Rao, Y. K.
1979-01-01
Shows that upon incorporating an irreversible step into an otherwise reversible Carnot Cyclic process there results a diminution of thermodynamic efficiency and a simultaneous augmentation of the entropy of the universe. (Author/HM)
Carnot cycle for an oscillator
Arnaud, J.; Chusseau, L.; Philippe, F.
2001-01-01
Carnot established in 1824 that the efficiency of cyclic engines operating between a hot bath at absolute temperature $T_{hot}$ and a bath at a lower temperature $T_{cold}$ cannot exceed $1-T_{cold}/T_{hot}$. We show that linear oscillators alternately in contact with hot and cold baths obey this principle in the quantum as well as in the classical regime. The expression of the work performed is derived from a simple prescription. Reversible and non-reversible cycles are illustrated. The pape...
Carnot cycle for an oscillator
Arnaud, J; Philippe, F
2002-01-01
Carnot established in 1824 that the efficiency of cyclic engines operating between a hot bath at absolute temperature Th and a cold bath at temperature Tc cannot exceed 1-Tc/Th. This result implies the existence of an entropy function S(U) with the property that d^2S/dU^2 less equal 0, where U denotes the average energy. Linear single-mode systems alternately in contact with hot and cold baths obey these principles. A specific expression of the work done per cycle by an oscillator is derived from a prescription established by Einstein in 1906: heat baths may exchange energy with oscillators at angular frequency omega only by amounts hbar *omega, where 2*pi*hbar denotes the Planck constant. Non-reversible cycles are illustrated. The paper is essentially self-contained.
Reversible Carnot cycle outside a black hole
Deng Xi-Hao; Gao Si-Jie
2009-01-01
A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T1 and a black hole with Hawking temperature Th. By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1-TH/T1 Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible.
Reversible Carnot cycle outside a black hole
A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T1 and a black hole with Hawking temperature TH. By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1 – TH/T1. Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible. (general)
A Preface to the Carnot Cycle.
Goldstein, Martin
1980-01-01
Describes a new method for teaching the Second Law by way of the Carnot cycle. The two features of this method are that the isothermal process is considered first to establish some basic concepts, and then the nonisothermal cyclical process is introduced. (CS)
Onsager coefficients of a Brownian Carnot cycle
Izumida, Yuki; Okuda, Koji
2010-01-01
We study a Brownian Carnot cycle introduced by T. Schmiedl and U. Seifert [Europhys. Lett. \\textbf{81}, 20003 (2008)] from a viewpoint of the linear irreversible thermodynamics. By considering the entropy production rate of this cycle, we can determine thermodynamic forces and fluxes of the cycle and calculate the Onsager coefficients for general protocols, that is, arbitrary schedules to change the potential confining the Brownian particle. We show that these Onsager coefficients contain the...
Infinitesimal Carnot cycle and Maxwell's first relation
We demonstrate that by employing usual calculus along with the first law, the efficiency of a Carnot cycle can be evaluated when the working substance has an arbitrary equation of state. This leads to a neat derivation of Maxwell's first relation without using either the properties of perfect differentials as done by Tjiang and Sutanto or the abstract symbolism of topology as done by Hannay
Efficiency of Carnot Cycle with Arbitrary Gas Equation of State
Tjiang, Paulus C.; Sutanto, Sylvia H.
2006-01-01
The derivation of the efficiency of Carnot cycle is usually done by calculating the heats involved in two isothermal processes and making use of the associated adiabatic relation for a given working substance's equation of state, usually the ideal gas. We present a derivation of Carnot efficiency using the same procedure with Redlich-Kwong gas as working substance to answer the calculation difficulties raised by Agrawal and Menon. We also show that using the same procedure, the Carnot efficie...
Refrigeration Carnot-type cycle based on isothermal vapour compression
Meunier, F. [Laboratoire du Froid EA 21, Cnam-IFFI, 292 rue Saint-Martin (France)
2006-01-01
A refrigeration Carnot-type cycle based on isothermal compression and two reversible expansions is proposed. Although ideal, this cycle is close to a realistic one which could be designed with existing hardware. (author)
Construction and Optimization of the Quantum Analog of Carnot Cycles
Xiao, Gaoyang; Gong, Jiangbin
2015-01-01
The quantum analog of Carnot cycles in few-particle systems consists of two quantum adiabatic steps and two isothermal steps. This construction is formally justified by use of a minimum work principle. It is then shown, without relying on any microscopic interpretations of work or heat, that the heat-to-work efficiency of the quantum Carnot cycle thus constructed may be further optimized, provided that two conditions regarding the expectation value of some generalized force operators evaluate...
Efficiency of Carnot Cycle with Arbitrary Gas Equation of State
Tjiang, P C; Tjiang, Paulus C.; Sutanto, Sylvia H.
2006-01-01
The derivation of the efficiency of Carnot cycle is usually done by calculating the heats involved in two isothermal processes and making use of the associated adiabatic relation for a given working substance's equation of state, usually the ideal gas. We present a derivation of Carnot efficiency using the same procedure with Redlich-Kwong gas as working substance to answer the calculation difficulties raised by Agrawal and Menon. We also show that using the same procedure, the Carnot efficiency may be derived regardless of the functional form of the gas equation of state.
Carnot cycle at finite power: Attainability of maximal efficiency
Allahverdyan, A. E.; Hovhannisyan, K. V.; Melkikh, A. V.; Gevorkian, S. G.
2013-01-01
We want to understand whether and to what extent the maximal (Carnot) efficiency for heat engines can be reached at a finite power. To this end we generalize the Carnot cycle so that it is not restricted to slow processes. We show that for realistic (i.e., not purposefully designed) engine-bath interactions, the work-optimal engine performing the generalized cycle close to the maximal efficiency has a long cycle time and hence vanishing power. This aspect is shown to relate to the theory of c...
Carnot cycle at finite power: attainability of maximal efficiency.
Allahverdyan, Armen E; Hovhannisyan, Karen V; Melkikh, Alexey V; Gevorkian, Sasun G
2013-08-01
We want to understand whether and to what extent the maximal (Carnot) efficiency for heat engines can be reached at a finite power. To this end we generalize the Carnot cycle so that it is not restricted to slow processes. We show that for realistic (i.e., not purposefully designed) engine-bath interactions, the work-optimal engine performing the generalized cycle close to the maximal efficiency has a long cycle time and hence vanishing power. This aspect is shown to relate to the theory of computational complexity. A physical manifestation of the same effect is Levinthal's paradox in the protein folding problem. The resolution of this paradox for realistic proteins allows to construct engines that can extract at a finite power 40% of the maximally possible work reaching 90% of the maximal efficiency. For purposefully designed engine-bath interactions, the Carnot efficiency is achievable at a large power. PMID:23952379
Carnot cycle for magnetic materials: The role of hysteresis
The role of hysteresis in a refrigeration thermodynamic cycle involving ferromagnetic materials is discussed. A model allowing to calculate magnetization, entropy and entropy production in systems with hysteresis is used to compute a non-ideal Carnot cycle performed on a ferromagnetic material
Onsager coefficients of a finite-time Carnot cycle
Izumida, Yuki; Okuda, Koji
2009-01-01
We study a finite-time Carnot cycle of a weakly interacting gas which we can regard as a nearly ideal gas in the limit of $T_\\mathrm{h}-T_\\mathrm{c}\\to 0$ where $T_\\mathrm{h}$ and $T_\\mathrm{c}$ are the temperatures of the hot and cold heat reservoirs, respectively. In this limit, we can assume that the cycle is working in the linear-response regime and can calculate the Onsager coefficients of this cycle analytically using the elementary molecular kinetic theory. We reveal that these Onsager...
Real-Time Numerical Simulation of the Carnot Cycle
We developed a highly interactive, multi-windows Java applet which made it possible to simulate and visualize within any platform and internet the Carnot cycle (or engine) in a real-time computer experiment. We extended our previous model and algorithm to simulate not only the heat flow but also the macroscopic movement of the piston. since in reality it is impossible to construct a reversible Carnot engine, the question arises whether it is possible to simulate it at least in a numerical experiment? The positive answer to this question which we found is related to our model and algorithm which make it possible to omit the many-body problem arising when many gas particles simultaneously interact with the mobile piston. As usually the considerations of phenomenomenological thermodynamics began with a study of the basic properties of heat engines hence our approach, beside intrinsic physical significance, is also important from the educational, technological and even environmental points of view. (author)
Complexity in the stepwise ideal gas Carnot cycle
Di Liberto, Francesco
2002-01-01
A stepwise Carnot cycle is performed by means of N small weights (here called dw's), which are first added and then removed from the piston of the vessel containing the gas. The size of the dw's affects the entropy production. The work performed by the gas can be found as increase of the potential energy of the dw's. We identify each single dw and thus evaluate its raising, i.e., its increase in potential energy. In such a way we find how the energy output of the cycle is distributed among th...
Optimization of the direct Carnot cycle
A model for the study and optimization of two heat reservoirs thermal machines is presented. The mathematical model basically consists of the First and Second Laws of Thermodynamics applied to the cycle and entire system, and the heat transfer equations at the source and sink. The internal and external irreversibilities of the cycle are considered by taking into account the entropy generation terms. Several constraints imposed to the system composed by the engine and the two heat reservoirs (namely, engine efficiency, or power output, or heat flux received by the engine, each of them together with imposed internal entropy generation and total number of heat transfer units of the machine heat exchangers) allow us to find the optimum operational conditions, as well as the limited variation ranges for the system parameters. Emphasis is put on coupling between various possible objective functions, namely thermal cost, useful effect, first law efficiency and whole system dissipation. It is for the first time to our knowledge when it has been proved that if one of the possible objective functions is fixed (as a parameter with imposed value), the optima of the other three always correspond to each other for the corresponding stationary state system, with a given optimum heat conductance allocation (one degree of freedom). Other interesting results are also reported in this paper. Some sensitivity studies were developed, too, with respect to various parameters of the model (engine performance, internal entropy generation, total number of heat transfer units)
Carnot's cycle for small systems: irreversibility and cost of operations
Sekimoto; Takagi; Hondou
2000-12-01
In the thermodynamic limit, the existence of a maximal efficiency of energy conversion attainable by a Carnot cycle consisting of quasistatic isothermal and adiabatic processes precludes the existence of a perpetual machine of the second kind, whose cycles yield positive work in an isothermal environment. We employ the recently developed framework of the energetics of stochastic processes (called "stochastic energetics") to reanalyze the Carnot cycle in detail, taking account of fluctuations, without taking the thermodynamic limit. We find that in this nonmacroscopic situation both processes of connection to and disconnection from heat baths and adiabatic processes that cause distortion of the energy distribution are sources of inevitable irreversibility within the cycle. Also, the so-called null-recurrence property of the cumulative efficiency of energy conversion over many cycles and the irreversible property of isolated, purely mechanical processes under external "macroscopic" operations are discussed in relation to the impossibility of a perpetual machine, or Maxwell's demon. This analysis may serve as the basis for the design and analysis of mesoscopic energy converters in the near future. PMID:11138050
Molecular kinetic analysis of a finite-time Carnot cycle
Izumida, Yuki; Okuda, Koji
2008-01-01
We study the efficiency at the maximal power $\\eta_\\mathrm{max}$ of a finite-time Carnot cycle of a weakly interacting gas which we can reagard as a nearly ideal gas. In several systems interacting with the hot and cold reservoirs of the temperatures $T_\\mathrm{h}$ and $T_\\mathrm{c}$, respectively, it is known that $\\eta_\\mathrm{max}=1-\\sqrt{T_\\mathrm{c}/T_\\mathrm{h}}$ which is often called the Curzon-Ahlborn (CA) efficiency $\\eta_\\mathrm{CA}$. For the first time numerical experiments to veri...
Onsager coefficients of a finite-time Carnot cycle
Izumida, Yuki; Okuda, Koji
2009-08-01
We study a finite-time Carnot cycle of a weakly interacting gas which we can regard as a nearly ideal gas in the limit of Th-Tc→0 where Th and Tc are the temperatures of the hot and cold heat reservoirs, respectively. In this limit, we can assume that the cycle is working in the linear-response regime and can calculate the Onsager coefficients of this cycle analytically using the elementary molecular kinetic theory. We reveal that these Onsager coefficients satisfy the so-called tight-coupling condition and this fact explains why the efficiency at the maximal power ηmax of this cycle can attain the Curzon-Ahlborn efficiency from the viewpoint of the linear-response theory.
Onsager coefficients of a finite-time Carnot cycle.
Izumida, Yuki; Okuda, Koji
2009-08-01
We study a finite-time Carnot cycle of a weakly interacting gas which we can regard as a nearly ideal gas in the limit of T(h)-T(c) --> 0 where T(h) and T(c) are the temperatures of the hot and cold heat reservoirs, respectively. In this limit, we can assume that the cycle is working in the linear-response regime and can calculate the Onsager coefficients of this cycle analytically using the elementary molecular kinetic theory. We reveal that these Onsager coefficients satisfy the so-called tight-coupling condition and this fact explains why the efficiency at the maximal power eta(max) of this cycle can attain the Curzon-Ahlborn efficiency from the viewpoint of the linear-response theory. PMID:19792091
黄传昆; 郭君诚; 陈金灿
2015-01-01
Under the assumption of low-dissipation, a unified model of generalized Carnot cycles with external leakage losses is established. Analytical expressions for the power output and efficiency are derived. The general performance characteristics between the power output and the efficiency are revealed. The maximum power output and efficiency are calculated. The lower and upper bounds of the efficiency at the maximum power output are determined. The results obtained here are universal and can be directly used to reveal the performance characteristics of different Carnot cycles, such as Carnot heat engines, Carnot-like heat engines, flux flow engines, gravitational engines, chemical engines, two-level quantum engines, etc.
Real-time numerical simulation of the Carnot cycle
We developed a highly interactive, multi-windows Java applet which made it possible to simulate and visualize within any platform and internet the Carnot cycle (or engine) in a real-time computer experiment. We extended our previous model and algorithm (Galant et al 2003 Heat Transfer, Newton's Law of Cooling and the Law of Entropy Increase Simulated by the Real-Time Computer Experiments in Java (Lecture Notes in Computer Science vol 2657) pp 45-53, Gall and Kutner 2005 Molecular mechanisms of heat transfer: Debye relaxation versus power-law Physica A 352 347-78) to simulate not only the heat flow but also the macroscopic movement of the piston. Since in reality it is impossible to construct a reversible Carnot engine, the question arises whether it is possible to simulate it at least in a numerical experiment? The positive answer to this question which we found is related to our model and algorithm which make it possible to omit the many-body problem arising when many gas particles simultaneously interact with the mobile piston. As usual, the considerations of phenomenological thermodynamics began with a study of the basic properties of heat engines, hence our approach, besides intrinsic physical significance, is also important from the educational, technological and even environmental points of view
Nonlinear Thermodynamic Analysis and Optimization of a Carnot Engine Cycle
Michel Feidt
2016-06-01
Full Text Available As part of the efforts to unify the various branches of Irreversible Thermodynamics, the proposed work reconsiders the approach of the Carnot engine taking into account the finite physical dimensions (heat transfer conductances and the finite speed of the piston. The models introduce the irreversibility of the engine by two methods involving different constraints. The first method introduces the irreversibility by a so-called irreversibility ratio in the entropy balance applied to the cycle, while in the second method it is emphasized by the entropy generation rate. Various forms of heat transfer laws are analyzed, but most of the results are given for the case of the linear law. Also, individual cases are studied and reported in order to provide a simple analytical form of the results. The engine model developed allowed a formal optimization using the calculus of variations.
Thermodynamics of natural selection II: Chemical Carnot cycles.
Smith, Eric
2008-05-21
This is the second in a series of three papers devoted to energy flow and entropy changes in chemical and biological processes, and to their relations to the thermodynamics of computation. In the first paper of the series, it was shown that a general-form dimensional argument from the second law of thermodynamics captures a number of scaling relations governing growth and development across many domains of life. It was also argued that models of physiology based on reversible transformations provide sensible approximations within which the second-law scaling is realized. This paper provides a formal basis for decomposing general cyclic, fixed-temperature chemical reactions, in terms of the chemical equivalent of Carnot's cycle for heat engines. It is shown that the second law relates the minimal chemical work required to perform a cycle to the Kullback-Leibler divergence produced in its chemical output ensemble from that of a Gibbs equilibrium. Reversible models of physiology are used to create reversible models of natural selection, which relate metabolic energy requirements to information gain under optimal conditions. When dissipation is added to models of selection, the second-law constraint is generalized to a relation between metabolic work and the combined energies of growth and maintenance. PMID:18367209
Maximum Efficiency of Heat Engines Based on a Small System: Carnot Cycle at the Nanoscale
Quan, H. T.
2013-01-01
We study the maximum efficiency of a Carnot cycle heat engine based on a small system. It is revealed that due to the finiteness of the system, irreversibility may arise when the working substance contacts with a heat bath. As a result, there is a working-substance-dependent correction to the usual Carnot efficiency, which is valid only when the working substance is in the thermodynamic limit. We derives a general and simple expression for the maximum efficiency of a Carnot cycle heat engine ...
Simplified Helium Refrigerator Cycle Analysis Using the `Carnot Step'
P. Knudsen; V. Ganni
2006-05-01
An analysis of the Claude form of an idealized helium liquefier for the minimum input work reveals the ''Carnot Step'' for helium refrigerator cycles. As the ''Carnot Step'' for a multi-stage polytropic compression process consists of equal pressure ratio stages; similarly for an idealized helium liquefier the ''Carnot Step'' consists of equal temperature ratio stages for a given number of expansion stages. This paper presents the analytical basis and some useful equations for the preliminary examination of existing and new Claude helium refrigeration cycles.
Aragon-Gonzalez, G.; Canales-Palma, A.; Leon-Galicia, A.; Morales-Gomez, J. R.
2007-01-01
In this work we include, for the Carnot cycle, irreversibilities of linear finite rate of heat transferences between the heat engine and its reservoirs, heat leak between the reservoirs and internal dissipations of the working fluid. A first optimization of the power output, the efficiency and ecological function of an irreversible Carnot cycle, with respect to: internal temperature ratio, time ratio for the heat exchange and the allocation ratio of the heat exchangers; is performed. For the ...
The maximum efficiency of a heat engine is able to be estimated by using a Carnot cycle. Even though, in terms of efficiency, the Carnot cycle performs the role of reference very well, its application is limited to the case of infinite heat reservoirs, which is not that realistic. Moreover, considering that one of the recent key issues is to produce maximum work from low temperature and finite heat sources, which are called renewable energy sources, more advanced theoretical cycles, which can present a new standard, and the research about them are necessary. Therefore, in this paper, a sequential Carnot cycle, where multiple Carnot cycles are connected in parallel, is studied. The cycle adopts a finite heat source, which has a certain initial temperature and heat capacity, and an infinite heat sink, which is assumed to be ambient air. Heat transfer processes in the cycle occur with the temperature difference between a heat reservoir and a cycle. In order to resolve the heat transfer rate in those processes, the product of an overall heat transfer coefficient and a heat transfer area is introduced. Using these conditions, the performance of a sequential Carnot cycle is analytically calculated. Furthermore, as the efforts for enhancing the work of the cycle, the optimization research is also conducted with numerical calculation. - Highlights: • Modified sequential Carnot cycles are proposed for evaluating low grade heat sources. • Performance of sequential Carnot cycles is calculated analytically. • Optimization study for the cycle is conducted with numerical solver. • Maximum work from a heat source under a certain condition is obtained by equations
The efficiency of the Carnot cycle with arbitrary gas equations of state
The derivation of the efficiency of the Carnot cycle is usually done by calculating the heats involved in two isothermal processes and making use of the associated adiabatic relation for a given working substance's equation of state, usually the ideal gas. We present a derivation of the Carnot efficiency using the same procedure with the Redlich-Kwong gas as a working substance to solve calculation difficulties raised by Agrawal and Menon (1990 Eur. J. Phys. 11 88-90). We also show that using the same procedure, the Carnot efficiency may be derived regardless of the functional form of the gas equation of state
Huang, Chuan-Kun; Guo, Jun-Cheng; Chen, Jin-Can
2015-11-01
Under the assumption of low-dissipation, a unified model of generalized Carnot cycles with external leakage losses is established. Analytical expressions for the power output and efficiency are derived. The general performance characteristics between the power output and the efficiency are revealed. The maximum power output and efficiency are calculated. The lower and upper bounds of the efficiency at the maximum power output are determined. The results obtained here are universal and can be directly used to reveal the performance characteristics of different Carnot cycles, such as Carnot heat engines, Carnot-like heat engines, flux flow engines, gravitational engines, chemical engines, two-level quantum engines, etc. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11405032).
