Optimization of Monte Carlo simulations
Bryskhe, Henrik
2009-01-01
This thesis considers several different techniques for optimizing Monte Carlo simulations. The Monte Carlo system used is Penelope but most of the techniques are applicable to other systems. The two mayor techniques are the usage of the graphics card to do geometry calculations, and raytracing. Using graphics card provides a very efficient way to do fast ray and triangle intersections. Raytracing provides an approximation of Monte Carlo simulation but is much faster to perform. A program was ...
Rojas C, E.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Al-Dweri, F.M.O.; Lallena R, A.M. [Universidad de Granada, Granada (Spain)]. e-mail: elrc@nuclear.inin.mx
2005-07-01
In this work they are studied, by means of Monte Carlo simulation, the effects that take place in the dose profiles that are obtained with the Leksell Gamma Knife (R), when they are kept in account heterogeneities. The considered heterogeneities simulate the skull and the spaces of air that are in the head, like they can be the nasal breasts or the auditory conduits. The calculations were made using the Monte Carlo Penelope simulation code (v. 2003). The geometry of each one of the 201 sources that this instrument is composed, as well as of the corresponding channels of collimation of the Gamma Knife (R), it was described by means of a simplified model of geometry that has been recently studied. The obtained results when they are kept in mind the heterogeneities they present non worthless differences regarding those obtained when those are not considered. These differences are maximum in the proximities of the interfaces among different materials. (Author)
Proton Upset Monte Carlo Simulation
O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.
2009-01-01
The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.
Mean field simulation for Monte Carlo integration
Del Moral, Pierre
2013-01-01
In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Marko
Monte Carlo simulation for soot dynamics
Zhou Kun
2012-01-01
Full Text Available A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.
Monte carlo simulation for soot dynamics
Zhou, Kun
2012-01-01
A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.
Monte Carlo simulation of granular fluids
Montanero, J. M.
2003-01-01
An overview of recent work on Monte Carlo simulations of a granular binary mixture is presented. The results are obtained numerically solving the Enskog equation for inelastic hard-spheres by means of an extension of the well-known direct Monte Carlo simulation (DSMC) method. The homogeneous cooling state and the stationary state reached using the Gaussian thermostat are considered. The temperature ratio, the fourth velocity moments and the velocity distribution functions are obtained for bot...
Salomón de J Alas
2009-01-01
Full Text Available Se presenta el estudio de la reducción catalítica de NO por CO en una superficie de Pt(100 por medio de una simulación de Monte Carlo dinámico. El objetivo es analizar la evolución temporal y espacio-temporal del sistema. Considerando un mecanismo de reacción tipo Langmuir-Hinshelwood, se construye un modelo donde se involucran todos los pasos elementales de la reacción y se simula la llamada explosión de superficie. El análisis también considera recientes evidencias experimentales concernientes a la formación y decaimiento de una especie intermediaria (N-NO* como el paso de reacción principal en la producción de N2. Los resultados de la simulación están de acuerdo con resultados experimentales de espectroscopia de desorción de masas. Además, la simulación permite correlacionar los máximos de producción de N2 y CO2 con la formación de patrones espaciales tipo célula sobre la superficie.In this work the catalytic reduction of NO by CO on a Pt(100 surface by dynamic Monte Carlo simulation is presented. The objective is to analyze the temporal and spatial-temporal behavior. A Langmuir-Hinshelwood mechanism and a model where all the reaction steps are taken into account are considered and the so-called surface explosion is simulated. The analysis also includes recent experimental evidences concerning the formation and decay of a (N-NO* intermediary species which turns out to be important for the N2 formation. These simulation results show good quantitative agreement with experimental results obtained from isothermal mass spectroscopy desorption. Furthermore, the simulations allow correlating the maximum production of N2 with the formation of cellular patterns on the surface.
Adaptive Multilevel Monte Carlo Simulation
Hoel, H
2011-08-23
This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of ϑ(TOL),from(TOL−3), from using a single level version of the adaptive algorithm to ϑ(((TOL−1)log(TOL))2).
Monte Carlo simulation of granular fluids
Montanero, J M
2003-01-01
An overview of recent work on Monte Carlo simulations of a granular binary mixture is presented. The results are obtained numerically solving the Enskog equation for inelastic hard-spheres by means of an extension of the well-known direct Monte Carlo simulation (DSMC) method. The homogeneous cooling state and the stationary state reached using the Gaussian thermostat are considered. The temperature ratio, the fourth velocity moments and the velocity distribution functions are obtained for both cases. The shear viscosity characterizing the momentum transport in the thermostatted case is calculated as well. The simulation results are compared with analytical predictions showing an excellent agreement.
Monte Carlo simulation of the microcanonical ensemble
We consider simulating statistical systems with a random walk on a constant energy surface. This combines features of deterministic molecular dynamics techniques and conventional Monte Carlo simulations. For discrete systems the method can be programmed to run an order of magnitude faster than other approaches. It does not require high quality random numbers and may also be useful for nonequilibrium studies. 10 references
A Monte Carlo simulation of photomultiplier resolution
A Monte Carlo simulation of dynode statistics has been used to generate multiphotoelectron distributions to compare with actual photomultiplier resolution results. In place of Poission of Polya statistics, in this novel approach, the basis for the simulation is an experimentally determined single electron response. The relevance of this method to the study of intrinsic line widths of scintillators is discussed
Monte Carlo Simulation for Particle Detectors
Pia, Maria Grazia
2012-01-01
Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...
