Catastrophic regime shifts in model ecological communities are true phase transitions
Ecosystems often undergo abrupt regime shifts in response to gradual external changes. These shifts are theoretically understood as a regime switch between alternative stable states of the ecosystem dynamical response to smooth changes in external conditions. Usual models introduce nonlinearities in the macroscopic dynamics of the ecosystem that lead to different stable attractors among which the shift takes place. Here we propose an alternative explanation of catastrophic regime shifts based on a recent model that pictures ecological communities as systems in continuous fluctuation, according to certain transition probabilities, between different micro-states in the phase space of viable communities. We introduce a spontaneous extinction rate that accounts for gradual changes in external conditions, and upon variations on this control parameter the system undergoes a regime shift with similar features to those previously reported. Under our microscopic viewpoint we recover the main results obtained in previous theoretical and empirical work (anomalous variance, hysteresis cycles, trophic cascades). The model predicts a gradual loss of species in trophic levels from bottom to top near the transition. But more importantly, the spectral analysis of the transition probability matrix allows us to rigorously establish that we are observing the fingerprints, in a finite size system, of a true phase transition driven by background extinctions
Exposure-driven macroalgal phase shift following catastrophic disturbance on coral reefs
Roff, George; Chollett, Iliana; Doropoulos, Christopher; Golbuu, Yimnang; Steneck, Robert S.; Isechal, Adelle L.; van Woesik, Robert; Mumby, Peter J.
2015-09-01
Environmental conditions play an important role in post-disturbance dynamics of ecosystems by modulating recovery of surviving communities and influencing patterns of succession. Here, we document the effects of wave exposure following a catastrophic disturbance on coral reefs in driving a phase shift to macroalgal dominance. In December 2012, a Category 5 super typhoon (`Typhoon Bopha') passed 50 km to the south of Palau (Micronesia), causing a major loss of reef corals. Immediately post-disturbance, a rapid and extensive phase shift of the macroalgae Liagora sp. (Rhodophyta) was observed at sites exposed to chronic wave exposure. To quantify the influence of biotic and abiotic drivers in modulating the extent of post-disturbance Liagora blooms, we compared benthic substrates and herbivore assemblages at sites surveyed pre- and post-disturbance across a gradient of wave exposure. Relative changes in herbivore biomass and coral cover before and after disturbance did not significantly predict the extent of Liagora cover, indicating that changes in herbivore biomass or reductions in grazing pressure were not directly responsible for driving the Liagora blooms. By contrast, the degree of wave exposure experienced at sites post-disturbance explained >90 % of model variance ( p exposure sites, while most extensive blooms were observed at highly exposed sites. At regional scales, spatial maps of wave exposure accurately predicted the presence of Liagora at impacted sites throughout the Palau archipelago (>150 km distance), highlighting the predictive capacity of wave exposure as an explanatory variable and the deterministic nature of post-disturbance macroalgal blooms. Understanding how physical conditions modulate recovery of ecosystems after disturbance allows insight into post-disturbance dynamics and succession of communities, ultimately allowing management strategies to prioritise restoration efforts in regions that are most effective.
Ecosystems are complex systems which can respond to gradual changes of their conditions by a sudden shift to a contrasting regime or alternative stable state (ASS). Predicting such critical points before they are reached is extremely difficult and providing early warnings is fundamental to design management protocols for ecosystems. Here we study different spatial versions of popular ecological models which are known to exhibit ASS. The spatial heterogeneity is introduced by a local parameter varying from cell to cell in a regular lattice. Transport of biomass among cells occurs by simple diffusion. We investigate whether different quantities from statistical mechanics -like the variance, the two-point correlation function and the patchiness-may serve as early warnings of catastrophic phase transitions between the ASS. In particular, we find that the patch-size distribution follows a power law when the system is close to the catastrophic transition. We also provide links between spatial and temporal indicators and analyze how the interplay between diffusion and spatial heterogeneity may affect the earliness of each of the observables. Finally, we comment on similarities and differences between these catastrophic shifts and paradigmatic thermodynamic phase transitions like the liquid-vapor change of state for a fluid like water.
Self-Organized Patchiness and Catastrophic Shifts in Ecosystems
Rietkerk, Max; Dekker, Stefan C.; Ruiter, Peter C. de; Koppel, Johan van de
2004-01-01
Unexpected sudden catastrophic shifts may occur in ecosystems, with concomitant losses or gains of ecological and economic resources. Such shifts have been theoretically attributed to positive feedback and bistability of ecosystem states. However, verifications and predictive power with respect to c
Self-organized patchiness and catastrophic shifts in ecosystems
Rietkerk, M.; Dekker, S.C.; de Ruiter, P.C.; Van de Koppel, J.
2004-01-01
Unexpected sudden catastrophic shifts may occur in ecosystems, with concomitant losses or gains of ecological and economic resources. Such shifts have been theoretically attributed to positive feedback and bistability of ecosystem states. However, verifications and predictive power with respect to c
Coupled catastrophes: sudden shifts cascade and hop among interdependent systems
Brummitt, Charles D; D'Souza, Raissa M
2014-01-01
A profoundly important challenge in several disciplines today is to understand how sudden changes can propagate among coupled systems. Examples include the synchronization of business cycles, population collapse in patchy ecosystems, markets shifting to a new technology platform, collapses in prices and in confidence in financial markets, and protests erupting in multiple countries. We characterize these phenomena using a simple model grounded in the theory of fast--slow ordinary differential equations and in catastrophe theory. In the model, a system consists of multiple subsystems (e.g., countries in the global economy or patches of an ecosystem), each described by a scalar quantity (such as economic output or population) that undergoes sudden changes via saddle-node bifurcations. The subsystems are coupled via their scalar quantities (e.g., trade couples economic output, diffusion couples populations); that coupling moves their bifurcations. The model elucidates two ways in which sudden changes can propaga...
Catastrophic phase transitions and early warnings in a spatial ecological model
Gradual changes in exploitation, nutrient loading, etc produce shifts between alternative stable states (ASS) in ecosystems which, quite often, are not smooth but abrupt or catastrophic. Early warnings of such catastrophic regime shifts are fundamental for designing management protocols for ecosystems. Here we study the spatial version of a popular ecological model, involving a logistically growing single species subject to exploitation, which is known to exhibit ASS. Spatial heterogeneity is introduced by a carrying capacity parameter varying from cell to cell in a regular lattice. Transport of biomass among cells is included in the form of diffusion. We investigate whether different quantities from statistical mechanics—like the variance, the two-point correlation function and the patchiness—may serve as early warnings of catastrophic phase transitions between the ASS. In particular, we find that the patch-size distribution follows a power law when the system is close to the catastrophic transition. We also provide links between spatial and temporal indicators and analyse how the interplay between diffusion and spatial heterogeneity may affect the earliness of each of the observables. We find that possible remedial procedures, which can be followed after these early signals, become more effective as the diffusion becomes lower. Finally, we comment on similarities of and differences between these catastrophic shifts and paradigmatic thermodynamic phase transitions like the liquid–vapour change of state for a fluid like water
Sommargren, Gary E.
1999-01-01
An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.
Spatial ecology of peatland ecosystems: Spatial self-organization and catastrophic shifts in bogs
Eppinga, M.B.
2004-01-01
Positive feedback interactions, as between plants and their abiotic environment, may have the consequence that an ecosystem has alternate stable equilibrium states. As a result, a gradual change in environmental conditions may lead to discontinuous, catastrophic shifts in such ecosystems. Until now,
Coupled catastrophes: sudden shifts cascade and hop among interdependent systems.
Brummitt, Charles D; Barnett, George; D'Souza, Raissa M
2015-11-01
An important challenge in several disciplines is to understand how sudden changes can propagate among coupled systems. Examples include the synchronization of business cycles, population collapse in patchy ecosystems, markets shifting to a new technology platform, collapses in prices and in confidence in financial markets, and protests erupting in multiple countries. A number of mathematical models of these phenomena have multiple equilibria separated by saddle-node bifurcations. We study this behaviour in its normal form as fast-slow ordinary differential equations. In our model, a system consists of multiple subsystems, such as countries in the global economy or patches of an ecosystem. Each subsystem is described by a scalar quantity, such as economic output or population, that undergoes sudden changes via saddle-node bifurcations. The subsystems are coupled via their scalar quantity (e.g. trade couples economic output; diffusion couples populations); that coupling moves the locations of their bifurcations. The model demonstrates two ways in which sudden changes can propagate: they can cascade (one causing the next), or they can hop over subsystems. The latter is absent from classic models of cascades. For an application, we study the Arab Spring protests. After connecting the model to sociological theories that have bistability, we use socioeconomic data to estimate relative proximities to tipping points and Facebook data to estimate couplings among countries. We find that although protests tend to spread locally, they also seem to 'hop' over countries, like in the stylized model; this result highlights a new class of temporal motifs in longitudinal network datasets. PMID:26559684
A gradient catastrophe mechanism in contexts of the phase change condition
Durmagambetov, A. A.
2016-01-01
The paper describes the mechanism of occurrence of a gradient catastrophe when changing phase. Materials shows that classical methods of estimation theory of functions do not fit the problem of studying the gradient catastrophe. We present material showing that the embedding theorem can not give an opportunity to study the process of a gradient catastrophe. In fact, work justifies pessimism Terence Tao in the insolvency of modern mathematics to solve the problem of the Navier-Stokes equations...
A novel phase shifting structured illumination microscopy
Singh, Veena; Dubey, Vishesh; Ahmad, Azeem; Singh, Gyanendra; Mehta, D. S.
2016-03-01
This paper describes a new and novel phase shifting technique for qualitative as well as quantitative measurement in microscopy. We have developed a phase shifting device which is robust, inexpensive and involves no mechanical movement. In this method, phase shifting is implemented using LED array, beam splitters and defocused projection of Ronchi grating. The light from the LEDs are made incident on the beam splitters at spatially different locations. Due to variation in the geometrical distances of LEDs from the Ronchi grating and by sequentially illuminating the grating by switching on one LED at a time the phase shifted grating patterns are generated. The phase shifted structured patterns are projected onto the sample using microscopic objective lens. The phase shifted deformed patterns are recorded by a CCD camera. The initial alignment of the setup involves a simple procedure for the calibration for equal fringe width and intensity such that the phase shifted fringes are at equal phase difference. Three frame phase shifting algorithm is employed for the reconstruction of the phase map. The method described here is fully automated so that the phase shifted images are recorded just by switching of LEDs and has been used for the shape measurement of microscopic industrial objects. The analysis of the phase shifted images provides qualitative as well as quantitative information about the sample. Thus, the method is simple, robust and low cost compared to PZT devices commonly employed for phase shifting.
Catastrophic Regime Shift in Water Reservoirs and São Paulo Water Supply Crisis.
Coutinho, Renato M; Kraenkel, Roberto A; Prado, Paulo I
2015-01-01
The relation between rainfall and water accumulated in reservoirs comprises nonlinear feedbacks. Here we show that they may generate alternative equilibrium regimes, one of high water-volume, the other of low water-volume. Reservoirs can be seen as socio-environmental systems at risk of regime shifts, characteristic of tipping point transitions. We analyze data from stored water, rainfall, and water inflow and outflow in the main reservoir serving the metropolitan area of São Paulo, Brazil, by means of indicators of critical regime shifts, and find a strong signal of a transition. We furthermore build a mathematical model that gives a mechanistic view of the dynamics and demonstrates that alternative stable states are an expected property of water reservoirs. We also build a stochastic version of this model that fits well to the data. These results highlight the broader aspect that reservoir management must account for their intrinsic bistability, and should benefit from dynamical systems theory. Our case study illustrates the catastrophic consequences of failing to do so. PMID:26372224
A NEW ALGORITHM FOR ELIMINATING PHASE-SHIFT ERROR IN PHASE SHIFTING INTERFEROMETRY
无
1999-01-01
The effect of phase-shift error in phase shifting interferometry is investigated. A new algorithm with two sets of 4 samples for eliminating phase-shift error is presented. The computer simulation and experiment result show that the phase-shift offset should be π when the algorithm is used, and this algorithm has gotten better result than the original 4-sample algorithm.
Large 1 behaviour of the phase shifts
We investigate the large l behaviour of the phase-shifts, using their W.K.B. expressions, which are good in this case. A recurrence relation for the phase-shifts is deduced when the potentials fall off as 1/sub(r)m, while a potentially useful inequality is obtained for potentials which decrease monotonically for large r. (author)
Scaling single-state variable catastrophe functions: an application to two-phase natural circulation
In this paper I present transformation laws to scale physical processes governed by polynomial equations. Of particular importance is the class of polynomials which describe catastrophe functions. Many important, stability-related, thermal hydraulic phenomena are described by these catastrophe functions, including flooding, two-phase natural circulation, and critical heat flux. Catastrophe functions can be used to define the boundaries of stable system behavior. If a process evolves such that one of these boundaries are crossed, it will undergo a discontinuity which radically alters its evolution (i.e. morphogenesis). By scaling these catastrophe functions, processes exhibiting discontinuous behavior can be studied in scaled test models rather than experimenting with a full-scale, and typically very expensive, prototype. To illustrate their usefulness, the catastrophe function transformation laws are applied to the practical problem of scaling two-phase fluid natural circulation. In addition, the catastrophe manifold for two-phase fluid natural circulation is developed and evaluated to obtain a criterion for the onset of flow instability. ((orig.))
Phase shifting technique in digital holography
Dong, Eliang; Kang, Xin; Chi, Jianan; He, Xiaoyuan
2008-11-01
Phase shifting technique is an effective approach to eliminate the zero order diffraction and the conjugate image in numerical reconstruction of digital holography. In this paper, the diffraction optical field of each component of a digital hologram is simulated solely and numerically by Fresnel diffractive integral. Based on this work two algorithms for two and three step phase shifting digital holography are proposed. The simulating results of two algorithms show that the proposed two phase shifting methods can not only recover the object wave front alone but also simplify the measurement process when compared with the usual four-step phase shifting method, because fewer phase shifting steps are needed accordingly. The proposed two algorithms may be a very useful reference for various kinds of measurement using the digital holography in practice.
Probing scattering phase shifts by attosecond streaking
Pazourek, Renate; Nagele, Stefan; Doblhoff-Dier, Katharina; Feist, Johannes; Lemell, Christoph; Tökési, Karoly; Burgdörfer, Joachim
2011-01-01
Attosecond streaking is one of the most fundamental processes in attosecond science allowing for a mapping of temporal (i.e. phase) information on the energy domain. We show that on the single-particle level attosecond streaking time shifts contain spectral phase information associated with the Eisenbud-Wigner-Smith (EWS) time delay, provided the influence of the streaking infrared field is properly accounted for. While the streaking phase shifts for short-ranged potentials agree with the ass...
Synchronous Phase Shift at LHC
Esteban-Müller, J F; Iadarola, G; Mastoridis, T; Papotti, G; Rumolo, G; Shaposhnikova, E; Valuch, D
2013-01-01
The electron cloud in vacuum pipes of accelerators of positively charged particle beams causes a beam energy loss which could be estimated from the synchronous phase. Measurements done with beams of 75 ns, 50 ns, and 25 ns bunch spacing in the LHC for some fills in 2010 and 2011 show that the average energy loss depends on the total beam intensity in the ring. Later measurements during the scrubbing run with 50 ns beams show the reduction of the electron cloud due to scrubbing. Finally, measurements of the individual bunch phase give us information about the electron cloud build-up inside the batch and from batch to batch.
García-Ramos, J.E., E-mail: enrique.ramos@dfaie.uhu.es [Departamento de Física Aplicada, Universidad de Huelva, 21071 Huelva (Spain); Unidad Asociada de la Universidad de Huelva al IEM (CSIC), Madrid (Spain); Arias, J.M., E-mail: ariasc@us.es [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Apdo 1065, 41080 Sevilla (Spain); Unidad Asociada de la Universidad de Sevilla al IEM (CSIC), Madrid (Spain); Dukelsky, J., E-mail: dukelsky@iem.cfmac.csic.es [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain)
2014-09-07
We introduce the basic concepts of catastrophe theory needed to derive analytically the phase diagram of the proton–neutron interacting boson model (IBM-2). Previous studies [1–3] were based on numerical solutions. We here explain the whole IBM-2 phase diagram including the precise order of the phase transitions in terms of the cusp catastrophe.
We introduce the basic concepts of catastrophe theory needed to derive analytically the phase diagram of the proton–neutron interacting boson model (IBM-2). Previous studies [1–3] were based on numerical solutions. We here explain the whole IBM-2 phase diagram including the precise order of the phase transitions in terms of the cusp catastrophe
Synchronous Phase Shift at LHC
Müller, J. F. Esteban; Baudrenghien, P.; Iadarola, G.; Mastoridis, T.; Papotti, G.; Rumolo, G.; Shaposhnikova, E.; Valuch, D.
2013-01-01
The electron cloud in vacuum pipes of accelerators of positively charged particle beams causes a beam energy loss which could be estimated from the synchronous phase. Measurements done with beams of 75 ns, 50 ns, and 25 ns bunch spacing in the LHC for some fills in 2010 and 2011 show that the average energy loss depends on the total beam intensity in the ring. Later measurements during the scrubbing run with 50 ns beams show the reduction of the electron cloud due to scrubbing. Finally, measu...
Probing scattering phase shifts by attosecond streaking
Attosecond streaking is one of the most fundamental processes in attosecond science allowing for a mapping of temporal (i.e. phase) information on the energy domain. We show that on the single-particle level attosecond streaking time shifts contain spectral phase information associated with the Eisenbud-Wigner-Smith (EWS) time delay, provided the infuence of the streaking infrared feld is properly accounted for. While the streaking phase shifts for short-ranged potentials agree with the associated EWS delays, Coulomb potentials require special care. We show that the interaction between the outgoing electron and the combined Coulomb and IR laser felds lead to a streaking phase shift that can be described classically.
Probing scattering phase shifts by attosecond streaking
Pazourek, Renate; Doblhoff-Dier, Katharina; Feist, Johannes; Lemell, Christoph; Tökési, Karoly; Burgdörfer, Joachim
2011-01-01
Attosecond streaking is one of the most fundamental processes in attosecond science allowing for a mapping of temporal (i.e. phase) information on the energy domain. We show that on the single-particle level attosecond streaking time shifts contain spectral phase information associated with the Eisenbud-Wigner-Smith (EWS) time delay, provided the influence of the streaking infrared field is properly accounted for. While the streaking phase shifts for short-ranged potentials agree with the associated EWS delays, Coulomb potentials require special care. We show that the interaction between the outgoing electron and the combined Coulomb and IR laser fields lead to a streaking phase shift that can be described classically.
Phase Shift Sequences for an Adding Interferometer
Hyland, Peter; Bunn, Emory F
2008-01-01
Cosmic microwave background (CMB) polarimetry has the potential to provide revolutionary advances in cosmology. Future experiments to detect the very weak B mode signal in CMB polarization maps will require unprecedented sensitivity and control of systematic errors. Bolometric interferometry may provide a way to achieve these goals. In a bolometric interferometer (or other adding interferometer), phase shift sequences are applied to the inputs in order to recover the visibilities. Noise is minimized when the phase shift sequences corresponding to all visibilities are orthogonal. We present a systematic method for finding sequences that produce this orthogonality, approximately minimizing both the length of the time sequence and the number of discrete phase shift values required. When some baselines are geometrically equivalent, we can choose sequences that read out those baselines simultaneously, which has been shown to improve signal to noise ratio.
Phase shift error and contrast variation caused by vibration lead to a large measurement error in temporal phase-shifting interferometry (PSI). To suppress the error, a sideband correlation algorithm is proposed to detect phase shift and contrast variation. The tilt factors and translational values of phase shift are determined by analyzing the correlations of spectral sidebands of interferograms. The contrast variations are determined by detecting the modulus of the baseband and sideband correlation result. A least-squares equation with contrast compensation is established to retrieve the wavefront phase. The algorithm requires a set of temporal phase-shifting interferograms, each one also containing a moderate amount of spatial-carrier; the interferograms may have an arbitrary aperture. Simulations demonstrate the reliability, and the experiments under vibration show the practical effectiveness of the algorithm. (paper)
Accurate phase-shift velocimetry in rock
Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R.; Holmes, William M.
2016-06-01
Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models.
Phase-Shifting Zernike Interferometer Wavefront Sensor
Wallace, J. Kent; Rao, Shanti; Jensen-Clem, Rebecca M.
2011-01-01
The canonical Zernike phase-contrast technique transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static pi/2 phase shift to the central core (approx. lambda/diameter) of the PSF which is intermediate between the input and output plane. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective, and second the phase shift in the central core of the PSF is dynamic and can be made arbitrarily large. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument.
Phase-Shifting Zernike Interferometer Wavefront Sensor
Wallace, J. Kent; Rao, Shanti; Jensen-Clemb, Rebecca M.; Serabyn, Gene
2011-01-01
The canonical Zernike phase-contrast technique1,2,3,4 transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static pi/2 phase shift to the central core (approx. lambda/D) of the PSF which is intermediate between the input and output planes. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective. Second, the phase shift in the central core of the PSF is dynamic and or arbitrary size. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument
Improved phase-shift-keyed detector
Chandler, J.
1969-01-01
Improved phase-shift-keyed detector contains an active filter circuit which uses an operational amplifier and resistor-capacitor network. The detector is used in the Saturn space vehicle and Apollo telescope mount command systems to translate an analog signal from the command receiver into digital information for the command decoder.
Photonic downconversion with tunable wideband phase shift.