Análisis del Comportamiento de un Ciclo Tipo Carnot Analysis of the Behavior of a Carnot Type Cycle
Delfino Ladino-Luna
2010-01-01
Full Text Available Se hace un análisis de las regiones de existencia de la función potencia de salida y función ecológica, que dan lugar a la forma de las respectivas eficiencias para un ciclo tipo Carnot, llamado ciclo endorreversible, a potencia de salida máxima y función ecológica máxima. Se muestra la importancia dichas regiones de existencia de estas funciones para diversos resultados de la literatura relacionada con la termodinámica de tiempos finitos. Se concluye que para modelar gráficamente el desempeño de una máquina térmica, es necesario hacer un análisis de las regiones de existencia de los parámetros importantes que describen el comportamiento de la maquina.An analysis of the regions of existence of power output and ecological function, that give the form of respective efficiencies for a Carnot type cycle, called endorreversible cycle, at maximum power output and at maximum ecological function is done. The importance of these regions of existence of these functions is shown, for different results from the literature on finite time thermodynamics. It is concluded that for graphically modeling the performance of a heat engine, it is necessary to perform an analysis of the regions of existence of the most important parameters that describe this behavior of the engine
González-Díaz, L A; Díaz-Solórzano, S
2015-05-01
In the paper by Abe and Okuyama [Phys. Rev. E 83, 021121 (2011)], the quantum Carnot cycle of a simple two-state model of a particle confined in a one-dimensional infinite potential well is discussed. It is claimed that the state at the beginning of the quantum Carnot cycle is pure. After that, it is apparently transmuted to a mixed state if Clausius equality is imposed. We prove that this statement is incorrect. In particular, we prove that the state at the beginning of the cycle is mixed due to the process of measuring energy. PMID:26066282
Aragon-Gonzalez, G; Leon-Galicia, A; Morales-Gomez, J R
2007-01-01
In this work we include, for the Carnot cycle, irreversibilities of linear finite rate of heat transferences between the heat engine and its reservoirs, heat leak between the reservoirs and internal dissipations of the working fluid. A first optimization of the power output, the efficiency and ecological function of an irreversible Carnot cycle, with respect to: internal temperature ratio, time ratio for the heat exchange and the allocation ratio of the heat exchangers; is performed. For the second and third optimizations, the optimum values for the time ratio and internal temperature ratio are substituted into the equation of power and, then, the optimizations with respect to the cost and effectiveness ratio of the heat exchangers are performed. Finally, a criterion of partial optimization for the class of irreversible Carnot engines is herein presented.
Comment on: "Sadi Carnot on Carnot's theorem"
Arnaud, J; Philippe, F; Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice
2003-01-01
Carnot established in 1824 that the efficiency $\\eta_{C}$ of reversible engines operating between a hot bath at absolute temperature $T_{hot}$ and a cold bath at temperature $T_{cold}$ is equal to $1-T_{cold}/T_{hot}$. Carnot particularly considered air as a working fluid and small bath-temperature differences. Plugging into Carnot's expression modern experimental values, exact agreement with modern Thermodynamics is found. However, in a recently published paper ["Sadi Carnot on Carnot's theorem", \\textit{Am. J. Phys.} \\textbf{70}(1), 42-47, 2002], Guemez and others consider a "modified cycle" involving two isobars that they mistakenly attribute to Carnot. They calculate an efficiency considerably lower than $\\eta_{C}$ and suggest that Carnot made compensating errors. Our contention is that the Carnot theory is, to the contrary, perfectly accurate.
Wang, Jianhui; He, Jizhou
2012-11-01
We investigate the efficiency at the maximum power output (EMP) of an irreversible Carnot engine performing finite-time cycles between two reservoirs at constant temperatures T(h) and T(c) (Carnot efficiency, whether the internally dissipative friction is considered or not. When dissipations of two "isothermal" and two "adiabatic" processes are symmetric, respectively, and the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation, the Curzon-Ahlborn (CA) efficiency η(CA) = 1-sqrt[T(c)/T(h)] is derived. PMID:23214743
The Carnot Cycle for Small Systems: Irreversibility and the Cost of Operations
Sekimoto, Ken; Takagi, Fumiko; Hondou, Tsuyoshi
1999-01-01
We employ the recently developed framework of the energetics of stochastic processes (called `stochastic energetics'), to re-analyze the Carnot cycle in detail, taking account of fluctuations, without taking the thermodynamic limit. We find that both processes of connection to and disconnection from heat baths and adiabatic processes that cause distortion of the energy distribution are sources of inevitable irreversibility within the cycle. Also, the so-called null-recurrence property of the ...
New Entropy and other state functions from analysis of open system Carnot cycle
Jesudason, Christopher G.
2003-01-01
A first principles analysis of an open system thermodynamical Carnot cycle is provided, and the results are compared to those proposed by Gibbs for open systems. The Kelvin-Clausius statement concerning heat transfer for reversible cycles is taken as an axiom, from which several rigorous theorems are proven.An equation is derived that resembles a Gibbs-Duhem relation relating convected entropies, from which two distinguishable forms of entropy are proven to exist for such systems, which quest...
Construction and optimization of a quantum analog of the Carnot cycle.
Xiao, Gaoyang; Gong, Jiangbin
2015-07-01
The quantum analog of Carnot cycles in few-particle systems consists of two quantum adiabatic steps and two isothermal steps. This construction is formally justified by use of a minimum work principle. It is then shown, using minimal assumptions of work or heat in nanoscale systems, that the heat-to-work efficiency of such quantum heat engine cycles can be further optimized via two conditions regarding the expectation value of some generalized force operators evaluated at equilibrium states. In general the optimized efficiency is system specific, lower than the Carnot efficiency, and dependent upon both temperatures of the cold and hot reservoirs. Simple computational examples are used to illustrate our theory. The results should be an important guide towards the design of favorable working conditions of a realistic quantum heat engine. PMID:26274135
Construction and optimization of a quantum analog of the Carnot cycle
Xiao, Gaoyang; Gong, Jiangbin
2015-07-01
The quantum analog of Carnot cycles in few-particle systems consists of two quantum adiabatic steps and two isothermal steps. This construction is formally justified by use of a minimum work principle. It is then shown, using minimal assumptions of work or heat in nanoscale systems, that the heat-to-work efficiency of such quantum heat engine cycles can be further optimized via two conditions regarding the expectation value of some generalized force operators evaluated at equilibrium states. In general the optimized efficiency is system specific, lower than the Carnot efficiency, and dependent upon both temperatures of the cold and hot reservoirs. Simple computational examples are used to illustrate our theory. The results should be an important guide towards the design of favorable working conditions of a realistic quantum heat engine.
The photo-carnot cycle: The preparation energy for atomic coherence
We consider a Carnot cycle engine in which the working medium is a photon gas inside a cavity with perfectly reflecting walls. The thermal baths responsible for supplying heat to the radiation field is a stream of three-level atoms. The phase of the atomic coherence provides a new and interesting control parameter. Here we discuss the questions pertaining to the preparation energy of atomic coherence with an explicit calculation of the associated entropy change
Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle
Abe, Sumiyoshi; Okuyama, Shinji
2010-01-01
Similarity between quantum mechanics and thermodynamics is discussed. It is found that if the Clausius equality is imposed on the Shannon entropy and the analogue of the heat quantity, then the value of the Shannon entropy comes to formally coincide with that of the von Neumann entropy of the canonical density matrix, and pure-state quantum mechanics apparently transmutes into quantum thermodynamics. The corresponding quantum Carnot cycle of a simple two-state model of a particle confined in ...
Identifying Student Difficulties with Entropy, Heat Engines, and the Carnot Cycle
Trevor I. Smith; Warren M. Christensen; Mountcastle, Donald B.; Thompson, John R
2015-01-01
We report on several specific student difficulties regarding the Second Law of Thermodynamics in the context of heat engines within upper-division undergraduates thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students in these courses do not clearly articulate the connection between the Carnot cycle and the Second Law after lecture instruction. This result is co...
Statistical mechanics of self-driven Carnot cycles.
Smith, E
1999-10-01
The spontaneous generation and finite-amplitude saturation of sound, in a traveling-wave thermoacoustic engine, are derived as properties of a second-order phase transition. It has previously been argued that this dynamical phase transition, called "onset," has an equivalent equilibrium representation, but the saturation mechanism and scaling were not computed. In this work, the sound modes implementing the engine cycle are coarse-grained and statistically averaged, in a partition function derived from microscopic dynamics on criteria of scale invariance. Self-amplification performed by the engine cycle is introduced through higher-order modal interactions. Stationary points and fluctuations of the resulting phenomenological Lagrangian are analyzed and related to background dynamical currents. The scaling of the stable sound amplitude near the critical point is derived and shown to arise universally from the interaction of finite-temperature disorder, with the order induced by self-amplification. PMID:11970197
Statistical mechanics of self-driven Carnot cycles
The spontaneous generation and finite-amplitude saturation of sound, in a traveling-wave thermoacoustic engine, are derived as properties of a second-order phase transition. It has previously been argued that this dynamical phase transition, called onset, has an equivalent equilibrium representation, but the saturation mechanism and scaling were not computed. In this work, the sound modes implementing the engine cycle are coarse-grained and statistically averaged, in a partition function derived from microscopic dynamics on criteria of scale invariance. Self-amplification performed by the engine cycle is introduced through higher-order modal interactions. Stationary points and fluctuations of the resulting phenomenological Lagrangian are analyzed and related to background dynamical currents. The scaling of the stable sound amplitude near the critical point is derived and shown to arise universally from the interaction of finite-temperature disorder, with the order induced by self-amplification. copyright 1999 The American Physical Society
Di Liberto, Francesco
2000-01-01
The expansions or the compressions of the ideal gas in the quasi-static Carnot cycle, can be performed (on adiabatic or isothermal way) by slowly increasing or decreasing the external pressure by means of small weights acting on the piston of the vessel containing the gas. We call them shortly the ``driving weights'' (dw). Let N be their number, a large one. To determine the work performed by the ideal gas in the cycle the ``driving weights'' must be handled carefully. If we let them move on-...
Shieh, Lih-Yir; Kan, Hung-Chih
2014-04-01
We demonstrate that plotting the P-V diagram of an ideal gas Carnot cycle on a logarithmic scale results in a more intuitive approach for deriving the final form of the efficiency equation. The same approach also facilitates the derivation of the efficiency of other thermodynamic engines that employ adiabatic ideal gas processes, such as the Brayton cycle, the Otto cycle, and the Diesel engine. We finally demonstrate that logarithmic plots of isothermal and adiabatic processes help with visualization in approximating an arbitrary process in terms of an infinite number of Carnot cycles.
Quantum thermodynamic Carnot and Otto-like cycles for a two-level system
Beretta, G P
2007-01-01
From the thermodynamic equilibrium properties of a two-level system with variable energy-level gap $\\Delta$, and a careful distinction between the Gibbs relation $dE = T dS + (E/\\Delta) d\\Delta$ and the energy balance equation $dE = \\delta Q^\\leftarrow - \\delta W^\\to$, we infer some important aspects of the second law of thermodynamics and, contrary to a recent suggestion based on the analysis of an Otto-like thermodynamic cycle between two values of $\\Delta$ of a spin-1/2 system, we show that a quantum thermodynamic Carnot cycle, with the celebrated optimal efficiency $1 - (T_{low}/T_{high})$, is possible in principle with no need of an infinite number of infinitesimal processes, provided we cycle smoothly over at least three (in general four) values of $\\Delta$, and we change $\\Delta$ not only along the isoentropics, but also along the isotherms, e.g., by use of the recently suggested maser-laser tandem technique. We derive general bounds to the net-work to high-temperature-heat ratio for a Carnot cycle and...
Análisis del Comportamiento de un Ciclo Tipo Carnot Analysis of the Behavior of a Carnot Type Cycle
Delfino Ladino-Luna
2010-01-01
Se hace un análisis de las regiones de existencia de la función potencia de salida y función ecológica, que dan lugar a la forma de las respectivas eficiencias para un ciclo tipo Carnot, llamado ciclo endorreversible, a potencia de salida máxima y función ecológica máxima. Se muestra la importancia dichas regiones de existencia de estas funciones para diversos resultados de la literatura relacionada con la termodinámica de tiempos finitos. Se concluye que para modelar gráficamente el desempeñ...
Similarity between quantum mechanics and thermodynamics: entropy, temperature, and Carnot cycle.
Abe, Sumiyoshi; Okuyama, Shinji
2011-02-01
The similarity between quantum mechanics and thermodynamics is discussed. It is found that if the Clausius equality is imposed on the Shannon entropy and the analog of the quantity of heat, then the value of the Shannon entropy comes to formally coincide with that of the von Neumann entropy of the canonical density matrix, and pure-state quantum mechanics apparently transmutes into quantum thermodynamics. The corresponding quantum Carnot cycle of a simple two-state model of a particle confined in a one-dimensional infinite potential well is studied, and its efficiency is shown to be identical to the classical one. PMID:21405832
Rotating Carnot-cycle magnetic refrigerators for use near 2 K
The application or removal of a magnetic field of order 5 T to some Gd compounds at low temperatures results in 10-20 K adiabatic temperature changes or the isothermal expulsion or absorption of heat. In particular, the heat absorbed by 1 liter of appropriate magnetic material at 2 K is several hundred J. A rotating device is decribed which will allow cycle times of much less than 1 sec, resulting in approximately 1-kW refrigeration capacity for each liter of paramagnetic Gd compound. This heat could be expelled with better than 80% of Carnot efficiency into a helium refrigerator operating at 10-14 K
Abe, Sumiyoshi
2015-05-01
In their Comment on the paper [Abe and Okuyama, Phys. Rev. E 83, 021121 (2011)], González-Díaz and Díaz-Solórzano discuss that the initial state of the quantum-mechanical analog of the Carnot cycle should be not in a pure state but in a mixed state due to a projective measurement of the system energy. Here, first the Comment is shown to miss the point. Then, second, multiple projective measurements are discussed as a generalization of the Comment, although they are not relevant to the work commented. PMID:26066283
Entransy and exergy analyses for optimizations of heat-work conversion with carnot cycle
Han, Chul Ho; Kim, Kyoung Hoon
2016-06-01
The concept of entransy has been newly proposed in terms of the analogy between heat and electrical conduction and could be useful in analyzing and optimizing the heat-work conversion systems. This work presents comparative analyses of entransy and exergy for optimizations of heat-work conversion. The work production and heat transfer processes in Carnot cycle system are investigated with the formulations of exergy destruction, entransy loss, work entransy, entransy dissipation, and efficiencies for both cases of dumping and non-dumping of used source fluid. The effects of source and condensation temperatures on the system performance are systematically investigated for optimal condition of producing maximum work or work entransy.
A novel Carnot-based cycle for ocean thermal energy conversion
A thermodynamic engine cycle can be implemented by exploiting the temperature difference existing between the warm surface seawater and cold deep seawater. It employs a working fluid that evaporates by warm seawater, produces work in an expander device, such as a gas turbine and finally condenses by cold deep seawater. A new Carnot-based cycle for OTEC applications, called CAPILI cycle is presented. In this new engine cycle, work is produced by the movement of an inert liquid through a hydraulic turbine. This inert liquid characterized by a very low saturation pressure and immiscibility with the working fluid, acts as a liquid piston that moves alternately between two insulated cylinders. The insulated cylinders are connected alternately to an evaporator and a condenser, each of them operates at different pressure and temperature levels. A performance study which consists in a steady state energy balance is realised first to select the most suitable working fluid for this specific application. It was found that the best fluid is the HFC refrigerant R134a. A dynamic modelling based on the concept of equivalent Gibbs system is carried out to appreciate the dynamic behaviour and the performances of this new thermal conversion process. -- Highlights: ► A novel Carnot-based cycle operating with a liquid piston is investigated for OTEC application. ► The most suitable working fluid giving the best performances is found to be the HFC R134a. ► The performances of this new thermal process are evaluated using a dynamic modelling. ► A thermal efficiency of 1.9% can be obtained by exploiting seawater temperature difference of 20 °C. ► A net cycle efficiency of 1.2% is achieved considering a net to gross power production ratio of 61%.
Di Liberto, Francesco
2008-01-01
Abstract This paper is an extension of a previous paper [F. di Liberto-Phi. Mag. 87,569 (2007) ] devoted to Lost work and entropy production; here we introduce also the Extra work (i.e. WExtra =Win -WRev) in an irreversible process. and apply both the concepts to the analysis of a system with complexity: the stepwise ideal gas Carnot cycle. A stepwise Carnot cycle is performed by means of N small weights, (here called dw's), which are first added and then removed from the pisto...
Identifying Student Difficulties with Entropy, Heat Engines, and the Carnot Cycle
Smith, Trevor I; Mountcastle, Donald B; Thompson, John R
2015-01-01
We report on several specific student difficulties regarding the Second Law of Thermodynamics in the context of heat engines within upper-division undergraduates thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students in these courses do not clearly articulate the connection between the Carnot cycle and the Second Law after lecture instruction. This result is consistent both within and across student populations. Observation data provide evidence for myriad difficulties related to entropy and heat engines, including students' struggles in reasoning about situations that are physically impossible and failures to differentiate between differential and net changes of state properties of a system. Results herein may be seen as the application of previously documented difficulties in the context of heat engines, but others are novel and emphasize the subtle and complex nature of cycl...
Efficiency of ideal fuel cell and Carnot cycle from a fundamental perspective
Hassanzadeh, H.; Mansouri, S.H.
2005-06-15
In this paper, we accept the fact that fuel cell and heat engine efficiencies are both constrained by the second law of thermodynamics and neither one is able to break this law. However, we have shown that this statement does not mean the two systems should have the same maximum thermal efficiency when being fed by the same amounts of chemical reactants. The intrinsic difference between fuel cells (electrochemical systems) and heat engines (combustion engines) efficiencies is a fundamental one with regard to the conversion of chemical energy of reactions into electrical work. The sole reason has been shown to be due to the combustion irreversibility of the latter. This has led to the statement that fuel cell efficiency is not limited by the Carnot cycle. Clarity is achieved by theoretical derivations and several numerical examples. (author)
Gonzalez-Ayala, J.; Angulo-Brown, F.; Calvo Hernández, A.; Velasco, S.
2016-07-01
In this work we analyze the deviations of reversible cycles (for both heat engines and refrigerators) from the corresponding Carnot cycle operating between the same extreme temperatures, and deviations of irreversible cycles from their corresponding reversible realization while putting emphasis on the corresponding losses. The endoreversible models fit in the proposed framework. Two suitable loss factors, which do not need the explicit calculation of entropy variations, are introduced. The behavior of these factors and their interplay allow for a clear and pedagogical visualization of where external and internal irreversibilities are located, and their intensities in terms of the main variables describing the cycle. The analysis could be used as a starting point for more advanced studies on modeling and optimization of real devices and installations.
Liberto, F
2000-01-01
The expansions or the compressions of the ideal gas in the quasi-static Carnot cycle, can be performed (on adiabatic or isothermal way) by slowly increasing or decreasing the external pressure by means of small weights acting on the piston of the vessel containing the gas. We call them shortly the ``driving weights'' (dw). Let N be their number, a large one. To determine the work performed by the ideal gas in the cycle the ``driving weights'' must be handled carefully. If we let them move on-off the piston only horizontally, their vertical motions will be due only to the gas. Here we show that, at the end, while some of them will have moved down (will have negative raising) the remaining ones (the majority) will have moved up (will have positive raising) so that the total work performed by the ideal gas equals the total variation of the gravitational potential energy of the ``driving weghts''. The cycle is performed in 2N time-steps. For each step t_i, with i in 1,..,2N, we give H(t_i), and DH(t_{i-1},t_i), r...
Analyses of the endoreversible Carnot cycle with entropy theory and entransy theory
The endoreversible Carnot cycle is analyzed based on the concepts of entropy generation, entropy generation number, entransy loss, and entransy loss coefficient. The relationships of the cycle output power and heat-work conversion efficiency with these parameters are discussed. For the numerical examples discussed, the preconditions of the application for these concepts are derived. When the inlet temperatures and heat capacity flow rates of hot streams and environment temperature are prescribed, the results show that the concepts of entropy generation and entransy loss are applicable. However, in the presence of various inlet temperatures of streams, larger entransy loss rate still leads to larger output power, while smaller entropy generation rate does not. When the heat capacity flow rates of hot streams are various, neither larger entransy loss rate nor smaller entropy generation rate always leads to larger output power. Larger entransy loss coefficient always leads to larger heat-work conversion efficiency for the cases discussed, while smaller entropy generation number does not always
Bo Yang, Lingen Chen, Fengrui Sun
2011-11-01
Full Text Available Performance of an endoreversible Carnot heat pump cycle with finite speed of the piston is investigated by using finite time thermodynamics. The analytical formulae between the optimal heating load and the coefficient of performance (COP, as well as between the optimal heating load and speed ratio of the piston are derived. It is found that the heating load versus COP characteristics are parabolic-like, and there exist a maximum heating load and the corresponding COP. These are different from the monotonically decreasing characteristic of the endoreversible Carnot heat pump without consideration of the finite speed of the piston. At the same time, the effects of reservoir temperature ratio on the optimal relations are analyzed by numerical examples. In the analysis and optimization, two cases with and without limit of cycle period are included.
