Pedro L.; Lopez, Francisco J.
2008-01-01
In an interference-between-cues design (IbC), the expression of a learned Cue A-Outcome 1 association has been shown to be impaired if another cue, B, is separately paired with the same outcome in a second learning phase. The present study examined whether IbC could be caused by associative mechanisms independent of causal reasoning processes.…
Goal orientations in sport: a causal model Orientaciones de Meta en el deporte: un modelo causal
Francisco P. Holgado
2010-05-01
Full Text Available The study is based on research work relating goal orientation in sport with contextual variables and personal variables. The sample was 511 professional athletes. A “causal” model is proposed in which task and goal ego orientations are the dependent variables. A hypothetical model is obtained using structural equations modelling, supporting that: a athletes who find satisfaction experimenting mastery, who perceive a motivational climate that rewards hard work and who believe that success depends on their effort, develop task goal orientation; and b athletes who get satisfaction demonstrating greater capacity than the rest, who live a motivational climate that leads them to be better than the others and that only rewards the best players, and whose main motive for practising sport is to achieve certain social status and popularity, will have an ego goal orientation. Este trabajo parte de las investigaciones que relacionan las orientaciones de meta en el deporte con variables contextuales, como el clima motivacional percibido, y con variables personales, tales como la satisfacción con los resultados deportivos, las creencias relacionadas con los factores implicados en la obtención del éxito y los motivos por lo que se practica deporte. La muestra está compuesta por 511 deportistas profesionales. Se llevan a cabo análisis de regresión múltiple y se propone un modelo causal en el que las variables a predecir son las orientaciones de meta, a la tarea y al ego. Con ecuaciones estructurales se contrasta un modelo hipotético, que presenta un ajuste adecuado, y que defiende que: a el deportista que encuentra la satisfacción experimentando maestría, que percibe un clima motivacional que premia el trabajo duro y que cree que el éxito depende de su esfuerzo, desarrolla una orientación de meta a la tarea: y b que el deportista que obtiene satisfacción demostrando mayor capacidad que los demás, que vive un clima motivacional que le conduce a
Spatiotemporal causal modeling for the management of Dengue Fever
Yu, Hwa-Lung; Huang, Tailin; Lee, Chieh-Han
2015-04-01
Increasing climatic extremes have caused growing concerns about the health effects and disease outbreaks. The association between climate variation and the occurrence of epidemic diseases play an important role on a country's public health systems. Part of the impacts are direct casualties associated with the increasing frequency and intensity of typhoons, the proliferation of disease vectors and the short-term increase of clinic visits on gastro-intestinal discomforts, diarrhea, dermatosis, or psychological trauma. Other impacts come indirectly from the influence of disasters on the ecological and socio-economic systems, including the changes of air/water quality, living environment and employment condition. Previous risk assessment studies on dengue fever focus mostly on climatic and non-climatic factors and their association with vectors' reproducing pattern. The public-health implication may appear simple. Considering the seasonal changes and regional differences, however, the causality of the impacts is full of uncertainties. Without further investigation, the underlying dengue fever risk dynamics may not be assessed accurately. The objective of this study is to develop an epistemic framework for assessing dynamic dengue fever risk across space and time. The proposed framework integrates cross-departmental data, including public-health databases, precipitation data over time and various socio-economic data. We explore public-health issues induced by typhoon through literature review and spatiotemporal analytic techniques on public health databases. From those data, we identify relevant variables and possible causal relationships, and their spatiotemporal patterns derived from our proposed spatiotemporal techniques. Eventually, we create a spatiotemporal causal network and a framework for modeling dynamic dengue fever risk.
Bernard N. Iyke
2014-06-01
Full Text Available This paper examines the dynamic causal relationship between electricity consumption and economic growth in Ghana within a trivariate ARDL framework, for the period 1971–2012.The paper obviates the variable omission bias, and the use of cross-sectional techniques that characterise most existing studies. The results show that there is a distinct causal flow from economic growth to electricity consumption: both in the short run and in the long run. This finding supports the growth-led electricity consumption hypothesis, as documented in the literature. The paper urges policymakers in Ghana to resort to alternative sources of electric power generation, in order to reduce any future pressures on the current sources of electricity production. Appropriate monetary policies must also be put in place, in order to accommodate potential inflation hikes stemming from excessive demands for electricity in the near future.
Fardo, David W.; Liu, Jinze; DeMeo, Dawn L; Silverman, Edwin K.; Vansteelandt, Stijn
2011-01-01
We propose a method for testing gene–environment (G × E) interactions on a complex trait in family-based studies in which a phenotypic ascertainment criterion has been imposed. This novel approach employs G-estimation, a semiparametric estimation technique from the causal inference literature, to avoid modeling of the association between the environmental exposure and the phenotype, to gain robustness against unmeasured confounding due to population substructure, and to acknowledge the ascert...
Blossfeld, Hans-Peter
2001-01-01
Full Text Available FrenchOne of the most important advances brought about by life course and eventhistory studies is the use of parallel or independent processes as explaining history factors intransition rate models. The purpose of this paper is to demonstrate a causal approach to the study ofinterrelated family events. Various types of interdependent processes are described first, followed bytwo event history perspectives: the "system" and "causal" approaches. The authors assert that thecausal approach is more appropriate from an analytical point of view as it provides a straightforwardsolution to simultaneity, cause-effect lags, and temporal shapes of effects. Based on comparativecross-national applications in West and East Germany, Canada, Latvia and the Netherlands, wedemonstrate the usefulness of the causal approach by analyzing two highly interdependent famlyprocesses: entry into marriage (for individuals who are in a consensual union as the dependentprocess and first pregnancy/childbirth as the explaining one. Both statistical and theorteticalexplanations are explored emphasizing the need for conceptual reasoning.FrenchL’utilisation des processus interdépendants ou parallèles en tant que facteursexplicatifs dans des modèles des transitions aux quotients instantanés est une descontributions les plus importantes de l’analyse des biographies. Le but de cetarticle est d’appliquer une approche causale à l’analyse des événements familiauxinterdépendants. L’étude présente une typologie de processus parallèles et deuxperspectives de l’analyse des biographies: les approches ‘systémique’ et‘causale’. Les auteurs soutiennent que l’approche causale est plus appropriée dupoint de vue d’analyse. Elle offre une solution valable aux problèmes desimultanéité, les problèmes de décalage dans les intervalles entre la cause etl’effet, et, enfin, les problèmes des courbes temporelles modelées par les effets.L’utilité de cette
Cause and Event: Supporting Causal Claims through Logistic Models
O'Connell, Ann A.; Gray, DeLeon L.
2011-01-01
Efforts to identify and support credible causal claims have received intense interest in the research community, particularly over the past few decades. In this paper, we focus on the use of statistical procedures designed to support causal claims for a treatment or intervention when the response variable of interest is dichotomous. We identify…
Exploring causal networks of bovine milk fatty acids in a multivariate mixed model context
Bouwman, Aniek C; Valente, Bruno D; Janss, Luc L G; Bovenhuis, Henk; Rosa, Guilherme J M
2014-01-01
Knowledge regarding causal relationships among traits is important to understand complex biological systems. Structural equation models (SEM) can be used to quantify the causal relations between traits, which allow prediction of outcomes to interventions applied to such a network. Such models are...... fitted conditionally on a causal structure among traits, represented by a directed acyclic graph and an Inductive Causation (IC) algorithm can be used to search for causal structures. The aim of this study was to explore the space of causal structures involving bovine milk fatty acids and to select a...... than the multi-trait model. Conclusions: The IC algorithm output pointed towards causal relations between the studied traits. This changed the focus from marginal associations between traits to direct relationships, thus towards relationships that may result in changes when external interventions are...
Causality and Composite Structure
Joglekar, Satish D
2007-01-01
We study the question of whether a composite structure of elementary particles, with a length scale $1/\\Lambda$, can leave observable effects of non-locality and causality violation at higher energies (but $\\lesssim \\Lambda$). We formulate a model-independent approach based on Bogoliubov-Shirkov formulation of causality. We analyze the relation between the fundamental theory (of finer constituents) and the derived theory (of composite particles). We assume that the fundamental theory is causal and formulate a condition which must be fulfilled for the derived theory to be causal. We analyze the condition and exhibit possibilities which fulfil and which violate the condition. We make comments on how causality violating amplitudes can arise.
Ryali, Srikanth; Shih, Yen-Yu Ian; Chen, Tianwen; Kochalka, John; Albaugh, Daniel; Fang, Zhongnan; Supekar, Kaustubh; Lee, Jin Hyung; Menon, Vinod
2016-05-15
State-space multivariate dynamical systems (MDS) (Ryali et al. 2011) and other causal estimation models are being increasingly used to identify directed functional interactions between brain regions. However, the validity and accuracy of such methods are poorly understood. Performance evaluation based on computer simulations of small artificial causal networks can address this problem to some extent, but they often involve simplifying assumptions that reduce biological validity of the resulting data. Here, we use a novel approach taking advantage of recently developed optogenetic fMRI (ofMRI) techniques to selectively stimulate brain regions while simultaneously recording high-resolution whole-brain fMRI data. ofMRI allows for a more direct investigation of causal influences from the stimulated site to brain regions activated downstream and is therefore ideal for evaluating causal estimation methods in vivo. We used ofMRI to investigate whether MDS models for fMRI can accurately estimate causal functional interactions between brain regions. Two cohorts of ofMRI data were acquired, one at Stanford University and the University of California Los Angeles (Cohort 1) and the other at the University of North Carolina Chapel Hill (Cohort 2). In each cohort, optical stimulation was delivered to the right primary motor cortex (M1). General linear model analysis revealed prominent downstream thalamic activation in Cohort 1, and caudate-putamen (CPu) activation in Cohort 2. MDS accurately estimated causal interactions from M1 to thalamus and from M1 to CPu in Cohort 1 and Cohort 2, respectively. As predicted, no causal influences were found in the reverse direction. Additional control analyses demonstrated the specificity of causal interactions between stimulated and target sites. Our findings suggest that MDS state-space models can accurately and reliably estimate causal interactions in ofMRI data and further validate their use for estimating causal interactions in f
Jensen, Eva
2014-01-01
If students really understand the systems they study, they would be able to tell how changes in the system would affect a result. This demands that the students understand the mechanisms that drive its behaviour. The study investigates potential merits of learning how to explicitly model the causal structure of systems. The approach and…
Evidence for a causal inverse model in an avian cortico-basal ganglia circuit
Giret, N.; Kornfeld, J.; Ganguli, S.; Hahnloser, R. H. R.
2014-01-01
Auditory neural responses mirror motor activity in a songbird cortical area. The average temporal offset of mirrored responses is roughly equal to short sensorimotor loop delays. This correspondence between mirroring offsets and loop delays constitutes evidence for a causal inverse model. Causal inverse models can map a desired sensation into the required action.
Siggiridou, Elsa
2015-01-01
Granger causality has been used for the investigation of the inter-dependence structure of the underlying systems of multi-variate time series. In particular, the direct causal effects are commonly estimated by the conditional Granger causality index (CGCI). In the presence of many observed variables and relatively short time series, CGCI may fail because it is based on vector autoregressive models (VAR) involving a large number of coefficients to be estimated. In this work, the VAR is restricted by a scheme that modifies the recently developed method of backward-in-time selection (BTS) of the lagged variables and the CGCI is combined with BTS. Further, the proposed approach is compared favorably to other restricted VAR representations, such as the top-down strategy, the bottom-up strategy, and the least absolute shrinkage and selection operator (LASSO), in terms of sensitivity and specificity of CGCI. This is shown by using simulations of linear and nonlinear, low and high-dimensional systems and different t...
External Debt, Internal Debt and Economic Growth Bound in Nigeria using a Causality Approach
Amassoma J. Ditimi
2011-07-01
Full Text Available The study examined the causal nexus between external debt, domestic debt and economic growth in Nigeria between 1970 and 2009 using a Vector Autoregressive (VAR and a Vector Error Correction (VEC models. The variables used in the study were tested for stationarity using the Augmented Dickey Fuller and Philip Perron test. The result showed that the variables are stationary at first differencing. Co-integration test was also performed and the result revealed the absence of co-integration between domestic debt and economic growth while the result also revealed the presence of co-integration between external debt and economic growth. The co-integration results determined the appropriateness of methodological test for causality. The findings of the VAR model revealed that there is a bi-directional causality between domestic debt and economic growth while that of the VEC model revealed a unidirectional causality from economic growth to external debt in Nigeria. The study recommends that government should rely more on domestic debt in stimulating growth than on external debt.
Ways forward : Effectual and causal approaches to innovation in the Swedish magazine industry
Johansson, Anette
2014-01-01
This dissertation builds on a study of key decision makers in the Swedish magazine publishing industry with a particular focus on how they think and act in their work to innovate their industry. This industry, much like the rest of the media industry, is facing increased unpredictability regarding for example the impact of new technology on the business and future demand. Traditional planning (causal) approaches can be greatly questioned in times of uncertainty, when the task at hand include ...
Cognitive Structure of Climate Information System Actors:Using Causal Mapping Approach
Maryam Sharifzadeh; Gholamhossein Zamani; Mohammadtaghi Iman; Ezatolah Karami
2012-01-01
Promoting sustainability, productivity, efficiency, and development of agricultural sector are the functions of utilization of appropriate information in terms of agricultural climate information system (ACIS). In this regard, the main question is that, to what extent does the ACIS lead to or provide the necessary context for agricultural development? This research aimed to employ causal mapping approach to investigate cognitive structure of human actors in a climate information system. This ...
Poppe, Michaela; Zitek, Andreas; Salles, Paulo; Bredeweg, Bert; Muhar, Susanne
2010-05-01
The education system needs strategies to attract future scientists and practitioners. There is an alarming decline in the number of students choosing science subjects. Reasons for this include the perceived complexity and the lack of effective cognitive tools that enable learners to acquire the expertise in a way that fits its qualitative nature. The DynaLearn project utilises a "Learning by modelling" approach to deliver an individualised and engaging cognitive tool for acquiring conceptual knowledge. The modelling approach is based on qualitative reasoning, a research area within artificial intelligence, and allows for capturing and simulating qualitative systems knowledge. Educational activities within the DynaLearn software address topics at different levels of complexity, depending on the educational goals and settings. DynaLearn uses virtual characters in the learning environment as agents for engaging and motivating the students during their modelling exercise. The DynaLearn software represents an interactive learning environment in which learners are in control of their learning activities. The software is able to coach them individually based on their current progress, their knowledge needs and learning goals. Within the project 70 expert models on different environmental issues covering seven core topics (Earth Systems and Resources, The Living World, Human population, Land and Water Use, Energy Resources and Consumption, Pollution, and Global Changes) will be delivered. In the context of the core topic "Land and Water Use" the Institute of Hydrobiology and Aquatic Ecosystem Management has developed a model on Sustainable River Catchment Management. River systems with their catchments have been tremendously altered due to human pressures with serious consequences for the ecological integrity of riverine landscapes. The operation of hydropower plants, the implementation of flood protection measures, the regulation of flow and sediment regime and intensive
Causal Agency Theory: Reconceptualizing a Functional Model of Self-Determination
Shogren, Karrie A.; Wehmeyer, Michael L.; Palmer, Susan B.; Forber-Pratt, Anjali J.; Little, Todd J.; Lopez, Shane
2015-01-01
This paper introduces Causal Agency Theory, an extension of the functional model of self-determination. Causal Agency Theory addresses the need for interventions and assessments pertaining to selfdetermination for all students and incorporates the significant advances in understanding of disability and in the field of positive psychology since the…
Dynamic causal models of neural system dynamics: current state and future extensions
Klaas E Stephan; Lee M Harrison; Stefan J Kiebel; Olivier David; Will D Penny; Karl J Friston
2007-01-01
Complex processes resulting from interaction of multiple elements can rarely be understood by analytical scientific approaches alone; additional, mathematical models of system dynamics are required. This insight, which disciplines like physics have embraced for a long time already, is gradually gaining importance in the study of cognitive processes by functional neuroimaging. In this field, causal mechanisms in neural systems are described in terms of effective connectivity. Recently, dynamic causal modelling (DCM) was introduced as a generic method to estimate effective connectivity from neuroimaging data in a Bayesian fashion. One of the key advantages of DCM over previous methods is that it distinguishes between neural state equations and modality-specific forward models that translate neural activity into a measured signal. Another strength is its natural relation to Bayesian model selection (BMS) procedures. In this article, we review the conceptual and mathematical basis of DCM and its implementation for functional magnetic resonance imaging data and event-related potentials. After introducing the application of BMS in the context of DCM, we conclude with an outlook to future extensions of DCM. These extensions are guided by the long-term goal of using dynamic system models for pharmacological and clinical applications, particularly with regard to synaptic plasticity.
Causal inference based on counterfactuals
Höfler M
2005-09-01
Full Text Available Abstract Background The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. Discussion This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. Summary Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept.
Cognitive Structure of Climate Information System Actors:Using Causal Mapping Approach
Maryam Sharifzadeh
2012-01-01
Full Text Available Promoting sustainability, productivity, efficiency, and development of agricultural sector are the functions of utilization of appropriate information in terms of agricultural climate information system (ACIS. In this regard, the main question is that, to what extent does the ACIS lead to or provide the necessary context for agricultural development? This research aimed to employ causal mapping approach to investigate cognitive structure of human actors in a climate information system. This explorative qualitative research used case study methodology. This paper is an examination and reflection upon analysis of qualitative data reports, with particular attention to the process of interactively elicited causal maps based on focus group interviews. An exploratory coding approach was used to identify concepts that emerged from the interview transcripts. The relevant knowledge is gathered through the tacit understandings of climate information producers (2 groups, extensionists (6 groups, and users (7 groups in Fars province to reach to the point of redundancy. Investigating causal maps revealed that, actors perceived climate information system challenges as economic, information processing, socio-political, organizational, and technical challenges. The study provided some suggestions to reach to a responsive short term and sustainable long term climate information system in Fars province.