Modulated pulse bathymetric lidar Monte Carlo simulation
Luo, Tao; Wang, Yabo; Wang, Rong; Du, Peng; Min, Xia
2015-10-01
A typical modulated pulse bathymetric lidar system is investigated by simulation using a modulated pulse lidar simulation system. In the simulation, the return signal is generated by Monte Carlo method with modulated pulse propagation model and processed by mathematical tools like cross-correlation and digital filter. Computer simulation results incorporating the modulation detection scheme reveal a significant suppression of the water backscattering signal and corresponding target contrast enhancement. More simulation experiments are performed with various modulation and reception variables to investigate the effect of them on the bathymetric system performance.
Coded aperture optimization using Monte Carlo simulations
Coded apertures using Uniformly Redundant Arrays (URA) have been unsuccessfully evaluated for two-dimensional and three-dimensional imaging in Nuclear Medicine. The images reconstructed from coded projections contain artifacts and suffer from poor spatial resolution in the longitudinal direction. We introduce a Maximum-Likelihood Expectation-Maximization (MLEM) algorithm for three-dimensional coded aperture imaging which uses a projection matrix calculated by Monte Carlo simulations. The aim of the algorithm is to reduce artifacts and improve the three-dimensional spatial resolution in the reconstructed images. Firstly, we present the validation of GATE (Geant4 Application for Emission Tomography) for Monte Carlo simulations of a coded mask installed on a clinical gamma camera. The coded mask modelling was validated by comparison between experimental and simulated data in terms of energy spectra, sensitivity and spatial resolution. In the second part of the study, we use the validated model to calculate the projection matrix with Monte Carlo simulations. A three-dimensional thyroid phantom study was performed to compare the performance of the three-dimensional MLEM reconstruction with conventional correlation method. The results indicate that the artifacts are reduced and three-dimensional spatial resolution is improved with the Monte Carlo-based MLEM reconstruction.
Fast Lattice Monte Carlo Simulations of Polymers
Wang, Qiang; Zhang, Pengfei
2014-03-01
The recently proposed fast lattice Monte Carlo (FLMC) simulations (with multiple occupancy of lattice sites (MOLS) and Kronecker δ-function interactions) give much faster/better sampling of configuration space than both off-lattice molecular simulations (with pair-potential calculations) and conventional lattice Monte Carlo simulations (with self- and mutual-avoiding walk and nearest-neighbor interactions) of polymers.[1] Quantitative coarse-graining of polymeric systems can also be performed using lattice models with MOLS.[2] Here we use several model systems, including polymer melts, solutions, blends, as well as confined and/or grafted polymers, to demonstrate the great advantages of FLMC simulations in the study of equilibrium properties of polymers.
Autocorrelations in hybrid Monte Carlo simulations
Simulations of QCD suffer from severe critical slowing down towards the continuum limit. This problem is known to be prominent in the topological charge, however, all observables are affected to various degree by these slow modes in the Monte Carlo evolution. We investigate the slowing down in high statistics simulations and propose a new error analysis method, which gives a realistic estimate of the contribution of the slow modes to the errors. (orig.)
Simulated Annealing using Hybrid Monte Carlo
Salazar, Rafael; Toral, Raúl
1997-01-01
We propose a variant of the simulated annealing method for optimization in the multivariate analysis of differentiable functions. The method uses global actualizations via the hybrid Monte Carlo algorithm in their generalized version for the proposal of new configurations. We show how this choice can improve upon the performance of simulated annealing methods (mainly when the number of variables is large) by allowing a more effective searching scheme and a faster annealing schedule.
Monte Carlo Simulations of Star Clusters
Giersz, M
2000-01-01
A revision of Stod\\'o{\\l}kiewicz's Monte Carlo code is used to simulate evolution of large star clusters. The survey on the evolution of multi-mass N-body systems influenced by the tidal field of a parent galaxy and by stellar evolution is discussed. For the first time, the simulation on the "star-by-star" bases of evolution of 1,000,000 body star cluster is presented. \\
Topological zero modes in Monte Carlo simulations
We present an improvement of global Metropolis updating steps, the instanton hits, used in a hybrid Monte Carlo simulation of the two-flavor Schwinger model with staggered fermions. These hits are designed to change the topological sector of the gauge field. In order to match these hits to an unquenched simulation with pseudofermions, the approximate zero mode structure of the lattice Dirac operator has to be considered explicitly. (orig.)
Monte Carlo simulation and numerical integration
Geweke, John F.
1995-01-01
This is a survey of simulation methods in economics, with a specific focus on integration problems. It describes acceptance methods, importance sampling procedures, and Markov chain Monte Carlo methods for simulation from univariate and multivariate distributions and their application to the approximation of integrals. The exposition gives emphasis to combinations of different approaches and assessment of the accuracy of numerical approximations to integrals and expectations. The survey illus...
Monte Carlo simulation code modernization
CERN. Geneva
2015-01-01
The continual development of sophisticated transport simulation algorithms allows increasingly accurate description of the effect of the passage of particles through matter. This modelling capability finds applications in a large spectrum of fields from medicine to astrophysics, and of course HEP. These new capabilities however come at the cost of a greater computational intensity of the new models, which has the effect of increasing the demands of computing resources. This is particularly true for HEP, where the demand for more simulation are driven by the need of both more accuracy and more precision, i.e. better models and more events. Usually HEP has relied on the "Moore's law" evolution, but since almost ten years the increase in clock speed has withered and computing capacity comes in the form of hardware architectures of many-core or accelerated processors. To harness these opportunities we need to adapt our code to concurrent programming models taking advantages of both SIMD and SIMT architectures. Th...