Bo Yang, Lingen Chen, Fengrui Sun
2011-01-01
Performance of an endoreversible Carnot heat pump cycle with finite speed of the piston is investigated by using finite time thermodynamics. The analytical formulae between the optimal heating load and the coefficient of performance (COP), as well as between the optimal heating load and speed ratio of the piston are derived. It is found that the heating load versus COP characteristics are parabolic-like, and there exist a maximum heating load and the corresponding COP. These are different fro...
Carnot cycle for interacting particles in the absence of thermal noise.
Curado, Evaldo M F; Souza, Andre M C; Nobre, Fernando D; Andrade, Roberto F S
2014-02-01
A thermodynamic formalism is developed for a system of interacting particles under overdamped motion, which has been recently analyzed within the framework of nonextensive statistical mechanics. It amounts to expressing the interaction energy of the system in terms of a temperature θ, conjugated to a generalized entropy s(q), with q = 2. Since θ assumes much higher values than those of typical room temperatures T ≪ θ, the thermal noise can be neglected for this system (T/θ ≃ 0). This framework is now extended by the introduction of a work term δW which, together with the formerly defined heat contribution (δ Q = θ ds(q)), allows for the statement of a proper energy conservation law that is analogous to the first law of thermodynamics. These definitions lead to the derivation of an equation of state and to the characterization of s(q) adiabatic and θ isothermic transformations. On this basis, a Carnot cycle is constructed, whose efficiency is shown to be η = 1-(θ(2)/θ(1)), where θ(1) and θ(2) are the effective temperatures of the two isothermic transformations, with θ(1)>θ(2). The results for a generalized thermodynamic description of this system open the possibility for further physical consequences, like the realization of a thermal engine based on energy exchanges gauged by the temperature θ. PMID:25353432
Identifying student difficulties with entropy, heat engines, and the Carnot cycle
Smith, Trevor I.; Christensen, Warren M.; Mountcastle, Donald B.; Thompson, John R.
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] We report on several specific student difficulties regarding the second law of thermodynamics in the context of heat engines within upper-division undergraduate thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students in these courses do not clearly articulate the connection between the Carnot cycle and the second law after lecture instruction. This result is consistent both within and across student populations. Observation data provide evidence for myriad difficulties related to entropy and heat engines, including students' struggles in reasoning about situations that are physically impossible and failures to differentiate between differential and net changes of state properties of a system. Results herein may be seen as the application of previously documented difficulties in the context of heat engines, but others are novel and emphasize the subtle and complex nature of cyclic processes and heat engines, which are central to the teaching and learning of thermodynamics and its applications. Moreover, the sophistication of these difficulties is indicative of the more advanced thinking required of students at the upper division, whose developing knowledge and understanding give rise to questions and struggles that are inaccessible to novices.
Martínez, Ignacio A.; Roldán, Édgar; Dinis, Luis; Petrov, Dmitri; Parrondo, Juan M.R.; Rica, Raúl A.
2014-01-01
The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors and some artificial micro-engines operate. As described by stochastic thermodynamics, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit. Despite its poten...
Martínez, Ignacio A.; Roldán, Édgar; Dinis Vizcaíno, Luis Ignacio; Petrov, Dmitri; Rodríguez Parrondo, Juan Manuel; Rica, Raúl A.
2016-01-01
The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors and some artificial micro-engines operate. As described by stochastic thermodynamics, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit. Here we report an...
Quantum mechanical Carnot engine
Bender, C. M.; Brody, D. C.; Meister, B. K.
2000-01-01
A cyclic thermodynamic heat engine runs most efficiently if it is reversible. Carnot constructed such a reversible heat engine by combining adiabatic and isothermal processes for a system containing an ideal gas. Here, we present an example of a cyclic engine based on a single quantum-mechanical particle confined to a potential well. The efficiency of this engine is shown to equal the Carnot efficiency because quantum dynamics is reversible. The quantum heat engine has a cycle consisting of a...
Martínez, I. A.; Roldán, É.; Dinis, L.; Petrov, D.; Parrondo, J. M. R.; Rica, R. A.
2016-01-01
The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors and some artificial micro-engines operate. As described by stochastic thermodynamics, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit. Here we report an experimental realization of a Carnot engine with a single optically trapped Brownian particle as the working substance. We present an exhaustive study of the energetics of the engine and analyse the fluctuations of the finite-time efficiency, showing that the Carnot bound can be surpassed for a small number of non-equilibrium cycles. As its macroscopic counterpart, the energetics of our Carnot device exhibits basic properties that one would expect to observe in any microscopic energy transducer operating with baths at different temperatures. Our results characterize the sources of irreversibility in the engine and the statistical properties of the efficiency--an insight that could inspire new strategies in the design of efficient nano-motors.
JosÃƒÂ© C. IÃƒÂ±iguez
1999-01-01
Abstract: Carnot's reversible cycle net value was determined using the previously derived values for the transformations there occurring. A negative net value is obtained as a result, in contradiction with current thermodynamics, Clausius analysis based position that the net value for such a cycle is zero. The entropy function is introduced and the new criterion's for spontaneity, reversibility and equilibrium are advanced.
Quantum mechanical Carnot engine
Bender, C M; Meister, B K
2000-01-01
A cyclic thermodynamic heat engine runs most efficiently if it is reversible. Carnot constructed such a reversible heat engine by combining adiabatic and isothermal processes for a system containing an ideal gas. Here, we present an example of a cyclic engine based on a single quantum-mechanical particle confined to a potential well. The efficiency of this engine is shown to equal the Carnot efficiency because quantum dynamics is reversible. The quantum heat engine has a cycle consisting of adiabatic and isothermal quantum processes that are close analogues of the corresponding classical processes.
Comment on: "Sadi Carnot on Carnot's theorem"
Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice
2003-01-01
Carnot established in 1824 that the efficiency $\\eta_{C}$ of reversible engines operating between a hot bath at absolute temperature $T_{hot}$ and a cold bath at temperature $T_{cold}$ is equal to $1-T_{cold}/T_{hot}$. Carnot particularly considered air as a working fluid and small bath-temperature differences. Plugging into Carnot's expression modern experimental values, exact agreement with modern Thermodynamics is found. However, in a recently published paper ["Sadi Carnot on Carnot's theo...
JosÃƒÂ© C. IÃƒÂ±iguez
1999-10-01
Full Text Available Abstract: Carnot's reversible cycle net value was determined using the previously derived values for the transformations there occurring. A negative net value is obtained as a result, in contradiction with current thermodynamics, Clausius analysis based position that the net value for such a cycle is zero. The entropy function is introduced and the new criterion's for spontaneity, reversibility and equilibrium are advanced.
Adaptation of the Generalized Carnot Cycle to Describe Thermodynamics of Cerebral Cortex
Freeman, Walter J III; Kozma, Robert; Vitiello, Giuseppe
2012-01-01
The brain is a thermodynamic system operating far from equilibrium. Its function is to extract microscopic sensory information from the volleys of action potentials (pulses) that are delivered by immense arrays of sensory receptors, construct the macroscopic meaning of the information, and store, retrieve, and update that meaning by incorporating it into its knowledge base. The function is executed repetitively in the action-perception-assimilation cycle. Each cycle commences by a phase trans...
Quantum thermodynamic Carnot and Otto-like cycles for a two-level system
Beretta, Gian Paolo
2007-01-01
From the thermodynamic equilibrium properties of a two-level system with variable energy-level gap $\\Delta$, and a careful distinction between the Gibbs relation $dE = T dS + (E/\\Delta) d\\Delta$ and the energy balance equation $dE = \\delta Q^\\leftarrow - \\delta W^\\to$, we infer some important aspects of the second law of thermodynamics and, contrary to a recent suggestion based on the analysis of an Otto-like thermodynamic cycle between two values of $\\Delta$ of a spin-1/2 system, we show tha...
The author discusses the importance and historical background of the second law of thermodynamics as applied to power generation. He considers a device called an 'adiabatic separator' as not having been envisioned by Carnot, and possibly producing a spontaneous temperature difference, thereby violating the second law; however, he does not consider that the Carnot cycle is not the sole theoretical basis of the second law, but only a didactic exemplification thereof; moreover, the device considered by the author will not work continuously without an external supply of energy
Carnot process with a single particle
Hoppenau, J.; Niemann, M.; Engel, A.
2013-06-01
We determine the statistics of work in isothermal volume changes of a classical ideal gas consisting of a single particle. Combining our results with the findings of Lua and Grosberg [J. Chem. Phys. BJPCBFK1520-610610.1021/jp0455428 109, 6805 (2005)] on adiabatic expansions and compressions we then analyze the joint probability distribution of heat and work for a microscopic, nonequilibrium Carnot cycle. In the quasistatic limit we recover Carnot efficiency, however, combined with nontrivial distributions of work and heat. With increasing piston speed the efficiency decreases. The efficiency at maximum power stays within recently derived bounds.
Carnot process with a single particle.
Hoppenau, J; Niemann, M; Engel, A
2013-06-01
We determine the statistics of work in isothermal volume changes of a classical ideal gas consisting of a single particle. Combining our results with the findings of Lua and Grosberg [J. Chem. Phys. B 109, 6805 (2005)] on adiabatic expansions and compressions we then analyze the joint probability distribution of heat and work for a microscopic, nonequilibrium Carnot cycle. In the quasistatic limit we recover Carnot efficiency, however, combined with nontrivial distributions of work and heat. With increasing piston speed the efficiency decreases. The efficiency at maximum power stays within recently derived bounds. PMID:23848647
Power of a Finite Speed Carnot Engine
Agrawal, D. C.; Menon, V. J.
2009-01-01
A model of an endoreversible Carnot engine is considered where the piston moves with a constant speed "u." Expressions for the cycle time [tau] for the four branches, as well as output power, P[subscript W], are derived and the optimized root for maximum power is obtained in closed form. Our results are discussed in terms of the isothermal…
Highlights: • Entransy analysis was made for irreversible heat engine and refrigeration cycles. • Entransy dissipations were defined and determined. • Relations between entransy dissipation and other thermodynamic parameters were determined. - Abstract: Because of the energy needs of the world and the issues involved with global warming, analyzing and optimizing power cycles have increased in importance. In this paper, the concepts of entransy dissipation, entropy generation, power output, exergy output, energy, exergy efficiencies for irreversible heat engine cycles and entransy dissipation, entropy generation, power inputs, exergy input, entropy generation, COP and the exergy of efficiency for the irreversible refrigeration cycle are applied as a means of analyzing them. The results are obtained numerically, and the optimum or critical values are determined for a dimensionless temperature ratio and a dimensionless heat conductance ratio. Finally, recommendations on the design and range of operating conditions for the cycles are presented. Values of TC/TE (x), can be selected between 0.5 and 0.55 and values of kE/kC (y) in the range of 0.3–0.5 can be selected for high performance and low losses in a heat engine. Choosing values of TC/TE (x) and kC/kE (y) as low as possible for high performance, besides low thermodynamic losses (entropy generation and entransy dissipation) for the refrigeration cycle
Kinesin and the Crooks and Carnot theorems
Calzetta, E
2008-01-01
The literature on the thermodynamic analysis of the kinesin cycle regarded as a molecular motor is quite bewildering to the uninitiated. For example, the published predictions for thermal efficiency at stalling range from 0 (A. W. C. Lau, D. Lacoste and K. Mallick, Phys. Rev. Lett. 99, 158102 (2007); D. Lacoste, A. W. C. Lau and K. Mallick, Phys. Rev. E78, 011915 (2008)) to 100% (G. Oster and H. Wang, in Molecular Motors, edited by M. Schliwa (Wiley-VCH Verlag GmbH, Weinheim (2003), p. 207). This latter statement is worrysome since it seems to make Carnot's theorem irrelevant. In this note we show there is a sensible ideal kinesin cycle to which the real cycle may be compared. The ideal cycle has a thermal efficiency of less than one, and the real one is less efficient than the ideal one always, in compliance with Carnot's theorem.
The unlikely Carnot efficiency.
Verley, Gatien; Esposito, Massimiliano; Willaert, Tim; Van den Broeck, Christian
2014-01-01
The efficiency of an heat engine is traditionally defined as the ratio of its average output work over its average input heat. Its highest possible value was discovered by Carnot in 1824 and is a cornerstone concept in thermodynamics. It led to the discovery of the second law and to the definition of the Kelvin temperature scale. Small-scale engines operate in the presence of highly fluctuating input and output energy fluxes. They are therefore much better characterized by fluctuating efficiencies. In this study, using the fluctuation theorem, we identify universal features of efficiency fluctuations. While the standard thermodynamic efficiency is, as expected, the most likely value, we find that the Carnot efficiency is, surprisingly, the least likely in the long time limit. Furthermore, the probability distribution for the efficiency assumes a universal scaling form when operating close-to-equilibrium. We illustrate our results analytically and numerically on two model systems. PMID:25221850
Performance of an irreversible quantum Carnot engine with spin 12.
Wu, Feng; Chen, Lingen; Wu, Shuang; Sun, Fengrui; Wu, Chih
2006-06-01
The purpose of this paper is to investigate the effect of quantum properties of the working medium on the performance of an irreversible Carnot cycle with spin 12. The optimal relationship between the dimensionless power output P* versus the efficiency eta for the irreversible quantum Carnot engine with heat leakage and other irreversible losses is derived. Especially, the performances of the engine at low temperature limit and at high temperature limit are discussed. PMID:16774426
Carnot process with a single particle
Hoppenau, Johannes; Niemann, Markus; Engel, Andreas
2013-01-01
We determine the statistics of work in isothermal volume changes of a classical ideal gas consisting of a single particle. Combining our results with the findings of Lua and Grosberg [J. Chem. Phys. B 109, 6805 (2005)] on adiabatic expansions and compressions we then analyze the joint probability distribution of heat and work for a microscopic, non-equilibrium Carnot cycle and determine its efficiency at maximum power.
Pedagogical Visualization of a Nonideal Carnot Engine
Jonas Johansson
2014-01-01
We have implemented a visualization tool for the demonstration of a nonideal Carnot engine, operating at finite time.The cycle time can be varied using a slide bar and the pressure-volume, temperature-entropy, power-time, and efficiency-time diagrams change interactively and are shown on one screen.We have evaluated the visualization tool among engineering students at university level during an introductory course on thermodynamics and we review and discuss the outcome of the evaluat...
Power of a finite speed Carnot engine
A model of an endoreversible Carnot engine is considered where the piston moves with a constant speed u. Expressions for the cycle time τ for the four branches, as well as output power, PW, are derived and the optimized root for maximum power is obtained in closed form. Our results are discussed in terms of the isothermal expansion ratio V*2 and temperature ratio a in a manner accessible to students
Pedagogical Visualization of a Nonideal Carnot Engine
Jonas Johansson
2014-01-01
Full Text Available We have implemented a visualization tool for the demonstration of a nonideal Carnot engine, operating at finite time. The cycle time can be varied using a slide bar and the pressure-volume, temperature-entropy, power-time, and efficiency-time diagrams change interactively and are shown on one screen. We have evaluated the visualization tool among engineering students at university level during an introductory course on thermodynamics and we review and discuss the outcome of the evaluation.
Nanoscale heat engine beyond the Carnot limit.
Roßnagel, J; Abah, O; Schmidt-Kaler, F; Singer, K; Lutz, E
2014-01-24
We consider a quantum Otto cycle for a time-dependent harmonic oscillator coupled to a squeezed thermal reservoir. We show that the efficiency at maximum power increases with the degree of squeezing, surpassing the standard Carnot limit and approaching unity exponentially for large squeezing parameters. We further propose an experimental scheme to implement such a model system by using a single trapped ion in a linear Paul trap with special geometry. Our analytical investigations are supported by Monte Carlo simulations that demonstrate the feasibility of our proposal. For realistic trap parameters, an increase of the efficiency at maximum power of up to a factor of 4 is reached, largely exceeding the Carnot bound. PMID:24484127
Efficiency at Maximum Power of Low-Dissipation Carnot Engines
Esposito, Massimiliano; Kawai, Ryoichi; Lindenberg, Katja; VAN DEN BROECK, Christian
2010-01-01
We study the efficiency at maximum power, $\\eta^*$, of engines performing finite-time Carnot cycles between a hot and a cold reservoir at temperatures $T_h$ and $T_c$, respectively. For engines reaching Carnot efficiency $\\eta_C=1-T_c/T_h$ in the reversible limit (long cycle time, zero dissipation), we find in the limit of low dissipation that $\\eta^*$ is bounded from above by $\\eta_C/(2-\\eta_C)$ and from below by $\\eta_C/2$. These bounds are reached when the ratio of the dissipation during t...
Cooling load and COP optimization of an irreversible Carnot refrigerator with spin-1/2 systems
Xiaowei Liu, Lingen Chen, Feng Wu, Fengrui Sun
2011-01-01
A model of an irreversible quantum refrigerator with working medium consisting of many non-interacting spin-1/2 systems is established in this paper. The quantum refrigeration cycle is composed of two isothermal processes and two irreversible adiabatic processes and is referred to as a spin quantum Carnot refrigeration cycle. Expressions of some important performance parameters, such as cycle period, cooling load and coefficient of performance (COP) for the irreversible spin quantum Carnot re...
Carnot to Clausius: caloric to entropy
This paper discusses how the Carnot engine led to the formulation of the second law of thermodynamics and entropy. The operation of the engine is analysed both in terms of heat as the caloric fluid and heat as a form of energy. A keystone of Carnot's thinking was the absolute conservation of caloric. Although the Carnot analysis was partly incorrect, Clausius showed that by reinterpreting Carnot's caloric as entropy he was able to formulate the second law
In this continuation of his previous article, the author considers an 'adiabatic steam separator', in which saturated steam is dried and heated by adiabatic expansion, separation of water, and adiabatic deceleration. He considers that such a process might have an application in nuclear power generation. As to his suggestion that such a process may violate the second law of thermodynamics because the process was not envisioned by Carnot, obviously the validity of the second law is not limited to Carnot's original statement of it
Carnot to Clausius: Caloric to Entropy
Newburgh, Ronald
2009-01-01
This paper discusses how the Carnot engine led to the formulation of the second law of thermodynamics and entropy. The operation of the engine is analysed both in terms of heat as the caloric fluid and heat as a form of energy. A keystone of Carnot's thinking was the absolute conservation of caloric. Although the Carnot analysis was partly…
On the basis of his highly controversial opinion that the Second Law of Thermodynamics only applies to systems envisaged by Carnot, the author proposes that an 'adiabatic separator', which is essentially a perpetual motion machine of the second kind, could be used in nuclear steam systems, and also in flue gas cleaning, to give very high thermal efficiencies
Local stability analysis of an endoreversible Carnot refrigerator
He Jizhou; Nie Wenjie [Department of Physics, Nanchang University, Nanchang 330031 (China); Miao Guiling, E-mail: hjzhou@ncu.edu.c [Yingtan Vocational and Technical College, Yingtan 33500, Jiangxi (China)
2010-08-15
A local stability analysis of an endoreversible Carnot refrigerator, working at the maximum objective function of the product of the cooling rate R and the coefficient of performance {epsilon}, is presented. The endoreversible Carnot refrigerator consists of a reversible Carnot refrigerator that exchanges heat with the heat reservoirs T{sub H} through the thermal conductance {alpha} and with the cold reservoirs T{sub L} through the thermal conductance {beta}. In addition, the working fluid has the same heat capacity C in the two isothermal branches of the cycle. By linearization and stability analysis, we find that the relaxation times are a function of {alpha}, {beta}, the heat capacity C and {tau}=T{sub L} /T{sub H}; that the endoreversible Carnot refrigerator is stable for every value of {alpha}, {beta}, C and {tau}; that after a perturbation, the system state exponentially decays to the steady state with either of two different relaxation times; that both relaxation times are proportional to {alpha}/2C; and that one of them is a monotonically increasing function {tau} and the other is almost independent of {tau}. Finally, the phase portraits for the trajectories after a small perturbation over the steady-state values of internal temperatures are presented.
Efficiency at maximum power output of linear irreversible Carnot-like heat engines
Wang, Yang; Tu, Z. C.
2011-01-01
The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of working substance in each "isothermal" process is a quadratic form of heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the irreversible entropy production in two "isothermal" processes of the Carnot-like cycle, and that the efficie...
Efficiency at maximum power of low-dissipation Carnot engines.