Husemoen, L. L. N.; Skaaby, T.; Martinussen, Torben;
2014-01-01
doubling of 25(OH)D was 4.78, 95% CI: 1.96, 7.68, P<0.001). Using variations in the vitamin D-binding protein gene and the filaggrin gene as instrumental variables, the causal effect in % was estimated to 61.46, 95% CI: 17.51, 120.28, P=0.003 higher adiponectin per doubling of 25(OH)D. In the MONICA10......Background/Objectives: The aim was to examine the causal effect of vitamin D on serum adiponectin using a multiple instrument Mendelian randomization approach. Subjects/Methods: Serum 25-hydroxy vitamin D (25(OH)D) and serum total or high molecular weight (HMW) adiponectin were measured in two...
Guo Shuixia
2010-06-01
Full Text Available Abstract Background Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE, Bayesian networks, information theory and Granger Causality. Results Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins. For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. Conclusions The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.
Causal modelling applied to the risk assessment of a wastewater discharge.
Paul, Warren L; Rokahr, Pat A; Webb, Jeff M; Rees, Gavin N; Clune, Tim S
2016-03-01
Bayesian networks (BNs), or causal Bayesian networks, have become quite popular in ecological risk assessment and natural resource management because of their utility as a communication and decision-support tool. Since their development in the field of artificial intelligence in the 1980s, however, Bayesian networks have evolved and merged with structural equation modelling (SEM). Unlike BNs, which are constrained to encode causal knowledge in conditional probability tables, SEMs encode this knowledge in structural equations, which is thought to be a more natural language for expressing causal information. This merger has clarified the causal content of SEMs and generalised the method such that it can now be performed using standard statistical techniques. As it was with BNs, the utility of this new generation of SEM in ecological risk assessment will need to be demonstrated with examples to foster an understanding and acceptance of the method. Here, we applied SEM to the risk assessment of a wastewater discharge to a stream, with a particular focus on the process of translating a causal diagram (conceptual model) into a statistical model which might then be used in the decision-making and evaluation stages of the risk assessment. The process of building and testing a spatial causal model is demonstrated using data from a spatial sampling design, and the implications of the resulting model are discussed in terms of the risk assessment. It is argued that a spatiotemporal causal model would have greater external validity than the spatial model, enabling broader generalisations to be made regarding the impact of a discharge, and greater value as a tool for evaluating the effects of potential treatment plant upgrades. Suggestions are made on how the causal model could be augmented to include temporal as well as spatial information, including suggestions for appropriate statistical models and analyses. PMID:26832914
Granger Causality and the Capital Asset Pricing Model
Mihir Dash
2014-01-01
At the heart of the CAPM lies the concept of systematic risk. The systematic risk of a security is that component of the total risk of the security that is explained by market risk. This study investigates the econometrics of the CAPM. In particular, it analyses Granger causality from market returns to security returns, the absence of which would weaken the significance of beta, and undermine the foundations of the CAPM.
Some speculations on a causal model that seems to provide a common conceptual foundation for Relativity Gravitation and Quantum Mechanics are presented. The present approach is a unifying of three theories. The first being the repulsive theory of gravitational forces first proposed by Lesage in the eighteenth century. The second of these theories is the Brownian Motion Theory of Quantum Mechanics or Stocastic Mechanics which treats the non-deterministic Nature of Quantum Mechanics as being due to a Brownian motion of all objects. This Brownian motion being caused by the statistical variation in the graviton flux. The above two theories are unified with the Causal Theory of Special Relativity. Within the present context, the time dilations (and other effects) of Relativity are explained by assuming that the rate of a clock is a function of the total number or intensity of gravitons and the average frequency or energy of the gravitons that the clock receives. The Special Theory would then be the special case of the General Theory where the intensity is constant but the average frequency varies. In all the previous it is necessary to assume a particular model of the creation of the universe, namely the Big Bang Theory. This assumption gives us the existence of a preferred reference frame, the frame in which the Big Bang explosion was at rest. The above concepts of graviton distribution and real time dilations become meaningful by assuming the Big Bang Theory along with this preferred frame. An experimental test is proposed
This paper attempts to examine the dynamic relationship between economic growth, nuclear energy consumption, labor and capital for India for the period 1969-2006. Applying the bounds test approach to cointegration developed by we find that there was a short- and a long-run relationship between nuclear energy consumption and economic growth. Using four long-run estimators we also found that nuclear energy consumption has a positive and a statistically significant impact on India's economic growth. Further, applying the approach to Granger causality and the variance decomposition approach developed by , we found a positive and a significant uni-directional causality running from nuclear energy consumption to economic growth without feedback. This implies that economic growth in India is dependent on nuclear energy consumption where a decrease in nuclear energy consumption may lead to a decrease in real income. For a fast growing energy-dependent economy this may have far-reaching implications for economic growth. India's economic growth can be frustrated if energy conservation measures are undertaken without due regard to the negative impact they have on economic growth.
Guarnera, Enrico; Berezovsky, Igor N
2016-03-01
Allostery is one of the pervasive mechanisms through which proteins in living systems carry out enzymatic activity, cell signaling, and metabolism control. Effective modeling of the protein function regulation requires a synthesis of the thermodynamic and structural views of allostery. We present here a structure-based statistical mechanical model of allostery, allowing one to observe causality of communication between regulatory and functional sites, and to estimate per residue free energy changes. Based on the consideration of ligand free and ligand bound systems in the context of a harmonic model, corresponding sets of characteristic normal modes are obtained and used as inputs for an allosteric potential. This potential quantifies the mean work exerted on a residue due to the local motion of its neighbors. Subsequently, in a statistical mechanical framework the entropic contribution to allosteric free energy of a residue is directly calculated from the comparison of conformational ensembles in the ligand free and ligand bound systems. As a result, this method provides a systematic approach for analyzing the energetics of allosteric communication based on a single structure. The feasibility of the approach was tested on a variety of allosteric proteins, heterogeneous in terms of size, topology and degree of oligomerization. The allosteric free energy calculations show the diversity of ways and complexity of scenarios existing in the phenomenology of allosteric causality and communication. The presented model is a step forward in developing the computational techniques aimed at detecting allosteric sites and obtaining the discriminative power between agonistic and antagonistic effectors, which are among the major goals in allosteric drug design. PMID:26939022
The Epstein–Glaser causal approach to the light-front QED4. I: Free theory
In this work we present the study of light-front field theories in the realm of the axiomatic theory. It is known that when one uses the light-cone gauge pathological poles (k+)−n arises, demanding a prescription to be employed in order to tame these ill-defined poles and to have the correct Feynman integrals due to the lack of Wick rotation in such theories. In order to shed a new light on this long standing problem we present here a discussion based on the use of rigorous mathematical machinery of the distributional theory combined with physical concepts, such as causality, to show how to deal with these singular propagators in a general fashion without making use of any prescription. The first step of our development will consist in showing how the analytic representation for propagators arises by requiring general physical properties within the framework of Wightman’s formalism. From that we shall determine the equal-time (anti)commutation relations in the light-front form for the scalar and fermionic fields, as well as for the dynamical components of the electromagnetic field. In conclusion, we introduce the Epstein–Glaser causal method in order to have a mathematical rigorous description of the free propagators of the theory, allowing us to discuss a general treatment for propagators of the type (k+)−n. Afterwards, we show that at given conditions our results reproduce known prescriptions in the literature. - Highlights: • We develop the analytic representation for propagators in Wightman’s framework. • We make use of the analytic representation to obtain equal-time (anti)commutation relations in the light-front. • We derive the free Feynman propagators for the light-front quantum electrodynamics in the Epstein–Glaser approach. • We determine a general expression for the propagator associated to the light-cone poles (k+)−n in the causal approach
Credible Granger-Causality Inference with Modest Sample Lengths: A Cross-Sample Validation Approach
Richard A. Ashley
2014-03-01
Full Text Available Credible Granger-causality analysis appears to require post-sample inference, as it is well-known that in-sample fit can be a poor guide to actual forecasting effectiveness. However, post-sample model testing requires an often-consequential a priori partitioning of the data into an “in-sample” period – purportedly utilized only for model specification/estimation – and a “post-sample” period, purportedly utilized (only at the end of the analysis for model validation/testing purposes. This partitioning is usually infeasible, however, with samples of modest length – e.g., T ≤ 150 – as is common in both quarterly data sets and/or in monthly data sets where institutional arrangements vary over time, simply because there is in such cases insufficient data available to credibly accomplish both purposes separately. A cross-sample validation (CSV testing procedure is proposed below which both eliminates the aforementioned a priori partitioning and which also substantially ameliorates this power versus credibility predicament – preserving most of the power of in-sample testing (by utilizing all of the sample data in the test, while also retaining most of the credibility of post-sample testing (by always basing model forecasts on data not utilized in estimating that particular model’s coefficients. Simulations show that the price paid, in terms of power relative to the in-sample Granger-causality F test, is manageable. An illustrative application is given, to a re-analysis of the Engel andWest [1] study of the causal relationship between macroeconomic fundamentals and the exchange rate; several of their conclusions are changed by our analysis.
Dijk, van J.; Breedveld, P.C.
1991-01-01
The existence of zero-order causal paths in bond graphs of physical systems implies the set of state equations to be an implicit mixed set of Differential and Algebraic Equations (DAEs). In the block diagram expansion of such a bond graph, this type of causal path corresponds with a zero-order loop.
Lee, Sanghack; Honavar, Vasant
2015-01-01
Maier et al. (2010) introduced the relational causal model (RCM) for representing and inferring causal relationships in relational data. A lifted representation, called abstract ground graph (AGG), plays a central role in reasoning with and learning of RCM. The correctness of the algorithm proposed by Maier et al. (2013a) for learning RCM from data relies on the soundness and completeness of AGG for relational d-separation to reduce the learning of an RCM to learning of an AGG. We revisit the...
Visual Causal Models Enhance Clinical Explanations of Treatments for Generalized Anxiety Disorder
Kim, Nancy S.; Khalife, Danielle; Judge, Kelly A.; Paulus, Daniel J.; Jordan, Jake T.; Yopchick, Jennelle E.
2013-01-01
A daily challenge in clinical practice is to adequately explain disorders and treatments to patients of varying levels of literacy in a time-limited situation. Drawing jointly upon research on causal reasoning and multimodal theory, the authors asked whether adding visual causal models to clinical explanations promotes patient learning. Participants were 86 people currently or formerly diagnosed with a mood disorder and 104 lay people in Boston, Massachusetts, USA, who were randomly assigned ...
Marinela eCapanu
2015-05-01
Full Text Available Identifying the small number of rare causal variants contributing to disease has beena major focus of investigation in recent years, but represents a formidable statisticalchallenge due to the rare frequencies with which these variants are observed. In thiscommentary we draw attention to a formal statistical framework, namely hierarchicalmodeling, to combine functional genomic annotations with sequencing data with theobjective of enhancing our ability to identify rare causal variants. Using simulations weshow that in all configurations studied, the hierarchical modeling approach has superiordiscriminatory ability compared to a recently proposed aggregate measure of deleteriousness,the Combined Annotation-Dependent Depletion (CADD score, supportingour premise that aggregate functional genomic measures can more accurately identifycausal variants when used in conjunction with sequencing data through a hierarchicalmodeling approach
Campbell's and Rubin's Perspectives on Causal Inference
West, Stephen G.; Thoemmes, Felix
2010-01-01
Donald Campbell's approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T. Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin's causal model (P. W. Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health. Campbell's approach focuses on…
Rideout, D
2002-01-01
The Causal Set approach to quantum gravity asserts that spacetime, at its smallest length scale, has a discrete structure. This discrete structure takes the form of a locally finite order relation, where the order, corresponding with the macroscopic notion of spacetime causality, is taken to be a fundamental aspect of nature. After an introduction to the Causal Set approach, this thesis considers a simple toy dynamics for causal sets. Numerical simulations of the model provide evidence for the existence of a continuum limit. While studying this toy dynamics, a picture arises of how the dynamics can be generalized in such a way that the theory could hope to produce more physically realistic causal sets. By thinking in terms of a stochastic growth process, and positing some fundamental principles, we are led almost uniquely to a family of dynamical laws (stochastic processes) parameterized by a countable sequence of coupling constants. This result is quite promising in that we now know how to speak of dynamics ...
Rideout, D P
2001-01-01
The Causal Set approach to quantum gravity asserts that spacetime, at its smallest length scale, has a discrete structure. This discrete structure takes the form of a locally finite order relation, where the order, corresponding with the macroscopic notion of spacetime causality, is taken to be a fundamental aspect of nature. After an introduction to the Causal Set approach, this thesis considers a simple toy dynamics for causal sets. Numerical simulations of the model provide evidence for the existence of a continuum limit. While studying this toy dynamics, a picture arises of how the dynamics can be generalized in such a way that the theory could hope to produce more physically realistic causal sets. By thinking in terms of a stochastic growth process, and positing some fundamental principles, we are led almost uniquely to a family of dynamical laws (stochastic processes) parameterized by a countable sequence of coupling constants. This result is quite promising in that we now know how to speak of dynamics ...
Besson, Ugo
2010-01-01
This paper presents an analysis of the different types of reasoning and physical explanation used in science, common thought, and physics teaching. It then reflects on the learning difficulties connected with these various approaches, and suggests some possible didactic strategies. Although causal reasoning occurs very frequently in common thought…
Sex and Self-Control Theory: The Measures and Causal Model May Be Different
Higgins, George E.; Tewksbury, Richard
2006-01-01
This study examines the distribution differences across sexes in key measures of self-control theory and differences in a causal model. Using cross-sectional data from juveniles ("n" = 1,500), the study shows mean-level differences in many of the self-control, risky behavior, and delinquency measures. Structural equation modeling findings support…
A Non-Classical Linear Xenomorph as a Model for Quantum Causal Space
Raptis, I
1999-01-01
A quantum picture of the causal structure of Minkowski space M is presented. The mathematical model employed to this end is a non-classical version of the classical topos {H} of real quaternion algebras used elsewhere to organize the perceptions of spacetime events of a Boolean observer into M. Certain key properties of this new quantum topos are highlighted by contrast against the corresponding ones of its classical counterpart {H} modelling M and are seen to accord with some key features of the algebraically quantized causal set structure.
Ness, Robert O; Sachs, Karen; Vitek, Olga
2016-03-01
Causal inference, the task of uncovering regulatory relationships between components of biomolecular pathways and networks, is a primary goal of many high-throughput investigations. Statistical associations between observed protein concentrations can suggest an enticing number of hypotheses regarding the underlying causal interactions, but when do such associations reflect the underlying causal biomolecular mechanisms? The goal of this perspective is to provide suggestions for causal inference in large-scale experiments, which utilize high-throughput technologies such as mass-spectrometry-based proteomics. We describe in nontechnical terms the pitfalls of inference in large data sets and suggest methods to overcome these pitfalls and reliably find regulatory associations. PMID:26731284
The Causal approach for the electron-positron scattering in the Generalized Quantum Electrodynamics
Bufalo, R; Soto, D E
2014-01-01
In this paper we study the generalized electrodynamics contribution for the electron-positron scattering process, $e^{-}e^{+}\\rightarrow e^{-}e^{+}$, the Bhabha scattering. Within the framework of the standard model, for energies larger when compared to the electron mass, we calculate the cross section expression for the scattering process. This quantity is usually calculated in the framework of the Maxwell electrodynamics and, by phenomenological reasons, corrected by a cut-off parameter. On the other hand, by considering the generalized electrodynamics instead of Maxwell's, we can show that the effects played by the Podolsky mass is actually a natural cut-off parameter for this scattering process. Furthermore, by means of experimental data of Bhabha scattering we will estimate its lower bound value. Nevertheless, in order to have a mathematically well defined description of our study we shall present our discussion in the framework of the Epstein-Glaser causal theory.
van Dijk; Breedveld, P.C.
1991-01-01
The existence of zero-order causal paths in bond graphs of physical systems implies the set of state equations to be an implicit mixed set of Differential and Algebraic Equations (DAEs). In the block diagram expansion of such a bond graph, this type of causal path corresponds with a zero-order loop. In this paper the numerical solution of the DAEs by methods commonly used for solving stiff systems of Ordinary Differential Equations (ODEs) is discussed. Apart from a description of the numerica...