Jiang, Tianwei; Yu, Song; Wu, Ruihuan; Wang, Dongsheng; Gu, Wanyi
2016-06-01
A microwave photonic frequency downconversion system with wideband and continuous phase-shift function is proposed and experimentally demonstrated. In the proposed system, a radio frequency (RF) and a local oscillator (LO) signal drive two arms of a dual-drive Mach-Zehnder modulator (DMZM). A fiber Bragg grating (FBG) is used for reflecting the first-order sidebands of both RF and LO signals. Due to phase independence between RF and LO optical sidebands, the phase-shifting operation for an output intermediate frequency (IF) signal can be implemented either by adjusting the bias voltage of DMZM or by controlling the optical wavelength of laser. Experimental results demonstrate a full 0° to 360° phase shift, while an RF signal between 12 GHz to 20 GHz is downconverted to IFs below 4 GHz. The phase deviation is measured less than 2°, and the fluctuation of magnitude response is measured less than ±1 dB over a wideband frequency range. PMID:27244434
Transitional Bubble in Periodic Flow Phase Shift
Talan, M.; Hourmouziadis, Jean
2004-01-01
One particular characteristic observed in unsteady shear layers is the phase shift relative to the main flow. In attached boundary layers this will have an effect both on the instantaneous skin friction and heat transfer. In separation bubbles the contribution to the drag is dominated by the pressure distribution. However, the most significant effect appears to be the phase shift on the transition process. Unsteady transition behaviour may determine the bursting of the bubble resulting in an un-recoverable full separation. An early analysis of the phase shift was performed by Stokes for the incompressible boundary layer of an oscillating wall and an oscillating main flow. An amplitude overshoot within the shear layer as well as a phase shift were observed that can be attributed to the relatively slow diffusion of viscous stresses compared to the fast change of pressure. Experiments in a low speed facility with the boundary layer of a flat plate were evaluated in respect to phase shift. A pressure distribution similar to that on the suction surface of a turbomachinery aerofoil was superimposed generating a typical transitional separation bubble. A periodically unsteady main flow in the suction type wind tunnel was introduced via a rotating flap downstream of the test section. The experiments covered a range of the three similarity parameters of momentum-loss-thickness Reynolds-number of 92 to 226 and Strouhal-number (reduced frequency) of 0.0001 to 0.0004 at the separation point, and an amplitude range up to 19 %. The free stream turbulence level was less than 1% .Upstream of the separation point the phase shift in the laminar boundary layer does not appear to be affected significantly bay either of the three parameters. The trend perpendicular to the wall is similar to the Stokes analysis. The problem scales well with the wave velocity introduced by Stokes, however, the lag of the main flow near the wall is less than indicated analytically. The separation point
Phase diagram of the two-fluid Lipkin model: A "butterfly" catastrophe
García-Ramos, J. E.; Pérez-Fernández, P.; Arias, J. M.; Freire, E.
2016-03-01
Background: In the past few decades quantum phase transitions have been of great interest in nuclear physics. In this context, two-fluid algebraic models are ideal systems to study how the concept of quantum phase transition evolves when moving into more complex systems, but the number of publications along this line has been scarce up to now. Purpose: We intend to determine the phase diagram of a two-fluid Lipkin model that resembles the nuclear proton-neutron interacting boson model Hamiltonian using both numerical results and analytic tools, i.e., catastrophe theory, and compare the mean-field results with exact diagonalizations for large systems. Method: The mean-field energy surface of a consistent-Q -like two-fluid Lipkin Hamiltonian is studied and compared with exact results coming from a direct diagonalization. The mean-field results are analyzed using the framework of catastrophe theory. Results: The phase diagram of the model is obtained and the order of the different phase-transition lines and surfaces is determined using a catastrophe theory analysis. Conclusions: There are two first-order surfaces in the phase diagram, one separating the spherical and the deformed shapes, while the other separates two different deformed phases. A second-order line, where the later surfaces merge, is found. This line finishes in a transition point with a divergence in the second-order derivative of the energy that corresponds to a tricritical point in the language of the Ginzburg-Landau theory for phase transitions.
A direct phase shift extraction and wavefront reconstruction method in two-step generalized phase-shifting interferometry (GPSI) with arbitrary unknown phase shift is proposed. In this method the unknown phase shift α can be extracted by a determinate formula directly without iteration or additional judgment of its correct value from two or more phase shift solutions as necessary before. By an appropriate formula of GPSI the complex object field in the recording plane can be calculated and then the object wavefront in the original object plane obtained. This method is applicable for GPSI of any frame number K≥2 and for both the amplitude and phase objects. Computer simulations have shown that the phase shift extraction errors are below 0.01 rad in a wide range of 0.4 rad<α<2.6 rad and the computation time is greatly reduced by a factor of about 20 compared with the previous method. The effectiveness and accuracy of this method are also verified by optical experiments
Energy phase shift as mechanism for catalysis
Beke-Somfai, Tamás
2012-05-01
Catalysts are agents that by binding reactant molecules lower the energy barriers to chemical reaction. After reaction the catalyst is regenerated, its unbinding energy recruited from the environment, which is associated with an inevitable loss of energy. We show that combining several catalytic sites to become energetically and temporally phase-shifted relative to each other provides a possibility to sustain the overall reaction by internal \\'energy recycling\\', bypassing the need for thermal activation, and in principle allowing the system to work adiabatically. Using an analytical model for superimposed, phase-shifted potentials of F 1-ATP synthase provides a description integrating main characteristics of this rotary enzyme complex. © 2012 Elsevier B.V. All rights reserved.
Sampled phase-shift fiber Bragg gratings
Xu Wang(王旭); Chongxiu Yu(余重秀); Zhihui Yu(于志辉); Qiang Wu(吴强)
2004-01-01
A phase-shift fiber Bragg grating (FBG) with sampling is proposed to generate a multi-channel bandpass filter in the background of multi-channel stopbands. The sampled noire fiber gratings are analyzed by Fourier transform theory first, and then simulation and experiment are performed, the results show that transmission peaks are opened in every reflective channel, the spectrum shape of every channel is identical.It can be used to fabricate multi-wavelength distributed feedback (DFB) fiber laser.
Lawrence, D.; D'Odorico, P.; Runyan, C.; Diekmann, L.; DeLonge, M. S.; Das, R.; Eaton, J.; Vandecar, K.; Schmook, B.
2015-12-01
Tropical dry forests have long been used by humans. Has it been sustainable? Not in the southern Yucatan. Biomass accumulation declines with each cycle of shifting cultivation with implications for both internal recycling of nutrients and external inputs of nutrients. We detail the evidence for a decline in P inputs from biomass burning (aboveground biomass, litter, and coarse woody debris), an increase in leaching losses from deep soils, and a decline in atmospheric inputs of new P from Saharan dust following the transition from mature to secondary forest. Canopy trapping of dust is critical to maintaining P balance in this system. Effective trapping is diminished by changes in the structure of secondary forest--loss of height, leaf area and basal area. Experimental studies show that it is atmospheric transport of dust, not microbial shedding or leaching from live tissues, that explains the difference between throughfall P and P in bulk deposition. Because of net losses in P, uptake of carbon during regrowth is slower with each cycle of shifting cultivation. As much of the tropics has moved beyond a mature forest frontier, the decline in carbon sequestration is likely widespread over both dry and wet forests. The terrestrial carbon sink in the tropics may be declining. The capacity to sequester carbon through afforestation, reforestation and restoration has certainly diminished over time, limiting the effectiveness of such efforts to help mitigate climate change.
Phase diagram of the two-fluid Lipkin model: a butterfly catastrophe
García-Ramos, J E; Arias, J M; Freire, E
2016-01-01
Background: In the last few decades quantum phase transitions have been of great interest in Nuclear Physics. In this context, two-fluid algebraic models are ideal systems to study how the concept of quantum phase transition evolves when moving into more complex systems, but the number of publications along this line has been scarce up to now. Purpose: We intend to determine the phase diagram of a two-fluid Lipkin model, that resembles the nuclear proton-neutron interacting boson model Hamiltonian, using both numerical results and analytic tools, i.e., catastrophe theory, and to compare the mean-field results with exact diagonalizations for large systems. Method: The mean-field energy surface of a consistent-Q-like two-fluid Lipkin Hamiltonian is studied and compared with exact results coming from a direct diagonalization. The mean-field results are analyzed using the framework of catastrophe theory. Results: The phase diagram of the model is obtained and the order of the different phase-transition lines and ...
Amor, Daniel R
2014-01-01
Unstable dynamics characterizes the evolution of most solid tumors. Because of an increased failure of maintaining genome integrity, a cumulative increase in the levels of gene mutation and loss is observed. Previous work suggests that instability thresholds to cancer progression exist, defining phase transition phenomena separating tumor-winning scenarios from tumor extinction or coexistence phases. Here we present an integral equation approach to the quasispecies dynamics of unstable cancer. The model exhibits two main phases, characterized by either the success or failure of cancer tissue. Moreover, the model predicts that tumor failure can be due to either a reduced selective advantage over healthy cells or excessive instability. We also derive an approximate, analytical solution that predicts the front speed of aggressive tumor populations on the instability space.
Phase transitions in paradigm shift models.
Huiseung Chae
Full Text Available Two general models for paradigm shifts, deterministic propagation model (DM and stochastic propagation model (SM, are proposed to describe paradigm shifts and the adoption of new technological levels. By defining the order parameter m based on the diversity of ideas, Δ, it is studied when and how the phase transition or the disappearance of a dominant paradigm occurs as a cost C in DM or an innovation probability α in SM increases. In addition, we also investigate how the propagation processes affect the transition nature. From analytical calculations and numerical simulations m is shown to satisfy the scaling relation m=1-f(C/N for DM with the number of agents N. In contrast, m in SM scales as m=1-f(α(aN.
The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics
Marani, Marco; D'Alpaos, Andrea; Lanzoni, Stefano; Carniello, Luca; Rinaldo, Andrea
2010-10-01
We describe and apply a point model of the joint evolution of tidal landforms and biota which incorporates the dynamics of intertidal vegetation; benthic microbial assemblages; erosional, depositional, and sediment exchange processes; wind-wave dynamics, and relative sea level change. Alternative stable states and punctuated equilibria emerge, characterized by possible sudden transitions of the system state, governed by vegetation type, disturbances of the benthic biofilm, sediment availability, and marine transgressions or regressions. Multiple stable states are suggested to result from the interplay of erosion, deposition, and biostabilization, providing a simple explanation for the ubiquitous presence of the typical landforms observed in tidal environments worldwide. The main properties of accessible equilibrium states prove robust with respect to specific modeling assumptions and are thus identified as characteristic dynamical features of tidal systems. Halophytic vegetation emerges as a key stabilizing factor through wave dissipation, rather than a major trapping agent, because the total inorganic deposition flux is found to be largely independent of standing biomass under common supply-limited conditions. The organic sediment production associated with halophytic vegetation represents a major contributor to the overall deposition flux, thus critically affecting the ability of salt marshes to keep up with high rates of relative sea level rise. The type and number of available equilibria and the possible shifts among them are jointly driven and controlled by the available suspended sediment, the rate of relative sea level change, and vegetation and microphytobenthos colonization. The explicit description of biotic and abiotic processes thus emerges as a key requirement for realistic and predictive models of the evolution of a tidal system as a whole. The analysis of such coupled processes finally indicates that hysteretic switches between stable states arise
Probing scattering phase shifts by attosecond streaking
Complete text of publication follows. The emerging field of attoscience enables the investigation of electron dynamics as well as timing information of photoionization processes. Attosecond streaking has developed into a powerful tool to achieve temporal resolution on the sub-100 attosecond time scale. It is based on a pump-probe setting with an extreme ultraviolet (XUV) pulse of a few hundred attoseconds duration serving as pump and a phase-controlled few-cycle infrared (IR) pulse as probe. Temporal information about the photoionization process can thus be mapped onto the energy axis in analogy to conventional streaking. We studied attosecond streaking of the release time of electrons in atomic photoemission by solving the time-dependent Schroedinger equation (TDSE) for effective one-electron systems. We presented calculations also employing a restricted ionization model (RIM) in the TDSE. We verified that the trajectory effects on the time shift resulting from the interaction between the outgoing electron and the combined Coulomb and IR laser fields can be described classically. We have shown that Eisenbud-Wigner-Smith (EWS) time shifts (or energy variation of the scattering phase) for short-ranged potentials become accessible by attosecond streaking provided both initial-state dependent entrance channel and final-state exit channel distortions are properly accounted for. For Coulomb potentials the coupling between the IR streaking field and the Coulomb field which depends on the final energy of the free electron dominates the extracted streaking time shift but can be accounted for classically. In addition we have identified considerable state dependent time shifts for easily polarizable initial states which are of quantum mechanical origin. Accounting for polarization of the initial state, the remaining difference of time delays between ionization from states with different angular momentum can be related to the EWS delay of the centrifugal potential
Catastrophic glacial multi-phase mass movements: a special type of glacial hazard
D. A. Petrakov
2008-04-01
Full Text Available Many glacier-related hazards are well typified and studied, but some events stand out from conventional classifications. The Kolka-Karmadon catastrophic event on 20 September 2002 in North Ossetia, North Caucasus, Russia is used as an example of a complex glacier failure exhibiting characteristics such as high mobility, long runout, ultrarapid movement and multiphase behaviour. We consider terminology protocol for glacier hazard classification and then, using the Kolka-Karmadon event and several other examples from around the world, we propose a new term for this family of events. Catastrophic glacier multi-phase mass movement (CGMM is described and further illustrated by eight major events from Russia, Georgia, Peru, Chile, and Canada. CGMM have a combination of specific features: extraordinary velocities and long-distance runout despite low path angle; progressive fluidisation along travel path; superelevation and run-up of the moving mass, air blast wave in the avalanche flow phase; entrainment of available materials in its path, and the repeated nature of the event. CGMM events may affect areas remote from glaciers which were previously considered as safe.
A novel random phase-shifting digital holographic microscopy method
XIE HuiMin; HU ZhenXing; DAI FuLong; LI YanJie; CHEN PengWan; ZHANG QingMing; HUANG FengLei
2009-01-01
This paper proposes s new method that reconstructs the information of specimen by using random phase shift step in digital holographic microscopy (DHM). The principles of the method are described and discussed in detail. In practical experiment, because the phase shifter is neither perfectly linear nor calibrated, digital holograms with inaccurate phase shift step are recorded by the charge-coupled device (CCD). The phase could be accurately reconstructed from the recorded digital holograms by using the random phase-shifting algorithm, which makes up for reconstructed phase error caused by ordinary phase-shifting algorithm. The phase aberration compensation is also discussed. In order to verify the flexibility of the proposed method, numerical simulation of random phase-shifting DHM was carried out. The simulation results illustrated that the presented method is effective when the phase shift step is unknown or random in DHM.
A novel random phase-shifting digital holographic microscopy method
无
2009-01-01
This paper proposes a new method that reconstructs the information of specimen by using random phase shift step in digital holographic microscopy (DHM). The principles of the method are described and discussed in detail. In practical experiment, because the phase shifter is neither perfectly linear nor calibrated, digital holograms with inaccurate phase shift step are recorded by the charge-coupled device (CCD). The phase could be accurately reconstructed from the recorded digital holograms by using the random phase-shifting algorithm, which makes up for reconstructed phase error caused by ordinary phase-shifting algorithm. The phase aberration compensation is also discussed. In order to verify the flexibility of the proposed method, numerical simulation of random phase-shifting DHM was carried out. The simulation results illustrated that the presented method is effective when the phase shift step is unknown or random in DHM.
Phase shift estimation in interferograms with unknown phase step
Dalmau, Oscar; Rivera, Mariano; Gonzalez, Adonai
2016-08-01
We first present two closed formulas for computing the phase shift in interferograms with unknown phase step. These formulas obtain theoretically the exact phase step in fringe pattern without noise and only require the information in two pixels of the image. The previous formulas allows us to define a functional that yields an estimate of the phase step in interferograms corrupted by noise. In the experiment we use the standard Least Square formulation which also yields a closed formula, although the general formulation admits a robust potential. We provide two possible implementations of our approach, one in which the sites can be randomly selected and the other in which we can scan the whole image. The experiments show that the proposed algorithm presents the best results compared with state of the art algorithms.
High-durability phase-shift film with variable transmittance
Nozawa, Osamu; Shishido, Hiroaki; Kajiwara, Takenori
2015-10-01
In order to maintain the lithographic margin and to have sufficient image resolution, attenuated phase shift masks are widely used as a resolution enhancement technique. To improve the radiation durability of the phase shift film, we have developed low oxidation MoSi shifters, such as A6L2, as one option for improving radiation durability. But to provide the best radiation durability, we have developed a new approach eliminating the molybdenum from the phase shift film and introduced a Silicon-Nitride (Si-N) based attenuated phase shift film. Traditionally the transmittance of the phase shift layer is usually around 6%. In the case of a pure Si3N4 film, the transmittance with 180 degree phase shift is around 18%. But, by controlling film structure with a combination of Si-N the transmittance can be tuned to the customers desired transmission value for high durability Mo free attenuated phase shift films.
Catastrophic and Transitional Phase Inversion of Water-in-Oil Emulsion for Heavy and Light Crude Oil
Azhary H. Nour; A.N. Ilia Anisa; Abdurahman H. Nour
2010-01-01
The stability of emulsion plays an important role either for catastrophic or transitional phase inversion to break and inverse emulsion from w/o to o/w or vice versa. The stability of emulsion also depends on the rheology and characteristics of the crude oil. In this study, the characteristics of crude oil were investigated closely before emulsion was prepared to further study in catastrophic and transitional phase inversion. The prepared emulsion, volume fraction (10-90 to 60-40% w/o emulsio...
Model-based phase-shifting interferometer
Liu, Dong; Zhang, Lei; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian
2015-10-01
A model-based phase-shifting interferometer (MPI) is developed, in which a novel calculation technique is proposed instead of the traditional complicated system structure, to achieve versatile, high precision and quantitative surface tests. In the MPI, the partial null lens (PNL) is employed to implement the non-null test. With some alternative PNLs, similar as the transmission spheres in ZYGO interferometers, the MPI provides a flexible test for general spherical and aspherical surfaces. Based on modern computer modeling technique, a reverse iterative optimizing construction (ROR) method is employed for the retrace error correction of non-null test, as well as figure error reconstruction. A self-compiled ray-tracing program is set up for the accurate system modeling and reverse ray tracing. The surface figure error then can be easily extracted from the wavefront data in forms of Zernike polynomials by the ROR method. Experiments of the spherical and aspherical tests are presented to validate the flexibility and accuracy. The test results are compared with those of Zygo interferometer (null tests), which demonstrates the high accuracy of the MPI. With such accuracy and flexibility, the MPI would possess large potential in modern optical shop testing.
Generalized phase shifting interferometry based on Lissajous calibration technology
Liu, Fengwei; Wu, Yongqian; Wu, Fan; Song, Weihong
2016-08-01
The feasibility and limitation of directly using the Lissajous figure and ellipse fitting technology to correct the phase extraction error in generalized data reduction algorithm (GDRA) for phase extraction of randomly phase-shifted interferograms are analyzed and discussed. By combining Lissajous calibration technology, which represents the transformative process of Lissajous ellipse to circle (ETC), with advanced iterative algorithm (AIA) we propose a novel generalized phase shifting algorithm (GPSA), and here it is abbreviated as ETCI method. The phase distribution and phase shifts that extracted from randomly phase shifted interferograms by use of ETCI are more accurate and the whole process is far faster than AIA. Additionally, proposed method is less sensitive to non-uniform background intensity and modulation amplitude. Numerical simulations are conducted to evaluate the performance of ETCI, and some influential factors are elaborated. The experimental results further indicate proposed method is suitable for truly random phase shifted interferograms.
Quantum Key Distribution Network Based on Differential Phase Shift
WANG Wan-Ying; WANG Chuan; WEN Kai; LONG Gui-Lu
2007-01-01
Using a series of quantum correlated photon pairs, we propose a theoretical scheme for any-to-any multi-user quantum key distribution network based on differential phase shift. The differential phase shift and the different detection time slots ensure the security of our scheme against eavesdropping. We discuss the security under the intercept-resend attack and the source replacement attack.
Phase-Shift Interferometry with a Digital Photocamera
Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe
2007-01-01
A phase-shift interferometry experiment is proposed, working on a Twyman-Green optical configuration with additional polarization components. A guideline is provided to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses. (Contains 5 figures.)
Operator performance on the night shift: phases 1 and 2
Morisseau, Dolores; Beere, Barnaby; Collier, Steve
1999-04-15
The objective of the project on operator performance on the night shift is to determine the effects of circadian rhythms on higher order cognitive processes. The project had two preliminary phases. Subjects were operators from the Halden Boiling Water Reactor, (Phase 1: 7 male operators and shift leaders, aged 26 to 35; Phase 2: 8 male operators and shift leaders, aged 26 to 53). The majority of the operators were the same for both studies. The preliminary work established that Norwegian operators' circadian rhythms fall within universal population norms and, thus, they are suitable subjects for such experiments. During Phase 1, two self-assessment instruments, the Stanford Sleepiness Scale (SSS) and the Global Vigour and Affect Scale (GVA), were administered every hour on all three shifts at the reactor. During Phase 2, three tests from the Walter Reed Performance Assessment Battery were administered at the beginning, middle, and end of each of the three shifts at the reactor. The tests (Serial Add-Subtract, Two-Column Addition, and Logical Reasoning) were administered using a hand-held computer. Both phases were conducted during regular work shifts for one complete shift rota (six weeks). ANOVA with two repeated measures showed that self-reported sleepiness on the night shift, sleepiness with respect to hours into the shift, and the interaction between them all reached statistical significance at p<.001. Data analyses (ANOVA) from Phase 2 indicate that the main effect of SHIFTNO (morning, afternoon, evening) on response times was significant (p<.002); the interaction between SHIFTNO and TINSHIFT (hours into shift) was also significant (p<.009). None of the effects on correctness of response was significant (Phase 2). While correctness of response was not significant for routine cognitive measures, the significant, progressive slowing of response times on the night shift reinforces the concern for possible performance decrements on the night shift. Thus, it
Phase shift measurements for antenna systems
Ogorodnijchuk, L. D.
1999-01-01
The necessity to create the high accurate antenna systems for radio systems and complexes [1] requires to provide this sphere of science and engineering with a high accurate phase-metering equipment. It's used to measure phase characteristics of units and blocks of antenna feeding systems, feeds, and antenna in the full sense [1-3], and to receive signals (phase radio direction finders, monopulse radars), and to control the operation (phase antenna arrays) as well. Also it's used for periodic...
Quantum limits on phase-shift detection using multimode interferometers
Söderholm, J; Hessmo, B; Inoue, S; Soderholm, Jonas; Bjork, Gunnar; Hessmo, Bjorn; Inoue, Shuichiro
2003-01-01
Fundamental phase-shift detection properties of optical multimode interferometers are analyzed. Limits on perfectly distinguishable phase shifts are derived for general quantum states of a given average energy. In contrast to earlier work, the limits are found to be independent of the number of interfering modes. However, the reported bounds are consistent with the Heisenberg limit. A short discussion on the concept of well-defined relative phase is also included.
A New Phase-Shifted Cascade High Voltage Inverter
Lau Eng Tin
2005-01-01
This paper presents a unique novel design of the phase-shifted cascade high voltage inverter. Thehigh voltage inverter utilizes fewer power switches and supplies a balance load. The usage of phase shifttransformer and phase shifting SPWM ensures that input and output harmonic wave content is low and outputvoltage change (du/dt) has a low rate, meeting all the requirements of the power authorities. The most out-standing feature is the energy saving with very fast cost recovery.