Esposito, Massimiliano; Kawai, Ryoichi; Lindenberg, Katja; Van den Broeck, Christian
2010-10-01
We study the efficiency at maximum power, η*, of engines performing finite-time Carnot cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For engines reaching Carnot efficiency ηC=1-Tc/Th in the reversible limit (long cycle time, zero dissipation), we find in the limit of low dissipation that η* is bounded from above by ηC/(2-ηC) and from below by ηC/2. These bounds are reached when the ratio of the dissipation during the cold and hot isothermal phases tend, respectively, to zero or infinity. For symmetric dissipation (ratio one) the Curzon-Ahlborn efficiency ηCA=1-√Tc/Th] is recovered. PMID:21230882
A nano heat engine beyond the Carnot limit
Roßnagel, Johannes; Abah, Obinna; Schmidt-Kaler, Ferdinand; Singer, Kilian; Lutz, Eric
2013-01-01
Heat engines extract work by running cyclically between two heat reservoirs. When the two reservoirs are thermal and at different temperatures, the maximum efficiency of the engine is given by the Carnot limit. Here we consider a quantum Otto cycle for a time-dependent harmonic oscillator coupled to an engineered squeezed thermal reservoir. We show that the efficiency at maximum power increases with the degree of squeezing, exponentially approaching unity for large squeezing parameters $r$. F...
Duparquet, Alain
2015-01-01
The present paper describes the energy analysis of a regenerative vapour power system. The regenerative steam turbines based on the Rankine cycle and comprised of vapour extractions have been used industrially since the beginning of the 20th century, particularly regarding the processes of electrical production. After having performed worked in the first stages of the turbine, part of the vapour is directed toward a regenerative exchanger and heats feedwater coming from the condenser. This pr...
Free Energy and Internal Combustion Engine Cycles
Harris, William D
2012-01-01
The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.
A note on the use of the temperature–entropy diagram in the proof of the second carnot theorem
A general graphical proof for the second Carnot principle is presented using the temperature–entropy diagram. This proof is simple and is independent of the proof of the first Carnot principle. The Carnot relation for thermal efficiency is also obtained simultaneously for all totally reversible heat engines between the same two reservoirs. The concept of reversibility in heat transfers and the role of environments in heat engine cycles will be further clarified and could be better understood using the proof presented here, which will be useful both for teaching and performing research in thermodynamics. (letters and comments)
Quantum-Carnot engine for particle confined to 2D symmetric potential well
Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well
Quantum-Carnot engine for particle confined to 2D symmetric potential well
Belfaqih, Idrus Husin, E-mail: idrushusin21@gmail.com; Sutantyo, Trengginas Eka Putra, E-mail: trengginas.eka@gmail.com; Prayitno, T. B., E-mail: teguh-budi@unj.ac.id [Department of Physics, Universitas Negeri Jakarta, Jl. Pemuda Rawamangun, Jakarta Timur, 13220 (Indonesia); Sulaksono, Anto, E-mail: anto.sulaksono@sci.ui.ac.id [Department of Physics, Universitas Indonesia, Depok, Jawa Barat, 164242 (Indonesia)
2015-09-30
Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.
Quan, H T
2014-06-01
We study the maximum efficiency of a heat engine based on a small system. It is revealed that due to the finiteness of the system, irreversibility may arise when the working substance contacts with a heat reservoir. As a result, there is a working-substance-dependent correction to the Carnot efficiency. We derive a general and simple expression for the maximum efficiency of a Carnot cycle heat engine in terms of the relative entropy. This maximum efficiency approaches the Carnot efficiency asymptotically when the size of the working substance increases to the thermodynamic limit. Our study extends Carnot's result of the maximum efficiency to an arbitrary working substance and elucidates the subtlety of thermodynamic laws in small systems. PMID:25019751
Quasi-convex Functions in Carnot Groups
Mingbao SUN; Xiaoping YANG
2007-01-01
In this paper, the authors introduce the concept of h-quasiconvex functions on Carnot groups G. It is shown that the notions of h-quasiconvex functions and h-convex sets are equivalent and the L∞ estimates of first derivatives of h-quasiconvex functions are given. For a Carnot group G of step two, it is proved that h-quasiconvex functions are locally bounded from above. Furthermore, the authors obtain that h-convex functions are locally Lipschitz continuous and that an h-convex function is twice differentiable almost everywhere.
Thermodynamic universality of quantum Carnot engines.
Gardas, Bartłomiej; Deffner, Sebastian
2015-10-01
The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamics-independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. Our theoretical findings are illustrated for two experimentally relevant examples. PMID:26565187
Thermodynamic universality of quantum Carnot engines
Gardas, Bartłomiej; Deffner, Sebastian
2015-10-01
The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamics—independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. Our theoretical findings are illustrated for two experimentally relevant examples.
The universality of the Carnot theorem
It is common in many thermodynamics textbooks to illustrate the Carnot theorem through the use of diverse state equations for gases, paramagnets, and other simple thermodynamic systems. As is well known, the universality of the Carnot efficiency is easily demonstrated in a temperature–entropy diagram, which means that ηC is independent of the working substance. In this paper we remark that the universality of the Carnot theorem goes beyond conventional state equations, and is fulfilled by gas state equations that do not correspond to an ideal gas in the dilution limit, namely V → ∞. Some of these unconventional state equations have certain thermodynamic ‘anomalies’ that nonetheless do not forbid them from obeying the Carnot theorem. We discuss how this very general behaviour arises from Maxwell relations, which are connected with a geometrical property expressed through preserving area transformations. A rule is proposed to calculate the Maxwell relations associated with a thermodynamic system by using the preserving area relationships. In this way it is possible to calculate the number of possible preserving area mappings by giving the number of possible Jacobian identities between all pairs of thermodynamic variables included in the corresponding Gibbs equation. This paper is intended for undergraduates and specialists in thermodynamics and related areas. (paper)
Carnot's theorem as Noether's theorem for thermoacoustic engines
Onset in thermoacoustic engines, the transition to spontaneous self-generation of oscillations, is studied here as both a dynamical critical transition and a limiting heat engine behavior. The critical transition is interesting because it occurs for both dissipative and conservative systems, with common scaling properties. When conservative, the stable oscillations above the critical point also implement a reversible engine cycle satisfying Carnot's theorem, a universal conservation law for entropy flux. While criticality in equilibrium systems is naturally associated with symmetries and universal conservation laws, these are usually exploited with global minimization principles, which dynamical critical systems may not have if dissipation is essential to their criticality. Acoustic heat engines furnish an example connecting equilibrium methods with dynamical and possibly even dissipative critical transitions: A reversible engine is shown to map, by a change of variables, to an equivalent system in apparent thermal equilibrium; a Noether symmetry in the equilibrium field theory implies Carnot's theorem for the engine. Under the same association, onset is shown to be a process of spontaneous symmetry breaking and the scaling of the quality factor predicted for both the reversible and irreversible engines is shown to arise from the Ginzburg-Landau description of the broken phase. copyright 1998 The American Physical Society
Cooling Load and COP optimization of an irreversible carnot refrigerator with spin-1/2 systems
Liu, Xiaowie; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China); Wu, Feng [School of Science, Wuhan Institute of Technology, Wuhan 430074 (China); College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)
2011-07-01
A model of an irreversible quantum refrigerator with working medium consisting of many non-interacting spin-1/2 systems is established in this paper. The quantum refrigeration cycle is composed of two isothermal processes and two irreversible adiabatic processes and is referred to as a spin quantum Carnot refrigeration cycle. Expressions of some important performance parameters, such as cycle period, cooling load and coefficient of performance (COP) for the irreversible spin quantum Carnot refrigerator are derived, and detailed numerical examples are provided. The optimal performance of the quantum refrigerator at high temperature limit is analyzed with numerical examples. Effects of internal irreversibility and heat leakage on the performance are discussed in detail. The endoreversible case, frictionless case and the case without heat leakage are discussed in brief.
Cooling load and COP optimization of an irreversible Carnot refrigerator with spin-1/2 systems
Xiaowei Liu, Lingen Chen, Feng Wu, Fengrui Sun
2011-09-01
Full Text Available A model of an irreversible quantum refrigerator with working medium consisting of many non-interacting spin-1/2 systems is established in this paper. The quantum refrigeration cycle is composed of two isothermal processes and two irreversible adiabatic processes and is referred to as a spin quantum Carnot refrigeration cycle. Expressions of some important performance parameters, such as cycle period, cooling load and coefficient of performance (COP for the irreversible spin quantum Carnot refrigerator are derived, and detailed numerical examples are provided. The optimal performance of the quantum refrigerator at high temperature limit is analyzed with numerical examples. Effects of internal irreversibility and heat leakage on the performance are discussed in detail. The endoreversible case, frictionless case and the case without heat leakage are discussed in brief.
Ecological optimization for generalized irreversible Carnot refrigerators
The optimal ecological performance of a Newton's law generalized irreversible Carnot refrigerator with the losses of heat resistance, heat leakage and internal irreversibility is derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the exergy output rate and exergy loss rate (entropy production rate) of the refrigerator. Numerical examples are given to show the effects of heat leakage and internal irreversibility on the optimal performance of generalized irreversible refrigerators
Irreversible cycle in linear irreversible thermodynamics
The reversible Carnot cycle in reversible thermodynamics is composed of two reversible heat exchange processes and two reversible adiabatic processes. We construct an irreversible cycle in linear irreversible thermodynamics by analogy with the reversible Carnot cycle. The irreversible cycle is composed of two linear irreversible heat exchange processes and two linear irreversible adiabatic processes. It is found that the Curzon-Alhborn efficiency can be attained if the power for each of the four linear irreversible processes reaches its maximum. The maximum efficiency is the Carnot efficiency. The strong coupling condition is prerequisite for the respective attainment of the Curzon-Alhborn efficiency and the Carnot efficiency.
Quantum-Carnot engine for particle confined to cubic potential
Sutantyo, Trengginas Eka P., E-mail: trengginas.eka@gmail.com; Belfaqih, Idrus H., E-mail: idrushusin21@gmail.com; Prayitno, T. B., E-mail: teguh-budi@unj.ac.id [Department of Physics, State University of Jakarta, Jl. Pemuda No.10, Rawamangun, Jakarta Timur 13220 (Indonesia)
2015-09-30
Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.
Quantum-Carnot engine for particle confined to cubic potential
Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system
Pythagorean means and Carnot machines: When music meets heat
Johal, Ramandeep S
2016-01-01
Some interesting relations between Pythagorean means (arithmetic, geometric and harmonic means) and the coefficients of performance of reversible Carnot machines (heat engine, refrigerator and heat pump) are discussed.
Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
Wang, Yang; Tu, Z C
2012-01-01
The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of the working substance in each "isothermal" process is a quadratic form of the heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the irreversible entropy production in two isothermal processes of the Carnot-like cycle, and that the efficiency at maximum power output has the form η(mP)=η(C)/(2-γη(C)), where η(C) is the Carnot efficiency, while γ depends on the heat transfer coefficients between the working substance and two reservoirs. The value of η(mP) is bounded between η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)). These results are consistent with those obtained by Chen and Yan [J. Chem. Phys. 90, 3740 (1989)] based on the endoreversible assumption, those obtained by Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)] based on the low-dissipation assumption, and those obtained by Schmiedl and Seifert [Europhys. Lett. 81, 20003 (2008)] for stochastic heat engines which in fact also satisfy the low-dissipation assumption. Additionally, we find that the endoreversible assumption happens to hold for Carnot-like heat engines operating at the maximum power output based on our fundamental assumption, and that the Carnot-like heat engines that we focused on do not strictly satisfy the low-dissipation assumption, which implies that the low-dissipation assumption or our fundamental assumption is a sufficient but non-necessary condition for the validity of η(mP)=η(C)/(2-γη(C)) as well as the existence of two bounds, η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)). PMID:22400532
Xiaowei Liu, Lingen Chen, Feng Wu, Fengrui Sun
2015-01-01
The optimal performance of an irreversible quantum Carnot refrigerator with working medium consisting of many non-interacting harmonic oscillators is investigated in this paper. The quantum refrigerator cycle is composed of two isothermal processes and two irreversible adiabatic processes, and the irreversibilities of heat resistance, internal friction and bypass heat leakage are considered. By using the quantum master equation, semi-group approach and finite time thermodynamics (FTT), this p...
SubRiemannian geodesics for Carnot groups of step 3
Tan, Kanghai
2011-01-01
In Carnot groups of step 3, all subriemannian geodesics are proved to be normal. The proof is based on a reduction argument and the Goh condition for minimality of singular curves. The Goh condition is deduced from a reformulation and a calculus of the end-point mapping which boils down to the graded structures of Carnot groups.
Ecological optimization of an irreversible quantum Carnot heat engine with spin-1/2 systems
A model of a quantum heat engine with heat resistance, internal irreversibility and heat leakage and many non-interacting spin-1/2 systems is established in this paper. The quantum heat engine cycle is composed of two isothermal processes and two irreversible adiabatic processes and is referred to as a spin quantum Carnot heat engine. Based on the quantum master equation and the semi-group approach, equations of some important performance parameters, such as power output, efficiency, entropy generation rate and ecological function (a criterion representing the optimal compromise between exergy output rate and exergy loss rate), for the irreversible spin quantum Carnot heat engine are derived. The optimal ecological performance of the heat engine in the classical limit is analyzed with numerical examples. The effects of internal irreversibility and heat leakage on ecological performance are discussed in detail.
Thermodynamic Cycles--One More Time.
Nolan, Michael J.
1995-01-01
Discusses interesting aspects of the Carnot cycle and other thermodynamic cycles that are generally not dealt with in elementary physics texts. Presents examples that challenge the student to think about the extraction of net work from a cycle. (JRH)
A New Simple Approach for Entropy and Carnot Theorem
Entropy and Carnot theorem occupy central place in the typical Thermodynamics courses at the university level. In this work, we suggest a new simple approach for introducing the concept of entropy. Using simple procedure in TV plane, we proved that for reversible processes ∫dQ/T=0 and it is sufficient to define entropy. And also, using reversible processes in TS plane, we give an alternative simple proof for Carnot theorem
c horizontal convexity on Carnot groups
Calogero, Andrea
2010-01-01
Given a real-valued function $c$ defined on the cartesian product of a generic Carnot group $\\G$ and the first layer $V_1$ of its Lie algebra, we introduce a notion of $c$ horizontal convex ($c$ H-convex) function on $\\G$ as the supremum of a suitable family of affine functions; this family is defined pointwisely, and depends strictly on the horizontal structure of the group. This abstract approach provides $c$ H-convex functions that, under appropriate assumptions on $c,$ are characterized by the nonemptiness of the $c$ H-subdifferential and, above all, are locally H-semiconvex, thereby admitting horizontal derivatives almost everywhere. It is noteworthy that such functions can be recovered via a Rockafellar technique, starting from a suitable notion of $c$ H-cyclic monotonicity for maps. In the particular case where $c(g,v)=,$ we obtain the well-known weakly H-convex functions introduced by Danielli, Garofalo and Nhieu. Finally, we suggest a possible application to optimal mass transportation.
Yi Zhang, Lingeng Chen, Guozhong Chai
2014-01-01
Full Text Available The analytical expression for profit rate of a generalized irreversible Carnot heat engine cycle based on a generalized radiative heat transfer law is derived by applying the finite time exergoeconomic method, taking into account several additional irreversibilities, such as heat resistance, heat leakage and other undesirable irreversible factors. The compromise optimization between economics (profit rate and the efficiency was obtained by searching the efficiency at maximum profit rate, which is termed as the finite time exergoeconomic performance bound.
Yi Zhang, Lingeng Chen, Guozhong Chai
2014-01-01
The analytical expression for profit rate of a generalized irreversible Carnot heat engine cycle based on a generalized radiative heat transfer law is derived by applying the finite time exergoeconomic method, taking into account several additional irreversibilities, such as heat resistance, heat leakage and other undesirable irreversible factors. The compromise optimization between economics (profit rate) and the efficiency was obtained by searching the efficiency at maximum profit rate, whi...
Thermodynamic process for a practical approach to the Carnot cycle
This patent describes a process for mechanical power generation comprising: (a) selecting a working fluid mixture comprising fluids having different boiling points wherein (1) at a maximum working temperature and pressure, the mixture of vapors of such fluids is saturated with respect to the component having the highest boiling point, and (2) the fluid having the lowest boiling point saturates at a minimum working temperature, for a minimum working pressure, (b) performing one expansion in an expansion device of the mixture of fluid vapors initially saturated with respect to the component having the highest boiling point, from the maximum working pressure to the minimum working pressure; (c) performing a stage of heat recovery, with heat exchange between (1) the mixture of fluids exhausted by the expansion device, which yields heat and undergoes condensation of at least some of its components, and (2) a fluid mixture coming from a final condenser and compressed to the maximum working pressure, which absorbs heat and undergoes vaporization of at least some of its components; (d) performing total condensation in the condenser of the mixture that comes out of the hot side of the heat recovery stage, at the minimum working temperature; and (e) contributing heat to the fluid mixture, one the latter has come out of the cold side of the heat recovery stage, until all the remaining liquid fraction in the fluid mixture that corresponds to the component having the highest boiling point is vaporized
Irreversibility in macroscopic physics: from Carnot cycle to dissipative structures
The conceptual foundations of the modern thermodynamic theory related to a large category of far-from-equilibrium phenomena are outlined, and the historical continuity with early developments based on the impossibility of perpetual motion is discussed. In this perspective the discovery of thermodynamic stability criteria around steady or periodic processes, together with a general evolution criterion that is valid in the non-linear region (and thus implying creation of order and applicability to living systems), appears as a most remarkable development indeed. The leading role played by the Brussels school and particularly by Ilya Prigogine is emphasized
Analysis of a microscale 'Saturation Phase-change Internal Carnot Engine'
A micro heat engine, based on a cavity filled with a stationary working fluid under liquid-vapor saturation conditions and encapsulated by two membranes, is described and analyzed. This engine design is easy to produce using MEMS technologies and is operated with external heating and cooling. The motion of the membranes is controlled such that the internal pressure and temperature are constant during the heat addition and removal processes, and thus the fluid executes a true internal Carnot cycle. A model of this Saturation Phase-change Internal Carnot Engine (SPICE) was developed including thermodynamic, mechanical and heat transfer aspects. The efficiency and maximum power of the engine are derived. The maximum power point is fixed in a three-parameter space, and operation at this point leads to maximum power density that scales with the inverse square of the engine dimension. Inclusion of the finite heat capacity of the engine wall leads to a strong dependence of performance on engine frequency, and the existence of an optimal frequency. Effects of transient reverse heat flow, and 'parasitic heat' that does not participate in the thermodynamic cycle are observed.
What Carnot's Father Taught His Son about Thermodynamics
Muller, Erich A.
2012-01-01
The historical development of the classical postulates of the second law of Thermodynamics can be traced back to the book by Sadi Carnot, "Reflections on the motive power of fire." While unique in its own right and in some sense revolutionary, the book starts with an analogy between heat engines and waterwheels. Waterwheels were common engines of…
NONE
2004-07-01
This progress report takes stock on the CARNOT project. This project aims to standardize the different approaches or identify the application fields of each thermodynamical methodology. The cycles analysis and more generally thermodynamical machines (design, energy efficiency, new energy utilization concepts). The environmental impact is also an important topic of the project. (A.L.B.)
Xiaowei Liu, Lingen Chen, Feng Wu, Fengrui Sun
2015-01-01
Full Text Available The optimal performance of an irreversible quantum Carnot refrigerator with working medium consisting of many non-interacting harmonic oscillators is investigated in this paper. The quantum refrigerator cycle is composed of two isothermal processes and two irreversible adiabatic processes, and the irreversibilities of heat resistance, internal friction and bypass heat leakage are considered. By using the quantum master equation, semi-group approach and finite time thermodynamics (FTT, this paper derives the cooling load and coefficient of performance (COP of the quantum refrigeration cycle and provides detailed numerical examples. At high temperature limit, the cooling load versus COP characteristic curves are plotted, and effects of internal friction and bypass heat leakage on the optimal performance of the quantum refrigerator are discussed. Three special cases, i.e., endoreversible, frictionless and without bypass heat leakage, are discussed in brief.
Exergetic sustainability evaluation of irreversible Carnot refrigerator
Açıkkalp, Emin
2015-10-01
Purpose of this paper is to assess irreversible refrigeration cycle by using exergetic sustainability index. In literature, there is no application of exergetic sustainability index for the refrigerators and, indeed, this index has not been derived for refrigerators. In this study, exergetic sustainability indicator is presented for the refrigeration cycle and its relationships with other thermodynamics parameters including COP, exergy efficiency, cooling load, exergy destruction, ecological function and work input are investigated. Calculations are conducted for endoreversible and reversible cycles and then results obtained from the ecological function are compared. It is found that exergy efficiency, exergetic sustainable index reduce 47.595% and 59.689% and rising at the COP is 99.888% is obtained for endoreversible cycle. Similarly, exergy efficiency and exergetic sustainability index reduce 90.163% and 93.711% and rising of the COP is equal to 99.362%.