Replica Exchange for Reactive Monte Carlo Simulations
Turner, C.H.; Brennan, J.K.; Lísal, Martin
2007-01-01
Roč. 111, č. 43 (2007), s. 15706-15715. ISSN 1932-7447 R&D Projects: GA ČR GA203/05/0725; GA AV ČR 1ET400720409; GA AV ČR 1ET400720507 Institutional research plan: CEZ:AV0Z40720504 Keywords : monte carlo * simulation * reactive system Subject RIV: CF - Physical ; Theoretical Chemistry
Archimedes, the Free Monte Carlo simulator
Sellier, Jean Michel D.
2012-01-01
Archimedes is the GNU package for Monte Carlo simulations of electron transport in semiconductor devices. The first release appeared in 2004 and since then it has been improved with many new features like quantum corrections, magnetic fields, new materials, GUI, etc. This document represents the first attempt to have a complete manual. Many of the Physics models implemented are described and a detailed description is presented to make the user able to write his/her own input deck. Please, fee...
Kinetic Monte Carlo simulation of dislocation dynamics
A kinetic Monte Carlo simulation of dislocation motion is introduced. The dislocations are assumed to be composed of pure edge and screw segments confined to a fixed lattice. The stress and temperature dependence of the dislocation velocity is studied, and finite-size effects are discussed. It is argued that surfaces and boundaries may play a significant role in the velocity of dislocations. The simulated dislocations are shown to display kinetic roughening according to the exponents predicted by the Kardar-Parisi-Zhang equation. copyright 1999 The American Physical Society
Monte Carlo Simulation of Quantum Computation
Cerf, N. J.; Koonin, S. E.
1997-01-01
The many-body dynamics of a quantum computer can be reduced to the time evolution of non-interacting quantum bits in auxiliary fields by use of the Hubbard-Stratonovich representation of two-bit quantum gates in terms of one-bit gates. This makes it possible to perform the stochastic simulation of a quantum algorithm, based on the Monte Carlo evaluation of an integral of dimension polynomial in the number of quantum bits. As an example, the simulation of the quantum circuit for the Fast Fouri...
Guideline for radiation transport simulation with the Monte Carlo method
Today, the photon and neutron transport calculations with the Monte Carlo method have been progressed with advanced Monte Carlo codes and high-speed computers. Monte Carlo simulation is rather suitable expression than the calculation. Once Monte Carlo codes become more friendly and performance of computer progresses, most of the shielding problems will be solved by using the Monte Carlo codes and high-speed computers. As those codes prepare the standard input data for some problems, the essential techniques for solving the Monte Carlo method and variance reduction techniques of the Monte Carlo calculation might lose the interests to the general Monte Carlo users. In this paper, essential techniques of the Monte Carlo method and the variance reduction techniques, such as importance sampling method, selection of estimator, and biasing technique, are described to afford a better understanding of the Monte Carlo method and Monte Carlo code. (author)
Accelerated GPU based SPECT Monte Carlo simulations.
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-01
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational
Accelerated GPU based SPECT Monte Carlo simulations
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-01
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency
Monte Carlo Simulation of an American Option
Gikiri Thuo
2007-04-01
Full Text Available We implement gradient estimation techniques for sensitivity analysis of option pricing which can be efficiently employed in Monte Carlo simulation. Using these techniques we can simultaneously obtain an estimate of the option value together with the estimates of sensitivities of the option value to various parameters of the model. After deriving the gradient estimates we incorporate them in an iterative stochastic approximation algorithm for pricing an option with early exercise features. We illustrate the procedure using an example of an American call option with a single dividend that is analytically tractable. In particular we incorporate estimates for the gradient with respect to the early exercise threshold level.
Monte-Carlo simulations: FLUKA vs. MCNPX
Oden, M.; Krása, Antonín; Majerle, Mitja; Svoboda, Ondřej; Wagner, Vladimír
Melville : AMER INST PHYSICS, 2007 - (Granja, C.; Leroy, C.; Štekl, I.), s. 219-221 ISBN 978-0-7354-0472-4. ISSN 0094-243X. - (AIP Conference Proceedings. 958). [4th International Summer School on Nuclear Physics Methods and Accelerators in Biology and Medicine . Praha (CZ), 08.07.2007-19.07.2007] R&D Projects: GA MŠk(CZ) LC07050 Institutional research plan: CEZ:AV0Z10480505 Keywords : neutron production * spallation reaction * Monte-Carlo simulation Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders
Monte Carlo simulation of block copolymer brushes
We studied a simplified model of a polymer brush formed by linear chains, which were restricted to a simple cubic lattice. The chain macromolecules consisted of a sequence of two kinds of segment, arranged in a specific sequence. The chains were grafted to an impenetrable surface, i.e. they were terminally attached to the surface at one end. The number of chains was varied from low to high grafting density. The model system was studied under different solvent quality, from good to poor solvent. The properties of this model system were studied by means of Monte Carlo simulations. The sampling algorithm was based on local changes of the chain's conformations
Monte Carlo simulation for Kaonic deuterium studies
Full text: The SIDDHARTA experiment at the DAFNE collider measured the shift and with of the ground level in kaonic hydrogen caused by the strong interaction between the kaons and protons. The measurement of the X-ray transitions to the 1s level in kaonic deuterium will allow, together with the available results from kaonic hydrogen, to extract the isospin- dependent antikaon-nucleon scattering lengths. I will present the Monte Carlo simulation of the SIDDHARTA-2 setup, in the framework of GEANT4. The program is used to optimize the critical parameters of the setup in order to perform the kaonic deuterium measurement. (author)
Monte Carlo simulations for heavy ion dosimetry
Geithner, Oksana
2006-01-01
Water-to-air stopping power ratio ( ) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variabl...