Cheema, M Imran; Hayat, Ahmad A; Peter, Yves-Alain; Armani, Andrea M; Kirk, Andrew G
2012-01-01
Optical resonant microcavities with ultra high quality factors are widely used for biosensing. Until now, the primary method of detection has been based upon tracking the resonant wavelength shift as a function of biological events. One of the sources of noise in all resonant-wavelength shift measurements is the noise due to intensity fluctuations of the laser source. An alternative approach is to track the change in the quality factor of the optical cavity by using phase shift cavity ring down spectroscopy, a technique which is insensitive to the intensity fluctuations of the laser source. Here, using biotinylated microtoroid resonant cavities, we show simultaneous measurement of the quality factor and the wavelength shift by using phase shift cavity ring down spectroscopy. These measurements were performed for disassociation phase of biotin-streptavidin reaction. We found that the disassociation curves are in good agreement with the previously published results. Hence, we demonstrate not only the applicatio...
LU Xiaoxu; ZHONG Liyun; ZHANG Yimo
2007-01-01
Phase-shifting measurement and its error estimation method were studied according to the holographic principle.A function of synchronous superposition of object complex amplitude reconstructed from N-step phase-shifting through one integral period (N-step phase-shifting function for short) was proposed.In N-step phase-shifting measurement,the interferograms are seen as a series of in-line holograms and the reference beam is an ideal parallel-plane wave.So the N-step phase-shifting function can be obtained by multiplying the interferogram by the original referencc wave.In ideal conditions.the proposed method is a kind of synchronous superposition algorithm in which the complex amplitude is separated,measured and superposed.When error exists in measurement,the result of the N-step phase-shifting function is the optimal expected value of the least-squares fitting method.In the above method,the N+1-step phase-shifting function can be obtained from the N-step phase-shifting function.It shows that the N-step phase-shifting function can be separated into two parts:the ideal N-step phase-shifting function and its errors.The phase-shifting errors in N-steps phase-shifting phase measurement can be treated the same as the relative errors of amplitude and intensity under the understanding of the N+1-step phase-shifting function.The difficulties of the error estimation in phase-shifting phase measurement were restricted by this error estimation method.Meanwhile,the maximum error estimation method of phase-shifting phase measurement and its formula were proposed.
e-He+ scattering phase shifts in the nonresonant region
The double excited autoionization states of the He atom and the e-He+ scattering phase shifts in the nonresonant region near the first ionization threshold are examined in detail, using a simple configuration-interaction approach. The phase shifts reflect the short-range electron-electron correlations. The S, P and D partial wave phase shifts of high accuracy are obtained for both the singlet and the triplet spin states. It shows excellent agreement between the present calculation and existing theoretical results
Nucleon-nucleon scattering phase shifts
Here are presented 0 to 800 MeV nucleon-nucleon elastic and inelastic phase parameters derived by several groups: Arndt and Roper; Hoshizaki; Bugg; Bystricky, Lechanoine, and Lehar; and Bryan, Clark, and VerWest. Resonant-like behavior appears in the 1D2 and 3F3 states above the inelastic threshold in Hoshizaki's analysis but not in Arndt and Roper's. The np data are inadequate to permit determination of the I = O phase parameters above 600 MeV. 27 references
Wavelength Phase-shift Dual-diffraction Interferometer
Geng-An Jiang
2014-08-01
Full Text Available This paper presents a wavelength phase-shift dual-diffraction interferometer for the displacement measurement. The measurement system is divided into two parts. On the part of the optical configuration, the grating displacement is converted into the phase of the light based on Doppler effect. By means of the dual-diffraction design, the phase sensitivity corresponding to the grating shift is enhanced. The second part is the phase analysis system. Because of the unbalance optical path design and the modulated wavelength, the wavelength phase-shift technique is developed for analyzing the phase variation resulted from the grating displacement. The experimental results demonstrate that this system has good stability and repeatability.
The Phase Shifts of the Paired Wings of Butterfly Diagrams
Li, Kejun; Liang, Hongfei; Feng, Wen
2010-01-01
Sunspot groups observed by Royal Greenwich Observatory/US Air Force/NOAA from May 1874 to November 2008 and the Carte Synoptique solar filaments from March 1919 to December 1989 are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their...
SIMULATION OF CHARACTERISTICS OF DUAL-CORE PHASE SHIFTING TRANSFORMER
Kalinin L.P.
2014-04-01
Full Text Available The role and importance of phase shifting transformers are increased as a result of the further development of integrated power systems. This gives the rise to new technical solutions which entails the necessity of comparison of new developments with existing. The article consider the technical characteristics of dual-core phase shifting transformer which later will be used as a basis for comparison with other competing options and assess of their technical efficiency.
Differential phase shift of partially reflected radio waves.
Connolly, D. J.
1971-01-01
The addition of phase difference measurements to differential absorption experiments is shown to be both feasible and desirable. The phase information can provide a more sensitive measurement of electron density above about 75 km. The differential phase shift is only weakly dependent on collision frequency in this range, and so an accurate collision frequency profile is not a prerequisite. The differential phase shift and differential absorption measurements taken together can provide both electron density and collision frequency data from about 70 to 90 km.
Voltage-controlled attenuator with low phase shift
Lutes, G. F., Jr.
1980-01-01
Five megahertz RF (radiofrequency) signal attenuator utilizing RF quadrature hybrid, and optically viable-resistance load controlled by lamp circuit exhibits little phase shift. Circuit is designed to help distribute standard RF signal of controlled amplitude, and phase throughout complex of facilities could be useful in application to precision test equipment and communication electronics.
Phase-shifting real-time holography with photorefractive crystals
Gesualdi, M. R. R.; Soga, D.; Muramatsu, M.
2006-01-01
The phase-shifting interferometry techniques is a well-known technique which has been used with great success in optical profilers, micro-displacements, micro-deformations and others applications in Non-Destructive Test in basic research, engineering and biotechnology areas. This work presents our Advances in Phase-Shifting Real-Time Holography using Photorefractive Sillenite. And we have obtained quantitative results in many applications in measurements of micro-rotation, micro-displacements, deformation, surface contouring and whole lens wave-optics. The real-time holography process is doing using the photorefractive Bi 12SiO 20 crystal recording medium, where the phase-shifting 4-frames method for obtained the phase map, this was filtered by sin/cos filter and was applied the unwrapping process. The experimental results agree with the expected one in these applications and with promises potentialities of this method for studies with in situ visualization, monitoring and analysis.
Crosstalk Cancellation for a Simultaneous Phase Shifting Interferometer
Olczak, Eugene (Inventor)
2014-01-01
A method of minimizing fringe print-through in a phase-shifting interferometer, includes the steps of: (a) determining multiple transfer functions of pixels in the phase-shifting interferometer; (b) computing a crosstalk term for each transfer function; and (c) displaying, to a user, a phase-difference map using the crosstalk terms computed in step (b). Determining a transfer function in step (a) includes measuring intensities of a reference beam and a test beam at the pixels, and measuring an optical path difference between the reference beam and the test beam at the pixels. Computing crosstalk terms in step (b) includes computing an N-dimensional vector, where N corresponds to the number of transfer functions, and the N-dimensional vector is obtained by minimizing a variance of a modulation function in phase shifted images.
Peripheral Nucleon-Nucleon Phase Shifts and Chiral Symmetry
Kaiser, N; Weise, W
1997-01-01
Within the one-loop approximation of baryon chiral perturbation theory we calculate all one-pion and two-pion exchange contributions to the nucleon-nucleon interaction. In fact we construct the elastic NN-scattering amplitude up to and including third order in small momenta. The phase shifts with orbital angular momentum $L\\geq2 $ and the mixing angles with $J\\geq2$ are given parameterfree and thus allow for a detailed test of chiral symmetry in the two-nucleon system. We find that for the D-waves the $2\\pi$-exchange corrections are too large as compared with empirical phase shifts, signaling the increasing importance of shorter range effects in lower partial waves. For higher partial waves, especially for G-waves, the model independent $2\\pi$-exchange corrections bring the chiral prediction close to empirical NN phase shifts. We propose to use the chiral NN phase shifts with $L\\geq 3$ as input in a future phase shift analysis. Furthermore, we compute the irreducible two-pion exchange NN-potentials in coordin...
Characterization of optical quantum circuits using resonant phase shifts
Poot, Menno
2016-01-01
We demonstrate that important information about linear optical circuits can be obtained through the phase shift induced by integrated optical resonators. As a proof of principle, the phase of an unbalanced Mach-Zehnder interferometer is determined. Then the method is applied to a complex optical circuit designed for linear optical quantum computation. In this controlled-NOT gate with qubit initialization and tomography stages, the relative phases are determined as well as the coupling ratios of its directional couplers.
Broadband nanoelectromechanical phase shifting of light on a chip
Poot, Menno; Tang, Hong X.
2013-01-01
We demonstrate an optomechanical phase shifter. By electrostatically deflecting the nanofabricated mechanical structure, the effective index of a nearby waveguide is changed and the resulting phase shift is measured using an integrated Mach-Zehnder interferometer. Comparing to thermo-optical phase shifters, our device does not consume power in static operation and also it can operate over large frequency, wavelength, and power ranges. Operation in the MHz range and sub-$\\mu$s pulses are demon...
Precise determination of lattice phase shifts and mixing angles
Lu, Bing-Nan; Lähde, Timo A.; Lee, Dean; Meißner, Ulf-G.
2016-09-01
We introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles for all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.
In-plane displacement measurement using optical vortex phase shifting.
Sun, Haibin; Wang, Xinghai; Sun, Ping
2016-07-20
In this paper, we propose a new method for in-plane displacement measurement by application of phase shifting based on an optical vortex. The phase shifts are obtained by displaying computer-generated fork holograms on the screen of a liquid-crystal spatial light modulator (LC-SLM). Furthermore, the vortex beam that is generated by the LC-SLM can be used as a reference light in the experiment. Eight speckle patterns with phase-shift increments of 0, π/2, π, and 3π/2 were captured by a CCD camera before and after the deformation. The displacement of the deformed object was obtained by unwrapping. Experimental results demonstrated the efficacy of the proposed method for in-plane displacement measurement. PMID:27463914
Precise determination of lattice phase shifts and mixing angles
Lu, Bing-Nan; Lee, Dean; Meißner, Ulf-G
2015-01-01
We introduce a general method for determining phase shifts and mixing angles on the lattice with greater precision than existing methods. The approach starts with angular momentum projection on the lattice wave functions in order to construct lattice radial wave functions. We then impose spherical wall boundaries together with an adjustable auxiliary potential to determine phase shifts at arbitrary energy. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance in order to extract phase shifts and mixing angles from the complex-valued wave functions. We benchmark the method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component, and find that scattering parameters can be extracted precisely for all angular momenta and energies. We discuss the application of the method to ab initio lattice Monte Carlo studies.
An efficient phase-shifting scheme for bolometric additive interferometry
Charlassier, R; Bréelle, É; Ghribi, A; Giraud-Héraud, Y; Kaplan, J; Piat, M; Prêle, D
2008-01-01
Context: Most upcoming CMB polarization experiments will use direct imaging to search for the primordial gravitational waves through the B-modes. Bolometric interferometry is an appealing alternative to direct imaging that combines the advantages of interferometry in terms of systematic effects handling and those of bolometric detectors in terms of sensitivity. Aims: We calculate the signal from a bolometric interferometer in order to investigate its sensitivity to the Stokes parameters paying particular attention to the choice of the phase-shifting scheme applied to the input channels in order to modulate the signal. Methods: The signal is expressed as a linear combination of the Stokes parameter visibilities whose coefficients are functions of the phase-shifts. Results: We show that the signal to noise ratio on the reconstructed visibilities can be maximized provided the fact that the phase-shifting scheme is chosen in a particular way called coherent summation of equivalent baselines. As a result, a bolome...
Improving resolution of superlens lithography by phase-shifting mask
Yao, Na; Lai, Zian; Fang, Liang; Wang, Changtao; Feng, Qin; Zhao, Zheyu; Luo, Xiangang
2011-08-01
We propose to apply phase-shifting mask (PSM) to superlens lithography to improve its resolution. The PSM comprises of chromium slits alternatively filled by Ag and PMMA. The pi-phase shift is induced whereas their transmittance of electric intensity is almost equal for two neighboring slits. The destructive interference between two slits has greatly improved the spatial resolution and image fidelity. For representative configurations of superlens lithography, FDTD numerical simulations demonstrate that two slits with center-to-center distance d = 35 nm (~λ/10) can be resolved in PSM design, compared to 60 nm (~λ/6) without the PSM.
Anomalous phase shift in a twisted quantum loop
Taira, Hisao [Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Shima, Hiroyuki, E-mail: taira@eng.hokudai.ac.j [Department of Applied Mathematics 3, LaCaN, Universitat Politecnica de Catalunya (UPC), Barcelona 08034 (Spain)
2010-09-03
The coherent motion of electrons in a twisted quantum ring is considered to explore the effect of torsion inherent to the ring. Internal torsion of the ring composed of helical atomic configuration yields a non-trivial quantum phase shift in the electrons' eigenstates. This torsion-induced phase shift causes novel kinds of persistent current flow and an Aharonov-Bohm-like conductance oscillation. The two phenomena can occur even when no magnetic flux penetrates inside the twisted ring, thus being in complete contrast with the counterparts observed in untwisted rings.
Anomalous phase shift in a twisted quantum loop
The coherent motion of electrons in a twisted quantum ring is considered to explore the effect of torsion inherent to the ring. Internal torsion of the ring composed of helical atomic configuration yields a non-trivial quantum phase shift in the electrons' eigenstates. This torsion-induced phase shift causes novel kinds of persistent current flow and an Aharonov-Bohm-like conductance oscillation. The two phenomena can occur even when no magnetic flux penetrates inside the twisted ring, thus being in complete contrast with the counterparts observed in untwisted rings.
The Phase Shifts of the Paired Wings of Butterfly Diagrams
Li, Kejun; Feng, Wen
2010-01-01
Sunspot groups observed by Royal Greenwich Observatory/US Air Force/NOAA from May 1874 to November 2008 and the Carte Synoptique solar filaments from March 1919 to December 1989 are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, making the paired wings just and only keep the phase relationship between the northern and southern hemispherical solar activity strengths, but a relative phase shift between the paired wings of a butterfly diagram should bring about an almost same relative phase shift of hemis...
Phase shifts of the paired wings of butterfly diagrams
Ke-Jun Li; Hong-Fei Liang; Wen Feng
2010-01-01
Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities.Latitudinal migration of sunspot groups(or filaments)does asynchronously occur in the northern and southern hemispheres,and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle,making the paired wings spatially asymmetrical on the solar equator.It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle,demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths,as well as a relative phase shift between the paired wings of a butterfly diagram,which should bring about almost the same relative phase shift of hemispheric solar activity strength.
Phase shifts of the paired wings of butterfly diagrams
Li, Ke-Jun; Liang, Hong-Fei; Feng, Wen
2010-11-01
Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths, as well as a relative phase shift between the paired wings of a butterfly diagram, which should bring about almost the same relative phase shift of hemispheric solar activity strength.
Phase shifts of the paired wings of butterfly diagrams
Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths, as well as a relative phase shift between the paired wings of a butterfly diagram, which should bring about almost the same relative phase shift of hemispheric solar activity strength. (research papers)
AC system stabilization via phase shift transformer with thyristor commutation
Oliveira, Jose Carlos de; Guimaraes, Geraldo Caixeta; Moraes, Adelio Jose [Uberlandia Univ., MG (Brazil); Abreu, Jose Policarpo G. de [Escola Federal de Engenharia de Itajuba, MG (Brazil); Oliveira, Edimar Jose de [Juiz de Fora Univ., MG (Brazil)
1994-12-31
This article aims to present initially the constructive and operative forms of a phase-shift autotransformer which provides both magnitude and phase angle change through thyristor commutation, including a technic to reduce the number of thyristors. Following, it is proposed a control system to make such equipment an efficient AC system stabilizing tool. It is presented some simulation results to show the operation of this transformer in an electrical system. (author) 3 refs., 11 figs., 3 tabs.
Singular value demodulation of phase-shifted holograms
Lopes, Fernando
2015-01-01
We report on phase-shifted holographic interferogram demodulation by singular value decomposition. Numerical processing of optically-acquired interferograms over several modulation periods was performed in two steps : 1- rendering of off-axis complex-valued holograms by Fresnel transformation of the interferograms; 2- eigenvalue spectrum assessment of the lag-covariance matrix of hologram pixels. Experimental results in low-light recording conditions were compared with demodulation by Fourier analysis, in the presence of random phase drifts.
Heterodyne phase shift diagnostic for measuring atomic vapor density
We describe a technique for atomic density measurements. We generate and recombine frequency shifted laser beams producing beat signals on reference and signal detectors. Opacity in the signal detector leg is proportional to the phase difference between detector signals. 4 refs., 2 figs
Group-theoretical derivation of Aharonov-Bohm phase shifts
Hagen, C. R. [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627-0171 (United States)
2013-02-15
The phase shifts of the Aharonov-Bohm effect are generally determined by means of the partial wave decomposition of the underlying Schroedinger equation. It is shown here that they readily emerge from an o(2,1) calculation of the energy levels employing an added harmonic oscillator potential which discretizes the spectrum.
Polarization-induced phase shift of ultrafast photocurrents
Pierz K.
2013-03-01
Full Text Available Shift and injection currents are known to occur for linearly and circularly polarized optical excitations of semiconductors, respectively. Here, we show with room-temperature experiments that for excitation of discrete transitions the frequency dynamics of the coherent polarization changes this phase rule significantly.
Measurement and Calibration of PSD with Phase-shifting Interferometers
Lehan, J. P.
2008-01-01
We discuss the instrumental aspects affecting the measurement accuracy when determining PSD with phase shifting interferometers. These include the source coherence, optical train effects, and detector effects. The use of a carefully constructed calibration standard will also be discussed. We will end with a recommended measurement and data handling procedure.
Analytical Approach to Grid Operation With Phase Shifting Transformers
Verboomen, J.; Van Hertem, D.; Schavemaker, P.H.; King, W.L.; Belmans, R.
2008-01-01
Analytical expressions are derived to gain insight in the operating principles of phase shifting transformers (PSTs) in a highly meshed grid. To this extent, the dc load flow algorithm is adapted to account for such devices. This leads to a linear expression for the relation between PST settings and
Cosmic impacts, cosmic catastrophes. II
Chapman, Clark R.; Morrison, David
1990-01-01
The role of extraterrestrial impacts in shaping the earth's history is discussed, arguing that cosmic impacts represent just one example of a general shift in thinking that has made the idea of catastrophes respectable in science. The origins of this view are presented and current catastrophic theory is discussed in the context of modern debate on the geological formation of the earth. Various conflicting theories are reviewed and prominent participants in the ongoing scientific controversy concerning catastrophism are introduced.
Xu, Xiaoqing; Wang, Yawei; Xu, Yuanyuan; Jin, Weifeng
2016-06-01
To efficiently promote the phase retrieval in quantitative phase imaging, a new approach of quantitative phase extraction is proposed based on two intensities with dual wavelength after filtering the corresponding dc terms for each wavelength, in which a special phase shift is used. In this approach, only the combination of the phase-shifting technique and subtraction procedures is needed, and no additional algorithms are required. The thickness of the phase object can be achieved from the phase image, which is related to the synthetic beat wavelength. The feasibility of this method is verified by the simulated experiments of the optically transparent objects. PMID:27244381
Differential-phase-shift quantum key distribution using coherent light
Differential-phase-shift quantum key distribution based on two nonorthogonal states is described. A weak coherent pulse train is sent from Alice to Bob, in which the phase of each pulse is randomly modulated by {0,π}. Bob measures the differential phase by a one-bit delay circuit. The system has a simple configuration without the need for an interferometer and a bright reference pulse in Alice's site, unlike the conventional QKD system based on two nonorthogonal states, and has an advantage of improved communication efficiency. The principle of the operation is successfully demonstrated in experiments
Entanglement in quantum catastrophes
Emary, C; Brandes, T; Emary, Clive; Lambert, Neill; Brandes, Tobias
2005-01-01
We classify entanglement singularities for various two-mode bosonic systems in terms of catastrophe theory. Employing an abstract phase-space representation, we obtain exact results in limiting cases for the entropy in cusp, butterfly, and two-dimensional catastrophes. We furthermore use numerical results to extract the scaling of the entropy with the non-linearity parameter, and discuss the role of mixing entropies in more complex systems.
Comparison of phase-shifted and level-shifted PWM in the modular multilevel converter
Darus, Rosheila; Konstantinou, Georgios; Pou Félix, Josep; Ceballos Recio, Salvador; Agelidis, Vassilios
2014-01-01
This paper reports a comparison study of different carrier-based PWM techniques applied to the modular multilevel converter. Phase-disposition PWM (PD-PWM) and phase-shifted pulse-width modulation (PS-PWM) with non-interleaving and interleaving are considered in this study. In PS-PWM, two cases are evaluated. In the first case, the particular SMs that have to be activated/deactivated are defined by a voltage balancing algorithm, which is the same one implemented in PD-PWM. In addition, an alg...
Properties of length-apodized phase-shifted lpgs operating at the phase matching turning point
James, Stephen W.; Topliss, Stephen M.; Tatam, Ralph P.
2012-01-01
The characteristics of length-apodized phase-shifted fiber optic long period gratings with full and partial nanostructured coatings have been explored theoretically and experimentally. The twin rejection bands that are characteristic of length-apodized phase-shifted long period gratings are studied for a long period grating (LPG) operating at the phase matching turning point. When one half of the length of the LPG is coated, complex bandgap like structure appears within the ...
Kevan B. Moffett
2015-08-01
Full Text Available Multiple stable states are established in coastal tidal wetlands (marshes, mangroves, deltas, seagrasses by ecological, hydrological, and geomorphological feedbacks. Catastrophic shifts between states can be induced by gradual environmental change or by disturbance events. These feedbacks and outcomes are key to the sustainability and resilience of vegetated coastlines, especially as modulated by human activity, sea level rise, and climate change. Whereas multiple stable state theory has been invoked to model salt marsh responses to sediment supply and sea level change, there has been comparatively little empirical verification of the theory for salt marshes or other coastal wetlands. Especially lacking is long-term evidence documenting if or how stable states are established and maintained at ecosystem scales. Laboratory and field-plot studies are informative, but of necessarily limited spatial and temporal scope. For the purposes of long-term, coastal-scale monitoring, remote sensing is the best viable option. This review summarizes the above topics and highlights the emerging promise and challenges of using remote sensing-based analyses to validate coastal wetland dynamic state theories. This significant opportunity is further framed by a proposed list of scientific advances needed to more thoroughly develop the field.