Suárez-Vega, Aroa; Gutiérrez-Gil, Beatriz; Benavides, Julio; Perez, Valentín; Tosser-Klopp, Gwenola; Klopp, Christophe; Keennel, Stephen J.; Arranz, Juan José
2015-01-01
In this study, we demonstrate the use of a genome-wide association mapping together with RNA-seq in a reduced number of samples, as an efficient approach to detect the causal mutation for a Mendelian disease. Junctional epidermolysis bullosa is a recessive genodermatosis that manifests with neonatal mechanical fragility of the skin, blistering confined to the lamina lucida of the basement membrane and severe alteration of the hemidesmosomal junctions. In Spanish Churra sheep, junctional epidermolysis bullosa (JEB) has been detected in two commercial flocks. The JEB locus was mapped to Ovis aries chromosome 11 by GWAS and subsequently fine-mapped to an 868-kb homozygous segment using the identical-by-descent method. The ITGB4, which is located within this region, was identified as the best positional and functional candidate gene. The RNA-seq variant analysis enabled us to discover a 4-bp deletion within exon 33 of the ITGB4 gene (c.4412_4415del). The c.4412_4415del mutation causes a frameshift resulting in a premature stop codon at position 1472 of the integrin β4 protein. A functional analysis of this deletion revealed decreased levels of mRNA in JEB skin samples and the absence of integrin β4 labeling in immunohistochemical assays. Genotyping of c.4412_4415del showed perfect concordance with the recessive mode of the disease phenotype. Selection against this causal mutation will now be used to solve the problem of JEB in flocks of Churra sheep. Furthermore, the identification of the ITGB4 mutation means that affected sheep can be used as a large mammal animal model for the human form of epidermolysis bullosa with aplasia cutis. Our approach evidences that RNA-seq offers cost-effective alternative to identify variants in the species in which high resolution exome-sequencing is not straightforward. PMID:25955497
The causal nexus between oil prices and equity market in the U.S.: A regime switching model
The aim of this paper is to analyse the causal link between monthly oil futures price changes and a sub-grouping of S and P 500 stock index changes. The causal linkage between oil and stock markets is modelled using a vector autoregressive model with time-varying parameters so as to reflect changes in Granger causality over time. A Markov switching vector autoregressive (MS-VAR) model, in which causal link between the series is stochastic and governed by an unobservable Markov chain, is used for inferring time-varying causality. Although we do not find any lead–lag type Granger causality, the results based on the MS-VAR model clearly show that oil futures price has strong regime prediction power for a sub-grouping of S and P 500 stock index during various sub-periods in the sample, while there is a weak evidence for the regime prediction power of a sub-grouping of S and P 500 stock indexes. The regime-prediction non-causality tests on the MS-VAR model show that both variables are useful for making inference about the regime process and that the evidence on regime-prediction causality is primarily found in the equation describing a sub-grouping of S and P 500 stock market returns. The evidence from the conditional non-causality tests shows that past information on the other series fails to improve the one step ahead prediction for both oil futures and stock returns. - Highlights: • We analyse the causal links between oil futures price and a sub-grouping of S and P 500 index. • The causal links are modelled using a regime switching model. • We do not find any lead–lag type Granger causality between the series. • The results show that oil futures price has regime prediction power for a sub-grouping of S and P 500 stock index
Invariant Gaussian Process Latent Variable Models and Application in Causal Discovery
Zhang, Kun; Schoelkopf, Bernhard; Janzing, Dominik
2012-01-01
In nonlinear latent variable models or dynamic models, if we consider the latent variables as confounders (common causes), the noise dependencies imply further relations between the observed variables. Such models are then closely related to causal discovery in the presence of nonlinear confounders, which is a challenging problem. However, generally in such models the observation noise is assumed to be independent across data dimensions, and consequently the noise dependencies are ignored. In...
Irina A. Mironenko
2009-01-01
Full Text Available Russian psychology has brought into the world science at least two great ideas: the conditioned reflex (Pavlov and the zone of proximal development (Vygotsky. These concepts were formulated before “iron curtain” fell. Since then Russian science dropped out from the view of western colleagues for decades. Now it is challenged to re-join international mainstream. Are we in a position to contribute?A key concept for Russian psychology is personality impact on psycho-physiological functions and causal approach to self-determination. The concept of selfdetermination appeared in Western theories in 1980-es and since then it has been developed in the context of teleological humanitarian approach. In Russian science the concept of self-determination dates back to 1934, when it was defined by Rubinstein as “sub’ekt”. Self-determination of ontogenesis of psycho physiological functions resulting from confluence of ontogenesis and social development was explicated by Russian scientists whose theoretical reasoning and empirical results are compared to Western counterparts.
Dropouts and Turnover: The Synthesis and Test of a Causal Model of Student Attrition.
Bean, John P.
1980-01-01
The determinants of student attrition in higher education institutions are investigated using a causal model which synthesized research findings on job turnover and on student attrition. Many male/female differences were found but three surrogate measures for pay were found for both sexes to be related to intent to leave. (Author/LC)
Causal Comparative Analysis: Comprehensive Literacy Approach or the Traditional Reading Approach
Fuda, Jessica Ann
2009-01-01
A comparative analysis study, examining the significance in reading achievement between students in the Comprehensive Literacy Program to students in the Traditional Basal Reading Approach was conducted. Implementation of the Comprehensive Literacy Program was an effort to lessen the achievement gap between proficient and low progressing students.…
Exact solutions of a Flat Full Causal Bulk viscous FRW cosmological model through factorization
Cornejo-Pérez, O.; Belinchón, J. A.
2012-01-01
We study the classical flat full causal bulk viscous FRW cosmological model through the factorization method. The method shows that there exists a relationship between the viscosity parameter $s$ and the parameter $\\gamma$ entering the equations of state of the model. Also, the factorization method allows to find some new exact parametric solutions for different values of the viscous parameter $s$. Special attention is given to the well known case $s=1/2$, for which the cosmological model adm...
The Epstein–Glaser causal approach to the light-front QED4. II: Vacuum polarization tensor
In this work we show how to construct the one-loop vacuum polarization for light-front QED4 in the framework of the perturbative causal theory. Usually, in the canonical approach, it is considered for the fermionic propagator the so-called instantaneous term, but it is known in the literature that this term is controversial because it can be omitted by computational reasons; for instance, by compensation or vanishing by dimensional regularization. In this work we propose a solution to this paradox. First, in the Epstein–Glaser causal theory, it is shown that the fermionic propagator does not have instantaneous term, and with this propagator we calculate the one-loop vacuum polarization, from this calculation it follows the same result as those obtained by the standard approach, but without reclaiming any extra assumptions. Moreover, since the perturbative causal theory is defined in the distributional framework, we can also show the reason behind our obtaining the same result whether we consider or not the instantaneous fermionic propagator term. - Highlights: • We develop the Epstein–Glaser causal approach for light-front field theory. • We evaluate in detail the vacuum polarization at one-loop for the light-front QED. • We discuss the subtle issues of the Instantaneous part of the fermionic propagator in the light-front. • We evaluate the vacuum polarization at one-loop for the light-front QED with the Instantaneous fermionic part
The Epstein–Glaser causal approach to the light-front QED{sub 4}. II: Vacuum polarization tensor
Bufalo, R., E-mail: rodrigo.bufalo@helsinki.fi [Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki (Finland); Instituto de Física Teórica (IFT/UNESP), UNESP - São Paulo State University, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II Barra Funda, CEP 01140-070 São Paulo, SP (Brazil); Pimentel, B.M., E-mail: pimentel@ift.unesp.br [Instituto de Física Teórica (IFT/UNESP), UNESP - São Paulo State University, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II Barra Funda, CEP 01140-070 São Paulo, SP (Brazil); Soto, D.E., E-mail: danielsb@ift.unesp.br [Instituto de Física Teórica (IFT/UNESP), UNESP - São Paulo State University, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II Barra Funda, CEP 01140-070 São Paulo, SP (Brazil)
2014-12-15
In this work we show how to construct the one-loop vacuum polarization for light-front QED{sub 4} in the framework of the perturbative causal theory. Usually, in the canonical approach, it is considered for the fermionic propagator the so-called instantaneous term, but it is known in the literature that this term is controversial because it can be omitted by computational reasons; for instance, by compensation or vanishing by dimensional regularization. In this work we propose a solution to this paradox. First, in the Epstein–Glaser causal theory, it is shown that the fermionic propagator does not have instantaneous term, and with this propagator we calculate the one-loop vacuum polarization, from this calculation it follows the same result as those obtained by the standard approach, but without reclaiming any extra assumptions. Moreover, since the perturbative causal theory is defined in the distributional framework, we can also show the reason behind our obtaining the same result whether we consider or not the instantaneous fermionic propagator term. - Highlights: • We develop the Epstein–Glaser causal approach for light-front field theory. • We evaluate in detail the vacuum polarization at one-loop for the light-front QED. • We discuss the subtle issues of the Instantaneous part of the fermionic propagator in the light-front. • We evaluate the vacuum polarization at one-loop for the light-front QED with the Instantaneous fermionic part.
mediation: R Package for Causal Mediation Analysis
Dustin Tingley
2014-09-01
Full Text Available In this paper, we describe the R package mediation for conducting causal mediation analysis in applied empirical research. In many scientific disciplines, the goal of researchers is not only estimating causal effects of a treatment but also understanding the process in which the treatment causally affects the outcome. Causal mediation analysis is frequently used to assess potential causal mechanisms. The mediation package implements a comprehensive suite of statistical tools for conducting such an analysis. The package is organized into two distinct approaches. Using the model-based approach, researchers can estimate causal mediation effects and conduct sensitivity analysis under the standard research design. Furthermore, the design-based approach provides several analysis tools that are applicable under different experimental designs. This approach requires weaker assumptions than the model-based approach. We also implement a statistical method for dealing with multiple (causally dependent mediators, which are often encountered in practice. Finally, the package also offers a methodology for assessing causal mediation in the presence of treatment noncompliance, a common problem in randomized trials.
Relationship of causal effects in a causal chain and related inference
GENG; Zhi; HE; Yangbo; WANG; Xueli
2004-01-01
This paper discusses the relationship among the total causal effect and local causal effects in a causal chain and identifiability of causal effects. We show a transmission relationship of causal effects in a causal chain. According to the relationship, we give an approach to eliminating confounding bias through controlling for intermediate variables in a causal chain.
Explaining Premarital Sexual Intercourse among College Students: A Causal Model
Schulz, Barbara; And Others
1977-01-01
Using a model based on opportunity, this article analyzes premarital sexual activity among college students. It notes that the incidence of premarital sex in the late 1960's was a product of peer influences and structural opportunities (provided through off campus residence, dating frequency, and fraternity/ sorority membership) and not only of…
Scheungrab, M
1990-01-01
The subject of research coucerns causal relationships between variables of consuming home videos and television and different indicators of delinquency ("acceptance of social norms" (NORM-AK), "perceived risk of punishment" (DEL-RISK), "severity of negative consequences" (NEG-VAL), "acceptance of illegitimate means" (ILLEG-M)). Additionally, factors of influence external to media are taken into consideration which are connected with delinquency according to criminologic results, i.e. variables of communication and variables of the family life and the structure of the family. The model is tested by a sample of N = 305 male pupils of a Regensburg vocational school with methods analysing causality ("2-Stage-Least-Square" (2-SLS) and "Latent variables path analysis with partial least squares estimation" (LVPLS)). The 2-SLS-estimates largely confirm the causal relationships supposed in the model. The results are, three significantly positive indirect connections from the preference for violence of home videos to the main indicator of delinquency ILLEG-M (by way of the variables "consumption of home videos" put on the Index, NEG-VAL and DEL-RISK). The direct influence of the preference for violence on television on ILLEG-M is confirmed, whereas the direct path from the popularity of violent video films to ILLEG-M cannot be proved. The LVPLS-results essentially correspond to the relationship shown by 2-SLS; in addition the LVPLS-estimates also confirm direct causal relationships between the latent variables "consumption of violent video films" and "delinquency proneness". PMID:2132917
Suboptimal Causal Reactive Control of Wave Energy Converters Using a Second Order System Model
Fusco, Francesco; Ringwood, John
2011-01-01
Wave Energy Converters (WECs) based on oscillating bodies can achieve optimal energy absorption under certain conditions associated with reactive control. These conditions, in general, are not realisable in practice because non-causal and future values of the excitation force need to be known. In this paper, an alternative approach is presented, where the relationship between the optimal velocity and the excitation force is realised through a simple coefficient of proportion...
Causality issues of particle detector models in QFT and Quantum Optics
Martin-Martinez, Eduardo
2015-01-01
We analyze the constraints that causality imposes on some of the particle detector models employed in quantum field theory in general, and in particular on those used in quantum optics (or superconducting circuits) to model atoms interacting with light. Namely, we show that disallowing faster-than-light communication can impose severe constraints on the applicability of particle detector models in three different common scenarios: 1) when the detectors are spatially smeared, 2) when a UV cutoff is introduced in the theory and 3) under one of the most typical approximations made in quantum optics: the rotating-wave approximation. We identify in which scenarios the models' causal behaviour can be cured and in which it cannot.
Bordacconi, Mats Joe; Larsen, Martin Vinæs
2014-01-01
Humans are fundamentally primed for making causal attributions based on correlations. This implies that researchers must be careful to present their results in a manner that inhibits unwarranted causal attribution. In this paper, we present the results of an experiment that suggests regression...... models should note carefully both their models’ identifying assumptions and which causal attributions can safely be concluded from their analysis....
Gun Prevalence, Homicide Rates and Causality: A GMM Approach to Endogeneity Bias
Kleck, Gary; Kovandzic, Tomislav; Schaffer, Mark E.
2005-01-01
The positive correlation between gun prevalence and homicide rates has been widely documented. But does this correlation reflect a causal relationship? This study seeks to answer the question of whether more guns cause more crime, and unlike nearly all previous such studies, we properly account for the endogeneity of gun ownership levels. We discuss the three main sources of endogeneity bias - reverse causality (higher crime rates lead people to acquire guns for self-protection), mismeasureme...
A Non-Classical Linear Xenomorph as a Model for Quantum Causal Space
Raptis, Ioannis
1999-01-01
A quantum picture of the causal structure of Minkowski space M is presented. The mathematical model employed to this end is a non-classical version of the classical topos {H} of real quaternion algebras used elsewhere to organize the perceptions of spacetime events of a Boolean observer into M. Certain key properties of this new quantum topos are highlighted by contrast against the corresponding ones of its classical counterpart {H} modelling M and are seen to accord with some key features of...
Grauls D.
2006-12-01
Full Text Available Abnormal fluid pressure regimes are commonly encountered at depth in most sedimentary basins. Relationships between effective vertical stress and porosity have been applied, since 1970 to the Gulf Coast area, to assess the magnitude of overpressures. Positive results have been obtained from seismic and basin-modeling techniques in sand-shale, vertical-stress-dominated tertiary basins, whenever compaction disequilibrium conditions apply. However, overpressures resulting from other and/or additional causes (tectonic stress, hydrocarbon generation, thermal stress, fault-related transfer, hydrofracturing. . . cannot be quantitatively assessed using this approach. A hydromechanical approach is then proposed in addition to conventional methods. At any depth, the upper bound fluid pressure is controlled by in situ conditions related to hydrofracturing or fault reactivation. Fluid-driven fracturing implies an episodically open system, under a close to zerominimum effective stress regime. Sound knowledge of present-day tectonic stress regimes allows a direct estimation of minimum stress evolution. A quantitative fluid pressure assessment at depth is therefore possible, as in undrained or/and compartmented geological systems, pressure regimes, whatever their origin, tend to rapidly reach a value close to the minimum principal stress. Therefore, overpressure assessment will be improved, as this methodology can be applied to various geological settings and situations where present-day overpressures originated from other causal mechanisms, very often combined. However, pressure trends in transition zones are more difficult to assess correctly. Additional research on cap rocks and fault seals is therefore required to improve their predictability. In addition to overpressure assessment, the minimum principal stress concept allows a better understanding of petroleum system, as fault-related hydrocarbon dynamic transfers, hydrofractured domains and cap
Performing Causal Configurations in e-Tourism: a Fuzzy-Set Approach
Hugues Seraphin
2016-07-01
Full Text Available Search engines are constantly endeavouring to integrate social media mentions in the website ranking process. Search Engine Optimization (SEO principles can be used to impact website ranking, considering various social media channels� capability to drive traffic. Both practitioners and researchers has focused on the impact of social media on SEO, but paid little attention to the influences of social media interactions on organic search results. This study explores the causal configurations between social mention variables (strength, sentiment, passion, reach and the rankings of nine websites dedicated to hotel booking (according to organic search results. The social mention variables embedded into the conceptual model were provided by the real-time social media search and analysis tool (www.socialmention.com, while the rankings websites dedicated to hotel booking were determined after a targeted search on Google. The study employs fuzzy-set qualitative comparative analysis (fsQCA and the results reveal that social mention variables has complex links with the rankings of the hotel booking websites included into the sample, according to Quine-McCluskey algorithm solution. The findings extend the body of knowledge related to the impact of social media mentions on
Rohin Anhal
2013-10-01
Full Text Available The aim of this paper is to examine the direction of causality between real GDP on the one hand and final energy and coal consumption on the other in India, for the period from 1970 to 2011. The methodology adopted is the non-parametric bootstrap procedure, which is used to construct the critical values for the hypothesis of causality. The results of the bootstrap tests show that for total energy consumption, there exists no causal relationship in either direction with GDP of India. However, if coal consumption is considered, we find evidence in support of unidirectional causality running from coal consumption to GDP. This clearly has important implications for the Indian economy. The most important implication is that curbing coal consumption in order to reduce carbon emissions would in turn have a limiting effect on economic growth. Our analysis contributes to the literature in three distinct ways. First, this is the first paper to use the bootstrap method to examine the growth-energy connection for the Indian economy. Second, we analyze data for the time period 1970 to 2011, thereby utilizing recently available data that has not been used by others. Finally, in contrast to the recently done studies, we adopt a disaggregated approach for the analysis of the growth-energy nexus by considering not only aggregate energy consumption, but coal consumption as well.