Archimedes, the Free Monte Carlo simulator
Sellier, Jean Michel D
2012-01-01
Archimedes is the GNU package for Monte Carlo simulations of electron transport in semiconductor devices. The first release appeared in 2004 and since then it has been improved with many new features like quantum corrections, magnetic fields, new materials, GUI, etc. This document represents the first attempt to have a complete manual. Many of the Physics models implemented are described and a detailed description is presented to make the user able to write his/her own input deck. Please, feel free to contact the author if you want to contribute to the project.
Probabilistic fire simulator - Monte Carlo simulation tool for fire scenarios
Risk analysis tool is developed for computing of the distributions of fire model output variables. The tool, called Probabilistic Fire Simulator, combines Monte Carlo simulation and CFAST two-zone fire model. In this work, it is used to calculate failure probability of redundant cables and fire detector activation times in a cable tunnel fire. Sensitivity of the output variables to the input variables is calculated in terms of the rank order correlations. (orig.)
Atomistic Monte Carlo simulation of lipid membranes
Wüstner, Daniel; Sklenar, Heinz
2014-01-01
molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss......Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and...
Monte Carlo Simulations of the Photospheric Process
Santana, Rodolfo; Hernandez, Roberto A; Kumar, Pawan
2015-01-01
We present a Monte Carlo (MC) code we wrote to simulate the photospheric process and to study the photospheric spectrum above the peak energy. Our simulations were performed with a photon to electron ratio $N_{\\gamma}/N_{e} = 10^{5}$, as determined by observations of the GRB prompt emission. We searched an exhaustive parameter space to determine if the photospheric process can match the observed high-energy spectrum of the prompt emission. If we do not consider electron re-heating, we determined that the best conditions to produce the observed high-energy spectrum are low photon temperatures and high optical depths. However, for these simulations, the spectrum peaks at an energy below 300 keV by a factor $\\sim 10$. For the cases we consider with higher photon temperatures and lower optical depths, we demonstrate that additional energy in the electrons is required to produce a power-law spectrum above the peak-energy. By considering electron re-heating near the photosphere, the spectrum for these simulations h...
Parallel Monte Carlo simulation of aerosol dynamics
Zhou, K.
2014-01-01
A highly efficient Monte Carlo (MC) algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI). The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands) of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD) function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles. 2014 Kun Zhou et al.
Monte Carlo and detector simulation in OOP
Object-Oriented Programming techniques are explored with an eye towards applications in High Energy Physics codes. Two prototype examples are given: MCOOP (a particle Monte Carlo generator) and GISMO (a detector simulation/analysis package). The OOP programmer does no explicit or detailed memory management nor other bookkeeping chores; hence, the writing, modification, and extension of the code is considerably simplified. Inheritance can be used to simplify the class definitions as well as the instance variables and action methods of each class; thus the work required to add new classes, parameters, or new methods is minimal. The software industry is moving rapidly to OOP since it has been proven to improve programmer productivity, and promises even more for the future by providing truly reusable software. The High Energy Physics community clearly needs to follow this trend
Quantum Monte Carlo Simulations : Algorithms, Limitations and Applications
Raedt, H. De
1992-01-01
A survey is given of Quantum Monte Carlo methods currently used to simulate quantum lattice models. The formalisms employed to construct the simulation algorithms are sketched. The origin of fundamental (minus sign) problems which limit the applicability of the Quantum Monte Carlo approach is shown
Monte Carlo simulations of single polymer force-extension relations
We present Monte Carlo simulations for studying the statistical mechanics of arbitrarily long single molecules under stretching. In many cases in which the thermodynamic limit is not satisfied, different statistical ensembles yield different macroscopic force-displacement curves. In this work we provide a description of the Monte Carlo simulations and discuss in details the assumptions adopted.
Monte Carlo simulations for focusing elliptical guides
Valicu, Roxana [FRM2 Garching, Muenchen (Germany); Boeni, Peter [E20, TU Muenchen (Germany)
2009-07-01
The aim of the Monte Carlo simulations using McStas Programme was to improve the focusing of the neutron beam existing at PGAA (FRM II) by prolongation of the existing elliptic guide (coated now with supermirrors with m=3) with a new part. First we have tried with an initial length of the additional guide of 7,5cm and coatings for the neutron guide of supermirrors with m=4,5 and 6. The gain (calculated by dividing the intensity in the focal point after adding the guide by the intensity at the focal point with the initial guide) obtained for this coatings indicated that a coating with m=5 would be appropriate for a first trial. The next step was to vary the length of the additional guide for this m value and therefore choosing the appropriate length for the maximal gain. With the m value and the length of the guide fixed we have introduced an aperture 1 cm before the focal point and we have varied the radius of this aperture in order to obtain a focused beam. We have observed a dramatic decrease in the size of the beam in the focal point after introducing this aperture. The simulation results, the gains obtained and the evolution of the beam size will be presented.
Monte Carlo simulation framework for TMT
Vogiatzis, Konstantinos; Angeli, George Z.
2008-07-01
This presentation describes a strategy for assessing the performance of the Thirty Meter Telescope (TMT). A Monte Carlo Simulation Framework has been developed to combine optical modeling with Computational Fluid Dynamics simulations (CFD), Finite Element Analysis (FEA) and controls to model the overall performance of TMT. The framework consists of a two year record of observed environmental parameters such as atmospheric seeing, site wind speed and direction, ambient temperature and local sunset and sunrise times, along with telescope azimuth and elevation with a given sampling rate. The modeled optical, dynamic and thermal seeing aberrations are available in a matrix form for distinct values within the range of influencing parameters. These parameters are either part of the framework parameter set or can be derived from them at each time-step. As time advances, the aberrations are interpolated and combined based on the current value of their parameters. Different scenarios can be generated based on operating parameters such as venting strategy, optical calibration frequency and heat source control. Performance probability distributions are obtained and provide design guidance. The sensitivity of the system to design, operating and environmental parameters can be assessed in order to maximize the % of time the system meets the performance specifications.