Larsen, L. G.; Harvey, J. W.
2010-12-01
to the dominant flow direction emerged, which mimics the patterned, flow-parallel topography found in the Florida Everglades. Sediment redistribution and differential peat accretion feedbacks constitute the first description of a viable mechanism for formation of this ecologically important landscape structure and provide guidance for restoration efforts. We show that because of vegetative resistance to flow, this patterned landscape structure is prone to shift to an alternate stable state, dominated by a monoculture of emergent vegetation, under changes in surface-water flow velocity or water level. Results suggest that twentieth-century degradation of the Everglades ridge and slough landscape is attributable primarily to changes in water level and, secondarily, to diminished surface-water flow velocities. Because hydrology-vegetation-sediment feedbacks cause hysteresis in landscape evolution trajectories, restoration of historic flow velocities and water levels will not necessarily produce a return to historic landscape structure. Understanding the dynamics of sediment redistribution and differential peat accretion feedbacks will be essential in predicting how wetlands worldwide will respond to changes in climate or water management.
Harmonic Oscillator Trap and the Phase-Shift Approximation
Köhler, H S
2016-01-01
The energy-spectrum of two point-like particles interacting in a 3-D isotropic Harmonic Oscillator (H.O.) trap is related to the free scattering phase-shifts $\\delta$ of the particles by a formula first published by Busch et al. It is here used to find an expression for the \\it shift \\rm of the energy levels, caused by the interaction, rather than the perturbed spectrum itself. In the limit of high energy (large quantum number $n$ of the H.O.) this shift is shown to be given by $-2\\frac{\\delta}{\\pi}$, also valid in the limit of infinite as well as zero scattering length at all H.O. energies. Numerical investigation shows that the shifts differ from the exact result of Busch et al, by less than $<\\frac{1}{2}\\%$ except for $n=0$ when it can be as large as $\\approx 2.5\\%$. This approximation for the energy-shift is well known from another exactly solvable model, namely that of two particles interacting in a spherical infinite square-well trap (or box) of radius $R$ in the limit $R\\rightarrow \\infty$, and/or i...
Auto-compensating differential phase shift quantum key distribution
Han, X; Zhou, C; Zeng, H; Han, Xiaohong; Wu, Guang; Zhou, Chunyuan; Zeng, Heping
2005-01-01
We propose an auto-compensating differential phase shift scheme for quantum key distribution with a high key-creation efficiency, which skillfully makes use of automatic alignment of the photon polarization states in optical fiber with modified Michelson interferometers composed of unequal arms with Faraday mirrors at the ends. The Faraday-mirrors-based Michelson interferometers not only function as pulse splitters, but also enable inherent compensation of polarization mode dispersion in the optic-fiber paths at both Alice's and Bob's sites. The sequential pulses encoded by differential phase shifts pass through the quantum channel with the same polarization states, resulting in a stable key distribution immune to the polarization mode dispersion in the quantum channel. Such a system features perfect stability and higher key creation efficiency over traditional schemes.
Does a phase shift occur in an AC arc?
Steinmetz, Charles Proteus
2016-01-01
This is a translation of a classic paper in German showing that the apparent power in an AC arc is larger than the active power although no phase shift exists between the voltage and the current, indicating that the reactive power vanishes. The phenomenon studied in this paper gave rise to a variety of mutually conflicting "power triangle" models relating the active, reactive, and apparent powers P, Q, and S whose merits are still under debate today.
High sensitivity Moire interferometry with phase shifting at nano resolution
Chen, Bicheng
Due to insatiate demand for miniaturization of electronics, there is a need for new techniques to measure full-field strain at micro-scale structures. In addition, Micro-Electronic-Mechanical-Systems (MEMS) require a high resolution and high sensitivity material property characterization technique. In this study, a theoretic model for a high sensitivity Moire Interferometry (MI) for measuring nano-scale strain field has been developed. The study also includes the application of the proposed measurement technique for the study of reliability of next generation nano-electronics/power electronics. The study includes both theoretical and experimental work. In the theoretical part, a far field modeling of a Moire Interferometer (MI) using the mode decomposition method is proposed according to the analytical formulation from the scalar diffraction theory. The wave propagation within the defined MI far field domain is solved analytically for a single frequency surface relieved grating structure following the Rayleigh-Sommerfeld formulation under the paraxial approximation. It is shown that the far-field electrical field and the intensity interferogram can be calculated using the mode decomposition method. Furthermore, the near-field (propagation distance electromagnetic (EM) theory; and the EM fields are simulated in a few microns region above the surface of the diffraction grating. The study shows that there is a strong correlation (correlation factor R = 0.869) of spatial frequency response between EM field and strain field at the nanoscale. Experimentally, a 164 nm/pixel spatial resolution Moire Interferometer with automated full strain field calculation is proposed. Accurate full strain field maps are generated automatically by a combination of phase shifting technique (temporal data redundancy) and Continuous Wavelet Transform (CWT) (spatial data redundancy). A thermal experiment on BGA packaging is used to demonstrate the advantages of the proposed new design. To
Vector Modulator for Phase Shifting in Passive Beamforming Wireless Systems
P.Sampath,
2010-05-01
Full Text Available This paper proposes vector modulator for changing the phase of a signal in passive beamforming system. Vector modulator is used to perform a phase shift function with added benefit of amplitude control. It is used to improve the directivity of RF waves in Wireless systems. Vector modulator is implemented for a center frequency of 902.5 MHz. The simulation is performed for individual blocks of the vector modulator and for vector modulator with JFET and MOSFET as controlling device in the variable attenuator of the vector modulator.
Two-wavelength phase shift interferometry to characterize ballistic features
Pagano, Glenn W.; Mann, Christopher J.
2014-05-01
We apply two-wavelength phase shifting interferometry to generate 3D surface profile maps of spent bullet cartridge cases. From the captured interferograms, an optimized algorithm was used to calculate a phase profile from which a precise digital surface map of the cartridge casing may be produced. This 3D surface profile is used to enhance a firearms examiner's ability to uniquely identify distinct features or toolmarks imprinted on the casing when the weapon is fired. These features play a key role in the matching process of ballistic forensic examination.
An atomic clockwork using phase dependent energy shifts
De Munshi, D; Mukherjee, M
2011-01-01
A frequency stabilized laser referenced to an unperturbed atomic two level system acts as the most accurate clock with femtosecond clock ticks. For any meaningful use, a Femtosecond Laser Frequency Comb (FLFC) is used to transfer the atomic clock accuracy to electronically countable nanosecond clock ticks. Here we propose an alternative clockwork based on the phenomenon that when an atomic system is slowly evolved in a cyclic path, the atomic energy levels gather some phase called the geometric phase. This geometric phase dependent energy shift has been used here to couple the two frequency regimes in a phase coherent manner. It has also been shown that such a technique can be implemented experimentally, bypassing the highly involved setup of a FLFC.
Phase error analysis and compensation for phase shifting profilometry with projector defocusing.
Zheng, Dongliang; Da, Feipeng; Kemao, Qian; Seah, Hock Soon
2016-07-20
Phase shifting profilometry (PSP) using binary fringe patterns with projector defocusing is promising for high-speed 3D shape measurement. To obtain a high-quality phase, the projector usually requires a high defocusing level, which leads to a drastic fall in fringe contrast. Due to its convenience and high speed, PSP using squared binary patterns with small phase shifting algorithms and slight defocusing is highly desirable. In this paper, the phase accuracies of the classical phase shifting algorithms are analyzed theoretically, and then compared using both simulation and experiment. We also adapt two algorithms for PSP using squared binary patterns, which include a Hilbert three-step PSP and a double three-step PSP. Both algorithms can increase phase accuracy, with the latter featuring additional invalid point detection. The adapted algorithms are also compared with the classical algorithms. Based on our analysis and comparison results, proper algorithm selection can be easily made according to the practical requirement. PMID:27463929
Bloemhof, E E
2010-07-15
Surface measurements of precision optics are commonly made with commercially available phase-shifting Fizeau interferometers that provide data relative to flat or spherical reference surfaces whose unknown errors are comparable to those of the surface being tested. A number of ingenious techniques provide surface measurements that are "absolute," rather than relative to any reference surface. Generally, these techniques require numerous measurements and the introduction of additional surfaces, but still yield absolute information only along certain lines over the surface of interest. A very simple alternative is presented here, in which no additional optics are required beyond the surface under test and the transmission flat (or sphere) defining the interferometric reference surface. The optic under test is measured in three positions, two of which have small lateral shifts along orthogonal directions, nominally comparable to the transverse spatial resolution of the interferometer. The phase structure in the reference surface then cancels out when these measurements are subtracted in pairs, providing a grid of absolute surface height differences between neighboring resolution elements of the surface under test. The full absolute surface, apart from overall phase and tip/tilt, is then recovered by standard wavefront reconstruction techniques. PMID:20634825
Optoelectronic information encryption with phase-shifting interferometry.
Tajahuerce, E; Matoba, O; Verrall, S C; Javidi, B
2000-05-10
A technique that combines the high speed and the high security of optical encryption with the advantages of electronic transmission, storage, and decryption is introduced. Digital phase-shifting interferometry is used for efficient recording of phase and amplitude information with an intensity recording device. The encryption is performed by use of two random phase codes, one in the object plane and another in the Fresnel domain, providing high security in the encrypted image and a key with many degrees of freedom. We describe how our technique can be adapted to encrypt either the Fraunhofer or the Fresnel diffraction pattern of the input. Electronic decryption can be performed with a one-step fast Fourier transform reconstruction procedure. Experimental results for both systems including a lensless setup are shown. PMID:18345139
Impact of relative phase shift on inward turbulent spreading
Ma, C. H.; Xi, P. W. [Fusion Simulation Center, School of Physics, Peking University, Beijing (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xia, T. Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2015-01-15
The relative cross-phase between density, temperature, and potential perturbations plays a major role in turbulent spreading and transport. Nonlinear Landau-Fluid simulations show that the electron wave-particle resonances provide a relatively strong parallel damping effect on the electron temperature perturbation and can induce a relative cross-phase shift of smaller than π∕2 angle between E × B velocity and the electron temperature perturbation for large electron temperature gradient, which yields a large spreading for electron. The relative phase for ions is about π∕2 and has no turbulent spreading effect on it. The inward turbulent spreading stops at the position where the radial turbulent correlation length is shorter than the magnetic surface spacing. The temperature pedestal height determines the energy loss due to the turbulent spreading.
Application of ANFIS to Phase Estimation for Multiple Phase Shift Keying
Drake, Jeffrey T.; Prasad, Nadipuram R.
2000-01-01
The paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for estimating phase in Multiple Phase Shift Keying (M-PSK) modulation. A brief overview of communications phase estimation is provided. The modeling of both general open-loop, and closed-loop phase estimation schemes for M-PSK symbols with unknown structure are discussed. Preliminary performance results from simulation of the above schemes are presented.
Joint Multilevel Turbo Equalization and Continuous Phase Frequency Shift Keying
Odabasioglu Niyazi
2008-01-01
Full Text Available A novel type of turbo coded modulation scheme, called multilevel turbo coded-continuous phase frequency shift keying (MLTC-CPFSK, is designed to improve the overall bit error rate (BER and bandwidth efficiency. Then, this scheme is combined with a new double decision feedback equalizer (DDFE to remove the interference and to enhance BER performance for the intersymbol interference (ISI channels. The entire communication scheme is called multilevel turbo equalization-continuous phase frequency shift keying (MLTEQ-CPFSK. In these schemes, parallel input data sequences are encoded using the multilevel scheme and mapped to CPFSK signals to obtain a powerful code with phase continuity over the air. The performances of both MLTC-CPFSK and MLTEQ-CPFSK systems were simulated over nonfrequency and frequency-selective channels, respectively. The superiority of the two level turbo codes with 4CPFSK modulation is shown against the trellis-coded 4CPFSK, multilevel convolutional coded 4CPFSK, and TTCM schemes. Finally, the bit error rate curve of MLTEQ-CPFSK system over Proakis B channel is depicted and ISI cancellation performance of DDFE equalizer is shown against linear and decision feedback equalizers
The phase shift method for studying nonlinear acoustics in a soil
In this paper, a phase shift method for studying nonlinear acoustic behaviors of a soil is described. The method uses a phase-lock-in technique to measure the phase shift caused by increments in the amplitude of an excitation. The measured phase shift as a function of dynamic strain amplitude is use...
Spectral Optical Coherence Tomography Using Two-Phase Shifting Method
MA Zhen-He; Ruikang K. Wang; ZHANG Fan; YAO Jian-Quan
2005-01-01
@@ A two-phase shifting method is introduced to eliminate the strong autocorrelation noise inherent in spectral optical coherence tomography and to mitigate the unwanted auto- and cross-coherent terms introduced by the reflections from various optical interfaces present in the system. Furthermore, this method is also able to amplify the desired signal by a factor of 2. The feasibility of such a method is demonstrated using a mirror-like object. An intact porcine cornea tissue in vitro is also used to show the potential of this method for biological imaging.
NN Scattering Phase Shifts in a Chiral Constituent Quark Model
Bartz, D.; Stancu, Fl
2000-01-01
We study the nucleon-nucleon interaction within a chiral constituent quark model which reproduces succesfully the baryon spectra. We calculate the 3S1 and 1S0 phase shifts by using the resonating group method. They clearly indicate the presence of a strong repulsive interaction at short distance, due to the spin-flavor symmetry of the quark-quark interaction and of the quark interchange between the two interacting nucleons. A sigma-exchange quark-quark interaction, providing a medium-range at...
Full Range ZVS Phase Shifted Power Converter with "Poles"
Bordry, Frederick
1998-01-01
The study and development of a quasi-resonant power converter, with Full Bridge - PhaseShifted - Pulse Width Modulation (FB-PS-PWM) topology is presented. The originality of thepaper is the adding of resonant networks (poles) on each leg to get soft commutation (ZeroVoltage Switching ZVS) over the full range of the output current. The design of the polestructure and the component ratings are described. Simulations and a [1000A-15V] converterprototype, using dual-thyristor, validate the theoretical studies.
The Use of the Scattering Phase Shift in Resonance Physics
Nowakowski, M
2004-01-01
The scattering phase shift encodes a good amount of physical information which can be used to study resonances from scattering data. Among others, it can be used to calculate the continuum density of states and the collision time in a resonant process. Whereas the first information can be employed to examine the evolution of unstable states directly from scattering data, the second one serves as a tool to detect resonances and their properties. We demonstrate both methods concentrating in the latter case on 'exotic' resonances in pi-pi and pi-K scattering.
Budyko, Mikhail
1999-05-01
Climate catastrophes, which many times occurred in the geological past, caused the extinction of large or small populations of animals and plants. Changes in the terrestrial and marine biota caused by the catastrophic climate changes undoubtedly resulted in considerable fluctuations in global carbon cycle and atmospheric gas composition. Primarily, carbon dioxide and other greenhouse gas contents were affected. The study of these catastrophes allows a conclusion that climate system is very sensitive to relatively small changes in climate-forcing factors (transparency of the atmosphere, changes in large glaciations, etc.). It is important to take this conclusion into account while estimating the possible consequences of now occurring anthropogenic warming caused by the increase in greenhouse gas concentration in the atmosphere.
Jia, Chuanwu; Chang, Jun; Wang, Fupeng; Jiang, Hao; Zhu, Cunguang; Wang, Pengpeng
2016-06-01
A phase shift demodulation technique based on subtraction capable of measuring 0.03 phase degree limit between sinusoidal signals is presented in this paper. A self-gain module and a practical subtracter act the kernel parts of the phase shift demodulation system. Electric signals in different phases are used to verify the performance of the system. In addition, a new designed optical source, laser fiber differential source (LFDS), capable of generating mini phase is used to further verify the system reliability. R-square of 0.99997 in electric signals and R-square of 0.99877 in LFDS are achieved, and 0.03 degree measurement limit is realized in experiments. Furthermore, the phase shift demodulation system is applied to the fluorescence phase based oxygen sensors to realize the fundamental function. The experimental results reveal that a good repetition and better than 0.02% oxygen concentration measurement accuracy are realized. In addition, the phase shift demodulation system can be easily integrated to other applications.
Latychevskaia, Tatiana
2015-01-01
We address the problem of reconstructing phase-shifting objects from their single shot in-line holograms. We show that a phase-shifting object cannot be reliably recovered from its in-line hologram by conventional reconstruction routines but that an iterative reconstruction should be applied. We demonstrate examples of simulated in-line holograms of objects with the following properties: purely absorbing, both absorbing and phase shifting, and strong phase-shifting. We investigate the effects of noise and interference resolution in holograms on the reconstruction results and discuss details of an optimal iterative procedure to quantitatively recover the correct absorbing and phase-shifting properties of the object. We also review previously published reconstructions of experimental holograms and summarize the optimal parameters for retrieval of phase-shifting objects from their in-line holograms.
Suzuki, Takahiro; Aizawa, Shinji; Tanigaki, Toshiaki [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Ota, Keishin, E-mail: ota@microphase.co.jp [Microphase Co., Ltd., Onigakubo 1147-9, Tsukuba, Ibaragi 300-2651 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012 (Japan); Tonomura, Akira [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Okinawa Institute of Science and Technology, Graduate University, Kunigami, Okinawa 904-0495 (Japan); Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)
2012-07-15
We found that the accuracy of the phase observation in phase-shifting electron holography is strongly restricted by time variations of mean intensity and contrast of the holograms. A modified method was developed for correcting these variations. Experimental results demonstrated that the modification enabled us to acquire a large number of holograms, and as a result, the accuracy of the phase observation has been improved by a factor of 5. -- Highlights: Black-Right-Pointing-Pointer A modified phase-shifting electron holography was proposed. Black-Right-Pointing-Pointer The time variation of mean intensity and contrast of holograms were corrected. Black-Right-Pointing-Pointer These corrections lead to a great improvement of the resultant phase accuracy. Black-Right-Pointing-Pointer A phase accuracy of about 1/4000 rad was achieved from experimental results.
Elad Arbel; Alberto Bilenca
2015-01-01
Conventional low-magnification phase-contrast microscopy is an invaluable, yet a qualitative, imaging tool for the interrogation of transparent objects over a mesoscopic millimeter-scale field-of-view in physical and biological settings. Here, we demonstrate that introducing a compact, unbalanced phase-shifting Michelson interferometer into a standard reflected brightfield microscope equipped with low-power infinity-corrected objectives and white light illumination forms a phase mesoscope tha...
Kristensen, Thomas Bjørnsten
2012-01-01
The article discusses specific aesthetic strategies for articulating and describing the catastrophic event of 9/11 by focusing on its auditory aspects. This is done through a reading of the American media- and sound artist Stephen Vitiello’s work and novelist Don DeLillo’s Falling Man....
Whicker, Jeffrey J [Los Alamos National Laboratory; Field, Jason P [UNIV OF ARIZONA; Breshears, David D [UNIV OF ARIZONA
2008-01-01
Aeolian processes are a fundamental driver of earth surface dynamics, yet the importance of aeolian processes in a broader geosciences context may be overshadowed by an unbalanced emphasis on fluvial processes. Here we wish to highlight that aeolian and fluvial processes need to be considered in concert relative to total erosion and to potential interactions, that relative dominance and sensitivity to disturbance vary with mean annual precipitation, and that there are important scale-dependencies associated with aeolian-fluvial interactions. We build on previous literature to present relevant conceptual syntheses highlighting these issues. We then highlight the relative investments that have been made in aeolian research on dust emission and management relative to that in fluvial research on sediment production. Literature searches highlight that aeolian processes are greatly understudied relative to fluvial processes when considering total erosion in different environmental settings. Notably, within the USA, aeolian research was triggered by the Dust Bowl catastrophe of the 1930s, but the resultant research agencies have shifted to almost completely focusing on fluvial processes, based on number of remaining research stations and on monetary investments in control measures. However, numerous research issues associated with intensification of land use and climate change impacts require a rapid ramping up in aeolian research that improves information about aeolian processes relative to fluvial processes, which could herald a post-Dust Bowl Phoenix phase in which aeolian processes are recognized as broadly critical to geo- and environmental sciences.
Computer-Generated Holograms for Recording Multiple-Phase-Shifte Fiber Bragg Grating Corrugations
无
2002-01-01
A new method of fabricating multiple-phase-shifte fiber Bragg grating by CGHs is proposed. The authors present an example of such CGH by which a section multiple-phase-shifte fiber Bragg grating with two π/2 phase shifts and grating length L=21.2 μm was produced. The authors describe the production process and finally give an example of a reconstructed fiber grating with two phase-shifts.
Rapid extraction of the phase shift of the cold-atom interferometer via phase demodulation
Cheng, Bing; Wang, Zhao-Ying; Xu, Ao-Peng; Wang, Qi-Yu; Lin, Qiang
2015-11-01
Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping the phase shift for each T with a series of measurements, the extraction time is limited by the protocol of each T measurement, and therefore increases dramatically when doing fine mapping with a small step of T. Here we present a new method for rapid extraction of the phase shift via phase demodulation. By using this method, the systematic shifts can be mapped though the whole interference area. This method enables quick diagnostics of the potential cause of the phase shift in specific time. We demonstrate experimentally that this method is effective for the evaluation of the systematic errors of the cold atomic gravimeter. The systematic phase error induced by the quadratic Zeeman effect in the free-falling region is extracted by this method. The measured results correspond well with the theoretic prediction and also agree with the results obtained by the fringe fitting method for each T. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174249 and 61475139), the Ministry of Science and Technology of China (Grant No. 2011AA060504), the National Basic Research Program of China (Grant No. 2013CB329501), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2015FZA3002).
Low energy scattering phase shifts for meson-baryon systems
Detmold, William; Nicholson, Amy N.
2016-06-01
In this work, we calculate meson-baryon scattering phase shifts in four channels using lattice QCD methods. From a set of calculations at four volumes, corresponding to spatial sizes of 2, 2.5, 3, and 4 fm, and a pion mass of mπ˜390 MeV , we determine the scattering lengths and effective ranges for these systems at the corresponding quark masses. We also perform the calculation at a lighter quark mass, mπ˜230 MeV , on the largest volume. Using these determinations, along with those in previous work, we perform a chiral extrapolation of the scattering lengths to the physical point after correcting for the effective range contributions using the multivolume calculations performed at mπ˜390 MeV .
Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics
Griffin, DeVon W.; Marshall, Keneth L.