Ecolosical optimization of an irreversible harmonic oscillators Carnot heat engine
LIU XiaoWei; CHEN LinGen; WU Feng; SUN FengRui
2009-01-01
A model of an irreversible quantum Carnot heat engine with heat resistance, internal irreversibility and heat leakage and many non-interacting harmonic oscillators is established in this paper. Based on the quantum master equation and semi-group approach, equations of some important performance parameters, such as power output, efficiency, exergy loss rate and ecological function for the irreversible quantum Carnot heat engine are derived. The optimal ecological performance of the heat engine in the classical limit is analyzed with numerical examples. Effects of internal irreversibility and heat leakage on the ecological performance are discussed. A performance comparison of the quantum heat engine under maximum ecological function and maximum power conditions is also performed.
Modern Thermodynamics Based on the Extended Carnot Theorem
Wang, Jitao
2012-01-01
"Modern Thermodynamics- Based on the Extended Carnot Theorem" provides comprehensive definitions and mathematical expressions of both classical and modern thermodynamics. The goal is to develop the fundamental theory on an extended Carnot theorem without incorporating any extraneous assumptions. In particular, it offers a fundamental thermodynamic and calculational methodology for the synthesis of low-pressure diamonds. It also discusses many "abnormal phenomena", such as spiral reactions, cyclic reactions, chemical oscillations, low-pressure carat-size diamond growth, biological systems, and more. The book is intended for chemists and physicists working in thermodynamics, chemical thermodynamics, phase diagrams, biochemistry and complex systems, as well as graduate students in these fields. Jitao Wang is a professor emeritus at Fudan University, Shanghai, China.
Carnot type magnetic refrigeration below 4.2 K - computer simulation
Cooling devices based on a utilization of the Carnot type magnetic refrigeration cycle are usually selected for the temperature range from 20 K to 1.8 K. However, the refrigeration power in the case of such devices is frequently limited by the heat transfer coefficient between the heat source and the magnetic working substance. Thus, in a magnetic refrigerator studied by Delpuech et al. (1981), the refrigeration power is mainly restricted by the heat transfer coefficient in the isothermal magnetization process at 4.2 K. The present investigation is concerned with the development of a method for achieving high refrigeration power on the basis of a study utilizing computer simulation. One of two methods considered for enhancing refrigeration power is related to the change in the magnetic field, while the other method involves an enlargement of the effective area of gadolinium-gallium-garnet (GGG) with the aid of deep grooves in the surface. 6 references
Mathilde Blaise; Michel Feidt; Denis Maillet
2015-01-01
A Carnot type engine with a changing phase during the heating and the cooling is modeled with its thermal contact with the heat source. In a first optimization, the optimal high temperature of the cycle is determined to maximize the power output. The temperature and the mass flow rate of the heat source are given. This does not take into account the converter internal fluid and its mass flow rate. It is an exogenous optimization of the converter. In a second optimization, the endogenous optim...
Local Monotonicity and Isoperimetric Inequality on Hypersurfaces in Carnot groups
Francesco Paolo Montefalcone
2010-12-01
Full Text Available Let G be a k-step Carnot group of homogeneous dimension Q. Later on we shall present some of the results recently obtained in [32] and, in particular, an intrinsic isoperimetric inequality for a C2-smooth compact hypersurface S with boundary @S. We stress that S and @S are endowed with the homogeneous measures n????1 H and n????2 H , respectively, which are actually equivalent to the intrinsic (Q - 1-dimensional and (Q - 2-dimensional Hausdor measures with respect to a given homogeneous metric % on G. This result generalizes a classical inequality, involving the mean curvature of the hypersurface, proven by Michael and Simon [29] and Allard [1], independently. One may also deduce some related Sobolev-type inequalities. The strategy of the proof is inspired by the classical one and will be discussed at the rst section. After reminding some preliminary notions about Carnot groups, we shall begin by proving a linear isoperimetric inequality. The second step is a local monotonicity formula. Then we may achieve the proof by a covering argument.We stress however that there are many dierences, due to our non-Euclidean setting.Some of the tools developed ad hoc are, in order, a \\blow-up" theorem, which holds true also for characteristic points, and a smooth Coarea Formula for the HS-gradient. Other tools are the horizontal integration by parts formula and the 1st variation formula for the H-perimeter n????1H already developed in [30, 31] and then generalized to hypersurfaces having non-empty characteristic set in [32]. These results can be useful in the study of minimal and constant horizontal mean curvature hypersurfaces in Carnot groups.
A short note on Reitlinger thermodynamic cycles
Sparavigna, Amelia Carolina
2015-01-01
It is well known that Carnot cycle is the thermodynamic cycle which has the best thermal efficiency. However, an entire class of cycles exists that can have the same maximum efficiency: this class is that of the regenerative Reitlinger cycles. Here we discuss them.
On polytropic cycles in finite time
Efficiencies at maximum power regime for Stirling and Ericsson cycles are calculated. The Curzon and Ahlborn formula, for efficiency of a Carnot cycle at finite time, for such cycles is obtained also. A theorem for ideal gas polytropic cycles is proposed (Author)
Lazare and Sadi Carnot a scientific and filial relationship
Gillispie, Charles Coulston
2014-01-01
Lazare Carnot was the unique example in the history of science of someone who inadvertently owed the scientific recognition he eventually achieved to earlier political prominence. He and his son Sadi produced work that derived from their training as engineers and went largely unnoticed by physicists for a generation or more, even though their respective work introduced concepts that proved fundamental when taken up later by other hands. There was, moreover, a filial as well as substantive relation between the work of father and son. Sadi applied to the functioning of heat engines the analysis that his father had developed in his study of the operation of ordinary machines. Specifically, Sadi's idea of a reversible process originated in the use his father made of geometric motions in the analysis of machines in general. This unique book shows how the two Carnots influenced each other in their work in the fields of mechanics and thermodynamics, and how future generations of scientists have further benefited f...
Binder, P.-M.; Tanoue, C. K. S.
2013-01-01
Thermo dynamic cycles in introductory physics courses are usually made up from a small number of permutations of isothermal, adiabatic, and constant-pressure and volume quasistatic strokes, with the working fluid usually being an ideal gas. Among them we find the Carnot, Stirling, Otto, Diesel, and Joule-Brayton cycles; in more advanced courses,…
New Performance Bounds for a Finite-Time Carnot Refrigerator
An upper bound for the coefficient of performance (COP) of endoreversible refrigerators which depends only on the ratio τ=Tc/Th between the cold and hot reservoir temperatures has been elusive to date. We address here this long standing problem by analyzing an endoreversible Carnot refrigerator that operates in conditions of maximum per-unit-time COP. Two novel results are obtained: (1) A long sought τ-dependent upper bound for the COP of refrigerators. (2) A τ-dependent optimum distribution of the heat conductances associated with the coupling between the refrigerant and the heat reservoirs. Moreover, when the method is applied to heat engines, the resulting optimum efficiency is even closer to real efficiencies than the well-known Curzon-Ahlborn result. copyright 1997 The American Physical Society
Jun Li; Lingen Chen; Fengrui Sun
2010-02-01
The fundamental optimal relation between heating load and coefficient of performance (COP) of a generalized irreversible Carnot heat pump is derived based on a new generalized heat transfer law, which includes the generalized convective heat transfer law and generalized radiative heat transfer law, $q \\varpropto ( T^{n})^{m}$. The generalized irreversible Carnot heat pump model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat leakage, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities besides heat resistance are characterized by a constant parameter and a constant coefficient. The effects of heat transfer laws and various loss terms are analysed. The heating load vs. COP characteristic of a generalized irreversible Carnot heat pump is a parabolic-like curve, which is consistent with the experimental result of thermoelectric heat pump. The obtained results include those obtained in many literatures and indicated that the analysis results of the generalized irreversible Carnot heat pump were more suitable for engineering practice than those of the endoreversible Carnot heat pump.
Optimum heat power cycles for specified boundary conditions
In this paper optimization of the power output of Carnot and closed Brayton cycles is considered for both finite and infinite thermal capacitance rates of the external fluid streams. The method of Lagrange multipliers is used to solve for working fluid temperatures that yield maximum power. Analytical expressions for the maximum power and the cycle efficiency at maximum power are obtained. A comparison of the maximum power from the two cycles for the same boundary conditions, i.e., the same heat source/sink inlet temperatures, thermal capacitance rates, and heat exchanger conductances, shows that the Brayton cycle can produce more power than the Carnot cycle. This comparison illustrates that cycles exist that can produce more power than the Carnot cycle. The optimum heat power cycle, which will provide the upper limit of power obtained from any thermodynamic cycle for specified boundary conditions and heat exchanger conductances is considered. The optimum heat power cycle is identified by optimizing the sum of the power output from a sequence of Carnot cycles. The shape of the optimum heat power cycle, the power output, and corresponding efficiency are presented. The efficiency at maximum power of all cycles investigated in this study is found to be equal to (or well approximated by) η = 1 - sq. root TL.in/φTH.in where φ is a factor relating the entropy changes during heat rejection and heat addition
Ouerdane, Henni; Goupil, Christophe; Lecoeur, Philippe
2014-01-01
[...] By the beginning of the 20th century, the principles of thermodynamics were summarized into the so-called four laws, which were, as it turns out, definitive negative answers to the doomed quests for perpetual motion machines. As a matter of fact, one result of Sadi Carnot's work was precisely that the heat-to-work conversion process is fundamentally limited; as such, it is considered as a first version of the second law of thermodynamics. Although it was derived from Carnot's unrealistic model, the upper bound on the thermodynamic conversion efficiency, known as the Carnot efficiency, became a paradigm as the next target after the failure of the perpetual motion ideal. In the 1950's, Jacques Yvon published a conference paper containing the necessary ingredients for a new class of models, and even a formula, not so different from that of Carnot's efficiency, which later would become the new efficiency reference. Yvon's first analysis [...] went fairly unnoticed for twenty years, until Frank Curzon and Bo...
Teaching Reitlinger Cycles To Improve Students' Knowledge And Comprehension Of Thermodynamics
Sparavigna, Amelia Carolina
2016-01-01
The second law of thermodynamics puts a limit on the thermal efficiency of heat engines. This limit value is the efficiency of the ideal reversible engine represented by the Carnot cycle. During the lectures on physics, the emphasis on this cycle is generally so strong that students could be induced to consider the Carnot cycle as the only cycle having the best thermal efficiency. In fact, an entire class of cycles exists possessing the same maximum efficiency: this class is that of the regen...
Mathilde Blaise
2015-07-01
Full Text Available A Carnot type engine with a changing phase during the heating and the cooling is modeled with its thermal contact with the heat source. In a first optimization, the optimal high temperature of the cycle is determined to maximize the power output. The temperature and the mass flow rate of the heat source are given. This does not take into account the converter internal fluid and its mass flow rate. It is an exogenous optimization of the converter. In a second optimization, the endogenous optimization, the isothermal heating corresponds only to the vaporization of the selected fluid. The maximization of the power output gives the optimal vaporization temperature of the cycled fluid. Using these two optima allows connecting the temperature of the heat source to the working fluid used. For a given temperature level, mass flow rate and composition of the waste heat to recover, an optimal fluid and its temperature of vaporization are deduced. The optimal conditions size also the internal mass flow rate and the compression ratio (pump size. The optimum corresponds to the maximum of the power output and must be combined with the environmental fluid impact and the technological constraints.
EDWARDS' REFERENCE CYCLE FOR INTERNAL AND EXTERNAL COMBUSTION ENGINES
A. E. Piir
2014-09-01
Full Text Available Useful physical regularities of a reversible thermodynamic cycle for heat engines have been established in the paper. The engines are using fuel combustion products as a heat source, and the environment - as a heat sink that surpasses Carnot cycle according to efficiency factor.
On the maximum efficiency of the ideal regenerative Stirling cycle
It is shown that the efficiency of the regenerative Stirling cycle principally does not reach the efficiency of the Carnot cycle, acting in the same range of temperatures. A connection between the degree of regeneration and the characteristics of regenerator is obtained. The maximal efficiency for an ideal Stirling engine is obtained.
Edwards' reference cycle for internal and external combustion engines
A. E. Piir
2014-01-01
Useful physical regularities of a reversible thermodynamic cycle for heat engines have been established in the paper. The engines are using fuel combustion products as a heat source, and the environment - as a heat sink that surpasses Carnot cycle according to efficiency factor.
Finite Time Analysis of a Tri-Generation Cycle
Brian Agnew; Sara Walker; Bobo Ng; Ivan C. K. Tam
2015-01-01
A review of the literature indicates that current tri-generation cycles show low thermal performance, even when optimised for maximum useful output. This paper presents a Finite Time analysis of a tri-generation cycle that is based upon coupled power and refrigeration Carnot cycles. The analysis applies equally well to Stirling cycles or any cycle that exhibits isothermal heat transfer with the environment and is internally reversible. It is shown that it is possible to obtain a significantly...
Thermodynamic equations for a black planet with nearest-neighbour surface Carnot interaction
This approach provides a quantitative description of the work efficiency of a compound system that has a natural separation between entropy-producing channels and the zero-entropy channel. Within this model a generalization is obtained of the concept of Carnot efficiency no longer between two infinite reservoirs but for a structure that has an internal dynamics put into motion by an external heat source. (author)
Abe, Sumiyoshi; Okuyama, Shinji
2012-01-01
A role of the superposition principle is discussed for the quantum-mechanical Carnot engine introduced by Bender, Brody, and Meister [J. Phys. A 33, 4427 (2000)]. It is shown that the efficiency of the engine can be enhanced by superposition of quantum states. A finite-time process is also discussed, and the condition of the maximum power output is presented. Interestingly, the efficiency at the maximum power is lower than that without superposition.
Türkpençe, Deniz; Müstecaplıoğlu, Özgür E
2016-01-01
We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003)SCIEAS0036-807510.1126/science.1078955], to the case of N+1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies. PMID:26871061
Türkpençe, Deniz; Müstecaplıoǧlu, Özgür E.
2016-01-01
We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003), 10.1126/science.1078955], to the case of N +1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.
Identifying Student Difficulties with Entropy, Heat Engines, and the Carnot Cycle
Smith, Trevor I.; Christensen, Warren M.; Mountcastle, Donald B.; Thompson, John R.
2015-01-01
We report on several specific student difficulties regarding the second law of thermodynamics in the context of heat engines within upper-division undergraduate thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students…
Cássius K. Nascimento
2004-06-01
Full Text Available The classical interpretations of Nicolas Léonard Sadi Carnot on some physical principles involved in the operation of heat engines were fundamental to the development and formulation of the Second Law of Thermodynamics. Moreover, an accurate historical survey clearly reveals that Carnot was, by that time, also well aware about some new concepts, which were further worked out by other scientists to lead to what was, some time later, known as the mechanical equivalent of heat and the conservation of energy. Benoit Paul Émile Clapeyron recognized these original concepts in the first of Carnot´s monographs, published in 1824, but no explicit citation is found in any post-Carnot classical texts dealing with the First Law of Thermodynamics, including those by Julius Robert Mayer, James Prescott Joule and Hermann Ludwig Ferdinand von Helmholtz. The main objective of the present work is to point out some historical evidences of the pioneering contribution of Carnot to the modern concept of the First Law of Thermodynamics.
Jun Li, Lingen Chen, Fengrui Sun
2011-01-01
Full Text Available The optimal ecological performance of a generalized irreversible Carnot heat engine with the losses of heat-resistance, heat leakage and internal irreversibility, in which the transfer between the working fluid and the heat reservoirs obeys a complex heat transfer law, including generalized convective heat transfer law and generalized radiative heat transfer law is derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the power and entropy production rate of the heat engine. The effects of heat transfer laws and various loss terms are analyzed. The obtained results include those obtained in many literatures.
Evaluación de una bomba de calor de Carnot operando en tiempo finito
José Alfredo Jiménez Bernal; Claudia del Carmen Gutiérrez Torres; Juan Gabriel Barbosa Saldaña; Pedro Quinto Diez
2006-01-01
El desarrollo de un nuevo modelo matemático para la evaluación del coeficiente de operación de una bomba de calor de Carnot que opera en tiempo finito (COPBCTF) se presenta en este trabajo. Se asume que el ciclo en el que opera esta bomba de calor es internamente reversible y externamente irreversible. Las irreversibilidades que ocurren debido a la duración finita de tiempo del ciclo se incluyen en los dos procesos de trasferencia de calor que forman parte del ciclo. Por otra parte, la contri...
The Carnot-like heat engines are classified into three types (normal-, sub- and, super-dissipative) according to relations between the minimum irreversible entropy production in the 'isothermal' processes and the time for completing those processes. The efficiencies at maximum power of normal-, sub- and super-dissipative Carnot-like heat engines are proved to be bounded between ηC/2 and ηC/(2 − ηC), ηC/2 and ηC, 0 and ηC/(2 − ηC), respectively. These bounds are also shared by linear, sub- and super-linear irreversible Carnot-like engines [Tu and Wang, Europhys. Lett. 98 (2012) 40001] although the dissipative engines and the irreversible ones are inequivalent to each other. (general)
Abhijit Sinha
2014-01-01
Full Text Available A comparative analysis on thermodynamic efficiency based on maximum power & power density conditions have been performed for a solar-driven Carnot heat engine with internal irreversibility. In this analysis, the heat transfer from the hot reservoir is to be in the radiation mode and the heat transfer to the cold reservoir is to be in the convection mode. The thermodynamic efficiency function, power & power density functions have been derived and maximization of the power functions have been performed for various design parameters. From the optimum conditions, the thermal efficiencies at maximum power and power densities have been obtained. The effects of internal irreversibility, extreme temperature ratios & specific engine size in area ratio between the hot & cold reservoirs as various design parameters on thermodynamic efficiencies have been investigated for both the conditions. The efficiencies have been compared with Curzon-Ahlborn & Carnot efficiencies respectively.The analysis showed that the efficiency at maximum power output is greater than the efficiency at maximum power density. And the efficiencies can be greater than the Curzon- Ahlborn`s efficiency only for low values of design parameters.
Quantum Thermodynamic Cycles and quantum heat engines
Quan, H T; Nori, F; Sun, C P; Liu, Yu-xi; Nori, Franco
2006-01-01
In order to describe quantum heat engines, here we systematically study isothermal and isochoric processes for quantum thermodynamic cycles. Based on these results the quantum versions of both the Carnot heat engine and the Otto heat engine are defined without ambiguities. We also study the properties of quantum Carnot and Otto heat engines in comparison with their classical counterparts. Relations and mappings between these two quantum heat engines are also investigated by considering their respective quantum thermodynamic processes. In addition, we discuss the role of Maxwell's demon in quantum thermodynamic cycles. We find that there is no violation of the second law, even in the existence of such a demon, when the demon is included correctly as part of the working substance of the heat engine.
Influence of quantum degeneracy on the performance of a gas Stirling engine cycle
He Ji-Zhou; Mao Zhi-Yuan; Wang Jian-Hui
2006-01-01
Based on the state equation of an ideal quantum gas, the regenerative loss of a Stirling engine cycle working with an ideal quantum gas is calculated. Thermal efficiency of the cycle is derived. Furthermore, under the condition of quantum degeneracy, several special thermal efficiencies are discussed. Ratios of thermal efficiencies versus the temperature ratio and volume ratio of the cycle are made. It is found that the thermal efficiency of the cycle not only depends on high and low temperatures but also on maximum and minimum volumes. In a classical gas state the thermal efficiency of the cycle is equal to that of the Carnot cycle. In an ideal quantum gas state the thermal efficiency of the cycle is smaller than that of the Carnot cycle. This will be significant for deeper understanding of the gas Stirling engine cycle.
Influence of quantum degeneracy on the performance of a gas Stirling engine cycle
He, Ji-Zhou; Mao, Zhi-Yuan; Wang, Jian-Hui
2006-09-01
Based on the state equation of an ideal quantum gas, the regenerative loss of a Stirling engine cycle working with an ideal quantum gas is calculated. Thermal efficiency of the cycle is derived. Furthermore, under the condition of quantum degeneracy, several special thermal efficiencies are discussed. Ratios of thermal efficiencies versus the temperature ratio and volume ratio of the cycle are made. It is found that the thermal efficiency of the cycle not only depends on high and low temperatures but also on maximum and minimum volumes. In a classical gas state the thermal efficiency of the cycle is equal to that of the Carnot cycle. In an ideal quantum gas state the thermal efficiency of the cycle is smaller than that of the Carnot cycle. This will be significant for deeper understanding of the gas Stirling engine cycle.
Superfluid thermodynamic cycle refrigerator
Swift, Gregory W.; Kotsubo, Vincent Y.
1992-01-01
A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.