Calibrating the pixel-level Kepler imaging data with a causal data-driven model
Wang, Dun; Hogg, David W; Schölkopf, Bernhard
2015-01-01
Astronomical observations are affected by several kinds of noise, each with its own causal source; there is photon noise, stochastic source variability, and residuals coming from imperfect calibration of the detector or telescope. The precision of NASA Kepler photometry for exoplanet science---the most precise photometric measurements of stars ever made---appears to be limited by unknown or untracked variations in spacecraft pointing and temperature, and unmodeled stellar variability. Here we present the Causal Pixel Model (CPM) for Kepler data, a data-driven model intended to capture variability but preserve transit signals. The CPM works at the pixel level so that it can capture very fine-grained information about the variation of the spacecraft. The CPM predicts each target pixel value from a large number of pixels of other stars sharing the instrument variabilities while not containing any information on possible transits in the target star. In addition, we use the target star's future and past (auto-regr...
Duckworth, Angela Lee; Tsukayama, Eli; May, Henry
2010-01-01
The predictive validity of personality for important life outcomes is well established, but conventional longitudinal analyses cannot rule out the possibility that unmeasured third-variable confounds fully account for the observed relationships. Longitudinal hierarchical linear models (HLM) with time-varying covariates allow each subject to serve as his or her own control, thus eliminating between-individual confounds. HLM also allows the directionality of the causal relationship to be tested...
Arshia Amiri; Ulf-G Gerdtham
2012-01-01
This paper introduces a new way of investigating linear and nonlinear Granger causality between exports, imports and economic growth in France over the period 1961_2006 with using geostatistical models (kiriging and Inverse distance weighting). Geostatistical methods are the ordinary methods for forecasting the locatins and making map in water engineerig, environment, environmental pollution, mining, ecology, geology and geography. Although, this is the first time which geostatistics knowledg...
A new approach in classical electrodynamics to protect principle of causality
Biswaranjan Dikshit
2014-03-01
Full Text Available In classical electrodynamics, electromagnetic effects are calculated from solution of wave equation formed by combination of four Maxwell’s equations. However, along with retarded solution, this wave equation admits advanced solution in which case the effect happens before the cause. So, to preserve causality in natural events, the retarded solution is intentionally chosen and the advance part is just ignored. But, an equation or method cannot be called fundamental if it admits a wrong result (that violates principle of causality in addition to the correct result. Since it is the Maxwell’s form of equations that gives birth to this acausal advanced potential, we rewrite these equations in a different form using the recent theory of reaction at a distance (Biswaranjan Dikshit, Physics essays, 24(1, 4-9, 2011 so that the process of calculation does not generate any advanced effects. Thus, the long-standing causality problem in electrodynamics is solved.
Time and Causality in the Economic Process – a Critical Approach Based on Consistency Criteria
Cristina TĂNĂSESCU
2011-01-01
Full Text Available Our paper proposes a critical analysis based on criteria of consistency of the fundamental concepts underlying the comprehensive description of economic process, namely: time, context and causality. Issues of such action taken by us arise from the existence of the fact that the emergence of new paradigms, amid an economic complexity, should include elements of theoretical, instrumental and methodological nature. Moreover, dominant economic science, at this time (positivist, is subject to an epistemological imperialism exercised by Newtonian mechanics, without one's own epistemology. Regarding the underlying causality explaining the economic process, we find that, yet at this time, it is a singular and efficient one (in the Aristotelian sense, but not a teleological one, so we wonder whether the final causality (purpose form may better explain the economic process and his completeness, and in this sense, the shaping of new paradigms based on premises other than those already existed, in understanding the economic process.
Neto, Elias Chaibub; Bot, Brian M.; Kellen, Mike; Friend, Stephen H; Trister, Andrew D.
2016-01-01
Mobile health studies can leverage longitudinal sensor data from smartphones to guide the application of personalized medical interventions. These studies are particularly appealing due to their ability to attract a large number of participants. In this paper, we argue that the adoption of an instrumental variable approach for randomized trials with imperfect compliance provides a natural framework for personalized causal inference of medication response in mobile health studies. Randomized t...
Emil Scosyrev
2014-06-01
Full Text Available In Neyman’s causal model (NCM, each subject participating in a two-arm randomized trial has a pair of potential outcomes – one outcome would be observed under treatment and another under control. In the stochastic version of NCM the two potential outcomes are viewed as possibly non-degenerate random variables with finite expectations and variances. The subject-level treatment effect is the expected outcome under treatment minus that under control, and the average treatment effect is the arithmetic mean of the subject-level effects. In the present paper properties of the ordinary “difference of means” estimator and its associated variance estimator are examined in the completely randomized design with stochastic potential outcomes. Estimation theory is developed under randomization distribution without commitment to any particular probability model for enrollment, because in real trials subjects are not enrolled by a sampling mechanism with known selection probabilities. It is shown that in this theoretical framework, the “difference of means” estimator is asymptotically normal and consistent for the average treatment effect in the study cohort, while its associated variance estimator is conservative, producing confidence intervals with at least nominal asymptotic coverage. The proofs are not trivial because in the randomization framework sample means under treatment and control are correlated random variables. Keywords: Causality; Clinical Trials; Internal Validity; Neyman’s Causal Model; Randomization-Based Inference; Stochastic Potential Outcomes.
Causal Depth contra Humean Empiricism: Aspects of a Scientific Realist Approach to Explanation
Khan, Haider
2008-01-01
The purpose of this note is to clarify how the idea of "causal depth" can play a role in finding the more "approximately true" explanation through causal comparisons. It is not an exhaustive treatment but rather focuses on a few aspects that may be the most critical in evaluating the explanatory strengths of a theory in the social sciences. It presents a general argument which is anti-Humean on the critical side and scientific realist on the positive side. It also elucidates how explanations...
The Nexus between Finance, Growth and Poverty in India: The Cointegration and Causality Approach1
Rudra Prakash Prakash Pradhan
2010-08-01
Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The paper examines the causal nexus between financial development, economic growth and poverty reduction in India during 1951-2008. The empirical analysis is based on cointegration and causality test. The cointegration test finds the presence of long run equilibrium relationship between financial development, economic growth and poverty reduction. The Granger causality test at the end confirms the presence of unidirectional causality from poverty reduction to economic growth, economic growth to finance development, financial development to poverty reduction and economic growth to poverty reduction. It also finds no causality between finance development and economic growth, and poverty reduction and finance development. The paper suggests that economic growth is considered as the policy variable to accelerate finance development and both could be used as the policy variable to reduce poverty in the economy.
The Epstein-Glaser causal approach to the Light-Front QED$_{4}$. II: Vacuum Polarization tensor
Bufalo, R; Soto, D E
2014-01-01
In this work we show how to construct the one-loop vacuum polarization for light-front QED$_{4}$ in the framework of the perturbative causal theory. Usually, in the canonical approach, it is considered for the fermionic propagator the so-called instantaneous term, but it is known in literature that this term is controversial because it can be omitted by computational reasons; for instance, by compensation or vanishing by dimensional regularization. In this work we propose a solution to this paradox. First, in the perturbative causal theory, it is shown that the fermionic propagator does not have instantaneous terms, and with this propagator we calculate the one-loop vacuum polarization, from the calculation it follows the same result as obtained by the standard approach, but without reclaiming any extra assumptions. Moreover, since the perturbative causal theory is defined in the distributional framework, we can also show the reason behind we obtaining the same result whether we consider or not the instantane...
Schnitzer, Mireille E.; Lok, Judith J.; Gruber, Susan
2015-01-01
This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low-and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios. PMID:26226129
Two Optimal Strategies for Active Learning of Causal Models from Interventions
Hauser, Alain
2012-01-01
From observational data alone, a causal DAG is in general only identifiable up to Markov equivalence. Interventional data generally improves identifiability; however, the gain of an intervention strongly depends on the intervention target, i.e., the intervened variables. We present active learning strategies calculating optimal interventions for two different learning goals. The first one is a greedy approach using single-vertex interventions that maximizes the number of edges that can be oriented after each intervention. The second one yields in polynomial time a minimum set of targets of arbitrary size that guarantees full identifiability. This second approach proves a conjecture of Eberhardt (2008) indicating the number of unbounded intervention targets which is sufficient and in the worst case necessary for full identifiability. We compare our two active learning approaches to random interventions in a simulation study.
Investigating Causality in Human Behavior from Smartphone Sensor Data: A Quasi-Experimental Approach
Tsapeli, Fani; Musolesi, Mirco
2015-01-01
Smartphones have become an indispensable part of our daily life. Their improved sensing and computing capabilities bring new opportunities for human behavior monitoring and analysis. Most work so far has been focused on detecting correlation rather than causation among features extracted from smartphone data. However, pure correlation analysis does not offer sufficient understanding of human behavior. Moreover, causation analysis could allow scientists to identify factors that have a causal e...
Performing Causal Configurations in e-Tourism: a Fuzzy-Set Approach
Hugues Seraphin; Adrian Micu; Michele Ambaye; Alexandru Capatina
2016-01-01
Search engines are constantly endeavouring to integrate social media mentions in the website ranking process. Search Engine Optimization (SEO) principles can be used to impact website ranking, considering various social media channels� capability to drive traffic. Both practitioners and researchers has focused on the impact of social media on SEO, but paid little attention to the influences of social media interactions on organic search results. This study explores the causal configurations b...
Komperda, Regis
The purpose of this dissertation is to test a model of relationships among factors characterizing aspects of a student-centered constructivist learning environment and student outcomes of satisfaction and academic achievement in introductory undergraduate chemistry courses. Constructivism was chosen as the theoretical foundation for this research because of its widespread use in chemical education research and practice. In a constructivist learning environment the role of the teacher shifts from delivering content towards facilitating active student engagement in activities that encourage individual knowledge construction through discussion and application of content. Constructivist approaches to teaching introductory chemistry courses have been adopted by some instructors as a way to improve student outcomes, but little research has been done on the causal relationships among particular aspects of the learning environment and student outcomes. This makes it difficult for classroom teachers to know which aspects of a constructivist teaching approach are critical to adopt and which may be modified to better suit a particular learning environment while still improving student outcomes. To investigate a model of these relationships, a survey designed to measure student perceptions of three factors characterizing a constructivist learning environment in online courses was adapted for use in face-to-face chemistry courses. These three factors, teaching presence, social presence, and cognitive presence, were measured using a slightly modified version of the Community of Inquiry (CoI) instrument. The student outcomes investigated in this research were satisfaction and academic achievement, as measured by standardized American Chemical Society (ACS) exam scores and course grades. Structural equation modeling (SEM) was used to statistically model relationships among the three presence factors and student outcome variables for 391 students enrolled in six sections of a
Kogelman, Lisette; Zhernakova, Daria V.; Westra, Harm-Jan; Cirera Salicio, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja
2015-01-01
BACKGROUND: Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the...... porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. METHODS: Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential...... expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected...
Hu, Zhenghui; Ni, Pengyu; Wan, Qun; Zhang, Yan; Shi, Pengcheng; Lin, Qiang
2016-01-01
Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling (DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In this study we addressed this issue by using both synthetic and real experiments. The results show that the ability of DCM analysis to reveal information about brain causality depends critically on the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of system connections, but more importantly also affects the inferences about the network architecture. Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., by making V0 a free parameter); however, the conditional dependencies induced by a more complex model may create more problems than they solve. Obtaining more realistic V0 information in DCM can improve the identifiability of the system and would provide more reliable inferences about the properties of brain connectivity. PMID:27389074
On Causality in Dynamical Systems
Harnack, Daniel
2016-01-01
Identification of causal links is fundamental for the analysis of complex systems. In dynamical systems, however, nonlinear interactions may hamper separability of subsystems which poses a challenge for attempts to determine the directions and strengths of their mutual influences. We found that asymmetric causal influences between parts of a dynamical system lead to characteristic distortions in the mappings between the attractor manifolds reconstructed from respective local observables. These distortions can be measured in a model-free, data-driven manner. This approach extends basic intuitions about cause-effect relations to deterministic dynamical systems and suggests a mathematically well defined explanation of results obtained from previous methods based on state space reconstruction.
Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI
Koush, Yury; Rosa, Maria Joao; Robineau, Fabien; Heinen, Klaartje; Rieger, Sebastian Walter; Weiskopf, Nikolaus; Vuilleumier, Patrik; Van De Ville, Dimitri; Scharnowski, Frank
2013-01-01
Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to pr...
Lymbouridou, Chrystalla; Sevastidou, Alexia
2003-01-01
This study investigated the effectiveness of a computational model (made with Stagecast Creator1) in teaching forms of causality in system dynamics. Systems causality forms were examined within the context of food web perturbations. The research sample included two equivalent sixth grade classes from the same elementary school in Cyprus. The same teacher taught students in both classes a unit on ecosystems that was completed in two lessons (4 class periods). Students in the experimental group...
The Epstein-Glaser causal approach to the Light-Front QED$_{4}$. II: Vacuum Polarization tensor
Bufalo, R.; Pimentel, B. M.; Soto, D. E.
2014-01-01
In this work we show how to construct the one-loop vacuum polarization for light-front QED$_{4}$ in the framework of the perturbative causal theory. Usually, in the canonical approach, it is considered for the fermionic propagator the so-called instantaneous term, but it is known in literature that this term is controversial because it can be omitted by computational reasons; for instance, by compensation or vanishing by dimensional regularization. In this work we propose a solution to this p...
Integrating Probabilistic, Taxonomic and Causal Knowledge in Abductive Diagnosis
Lin, Dekang; Goebel, Randy
2013-01-01
We propose an abductive diagnosis theory that integrates probabilistic, causal and taxonomic knowledge. Probabilistic knowledge allows us to select the most likely explanation; causal knowledge allows us to make reasonable independence assumptions; taxonomic knowledge allows causation to be modeled at different levels of detail, and allows observations be described in different levels of precision. Unlike most other approaches where a causal explanation is a hypothesis that one or more causat...
Promoting the organ donor card: a causal model of persuasion effects.
Skumanich, S A; Kintsfather, D P
1996-08-01
Due to the present critical shortage of donor organs available for transplantation, effective communication strategies are necessary to heighten public commitment to donation. The promotion of organ donor card-signing may be a successful vehicle in the achievement of this goal. Based on the Elaboration Likelihood Model of persuasion effects, evidence of the motivation for organ donor card-signing, and examination of previous donation message tests, this study proposes and tests a causal model of response to organ donor card appeals. The inter-relationship of values, empathy arousal, and issue involvement was found to be a significant driving force in the persuasive process for the behavioral intention to sign an organ donor card. Implications of these findings for future research are addressed. PMID:8844941
Causal modeling of secondary science students' intentions to enroll in physics
Crawley, Frank E.; Black, Carolyn B.
The purpose of this study was to explore the utility of the theory of planned behavior model developed by social psychologists for understanding and predicting the behavioral intentions of secondary science students regarding enrolling in physics. In particular, the study used a three-stage causal model to investigate the links from external variables to behavioral, normative, and control beliefs; from beliefs to attitudes, subjective norm, and perceived behavioral control; and from attitudes, subjective norm, and perceived behavioral control to behavioral intentions. The causal modeling method was employed to verify the underlying causes of secondary science students' interest in enrolling physics as predicted in the theory of planned behavior. Data were collected from secondary science students (N = 264) residing in a central Texas city who were enrolled in earth science (8th grade), biology (9th grade), physical science (10th grade), or chemistry (11th grade) courses. Cause-and-effect relationships were analyzed using path analysis to test the direct effects of model variables specified in the theory of planned behavior. Results of this study indicated that students' intention to enroll in a high school physics course was determined by their attitude toward enrollment and their degree of perceived behavioral control. Attitude, subjective norm, and perceived behavioral control were, in turn, formed as a result of specific beliefs that students held about enrolling in physics. Grade level and career goals were found to be instrumental in shaping students' attitude. Immediate family members were identified as major referents in the social support system for enrolling in physics. Course and extracurricular conflicts and the fear of failure were shown to be the primary beliefs obstructing students' perception of control over physics enrollment. Specific recommendations are offered to researchers and practitioners for strengthening secondary school students
Identifying abnormal connectivity in patients using Dynamic Causal Modelling of fMRI responses.
Mohamed L Seghier
2010-08-01
Full Text Available Functional imaging studies of brain damaged patients offer a unique opportunity to understand how sensori-motor and cognitive tasks can be carried out when parts of the neural system that support normal performance are no longer available. In addition to knowing which regions a patient activates, we also need to know how these regions interact with one another, and how these inter-regional interactions deviate from normal. Dynamic Causal Modelling (DCM offers the opportunity to assess task-dependent interactions within a set of regions. Here we review its use in patients when the question of interest concerns the characterisation of abnormal connectivity for a given pathology. We describe the currently available implementations of DCM for fMRI responses, varying from the deterministic bilinear models with one-state equation to the stochastic nonlinear models with two-state equations. We also highlight the importance of the new Bayesian model selection and averaging tools that allow different plausible models to be compared at the single subject and group level. These procedures allow inferences to be made at different levels of model selection, from features (model families to connectivity parameters. Following a critical review of previous DCM studies that investigated abnormal connectivity we propose a systematic procedure that will ensure more flexibility and efficiency when using DCM in patients. Finally, some practical and methodological issues crucial for interpreting or generalising DCM findings in patients are discussed.