Rare event simulation using Monte Carlo methods
Rubino, Gerardo
2009-01-01
In a probabilistic model, a rare event is an event with a very small probability of occurrence. The forecasting of rare events is a formidable task but is important in many areas. For instance a catastrophic failure in a transport system or in a nuclear power plant, the failure of an information processing system in a bank, or in the communication network of a group of banks, leading to financial losses. Being able to evaluate the probability of rare events is therefore a critical issue. Monte Carlo Methods, the simulation of corresponding models, are used to analyze rare events. This book sets out to present the mathematical tools available for the efficient simulation of rare events. Importance sampling and splitting are presented along with an exposition of how to apply these tools to a variety of fields ranging from performance and dependability evaluation of complex systems, typically in computer science or in telecommunications, to chemical reaction analysis in biology or particle transport in physics. ...
Monte Carlo Simulation of Critical Casimir Forces
Vasilyev, Oleg A.
2015-03-01
In the vicinity of the second order phase transition point long-range critical fluctuations of the order parameter appear. The second order phase transition in a critical binary mixture in the vicinity of the demixing point belongs to the universality class of the Ising model. The superfluid transition in liquid He belongs to the universality class of the XY model. The confinement of long-range fluctuations causes critical Casimir forces acting on confining surfaces or particles immersed in the critical substance. Last decade critical Casimir forces in binary mixtures and liquid helium were studied experimentally. The critical Casimir force in a film of a given thickness scales as a universal scaling function of the ratio of the film thickness to the bulk correlation length divided over the cube of the film thickness. Using Monte Carlo simulations we can compute critical Casimir forces and their scaling functions for lattice Ising and XY models which correspond to experimental results for the binary mixture and liquid helium, respectively. This chapter provides the description of numerical methods for computation of critical Casimir interactions for lattice models for plane-plane, plane-particle, and particle-particle geometries.
Monte Carlo simulations for heavy ion dosimetry
Geithner, O.
2006-07-26
Water-to-air stopping power ratio (s{sub w,air}) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, s{sub w,air}, the influence of fragments and I-values on s{sub w,air} for carbon ion beams was investigated. The value of s{sub w,air} deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)
Monte Carlo simulations for heavy ion dosimetry
Water-to-air stopping power ratio (sw,air) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, sw,air, the influence of fragments and I-values on sw,air for carbon ion beams was investigated. The value of sw,air deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)
Lattice Monte Carlo simulations of polymer melts
Hsu, Hsiao-Ping
2014-12-01
We use Monte Carlo simulations to study polymer melts consisting of fully flexible and moderately stiff chains in the bond fluctuation model at a volume fraction 0.5. In order to reduce the local density fluctuations, we test a pre-packing process for the preparation of the initial configurations of the polymer melts, before the excluded volume interaction is switched on completely. This process leads to a significantly faster decrease of the number of overlapping monomers on the lattice. This is useful for simulating very large systems, where the statistical properties of the model with a marginally incomplete elimination of excluded volume violations are the same as those of the model with strictly excluded volume. We find that the internal mean square end-to-end distance for moderately stiff chains in a melt can be very well described by a freely rotating chain model with a precise estimate of the bond-bond orientational correlation between two successive bond vectors in equilibrium. The plot of the probability distributions of the reduced end-to-end distance of chains of different stiffness also shows that the data collapse is excellent and described very well by the Gaussian distribution for ideal chains. However, while our results confirm the systematic deviations between Gaussian statistics for the chain structure factor Sc(q) [minimum in the Kratky-plot] found by Wittmer et al. [EPL 77, 56003 (2007)] for fully flexible chains in a melt, we show that for the available chain length these deviations are no longer visible, when the chain stiffness is included. The mean square bond length and the compressibility estimated from collective structure factors depend slightly on the stiffness of the chains.
Validation of Compton Scattering Monte Carlo Simulation Models
Weidenspointner, Georg; Hauf, Steffen; Hoff, Gabriela; Kuster, Markus; Pia, Maria Grazia; Saracco, Paolo
2014-01-01
Several models for the Monte Carlo simulation of Compton scattering on electrons are quantitatively evaluated with respect to a large collection of experimental data retrieved from the literature. Some of these models are currently implemented in general purpose Monte Carlo systems; some have been implemented and evaluated for possible use in Monte Carlo particle transport for the first time in this study. Here we present first and preliminary results concerning total and differential Compton scattering cross sections.
Identification of Logical Errors through Monte-Carlo Simulation
Emmett, Hilary L
2010-01-01
The primary focus of Monte Carlo simulation is to identify and quantify risk related to uncertainty and variability in spreadsheet model inputs. The stress of Monte Carlo simulation often reveals logical errors in the underlying spreadsheet model that might be overlooked during day-to-day use or traditional "what-if" testing. This secondary benefit of simulation requires a trained eye to recognize warning signs of poor model construction.
Simulation and the Monte Carlo Method, Student Solutions Manual
Rubinstein, Reuven Y
2012-01-01
This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, suc
Monte Carlo simulations for plasma physics
Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X. [National Inst. for Fusion Science, Toki, Gifu (Japan)
2000-07-01
Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)
Public Infrastructure for Monte Carlo Simulation: publicMC@BATAN
Waskita, A A; Akbar, Z; Handoko, L T; 10.1063/1.3462759
2010-01-01
The first cluster-based public computing for Monte Carlo simulation in Indonesia is introduced. The system has been developed to enable public to perform Monte Carlo simulation on a parallel computer through an integrated and user friendly dynamic web interface. The beta version, so called publicMC@BATAN, has been released and implemented for internal users at the National Nuclear Energy Agency (BATAN). In this paper the concept and architecture of publicMC@BATAN are presented.