Superfluid thermodynamic cycle refrigerator
A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of 3He in a single phase 3He-4He solution. The 3He in superfluid 4He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid 3He at an initial concentration in superfluid 4He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of 4He while restricting passage of 3He. The 3He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs
Effect of mixed heat-resistances on the optimal configuration and performance of a heat-engine cycle
The finite-time thermodynamic performance of a generalized Carnot-cycle, under the condition of mixed heat-resistances, is studied. The optimal configuration and the fundamental optimal relation between power and efficiency of the cycle are derived. The results provide some guidance for the design of practical engines
La Biosphère selon Vernadsky : Contradiction du principe de Carnot
Loiret, Richard
2012-01-01
Existe-t-il une exception au principe de Carnot ? Telle fut la problématique centrale de la recherche exposée, avec ses résultats, dans ce cahier n°1. En posant que le vivant exerce une activité contrevenant à "l'entropie croissante de l'Univers", cette étude a vocation d'ouvrir les voies d'une mesure "thermodynamique" de la biodiversité. Nous passons en revue, en première partie, le point de vue d'auteurs qui marquèrent la pensée scientifique du XXe siècle, et dont la contribution marqua cha...
Molecular Kinetic Analysis of a Finite-Time Carnot Heat Engine
Izumida, Yuki; Okuda, Koji
2009-03-01
We show the first derivation of the efficiency at the maximum power for a finite-time Carnot heat engine of a weakly interacting gas which we can regard as a nearly ideal gas. Using this simple model, we check the celebrated Curzon-Ahlborn (CA) efficiency by performing the event-driven MD simulation as a numerical experiment for the first time[1,2]. This numerical experiment reveals that the CA efficiency is realized only in the limit of the small temperature difference Tc -> Th where Th and Tc are the temperatures of the hot and cold heat reservoirs, respectively. Our molecular kinetic analysis can explain the numerical results theoretically. [1] F. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975). [2] Y. Izumida and K. Okuda, Europhys. Lett. 83, 60003 (2008).
General Formula for the Efficiency of Quantum-Mechanical Analog of the Carnot Engine
Sumiyoshi Abe
2013-04-01
Full Text Available An analog of the Carnot engine reversibly operating within the framework of pure-state quantum mechanics is discussed. A general formula is derived for the efficiency of such an engine with an arbitrary confining potential. Its expression is given in terms of an energy spectrum and shows how the efficiency depends on a potential as the analog of a working material in thermodynamics, in general. This non-universal nature results from the fact that there exists no analog of the second law of thermodynamics in pure-state quantum mechanics where the von Neumann entropy identically vanishes. A special class of spectra, which leads to a common form of the efficiency, is identified.
Thomas, George; Johal, Ramandeep S.
2010-01-01
We study the 1-d isotropic Heisenberg model of two spin-1/2 systems as a quantum heat engine. The engine undergoes a four-step Otto cycle where the two adiabatic branches involve changing the external magnetic field at a fixed value of the coupling constant. We find conditions for the engine efficiency to be higher than the uncoupled model; in particular, we find an upper bound which is tighter than the Carnot bound. A new domain of parameter values is pointed out which was not feasible in th...
Not all counterclockwise thermodynamic cycles are refrigerators
Dickerson, R. H.; Mottmann, J.
2016-06-01
Clockwise cycles on PV diagrams always represent heat engines. It is therefore tempting to assume that counterclockwise cycles always represent refrigerators. This common assumption is incorrect: most counterclockwise cycles cannot be refrigerators. This surprising result is explored here for quasi-static ideal gas cycles, and the necessary conditions for refrigeration cycles are clarified. Three logically self-consistent criteria can be used to determine if a counterclockwise cycle is a refrigerator. The most fundamental test compares the counterclockwise cycle with a correctly determined corresponding Carnot cycle. Other criteria we employ include a widely accepted description of the functional behavior of refrigerators, and a corollary to the second law that limits a refrigerator's coefficient of performance.
Šesták, Jaroslav; Mareš, Jiří J.; Hubík, Pavel; Proks, I.
2009-01-01
Roč. 97, č. 2 (2009), s. 679-683. ISSN 1388-6150 R&D Projects: GA AV ČR IAA1010404; GA AV ČR IAA100100639 Institutional research plan: CEZ:AV0Z10100521 Keywords : caloric as entropy * Carnot * efficiency * history * thermal analysis * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.587, year: 2009
Performance of an irreversible quantum refrigeration cycle
He Ji-Zhou; Ouyang Wei-Pin; Wu Xin
2006-01-01
A new model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The working substance in the cycle consists of many non-interacting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semi-group approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate, and power input, are given. It is found that the coefficient of performance of this cycle is in the closest analogy to that of the classical Carnot cycle. Furthermore, at high temperatures the optimal relations of the cooling rate and the maximum cooling rate are analysed in detail. Some performance characteristic curves of the cycle are plotted, such as the cooling rate versus the maximum ratio between high and low "temperatures" of the working substances, the maximum cooling rate versus the ratio between high and low "magnetic fields" and the "temperature" ratio between high and low reservoirs. The obtained results are further generalized and discussed, so that they may be directly applied to describing the performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot and Ericsson refrigeration cycles are derived by analogy.
A class of internally irreversible refrigeration cycles
Ait-Ali, Mohand A.
1996-03-01
A Carnot-like irreversible refrigeration cycle is modelled with two isothermal and two non-adiabatic, irreversible processes. The generic source of internal irreversibility, measured by the Clausius inequality, is a general irreversibility term which could include any heat leaks into the Joule - Thompson expansion valve, the evaporator and compressor cold boxes. This cycle is optimized first for maximum refrigeration power and maximum refrigeration load, then for maximum coefficient of performance. Its performances are compared with those of the endoreversible refrigeration cycle, based on a propane stage of a classical cascade liquefaction cycle example. Both cycle models achieve optimum power and maximum refrigeration load at nearly the same refrigeration temperature, but only the coefficient of performance of the irreversible refrigeration cycle reaches a maximum. Moreover, its prediction of heat conductance allocation between evaporator and condenser appears to be not only more conservative, but also more realistic for actual design considerations of refrigeration cycles.
Hu, Yong; Wu, Feifei; Ma, Yongli; He, Jizhou; Wang, Jianhui; Hernández, A Calvo; Roco, J M M
2013-12-01
We study the coefficient of performance (COP) and its bounds for a Carnot-like refrigerator working between two heat reservoirs at constant temperatures T(h) and T(c), under two optimization criteria χ and Ω. In view of the fact that an "adiabatic" process usually takes finite time and is nonisentropic, the nonadiabatic dissipation and the finite time required for the adiabatic processes are taken into account by assuming low dissipation. For given optimization criteria, we find that the lower and upper bounds of the COP are the same as the corresponding ones obtained from the previous idealized models where any adiabatic process is undergone instantaneously with constant entropy. To describe some particular models with very fast adiabatic transitions, we also consider the influence of the nonadiabatic dissipation on the bounds of the COP, under the assumption that the irreversible entropy production in the adiabatic process is constant and independent of time. Our theoretical predictions match the observed COPs of real refrigerators more closely than the ones derived in the previous models, providing a strong argument in favor of our approach. PMID:24483394
Thomas, George; Johal, Ramandeep S
2011-03-01
We study the one-dimensional isotropic Heisenberg model of two spin-1/2 systems as a quantum heat engine. The engine undergoes a four-step Otto cycle where the two adiabatic branches involve changing the external magnetic field at a fixed value of the coupling constant. We find conditions for the engine efficiency to be higher than in the uncoupled model; in particular, we find an upper bound which is tighter than the Carnot bound. A domain of parameter values is pointed out which was not feasible in the interaction-free model. Locally, each spin seems to cause a flow of heat in a direction opposite to the global temperature gradient. This feature is explained by an analysis of the local effective temperature of the spins. PMID:21517482
Quantum thermodynamic processes: A control theory for machine cycles
Birjukov, Jan; Jahnke, Thomas; Mahler, Günter
2007-01-01
The minimal set of thermodynamic control parameters consists of a statistical (thermal) and a mechanical one. These suffice to introduce all the pertinent thermodynamic variables; thermodynamic processes can then be defined as paths on this 2-dimensional control plane. Putting aside coherence we show that for a large class of quantum objects with discrete spectra and for the cycles considered the Carnot efficiency applies as a universal upper bound. In the dynamic (finite time) regime renorma...
A general property of non-endoreversible thermal cycles
Angulo-Brown, F.; Arias-Hernandez, L.A. [Instituto Politecnico Nacional (Mexico). Escuela Superior de Fisica y Matematicas; Paez-Hernandez, R. [Universidad Autonoma Metropolitana-Azcapotzalco (Mexico). Departamento de Ciencias Basicas
1999-06-21
In this work it is shown that a general property of endoreversible Curzon-Ahlborn-Novikov (CAN) cycles previously demonstrated can be extended for non-endoreversible CAN-cycles. This general property is based on the fact that at the so-called maximum ecological regime the efficiency is the average of the Carnot and the maximum-power efficiencies, and that in such a regime the power output is 75% of the maximum power of the CAN-cycle and the entropy produced is only 25% of that produced in the maximum power point. This property is independent of the heat transfer law. (author)
Magneto-thermodynamic property characterizations were selected, adapted, and compared to material property data for gadolinium gallium garnet in the temperature range 4--40 K and magnetic field range 0--6 T. The most appropriate formulations were incorporated into a model in which methods similar to those previously developed for other materials and temperature ranges were used to make limitation and relative performance assessments of Carnot, ideal regenerative, and pseudo-constant field regenerative cycles. Analysis showed that although Carnot cycle limitations on available temperature lift for gadolinium gallium garnet are not as severe as those for materials previously examined, substantial improvements in cooling capacity/temperature lift combinations can be achieved using regenerative cycles within specified fields limits if significant loss mechanisms are mitigated
Finite Time Analysis of a Tri-Generation Cycle
Brian Agnew
2015-06-01
Full Text Available A review of the literature indicates that current tri-generation cycles show low thermal performance, even when optimised for maximum useful output. This paper presents a Finite Time analysis of a tri-generation cycle that is based upon coupled power and refrigeration Carnot cycles. The analysis applies equally well to Stirling cycles or any cycle that exhibits isothermal heat transfer with the environment and is internally reversible. It is shown that it is possible to obtain a significantly higher energy utilisation factor with this type of cycle by considering the energy transferred during the isothermal compression and expansion processes as useful products thus making the energy utilisation larger than the enthalpy drop of the working fluid of the power cycle. The cycle is shown to have the highest energy utilisation factor when energy is supplied from a low temperature heat source and in this case the output is biased towards heating and cooling.
The relation between heating load and coefficient of performance (COP) of an endoreversible Carnot heat-pump is derived based on a new generalized convective heat-transfer law and generalized radiative heat-transfer law, q ∝ (ΔTn)m. Our results include those obtained in many literature studies and can provide some theoretical guidance for the designs of real heat pumps
Thomas, George
2010-01-01
We study the 1-d isotropic Heisenberg model of two spin-1/2 systems as a quantum heat engine. The engine undergoes a four-step Otto cycle where the two adiabatic branches involve changing the external magnetic field at a fixed value of the coupling constant. We find conditions for the engine efficiency to be higher than the uncoupled model; in particular, we find an upper bound which is tighter than the Carnot bound. A new domain of parameter values is pointed out which was not feasible in the interaction-free model. Locally, each spin seems to effect the flow of heat in a direction opposite to the global temperature gradient. This seeming contradiction to the second law can be resolved in terms of local effective temperature of the spins.
Previously, this group reported the magnetocaloric characterisitics of Dy/sub 3/Al/sub 5/O/sub 12/ (DAG) which is superior to that of Gd/sub 3/Ga/sub 5/O/sub 12/ (GGG) as a refrigerant for a Carnot-type magnetic refrigerator operating from -- 20 K to 4.2 K. In the present study, the authors investigated the liquefaction characteristics of DAG and GGG with heat pipe system to compare abilities of those refrigerants in an actual liquefaction experiment. From the experimental results, it is verified that DAG is a more appropriate refrigerant than GGG for a Carnot-type magnetic refrigerator in the temperature range from -- 20 K to 4.2 K
Djebebe-Ndjiguim, Chantal; Foto, Eric; Backo, Salé; Zoudamba, Narcisse; Basse-Keke, Eric; Nguerekossi, Bruno; Alladin, Oscar; Huneau, Frederic; Garel, Emilie; Celle-Jeanton, Helene; Mabingui, Joseph
2016-04-01
The hydrogeology of the Cretaceous sandstone formations of Carnot-Berbérati (covering an area of 46.000 km2) in the western part of the central African Republic is poorly known. In order to improve the access of local populations to a clean and safe drinking water resource, new investigations have been carried out in order to characterize groundwater in terms of quality, origin, residence time and sustainability. Two sampling campaigns were organized in August 2014 (rainy period) and April 2015 (dry period) on respectively 31 and 43 points including boreholes, wells and river waters. Conventional hydrogeochemical tools in conjunction with isotope hydrology tools were used to evaluate the water types and the anthropogenic fingerprint on groundwater, their recharge processes and the flow organization scheme. Investigations have shown the existence of interesting amounts of groundwater within what seems a single, well hydraulically connected unconfined aquifer of max. 400m thick. Groundwaters are characterized by two main water types: CaMg-HCO3 (for deep boreholes and river waters) and CaMg-ClNO3 (shallow wells). The latter clearly showing the very strong influence of anthropogenic activities (washing, dumps, latrines) in the near vicinity of wells and boreholes used for the drinking water supply. This is also highlighting the total lack of protection zone around the wells and boreholes. Stable isotopes of the water molecule (18O and 2H) are in agreement with a local recharge of groundwater and show a relatively homogeneous composition within the whole aquifer system. Tritium data indicate a modern recharge with a high renewability potential for shallow groundwater but very low tritium levels are observed in the deepest boreholes indicating the probable occurrence of complex flow conditions within the system in some sectors. From these results and because of its extension and storage potential, the Carnot-Berbérati sandstone aquifer appears as a groundwater resource
Optimisation and applicability of ideal maximum efficiency prime mover cycles
The most efficient engine cycles, equivalent to the Carnot cycle, are analysed and compared, using realistic imposed technological limits (maximum pressure Pmax, maximum volume Vmax, temperature ratio τ,...). The operating parameters (work W, pressure ratio ωbar,...) of the cycles are expressed as functions of the technological limits, the polytropic index n of the non-isothermal processes and the volumetric ratio ε. The optimal value of the volumetric ratio for maximized work εw, is then deduced. It is further established that the Stirling cycle, composed of 2 isothermal and 2 isometric processes, is the one that gives a maximum work associated with a low optimum volumetric ratio, favourable to the use of heat exchangers of realistic bulk volume, and a moderate pressure ratio, favourable to engine smoothness and quietness. (author)
DESIGN OF COMBINED CYCLE GENERATION SYSTEM WITH HIGH TEMPERATURE FUEL CELL AND STEAM TURBINE
Yu Lijun; Yuan Junqi; Cao Guangyi
2003-01-01
For environment protection and high efficiency, development of new concept power plant has been required in China. The fuel cell is expected to be used in a power plant as a centralized power station or distributed power plant. It is a chemical power generation device that converts the energy of a chemical reaction directly into electrical energy and not limited by Carnot cycle efficiency. The molten carbonate fuel cell (MCFC) power plant has several attractive features I.e. High efficiency and lower emission of Nox and Sox. A combined cycle generation system with MCFC and steam turbine is designed. Its net electrical efficiency LHV is about 55%.
Restrictions on linear heat capacities from Joule-Brayton maximum-work cycle efficiency.
Angulo-Brown, F; Gonzalez-Ayala, Julian; Arias-Hernandez, L A
2014-02-01
This paper discusses the possibility of using the Joule-Brayton cycle to determine the accessible value range for the coefficients a and b of the heat capacity at constant pressure C(p), expressed as C(p) = a + bT (with T the absolute temperature) by using the Carnot theorem. This is made for several gases which operate as the working fluids. Moreover, the landmark role of the Curzon-Ahlborn efficiency for this type of cycle is established. PMID:25353449
Luo, Ercang
2012-06-01
This paper analyzes the thermodynamic cycle of oscillating-flow regenerative machines. Unlike the classical analysis of thermodynamic textbooks, the assumptions for pistons' movement limitations are not needed and only ideal flowing and heat transfer should be maintained in our present analysis. Under such simple assumptions, the meso-scale thermodynamic cycles of each gas parcel in typical locations of a regenerator are analyzed. It is observed that the gas parcels in the regenerator undergo Lorentz cycle in different temperature levels, whereas the locus of all gas parcels inside the regenerator is the Ericson-like thermodynamic cycle. Based on this new finding, the author argued that ideal oscillating-flow machines without heat transfer and flowing losses is not the Stirling cycle. However, this new thermodynamic cycle can still achieve the same efficiency of the Carnot heat engine and can be considered a new reversible thermodynamic cycle under two constant-temperature heat sinks.
Low-temperature behaviour of an ideal Bose gas and some forbidden thermodynamic cycles
Based on the equation of state of an ideal Bose gas, the heat capacities at constant volume and constant pressure of the Bose system are derived and used to analyse the low-temperature behaviour of the Bose system. It is expounded that some important thermodynamic processes such as a constant pressure and an adiabatic process cannot be carried out from the region of T > Tc to that of T c, where Tc is the critical temperature of Bose-Einstein condensation of the Bose system. Consequently, some typical thermodynamic cycles such as the Carnot cycle, Brayton cycle, Otto cycle, Ericsson cycle, Diesel cycle and Atkinson cycle cannot be operated across the critical temperature Tc of Bose-Einstein condensation of an ideal Bose gas
Reversible thermodynamic cycle for AMTEC power conversion
Vining, Cronin B.; Williams, Roger M.; Underwood, Mark L.; Ryan, M. A.; Suitor, Jerry W.
1992-01-01
The thermodynamic cycle appropriate to an AMTEC (alkali metal thermal-to-electric converter) cell is discussed for both liquid- and vapor-fed modes of operation, under the assumption that all processes can be performed reversibly. In the liquid-fed mode, the reversible efficiency is greater than 89.6 percent of Carnot efficiency for heat input and rejection temperatures (900-1300 K and 400-800 K, respectively) typical of practical devices. Vapor-fed cells can approach the efficiency of liquid-fed cells. Quantitative estimates confirm that the efficiency is insensitive to either the work required to pressurize the sodium liquid or the details of the state changes associated with cooling the low pressure sodium gas to the heat rejection temperature.
Magnetic stirling cycles: A new application for magnetic materials
Brown, G. V.
1977-01-01
The elements of the cycle are summarized. The basic advantages include high entropy density in the magnetic material, completely reversible processes, convenient control of the entropy by the applied field, the feature that heat transfer is possible during all processes, and the ability of the ideal cycle to attain Carnot efficiency. The mean field theory is used to predict the entropy of a ferromagnet in an applied field and also the isothermal entropy change and isentropic temperature change caused by applying a field. The results for isentropic temperature change are compared with experimental data on Gd. Coarse mixtures of ferromagnetic materials with different Curie points are proposed to modify the path of the cycle in the T-S diagram in order to improve the efficiency or to increase the specific power.
Low temperature cycles with supercritical fluids for nuclear plants
The supercritical power cycles are taking advantage of real gas behavior in order to achieve high thermal efficiency. The two most common supercritical cycles perform with water and carbon dioxide. The supercritical water cycle enhances thermal efficiency by rising turbine inlet temperature, while the supercritical carbon dioxide (S-CO2) takes advantage of reduction of compressor input power due to properties change close to the critical point (30.98 deg. C, 7.38 MPa). The goal of this study is to check possibilities of designing power cycles in the range of lower temperatures with higher efficiency. There are indications that it might be possible to design conversion cycles with maximum temperature between 100 and 200 deg. C with efficiency near that of the Carnot cycle. Supercritical fluids are the candidate optimal media for these cycles. The principle is to include certain parts with accelerated flow into the conversion cycle. Thermodynamic analyses and comparison of different modifications of the S-CO2 cycle in terms of cycle thermal efficiency have been performed. An experimental S-CO2 loop was built in 1999 in the Czech Republic. The main objective was to obtain experimental data for comparison with previous theoretical studies. This facility was the first of its kind in the world. Its operation and performed measurements have provided many interesting data and thus brought valuable operational experience as well as new objectives for future research and development of S-CO2 cycles. (authors)
Brown, T. D.; Karaman, I.; Shamberger, P. J.