Admon, Roee; Milad, Mohammed R; Hendler, Talma
2013-07-01
Discriminating neural abnormalities into the causes versus consequences of psychopathology would enhance the translation of neuroimaging findings into clinical practice. By regarding the traumatic encounter as a reference point for disease onset, neuroimaging studies of post-traumatic stress disorder (PTSD) can potentially allocate PTSD neural abnormalities to either predisposing (pre-exposure) or acquired (post-exposure) factors. Based on novel research strategies in PTSD neuroimaging, including genetic, environmental, twin, and prospective studies, we provide a causal model that accounts for neural abnormalities in PTSD, and outline its clinical implications. Current data suggest that abnormalities within the amygdala and dorsal anterior cingulate cortex represent predisposing risk factors for developing PTSD, whereas dysfunctional hippocampal-ventromedial prefrontal cortex (vmPFC) interactions may become evident only after having developed the disorder. PMID:23768722
Tighe, Elizabeth L.; Wagner, Richard K.; Schatschneider, Christopher
2015-01-01
This study demonstrates the utility of applying a causal indicator modeling framework to investigate important predictors of reading comprehension in third, seventh, and tenth grade students. The results indicated that a 4-factor multiple indicator multiple indicator cause (MIMIC) model of reading comprehension provided adequate fit at each grade…
Rasmussen, Lauge Baungaard
2006-01-01
The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method......The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method...
Tsumura, Kyosuke; Kikuchi, Yuta; Kunihiro, Teiji
2015-10-01
We derive the second-order hydrodynamic equation and the microscopic formulas of the relaxation times as well as the transport coefficients systematically from the relativistic Boltzmann equation. Our derivation is based on a novel development of the renormalization-group method, a powerful reduction theory of dynamical systems, which has been applied successfully to derive the nonrelativistic second-order hydrodynamic equation. Our theory nicely gives a compact expression of the deviation of the distribution function in terms of the linearized collision operator, which is different from those used as an ansatz in the conventional fourteen-moment method. It is confirmed that the resultant microscopic expressions of the transport coefficients coincide with those derived in the Chapman-Enskog expansion method. Furthermore, we show that the microscopic expressions of the relaxation times have natural and physically plausible forms. We prove that the propagating velocities of the fluctuations of the hydrodynamical variables do not exceed the light velocity, and hence our second-order equation ensures the desired causality. It is also confirmed that the equilibrium state is stable for any perturbation described by our equation.
The Epstein-Glaser causal approach to the Light-Front QED$_{4}$. I: Free theory
Bufalo, R; Soto, D E
2014-01-01
In this work we present the study of light-front field theories in the realm of axiomatic theory. It is known that when one uses the light-cone gauge pathological poles $\\left( k^{+}\\right) ^{-n}$ arises, demanding a prescription to be employed in order to tame these ill-defined poles and to have correct Feynman integrals due to the lack of Wick rotation in such theories. In order to shed a new light on this long standing problem we present here a discussion based on the use rigorous mathematical machinery of distributions combined with physical concepts, such as causality, to show how to deal with these singular propagators in a general fashion without making use of any prescription. The first step of our development will consist in showing how analytic representation for propagators arises by requiring general physical properties in the framework of Wightman's formalism. From that we shall determine the equal-time (anti)commutation relations in the light-front form for the scalar, fermionic fields and for t...
The Temporal Logic of Causal Structures
Kleinberg, Samantha
2012-01-01
Computational analysis of time-course data with an underlying causal structure is needed in a variety of domains, including neural spike trains, stock price movements, and gene expression levels. However, it can be challenging to determine from just the numerical time course data alone what is coordinating the visible processes, to separate the underlying prima facie causes into genuine and spurious causes and to do so with a feasible computational complexity. For this purpose, we have been developing a novel algorithm based on a framework that combines notions of causality in philosophy with algorithmic approaches built on model checking and statistical techniques for multiple hypotheses testing. The causal relationships are described in terms of temporal logic formulae, reframing the inference problem in terms of model checking. The logic used, PCTL, allows description of both the time between cause and effect and the probability of this relationship being observed. We show that equipped with these causal f...
The Epstein–Glaser causal approach to the light-front QED{sub 4}. I: Free theory
Bufalo, R., E-mail: rodrigobufalo@gmail.com; Pimentel, B.M., E-mail: pimentel@ift.unesp.br; Soto, D.E., E-mail: danielsb@ift.unesp.br
2014-12-15
In this work we present the study of light-front field theories in the realm of the axiomatic theory. It is known that when one uses the light-cone gauge pathological poles (k{sup +}){sup −n} arises, demanding a prescription to be employed in order to tame these ill-defined poles and to have the correct Feynman integrals due to the lack of Wick rotation in such theories. In order to shed a new light on this long standing problem we present here a discussion based on the use of rigorous mathematical machinery of the distributional theory combined with physical concepts, such as causality, to show how to deal with these singular propagators in a general fashion without making use of any prescription. The first step of our development will consist in showing how the analytic representation for propagators arises by requiring general physical properties within the framework of Wightman’s formalism. From that we shall determine the equal-time (anti)commutation relations in the light-front form for the scalar and fermionic fields, as well as for the dynamical components of the electromagnetic field. In conclusion, we introduce the Epstein–Glaser causal method in order to have a mathematical rigorous description of the free propagators of the theory, allowing us to discuss a general treatment for propagators of the type (k{sup +}){sup −n}. Afterwards, we show that at given conditions our results reproduce known prescriptions in the literature. - Highlights: • We develop the analytic representation for propagators in Wightman’s framework. • We make use of the analytic representation to obtain equal-time (anti)commutation relations in the light-front. • We derive the free Feynman propagators for the light-front quantum electrodynamics in the Epstein–Glaser approach. • We determine a general expression for the propagator associated to the light-cone poles (k{sup +}){sup −n} in the causal approach.
Nielsen, Max; Jensen, Frank; Setälä, Jari;
2011-01-01
to fish demand. On the German market for farmed trout and substitutes, it is found that supply sources, i.e. aquaculture and fishery, are not the only determinant of causality. Storing, tightness of management and aggregation level of integrated markets might also be important. The methodological......This article focuses on causality in demand. A methodology where causality is imposed and tested within an empirical co-integrated demand model, not prespecified, is suggested. The methodology allows different causality of different products within the same demand system. The methodology is applied...... implication is that more explicit focus on causality in demand analyses provides improved information. The results suggest that frozen trout forms part of a large European whitefish market, where prices of fresh trout are formed on a relatively separate market. Redfish is a substitute on both markets. The...
Rosalyn J Moran
Full Text Available Generative models of neuroimaging and electrophysiological data present new opportunities for accessing hidden or latent brain states. Dynamic causal modeling (DCM uses Bayesian model inversion and selection to infer the synaptic mechanisms underlying empirically observed brain responses. DCM for electrophysiological data, in particular, aims to estimate the relative strength of synaptic transmission at different cell types and via specific neurotransmitters. Here, we report a DCM validation study concerning inference on excitatory and inhibitory synaptic transmission, using different doses of a volatile anaesthetic agent (isoflurane to parametrically modify excitatory and inhibitory synaptic processing while recording local field potentials (LFPs from primary auditory cortex (A1 and the posterior auditory field (PAF in the auditory belt region in rodents. We test whether DCM can infer, from the LFP measurements, the expected drug-induced changes in synaptic transmission mediated via fast ionotropic receptors; i.e., excitatory (glutamatergic AMPA and inhibitory GABA(A receptors. Cross- and auto-spectra from the two regions were used to optimise three DCMs based on biologically plausible neural mass models and specific network architectures. Consistent with known extrinsic connectivity patterns in sensory hierarchies, we found that a model comprising forward connections from A1 to PAF and backward connections from PAF to A1 outperformed a model with forward connections from PAF to A1 and backward connections from A1 to PAF and a model with reciprocal lateral connections. The parameter estimates from the most plausible model indicated that the amplitude of fast glutamatergic excitatory postsynaptic potentials (EPSPs and inhibitory postsynaptic potentials (IPSPs behaved as predicted by previous neurophysiological studies. Specifically, with increasing levels of anaesthesia, glutamatergic EPSPs decreased linearly, whereas fast GABAergic IPSPs
Benbenishty, Rami; Astor, Ron Avi; Roziner, Ilan; Wrabel, Stephani L.
2016-01-01
The present study explores the causal link between school climate, school violence, and a school's general academic performance over time using a school-level, cross-lagged panel autoregressive modeling design. We hypothesized that reductions in school violence and climate improvement would lead to schools' overall improved academic performance.…
Dynamic causal modeling of touch-evoked potentials in the rubber hand illusion.
Zeller, Daniel; Friston, Karl J; Classen, Joseph
2016-09-01
The neural substrate of bodily ownership can be disclosed by the rubber hand illusion (RHI); namely, the illusory self-attribution of an artificial hand that is induced by synchronous tactile stimulation of the subject's hand that is hidden from view. Previous studies have pointed to the premotor cortex (PMC) as a pivotal area in such illusions. To investigate the effective connectivity between - and within - sensory and premotor areas involved in bodily perceptions, we used dynamic causal modeling of touch-evoked responses in 13 healthy subjects. Each subject's right hand was stroked while viewing their own hand ("REAL"), or an artificial hand presented in an anatomically plausible ("CONGRUENT") or implausible ("INCONGRUENT") position. Bayesian model comparison revealed strong evidence for a differential involvement of the PMC in the generation of touch-evoked responses under the three conditions, confirming a crucial role of PMC in bodily self-attribution. In brief, the extrinsic (forward) connection from left occipital cortex to left PMC was stronger for CONGRUENT and INCONGRUENT as compared to REAL, reflecting the augmentation of bottom-up visual input when multisensory integration is challenged. Crucially, intrinsic connectivity in the primary somatosensory cortex (S1) was attenuated in the CONGRUENT condition, during the illusory percept. These findings support predictive coding models of the functional architecture of multisensory integration (and attenuation) in bodily perceptual experience. PMID:27241481
Miljana Valdec
2015-03-01
Full Text Available This paper contributes to the literature by using propensity score matching to test for causal effects of starting to export on firm performance in Croatian manufacturing firm-level data. The results confirm that exporters have characteristics superior to those of non-exporters. In the main sample specification there is pervasive evidence of self-selection into export markets, meaning that firms are successful years before they become exporters. Using multiple firm performance indicators, panel and cross section data models together with various sample specifications there is scant evidence on learning-by-exporting which holds true only in a few cases. On the other hand, higher sales growth is found to be a more conclusive distinguishing characteristic of new exporters. As in similar studies, we find that a part of the results depends on the number of export starters in the estimation sample.
Extended Traffic Alert Information to Improve TCAS Performance by means of Causal Models
Jun Tang
2015-01-01
Full Text Available Near-midair collisions (NMACs between aircraft have long been a primary safety concern and have incessantly motivated the development of ingenious onboard collision avoidance (CA systems to reduce collision risk. The Traffic Alert and Collision Avoidance System (TCAS acts as a proverbially accepted last-resort means to resolve encounters, while it also has been proved to potentially induce a collision in the hectic and congested traffic. This paper aims to improve the TCAS collision avoidance performance by enriching traffic alert information, which strictly fits with present TCAS technological requirements and extends the threat detection considering induced collisions and probabilistic pilot response. The proposed model is specified in coloured Petri net (CPN formalism, to generate by simulation all the future possible downstream reachable states to enhance the follow-up decision making of pilots via synthesising relevant information related to collision states. With the complete state space, the potential collision scenarios can be identified together with those manoeuvres that may transform a conflict into a collision. The causal TCAS model is demonstrated to work effectively for complex multiaircraft scenarios and to identify the feasible manoeuvres that contribute to reduce the nonzero TCAS-induced collision risk.
Infertile Individuals’ Marital Relationship Status, Happiness, and Mental Health: A Causal Model
Seyed Habiballah Ahmadi Forooshany
2014-11-01
Full Text Available Background: This study examined the causal model of relation between marital relationship status, happiness, and mental health in infertile individuals. Materials and Methods: In this descriptive study, 155 subjects (men: 52 and women: 78, who had been visited in one of the infertility Centers, voluntarily participated in a self-evaluation. Golombok Rust Inventory of Marital Status, Oxford Happiness Questionnaire, and General Health Questionnaire were used as instruments of the study. Data was analyzed by SPSS17 and Amos 5 software using descriptive statistics, independent sample t test, and path analysis. Results: Disregarding the gender factor, marital relationship status was directly related to happiness (p<0.05 and happiness was directly related to mental health, (p<0.05. Also, indirect relation between marital relationship status and mental health was significant (p<0.05. These results were confirmed in women participants but in men participants only the direct relation between happiness and mental health was significant (p<0.05. Conclusion: Based on goodness of model fit in fitness indexes, happiness had a mediator role in relation between marital relationship status and mental health in infertile individuals disregarding the gender factor. Also, considering the gender factor, only in infertile women, marital relationship status can directly and indirectly affect happiness and mental health.
Witherington, David C.
2011-01-01
The dynamic systems (DS) approach has emerged as an influential and potentially unifying metatheory for developmental science. Its central platform--the argument against design--suggests that structure spontaneously and without prescription emerges through self-organization. In one of the most prominent accounts of DS, Thelen and her colleagues…
Causal phase-space approach to fermion theories understood through Clifford algebras
A Wigner-Moyal phase-space approach is developed for the Dirac and Feynman-Gell-Mann equations. The role of spinors as primitive elements of the spacetime and phase-space Clifford algebras is emphasized. A conserved phase-space current is constructed. (orig.)
A meta-frontier approach for causal inference in productivity analysis
Henningsen, Arne; Mpeta, Daniel F.; Adem, Anwar S.;
use the approach of Bravo-Ureta, Greene and Solís (2012) to estimate two separate production frontiers (one for contract farmers and one for non-contract farmers) that account for potential biases due to self-selection on both observed and unobserved variables. Then, we follow Rao, Brümmer and Qaim...... impact on efficiency and productivity is mostly overlooked. This study addresses this salient gap by combining the approaches suggested by BravoUreta, Greene, and Solís (Empirical Economics 43:55–72, 2012) and Rao, Brümmer, and Qaim (American Journal of Agricultural Economics 94:891–912, 2012). We first...
Correlation Measure Equivalence in Dynamic Causal Structures
Gyongyosi, Laszlo
2016-01-01
We prove an equivalence transformation between the correlation measure functions of the causally-unbiased quantum gravity space and the causally-biased standard space. The theory of quantum gravity fuses the dynamic (nonfixed) causal structure of general relativity and the quantum uncertainty of quantum mechanics. In a quantum gravity space, the events are causally nonseparable and all time bias vanishes, which makes it no possible to use the standard causally-biased entropy and the correlation measure functions. Since a corrected causally-unbiased entropy function leads to an undefined, obscure mathematical structure, in our approach the correction is made in the data representation of the causally-unbiased space. We prove that the standard causally-biased entropy function with a data correction can be used to identify correlations in dynamic causal structures. As a corollary, all mathematical properties of the causally-biased correlation measure functions are preserved in the causally-unbiased space. The eq...
Revisiting Causality in Markov Chains
Shojaee, Abbas
2016-01-01
Identifying causal relationships is a key premise of scientific research. The growth of observational data in different disciplines along with the availability of machine learning methods offers the possibility of using an empirical approach to identifying potential causal relationships, to deepen our understandings of causal behavior and to build theories accordingly. Conventional methods of causality inference from observational data require a considerable length of time series data to capture cause-effect relationship. We find that potential causal relationships can be inferred from the composition of one step transition rates to and from an event. Also known as Markov chain, one step transition rates are a commonly available resource in different scientific disciplines. Here we introduce a simple, effective and computationally efficient method that we termed 'Causality Inference using Composition of Transitions CICT' to reveal causal structure with high accuracy. We characterize the differences in causes,...
Hazuki Ishida
2011-01-01
This paper explores whether Japanese economy can continue to grow without extensive dependence on fossil fuels. The paper conducts time series analysis using a multivariate model of fossil fuels, non-fossil energy, labor, stock and GDP to investigate the relationship between fossil fuel consumption and economic growth in Japan. The results of cointegration tests indicate long-run relationships among the variables. Using a vector error-correction model, the study reveals bidirectional causalit...
On modeling HIV and T cells in vivo: assessing causal estimators in vaccine trials.
W David Wick
2006-06-01
Full Text Available The first efficacy trials--named STEP--of a T cell vaccine against HIV/AIDS began in 2004. The unprecedented structure of these trials raised new modeling and statistical challenges. Is it plausible that memory T cells, as opposed to antibodies, can actually prevent infection? If they fail at prevention, to what extent can they ameliorate disease? And how do we estimate efficacy in a vaccine trial with two primary endpoints, one traditional, one entirely novel (viral load after infection, and where the latter may be influenced by selection bias due to the former? In preparation for the STEP trials, biostatisticians developed novel techniques for estimating a causal effect of a vaccine on viral load, while accounting for post-randomization selection bias. But these techniques have not been tested in biologically plausible scenarios. We introduce new stochastic models of T cell and HIV kinetics, making use of new estimates of the rate that cytotoxic T lymphocytes--CTLs; the so-called killer T cells--can kill HIV-infected cells. Based on these models, we make the surprising discovery that it is not entirely implausible that HIV-specific CTLs might prevent infection--as the designers explicitly acknowledged when they chose the endpoints of the STEP trials. By simulating thousands of trials, we demonstrate that the new statistical methods can correctly identify an efficacious vaccine, while protecting against a false conclusion that the vaccine exacerbates disease. In addition to uncovering a surprising immunological scenario, our results illustrate the utility of mechanistic modeling in biostatistics.