Monte Carlo simulation of neutron scattering instruments
A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width
Methods for Monte Carlo procedure in radiation measurement by SPECT (single photon emission computed tomography) and 3-D PET (3-dimensional positron emission tomography) are described together with its application to develop and optimize the scattering correction method in 201Tl-SPECT. In the medical technology, the Monte Carlo simulation makes it possible to quantify the behavior of a photon like scattering and absorption, and which can be performed by the use of EGS4 simulation code consisting from Step A - E. With the method, data collection procedures of the diagnostic equipments for nuclear medicine and application to develop the transmission radiation source for SPECT are described. Precision of the scattering correction method is also evaluated in the SPECT by the Monte Carlo simulation. The simulation is a useful tool for evaluating the behavior of radiation in the human body which can not be actually measured. (K.H.)
Application of Monte Carlo simulation for three-dimensional flows
Scheurlen, M.; Noll, B.; Wittig, S.
1992-02-01
A Monte Carlo technique is outlined for the simulation of the transport of a joint scalar probability density function (PDF). The discretization of the partial differential equations is based on a finite volume approximation. The problem of frozen solutions is addressed if the number of stochastic elements is limited. Non-adiabatic boundary conditions are discussed if the energy equation is solved by a Monte Carlo simulation. The Monte Carlo simulation is compared with deterministic calculations and with an experiment in a three dimensional non-isothermal non-reacting jet mixing flow. The results of the simulation agree very well with the experiment and the deterministic calculations. However, the computer time and storage requirements for a three dimensional simulation of the transport of a single scalar PDF increases dramatically in comparison to deterministic calculations. The results also indicate the need for a simulation procedure that is free of numerical diffusion.
Monte Carlo simulation in statistical physics an introduction
Binder, Kurt
1992-01-01
The Monte Carlo method is a computer simulation method which uses random numbers to simulate statistical fluctuations The method is used to model complex systems with many degrees of freedom Probability distributions for these systems are generated numerically and the method then yields numerically exact information on the models Such simulations may be used tosee how well a model system approximates a real one or to see how valid the assumptions are in an analyical theory A short and systematic theoretical introduction to the method forms the first part of this book The second part is a practical guide with plenty of examples and exercises for the student Problems treated by simple sampling (random and self-avoiding walks, percolation clusters, etc) are included, along with such topics as finite-size effects and guidelines for the analysis of Monte Carlo simulations The two parts together provide an excellent introduction to the theory and practice of Monte Carlo simulations
Stochastic simulation and Monte-Carlo methods; Simulation stochastique et methodes de Monte-Carlo
Graham, C. [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France); Ecole Polytechnique, 91 - Palaiseau (France); Talay, D. [Institut National de Recherche en Informatique et en Automatique (INRIA), 78 - Le Chesnay (France); Ecole Polytechnique, 91 - Palaiseau (France)
2011-07-01
This book presents some numerical probabilistic methods of simulation with their convergence speed. It combines mathematical precision and numerical developments, each proposed method belonging to a precise theoretical context developed in a rigorous and self-sufficient manner. After some recalls about the big numbers law and the basics of probabilistic simulation, the authors introduce the martingales and their main properties. Then, they develop a chapter on non-asymptotic estimations of Monte-Carlo method errors. This chapter gives a recall of the central limit theorem and precises its convergence speed. It introduces the Log-Sobolev and concentration inequalities, about which the study has greatly developed during the last years. This chapter ends with some variance reduction techniques. In order to demonstrate in a rigorous way the simulation results of stochastic processes, the authors introduce the basic notions of probabilities and of stochastic calculus, in particular the essential basics of Ito calculus, adapted to each numerical method proposed. They successively study the construction and important properties of the Poisson process, of the jump and deterministic Markov processes (linked to transport equations), and of the solutions of stochastic differential equations. Numerical methods are then developed and the convergence speed results of algorithms are rigorously demonstrated. In passing, the authors describe the probabilistic interpretation basics of the parabolic partial derivative equations. Non-trivial applications to real applied problems are also developed. (J.S.)
Monte Carlo simulation of gas Cerenkov detectors
Theoretical study of selected gamma-ray and electron diagnostic necessitates coupling Cerenkov radiation to electron/photon cascades. A Cerenkov production model and its incorporation into a general geometry Monte Carlo coupled electron/photon transport code is discussed. A special optical photon ray-trace is implemented using bulk optical properties assigned to each Monte Carlo zone. Good agreement exists between experimental and calculated Cerenkov data in the case of a carbon-dioxide gas Cerenkov detector experiment. Cerenkov production and threshold data are presented for a typical carbon-dioxide gas detector that converts a 16.7 MeV photon source to Cerenkov light, which is collected by optics and detected by a photomultiplier
Adjoint Monte Carlo simulation of fixed-energy secondary radiation
Fixed energy secondary generation for adjoint Monte Carlo methods constitutes certain difficulties because of zero probability of reaching fixed value from continuous distribution. This paper proposes a possible approach to adjoint Monte Carlo simulation with fixed energy secondary radiation which does not contain any simplifying restriction. This approach uses the introduced before generalized particle concept developed for description of mixed-type radiation transport and allows adjoint Monte Carlo simulation of such processes. It treats particle type as additional discrete coordinate and always considers only one particle even for the interactions with many particles outgoing from the collision. The adjoint fixed energy secondary radiation simulation is performed as local energy estimator through the intermediate state with fixed energy. The proposed algorithm is tested on the example of coupled gamma/electron/positron transport with generation of annihilation radiation. Forward and adjoint simulation according to generalized particle concept show statistically similar results. (orig.)