2002-11-01
The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal
Analysis of a novel phase-shifted soft switch converter
蒋志宏; 黄立培; 张义
2002-01-01
In this paper, on the basis of the phase-shifted controlled zero-voltage-switch (ZVS) full-bridge converter with pulse width modulation (PWM), a novel zero-voltage and zero-current switch (ZVZCS) PWM converter using a simple auxiliary circuit was designed. The ZVZCS soft switch is achieved by the resonance among the resisting electromagnetic deflection capacitor, the capacitor of the simple auxiliary network and the leakage inductor of transformer. There are no dissipation devices of the saturation inductor and the auxiliary switch in the converter, meantime the capacitor of the auxiliary circuit is also used to clamp the voltage of the rectifier, and there is no additional clamped circuit. There is no big circulating current in the converter, all the active and passive devices work on the condition of the low current and voltage stress, and the proposed converter has wide load range and small duty loss.
Phase shifting and phase retrieval with a fully automated laser diode system.
Rivera-Ortega, Uriel; Dirckx, Joris; Meneses-Fabian, Cruz
2015-11-20
A low-cost and fully automated process for phase-shifting interferometry (PSI) by continuously changing the input voltage of a laser diode (LD) under the scheme of an unbalanced Twyman-Green interferometer (TGI) setup is presented. The input signal of a LD is controlled by a data acquisition (NI-DAQ) device that allows it to change its wavelength according to its tunability features. The automation and data analysis will be done using LabVIEW in combination with MATLAB. The phase map is obtained using the Carré algorithm. Measurements of visibility and phase shift to verify the PSI requirements are shown. It is demonstrated with experimental results and statistical analysis that the phase retrieval can be successfully achieved without calibration and using minimal optical devices. PMID:26836554
Use of melatonin in circadian rhythm disorders and following phase shifts
Skene, DJ; Deacon, S; Arendt, J
1996-01-01
Following abrupt phase shifts (real or simulated time zone changes, night shift work) there is desynchronisation between the internal circadian rhythms (including melatonin) and the external environment with consequent disturbances in sleep, mood and performance. In humans the pineal hormone melatonin has phase-shifting and resynchronising properties with regard to a number of circadian rhythms. Suitably timed melatonin adrninstration hastened adaptation to phase shift and significantly impro...
Real-time microscopic phase-shifting profilometry.
Van der Jeught, Sam; Soons, Joris A M; Dirckx, Joris J J
2015-05-20
A real-time microscopic profilometry system based on digital fringe projection and parallel programming has been developed and experimentally tested. Structured light patterns are projected onto an object through one pathway of a stereoscopic operation microscope. The patterns are deformed by the shape of the object and are then recorded with a high-speed CCD camera placed in the other pathway of the microscope. As the optical pathways of both arms are separated and reach the same object point at a relative angle, the recorded patterns allow the full-field object height variations to be calculated and the three-dimensional shape to be reconstructed by employing standard triangulation techniques. Applying proper hardware triggering, the projector-camera system is synchronized to capture up to 120 unique deformed line patterns per second. Using standard four-step phase-shifting profilometry techniques and applying graphics processing unit programming for fast phase wrapping, scaling, and visualization, we demonstrate the capability of the proposed system to generate 30 microscopic height maps per second. This allows the qualitative depth perception of the stereomicroscope operator to be enhanced by live quantitative height measurements with depth resolutions in the micrometer range. PMID:26192534
Catastrophe medicine; Medecine de catastrophe
Lebreton, A. [Service Technique de l`Energie Electrique et des Grands Barrages (STEEGB), (France)
1996-12-31
The `Catastrophe Medicine` congress which took place in Amiens (France) in December 5 to 7 1996 was devoted to the assessment and management of risks and hazards in natural and artificial systems. The methods of risk evaluation and prevision were discussed in the context of dams accidents with the analysis of experience feedbacks and lessons gained from the organisation of emergency plans. Three round table conferences were devoted to the importance of psychological aspects during such major crises. (J.S.)
Kublitz, Anja
2013-01-01
Based on fieldwork among Palestinians in Denmark the article investigates the Palestinian temporality of Nakba that is equivalent to a time of security in the sense that it is concerned with existential threats and emergency action. The Arabic term Nakba literally means catastrophe and is in...... Palestinian national discourse used to designate the Arab-Israeli war of 1948, when more than half of the Palestinian population were expelled from their homeland – a reverse national myth about how Palestine failed to come into being. Yet, according to Palestinians in Denmark, the Nakba cannot be relegated...
Optimisation of Transmission Systems by use of Phase Shifting Transformers
Verboomen, J.
2008-10-13
In this thesis, transmission grids with PSTs (Phase Shifting Transformers) are investigated. In particular, the following goals are put forward: (a) The analysis and quantification of the impact of a PST on a meshed grid. This includes the development of models for the device; (b) The development of methods to obtain optimal coordination of several PSTs in a meshed grid. An objective function should be formulated, and an optimisation method must be adopted to solve the problem; and (c) The investigation of different strategies to use a PST. Chapter 2 gives a short overview of active power flow controlling devices. In chapter 3, a first step towards optimal PST coordination is taken. In chapter 4, metaheuristic optimisation methods are discussed. Chapter 5 introduces DC load flow approximations, leading to analytically closed equations that describe the relation between PST settings and active power flows. In chapter 6, some applications of the methods that are developed in earlier chapters are presented. Chapter 7 contains the conclusions of this thesis, as well as recommendations for future work.
Atmospheric Turbulence Compensation with Laser Phase Shifting Interferometry
Rabien, S; Genzel, R; Davies, R I; Ott, T
2006-01-01
Laser guide stars with adaptive optics allow astronomical image correction in the absence of a natural guide star. Single guide star systems with a star created in the earth's sodium layer can be used to correct the wavefront in the near infrared spectral regime for 8-m class telescopes. For possible future telescopes of larger sizes, or for correction at shorter wavelengths, the use of a single guide star is ultimately limited by focal anisoplanatism that arises from the finite height of the guide star. To overcome this limitation we propose to overlap coherently pulsed laser beams that are expanded over the full aperture of the telescope, traveling upwards along the same path which light from the astronomical object travels downwards. Imaging the scattered light from the resultant interference pattern with a camera gated to a certain height above the telescope, and using phase shifting interferometry we have found a method to retrieve the local wavefront gradients. By sensing the backscattered light from tw...
The fluctuations of background and contrast cause measurement errors in the phase-shifting technique. To extract the phase shifts from interferograms with background and contrast fluctuations, an iterative algorithm is represented. The phase shifts and wavefront phase are calculated in two individual steps with the least-squares method. The fluctuation factors are determined when the phase shifts are calculated, and the fluctuations are compensated when the wavefront phase is calculated. The advantage of the algorithm lies in its ability to extract phase shifts from interferograms with background and contrast fluctuations converging stably and rapidly. Simulations and experiments verify the effectiveness and reliability of the proposed algorithm. The convergence accuracy and speed are demonstrated by the simulation results. The experiment results show its ability for suppressing phase retrieval errors. (paper)
Phase shift effects for fluid conveying pipes with non-ideal supports
Dahl, Jonas; Thomsen, Jon Juel
2008-01-01
Vibrations of a fluid-conveying pipe with non-ideal supports are investigated with respect to phase shift effects. A numerical Galerkin approach is developed for this general problem, and the use of it exemplified with a investigation of phase shift effects from rotational damping at supports of a...... simply supported pipe. It is found that asymmetric viscous rotational damping at supports gives rise to phase shifts along the pipe which cannot be distinguished from phase shift from mass flow. This is of interest, e.g., for the development and troubleshooting of Coriolis flow meters....
A new method for measuring phase shift in heterodyne interferometric measurement
A new method for analysing the phase shift of heterodyne interferometric beat is developed. The phase shift is obtained directly from the change in the probe beat period without comparing with reference beat. According to this method an electric circuit system has been designed, combined with an HCN laser or microwave interferometer for the measurement of line-integrated electron density of plasma in Compact Helical System (CHS). The experimental results show that this method is effective. The minimum measurable phase shift is determined by the ratio of beat frequency to the counting clock frequency, and the maximum measurable phase shift is infinite in principle. (author)
Phase shifting interferometry using a spatial light modulator to measure optical thin films.
Villalobos-Mendoza, Brenda; Granados-Agustín, Fermín S; Aguirre-Aguirre, Daniel; Cornejo-Rodríguez, Alejandro
2015-09-10
This work describes a process for measuring thin film steps, using phase shifting interferometry (PSI). The phase shifts are applied only in the region where the thin film steps are located. The phase shift is achieved by displaying different gray levels on a spatial light modulator (SLM Holoeye LC2012) placed in one arm of a Twyman-Green (T-G) interferometer. Before measuring the thin film steps, it was necessary to quantify the phase shifts achieved with this SLM by measuring the fringe shifts in experimental interferograms. The phase shifts observed in the interference patterns were produced by displaying the different gray levels on the SLM one by one, from 0 to 255. The experimental interferograms and the thicknesses of the thin film steps were successfully quantified, proving that this method can be used to measure thin films by applying the PSI method only on the region occupied by them. PMID:26368976
Trujillo, Carlos; Doblas, Ana; Saavedra, Genaro; Martínez-Corral, Manuel; García-Sucerquia, Jorge
2016-04-01
The use of an electronically tunable lens (ETL) to produce controlled phase shifts in interferometric arrangements is shown. The performance of the ETL as a phase-shifting device is experimentally validated in phase-shifting digital holographic microscopy. Quantitative phase maps of a section of the thorax of a Drosophila melanogaster fly and of human red blood cells have been obtained using our proposal. The experimental results validate the possibility of using the ETL as a reliable phase-shifter device. PMID:27192250
Two phase extraction methods which are based separately on phase-stepping and shifting curve are mainly used in phase-sensitive imaging in gating interferometry to determine the x-ray phase shift induced by an object in the beam. In this paper, the authors perform a full comparative analysis and present the main virtues and limitations of these two methods according to the theoretical analysis of the grating interferometry. (general)
High-order inertial phase shifts for time-domain atom interferometers
Bongs, Kai; Launay, Romain; Kasevich, Mark A.
2002-01-01
High-order inertial phase shifts are calculated for time-domain atom interferometers. We obtain closed-form analytic expressions for these shifts in accelerometer, gyroscope, optical clock and photon recoil measurement configurations. Our analysis includes Coriolis, centrifugal, gravitational, and gravity gradient-induced forces. We identify new shifts which arise at levels relevant to current and planned experiments.
Asher, D. J.; Clube, S. V. M.; Napier, W. M.; Steel, D. I.
We review the theoretical and observational evidence that, on timescales relevant to mankind, the prime collision hazard is posed by temporally correlated impacts (coherent catastrophism, Δt ˜ 10 2-10 4 yr) rather than random ones (stochastic catastrophism, Δt ˜ 10 5-10 8 yr). The mechanism whereby coherent incursions into and through the terrestrial atmosphere occur is described as being the result of giant cometary bodies arriving in orbits with perihelia in the inner solar system. Hierarchical fragmentation of such large (100 km-plus) bodies — due to thermal stresses near perihelion, collisions in the asteroid belt, or passages through the Jovian Roche radius — results in numerous ˜kilometre-sized objects being left in short-period orbits, and appearing in telescopic searches as Apollo-type asteroids. Many more smaller objects, in the 10-100 metre size range and only recently observed, by the Spacewatch team, are expected to be in replenished clusters in particular orbits as a result of continuing disintegrations of large, differentiated, cometary objects. Gravitational perturbations by Jupiter bring these clusters around to have a node at 1 AU in a cyclic fashion, leading to impacts at certain times of year every few years during active periods lasting a few centuries, such periods being separated by intervals of a few millennia. Furthermore, fragmentations within the hierarchy result in significant bombardment commensurabilities ( Δt ˜ 10-10 2 yr) during active periods occurring at random intervals ( Δt ˜ 10 2-10 3 yr). It appears that the Earth has been subject to such impacts since the break-up of such a comet ˜2×10 4 years ago; currently we are not passing through a high-risk epoch, although some phenomena originating in the products of this break-up have been observed in the 20th century. This most recent hierarchical disintegration, associated with four well-known meteor showers and termed the Taurid Complex, is now recognized as resulting
Quantum phase shift of spatially confined de Broglie waves in gravitational field
A small change in momentum in the direction of motion and a corresponding change in the phase of the wave function follow the introduction of a transverse spatial constriction. It is shown that gravity significantly alters this phase shift
Experimental demonstration of 360 tunable RF phase shift using slow and fast light effects
Xue, Weiqi; Sales, Salvador; Capmany, Jose;
2009-01-01
A microwave photonic phase shifter realizing 360º phase shift over a RF bandwidth of more than 10 GHz is demonstrated using optical filtering assisted slow and fast light effects in a cascaded structure of semiconductor optical amplifiers.......A microwave photonic phase shifter realizing 360º phase shift over a RF bandwidth of more than 10 GHz is demonstrated using optical filtering assisted slow and fast light effects in a cascaded structure of semiconductor optical amplifiers....
Przemysław Czapliński
2015-01-01
Full Text Available The principal notion of the article–a “backward catastrophe”– stands for a catastrophe which occurs unseen until it becomes recognized and which broadens its destructive activity until it has been recognized. This concept in the article has been referred to the Shoah. The main thesis is that the recognition of the actual influence of the Holocaust began in Polish culture in the mid-1980s (largely it started with the film by Claude Lanzmann Shoah and the essay by Jan Błoński Biedni Polacy patrzą na getto [“The Poor Poles Look at the Ghetto”], that is when the question: “What happened to the Jews”, assumes the form: “Did the things that happened to the Jews, also happened to the Poles?”. Cognitive and ethical reorientation leads to the revealing of the hidden consequences of the Holocaust reaching as far as the present day and undermining the foundations of collective identity. In order to understand this situation (and adopt potentially preventive actions Polish society should be recognized as a postcatastrophic one.
Lipman, Peter W.
1988-01-01
Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.
The gravity-induced phase shift detected by high-Tc Josephson junctions
HE Jian-e
2007-01-01
We derive from the Kaluza-Klein theory a formula for the gravity-induced phase shift around a circuit loop,which amounts to the order of 10-6 We propose experiments to detect this phase shift by using the high-Tc d-wave Josephson junction,which is included in a cuprate superconductor circuit loop.By rotating the loop around the horizontal axis,the gravity-induced phase shift can be detected as a frequency shift.These settings can also be used in turn to determine the gravitational constant.This method will be sensitive and accurate.
Large phase shift of (1+1)-dimensional nonlocal spatial solitons in lead glass
Shou, Qian; Guo, Qi
2014-01-01
The large phase shift of strongly nonlocal spatial optical soliton(SNSOS) in the (1+1)-dimensional [(1+1)D] lead glass is investigated using the perturbation method. The fundamental soliton solution of the nonlocal nonlinear Schodinger equation(NNLSE) under the second approximation in strongly nonlocal case is obtained. It is found that the phase shift rate along the propagation direction of such soliton is proportional to the degree of nonlocality, which indicates that one can realize Pi-phase-shift within one Rayleigh distance in (1+1)D lead glass. A full comprehension of the nonlocality-enhancement to the phase shift rate of SNSOS is reached via quantitative comparisons of phase shift rates in different nonlocal systems.
Neutron interferometric measurement of the topological Aharonov-Casher phase shift
We have measured the phase shift predicted by Aharonov and Casher (AC) for a magnetic dipole diffracting around a charged electrode for the case of thermal neutrons, using a neutron interferometer containing a 30-kV/mm vacuum electrode system. Tilting the interferometer about the incident beam direction introduces a spin-independent gravitationally-induced phase shift which enables unpolarized neutrons to be used. A supplementary magnetic bias field of the correct magnitude allows first-order sensitivity to the AC phase shift to be achieved. Nevertheless, the theoretically predicted phase shift is only 1.52 mrad for the geometry and conditions of the experiment. We observe a phase shift of 2.11±0.34 mrad. A detailed description of the experiment and its interpretation is given in this paper
Yoshikawa, Nobukazu; Kajihara, Kazuki
2015-09-01
When phase-shifting digital holography with a continuous fringe-scanning scheme is implemented using a PC-based measurement system without any synchronous circuit, nonuniform phase-shifted interference fringes are captured because of the fluctuation in the image-capturing interval. To cope with the nonuniform phase shifts, a statistical generalized phase-shifting approach is employed. Because the algorithm is designed to use an arbitrary phase shift, the nonuniform phase shifts do not obstruct object-wave retrieval. Moreover, multiple interference fringes can be obtained in a short time owing to the continuous fringe-scanning scheme. However, the wavefront calculation method is not designed for sequentially recorded interference fringes. To use multiple interference fringes appropriately, we develop a least-squares wavefront calculation method combined with corrections for the initial phase and the direction of phase rotation. We verify the proposed method by numerical simulations and optical experiments. The results show that the object wave with the same initial phase can be correctly reconstructed by using both phase correction methods simultaneously.
In this paper, we have analyzed the critical behavior of even–even Ru and Pd isotopes between U(5) and SO(6) limits of interacting boson model via Catastrophe Theory in combination with a coherent state formalism to generate energy surfaces. The parameters of the Hamiltonian are determined via least-square fitting to the experimental data for different Ru and Pd isotopes. Our results suggest a second-order phase transition in these isotopic chains and propose the best candidates for E(5) critical symmetry. Also, the analogy between the critical exponents of ground state quantum phase transition and Landau values for the critical exponents of thermodynamic phase transitions are described. (author)
Qiu, Xiang; Zhong, Liyun; Xiong, Jiaxiang; Zhou, Yunfei; Tian, Jindong; Li, Dong; Lu, Xiaoxu
2016-06-13
In simultaneous phase-shifting dual-wavelength interferometry, by matching both the phase-shifting period number and the fringe number in interferogram of two wavelengths to the integers, the phase with high accuracy can be retrieved through combining the principle component analysis (PCA) and least-squares iterative algorithm (LSIA). First, by using the approximate ratio of two wavelengths, we can match both the temporal phase-shifting period number and the spatial fringe number in interferogram of two wavelengths to the integers. Second, using above temporal and spatial hybrid matching condition, we can achieve accurate phase shifts of single-wavelength of phase-shifting interferograms through using PCA algorithm. Third, using above phase shifts to perform the iterative calculation with the LSIA method, the wrapped phases of single-wavelength can be determined. Both simulation calculation and experimental research demonstrate that by using the temporal and spatial hybrid matching condition, the PCA + LSIA based phase retrieval method possesses significant advantages in accuracy, stability and processing time. PMID:27410297
Simultaneous phase-shifting interferometry: immune to azimuth error of fast-axes in retarder array.
Zheng, Donghui; Chen, Lei; Li, Jinpeng; Gu, Chenfeng; Zhu, Wenhua; Han, Zhigang
2015-11-20
Simultaneous phase-shifting interferometry based on a 2×2 retarder array with random fast-axes (RARF-SPSI) is proposed for real-time wavefront measurements. The retarder array is used as the phase-shift component, where the phase retardances are π/2, π, 3π/2, and 2π and the four fast-axes of the four retarders can be somewhat random. In this paper, the mathematical model of RARF-SPSI is built by using a Stokes vector and a Mueller matrix, the phase demodulation method through solving equations is derived, and the coefficient matrix of the equations that is associated with the azimuth of the fast-axes is calculated by Fourier analysis. Then the corresponding simulation analysis is executed. In the experiment, four simultaneous phase-shifting interferograms are captured and the phase distribution under test is demodulated through the proposed method. Compared with the four-bucket phase-shifting algorithm adopted in traditional simultaneous phase-shifting interferometry, the ripple error is suppressed well. The advantage of the proposed RARF-SPSI is that there is no need to calibrate the fast-axes of the phase-shift component before measuring; in other words, the phase demodulation error caused by the azimuth error of fast-axes is eliminated. PMID:26836541
The problem of catastrophe control is discussed. Catastrophe control aims to withdraw responsible engineering constructions out of the catastrophe. The mathematical framework of catastrophes control systems is constructed. It determines the principles of systems filling by the concrete physical contents and, simultaneously, permits to employ modern control methods for the synthesis of optimal withdrawal strategy for protected objects
Shift Multiplex Recording of Four-Valued Phase Data Pages by Volume Retardagraphy
Daisuke Barada
2014-04-01
Full Text Available In this paper, shift multiplex recording of phase data pages on a volume polarization-sensitive medium by retardagraphy is demonstrated. The origin of shift selectivity in volume retardagraphy is explained. In the experiment, four-valued phase data pages are used. Then, a coding method is proposed to correct a reconstructed phase pattern. The recorded phase data pages are reconstructed using the feature of the coding method. By comparing the reconstructed phase data pages with recording phase data pages, symbol error rates of less than 11% are achieved. From the experimental result, it is verified that volume retardagraphy is applicable to optical memory.
Parity Violating Energy Shifts and Berry Phases in Atoms, I
Bruss, D.; Gasenzer, T.; Nachtmann, O
1998-01-01
We present a study of parity (P) violating contributions to the eigenenergies of stationary systems containing atoms in spatially inhomogeneous external electric fields. In this context the subtle interplay of P-violation and time reversal (T) invariance plays an important role. If the entire field configuration is chosen to exhibit chirality the energies are in general shifted by pseudoscalar contributions which change sign under a planar reflection of the field. To calculate the effects we ...
The behavioural antecedents and neural mechanisms of non-photic phase shifting in Syrian hamsters
Webb, Ian Craig
2007-01-01
In Syrian hamsters, circadian rhythms can be phase shifted by light at night or by behavioural arousal during the day (usual sleep period). Previous work in this lab has defined arousal procedures that have differential clock resetting effects; arousal stimulated by running in a novel wheel (WC) or by gentle handling (SD) can induce large phase advance shifts, whereas arousal by physical restraint (SLR), by confinement to a platform over water, or by caffeine administration have no phase shif...
Phase sensitivity in deformed-state superposition considering nonlinear phase shifts
Berrada, K.
2016-07-01
We study the problem of the phase estimation for the deformation-state superposition (DSS) under perfect and lossy (due to a dissipative interaction of DSS with their environment) regimes. The study is also devoted to the phase enhancement of the quantum states resulting from a generalized non-linearity of the phase shifts, both without and with losses. We find that such a kind of superposition can give the smallest variance in the phase parameter in comparison with usual Schrödinger cat states in different order of non-linearity even if for a larger average number of photons. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement between the DSS and its environment is investigated during the dissipation. We show that partial entanglement trapping occurs during the dynamics depending on the kind of deformation and mean photon number. These features make the DSS with a larger average number of photons a good candidate for implementation of schemes of quantum optics and information with high precision.
Experimental quantum-enhanced estimation of a lossy phase shift
Kacprowicz, M.; Demkowicz-Dobrzanski, R.; Wasilewski, W.; Banaszek, K.; Walmsley, I. A.