Causal matrix approach to structural change analysis: an application to Andalusian economy
Manuel Alejandro Cardenete
2011-01-01
Full Text Available The goal of this paper is to study the structural change in the Andalusianeconomy during the period 2000-2005 using social accounting matrices.Although there are several methods, the causative matrix approach has been usedto analyze the above mentioned change. The study has been done using a matrixwith 26 productive sectors and three endogenous accounts, labor income, capitalincome and private consumption. The results show that changes vary from one toanother sector and cause of these may be due to influence of own sector, of rest ofthe sectors or of both.
Adams, R. A.; Bauer, M.; Pinotsis, D; Friston, K J
2016-01-01
This paper shows that it is possible to estimate the subjective precision (inverse variance) of Bayesian beliefs during oculomotor pursuit. Subjects viewed a sinusoidal target, with or without random fluctuations in its motion. Eye trajectories and magnetoencephalographic (MEG) data were recorded concurrently. The target was periodically occluded, such that its reappearance caused a visual evoked response field (ERF). Dynamic causal modelling (DCM) was used to fit models of eye trajectories a...
Mei-Chih Chen
2014-11-01
Full Text Available Many city governments choose to supply more developable land and transportation infrastructure with the hope of attracting people and businesses to their cities. However, like those in Taiwan, major cities worldwide suffer from traffic congestion. This study applies the system thinking logic of the causal loops diagram (CLD model in the System Dynamics (SD approach to analyze the issue of traffic congestion and other issues related to roads and land development in Taiwan’s cities. Comparing the characteristics of development trends with yearbook data for 2002 to 2013 for all of Taiwan’s cities, this study explores the developing phenomenon of unlimited city sprawl and identifies the cause and effect relationships in the characteristics of development trends in traffic congestion, high-density population aggregation in cities, land development, and green land disappearance resulting from city sprawl. This study provides conclusions for Taiwan’s cities’ sustainability and development (S&D. When developing S&D policies, during decision making processes concerning city planning and land use management, governments should think with a holistic view of carrying capacity with the assistance of system thinking to clarify the prejudices in favor of the unlimited developing phenomena resulting from city sprawl.
Causal approach for the electron-positron scattering in Generalized Quantum Electrodynamics
Bufalo, R.; Pimentel, B. M.; Soto, D. E.
2014-01-01
In this paper we study the generalized electrodynamics contribution for the electron-positron scattering process, $e^{-}e^{+}\\rightarrow e^{-}e^{+}$, the Bhabha scattering. Within the framework of the standard model, for energies larger when compared to the electron mass, we calculate the cross section expression for the scattering process. This quantity is usually calculated in the framework of the Maxwell electrodynamics and, by phenomenological reasons, corrected by a cut-off parameter. On...
Beaumelle, Léa; Vile, Denis; Lamy, Isabelle; Vandenbulcke, Franck; Gimbert, Frédéric; Hedde, Mickaël
2016-11-01
Structural equation models (SEM) are increasingly used in ecology as multivariate analysis that can represent theoretical variables and address complex sets of hypotheses. Here we demonstrate the interest of SEM in ecotoxicology, more precisely to test the three-step concept of metal bioavailability to earthworms. The SEM modeled the three-step causal chain between environmental availability, environmental bioavailability and toxicological bioavailability. In the model, each step is an unmeasured (latent) variable reflected by several observed variables. In an exposure experiment designed specifically to test this SEM for Cd, Pb and Zn, Aporrectodea caliginosa was exposed to 31 agricultural field-contaminated soils. Chemical and biological measurements used included CaC12-extractable metal concentrations in soils, free ion concentration in soil solution as predicted by a geochemical model, dissolved metal concentration as predicted by a semi-mechanistic model, internal metal concentrations in total earthworms and in subcellular fractions, and several biomarkers. The observations verified the causal definition of Cd and Pb bioavailability in the SEM, but not for Zn. Several indicators consistently reflected the hypothetical causal definition and could thus be pertinent measurements of Cd and Pb bioavailability to earthworm in field-contaminated soils. SEM highlights that the metals present in the soil solution and easily extractable are not the main source of available metals for earthworms. This study further highlights SEM as a powerful tool that can handle natural ecosystem complexity, thus participating to the paradigm change in ecotoxicology from a bottom-up to a top-down approach. PMID:27378153
Within the new developed causality-in-variance approach, this paper builds up a broad methodological framework to more accurately capture the risk spillover effects between global oil prices and Jordanian stock market returns during the period 1 March 2003–31 January 2014. The sample period is divided, on the basis of the 2008 financial crisis, into pre-crisis and post-crisis periods. Results for the pre-crisis period show a lack of risk spillovers between global oil and the Jordanian stock market. After the crisis, however, we find evidence for one-way risk spillover running from the oil market. These findings have implications for the design of appropriate asset allocation and regulatory policies to manage risk spillover effects. -- Highlights: •A broad methodological framework accurately seizes dynamic risk spillover between oil prices and Jordanian stock returns. •We find insignificant risk spillover until the start of the financial crisis. •Crude oil transmits its risk to the Jordanian stock market
ARTS: A System-Level Framework for Modeling MPSoC Components and Analysis of their Causality
Mahadevan, Shankar; Storgaard, Michael; Madsen, Jan;
2005-01-01
Designing complex heterogeneousmultiprocessor Systemon- Chip (MPSoC) requires support for modeling and analysis of the different layers i.e. application, operating system (OS) and platform architecture. This paper presents an abstract system-level modeling framework, called ARTS, to support the...... MPSoC designers in modeling the different layers and understanding their causalities. While others have developed tools for static analysis and modeled limited correlations (processor-memory or processor-communication), our model captures the impact of dynamic and unpredictable OS behaviour on...... platform for a handheld terminal shows our frameworks co-exploration capabilities....
Rent Seeking and Group Interest on Petroleum Revenue in the Nigerian Economy: a Causality Approach
G.N. Ogbonna
2013-04-01
Full Text Available The study examines rent seeking and group interest on petroleum income and the effect on the Nigerian economy. To achieve the objective of this paper, relevant secondary and primary data were obtained from published scholar works and questionnaires and relevant statistical models were used for analysis. The study reveals that rent seeking and group interest is a fundamental problem affecting the socio-economic and political development of Nigeria with impunity by the political class, the mafia, militants, Boko Haram and oil cabals in order to share in the resource pie as a result of the huge petroleum income accruable to the nation. It does not only penalize or disrupt productive activities, distorts the entire economy and hinders economic growth where significant percent of public funds and oil revenue are diverted into their personal accounts and private pockets. On the basis of this result, the paper concludes that for the huge amount of petroleum income in Nigeria to improve the living standards of the people, the citizens must show a high level of ethical behavior of integrity, honesty and accountability for the level of massive corruption in the country to be minimized for the citizens to benefit from the huge petroleum income in Nigeria.
Causal inference in econometrics
Kreinovich, Vladik; Sriboonchitta, Songsak
2016-01-01
This book is devoted to the analysis of causal inference which is one of the most difficult tasks in data analysis: when two phenomena are observed to be related, it is often difficult to decide whether one of them causally influences the other one, or whether these two phenomena have a common cause. This analysis is the main focus of this volume. To get a good understanding of the causal inference, it is important to have models of economic phenomena which are as accurate as possible. Because of this need, this volume also contains papers that use non-traditional economic models, such as fuzzy models and models obtained by using neural networks and data mining techniques. It also contains papers that apply different econometric models to analyze real-life economic dependencies.
Chi, Do Minh
2001-01-01
We advance a famous principle - causality principle - but under a new view. This principle is a principium automatically leading to most fundamental laws of the nature. It is the inner origin of variation, rules evolutionary processes of things, and the answer of the quest for ultimate theories of the Universe.
Philippe eAlbouy
2015-02-01
Full Text Available Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in Different trials and to its equivalent (original tone in Same trials were compared between groups using Dynamic Causal Modeling (DCM. DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with an increase in Same trials and a decrease in Different trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain.
Liangsuo Ma
2015-01-01
Full Text Available Cocaine dependence is associated with increased impulsivity in humans. Both cocaine dependence and impulsive behavior are under the regulatory control of cortico-striatal networks. One behavioral laboratory measure of impulsivity is response inhibition (ability to withhold a prepotent response in which altered patterns of regional brain activation during executive tasks in service of normal performance are frequently found in cocaine dependent (CD subjects studied with functional magnetic resonance imaging (fMRI. However, little is known about aberrations in specific directional neuronal connectivity in CD subjects. The present study employed fMRI-based dynamic causal modeling (DCM to study the effective (directional neuronal connectivity associated with response inhibition in CD subjects, elicited under performance of a Go/NoGo task with two levels of NoGo difficulty (Easy and Hard. The performance on the Go/NoGo task was not significantly different between CD subjects and controls. The DCM analysis revealed that prefrontal–striatal connectivity was modulated (influenced during the NoGo conditions for both groups. The effective connectivity from left (L anterior cingulate cortex (ACC to L caudate was similarly modulated during the Easy NoGo condition for both groups. During the Hard NoGo condition in controls, the effective connectivity from right (R dorsolateral prefrontal cortex (DLPFC to L caudate became more positive, and the effective connectivity from R ventrolateral prefrontal cortex (VLPFC to L caudate became more negative. In CD subjects, the effective connectivity from L ACC to L caudate became more negative during the Hard NoGo conditions. These results indicate that during Hard NoGo trials in CD subjects, the ACC rather than DLPFC or VLPFC influenced caudate during response inhibition.
Aging into perceptual control: A Dynamic Causal Modeling for fMRI study of bistable perception
Ehsan eDowlati
2016-03-01
Full Text Available Aging is accompanied by stereotyped changes in functional brain activations, for example a cortical shift in activity patterns from posterior to anterior regions is one hallmark revealed by functional magnetic resonance imaging (fMRI of aging cognition. Whether these neuronal effects of aging could potentially contribute to an amelioration of or resistance to the cognitive symptoms associated with psychopathology remains to be explored. We used a visual illusion paradigm to address whether aging affects the cortical control of perceptual beliefs and biases. Our aim was to understand the effective connectivity associated with volitional control of ambiguous visual stimuli and to test whether greater top-down control of early visual networks emerged with advancing age. Using a bias training paradigm for ambiguous images we found that older participants (n = 16 resisted experimenter-induced visual bias compared to a younger cohort (n = 14 and that this resistance was associated with greater activity in prefrontal and temporal cortices. By applying Dynamic Causal Models for fMRI we uncovered a selective recruitment of top-down connections from the middle temporal to lingual gyrus by the older cohort during the perceptual switch decision following bias training. In contrast, our younger cohort did not exhibit any consistent connectivity effects but instead showed a loss of driving inputs to orbitofrontal sources following training. These findings suggest that perceptual beliefs are more readily controlled by top-down strategies in older adults and introduce age-dependent neural mechanisms that may be important for understanding aberrant belief states associated with psychopathology.
Eric Delattre; Richard Moussa
2015-01-01
In order to assess causality between binary economic outcomes, we consider the estimation of a bivariate dynamic probit model on panel data that has the particulary to account the initial conditions of the dynamic process. Due to the untractable form of the likelihood function that is a two dimensions integral, we use an approximation method: the adaptative Gauss-Hermite quadrature method as proposed by Liu and Pierce (1994). For the accuracy of the method and to reduce computing time, we der...
Amiri, Arshia; Gerdtham, Ulf-G
2011-01-01
This paper introduces a new way of investigating linear and nonlinear Granger causality between exports, imports and economic growth in France over the period 1961-2006 with using geostatistical models (kiriging and inverse distance weighting). Geostatistical methods are the ordinary methods for forecasting the locations and making map in water engineerig, environment, environmental pollution, mining, ecology, geology and geography. Although, this is the first time which geostatistics knowle...
Experimental test of nonlocal causality.
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro
2016-08-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045
A Granger causality measure for point process models of ensemble neural spiking activity.
Sanggyun Kim
2011-03-01
Full Text Available The ability to identify directional interactions that occur among multiple neurons in the brain is crucial to an understanding of how groups of neurons cooperate in order to generate specific brain functions. However, an optimal method of assessing these interactions has not been established. Granger causality has proven to be an effective method for the analysis of the directional interactions between multiple sets of continuous-valued data, but cannot be applied to neural spike train recordings due to their discrete nature. This paper proposes a point process framework that enables Granger causality to be applied to point process data such as neural spike trains. The proposed framework uses the point process likelihood function to relate a neuron's spiking probability to possible covariates, such as its own spiking history and the concurrent activity of simultaneously recorded neurons. Granger causality is assessed based on the relative reduction of the point process likelihood of one neuron obtained excluding one of its covariates compared to the likelihood obtained using all of its covariates. The method was tested on simulated data, and then applied to neural activity recorded from the primary motor cortex (MI of a Felis catus subject. The interactions present in the simulated data were predicted with a high degree of accuracy, and when applied to the real neural data, the proposed method identified causal relationships between many of the recorded neurons. This paper proposes a novel method that successfully applies Granger causality to point process data, and has the potential to provide unique physiological insights when applied to neural spike trains.
On the Axioms of Causal Set Theory
Dribus, Benjamin F
2013-01-01
This paper offers suggested improvements to the causal sets program in discrete gravity, which treats spacetime geometry as an emergent manifestation of causal structure at the fundamental scale. This viewpoint, which I refer to as the causal metric hypothesis, is summarized by Rafael Sorkin's phrase, "order plus number equals geometry." Proposed improvements include recognition of a generally nontransitive causal relation more fundamental than the causal order, an improved local picture of causal structure, development and use of relation space methods, and a new background-independent version of the histories approach to quantum theory. Besides causal set theory, \\`a la Bombelli, Lee, Meyer, and Sorkin, this effort draws on Isham's topos-theoretic framework for physics, Sorkin's quantum measure theory, Finkelstein's causal nets, and Grothendieck's structural principles. This approach circumvents undesirable structural features in causal set theory, such as the permeability of maximal antichains, studied by ...
This report details the conceptual approaches to be used in calculating radiation doses to individuals throughout the various periods of operations at the Hanford Site. The report considers the major environmental transport pathways--atmospheric, surface water, and ground water--and projects and appropriate modeling technique for each. The modeling sequence chosen for each pathway depends on the available data on doses, the degree of confidence justified by such existing data, and the level of sophistication deemed appropriate for the particular pathway and time period being considered
We discuss the geometry of trees endowed with a causal structure using the conventional framework of equilibrium statistical mechanics. We show how this ensemble is related to popular growing network models. In particular we demonstrate that on a class of afine attachment kernels the two models are identical but they can differ substantially for other choice of weights. We show that causal trees exhibit condensation even for asymptotically linear kernels. We derive general formulae describing the degree distribution, the ancestor--descendant correlation and the probability that a randomly chosen node lives at a given geodesic distance from the root. It is shown that the Hausdorff dimension dH of the causal networks is generically infinite. (author)
Bialas, Piotr
2003-10-01
We discuss the geometry of trees endowed with a causal structure using the conventional framework of equilibrium statistical mechanics. We show how this ensemble is related to popular growing network models. In particular we demonstrate that on a class of afine attachment kernels the two models are identical but they can differ substantially for other choice of weights. We show that causal trees exhibit condensation even for asymptotically linear kernels. We derive general formulae describing the degree distribution, the ancestor--descendant correlation and the probability that a randomly chosen node lives at a given geodesic distance from the root. It is shown that the Hausdorff dimension dH of the causal networks is generically infinite.
Lazic, Stanley E
2011-01-01
There has been a substantial amount of research on the relationship between hippocampal neurogenesis and behaviour over the past fifteen years, but the causal role that new neurons have on cognitive and affective behavioural tasks is still far from clear. This is partly due to the difficulty of manipulating levels of neurogenesis without inducing off-target effects, which might also influence behaviour. In addition, the analytical methods typically used do not directly test whether neurogenes...
Fuertes Casals, Alba; Casals Casanova, Miquel; Gangolells Solanellas, Marta; Forcada Matheu, Núria; Macarulla Martí, Marcel; Roca Ramon, Xavier
2013-01-01
Despite the increasing efforts made by the construction sector to reduce the environmental impact of their processes, construction sites are still a major source of pollution and adverse impacts on the environment. This paper aims to improve the understanding of construction-related environmental impacts by identifying on-site causal factors and associated immediate circumstances during construc- tion processes for residential building projects. Based on the literature and focus g...
Thanyatorn Amornkitpinyo; Pallop Piriyasurawong
2015-01-01
The objective of this study is to design a framework for a causal relationship model of the Information and Communication Technology skills that affect the Technology Acceptance Process (TAP) for undergraduate students in the 21ST Century. This research uses correlational analysis. A consideration of the research methodology is divided into two sections. The first section involves a synthesis concept framework for process acceptance of the causal relationship model of the Information and Com...
Causality Statistical Perspectives and Applications
Berzuini, Carlo; Bernardinell, Luisa
2012-01-01
A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book:Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addr
Pitts, J. Brian; Schieve, W. C.
2004-01-01
Recently the neglected issue of the causal structure in the flat spacetime approach to Einstein's theory of gravity has been substantially resolved. Consistency requires that the flat metric's null cone be respected by the null cone of the effective curved metric. While consistency is not automatic, thoughtful use of the naive gauge freedom resolves the problem. After briefly recapitulating how consistent causality is achieved, we consider the flat Robertson-Walker Big Bang model. The Big Ban...