2016-07-01
Magnetic refrigeration technology based on the giant magnetocaloric effect in solid-state refrigerants is known qualitatively to be limited by dissipative mechanisms accompanying hysteresis in the magneto-structural solid–solid phase transition. In this paper, we quantitatively explore the dependence of cycle performance metrics (cooling power, temperature span, work input, and fractional Carnot efficiency) on hysteresis properties (thermal hysteresis, one-way transition width) of the magneto-structural phase transition in a Ni45Co5Mn36.6In13.4 alloy system. We investigate a variety of Ericsson-type magnetic refrigeration cycles, using a Preisach-based non-equilibrium thermodynamic framework to model the evolution of the alloy's magnetic and thermal properties. Performance metrics are found to depend strongly on hysteresis parameters, regardless of the cycle chosen. However, for a given hysteresis parameter set, the material's transformation temperatures determine a unique cycle that maximizes efficiency. For the model system used undergoing Ericsson cycles with 5 and 1.5 {{T}} maximum field constraint, fractional Carnot efficiencies in excess of 0.9 require thermal hysteresis below 1.5 {{K}} and 0.5 {{K}}, respectively. We conclude briefly with some general materials considerations for mitigating these hysteresis inefficiencies through microstructure design and other materials processing strategies.
Absorption heat cycles. An experimental and theoretical study
A flow sheeting programme, SHPUMP, was developed for simulating different absorption heat cycles. The programme consists of ten different modules which allow the user to construct his own absorption cycle. The ten modules configurate evaporators, absorbers, generators, rectifiers, condensers, solution heat exchangers, pumps, valves, mixers and splitters. Seven basic and well established absorption cycles are available in the configuration data base of the programme. A new Carnot model is proposed heat cycles. Together with exergy analysis, general equations for the Carnot coefficient of performance and equations for thermodynamic efficiency, exergetic efficiency and exergy index, are derived, discussed and compared for both absorption heat pumps and absorption heat transformers. Utilizing SHPUMP, simulation results are presented for different configurations where absorption heat cycles are suggested to be incorporated in three different unit operations within both pulp and paper and oleochemical industries. One of the application studies reveled that an absorption heat transformer incorporated with an evaporation plant in a major pulp and paper industry, would save 18% of the total prime energy consumption in one of the evaporation plants. It was also concluded that installing an absorption heat pump in a paper drying plant would result in steam savings equivalent to 12 MW. An experimental absorption heat transformer unit operating with self-circulation has been modified and thoroughly tested. A reference heat transformer plant has been designed and installed in a major pulp and paper mill where it is directly incorporated with one of the evaporation plants. Preliminary plant operation data are presented. 72 refs, 63 figs, 33 tabs
Performance optimization of quantum Brayton refrigeration cycle working with spin systems
The new model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The working substance in the cycle consists of many non-interacting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semi-group approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate and power input, are given. It is found that the coefficient of performance of this cycle is a close analogue of the classical Carnot-cycle. Some performance characteristic curves relating the cooling rate, the coefficient of performance and power input are plotted. Further, for high temperatures, the optimal relations between the cooling rate and the coefficient of performance are analyzed in detail
Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic
Sebald, Gael; Pruvost, Sebastien; Guyomar, Daniel
2008-02-01
This work deals with energy harvesting from temperature variations. It is shown here that direct pyroelectric energy harvesting (connecting an adapted resistance, for example) is not effective, whereas Ericsson-based cycles give energy 100 times higher. The principle and experimental validation of the Ericsson cycle are shown with the example of 0.90Pb(Mg1/3Nb2/3)O3-0.10PbTiO3 ceramic. Harvested energy reached 186 mJ cm-3 for 50 °C temperature variation and electric field cycle of 3.5 kV mm-1. A correlation between the electrocaloric effect and pyroelectric energy harvesting is then shown. Harvested electric energy with Ericsson cycles can be simply expressed as electrocaloric heat multiplied by Carnot efficiency. Several examples are then given from materials with the highest known electrocaloric effect. This leads to energies of hundreds of mJ cm-3 for a limited 10 °C temperature variation. Compared to Carnot's efficiency, this is much higher than the best thermoelectric materials based on the Seebeck effect.
Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic
This work deals with energy harvesting from temperature variations. It is shown here that direct pyroelectric energy harvesting (connecting an adapted resistance, for example) is not effective, whereas Ericsson-based cycles give energy 100 times higher. The principle and experimental validation of the Ericsson cycle are shown with the example of 0.90Pb(Mg1/3Nb2/3)O3–0.10PbTiO3 ceramic. Harvested energy reached 186 mJ cm−3 for 50 °C temperature variation and electric field cycle of 3.5 kV mm−1. A correlation between the electrocaloric effect and pyroelectric energy harvesting is then shown. Harvested electric energy with Ericsson cycles can be simply expressed as electrocaloric heat multiplied by Carnot efficiency. Several examples are then given from materials with the highest known electrocaloric effect. This leads to energies of hundreds of mJ cm−3 for a limited 10 °C temperature variation. Compared to Carnot's efficiency, this is much higher than the best thermoelectric materials based on the Seebeck effect
Electrical performances of pyroelectric bimetallic strip heat engines describing a Stirling cycle
Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.
2015-12-01
This paper deals with the analytical modeling of pyroelectric bimetallic strip heat engines. These devices are designed to exploit the snap-through of a thermo-mechanically bistable membrane to transform a part of the heat flowing through the membrane into mechanical energy and to convert it into electric energy by means of a piezoelectric layer deposited on the surface of the bistable membrane. In this paper, we describe the properties of these heat engines in the case when they complete a Stirling cycle, and we evaluate the performances (available energy, Carnot efficiency...) of these harvesters at the macro- and micro-scale.
A stationary Carnot-like power plant model, with three sources of irreversibilities (the finite rate of heat transfers, heat leak and internal dissipations of the working fluid), is analyzed by a criterion of partial optimization for five objective functions (power, efficiency, ecological function, efficient power and Ω-dot criterion). A remarkable result is that if two constraints (design rules) are applied alternatively: constrained internal thermal conductance or fixed total area of the heat exchangers from hot and cold sides; the optimal allocation, cost and effectiveness of the heat exchangers are the same for all these objective functions independently of the transfer heat law used. Thus, it is enough to find these optimal relations for only one, maximum power, when all heat transfers are linear. In particular, for the Curzon-Albhorn-like model (without heat leak), the criterion for the so-called ecological function, including other variables (the internal isentropic temperature ratio), becomes total.
Performances of four magnetic heat-pump cycles
Magnetic heat pumps have been successfully used for refrigeration applications at near absolute-zero-degree temperatures. In these applications, a temperature lift of a few degrees in a cryogenic environment is sufficient and can be easily achieved by a simple magnetic heat-pump cycle. To extend magnetic heat pumping to other temperature ranges and other types of applications in which the temperature lift is more than just a few degrees requires more involved cycle processes. This paper investigates the characteristics of a few better-known thermomagnetic heat-pump cycles (Carnot, Ericsson, Stirling, and regenerative) in extended ranges of temperature lift. The regenerative cycle is the most efficient one. For gadolinium operating between 0 and 7 T (Tesla) in a heat pump cycle with a heat-rejection temperature of 320 K, our analysis predicted a 42% loss in coefficient of performance at 260 K cooling temperature, and a 15% loss in capacity at 232 K cooling temperature for the constant-field cycle as compared with the ideal regenerative cycle. Such substantial penalties indicate that the potential irreversibilities from this one source (the additional heat transfer that would be needed for the constant-field vs. the ideal regenerative cycle) may adversely affect the viability of certain proposed MHP concepts if the relevant loss mechanisms are not adequately addressed
Thermally regenerative hydrogen/oxygen fuel cell power cycles
Morehouse, J. H.
1986-01-01
Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.
Low temperature cycles with supercritical fluids for nuclear plants
The supercritical power cycles are taking advantage of real gas behavior in order to achieve high thermal efficiency. The two most common supercritical cycles perform with water and carbon dioxide. The supercritical water cycle enhances thermal efficiency by rising turbine inlet temperature, while the supercritical carbon dioxide (S-CO2) takes advantage of reduction of compressor input power due to properties change close to the critical point (30.98 o C, 7.38MPa). The goal of this study is to check possibilities of designing power cycles in the range of lower temperatures with higher efficiency. There are indications that it might be possible to design conversion cycles with maximum temperature between 100 and 200 o C with efficiency near that of the Carnot cycle. Supercritical fluids are the candidate optimal media for these cycles. The principle is to include certain parts with accelerated flow into the conversion cycle. Thermodynamic analyses and comparison of different modifications of the S-CO2 cycle in terms of cycle thermal efficiency have been performed. An experimental S-CO2 loop was built in 1999 in the Czech Republic. The main objective was to obtain experimental data for comparison with previous theoretical studies. This facility was the first of its kind in the world. Its operation and performed measurements have provided many interesting data and thus brought valuable operational experience as well as new objectives for future research and development of S-CO2 cycles. Main new factor to be included into cycles is heat transfer into accelerated flow, which can be mainly exploited into low temperature cycles. The detailed analysis summarize specific factors of this process. (author)
Lipkin-Meshkov-Glick model in a quantum Otto cycle
Çakmak, Selçuk; Altintas, Ferdi; E. Müstecaplıoğlu, Özgür
2016-06-01
The Lipkin-Meshkov-Glick model of two anisotropically interacting spins in a magnetic field is proposed as a working substance of a quantum Otto engine to explore and exploit the anisotropy effects for the optimization of engine operation. Three different cases for the adiabatic branches of the cycle have been considered. In the first two cases, either the magnetic field or coupling strength are changed while, in the third case, both the magnetic field and the coupling strength are changed by the same ratio. The system parameters for which the engine can operate similar to or dramatically different from the engines of non-interacting spins or of coupled spins with Ising model or isotropic XY model interactions are determined. In particular, the role of anisotropy to enhance cooperative work, and to optimize maximum work with high efficiency, as well as to operate the engine near the Carnot bound are revealed.
Universal optimal working cycles of molecular motors.
Efremov, Artem; Wang, Zhisong
2011-04-01
Molecular motors capable of directional track-walking or rotation are abundant in living cells, and inspire the emerging field of artificial nanomotors. Some biomotors can convert 90% of free energy from chemical fuels into usable mechanical work, and the same motors still maintain a speed sufficient for cellular functions. This study exposed a new regime of universal optimization that amounts to a thermodynamically best working regime for molecular motors but is unfamiliar in macroscopic engines. For the ideal case of zero energy dissipation, the universally optimized working cycle for molecular motors is infinitely slow like Carnot cycle for heat engines. But when a small amount of energy dissipation reduces energy efficiency linearly from 100%, the speed is recovered exponentially due to Boltzmann's law. Experimental data on a major biomotor (kinesin) suggest that the regime of universal optimization has been largely approached in living cells, underpinning the extreme efficiency-speed trade-off in biomotors. The universal optimization and its practical approachability are unique thermodynamic advantages of molecular systems over macroscopic engines in facilitating motor functions. The findings have important implications for the natural evolution of biomotors as well as the development of artificial counterparts. PMID:21359395
Quantum refrigeration cycles using spin-1/2 systems as the working substance.
He, Jizhou; Chen, Jincan; Hua, Ben
2002-03-01
The cycle model of a quantum refrigerator composed of two isothermal and two isomagnetic field processes is established. The working substance in the cycle consists of many noninteracting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semigroup approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate, and power input, are given. Especially, the case at high temperatures is analyzed in detail. The results obtained are further generalized and discussed, so that they may be directly used to describe the performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot refrigerator are derived simply. PMID:11909203
Magnetic Stirling cycles - A new application for magnetic materials
Brown, G. V.
1977-01-01
There is the prospect of a fundamental new application for magnetic materials as the working substance in thermodynamic cycles. Recuperative cycles which use a rare-earth ferromagnetic material near its Curie point in the field of a superconducting magnet appear feasible for applications from below 20 K to above room temperature. The elements of the cycle, advanced in an earlier paper, are summarized. The basic advantages include high entropy density in the magnetic material, completely reversible processes, convenient control of the entropy by the applied field, the feature that heat transfer is possible during all processes, and the ability of the ideal cycle to attain Carnot efficiency. The mean field theory is used to predict the entropy of a ferromagnet in an applied field and also the isothermal entropy change and isentropic temperature change caused by applying a field. Results are presented for J = 7/2 and g = 2. The results for isentropic temperature change are compared with experimental data on Gd. Coarse mixtures of ferromagnetic materials with different Curie points are proposed to modify the path of the cycle in the T-S diagram in order to improve the efficiency or to increase the specific power.
Wally, Karl
2006-05-01
Although battery technology is relatively mature, power sources continue to impose serious limitations for small, portable, mobile, or remote applications. A potentially attractive alternative to batteries is chemical fuel-to-electric conversion. Chemical fuels have volumetric energy densities 4 to 10 times those of batteries. However, realizing this advantage requires efficient chemical fuel-to-electric conversion. Direct electrochemical conversion would be the ideal, but, for most fuels, is generally not within the state-of-the-science. Next best, chemical-to-thermal-to-electric conversion can be attractive if efficiencies can be kept high. This small investigative project was an exploration into the feasibility of a novel hybrid (i.e., thermal-electrochemical) micropower converter of high theoretical performance whose demonstration was thought to be within near-term reach. The system is comprised of a hydrogen concentration electrochemical cell with physically identical hydrogen electrodes as anode and cathode, with each electrode connected to physically identical hydride beds each containing the same low-enthalpy-of-formation metal hydride. In operation, electrical power is generated by a hydrogen concentration differential across the electrochemical cell. This differential is established via coordinated heating and passive cooling of the corresponding hydride source and sink. Heating is provided by the exothermic combustion (i.e., either flame combustion or catalytic combustion) of a chemical fuel. Upon hydride source depletion, the role of source and sink are reversed, heating and cooling reversed, electrodes commutatively reversed, cell operation reversed, while power delivery continues unchanged. This 'regenerative flip' of source and sink hydride beds can be cycled continuously until all available heating fuel is consumed. Electricity is efficiently generated electrochemically, but hydrogen is not consumed, rather the hydrogen is regeneratively
Multi-Particle Quantum Szilard Engine with Optimal Cycles Assisted by a Maxwell's Demon
Cai, C Y; Sun, C P
2011-01-01
We present a complete-quantum description of multi-particle Szilard engine which consists of a working substance and a Maxwell's demon. The demon is modeled as a multi-level quantum system with specific quantum control and the working substance consists of identical particles obeying Bose-Einstein or Fermi-Dirac statistics. In this description, a reversible scheme to erase the demon's memory by a lower temperature heat bath is used. We demonstrate that (1) the quantum control of the demon can be optimized for single-particle Szilard engine so that the efficiency of the demon-assisted thermodynamic cycle could reach the Carnot cycle's efficiency; (2) the low-temperature behavior of the working substance is very sensitive to the quantum statistics of the particles and the insertion position of the partition.
Multiparticle quantum Szilard engine with optimal cycles assisted by a Maxwell's demon.
Cai, C Y; Dong, H; Sun, C P
2012-03-01
We present a complete-quantum description of a multiparticle Szilard engine that consists of a working substance and a Maxwell's demon. The demon is modeled as a multilevel quantum system with specific quantum control, and the working substance consists of identical particles obeying Bose-Einstein or Fermi-Dirac statistics. In this description, a reversible scheme to erase the demon's memory by a lower-temperature heat bath is used. We demonstrate that (1) the quantum control of the demon can be optimized for a single-particle Szilard engine so that the efficiency of the demon-assisted thermodynamic cycle could reach the Carnot cycle's efficiency and (2) the low-temperature behavior of the working substance is very sensitive to the quantum statistics of the particles and the insertion position of the partition. PMID:22587045
Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle
Wang, Pao-Lien
1991-01-01
This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.
Bebout, Brad; Fonda, Mark (Technical Monitor)
2002-01-01
This lecture will introduce the concept of biogeochemical cycling. The roles of microbes in the cycling of nutrients, production and consumption of trace gases, and mineralization will be briefly introduced.
LokaBharathi, P.A.
Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...
The Stirling refrigeration cycle using an ideal Bose-gas as the working substance is called the Bose-Stirling refrigeration cycle, which is different from other thermodynamic cycles such as the Carnot cycle, Ericsson cycle, Brayton cycle, Otto cycle, Diesel cycle and Atkinson cycle working with an ideal Bose gas and may be operated across the critical temperature of Bose-Einstein condensation of the Bose system. The performance of the cycle is investigated, based on the equation of state of an ideal Bose gas. The inherent regenerative losses of the cycle are considered and the coefficient of performance and the amount of refrigeration of the cycle are calculated. The results obtained here are compared with those derived from the classical Stirling refrigeration cycle, using an ideal gas as the working substance. The influence of quantum degeneracy and inherent regenerative losses on the performance of the Bose Stirling refrigeration cycle operated in different temperature regions is discussed in detail, and consequently, general performance characteristics of the cycle are revealed
A unified model is presented for a class of combined energy systems, in which the systems mainly consist of a heat engine, a combustor and a counter-flow heat exchanger and the heat engine in the systems may have different thermodynamic cycle modes such as the Brayton cycle, Carnot cycle, Stirling cycle, Ericsson cycle, and so on. Not only the irreversibilities of the heat leak and finite-rate heat transfer but also the different cycle modes of the heat engine are considered in the model. On the basis of Newton's law, expressions for the overall efficiency and power output of the combined energy system with an irreversible Brayton cycle are derived. The maximum overall efficiency and power output and other relevant parameters are calculated. The general characteristic curves of the system are presented for some given parameters. Several interesting cases are discussed in detail. The results obtained here are very general and significant and can be used to discuss the optimal performance characteristics of a class of combined energy systems with different cycle modes. Moreover, it is significant to point out that not only the important conclusions obtained in Bejan's first combustor model and Peterson's general combustion driven model but also the optimal performance of a class of solar-driven heat engine systems can be directly derived from the present paper under some limit conditions
Chen, Lingen; Kan, Xuxian; Sun, Fengrui; Wu, Feng [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)
2013-07-01
The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance) and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate) and the utilization factor (COP) for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.
The optimal performance of a quantum refrigeration cycle working with harmonic oscillators
The cycle model of a quantum refrigeration cycle working with many non-interacting harmonic oscillators and consisting of two isothermal and two constant-frequency processes is established. Based on the quantum master equation and semi-group approach, the general performance of the cycle is investigated. Expressions for some important performance parameters, such as the coefficient of performance, cooling rate, power input, and rate of the entropy production, are derived. Several interesting cases are discussed and, especially, the optimal performance of the cycle at high temperatures is discussed in detail. Some important characteristic curves of the cycle, such as the cooling rate versus coefficient of performance curves, the power input versus coefficient of performance curves, the cooling rate versus power input curves, and so on, are presented. The maximum cooling rate and the corresponding coefficient of performance are calculated. Other optimal performances are also analysed. The results obtained here are compared with those of an Ericsson or Stirling refrigeration cycle using an ideal gas as the working substance. Finally, the optimal performance of a harmonic quantum Carnot refrigeration cycle at high temperatures is derived easily
Lingen Chen, Xuxian Kan, Fengrui Sun, Feng Wu
2013-01-01
Full Text Available The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate and the utilization factor (COP for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.
卡诺定理和热力学第二定律须正确扩展%Carnot Theorem and Second Law of Thermodynamics Should Be Correctly Extended
王季陶
2012-01-01
Thermodynamics is a discipline of modern science developed on the basis of a large amount of experiments.Classical thermodynamics had its resplendence in the 19th century,and was an apotheosis of scientific development.The correctness of the Carnot theorem and the second law of classical thermodynamics should never be doubtful.However,due to the underdevelopment in the last century,thermodynamics became an academic discipline concentrated by mistakes or miss understandings.There are two arguments： i） some viewpoints are directly against the Carnot theorem and the second law of classical thermodynamics,but ii） others are based on juggling the definition of entropy,or based on using the never existing ＂Maxwell＇s demon＂ to deny them（including the so-called ＂demonstration of the second law of classical thermodynamics＂）.In this paper,the Carnot theorem and the second law of classical thermodynamics are confirmed by Carnot heat engines with adjustable capacity,and it is also pointed out the necessity of the extended Carnot theorem and the generalized second law of thermodynamics.%热力学是一门依靠大量科学实验的事实发展起来的近代科学学科.在19世纪经典热力学有过它的辉煌年代,曾经是当时科学发展的一个典范.卡诺定理和由此建立起来的经典热力学第二定律,其正确性不容任何形式的否定.但由于近百年的欠发展,如今热力学成为比较罕见的谬误相对集中的学术领域.当前对卡诺定理和经典热力学第二定律的否定,大体上可以分为两种：一种是比较直接的反对,或声称得到了第二类永动机;另一种是通过篡改或混淆热力学熵函数的定义,或利用根本不存在的＂麦克斯韦妖＂等（包括声称为＂证明热力学第二定律＂的形式）来进行否定.为驳斥谬误,通过一种改变内部热容的卡诺热机的详细描述,证明：卡诺定理和经典热力学第二定律不可能也不容否定.