2009-01-01
When standard light sources are employed, the precision of the phase determination is limited by the shot noise. Quantum entanglement provides means to exceed this limit with the celebrated example of N00N states that saturate the ultimate Heisenberg limit on precision, but at the same time are extremely fragile to losses. In contrast, we provide experimental evidence that appropriately engineered quantum states outperform both standard and N00N states in the precision of phase estimation whe...
Experimental quantum-enhanced estimation of a lossy phase shift
Kacprowicz, M; Wasilewski, W; Banaszek, K; Walmsley, I A
2009-01-01
When standard light sources are employed, the precision of the phase determination is limited by the shot noise. Quantum entanglement provides means to exceed this limit with the celebrated example of N00N states that saturate the ultimate Heisenberg limit on precision, but at the same time are extremely fragile to losses. In contrast, we provide experimental evidence that appropriately engineered quantum states outperform both standard and N00N states in the precision of phase estimation when losses are present.
S.M. Badwai
2013-01-01
Full Text Available the key point of super resolution process is the accurate measuring of sub-pixel shift. Any tiny error in measuring such shift leads to an incorrect image focusing. In this paper, methodology of measuring sub-pixel shift using Phase correlation (PC are evaluated using different window functions, then modified version of (PC method using high pass filter (HPF is introduced . Comprehensive analysis and assessment of (PC methods shows that different natural features yield different shift measurements. It is concluded that there is no universal window function for measuring shift; it mainly depends on the features in the satellite images. Even the question of which window is optimal of particular feature is generally remains open. This paper presents the design of a method for obtaining high accuracy sub pixel shift phase correlation using (HPF.The proposed method makes the change in the different locations that lack of edges easy.
EMP-002a Phase Shift through the Ionosphere
Soltz, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simons, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fenimore, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilks, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carey, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-20
In this note we review the derivation and use of the Ionospheric Transfer Function (ITF) in the DIO- RAMA model to calculate the propagation of a broad band ElectroMagnetic Pulse (EMP) through the Ionosphere in the limit of geometric optics. This note is intended to resolve a misunderstanding between the NDS VVA and EMP modeling teams regarding the appropriate use of the phase and group velocities in DIORAMA. The di erent approaches are documented in EMP-002 note, \\Phase vs. Group" [1], generated by the LLNL DIORAMA VVA team, and the subsequent response from the DIORAMA EMP modeling team' [2].
Detecting Phase Shifts in Surface Plasmon Resonance: A Review
Y. H. Huang
2012-01-01
Full Text Available Under certain conditions, a surface plasmon wave along a metal-dielectric interface can be excited by an optical beam. The reflected optical beam will then undergo changes in both intensity and phase. As the level of intensity or phase change is quite sensitive to the coupling conditions such as the molecule concentration on the metal surface, this phenomenon has been utilized for label-free detection of biological species and characterization of molecular interactions during the last two decades. Currently, most of the commercial surface plasmon resonance (SPR sensors rely on the detection of absorption dip in angular or wavelength spectrum. However, recent researches have shown that phase detection has the potential to achieve lower limit of detection (LoD and higher throughput. This paper, thus, intends to review various schemes and configurations for SPR phase detection. The performance advantages and disadvantages of various schemes will be emphasized. It is hoped that this paper will provide some insights to researchers interested in SPR sensing and help them to develop SPR sensors with better sensitivity and higher throughput.
Surface characterization based on optical phase shifting interferometry
Mello, Michael , Rosakis; Ares J.
2011-08-02
Apparatus, techniques and systems for implementing an optical interferometer to measure surfaces, including mapping of instantaneous curvature or in-plane and out-of-plane displacement field gradients of a sample surface based on obtaining and processing four optical interferograms from a common optical reflected beam from the sample surface that are relatively separated in phase by .pi./2.
On the phase-shift parameterization and ANC extraction from elastic-scattering data
Suárez, Oscar Leonardo Ramírez
2016-01-01
We develop a method to parameterize elastic-scattering phase-shifts for charged nuclei, based on Pad\\'e expansions of a simplified effective-range function. The method is potential independent and the input is reduced to experimental phase shifts and bound-state energies. It allows a simple calculation of resonance properties and of asymptotic normalization constants (ANCs) of subthreshold bound states. We analyze the $1^-$ and $2^+$ phase shifts of the $^{12}$C$+\\alpha$ system and extract the ANCs of the corresponding bound states. For the $1^-$ state, a factor-3 improvement with respect to the best value available today is obtained, with a factor-10 improvement in reach. For the $2^+$ state, no improvement is obtained due to relatively larger error bars on the experimental phase shifts.
Quantum correlation transfer through two parallel XXZ spin chains with phase shift control
Transmitting quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum computation. Quantum discord has received much attention in quantum computation. We transfer quantum discord through two parallel XXZ spin chains with phase shift. The maximum discord can be enhanced by the phase shift. It will take more time to obtain an enhanced maximum discord in some cases, but for other cases, both the maximum and speed are enhanced by the phase shift. In the thermodynamic limit, the effect of the phase shift disappears and the maximum discord exponentially decays with increasing of the receiving position. Our results on spin chains are generalized to a family of linear Hamiltonians.
Quantum correlation transfer through two parallel XXZ spin chains with phase shift control
Zhang Jian [Department of Chemistry, School of Sciences, Beijing Institute of Technology, Beijing 100081 (China); Shao Bin; Liu Benqiong; Zou Jian [Key Laboratory of Cluster Science of Ministry of Education and Department of Physics, School of Sciences, Beijing Institute of Technology, Beijing 100081 (China); Li Qianshu [Center for Computational Quantum Chemistry, South China Normal University, Guangzhou 510631 (China); Institute of Chemical Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu Lianao [Department of Theoretical Physics and History of Science, University of the Basque Country, Post Office Box 644, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)
2011-07-15
Transmitting quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum computation. Quantum discord has received much attention in quantum computation. We transfer quantum discord through two parallel XXZ spin chains with phase shift. The maximum discord can be enhanced by the phase shift. It will take more time to obtain an enhanced maximum discord in some cases, but for other cases, both the maximum and speed are enhanced by the phase shift. In the thermodynamic limit, the effect of the phase shift disappears and the maximum discord exponentially decays with increasing of the receiving position. Our results on spin chains are generalized to a family of linear Hamiltonians.
Large microwave phase shift and small distortion in an integrated waveguide device
Öhman, Filip; Sales, Salvador; Chen, Yaohui; Granell, E.; Mørk, Jesper
2007-01-01
We have obtained a tunable phase shift of 150 degrees in an integrated semiconductor waveguide by optimizing the interplay of fast and slow light effects. Furthermore, the distortions imposed by device nonlinearities have been quantified....
The phase-shift of isospin-2 pi-pi scattering from lattice QCD
Jozef J. Dudek, Robert G. Edwards, Michael J. Peardon, David G. Richards, Christopher E. Thomas
2011-04-01
Finite-volume lattice QCD calculations offer the possibility of extracting resonance parameters from the energy-dependent elastic phase-shift computed using the L\\"uscher technique. In this letter, as a trial of the method, we report on the extraction of the non-resonant phase-shift for $S$ and $D$-wave $\\pi\\pi$ isospin-2 scattering from dynamical lattice QCD computations. We define a variational basis of operators resembling pairs of pions of definite relative momentum and extract a spectrum of excited states that maps to phase-shifts at a set of discrete scattering momenta. Computations are performed with pion masses between $400$ and $520$ MeV on multiple spatial volumes. We observe no significant quark mass dependence in the phase-shifts extracted which are in reasonable agreement with the available experimental data at low momentum.
The threshold behaviour of scattering phase shifts in singular potentials
In this thesis we have studied the threshold behaviour od scattering phases in attactive, singular potentials proportional to -1/rα, α>2, in two and three dimensions. Total absorption on the surface was described by incoming boundary condition in form of WKB waves, so that the scattering phase δ(k) is because of the particle loss a complex quantity and the S matrix no longer unitary. As application example we use the scattering behaviour of ultracold atoms on an absorbing sphere. The parameters were so chosen that they correspond to those of metastable helium (23S) atoms respectively sodium atoms in the ground state and a radius of the sphere of 200 respectively 2000 a. u. The final chapter presents a survey about the scattering on a circularly symmetric potential in two dimensions
Inherent ambiguities in the determination of phase-shifts
The observables in an elastic scattering process are unchanged if all the scattering amplitudes are multiplied by the same angle-dependent phase. The non-spin-flip and spin-flip amplitudes remain unchanged by the substitution: g(cos theta)→g(cos theta)exp[i phi(cos theta)] and h(cos theta)→h(cos theta)exp[i phi(cos theta)]. Unless some extra and hoc assumption is made, there is a continuum ambiguity, which has been explored some time ago, with specific models for the phase phi by members of the Birmingham group. In the ordinary quantum mechanics of scattering, one writes a wave-function asymptotically as psi(r-) approximately esup(ikr costheta)+f(cos theta)esup(ikr)/r where f is the scattering amplitude. The ambiguity which is a change in the phase of the scattering amplitude, and thus of the scattered part of the wavefunction, but with no change of the first term in (the unscattered plane wave coming along the z-axis is discussed in detail. Preliminary results in the energy-range 1550-1750 MeV cm and their implications are given. Argand plots of ambiguities at various energies are presented. (K.B.)
Okayama, Hideaki; Onawa, Yosuke; Shimura, Daisuke; Yaegashi, Hiroki; Sasaki, Hironori
2016-08-01
We describe a Bragg grating with a phase shift section and a sampled grating scheme that converts input polarization to orthogonal polarization. A very narrow polarization-independent wavelength peak can be generated by phase shift structures and polarization-independent multiple diffraction peaks by sampled gratings. The characteristics of the device were examined by transfer matrix and finite-difference time-domain methods.
Evanescent field phase shifting in a silicon nitride waveguide using a coupled silicon slab
Jensen, Asger Sellerup; Oxenløwe, Leif Katsuo; Green, William M. J.
An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration.......An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration....
The pi pi Phase Shifts from psi' to J/psi pi^+ pi^- Decays
Guo, Feng-Kun; Shen, Peng-Nian; Jiang, Huan-Qing
2006-01-01
The $\\psi'\\to J/\\psi\\pi^+\\pi^-$ decay process provides a new way to extract the $\\pi\\pi$ $S$ wave phase shifts up to $0.59GeV$. In this paper we derive the formulae for extracting the $\\pi\\pi$ $S$ wave phase shifts from the invariant mass spectrum of $\\pi\\pi$ in the $\\psi'\\to J/\\psi\\pi^+\\pi^-$ decay.
Scattering phase shift and resonance properties on the lattice: an introduction
Prelovsek, S; Mohler, D
2011-01-01
We describe the method for extracting the elastic scattering phase shift from a lattice simulation at an introductory level, for non-lattice practitioners. We consider the scattering in a resonant channel, where the resulting phase shift delta(s) allows the lattice determination of the mass and the width of the resonance from a Breit-Wigner type fit. We present the method for the example of P-wave pi-pi scattering in the rho meson channel.
Family of Hermitian Low-Momentum Nucleon Interactions with Phase Shift Equivalence
Holt, Jason D.; Kuo, T. T. S.; Brown, G. E.
2003-01-01
Using a Schmidt orthogonalization transformation, a family of Hermitian low-momentum NN interactions is derived from the non-Hermitian Lee-Suzuki (LS) low-momentum NN interaction. As special cases, our transformation reproduces the Hermitian interactions for Okubo and Andreozzi. Aside from their common preservation of the deuteron binding energy, these Hermitian interactions are shown to be phase shift equivalent, all preserving the empirical phase shifts up to decimation scale Lambda. Employ...
Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence.
Kimmoun, O; Hsu, H C; Branger, H; Li, M S; Chen, Y Y; Kharif, C; Onorato, M; Kelleher, E J R; Kibler, B; Akhmediev, N; Chabchoub, A
2016-01-01
Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. One prominent form of instability in a distributed system is its response to a harmonic modulation. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI leads to a growth-decay cycle of unstable waves and is therefore related to Fermi-Pasta-Ulam (FPU) recurrence since breather solutions of the nonlinear Schrödinger equation (NLSE) are known to accurately describe growth and decay of modulationally unstable waves in conservative systems. Here, we report theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range of new physics scenarios. PMID:27436005
Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence
Kimmoun, O; Branger, H; Li, M S; Chen, Y Y; Kharif, C; Onorato, M; Kelleher, E J R; Kibler, B; Akhmediev, N; Chabchoub, A
2016-01-01
Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. The simplest form of instability in a distributed system is its response to a harmonic modulation. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI is tightly related to Fermi-Pasta-Ulam (FPU) recurrence since breather solutions of the nonlinear Schr\\"odinger equation (NLSE) are known to accurately describe growth and decay of modulationally unstable waves in conservative systems. Here, we report theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range of new physics scenarios.
Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence
Kimmoun, O.; Hsu, H. C.; Branger, H.; Li, M. S.; Chen, Y. Y.; Kharif, C.; Onorato, M.; Kelleher, E. J. R.; Kibler, B.; Akhmediev, N.; Chabchoub, A.
2016-01-01
Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. One prominent form of instability in a distributed system is its response to a harmonic modulation. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI leads to a growth-decay cycle of unstable waves and is therefore related to Fermi-Pasta-Ulam (FPU) recurrence since breather solutions of the nonlinear Schrödinger equation (NLSE) are known to accurately describe growth and decay of modulationally unstable waves in conservative systems. Here, we report theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range of new physics scenarios. PMID:27436005
Measurement of in-plane strain with dual beam spatial phase-shift digital shearography
Xie, Xin; Chen, Xu; Li, Junrui; Wang, Yonghong; Yang, Lianxiang
2015-11-01
Full-field in-plane strain measurement under dynamic loading by digital shearography remains a big challenge in practice. A phase measurement for in-plane strain information within one time frame has to be achieved to solve this problem. This paper presents a dual beam spatial phase-shift digital shearography system with the capacity to measure phase distribution corresponding to in-plane strain information within a single time frame. Two laser beams with different wavelengths are symmetrically arranged to illuminate the object under test, and two cameras with corresponding filters, which enable simultaneous recording of two shearograms, are utilized for data acquisition. The phase information from the recorded shearograms, which corresponds to the in-plane strain, is evaluated by the spatial phase-shift method. The spatial phase-shift shearography system realizes a measurement of the in-plane strain through the introduction of the spatial phase-shift technique, using one frame after the loading and one frame before loading. This paper presents the theory of the spatial phase-shift digital shearography for in-plane strain measurement and its derivation, experimental results, and the technique’s potential.
Phase-shift analysis of pd elastic scattering below break-up threshold
A phase-shift analysis was performed for pd elastic scattering based on measurements of differential cross sections and proton and deuteron analyzing powers for energies below the break-up threshold. The angular momenta were restricted to l <= 3; j-splitting and channel-spin mixing of the P-phases and the tensor coupling between the S- and D-phases were taken into account. The phase shifts were parameterized by the effective-range formalism and the corresponding parameters were directly deduced from the data. The results are compared with Faddeev calculations in which the Coulomb interaction is treated exactly or as a two-body approximation. (orig.)
Nillni, Yael I.; Rohan, Kelly J.; Zvolensky, Michael J.
2012-01-01
The current study examined the interactive effects of anxiety sensitivity (AS; fear of anxiety and anxiety-related sensations) and menstrual cycle phase (premenstrual phase vs. follicular phase) on panic-relevant responding (i.e., cognitive and physical panic symptoms, subjective anxiety, and skin conductance level). Women completed a baseline session and underwent a 3-minute 10% CO2-enriched air biological challenge paradigm during her premenstrual and follicular menstrual cycle phases. Part...
Single-shot and phase-shifting digital holographic microscopy using a 2-D grating.
Yang, Taeseok Daniel; Kim, Hyung-Jin; Lee, Kyoung J; Kim, Beop-Min; Choi, Youngwoon
2016-05-01
We demonstrate digital holographic microscopy that, while being based on phase-shifting interferometry, is capable of single-shot measurements. A two-dimensional (2-D) diffraction grating placed in a Fourier plane of a standard in-line holographic phase microscope generates multiple copies of a sample image on a camera sensor. The identical image copies are spatially separated with different overall phase shifts according to the diffraction orders. The overall phase shifts are adjusted by controlling the lateral position of the grating. These phase shifts are then set to be multiples of π/2. Interferograms composed of four image copies combined with a parallel reference beam are acquired in a single shot. The interferograms are processed through a phase-shifting algorithm to produce a single complex image. By taking advantage of the higher sampling capacity of the in-line holography, we can increase the imaging information density by a factor of 3 without compromising the imaging acquisition speed. PMID:27137562
On the nucleon–nucleon scattering phase shifts through supersymmetry and factorization
U Laha; J Bhoi
2013-12-01
By exploiting the supersymmetry-inspired factorization method through a judicious use of deuteron ground state wave function, higher partial wave nucleon–nucleon potentials, both energy independent and energy dependent, are generated. We adopt the phase function method to deal with the scattering phase shifts and demonstrate the usefulness of our constructed potentials by means of model calculation.
The Study of Phase-shift Super-Frequency Induction Heating Power Supply
Qi, Hairun; Peng, Yonglong; Li, Yabin
This paper combines pulse-width phase-shift power modulation with fixed-angle phase-locked-control to adjust the inverter's output power, this method not only meets the work conditions of voltage inverter, but also realizes the large-scale of power modulation, and the main circuit is simple, the switching devices realize soft switching. This paper analyzes the relationship between the output power and phase-shift angle, the control strategy is simulated by Matlab/Simulink, and the results show that the method is feasible and meets the theoretical analysis
Observation of atom wave phase shifts induced by van der Waals atom-surface interactions
Perreault, John D.; Cronin, Alexander D.
2005-01-01
The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wave-like (coherent) behaviour with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift ca...
Phase shifts of synchronized oscillators and the systolic/diastolic blood pressure relation
Angelini, L; Maestri, R; Marinazzo, D; Nardulli, Giuseppe; Nitti, L; Pellicoro, M; Pinna, G D; Stramaglia, S
2004-01-01
We study the phase-synchronization properties of systolic and diastolic arterial pressure in healthy subjects. We find that delays in the oscillatory components of the time series depend on the frequency bands that are considered, in particular we find a change of sign in the phase shift going from the Very Low Frequency band to the High Frequency band. This behavior should reflect a collective behavior of a system of nonlinear interacting elementary oscillators. We prove that some models describing such systems, e.g. the Winfree and the Kuramoto models offer a clue to this phenomenon. For these theoretical models there is a linear relationship between phase shifts and the difference of natural frequencies of oscillators and a change of sign in the phase shift naturally emerges.
Filter-less frequency-doubling microwave signal generator with tunable phase shift
Li, Yueqin; Pei, Li; Li, Jing; Wang, Yiqun; Yuan, Jin
2016-07-01
A prototype for frequency-doubling microwave signal generator with tunable phase shift based on a filter-less architecture is proposed and analyzed. In the proposal, one dual parallel polarization modulator is used as the key component to generate two ±1st order sidebands along the orthogonal polarization directions with suppressed carrier. Then the polarization states of the two sidebands are aligned with the principal axes of an electro-optical phase modulator (EOPM). Tunable phase shift is implemented by controlling the direct current voltage applied to the EOPM. Without using any filters or wavelength-dependent components, the system possesses good frequency tunability and it can be applied to multi-wavelength operation. Taking advantage of the ability of frequency multiplication, the frequency tuning range can be wider than the operation bandwidth of the modulator. By theoretical analyses and simulated verifications, a frequency-doubling microwave signal ranging from 22 to 40 GHz with full range phase shift is achieved.
Phase Shift of Polarized Light after Transmission through a Biaxial Anisotropic Thin Film
Hou, Yong-Qiang; Li, Xu; He, Kai; Qi, Hong-Ji; Yi, Kui; Shao, Jian-Da
2013-01-01
Based on the theoretical analysis of biaxial birefringent thin films with characteristic matrix method, we investigate the phase shift on transmission of a tilted columnar biaxial film at normal and oblique incidence over 300-1200 nm for s- and p-polarized waves. Compared with the simplified calculation method, the interference effects of the birefringent thin film are considered to yield more accurate results. The quarter wavelength phase shift calculated with the characteristic matrix method is consistent with that monitored with in situ measurement by two-angle ellipsometry, which validates our complied program for the calculation of the phase shift of the biaxial anisotropic thin film. Furthermore, the characteristic matrix method can be easily used to obtain continuous adjustable phase retardation at oblique incidence, whereas the simplified calculation method is valid for the case of normal incidence. A greater generality and superiority of the characteristic matrix method is presented.
Phase Shift of Polarized Light after Transmission through a Biaxial Anisotropic Thin Film
Based on the theoretical analysis of biaxial birefringent thin films with characteristic matrix method, we investigate the phase shift on transmission of a tilted columnar biaxial film at normal and oblique incidence over 300–1200 nm for s- and p-polarized waves. Compared with the simplified calculation method, the interference effects of the birefringent thin film are considered to yield more accurate results. The quarter wavelength phase shift calculated with the characteristic matrix method is consistent with that monitored with in situ measurement by two-angle ellipsometry, which validates our complied program for the calculation of the phase shift of the biaxial anisotropic thin film. Furthermore, the characteristic matrix method can be easily used to obtain continuous adjustable phase retardation at oblique incidence, whereas the simplified calculation method is valid for the case of normal incidence. A greater generality and superiority of the characteristic matrix method is presented
Non-Relativistic Phase Shifts for Scattering on Generalized Radial Yukawa Potentials
O. J., Oluwadare; K. E., Thylwe; K. J., Oyewumi
2016-04-01
Non-relativistic phase shifts for a generalized Yukawa potential V(r) = ‑ V0(e‑αr/r) ‑ V1(e‑2αr/r2) are studied by the amplitude-phase method and by a frequently used analytic method based on a Pekeris-type approximation of power-law potential terms. Small variations of V1 seem to have marginal effects on the effective potential and on exact phase shifts. However, as pointed out in this study, a Pekeris-type approximation in scattering applications often implies serious distortions of both effective potentials and phase shifts. The Pekeris-type based analytic approximation in this study seems to give low-quality scattering results for this model potential at low energies.