Monte Carlo simulation techniques : The development of a general framework
Nilsson, Emma
2009-01-01
Algorithmica Research AB develops software application for the financial markets. One of their products is Quantlab that is a tool for quantitative analyses. An effective method to value several financial instruments is Monte Carlo simulation. Since it is a common method Algorithmica is interesting in investigating if it is possible to create a Monte Carlo framework. A requirement from Algorithmica is that the framework is general and this is the main problem to solve. It is difficult to gene...
Monte Carlo simulations of hydrogen storage in carbon nanotubes
The storage capacities of porous materials made up of carbon nanotubes are estimated by Monte Carlo simulations for the specific case of hydrogen in the pressure domain from 0.1 to 20 MPa at temperatures of 293, 150 and 77 K. The use of these materials in devices for hydrogen storage is discussed on the basis of the simulation results. (author)
Research of Monte Carlo Simulation in Commercial Bank Risk Management
BeimingXiao
2004-01-01
Simulation method is an important-tool in financial risk management. It can simulate financial variable or economic wriable and deal with non-linear or non-nominal issue. This paper analyzes the usage of "Monte Carlo" approach in commercial bank risk management.
Monte Carlo simulation of virtual compton scattering at MAMI
The Monte Carlo simulation developed specially for the VCS experiments taking place at MAMI in fully described. This simulation can generate events according to the Bethe-Heitler + Born cross section behaviour and takes into account resolution deteriorating effects. It is used to determine solid angles for the various experimental settings. (authors)
Monte Carlo Simulation in Statistical Physics An Introduction
Binder, Kurt
2010-01-01
Monte Carlo Simulation in Statistical Physics deals with the computer simulation of many-body systems in condensed-matter physics and related fields of physics, chemistry and beyond, to traffic flows, stock market fluctuations, etc.). Using random numbers generated by a computer, probability distributions are calculated, allowing the estimation of the thermodynamic properties of various systems. This book describes the theoretical background to several variants of these Monte Carlo methods and gives a systematic presentation from which newcomers can learn to perform such simulations and to analyze their results. The fifth edition covers Classical as well as Quantum Monte Carlo methods. Furthermore a new chapter on the sampling of free-energy landscapes has been added. To help students in their work a special web server has been installed to host programs and discussion groups (http://wwwcp.tphys.uni-heidelberg.de). Prof. Binder was awarded the Berni J. Alder CECAM Award for Computational Physics 2001 as well ...
Suppression of the initial transient in Monte Carlo criticality simulations
Criticality Monte Carlo calculations aim at estimating the effective multiplication factor (k-effective) for a fissile system through iterations simulating neutrons propagation (making a Markov chain). Arbitrary initialization of the neutron population can deeply bias the k-effective estimation, defined as the mean of the k-effective computed at each iteration. A simplified model of this cycle k-effective sequence is built, based on characteristics of industrial criticality Monte Carlo calculations. Statistical tests, inspired by Brownian bridge properties, are designed to discriminate stationarity of the cycle k-effective sequence. The initial detected transient is, then, suppressed in order to improve the estimation of the system k-effective. The different versions of this methodology are detailed and compared, firstly on a plan of numerical tests fitted on criticality Monte Carlo calculations, and, secondly on real criticality calculations. Eventually, the best methodologies observed in these tests are selected and allow to improve industrial Monte Carlo criticality calculations. (author)
Simulate the progress of PGNAA with Monte Carlo
A kind of model to simulate bulk coal PGNAA process was set up, and some problems in PGNAA experiments was solved using the MOCA -Monte Carlo software. Analysis of the relationship between the thermal neutron field and the source distance, and the relationship curve with MOCA was obtained, and can be used to design measurement object bucket; simulated bulk coal PGNAA process, and analyzed activated γ spectrum. Through simulating PGNAA process, provide a theoretical basis for a bulk coal PGNAA experiments. (authors)
Two Approaches to Accelerated Monte Carlo Simulation of Coulomb Collisions
Ricketson, Lee
2014-01-01
In plasma physics, the direct simulation of inter-particle Coulomb collisions is often necessary to capture the relevant physics, but presents a computational bottleneck because of the complexity of the process. In this thesis, we derive, test and discuss two methods for accelerating the simulation of collisions in plasmas in certain scenarios. The first is a hybrid fluid-Monte Carlo scheme that reduces the number of collisions that must be simulated. Coupling between the fluid and particl...
Monte-Carlo Simulation for an Aerogel Cherenkov Counter
al, Ryuji Suda et
1997-01-01
We have developed a Monte-Carlo simulation code for an aerogel \\v Cerenkov Counter which is operated under a strong magnetic field such as 1.5T. This code consists of two parts: photon transportation inside aerogel tiles, and one-dimensional amplification in a fine-mesh photomultiplier tube. It simulates the output photoelectron yields as accurately as 5% with only a single free parameter. This code is applied to simulations for a B-Factory particle-identification system.