Cycling more for safer cycling
VAN HOUT, Kurt
2009-01-01
Cycling presents a lot of benefits to the individual and to society. Health, environment, accessibility, local businesses, … all gain when more people cycle. Yet many governments are reluctant when it comes to promoting cycling, mainly because of (perceived) safety issues. Since studies have established a clear and consistent relationship between bicycle use and cyclist accident risk, this lack of bicycle promotion will influence the safety outcome of bicyclists. In this paper the relation be...
Cohen, G. C.
1993-01-01
Bicycle-related injuries have increased as cycling has become more popular. Most injuries to recreational riders are associated with overuse or improper fit of the bicycle. Injuries to racers often result from high speeds, which predispose riders to muscle strains, collisions, and falls. Cyclists contact bicycles at the pedals, seat, and handlebars. Each is associated with particular cycling injuries.
Nouvelle méthode d'évaluation des cycles régénératifs
Duparquet, Alain
2013-01-01
Les turbines à vapeur basés sur les cycles de Rankine et de Hirn comportant des soutirages régénératifs sont utilisés dans l'industrie depuis le début du 20 ème sciècle. C'est partucilièrement le cas dans les installations de production d'électricité.Tout le monde connaît la célèbre relation de Carnot qui dit que le meilleur rendement théorique d'un cycle obéit à l'hypothèse des compressions et détentes isentropiques.Cet article étudie une machine à vapeur comportant des soutirages régénérati...
Experimental Study on a Stirling Cycle Machine of 100W Design Capacity
Otaka, Toshio; Kodama, Itaru; Ota, Masahiro
Environmental concerns are causing commonly used chlorofluorocarbon (CFC) refrigerants to be phased out of production. The less ozone-depleting HCFC's are regulating. The green house effecting HFC's are also likely to be regulated and banned in the next period. Accordingly, attention is drawn to the Stirling refrigerator, which is a perfect Freon free refrigerator. Moreover, The Stirling cycle has the highest theoretical cycle efficiency corresponding to the value of the Carnot cycle among the proposed thermodynamic cycles. The green house effect by carbon dioxide issue would make better recognizing the importance of efficient use of energy in terms of high energy conservation measures. The authors have designed and developed a 100 W class Stirling refrigerator for household use. And the prototype machine has been integrated with a 100 litter class refrigerator. The operating characteristics of this Stirling unit or the prototype machine have been evaluated. Moreover, the authors evaluated the machine driving engine mode using ultra-low temperature media. As a result, the operational characteristics of the Stirling cycle machine have been clarified with respect to design factors. These results demonstrate that the Stirling cycle machine is one of the promising candidates as a new refrigeration system or a new generation system.
Stirling-cycle rotating magnetic refrigerators and heat engines for use near room temperature
The application (or removal) of a magnetic field to the ferromagnetic Gd metal near its Curie point (293 K) will produce adiabatic heating (or cooling) of 14 K or isothermal expulsion (or absorption) of 32 kJ of heat per liter of Gd metal. A refrigerator and a heat engine are described for which porous Gd metal forms the rim of a wheel rotating into and out of a magnetic field region. Fluid forced to flow through the porous metal exchanges heat; the field and flow configurations are such that the metal executes a magnetic Stirling cycle allowing a very wide temperature span (many times 14 K) while maintaining the 32-kJ/l capacity. Efficiencies approaching that of Carnot are expected at 1-Hz rotation rates, resulting in 32-kW/l refrigeration or heating capacity
Squeezing as the source of inefficiency in the quantum Otto cycle
Zagoskin, A M; Nori, Franco; Kusmartsev, F V
2012-01-01
The availability of controllable macroscopic devices, which maintain quantum coherence over relatively long time intervals, for the first time allows an experimental realization of many effects previously considered only as Gedankenexperiments, such as the operation of quantum heat engines. The theoretical efficiency \\eta of quantum heat engines is restricted by the same Carnot boundary \\eta_C as for the classical ones: any deviations from quasistatic evolution suppressing \\eta below \\eta_C. Here we investigate an implementation of an analog of the Otto cycle in a tunable quantum coherent circuit and show that the specific source of inefficiency is the quantum squeezing of the thermal state due to the finite speed of compression/expansion of the system.
Kaufmann, R. K.; Juselius, Katarina
We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity...... and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...... to simulate glacial cycles accurately. Also, results suggest that non-linear 10 dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles....
AECL publications, from the open literature, on fuels and fuel cycles used in CANDU reactors are listed in this bibliography. The accompanying index is by subject. The bibliography will be brought up to date periodically
Berkelmans Rik
2008-01-01
Full Text Available Many research with functional electrical stimulation (FES has been done to regain mobility and for health benefits. Better results have been reported for FES-cycling than for FES-walking. The majority of the subjects during such research are people with a spinal cord injury (SCI, cause they often lost skin sensation. Besides using surface stimulation also implanted stimulators can be used. This solves the skin sensation problem, but needs a surgery. Many physiological effects of FES-cycling has been reported, e.g., increase of muscles, better blood flow, reduction of pressure ulcers, improved self-image and some reduction of bone mineral density (BMD loss. Also people with an incomplete SCI benefit by FES-cycling, e.g. cycling time without FES, muscle strength and also the walking abilities increased. Hybrid exercise gives an even better cardiovascular training. Presently 4 companies are involved in FES-cycling. They all have a stationary mobility trainer. Two of them also use an outdoor tricycle. One combined with voluntary arm cranking. By optimizing the stimulation parameters the power output and fatigue resistance will increase, but will still be less compared to voluntary cycling.
Heat exchanger inventory cost optimization for power cycles with one feedwater heater
Highlights: • Cost optimization of heat exchanger inventory in power cycles is investigated. • Analysis for an endoreversible power cycle with an open feedwater heater is shown. • Different constraints on the power cycle are investigated. • The constant heat addition scenario resulted in the lowest value of the cost function. - Abstract: Cost optimization of heat exchanger inventory in power cycles with one open feedwater heater is undertaken. In this regard, thermoeconomic analysis for an endoreversible power cycle with an open feedwater heater is shown. The scenarios of constant heat rejection and addition rates, power as well as rate of heat transfer in the open feedwater heater are studied. All cost functions displayed minima with respect to the high-side absolute temperature ratio (θ1). In this case, the effect of the Carnot temperature ratio (Φ1), absolute temperature ratio (ξ) and the phase-change absolute temperature ratio for the feedwater heater (Φ2) are qualitatively the same. Furthermore, the constant heat addition scenario resulted in the lowest value of the cost function. For variation of all cost functions, the smaller the value of the phase-change absolute temperature ratio for the feedwater heater (Φ2), lower the cost at the minima. As feedwater heater to hot end unit cost ratio decreases, the minimum total conductance required increases
Bruns, Winfreid; Römer, Tim
2010-01-01
We prove regularity bounds for Koszul cycles holding for every ideal of dimension at most 1 in a polynomial ring. We generalize the lower bound for the Green-Lazarsfeld index of Veronese rings we proved in arXiv:0902.2431 to the multihomogeneous setting.
Geert Jensen, Birgitte; Nielsen, Tom
2013-01-01
og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...
Aouane, Kamel; Ford, Ian J; Elson, Tim P; Nightingale, Christopher
2015-01-01
Several studies have combined heat and gravitational energy exchanges to create novel heat engines. A common theoretical framework is developed here to describe thermogravitational cycles which have the same efficiencies as the Carnot, Rankine or Brayton cycles. Considering a working fluid, enclosed in a balloon, inside a column filled with a transporting fluid, the cycle is composed of four steps. Starting from the top of the column, the balloon goes down, receives heat from a hot source at the bottom, rises and delivers heat to a cold source at the top. Unlike classic power cycles which need external work to operate the compressor, thermogravitational cycles can operate as "pure power cycle" where no work is provided to drive the cycle. To illustrate this concept, the prototype of a thermogravitational electrical generator is presented. It uses a hot source of low temperature (average temperature near 57{\\deg}C) and relies on the gravitational energy exchanges of an organic fluid inside a balloon attached t...
The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.)
Applicability of the minimum entropy generation method for optimizing thermodynamic cycles
Entropy generation is often used as a figure of merit in thermodynamic cycle optimizations. In this paper, it is shown that the applicability of the minimum entropy generation method to optimizing output power is conditional. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power when the total heat into the system of interest is not prescribed. For the cycles whose working medium is heated or cooled by streams with prescribed inlet temperatures and prescribed heat capacity flow rates, it is theoretically proved that both the minimum entropy generation rate and the minimum entropy generation number correspond to the maximum output power when the virtual entropy generation induced by dumping the used streams into the environment is considered. However, the minimum principle of entropy generation is not tenable in the case that the virtual entropy generation is not included, because the total heat into the system of interest is not fixed. An irreversible Carnot cycle and an irreversible Brayton cycle are analysed. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power if the heat into the system of interest is not prescribed. (general)
Anaïs Schaeffer
2012-01-01
The HSE Unit will be running a cycling safety campaign at the entrances to CERN's restaurants on 14, 15 and 16 May. Pop along to see if they can persuade you to get back in the saddle! With summer on its way, you might feel like getting your bike out of winter storage. Well, the HSE Unit has come up with some original ideas to remind you of some of the most basic safety rules. This year, the prevention campaign will be focussing on three themes: "Cyclists and their equipment", "The bicycle on the road", and "Other road users". This is an opportunity to think about the condition of your bike as well as how you ride it. From 14 to 16 May, representatives of the Swiss Office of Accident Prevention and the Touring Club Suisse will join members of the HSE Unit at the entrances to CERN's restaurants to give you advice on safe cycling (see box). They will also be organising three activity stands where you can test your knowle...
Huijun Feng, Lingen Chen, Fengrui Sun
2010-11-01
Full Text Available An irreversible universal steady flow heat pump cycle model with variable-temperature heat reservoirs and the losses of heat-resistance and internal irreversibility is established by using the theory of finite time thermodynamics. The universal heat pump cycle model consists of two heat-absorbing branches, two heat-releasing branches and two adiabatic branches. Expressions of heating load, coefficient of performance (COP and profit rate of the universal heat pump cycle model are derived, respectively. By means of numerical calculations, heat conductance distributions between hot- and cold-side heat exchangers are optimized by taking the maximum profit rate as objective. There exist an optimal heat conductance distribution and an optimal thermal capacity rate matching between the working fluid and heat reservoirs which lead to a double maximum profit rate. The effects of internal irreversibility, total heat exchanger inventory, thermal capacity rate of the working fluid and heat capacity ratio of the heat reservoirs on the optimal finite time exergoeconomic performance of the cycle are discussed in detail. The results obtained herein include the optimal finite time exergoeconomic performances of endoreversible and irreversible, constant- and variable-temperature heat reservoir Brayton, Otto, Diesel, Atkinson, Dual, Miller and Carnot heat pump cycles.
Experimental simulation of a magnetic refrigeration cycle in high magnetic fields
Dilmieva, E. T.; Kamantsev, A. P.; Koledov, V. V.; Mashirov, A. V.; Shavrov, V. G.; Cwik, J.; Tereshina, I. S.
2016-01-01
The complete magnetic refrigeration cycle has been simulated on a sample of gadolinium in magnetic fields of a Bitter coil magnet up to 12 T. The total change of temperature of the sample during the cycle is a consequence of magnetic refrigeration, and the dependence of the magnetization of the sample on the magnetic field exhibits a hysteretic behavior. This makes it possible to determine the work done by the magnetic field on the sample during the magnetic refrigeration cycle and to calculate the coefficient of performance of the process. In a magnetic field of 2 T near the Curie temperature of gadolinium, the coefficient of performance of the magnetic refrigeration is found to be 92. With an increase in the magnetic field, the coefficient of performance of the process decreases sharply down to 15 in a magnetic field of 12 T. The reasons, for which the coefficient of performance of the magnetic refrigeration is significantly below the fundamental limitations imposed by the reversed Carnot theorem, have been discussed.
This is an introductory theoretical work on the new thermodynamic power cycle for thermal water pumping. This paper describes the new thermodynamic power cycle with help of P–v and P–h curves and the operation of a thermal water pump based on this cycle with acetone as working fluid. Further ideal thermal performance of this water pump for different heat source and heat sink temperatures is discussed. The proposed thermal water pump has an ideal overall efficiency equal to about 40% of Carnot cycle efficiency for driving temperature difference of 60 °C with acetone as working fluid. This paper presents the ideal theoretical performance predictions of such thermal water pump coupled with a solar pond located on a salt farm at Pyramid Hill in north Victoria, Australia. Most salt farms around the world use electric pumps to draw saline water from ground or sea. The proposed thermal water pump can provide an alternative to these electric pumps. -- Highlights: • Proposed a new power cycle to drive a thermal water pump. • Examined the performance of an ideal thermal water pump based on new power cycle. • Examined the prospects of this thermal water pump coupled with solar pond
Carati, Andrea; Brogioli, Doriano
2013-01-01
We analyse a device aimed at the conversion of heat into electrical energy, based on a closed cycle in which a distiller generates two solutions at different concentrations, and an electrochemical cell consumes the concentration difference, converting it into electrical current. We first study an ideal model of such a process. We show that, if the device works at a single fixed pressure (i.e. with a "single effect"), then the efficiency of the conversion of heat into electrical power has an upper bound, given by the efficiency of a reversible Carnot engine operating between the boiling temperatures of the concentrated solution and of the pure solvent. When two heat reservoirs with a higher temperature difference are available, the overall efficiency can be incremented by employing an arrangement of multiple cells working at different pressures ("multiple effects"). We find that a given efficiency can be achieved with a reduced number of effects by using solutions with a high boiling point elevation.
di Liberto, Francesco; Pastore, Raffaele; Peruggi, Fulvio
2011-05-01
When some entropy is transferred, by means of a reversible engine, from a hot heat source to a colder one, the maximum efficiency occurs, i.e. the maximum available work is obtained. Similarly, a reversible heat pumps transfer entropy from a cold heat source to a hotter one with the minimum expense of energy. In contrast, if we are faced with non-reversible devices, there is some lost work for heat engines, and some extra work for heat pumps. These quantities are both related to entropy production. The lost work, i.e. ? , is also called 'degraded energy' or 'energy unavailable to do work'. The extra work, i.e. ? , is the excess of work performed on the system in the irreversible process with respect to the reversible one (or the excess of heat given to the hotter source in the irreversible process). Both quantities are analysed in detail and are evaluated for a complex process, i.e. the stepwise circular cycle, which is similar to the stepwise Carnot cycle. The stepwise circular cycle is a cycle performed by means of N small weights, dw, which are first added and then removed from the piston of the vessel containing the gas or vice versa. The work performed by the gas can be found as the increase of the potential energy of the dw's. Each single dw is identified and its increase, i.e. its increase in potential energy, evaluated. In such a way it is found how the energy output of the cycle is distributed among the dw's. The size of the dw's affects entropy production and therefore the lost and extra work. The distribution of increases depends on the chosen removal process.
The business cycle and the life cycle
Paul Gomme; Richard Rogerson; Peter Rupert; Randall Wright
2004-01-01
The paper documents how cyclical fluctuations in market work vary over the life cycle and then assesses the predictions of a life-cycle version of the growth model for those observations. The analysis yields a simple but striking finding. The main discrepancy between the model and that data lies in the inability of the model to account for fluctuations in hours for individuals in the first half of their life cycle. The predictions for those in the latter half of the life cycle are quite close...
Solar cycle 25: another moderate cycle?
Cameron, Robert H; Schuessler, Manfred
2016-01-01
Surface flux transport simulations for the descending phase of cycle 24 using random sources (emerging bipolar magnetic regions) with empirically determined scatter of their properties provide a prediction of the axial dipole moment during the upcoming activity minimum together with a realistic uncertainty range. The expectation value for the dipole moment around 2020 $(2.5\\pm1.1\\,$G) is comparable to that observed at the end of cycle 23 (about $2\\,$G). The empirical correlation between the dipole moment during solar minimum and the strength of the subsequent cycle thus suggests that cycle 25 will be of moderate amplitude, not much higher than that of the current cycle. However, the intrinsic uncertainty of such predictions resulting from the random scatter of the source properties is considerable and fundamentally limits the reliability with which such predictions can be made before activity minimum is reached.
Solar Cycle 25: Another Moderate Cycle?
Cameron, R. H.; Jiang, J.; Schüssler, M.
2016-06-01
Surface flux transport simulations for the descending phase of Cycle 24 using random sources (emerging bipolar magnetic regions) with empirically determined scatter of their properties provide a prediction of the axial dipole moment during the upcoming activity minimum together with a realistic uncertainty range. The expectation value for the dipole moment around 2020 (2.5 ± 1.1 G) is comparable to that observed at the end of Cycle 23 (about 2 G). The empirical correlation between the dipole moment during solar minimum and the strength of the subsequent cycle thus suggests that Cycle 25 will be of moderate amplitude, not much higher than that of the current cycle. However, the intrinsic uncertainty of such predictions resulting from the random scatter of the source properties is considerable and fundamentally limits the reliability with which such predictions can be made before activity minimum is reached.
Alexis Zander
2013-01-01
Full Text Available Introduction. Cycling can be an enjoyable way to meet physical activity recommendations and is suitable for older people; however cycling participation by older Australians is low. This qualitative study explored motivators, enablers, and barriers to cycling among older people through an age-targeted cycling promotion program. Methods. Seventeen adults who aged 50–75 years participated in a 12-week cycling promotion program which included a cycling skills course, mentor, and resource pack. Semistructured interviews at the beginning and end of the program explored motivators, enablers, and barriers to cycling. Results. Fitness and recreation were the primary motivators for cycling. The biggest barrier was fear of cars and traffic, and the cycling skills course was the most important enabler for improving participants’ confidence. Reported outcomes from cycling included improved quality of life (better mental health, social benefit, and empowerment and improved physical health. Conclusions. A simple cycling program increased cycling participation among older people. This work confirms the importance of improving confidence in this age group through a skills course, mentors, and maps and highlights additional strategies for promoting cycling, such as ongoing improvement to infrastructure and advertising.
Federico Ramírez
2011-07-01
Full Text Available
One of the most common difficulties students face in learning Thermodynamics lies in grasping the physical meaning of concepts such as lost availability and entropy generation. This explains the quest for new approaches for explaining and comprehending these quantities, as suggested by diagrams from different authors. The difficulties worsen in the case of irreversibilities associated with heat transfer processes driven by a finite temperature difference, where no work transfer takes place. An equivalent mechanical model is proposed in this paper. Heat exchangers are modelled by means of Carnot heat engines and mechanical transmissions; the use of mechanical models allows an easy visualization of thermal irreversibilities. The proposed model is further applied to a power cycle, thus obtaining an “equivalent arrangement” where irreversibilities become clearly apparent.
Khaliq, A. [Jamia Millia Islamia, New Delhi (India). Dept. of Mechanical Engineering
2006-07-01
A finite-time thermodynamic analysis based on a new kind of optimization criterion has been carried out for an endoreversible and regenerative Joule-Brayton power cycle coupled with variable temperature thermal reservoirs. The optimal performance and design parameters that maximize the ecological function are investigated. In this context, the optimal temperatures of the working fluid, the optimum power output, the optimum thermal efficiency, and the optimum second-law efficiency are determined in terms of technical parameters. Results are reported for the effect of regeneration, hot-cold temperature ratio, and the number of heat transfer units in hot and cold exchangers on the optimal performance parameters. The power and efficiency at maximum ecological function are found to be less than the maximum power and Curzon-Ahlborn efficiency. Power output increases significantly with increasing hot-cold side temperature ratio. However, it slightly increased as the number of heat transfer units in the regenerator increases. The optimization of ecological function leads to the improvement in exergetic efficiency and thermal efficiency, especially for low hot-cold side temperature ratios. Moreover, the thermal efficiency at maximum ecological function is less than the average of the finite time or maximum power efficiency and reversible Carnot efficiency. (author)
Kane, M.; Gay, B.
2005-07-01
This report prepared for the Swiss Federal Office of Energy (SFOE) describes the practical realisation and testing of a heat recovery system based on a one-stage organic Rankine cycle with R134a as the working fluid. The waste heat has a temperature of 95 {sup o}C and originates from a gas engine that powers a small co-generation plant fuelled with biogas produced on-site. Two similar cycles have been built, ORC1 with one and ORC2 with two turbines. Only ORC1 has been tested so far. The maximum efficiency measured in these tests was 6.64% (theoretical Carnot-efficiency: 17 %) and the electric power output was 5.0 kW. The problems encountered during commissioning are described and recommendations for further improvements are given.
Thrane, Mikkel; Schmidt, Jannick Andresen
2004-01-01
The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards.......The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards....
HIV Overview The HIV Life Cycle (Last updated 9/22/2015; last reviewed 9/22/2015) Key Points HIV gradually destroys the immune ... life cycle. What is the connection between the HIV life cycle and HIV medicines? Antiretroviral therapy (ART) ...