Phase shift spectra of a fiber-microsphere system at the single photon level
Tanaka, Akira; Toubaru, Kiyota; Takashima, Hideaki; Fujiwara, Masazumi; Okamoto, Ryo; Takeuchi, Shigeki; 10.1364/OE.19.002278
2011-01-01
We succeeded in measuring phase shift spectra of a microsphere cavity coupled with a tapered fiber using a weak coherent probe light at the single photon level. We utilized a tapered fiber with almost no depolarization and constructed a very stable phase shift measurement scheme based on polarization analysis using photon counting. Using a very weak probe light (\\bar{n} = 0:41), we succeeded in observing the transition in the phase shift spectrum between undercoupling and overcoupling (at gap distances of 500 and 100 nm, respectively).We also used quantum state tomography to obtain a 'purity spectrum'. Even in the overcoupling regime, the average purity was 0.982 \\pm 0.024 (minimum purity: 0.892), suggesting that the coherence of the fiber-microsphere system was well preserved. Based on these results, we believe this system is applicable to quantum phase gates using single light emitters such as diamond nitrogen vacancy centers.
Observation of atom wave phase shifts induced by van der Waals atom-surface interactions
Perreault, J D; Perreault, John D.; Cronin, Alexander D.
2005-01-01
The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wave-like (coherent) behaviour with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by quantum electrodynamics for a non-retarded van der Waals interaction. This experiment also demonstrates that atom-waves can retain their coherence even when atom-surface distances are as small as 10 nm.
Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions
The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that atom waves can retain their coherence even when atom-surface distances are as small as 10 nm
Bunsen, Masatoshi; Umetsu, Shuhei; Takabayashi, Masanori; Okamoto, Atsushi
2013-09-01
A technique for the phase and amplitude detection of object beams with multivalued phase and amplitude modulation is proposed for holographic storage systems. Generally, the spatial distribution of the complex amplitude of the object beam can be precisely detected by phase-shifting interferometric measurements in which the phase of the reference wave for interferometry is temporally or spatially changed in the datapage retrieval process. On the other hand, our technique allows fast, accurate, and feasible phase and amplitude demodulations by preliminary embedding phase shift into the phase signal of the datapage during recording. This technique will significantly improve the data transfer rate and vibration tolerance of the holographic storage system because the complex amplitudes of the object beam carrying datapages can be detected by single-shot image capturing. The optical system for datapage replay will also be simplified because there is no need to use any phase-shifting device during data retrieval. The single-shot detection of the phase-modulated datapage is experimentally demonstrated.
Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh
2016-03-01
We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.
Stochastic Resonance in Two Coupled Threshold Elements with Phase-Shifted Input Signals
Stochastic resonance in a system of two coupled threshold elements (neurons) forming a small neural network is investigated numerically. Periodic signals at inputs of the elements are phase-shifted with respect to each other up to a half of the period, but their frequencies and amplitudes are identical. The signal-to-noise ratio at outputs of the elements has a maximum as a function of the input noise intensity for any phase shift. For proper coupling, dependent on the phase shift, this ratio is enhanced over that of a single uncoupled element. The enhancement is usually observed for positive (excitory) coupling if the phase shift is less than one fourth of the period, and for negative (inhibitory) coupling otherwise, but minor deviations from these rules are possible for high periodic signal frequency. Adiabatic theory of stochastic resonance in coupled threshold elements is also formulated which describes qualitatively the dependence of the signal-to-noise ratio on the coupling for various phase shifts. (author)
σ and κ in scattering processes and new π0π0 phase shift data
The evidences for σ(600) and κ(900) observed in our analyses on the ππ and Κπ scattering phase shift data are described, briefly. The analysis have been performed by the interfering amplitude method, which satisfies the unitarity requirement, using physically meaningful parameters. The introduction of the negative phase shifts (repulsive force) are essential in the analysis. New data for the π0π0 scattering amplitudes and the I=0 S wave phase shifts are presented. The data have been obtained in the π-P charge exchange reaction, π-P→π0π0n at 9 GeV by the E135 experiment at the KEK PS. The amplitude analysis are performed. The behavior of the I=0 S wave phase shifts below ΚΚ-bar threshold are consistent with those of the π+π-, so called, standard data and those of the down-flat solution of the CERN-Cracow-Muenich polarization data. The analysis of the π0π0 phase shift data observes σ(600) with the B-W parameters, Mσ=588±12 MeV and Γσ=281±25 MeV, which are in good agreement with those in our analysis on the π+π- data. (author)
Wang, Minmin; Zhou, Canlin; Zhang, Chaorui; Si, Shuchun; Li, Hui; Lei, Zhenkun; Li, YanJie
2016-01-01
We comment on the recent Letter by Xu and Wang et al. [Opt. Lett. 41, 2430 (2016)] in which an approach of quantitative phase extraction in dual-wavelength in-line phase-shifting interferometry (DWILPSI) was proposed. It is noted that a special phase shift is used, which more or less embarrasses its practical operation. We wish to show that the same result can also be reached by combining the generalized phase-shifting algorithm and the least-square algorithm, in which the phase shift can be chosen randomly. In addition to maintaining high accuracy and rapid processing speed of the DWILPSI method, the proposed method greatly facilitates its application in actual measurement.
The phase shift hypothesis for the circadian component of winter depression
Lewy, Alfred J.; Rough, Jennifer N.; Songer, Jeannine B.; Mishra, Neelam; Yuhas, Krista; Emens, Jonathan S.
2007-01-01
The finding that bright light can suppress melatonin production led to the study of two situations, indeed, models, of light deprivation: totally blind people and winterdepressives. The leading hypothesis for winter depression (seasonal affective disorder, or SAD) is the phase shift hypothesis (PSH). The PSH was recently established in a study in which SAD patients were given low-dose melatonin in the afternoon/evening to cause phase advances, or in the morning to cause phase delays, or place...
New features of a single-mode nonlinear Stark shift in the presence of phase damping
Obada, A.-S. F.; Khalil, E. M.; Abdel-Khalek, S.; Ali, S. I.
2012-05-01
The influence of the nonlinear Stark shift, for the multi-quanta JCM in the presence of phase damping is studied. In particular the temporal evolution of the atomic inversion, the linear entropy and the entropy squeezing are investigated. The linear entropy is used as an indicator of the degree of entanglement between the atom and the field. The results indicate the sensitivity of these aspects to changes either in the decay parameter or the Stark shift parameter.
Follin, Brent; Millea, Marius; Pan, Zhen
2015-01-01
The freestreaming of cosmological neutrinos prior to recombination of the baryon-photon plasma alters gravitational potentials and therefore the details of the time-dependent gravitational driving of acoustic oscillations. We report here a first detection of the resulting shifts in the temporal phase of the oscillations, which we infer from their signature in the Cosmic Microwave Background (CMB) temperature power spectrum. The magnitude of the shift is proportional to the fraction of the total radiation density in neutrinos. Parameterizing the shift via an effective number of neutrino species we find $1.9 < N_\
Strain Measurement Using Phase-shifting Digital Holography with Two Cameras
Morimoto Y.
2010-06-01
Full Text Available Phase-shifting digital holography is a convenient method to measure displacement and strain distributions. Development of compact and conventional strain distribution measurement equipment for practical use is required for inspection of health monitoring and life lengthening of infrastructures such as steel bridges. In this paper, we propose an off-axis reconstruction method for displacement and strain distribution measurement with a phase-shifting digital holography. In the case of off-axis optical setup, the pitch of the fringe appearing on the image sensor becomes smaller than a pixel size. However, the phase-shifting digital hologram can be obtained even if the off-axis setup and effective results can be obtained using a Windowed-PSDHI. The principle and the experimental result of strain distribution measurement was performed with this method using two cameras.
Design of a photoelastic measurement of principal stresses by a phase-shifting method
A popular approach to photoelastic stress measurement is capture of a set of fringe patterns in which preliminary known phase shifts are introduced by changing orientation of the polarizing optical elements. Analysis of the photoelastic system is based on the Jones matrices formalism. The work presents a rationalized method for fast calculation of Jones matrices through introduction of a ‘binary’ algebra. The method makes possible to design a set of phase shifts and facilitates comparison of the phase-shifting algorithms in order to choose the most effective one. The proposed method is verified by simulation of the photoelastic system based on expressions for the complex amplitude of the light beam passing through the different polarizing elements. (paper)
A novel method for identifying the order of interference using phase-shifting digital holography.
Sokkar, T Z N; El-Farahaty, K A; Ramadan, W A; Wahba, H H; Raslan, M I; Hamza, A A
2016-04-01
In this paper, we introduced a mathematical method for measuring the optical path length differences (OPDs), which is suitable for large OPD values where the fringes connections are difficult to detect. The proposed method is based on varying the width of the fringes, without changing the wavelength of the used coherent source. Also, in this work, we discussed the need for such method in off-axis phase-shifting digital holography. Low-resolution off-axis holograms failed to detect the correct interference order. In general, off-axis phase-shifting digital holography is limited by the resolution of the captured holograms. The results obtained using our proposed technique were compared to the results obtained using off-axis phase-shifting digital holograms and conventional two-beam interferometry. Holograms were given for illustration. PMID:26588671
Spin-Correlation Coefficients and Phase-Shift Analysis for p+$^3$He Elastic Scattering
Daniels, T V; Cesaratto, J M; Clegg, T B; Couture, A H; Karwowski, H J; Katabuchi, T
2010-01-01
Angular Distributions for the target spin-dependent observables A$_{0y}$, A$_{xx}$, and A$_{yy}$ have been measured using polarized proton beams at several energies between 2 and 6 MeV and a spin-exchange optical pumping polarized $^3$He target. These measurements have been included in a global phase-shift analysis following that of George and Knutson, who reported two best-fit phase-shift solutions to the previous global p+$^3$He elastic scattering database below 12 MeV. These new measurements, along with measurements of cross-section and beam-analyzing power made over a similar energy range by Fisher \\textit{et al.}, allowed a single, unique solution to be obtained. The new measurements and phase-shifts are compared with theoretical calculations using realistic nucleon-nucleon potential models.
Low-coherence wavelength shifting interferometry for high-speed quantitative phase imaging.
Chen, Shichao; Li, Chengshuai; Zhu, Yizheng
2016-08-01
We propose low-coherence wavelength shifting interferometry and demonstrate its application to quantitative phase imaging of dynamic specimens. By shifting the source wavelength, multiple interferograms of the sample can be acquired at different spectral bands. A sample phase is thus encoded in the phase step between consecutive acquisitions. For the particular case of four-band imaging, we show that the phase can be extracted with a modified Carré algorithm. We describe signal demodulation in detail and discuss its implication on system implementation. A swept laser-based Mach-Zehnder interferometer is used to demonstrate the technique for real-time imaging of live sperm cells at 62.5 Hz. The dynamic dry mass of the sperm head is measured with a full-scale error of ±2%, validating the technique's capability for high-sensitivity, high-speed quantitative phase imaging. PMID:27472586
Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm
Wang, Minmin; Zhou, Canlin; Zhang, Chaorui; Si, Shuchun; Li, Hui; Lei, Zhenkun; Li, YanJie
2016-01-01
It is a challenge for Phase Measurement Profilometry (PMP) to measure objects with a large range of reflectivity variation across the surface. Saturated or dark pixels in the deformed fringe patterns captured by the camera will lead to phase fluctuations and errors. Jiang et al. proposed a high dynamic range real-time 3D shape measurement method without changing camera exposures. Three inverted phase-shifted fringe patterns are used to complement three regular phase-shifted fringe patterns for phase retrieval when any of the regular fringe patterns are saturated. But Jiang's method still has some drawbacks: (1) The phases in saturated pixels are respectively estimated by different formulas for different cases. It is shortage of an universal formula; (2) it cannot be extended to four-step phase-shifting algorithm because inverted fringe patterns are the repetition of regular fringe patterns; (3) only three unsaturated intensity values at every pixel of fringe patterns are chosen for phase demodulation, lying i...
Study on the phase shift characteristic of the pneumatic Stirling cryocooler
Chen, Xi; Wu, Yi Nong; Zhang, Hua; Chen, Nan
2009-03-01
Due to entire pneumatic connection between free piston and free displacer, the motion parameters of them including amplitude and phase shift can actually impact the cooling capacity and overall performance of cryocooler obviously. In this study, the procedure of design and manufacture pneumatic free piston and free displacer (FPFD) Stirling cryocooler had firstly been described in details. Then in order to accomplish study, the experimental bench has been set up based on 80 K@1 W Stirling cryocooler. The effect of the thermodynamic and pneumatic parameters including charging pressure, natural frequency of displacer, damping coefficient of displacer, working frequency on the pressure, displacement and displacer phase shift has been investigated, respectively by means of experimental and theoretical method. In particular, the variation of damping is realized by adjusting the width of clearance cut on the additional damping component, which is screwed on the displacer rod. Similarly, natural frequency of displacer is changed by the extra mass connected on the displacer. Due to the results of experimental study, the optimum working conditions of this Stirling cryocooler for 80 K cold tip temperature are as follows: charge pressure 15 bar, natural frequency of displacer 46 Hz, width of clearance 300 μm and working frequency 43 Hz. In agreement with the optimum working conditions, neighborhood interval of 90° is the ideal working domain for displacement phase shift. Meanwhile, the displacer phase shift should approach to 0°as near as possible and pressure phase shift should also be as small as possible, which have linear relation with non-dimensional damping characteristic of compressor. In view of theoretical study, the expressions of three phase shifts deduced from thermodynamic equation of piston and displacer respectively are expressed as the functions of working parameters, which are verified by the experimental data and consequently can be used as the powerful
Phase-shifted assist feature OPC for sub-45-nm node optical lithography
Yoon, Gi-Sung; Kim, Hee-Bom; Lee, Jeung-Woo; Choi, Seong-Woon; Han, Woo-Sung
2007-03-01
Hyper numerical aperture (NA) implemented in immersion exposure system makes the semiconductor business enable to enter sub-45nm node optical lithography. Optical proximity correction(OPC) utilizing SRAF has been an essential technique to control critical dimension (CD) and to enhance across pitch performance in sub-wavelength lithography. Mask lithography, however, is getting more challenging with respect to patterning and processing sub-resolution assist features (SRAFs): the higher aspect ratio of mask structure, the more vulnerable. Mask manufacturing environment for DRAM and Flash becomes harsher mainly due to mask patterning problem especially pattern linearity, which causes pattern broken, inspection issue, and finally CD issue on wafer. When a pattern in relatively isolated pitches has small or large assist features, the assist features may bring unexpected CD or print on wafer. A frequency-preserving assist bar solution is the most preferred one, but it is difficult to realize for opaque assist features due to printability. In this paper, we propose a new type assist feature dubbed "Phase-shifted Assist Bar" to improve process window and to solve the resolution constraint of mask at sub-45nm manufacturing process node. The concept of phase-shift assist bar is applying phase-shift to SRAF realized with trench structure on general mask, such as Binary and Attenuated Phase-Shifted Mask (Att.PSM). The characteristics of phase-shift assist bar are evaluated with rigorous 3D lithography simulation and analyzed through verification mask, which is containing hugely various size and placement of main and assist feature. The analysis of verification mask has been done with aerial image verification tool. This work focuses on the performance of phase-shift assist bar as a promising OPC technique for "immersion era" in terms of resolution enhancement technique, optical proximity correction, and patterning on mask.
Predicting phase shift of elastic waves in pipes due to fluid flow and imperfections
Thomsen, Jon Juel; Dahl, Jonas; Fuglede, Niels;
2009-01-01
Flexural vibrations of a fluid-conveying pipe is investigated, with special consideration to the spatial shift in phase caused by fluid flow and various imperfections, e.g., non-ideal supports, non-uniform stiffness or mass, non-proportional damping, weak nonlinearity, and flow pulsation. This is...... relevant for understanding wave propagation in elastic media in general, and for the design and trouble-shooting of phase-shift measuring devices such as Coriolis mass flowmeters in particular. A multiple time scaling perturbation analysis is employed for a simple model of a fluid-conveying pipe with...
Phase-shifting technique applied to circular harmonic-based joint transform correlator
无
2000-01-01
The phase-shifting technique is applied to the circular harmonic expansion-based joint transform correlator. Computer simulation has shown that the light efficiency and the discrimination capability are greatly enhanced, and the full rotation invariance is preserved after the phase-shifting technique has been used. A rotation-invariant optical pattern recognition with high discrimination capability and high light efficiency is obtained. The influence of the additive noise on the performance of the correlator is also investigated. However, the anti-noise capability of this kind of correlator still needs improving.
A Phase-Shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System
Wallace, J. Kent; Crawford, Sam; Loya, Frank; Moore, James
2012-01-01
A phase-shifting Zernike wavefront sensor has distinct advantages over other types of wavefront sensors. Chief among them are: 1) improved sensitivity to low-order aberrations and 2) efficient use of photons (hence reduced sensitivity to photon noise). We are in the process of deploying a phase-shifting Zernike wavefront sensor to be used with the realtime adaptive optics system for Palomar. Here we present the current state of the Zernike wavefront sensor to be integrated into the high-order adaptive optics system at Mount Palomar's Hale Telescope.
Single Mode Er-Doped π-Phase-Shifted Distributed Feedback Fibre Grating Laser
WANG Li; CHEN Bai; CHEN Jia-Lin; LI Guo-Yang; CHANG Li-Ping; SUN An; LIN Zun-Qi
2007-01-01
A novel method incorporating the shielded method and the post-processing method has been proposed to fabricate the π-phase-shifted fibre grating. Then an Er-doped π-phase-shifted distributed feedback fibre grating laser has been fabricated using the grating. The laser threshold is 20mW. When pumped with 90mW light at 980nm, thelaser gives an output of 1.1 mW. Its signal-to-noise ratio is better than 60dB. It is demonstrated that the laser is single mode operation by means of a Fabry-Perot scanning interferometer.
Generation and detection of gigahertz surface acoustic waves using an elastomeric phase-shift mask
Li, Dongyao; Zhao, Peng; Zhao, Ji-Cheng; Cahill, David G.
2013-10-01
We describe a convenient approach for measuring the velocity vSAW of surface acoustic waves (SAWs) of the near-surface layer of a material through optical pump-probe measurements. The method has a lateral spatial resolution of elastomeric polydimethylsiloxane phase-shift mask which is fabricated using a commercially available Si grating as a mold. Time-domain electromagnetics calculations show, in agreement with experiment, that the efficiency of the phase-shift mask for generating and detecting SAWs decreases rapidly as the periodicity of the mask decreases below the optical wavelength. We validate the experimental approach using bulk and thin film samples with known elastic constants.
Nucleon-alpha particle interactions from inversion of scattering phase shifts
Scattering amplitudes have been extracted from (elastic scattering) neutron-alpha (n-α) differential cross sections below threshold using the constraint that the scattering function is unitary. Real phase shifts have been obtained therefrom. A modification to the Newton iteration method has been used to solve the nonlinear equation that specifies the phase of the scattering amplitude in terms of the complete (0 to 180 deg) cross section since the condition for a unique and convergent solution by an exact iterated fixed point method, the 'Martin' condition, is not satisfied. The results compare well with those found using standard optical model search procedures. Those optical model phase shifts, from both n - α and p - α (proton-alpha) calculations in which spin-orbit effects were included, were used in the second phase of this study, namely to determine the scattering potentials by inversion of that phase shift data. A modified Newton-Sabatier scheme to solve the inverse scattering problem has been used to obtain inversion potentials (both central and spin-orbit) for nucleon energies in the range 1 to 24 MeV. The inversion interactions differ noticeably from the Woods-Saxon forms used to give the input phase shifts. Not only do those inversion potentials when used in Schroedinger equations reproduce the starting phase shifts but they are also very smooth, decay rapidly, and are as feasible as the optical model potentials of others to be the local form for interactions deduced by folding realistic two-nucleon g matrices with the density matrix elements of the alpha particle. 23 refs., 8 tabs., 9 figs
Accuracy enhancement of three-dimensional reconstruction using phase-shifting shadow moiré
Jamali Avilagh, Ali; Rezaie, Amir Hossein
2013-04-01
An iterative algorithm and a denoising method for accuracy enhancement of three-dimensional (3-D) reconstruction processes by shadow moiré is proposed. Using traditional shadow moiré for 3-D reconstruction leads to a nonuniform phase shift error. The proposed iterative algorithm eliminates this error by using three phase-shifted interferograms and obtains precise phase information. Moreover the proposed denoising method, which is based on undecimated wavelet transform, effectively eliminates noise and grating patterns while retaining useful information. The proposed phase shifting shadow moiré method is compared with the structured lighting method, which is a common method for 3-D reconstruction, and it is further compared with traditional shadow moiré. The methods are simulated in a 3ds-Max environment. The simulation results show that the proposed shadow moiré technique achieves greater accuracy in comparison with the traditional shadow moiré and structured lighting techniques and also it has higher accuracy than existing typical phase-shifting algorithms.
Shrestha, Ranjit; Park, Jeonghak; Kim, Wontae
2016-05-01
This paper presents an experimental arrangement for detection of artificial subsurface defects in a stainless steel sample by means of thermal wave imaging with lock-in thermography and consequently, the impact of excitation frequency on defect detectability. The experimental analysis was performed at several excitation frequencies to observe the sample beginning from 0.18 Hz all the way down to 0.01 Hz. The phase contrast between the defective and sound regions illustrates the qualitative and quantitative investigation of defects. The two, three, four and five-step phase shifting methods are investigated to obtain the information on defects. A contrast to noise ratio analysis was applied to each phase shifting method allowing the choice of the most appropriate one. Phase contrast with four-step phase shifting at an optimum frequency of 0.01 Hz provides excellent results. The inquiry with the effect of defect size and depth on phase contrast shows that phase contrast decreases with increase in defect depth and increases with the increase in defect size.
Dual-channel phase-shifting interferometry for microscopy with second wavelength assistance
Juanjuan Zheng; Baoli Yao; Romano A. Rupp; Tong Ye; Peng Gao; Junwei Min; Rongli Guo
2012-01-01
Dual-channel phase-shifting interferometry for simultaneous phase microscopy is presented.Red and blue light beams are used for microscope illumination. A 45° tilted beamsplitter replicates the object and reference waves in red light together with the object wave in blue light into two parallel beams. The two resulting quadrature phase-shifting interferograms in red light and the object waves in blue light are generated in the two channels.The two interferograms are recorded simultaneously by a color chargecoupled device (CCD) camera,and can be separated via RGB components of the recorded color patterns without crosstalk. As a result,the phase of tested specimen can be retrieved.The feasibility of the proposed method is demonstrated by test performed on a microscopic specimen.
Design and experiment of electronic speckle shearing phase-shifting pattern interferometer
Xu, Tianhua; Jing, Wencai; Zhang, Hongxia; Jia, Dagong; Zhang, Yimo
2016-01-01
An electronic speckle shearing phase-shifting pattern interferometer (ESSPPI) based on Michelson interferometer was based in this paper. A rotatable mirror driven by a step motor in one of its reflective arm is used to generate an adjustable shearing and the mirror driven by piezoelectric transducer (PZT) in the other reflective arm was used to realize phaseshifting. In the experiments, the deformation of an aluminum plate with the same extern-force on different positions and different forces on the same position is measured. Meanwhile, the phase distribution and phase-unwrap image of the aluminum plate with the extern-force on its center position is obtained by the four-step phase-shifting method.