Levine, Judith A.; Pollack, Harold
This study used linked maternal-child data from the 1997-1998 National Longitudinal Survey of Youth to explore the wellbeing of children born to teenage mothers. Two econometric techniques explored the causal impact of early childbearing on subsequent child and adolescent outcomes. First, a fixed-effect, cousin-comparison analysis controlled for…
A New Life-Span Approach to Conscientiousness and Health: Combining the Pieces of the Causal Puzzle
Friedman, Howard S.; Kern, Margaret L.; Hampson, Sarah E.; Duckworth, Angela Lee
2014-01-01
Conscientiousness has been shown to predict healthy behaviors, healthy social relationships, and physical health and longevity. The causal links, however, are complex and not well elaborated. Many extant studies have used comparable measures for conscientiousness, and a systematic endeavor to build cross-study analyses for conscientiousness and…
Normalizability analysis of the generalized quantum electrodynamics from the causal point of view
Bufalo, R.; Pimentel, B. M.; Soto, D. E.
2015-01-01
The causal perturbation theory is an axiomatic perturbative theory of the S-matrix. This formalism has as its essence the following axioms: causality, Lorentz invariance and asymptotic conditions. Any other property must be showed via the inductive method order-by-order and, of course, it depends on the particular physical model. In this work we shall study the normalizability of the generalized quantum electrodynamics in the framework of the causal approach. Furthermore, we analyse the impli...
Maksim eSharaev
2016-02-01
Full Text Available The Default Mode Network (DMN is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of BOLD (Blood-oxygen-level dependent activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e. effective connectivity, however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex mPFC, the posterior cingulate cortex PCC, left and right intraparietal cortex LIPC and RIPC. For this purpose fMRI (functional magnetic resonance imaging data from 30 healthy subjects (1000 time points from each one was acquired and spectral dynamic causal modeling (DCM on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078–0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p<0.05. Connections between mPFC and PCC are bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain’s functioning at resting state.
Towards the Accuracy of Cybernetic Strategy Planning Models: Causal Proof and Function Approximation
Christian A. Hillbrand
2003-04-01
Full Text Available All kind of strategic tasks within an enterprise require a deep understanding of its critical key success factors and their interrelations as well as an in-depth analysis of relevant environmental influences. Due to the openness of the underlying system, there seems to be an indefinite number of unknown variables influencing strategic goals. Cybernetic or systemic planning techniques try to overcome this intricacy by modeling the most important cause-and-effect relations within such a system. Although it seems to be obvious that there are specific influences between business variables, it is mostly impossible to identify the functional dependencies underlying such relations. Hence simulation or evaluation techniques based on such hypothetically assumed models deliver inaccurate results or fail completely. This paper addresses the need for accurate strategy planning models and proposes an approach to prove their cause-andeffect relations by empirical evidence. Based on this foundation an approach for the approximation of the underlying cause-andeffect function by the means of Artificial Neural Networks is developed.
Zigzagging causality EPR model: answer to Vigier and coworkers and to Sutherland
The concept of propagation in time of Vigier and co-workers (V et al.) implies the ideal of a supertime; it is thus alien to most Minkowskian pictures and certainly to the authors. From this stems much of V et al.'s misunderstandings of his position. In steady motion of a classical fluid nobody thinks that momentum conservation is violated, or that momentum is shot upstream without cause because of the suction from the sinks. Similarly with momentum-energy in spacetime and the acceptance of an advanced causality. As for the CT invariance of the Feynman propagator, the causality asymmetry it entails is factlike, not lawlike. The geometrical counterpart of the symmetry between prediction and retrodiction and between retarded and advanced waves, as expressed in the alternative expressions = = for a transition amplitude between a preparation lt. slashA> and a measurement lt. slashB>, is CPT-invariant, not PT-invariant. These three expressions respectively illustrate the collapse, the retrocollapse, and the symmetric collapse-and-retrocollapse concepts. As for Sutherland's argument, what it falsifies is not the authors retrocausation concept but the hidden-variables assumption he has unwittingly made
For those who run an organization, it is critical to identify the causal relationship between the organization's characteristics and the safety-checking action of its staff, in order to effectively implement activities for promoting safety. In this research. a causal model of the safety-checking action was developed and factors affecting it were studied. A questionnaire survey, which includes safety awareness, attitude toward safety, safety culture and others, was conducted at three nuclear power plants and eight factors were extracted by means of factor analysis of the questionnaire items. The extracted eight interrelated factors were as follows: work norm, supervisory action, interest in training, recognition of importance, safety-checking action, the subject of safety, knowledge/skills, and the attitude of an organization. Among them, seven factors except the recognition of importance were defined as latent variables and a causal model of safety-checking action was constructed. By means of covariance structure analysis, it was found that the three factors: the attitude of an organization, supervisory action and the subject of safety, have a significant effect on the safety-checking action. Moreover, it was also studied that workplaces in which these three factors are highly regarded form social environment where safety-checking action is fully supported by the workplace as a whole, while workplaces in which these three factors are poorly regarded do not fully form social environment where safety-checking action is supported. Therefore, the workplaces form an organizational environment where safety-checking action tends to depend strongly upon the knowledge or skills of individuals. On top of these, it was noted that the attitude of an organization and supervisory action are important factors that serve as the first trigger affecting the formation of the organizational climate for safety. (author)
Christopher L Plaisier
2009-09-01
Full Text Available We hypothesized that a common SNP in the 3' untranslated region of the upstream transcription factor 1 (USF1, rs3737787, may affect lipid traits by influencing gene expression levels, and we investigated this possibility utilizing the Mexican population, which has a high predisposition to dyslipidemia. We first associated rs3737787 genotypes in Mexican Familial Combined Hyperlipidemia (FCHL case/control fat biopsies, with global expression patterns. To identify sets of co-expressed genes co-regulated by similar factors such as transcription factors, genetic variants, or environmental effects, we utilized weighted gene co-expression network analysis (WGCNA. Through WGCNA in the Mexican FCHL fat biopsies we identified two significant Triglyceride (TG-associated co-expression modules. One of these modules was also associated with FCHL, the other FCHL component traits, and rs3737787 genotypes. This USF1-regulated FCHL-associated (URFA module was enriched for genes involved in lipid metabolic processes. Using systems genetics procedures we identified 18 causal candidate genes in the URFA module. The FCHL causal candidate gene fatty acid desaturase 3 (FADS3 was associated with TGs in a recent Caucasian genome-wide significant association study and we replicated this association in Mexican FCHL families. Based on a USF1-regulated FCHL-associated co-expression module and SNP rs3737787, we identify a set of causal candidate genes for FCHL-related traits. We then provide evidence from two independent datasets supporting FADS3 as a causal gene for FCHL and elevated TGs in Mexicans.
From meta-omics to causality: experimental models for human microbiome research.
Fritz, Joëlle V; Desai, Mahesh S; Shah, Pranjul; Schneider, Jochen G; Wilmes, Paul
2013-01-01
Large-scale 'meta-omic' projects are greatly advancing our knowledge of the human microbiome and its specific role in governing health and disease states. A myriad of ongoing studies aim at identifying links between microbial community disequilibria (dysbiosis) and human diseases. However, due to the inherent complexity and heterogeneity of the human microbiome, cross-sectional, case-control and longitudinal studies may not have enough statistical power to allow causation to be deduced from patterns of association between variables in high-resolution omic datasets. Therefore, to move beyond reliance on the empirical method, experiments are critical. For these, robust experimental models are required that allow the systematic manipulation of variables to test the multitude of hypotheses, which arise from high-throughput molecular studies. Particularly promising in this respect are microfluidics-based in vitro co-culture systems, which allow high-throughput first-pass experiments aimed at proving cause-and-effect relationships prior to testing of hypotheses in animal models. This review focuses on widely used in vivo, in vitro, ex vivo and in silico approaches to study host-microbial community interactions. Such systems, either used in isolation or in a combinatory experimental approach, will allow systematic investigations of the impact of microbes on the health and disease of the human host. All the currently available models present pros and cons, which are described and discussed. Moreover, suggestions are made on how to develop future experimental models that not only allow the study of host-microbiota interactions but are also amenable to high-throughput experimentation. PMID:24450613
Modelling approaches for angiogenesis.
Taraboletti, G; Giavazzi, R
2004-04-01
The development of a functional vasculature within a tumour is a requisite for its growth and progression. This fact has led to the design of therapies directed toward the tumour vasculature, aiming either to prevent the formation of new vessels (anti-angiogenic) or to damage existing vessels (vascular targeting). The development of agents with different mechanisms of action requires powerful preclinical models for the analysis and optimization of these therapies. This review concerns 'classical' assays of angiogenesis in vitro and in vivo, recent approaches to target identification (analysis of gene and protein expression), and the study of morphological and functional changes in the vasculature in vivo (imaging techniques). It mainly describes assays designed for anti-angiogenic compounds, indicating, where possible, their application to the study of vascular-targeting agents. PMID:15120043
The aim of the paper is to assess linkages between energy consumption and economic growth in the light of compliance with the EU energy policy targets stated in the climate and energy package for 2020 in the European Union member states in the period 1993–2011. The study is divided into two main stages. During the first one, using cluster analysis methods, four groups of countries which met three energy policy targets stated in the package at similar levels were identified. During the second stage, the bootstrap Granger panel causality approach proposed by Kònya (2006) was used to verify the hypothesis of causality between energy consumption and economic growth in the countries from four groups created in the previous step. The global financial crisis was also taken into account. The results obtained reveal that the level of compliance with energy policy targets influences linkages between energy consumption and economic growth. The results indicate causal relations in the group of countries with the greatest reduction of greenhouse gas emissions, the highest reduction of energy intensity and the highest share of renewable energy consumption in total energy consumption. In the remaining groups the results mostly confirm the neutrality hypothesis. - Highlights: • Four groups of EU countries which meet energy policy targets at similar levels were identified. • Energy-growth nexus depends on the level of compliance with energy policy targets. • Most EU countries confirm the neutrality hypothesis. • Countries which meet energy policy targets best confirm remaining hypothesis
Thanyatorn Amornkitpinyo
2015-02-01
Full Text Available The objective of this study is to design a framework for a causal relationship model of the Information and Communication Technology skills that affect the Technology Acceptance Process (TAP for undergraduate students in the 21ST Century. This research uses correlational analysis. A consideration of the research methodology is divided into two sections. The first section involves a synthesis concept framework for process acceptance of the causal relationship model of the Information and Communication Technology skills that affect the Technology Acceptance Process for undergraduate students in the 21ST Century. The second section proposes the design concept framework of the model. The research findings are as follows: 1 The exogenous latent variables included in the causal relationship model of the Information and Communication Technology skills that affect the Technology Acceptance Process for undergraduate students in the 21ST Century are basic ICT skills and self-efficacy. 2 The mediating latent variables of the causal relationship model of the Information and Communication Technology skills that affect the Technology Acceptance Process for undergraduate students in the 21ST Century are from the TAM Model, these includes three components: 1 perceived usefulness, 2 perceived ease of use and 3 attitudes. 3 The outcome latent variable of the causal relationship model of the Information and Communication Technology skills that affect the Technology Acceptance Process for undergraduate students in the 21ST Century is behavioural intention.
Representing Personal Determinants in Causal Structures.
Bandura, Albert
1984-01-01
Responds to Staddon's critique of the author's earlier article and addresses issues raised by Staddon's (1984) alternative models of causality. The author argues that it is not the formalizability of causal processes that is the issue but whether cognitive determinants of behavior are reducible to past stimulus inputs in causal structures.…
Expectations and Interpretations during Causal Learning
Luhmann, Christian C.; Ahn, Woo-kyoung
2011-01-01
In existing models of causal induction, 4 types of covariation information (i.e., presence/absence of an event followed by presence/absence of another event) always exert identical influences on causal strength judgments (e.g., joint presence of events always suggests a generative causal relationship). In contrast, we suggest that, due to…
Re-assessing causal accounts of learnt behavior in rats.
Burgess, K V; Dwyer, D M; Honey, R C
2012-04-01
Rats received either a common-cause (i.e., A→B, A→food) or a causal-chain training scenario (i.e., B→A, A→food) before their tendency to approach the food magazine during the presentation of B was assessed as a function of whether it was preceded by a potential alternative cause. Causal model theory predicts that the influence of an alternative cause should be restricted to the common-cause scenario. In Experiment 1, responding to B was reduced when it occurred after pressing a novel lever during the test phase. This effect was not influenced by the type of training scenario. In Experiment 2, rats were familiarized with the lever prior to test by training it as a potential cause of B. After this treatment, the lever now failed to influence test responding to B. In Experiment 3, rats given common-cause training responded more to B when it followed a cue that had previously been trained as a predictor of B, than when it followed another stimulus. This effect was not apparent in rats that received causal-chain training. This pattern of results is the opposite of that predicted by causal model theory. Thus, in three experiments, the presence of an alternative cause failed to influence test responding in manner consistent with causal model theory. These results undermine the application of causal model theory to rats, but are consistent with associative analyses. PMID:22486754
Plotnikov V. V.
2015-11-01
Full Text Available This article represents experience of a reflection over theoretical prerequisites of phenomenological and system approaches to a problem of forecasting of social reality. An object of research are the principle of multidimensionality of social reality in aspect of a determinism and indeterminism of social processes, and also the principle of causal asymmetry of time acting as the ontologic basis of multidimensionality of reality. It is claimed, that at the heart of statement of the major philosophical problems there is an experience of a touch to a phenomenon of multidimensionality of reality. Multidimensionality of reality is shown as a dependence of fundamental characteristics on the level of theoretical generalization and an intentionality of the consciousness registering reality in its existence. The hypothesis of multidimensionality of social reality assumes that social processes can be described and as strictly determined, predicted and as depending on a free will of the person depending on the level of theoretical generalization at which they are considered. The principle of causal asymmetry of time is a form of multidimensionality of time and a condition of multidimensionality of process, including social. At the heart of causal asymmetry of time, there is a systemacity of time, not reducibility of time neither to consciousness, nor to life. It is shown that is impossible differently as through the synthesizing activity of consciousness, to connect together two senses, equally directly related at the right time: duration keeping time in some equal unity of the moments and the variability, change of times expressing ontologic exclusiveness of the present moment. Multidimensionality and asymmetry of time can be considered as theoretical prerequisites of phenomenological and system approach to a problem of social forecasting
Truman, G. E.
2009-01-01
Behaviour modelling has been associated with higher learning outcomes compared to other training approaches. These cumulative research findings create imperative to examine underlying causal mechanisms or contingency factors that may promote behaviour modelling's advantages even further. We propose group-based learning as one contingency factor…
Detection of motor changes in Huntington’s disease using dynamic causal modeling
Lora Minkova
2015-11-01
Seventy-seven healthy controls, 62 pre-symptomatic HD gene carriers (preHD, and 16 patients with manifest HD symptoms (earlyHD performed a motor finger tapping fMRI task with systematically varying speed and complexity. DCM was used to assess the causal interactions among seven pre-defined regions of interest, comprising primary motor cortex, supplementary motor area (SMA, dorsal premotor cortex, and superior parietal cortex. To capture heterogeneity among HD gene carriers, DCM parameters were entered into a hierarchical cluster analysis using Ward’s method and squared Euclidian distance as a measure of similarity. After applying Bonferroni correction for the number of tests, DCM analysis revealed a group difference that was not present in the conventional fMRI analysis. We found an inhibitory effect of complexity on the connection from parietal to premotor areas in preHD, which became excitatory in earlyHD and correlated with putamen atrophy. While speed of finger movements did not modulate the connection from caudal to pre-SMA in controls and preHD, this connection became strongly negative in earlyHD. This second effect did not survive correction for multiple comparisons. Hierarchical clustering separated the gene mutation carriers into three clusters which also differed significantly among these two connections and thereby confirmed their relevance. DCM proved useful in identifying group differences that would have remained undetected by standard analyses and may aid in the investigation of between-subject heterogeneity.
Haase, D.
2009-04-01
Participation processes play a crucial role in implementing adaptive management in river basins. A range of different participative methods is being applied, however, little is known on their effectiveness in addressing the specific question or policy process at stake and their performance in different socio-economic and cultural settings. To shed light on the role of cultural settings on the outcomes of a participative process we carried out a comparative study of participation processes using group model building (GMB) in a European, a Central Asian, and an African river basin. We use an analytical framework which covers the goals, the role of science and stakeholders, the initiation and methods of the processes framed by very different cultural, socio-economic and biophysical conditions. Across all three basins, the GMB processes produced a shared understanding among all participants of the major water management issues in the respective river basin and common approaches to address them. The "ownership of the ideas" by the stakeholders, i.e. the topic to be addressed in a GMB process, is important for their willingness to contribute to such a participatory process. Differences, however, exist in so far that cultural and contextual constraints of the basin drive the way the GMB processes have been designed and how their results contribute to policy development.
The problem of causality in cultivation research
Rossmann, Constanze; Brosius, Hans-Bernd
2004-01-01
This paper offers an up-to-date review of problems in determining causal relationships in cultivation research, and considers the research rationales of various approaches with special reference to causal interpretation. It describes in turn a number of methodologies for addressing the problem and resolving it as far as this is possible. The issue of causal inference arises not only in cultivation research, however, but is basic to all media effects theories and approaches primarily at the ma...
Luo, Fei; Timler, Geralyn R
2008-01-01
Studies suggest that the oral narratives of children with attention deficit hyperactivity disorder (ADHD) are less organized than those of typically developing peers. Many studies, however, do not account for children's language abilities. Because language impairment (LI) is a frequent comorbid condition in children with ADHD, this exploratory study investigated language abilities and narrative organization skills in children with and without ADHD. Narratives were elicited using the picture-sequence task and the single-picture task from the Test of Narrative Language (Gillam & Pearson, 2004). The causal network model (Trabasso, Van den Broek, & Suh, 1989) was applied to analyse the narratives. Specifically, narratives were examined to identify complete and incomplete superordinate and subordinate Goal-Attempt-Outcome (GAO) units. The results revealed no differences among the groups in the picture-sequence task. Children with ADHD+LI produced significantly fewer complete superordinate GAO units than typical children in the single-picture task. Theoretical and clinical implications are discussed. PMID:18092218
The Visual Causality Analyst: An Interactive Interface for Causal Reasoning.
Wang, Jun; Mueller, Klaus
2016-01-01
Uncovering the causal relations that exist among variables in multivariate datasets is one of the ultimate goals in data analytics. Causation is related to correlation but correlation does not imply causation. While a number of casual discovery algorithms have been devised that eliminate spurious correlations from a network, there are no guarantees that all of the inferred causations are indeed true. Hence, bringing a domain expert into the casual reasoning loop can be of great benefit in identifying erroneous casual relationships suggested by the discovery algorithm. To address this need we present the Visual Causal Analyst-a novel visual causal reasoning framework that allows users to apply their expertise, verify and edit causal links, and collaborate with the causal discovery algorithm to identify a valid causal network. Its interface consists of both an interactive 2D graph view and a numerical presentation of salient statistical parameters, such as regression coefficients, p-values, and others. Both help users in gaining a good understanding of the landscape of causal structures particularly when the number of variables is large. Our framework is also novel in that it can handle both numerical and categorical variables within one unified model and return plausible results. We demonstrate its use via a set of case studies using multiple practical datasets. PMID:26529703
Youssofzadeh, Vahab; Prasad, Girijesh; Naeem, Muhammad; Wong-Lin, KongFatt
2016-01-01
Partial Granger causality (PGC) has been applied to analyse causal functional neural connectivity after effectively mitigating confounding influences caused by endogenous latent variables and exogenous environmental inputs. However, it is not known how this connectivity obtained from PGC evolves over time. Furthermore, PGC has yet to be tested on realistic nonlinear neural circuit models and multi-trial event-related potentials (ERPs) data. In this work, we first applied a time-domain PGC technique to evaluate simulated neural circuit models, and demonstrated that the PGC measure is more accurate and robust in detecting connectivity patterns as compared to conditional Granger causality and partial directed coherence, especially when the circuit is intrinsically nonlinear. Moreover, the connectivity in PGC settles faster into a stable and correct configuration over time. After method verification, we applied PGC to reveal the causal connections of ERP trials of a mismatch negativity auditory oddball paradigm. The PGC analysis revealed a significant bilateral but asymmetrical localised activity in the temporal lobe close to the auditory cortex, and causal influences in the frontal, parietal and cingulate cortical areas, consistent with previous studies. Interestingly, the time to reach a stable connectivity configuration (~250–300 ms) coincides with the deviation of ensemble ERPs of oddball from standard tones. Finally, using a sliding time window, we showed higher resolution dynamics of causal connectivity within an ERP trial. In summary, time-domain PGC is promising in deciphering directed functional connectivity in nonlinear and ERP trials accurately, and at a sufficiently early stage. This data-driven approach can reduce computational time, and determine the key architecture for neural circuit modeling. PMID:26470866
Classical planning and causal implicatures
Blackburn, Patrick Rowan; Benotti, Luciana
In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important for...... generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate the...
Bram eTucker
2015-10-01
Full Text Available A fact of life for farmers, hunter-gatherers, and fishermen in the rural parts of the world are that crops fail, wild resources become scarce, and winds discourage fishing. In this article we approach subsistence risk from the perspective of coexistence thinking, the simultaneous application of natural and supernatural causal models to explain subsistence success and failure. In southwestern Madagascar, the ecological world is characterized by extreme variability and unpredictability, and the cosmological world is characterized by anxiety about supernatural dangers. Ecological and cosmological causes seem to point to different risk minimizing strategies: to avoid losses from drought, flood, or heavy winds, one should diversify activities and be flexible; but to avoid losses caused by disrespected spirits one should narrow one's range of behaviors to follow the code of taboos and offerings. We address this paradox by investigating whether southwestern Malagasy understand natural and supernatural causes as occupying separate, contradictory explanatory systems (target dependence, whether they make no categorical distinction between natural and supernatural forces and combine them within a single explanatory system (synthetic thinking, or whether they have separate natural and supernatural categories of causes that are integrated into one explanatory system so that supernatural forces drive natural forces (integrative thinking. Results from three field studies suggest that (a informants explain why crops, prey, and market activities succeed or fail with reference to natural causal forces like rainfall and pests, (b they explain why individual persons experience success or failure primarily with supernatural factors like God and ancestors, and (c they understand supernatural forces as driving natural forces, so that ecology and cosmology represent distinct sets of causes within a single explanatory framework. We expect that future cross
Tucker, Bram; Tsiazonera; Tombo, Jaovola; Hajasoa, Patricia; Nagnisaha, Charlotte
2015-01-01
A fact of life for farmers, hunter-gatherers, and fishermen in the rural parts of the world are that crops fail, wild resources become scarce, and winds discourage fishing. In this article we approach subsistence risk from the perspective of "coexistence thinking," the simultaneous application of natural and supernatural causal models to explain subsistence success and failure. In southwestern Madagascar, the ecological world is characterized by extreme variability and unpredictability, and the cosmological world is characterized by anxiety about supernatural dangers. Ecological and cosmological causes seem to point to different risk minimizing strategies: to avoid losses from drought, flood, or heavy winds, one should diversify activities and be flexible; but to avoid losses caused by disrespected spirits one should narrow one's range of behaviors to follow the code of taboos and offerings. We address this paradox by investigating whether southwestern Malagasy understand natural and supernatural causes as occupying separate, contradictory explanatory systems (target dependence), whether they make no categorical distinction between natural and supernatural forces and combine them within a single explanatory system (synthetic thinking), or whether they have separate natural and supernatural categories of causes that are integrated into one explanatory system so that supernatural forces drive natural forces (integrative thinking). Results from three field studies suggest that (a) informants explain why crops, prey, and market activities succeed or fail with reference to natural causal forces like rainfall and pests, (b) they explain why individual persons experience success or failure primarily with supernatural factors like God and ancestors, and (c) they understand supernatural forces as driving natural forces, so that ecology and cosmology represent distinct sets of causes within a single explanatory framework. We expect that future cross-cultural analyses may
Cohomology Methods in Causal Perturbation Theory
Various problems in perturbation theory of (quantum) gauge models can be rephrased in the language of cohomology theory. This was already noticed in the functional formulation of perturbative gauge theories. Causal perturbation theory is a fully quantum approach: is works only with the chronological products which are defined as operator-valued distributions in the Fock space of the model. The use of causal perturbation theory leads to similar cohomology problems; the main difference with respect to the functional methods comes from the fact that the gauge transformation of the causal approach is, essentially, the linear part of the non-linear BRST transformation.Using these methods it is possible to give a nice determination of the interaction Lagrangians for gauge models (Yang-Mills and gravitation in the linear approximation); one obtains with this method the unicity of the interaction Lagrangian up to trivial terms. The case of quantum gravity is highly non-trivial and can be generalized with this method to the massive graviton case. Going to higher orders of perturbation theory one finds quantum anomalies. Again the cohomological methods can be used to determine the generic form of these anomalies. Finally, one can investigate the arbitrariness of the chronological products in higher orders and reduce this problem to cohomology methods also.
When two become one: the limits of causality analysis of brain dynamics.
Daniel Chicharro
Full Text Available Biological systems often consist of multiple interacting subsystems, the brain being a prominent example. To understand the functions of such systems it is important to analyze if and how the subsystems interact and to describe the effect of these interactions. In this work we investigate the extent to which the cause-and-effect framework is applicable to such interacting subsystems. We base our work on a standard notion of causal effects and define a new concept called natural causal effect. This new concept takes into account that when studying interactions in biological systems, one is often not interested in the effect of perturbations that alter the dynamics. The interest is instead in how the causal connections participate in the generation of the observed natural dynamics. We identify the constraints on the structure of the causal connections that determine the existence of natural causal effects. In particular, we show that the influence of the causal connections on the natural dynamics of the system often cannot be analyzed in terms of the causal effect of one subsystem on another. Only when the causing subsystem is autonomous with respect to the rest can this interpretation be made. We note that subsystems in the brain are often bidirectionally connected, which means that interactions rarely should be quantified in terms of cause-and-effect. We furthermore introduce a framework for how natural causal effects can be characterized when they exist. Our work also has important consequences for the interpretation of other approaches commonly applied to study causality in the brain. Specifically, we discuss how the notion of natural causal effects can be combined with Granger causality and Dynamic Causal Modeling (DCM. Our results are generic and the concept of natural causal effects is relevant in all areas where the effects of interactions between subsystems are of interest.
Inferring causal molecular networks: empirical assessment through a community-based effort.
Hill, Steven M; Heiser, Laura M; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K; Carlin, Daniel E; Zhang, Yang; Sokolov, Artem; Paull, Evan O; Wong, Chris K; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V; Favorov, Alexander V; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W; Long, Byron L; Noren, David P; Bisberg, Alexander J; Mills, Gordon B; Gray, Joe W; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A; Fertig, Elana J; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M; Spellman, Paul T; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach
2016-04-01
It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense. PMID:26901648
Wu, Guo Rong; Chen, Fuyong; Kang, Dezhi; Zhang, Xiangyang; Marinazzo, Daniele; Chen, Huafu
2011-11-01
Multivariate Granger causality is a well-established approach for inferring information flow in complex systems, and it is being increasingly applied to map brain connectivity. Traditional Granger causality is based on vector autoregressive (AR) or mixed autoregressive moving average (ARMA) model, which are potentially affected by errors in parameter estimation and may be contaminated by zero-lag correlation, notably when modeling neuroimaging data. To overcome this issue, we present here an extended canonical correlation approach to measure multivariate Granger causal interactions among time series. The procedure includes a reduced rank step for calculating canonical correlation analysis (CCA), and extends the definition of causality including instantaneous effects, thus avoiding the potential estimation problems of AR (or ARMA) models. We tested this approach on simulated data and confirmed its practical utility by exploring local network connectivity at different scales in the epileptic brain analyzing scalp and depth-EEG data during an interictal period. PMID:21788178
Yamamoto, Teppei; Imai, Kosuke
2013-01-01
Social scientists are often interested in testing multiple causal mechanisms through which a treatment affects outcomes. A predominant approach has been to use linear structural equation models and examine the statistical significance of the corresponding path coefficients. However, this approach implicitly assumes that the multiple mechanisms are causally independent of one another. In this article, we consider a set of alternative assumptions that are sufficient to identify the average caus...
Frisch, Mathias
2014-01-01
Much has been written on the role of causal notions and causal reasoning in the so-called 'special sciences' and in common sense. But does causal reasoning also play a role in physics? Mathias Frisch argues that, contrary to what influential philosophical arguments purport to show, the answer is yes. Time-asymmetric causal structures are as integral a part of the representational toolkit of physics as a theory's dynamical equations. Frisch develops his argument partly through a critique of anti-causal arguments and partly through a detailed examination of actual examples of causal notions in physics, including causal principles invoked in linear response theory and in representations of radiation phenomena. Offering a new perspective on the nature of scientific theories and causal reasoning, this book will be of interest to professional philosophers, graduate students, and anyone interested in the role of causal thinking in science.
Material Modelling - Composite Approach
Nielsen, Lauge Fuglsang
1997-01-01
such as introduced by eigenstrain/stress actions like shrinkage, temperature, and alkali-aggregate reactions.Based on the overall positive results reported it is suggested that creep functions needed in Finite Element Analysis (FEM-analysis) of structures can be established from computer-simulated experiments based......, and internal stresses caused by drying shrinkage with experimental results reported in the literature on the mechanical behavior of mature concretes. It is then concluded that the model presented applied in general with respect to age at loading.From a stress analysis point of view the most important finding...
Adams, Rick A; Bauer, Markus; Pinotsis, Dimitris; Friston, Karl J
2016-05-15
This paper shows that it is possible to estimate the subjective precision (inverse variance) of Bayesian beliefs during oculomotor pursuit. Subjects viewed a sinusoidal target, with or without random fluctuations in its motion. Eye trajectories and magnetoencephalographic (MEG) data were recorded concurrently. The target was periodically occluded, such that its reappearance caused a visual evoked response field (ERF). Dynamic causal modelling (DCM) was used to fit models of eye trajectories and the ERFs. The DCM for pursuit was based on predictive coding and active inference, and predicts subjects' eye movements based on their (subjective) Bayesian beliefs about target (and eye) motion. The precisions of these hierarchical beliefs can be inferred from behavioural (pursuit) data. The DCM for MEG data used an established biophysical model of neuronal activity that includes parameters for the gain of superficial pyramidal cells, which is thought to encode precision at the neuronal level. Previous studies (using DCM of pursuit data) suggest that noisy target motion increases subjective precision at the sensory level: i.e., subjects attend more to the target's sensory attributes. We compared (noisy motion-induced) changes in the synaptic gain based on the modelling of MEG data to changes in subjective precision estimated using the pursuit data. We demonstrate that imprecise target motion increases the gain of superficial pyramidal cells in V1 (across subjects). Furthermore, increases in sensory precision - inferred by our behavioural DCM - correlate with the increase in gain in V1, across subjects. This is a step towards a fully integrated model of brain computations, cortical responses and behaviour that may provide a useful clinical tool in conditions like schizophrenia. PMID:26921713
Adams, Rick A.; Bauer, Markus; Pinotsis, Dimitris; Friston, Karl J.
2016-01-01
This paper shows that it is possible to estimate the subjective precision (inverse variance) of Bayesian beliefs during oculomotor pursuit. Subjects viewed a sinusoidal target, with or without random fluctuations in its motion. Eye trajectories and magnetoencephalographic (MEG) data were recorded concurrently. The target was periodically occluded, such that its reappearance caused a visual evoked response field (ERF). Dynamic causal modelling (DCM) was used to fit models of eye trajectories and the ERFs. The DCM for pursuit was based on predictive coding and active inference, and predicts subjects' eye movements based on their (subjective) Bayesian beliefs about target (and eye) motion. The precisions of these hierarchical beliefs can be inferred from behavioural (pursuit) data. The DCM for MEG data used an established biophysical model of neuronal activity that includes parameters for the gain of superficial pyramidal cells, which is thought to encode precision at the neuronal level. Previous studies (using DCM of pursuit data) suggest that noisy target motion increases subjective precision at the sensory level: i.e., subjects attend more to the target's sensory attributes. We compared (noisy motion-induced) changes in the synaptic gain based on the modelling of MEG data to changes in subjective precision estimated using the pursuit data. We demonstrate that imprecise target motion increases the gain of superficial pyramidal cells in V1 (across subjects). Furthermore, increases in sensory precision – inferred by our behavioural DCM – correlate with the increase in gain in V1, across subjects. This is a step towards a fully integrated model of brain computations, cortical responses and behaviour that may provide a useful clinical tool in conditions like schizophrenia. PMID:26921713
Causal Client Models in Selecting Effective Interventions: A Cognitive Mapping Study
de Kwaadsteniet, Leontien; Hagmayer, York; Krol, Nicole P. C. M.; Witteman, Cilia L. M.
2010-01-01
An important reason to choose an intervention to treat psychological problems of clients is the expectation that the intervention will be effective in alleviating the problems. The authors investigated whether clinicians base their ratings of the effectiveness of interventions on models that they construct representing the factors causing and…
Rindermann, H.; Neubauer, A. C.
2004-01-01
According to mental speed theory of intelligence, the speed of information processing constitutes an important basis for cognitive abilities. However, the question, how mental speed relates to real world criteria, like school, academic, or job performance, is still unanswered. The aim of the study is to test an indirect speed-factor model in…
Explaining prosocial intentions : Testing causal relationships in the norm activation model
Steg, Linda; de Groot, Judith
2010-01-01
This paper examines factors influencing prosocial intentions. On the basis of the norm activation model (NAM), we propose that four variables influence prosocial intentions or behaviours: ( I) personal norms (PN), reflecting feelings of moral obligation to engage in prosocial behaviour, (2) awarenes
Residential Segregation of Blacks and Racial Inequality in Southern Cities: Toward a Causal Model.
Roof, W. Clark
This study explores how residential segregation can be thought of in terms of an economic competition theory of minority-group relations. The model proposed is considered applicable to the American South, and with some modification, relevant to other settings. The objectives are: (1) to show that residential segregation indices are related to…
Measurement Context Effects in Telephone-Survey-Based Tests of Causal Models
Agarwal Sanjeev; Teas R. Kenneth
2005-01-01
The purpose of this research is to examine the issue of measurement context effects in survey-based tests of attitudinal and related models. The specific issue examined concerns the degree to which the measurement process affects the objects of measurement (i.e., various attitudinal and related concepts). Based upon the memory accessibility-diagnosticity theory specified by Feldman and Lynch (1988) and the concept of spreading activation (Tourangeau and Rasinski 1988; Anderson 1978, 1983; Col...
Normalizability analysis of the generalized quantum electrodynamics from the causal point of view
Bufalo, R; Soto, D E
2015-01-01
The causal perturbation theory is an axiomatic perturbative theory of the S-matrix. This formalism has as its essence the following axioms: causality, Lorentz invariance and asymptotic conditions. Any other property must be showed via the inductive method order-by-order and, of course, it depends on the particular physical model. In this work we shall study the normalizability of the generalized quantum electrodynamics in the framework of the causal approach. Furthermore, we analyse the implication of the gauge invariance onto the model and obtain the respective Ward-Takahashi-Fradkin identities.