Digital multi-step phase-shifting profilometry for three-dimensional ballscrew surface imaging
Liu, Cheng-Yang; Yen, Tzu-Ping
2016-05-01
A digital multi-step phase-shifting profilometry for three-dimensional (3-D) ballscrew surface imaging is presented. The 3-D digital imaging system is capable of capturing fringe pattern images. The straight fringe patterns generated by software in the computer are projected onto the ballscrew surface by the DLP projector. The distorted fringe patterns are captured by the CCD camera at different detecting directions for reconstruction algorithms. The seven-step phase-shifting algorithm and quality guided path unwrapping algorithm are used to calculate absolute phase at each pixel position. The 3-D calibration method is used to obtain the relationship between the absolute phase map and ballscrew shape. The angular dependence of 3-D shape imaging for ballscrews is analyzed and characterized. The experimental results may provide a novel, fast, and high accuracy imaging system to inspect the surface features of the ballscrew without length limitation for automated optical inspection industry.
Improvement on peak-to-trough ratio of sampled fiber Bragg gratings with multiple phase shifts
Bin Xie; Wei Pan; Bin Luo; Xihua Zou
2008-01-01
Via a cascaded structure, the peak-to-trough ratio is considerably improved for sampled fiber Bragg gratings (SFBGs) based on multiple-phase-shift (MPS) technique. This cascaded filter is composed of two identical SFBGs which are inserted with the increasing or decreasing arrangement of phase shifts.With this inverse arrangement of MPS in grating design, the phase fluctuation of individual SFBG can be compensated, and as a result an excellent phase matching condition is realized. In this way, the peak-to-trough ratio in reflection spectra is improved from 6 to 12 dB when multiplication factor m = 4, and from 5 dB to 10 dB when m=8.
Simple microwave interferometer for measuring small phase shifts with high spatial resolution
A simple X-band microwave interferometer is described. Spatial resolution to approx.0.2 cm was obtained by using a simple Lecher wire system to transmit the microwaves through the test region. Power levels were such (approx.1 mW) that in the vicinity of the balance point the crystal detectors operated in their linear region. Under these conditions the output from the phase-sensitive detector varied linearly with phase over +- 10degree to better than 1%. The sensitivity in the region of the balance point was about 18 mV per degree of phase shift with a noise level of 9--10/sup 10/ electrons/cm3), cold plasmas, as well as other media in which small phase shifts are to be measured
A scanning type x-ray imaging system which measures the absorption and differential phase shift in a material quantitatively and simultaneously has been developed. The absorption and differential phase are used to obtain the effective atomic number of organic material samples which closely reflects their chemical composition. An effective atomic number map of polymer fibers has been obtained. The experimentally obtained effective atomic numbers of these polymers agree well with the corresponding calculated values.
Zhiguo Zhao
2014-01-01
Full Text Available Based on the independently developed five-speed dry dual clutch transmission (DDCT, the paper proposes the torque coordinating control strategy between engine and two clutches, which obtains engine speed and clutch transferred torque in the shifting process, adequately reflecting the driver intention and improving the shifting quality. Five-degree-of-freedom (DOF shifting dynamics model of DDCT with single intermediate shaft is firstly established according to its physical characteristics. Then the quantitative control objectives of the shifting process are presented. The fuzzy decision of shifting time and the model-based torque coordinating control strategy are proposed and also verified by simulating under different driving intentions in up-/downshifting processes with the DCT model established on the MATLAB/Simulink. Simulation results validate that the shifting control algorithm proposed in this paper can not only meet the shifting quality requirements, but also adapt to the various shifting intentions, having a strong robustness.
An improved phase shift reconstruction algorithm of fringe scanning technique for X-ray microscopy
Lian, S.; Yang, H., E-mail: yang.haiquan@gmail.com [Midorino Research Corporation, 5-15-13 Chuo Rinkan Nishi, Yamato, Kanagawa 242-0008 (Japan); Kudo, H. [Division of Information Engineering, Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573 (Japan); Momose, A.; Yashiro, W. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)
2015-02-15
The X-ray phase imaging method has been applied to observe soft biological tissues, and it is possible to image the soft tissues by using the benefit of the so-called “Talbot effect” by an X-ray grating. One type of the X-ray phase imaging method was reported by combining an X-ray imaging microscope equipped by a Fresnel zone plate with a phase grating. Using the fringe scanning technique, a high-precision phase shift image could be obtained by displacing the grating step by step and measuring dozens of sample images. The number of the images was selected to reduce the error caused by the non-sinusoidal component of the Talbot self-image at the imaging plane. A larger number suppressed the error more but increased radiation exposure and required higher mechanical stability of equipment. In this paper, we analyze the approximation error of fringe scanning technique for the X-ray microscopy which uses just one grating and proposes an improved algorithm. We compute the approximation error by iteration and substitute that into the process of reconstruction of phase shift. This procedure will suppress the error even with few sample images. The results of simulation experiments show that the precision of phase shift image reconstructed by the proposed algorithm with 4 sample images is almost the same as that reconstructed by the conventional algorithm with 40 sample images. We also have succeeded in the experiment with real data.
Remark on the phase shift in the Kuzmak-Whitham ansatz
Dobrokhotov, S. Yu.; Minenkov, D. S.
2011-03-01
We consider one-phase ( formal) asymptotic solutions in the Kuzmak-Whitham form for the nonlinear Klein-Gordon equation and for the Korteweg-de Vries equation. In this case, the leading asymptotic expansion term has the form X( S( x, t)/ h+Φ( x, t), I( x, t), x, t) + O( h), where h ≪ 1 is a small parameter and the phase S}( x, t) and slowly changing parameters I( x, t) are to be found from the system of "averaged" Whitham equations. We obtain the equations for the phase shift Φ( x, t) by studying the second-order correction to the leading term. The corresponding procedure for finding the phase shift is then nonuniform with respect to the transition to a linear (and weakly nonlinear) case. Our observation, which essentially follows from papers by Haberman and collaborators, is that if we incorporate the phase shift Φ into the phase and adjust the parameter Ĩ by setting tilde S = S + hΦ+ O( h 2), Ĩ = I + hI 1 + O( h 2), then the functions tilde S ( x, t, h) and Ĩ( x, t, h) become solutions of the Cauchy problem for the same Whitham system but with modified initial conditions. These functions completely determine the leading asymptotic term, which is X( tilde S ( x, t, h)/ h, Ĩ( x, t, h), x, t) + O( h).
Anomalous Phase Shift of Quantum Oscillations in 3D Topological Semimetals
Wang, C. M.; Lu, Hai-Zhou; Shen, Shun-Qing
2016-08-01
Berry phase physics is closely related to a number of topological states of matter. Recently discovered topological semimetals are believed to host a nontrivial π Berry phase to induce a phase shift of ±1 /8 in the quantum oscillation (+ for hole and - for electron carriers). We theoretically study the Shubnikov-de Haas oscillation of Weyl and Dirac semimetals, taking into account their topological nature and inter-Landau band scattering. For a Weyl semimetal with broken time-reversal symmetry, the phase shift is found to change nonmonotonically and go beyond known values of ±1 /8 and ±5 /8 , as a function of the Fermi energy. For a Dirac semimetal or paramagnetic Weyl semimetal, time-reversal symmetry leads to a discrete phase shift of ±1 /8 or ±5 /8 . Different from the previous works, we find that the topological band inversion can lead to beating patterns in the absence of Zeeman splitting. We also find the resistivity peaks should be assigned integers in the Landau index plot. Our findings may account for recent experiments in Cd2 As3 and should be helpful for exploring the Berry phase in various 3D systems.
Optimization of second harmonic generation and nonlinear phase shifts in the Cerenkov regime
Krijnen, Gijs J.M.; Torruellas, William; Stegeman, George J.; Hoekstra, Hugo J.W.M.; Lambeck, Paul V.
1996-01-01
We present beam propagation method (BPM) studies of second harmonic generation (SHG) and nonlinear phaseshifts by cascading. The studies concentrate on SHG by means of radiation modes; the Cerenkov regime. The presented modeling does take into account both depletion and nonlinear phase shifts of the
Ri, Bak Son; Solodkov, O. V.; Chizhikova, E. V.
2009-01-01
A low-frequency model of the microwave frequency (phase) detector with amplitude modulator and shift generator has been studied theoretically and experimentally. The results of experiment indicate that such FM (PM) detector can be also used in the HF band of radio frequencies.
16-level differential phase shift keying (D16PSK) in direct detection optical communication systems
Sambaraju, R.; Tokle, Torger; Jensen, J.B.;
2006-01-01
Optical 16-level differential phase shift keying (D16PSK) carrying four bits for every symbol is proposed for direct detection optical communication systems. Transmitter and receiver schematics are presented, and the receiver sensitivity is discussed. We numerically investigate the impact of...
Energy-dependent phase shift analysis of pion-nucleon scattering below 400 MeV
An analytic function of energy is fit to the available S, P, and D wave πN phase shifts of various goups below 400 MeV. This global average, which reproduces well most of the experiment cross sections, is anticipated to be useful in pion-nucleus and pion-nucleon interaction calculations
Enz, Stephanie; Thomsen, Jon Juel; Neumeyer, Stefan
2011-01-01
Theoretical investigations of a single, straight, vibrating, fluid-conveying pipe have resulted in simple analytical expressions for the approximate prediction of the spatial shift in vibration phase. The expressions have lead to hypotheses for real Coriolis flowmeters (CFMs). To test these, the ...
Neutron-proton elastic scattering between 200 and 500 MeV - 3. Phase shift analysis
Data on Dsub(t), Rsub(t), Asub(t) and P from TRIUMF lead to unique and accurate np phase shift solutions at 210, 325, 425 and 515 MeV. The I = 0 D and G waves show large systematic deviations from current theoretical models. (author)
Quantum displacement receiver for M-ary phase-shift-keyed coherent states
Izumi, Shuro [National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795, Japan and Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan); Takeoka, Masahiro; Fujiwara, Mikio; Sasaki, Masahide [National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795 (Japan); Pozza, Nicola Dalla; Assalini, Antonio [Department of Information Engineering, University of Padua, Via Gradenigo 6/B, 35131, Padova (Italy); Ema, Kazuhiro [Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan)
2014-12-04
We propose quantum receivers for 3- and 4-ary phase-shift-keyed (PSK) coherent state signals to overcome the standard quantum limit (SQL). Our receiver, consisting of a displacement operation and on-off detectors with or without feedforward, provides an error probability performance beyond the SQL. We show feedforward operations can tolerate the requirement for the detector specifications.
Glazar, Nikolaus; Culbreath, Christopher; Li, Yannian; Yokoyama, Hiroshi
2015-11-01
We present a novel liquid-crystal-based phase-shift mask that utilizes the Pancharatnam-Berry phase for super-resolution photolithography. Using an automated maskless photoalignment technique, we pattern an azobenzene alignment layer in a nematic liquid-crystal cell to fabricate the mask. Since the image is formed by phase cancellation, the minimum feature size is not restricted by the diffraction limit; here, we obtain submicron features. The liquid-crystal properties of the cell allow the mask to be switched on and off by applying a voltage. The cost effectiveness and flexibility of this technique make it a promising new technology for photolithography.
Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue
González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.
2013-04-01
Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.
We introduce an iterative least-squared phase-shifting method, reported as inherently insensitive to any types of phase-shifting errors, to calculate the spectral phase in phase-shifting spectrally resolved white light interferometry (PS-SRI). The actual phase shifts corresponding to all wavelengths can be reversely determined from the phase-shifted spectral interference fringes through least-squares fitting and the spectral phase is calculated by using the actual phase shifts in an iterative numerical manner. Because this method reduces the phase-shifting errors for calculating the spectral phase effectively, it can contribute to improving the accuracy of measuring topographic surface profiles. Moreover, it leads to accomplishing thin film thickness measurements less than 100 nm, in which most white light scanning interferometry and spectrally resolved white light interferometry (SRI) have difficulty because of mismatching measured spectral phase with the theoretical model by the spectral phase error. In this paper, a short description of the iterative least-squared phase-shifting method is presented and verified with simulations for calculating the topographic surface and thin film thickness profiles in PS-SRI. (paper)
Kublitz, Anja
2016-01-01
as camps. Based on fieldwork among Palestinians in the Danish camps, this article explores why my interlocutors describe their current lives as a catastrophe. Al-Nakba literally means the catastrophe and, in Palestinian national discourse, it is used to designate the event of 1948, when the Palestinians...
Compression of computer generated phase-shifting hologram sequence using AVC and HEVC
Xing, Yafei; Pesquet-Popescu, Béatrice; Dufaux, Frederic
2013-09-01
With the capability of achieving twice the compression ratio of Advanced Video Coding (AVC) with similar reconstruction quality, High Efficiency Video Coding (HEVC) is expected to become the newleading technique of video coding. In order to reduce the storage and transmission burden of digital holograms, in this paper we propose to use HEVC for compressing the phase-shifting digital hologram sequences (PSDHS). By simulating phase-shifting digital holography (PSDH) interferometry, interference patterns between illuminated three dimensional( 3D) virtual objects and the stepwise phase changed reference wave are generated as digital holograms. The hologram sequences are obtained by the movement of the virtual objects and compressed by AVC and HEVC. The experimental results show that AVC and HEVC are efficient to compress PSDHS, with HEVC giving better performance. Good compression rate and reconstruction quality can be obtained with bitrate above 15000kbps.
Automated surface profile measurement of diamond grid disk by phase-shifted shadow Moiré
Chen, Terry Yuan-Fang; Lin, Jie
2014-06-01
Diamond grid disk dresser is frequently employed to remove the accumulated debris lest the polishing surface glazes. The surface warpage of diamond grid disk must be small enough to assure the flatness of polished wafers during chemical mechanical planarization process. In this study, phase-shifted shadow moiré method was employed to measure the surface profile of diamond grid disk. To eliminate erroneous bright or black spots caused by the diamond grids, a new approach is proposed by automatically selecting a proper threshold value from the differentiated image resulting from the addition of four phase-shifted images. According to the largest size of erroneous spot, the size of a structuring element is determined for morphology filtering. Thereafter the phase can be calculated and unwrapped correctly. Test of the method on a diamond grid disk is demonstrated and discussed.
Understanding Atmospheric Catastrophes
Chao, Winston C.
2009-01-01
The atmosphere, as in other parts of nature, is full of phenomena that involve rapid transitions from one (quasi-) equilibrium state to another--- i.e. catastrophes. These (quasi-) equilibria are the multiple solutions of the same dynamical system. Unlocking the mystery behind a catastrophe reveals not only the physical mechanism responsible for the transition, but also how the (quasi-) equilibria before and after the transition are maintained. Each catastrophe is different, but they do have some common traits. Understanding these common traits is the first step in studying these catastrophes. In this seminar, three examples chosen based on the speaker's research interest--tropical cyclogenesis, stratospheric sudden warming, and monsoon onset--are given to illustrate how atmospheric catastrophes can be studied.
Narottam Das
2011-01-01
Full Text Available The finite difference time-domain (FDTD method is used to simulate the light absorption enhancement in a plasmonic metal-semiconductor-metal photodetector (MSM-PD structure employing a metal nanograting with phase shifts. The metal fingers of the MSM-PDs are etched at appropriate depths to maximize light absorption through plasmonic effects into a subwavelength aperture. We also analyse the nano-grating phase shift and groove profiles obtained typically in our experiments using focused ion beam milling and atomic force microscopy and discuss the dependency of light absorption enhancement on the nano-gratings phase shift and groove profiles inscribed into MSM-PDs. Our simulation results show that the nano-grating phase shift blue-shifts the wavelength at which the light absorption enhancement is maximum, and that the combined effects of the nano-grating groove shape and phase shift degrade the light absorption enhancement by up to 50%.
Phase-shifted helical long-period grating-based temperature-insensitive optical fiber twist sensors
Gao, Ran; Zhu, Yinian; Krishnaswamy, Sridhar; Yi, Jiang
2015-03-01
In smart structure monitoring, twist angle is one of the most critical mechanical parameters for infrastructure deterioration. A compact temperature-insensitive optical fiber twist sensor based on multi-phase-shifted helical long period fiber grating has been proposed and experimentally demonstrated in this paper. A multi-phase-shifted helical long period fiber grating is fabricated with a multi-period rotation technology. A π / 2 and a 3π / 2 phase shift is introduced in the helical long period fiber grating by changing the period. The helical pitch can be effectively changed with a different twist rate, which is measured by calculating the wavelength difference between two phase shift peaks. Although the wavelength of the phase shift peak also shifts with a change of the temperature, the wavelength difference between two phase shift peaks is constant due to two fixed phase shifts in the helical long period fiber grating, which is extremely insensitive to temperature change for the multi-phase-shifted helical long period fiber grating. The experimental results show that a sensitivity of up to 1.959 nm/(rad/m) is achieved.
Chujun Zheng; Peng Han; Hongsen Chang
2006-01-01
@@ A new one-step four-quadrant spatial phase-shifting Fourier transform digital holography is presented for recording of cosine transform coefficients, because cosine transform is a real-even symmetric Fourier transform. This approach implements four quadrant spatial phase shifting at a time using a special phase mask, which is located in the reference arm, and the phase distributions of its four-quadrants are 0, π/2, π,and 3π/2 respectively. The theoretical analysis and computer simulation results show that cosine transform coefficients of real-valued image can be calculated by capturing single four-quadrant spatial phase-shifting Fourier transform digital hologram.
A portable intra-oral scanner based on sinusoidal pattern of fast phase-shifting
Jan, Chia-Ming; Lin, Ying-Chieh
2016-03-01
This paper presented our current research about the intra-oral scanner made by MIRDC. Utilizing the sinusoidal pattern for fast phase-shifting technique to deal with 3D digitalization of human dental surface profile, the development of pseudo-phase shifting digital projection can easily achieve one type of full-field scanning instead of the common technique of the laser line scanning. Based on traditional Moiré method, we adopt projecting fringes and retrieve phase reconstruction to forward phase unwrapping. The phase difference between the plane and object can be exactly calculated from the desired fringe images, and the surface profile of object was probably reconstructed by using the phase differences information directly. According to our algorithm of space mapping between projections and capturing orientation exchange of our intra-oral scanning configuration, the system we made certainly can be proved to achieve the required accuracy of +/-10μm to deal with intra-oral scanning on the basis of utilizing active triangulation method. The final purpose aimed to the scanning of object surface profile with its size about 10x10x10mm3.
Scattering phase shift for elastic two pion scattering and the rho resonance in lattice QCD
In this thesis we use lattice QCD to compute scattering phase shifts for elastic two-pion scattering in the isospin I=1 channel. Using Luescher's formalism, we derive the scattering phase shifts for different total momenta of the two-pion system in a non-rest frame. Furthermore we analyse the symmetries of the non-rest frame lattices and construct 2-pion and rho operators transforming in accordance with these symmetries. The data was collected for a 323 x 64 and a 403 x 64 lattice with Nf=2 clover improved Wilson fermions at a pion mass around 290 MeV and a lattice spacing of about 0.072 fm.
Scattering phase shift for elastic two pion scattering and the rho resonance in lattice QCD
Gutzwiller, Simone
2012-10-08
In this thesis we use lattice QCD to compute scattering phase shifts for elastic two-pion scattering in the isospin I=1 channel. Using Luescher's formalism, we derive the scattering phase shifts for different total momenta of the two-pion system in a non-rest frame. Furthermore we analyse the symmetries of the non-rest frame lattices and construct 2-pion and rho operators transforming in accordance with these symmetries. The data was collected for a 32{sup 3} x 64 and a 40{sup 3} x 64 lattice with N{sub f}=2 clover improved Wilson fermions at a pion mass around 290 MeV and a lattice spacing of about 0.072 fm.
No indication of f0(1370) in pi pi phase shift analyses
Ochs, Wolfgang
2010-01-01
The scalar meson f_0(1370) - indicated in particular in the low energy p\\bar p \\to 3 body reactions - is a crucial element in certain schemes of the scalar meson spectroscopy including glueballs. The most definitive results can be obtained from elastic and inelastic pi pi phase shift analyses using the constraints from unitarity where the discrete ambiguities can be identified and resolved. We reconsider the phase shift analyses for pi^+ pi^- \\to pi+ \\pi-, pi^0 pi^0, K \\bar K, eta eta. While a clear resonance signal for f_0(1500) in the resp. Argand diagrams is seen in all channels above a large ``background'' from f_0(600) there is no clear signal of a second resonance ``f_0(1370)'' in this mass range in any reaction, at the level of \\sim 10% branching ratio into pi-pi.
No indication of f0(1370) in ππ phase shift analyses
Ochs, Wolfgang
2010-08-01
The scalar meson f0(1370)—indicated in particular in the low energy pp¯→3 body reactions—is a crucial element in certain schemes of the scalar meson spectroscopy including glueballs. The most definitive results can be obtained from elastic and inelastic ππ phase shift analyses using the constraints from unitarity where the discrete ambiguities can be identified and resolved. We reconsider the phase shift analyses for π+π-→π+π-, π0π0, KK¯, ηη. While a clear resonance signal for f0(1500) in the resp. Argand diagrams is seen in all channels above a large "background" from f0(600) there is no clear signal of a second resonance "f0(1370)" in this mass range in any reaction, at the level of ˜10% branching ratio into ππ.
Family of Hermitian Low-Momentum Nucleon Interactions with Phase Shift Equivalence
Holt, J D; Brown, G E; Holt, Jason D.
2004-01-01
Using a Schmidt orthogonalization transformation, a family of Hermitian low-momentum NN interactions is derived from the non-Hermitian Lee-Suzuki (LS) low-momentum NN interaction. As special cases, our transformation reproduces the Hermitian interactions for Okubo and Andreozzi. Aside from their common preservation of the deuteron binding energy, these Hermitian interactions are shown to be phase shift equivalent, all preserving the empirical phase shifts up to decimation scale Lambda. Employing a solvable matrix model, the Hermitian interactions given by different orthogonalization transformations are studied; the interactions can be very different from each other particularly when there is a strong intruder state influence. However, because the parent LS low-momentum NN interaction is only slightly non-Hermitian, the Hermitian low-momentum nucleon interactions given by our transformations, including the Okubo and Andreozzi ones, are all rather similar to each other. Shell model matrix elements given by the ...