Monte Carlo simulation of electron slowing down in indium
Highlights: • Electron scattering in indium targets. • Modeling of elastic cross-sections. • Monte Carlo simulation of low energy electrons. - Abstract: In the current study, we aim at simulating via a detailed Monte Carlo code, the electron penetration in a semi-infinite indium medium for incident energies ranging from 0.5 to 5 keV. Electron range, backscattering coefficients, mean penetration depths as well as stopping profiles are then reported. The results may be seen as the first predictions for low-energy electron penetration in indium target
Monte Carlo simulation of electron slowing down in indium
Rouabah, Z.; Hannachi, M. [Materials and Electronic Systems Laboratory (LMSE), University of Bordj Bou Arreridj, Bordj Bou Arreridj (Algeria); Champion, C. [Université de Bordeaux 1, CNRS/IN2P3, Centre d’Etudes Nucléaires de Bordeaux-Gradignan, (CENBG), Gradignan (France); Bouarissa, N., E-mail: n_bouarissa@yahoo.fr [Laboratory of Materials Physics and its Applications, University of M' sila, 28000 M' sila (Algeria)
2015-07-15
Highlights: • Electron scattering in indium targets. • Modeling of elastic cross-sections. • Monte Carlo simulation of low energy electrons. - Abstract: In the current study, we aim at simulating via a detailed Monte Carlo code, the electron penetration in a semi-infinite indium medium for incident energies ranging from 0.5 to 5 keV. Electron range, backscattering coefficients, mean penetration depths as well as stopping profiles are then reported. The results may be seen as the first predictions for low-energy electron penetration in indium target.
MONTE-CARLO SIMULATION OF ROAD TRANSPORT EMISSION
Adam Torok
2015-09-01
Full Text Available There are microscopic, mezoscopic and macroscopic models in road traffic analysis and forecasting. From microscopic models one can calculate the macroscopic data by aggregation. The following paper describes the disaggregation method of macroscopic state, which could lead to microscopic properties of traffic. In order to ensure the transform between macroscopic and microscopic states Monte-Carlo simulation was used. MS Excel macro environment was built to run Monte-Carlo simulation. With this method the macroscopic data can be disaggregated to macroscopic data and as a byproduct mezoscopic, regional data can be gained. These mezoscopic data can be used further on regional environmental or transport policy assessment.
Monte Carlo simulation of PET images for injection dose optimization
Boldyš, Jiří; Dvořák, Jiří; Bělohlávek, O.; Skopalová, M.
London : Taylor and Francis, 2011 - (Manuel, J.; Tavares, R.; Jorge, N.), s. 1-6 ISBN 978-0-415-68395-1. [VipIMAGE 2011 - third ECCOMAS thematic conference on computational vision and medical image processing. Olhao, Algarve (PT), 12.10.2011-14.10.2011] R&D Projects: GA MŠk(CZ) 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : positron emission tomography * Monte Carlo simulation * biological system modeling * image quality Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2012/ZOI/boldys-monte carlo simulation of pet images for injection dose optimization.pdf
Radiotherapy Monte Carlo simulation using cloud computing technology
Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.
Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method
2002-01-01
This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.
Monte Carlo simulation with the Gate software using grid computing
Monte Carlo simulations are widely used in emission tomography, for protocol optimization, design of processing or data analysis methods, tomographic reconstruction, or tomograph design optimization. Monte Carlo simulations needing many replicates to obtain good statistical results can be easily executed in parallel using the 'Multiple Replications In Parallel' approach. However, several precautions have to be taken in the generation of the parallel streams of pseudo-random numbers. In this paper, we present the distribution of Monte Carlo simulations performed with the GATE software using local clusters and grid computing. We obtained very convincing results with this large medical application, thanks to the EGEE Grid (Enabling Grid for E-science), achieving in one week computations that could have taken more than 3 years of processing on a single computer. This work has been achieved thanks to a generic object-oriented toolbox called DistMe which we designed to automate this kind of parallelization for Monte Carlo simulations. This toolbox, written in Java is freely available on SourceForge and helped to ensure a rigorous distribution of pseudo-random number streams. It is based on the use of a documented XML format for random numbers generators statuses. (authors)
Monte Carlo Simulation Optimizing Design of Grid Ionization Chamber
ZHENG; Yu-lai; WANG; Qiang; YANG; Lu
2013-01-01
The grid ionization chamber detector is often used for measuring charged particles.Based on Monte Carlo simulation method,the energy loss distribution and electron ion pairs of alpha particle with different energy have been calculated to determine suitable filling gas in the ionization chamber filled with
Monte Carlo simulation of magnetic nanostructured thin films
Guan Zhi-Qiang; Yutaka Abe; Jiang Dong-Hua; Lin Hai; Yoshitake Yamazakia; Wu Chen-Xu
2004-01-01
@@ Using Monte Carlo simulation, we have compared the magnetic properties between nanostructured thin films and two-dimensional crystalline solids. The dependence of nanostructured properties on the interaction between particles that constitute the nanostructured thin films is also studied. The result shows that the parameters in the interaction potential have an important effect on the properties of nanostructured thin films at the transition temperatures.
Simulating Strongly Correlated Electron Systems with Hybrid Monte Carlo
LIU Chuan
2000-01-01
Using the path integral representation, the Hubbard and the periodic Anderson model on D-dimensional cubic lattice are transformed into field theories of fermions in D + 1 dimensions. These theories at half-filling possess a positive definite real symmetry fermion matrix and can be simulated using the hybrid Monte Carlo method.
Monte Carlo Simulations of Impact Ionization Feedback in MOSFET Structures
Bude, Jeff D.
1998-01-01
Although impact ionization feedback is recognized as an important current multiplication mechanism, its importance as a carrier heating mechanism has been largely overlooked. This work emphasizes the inclusion of impact ionization feedback in Monte Carlo device simulations, and its implications for carrier heating in sub-micron CMOS and EEPROM technologies.
Radio emission from cosmic ray air showers : Monte Carlo simulations
Huege, T.; Falcke, H.D.E.
2005-01-01
We present time-domain Monte Carlo simulations of radio emission from cosmic ray air showers in the scheme of coherent geosynchrotron radiation. Our model takes into account the important air shower characteristics such as the lateral and longitudinal particle distributions, the particle track lengt
Quantum Monte Carlo simulation with a black hole
Benić, Sanjin; Yamamoto, Arata
2016-05-01
We perform quantum Monte Carlo simulations in the background of a classical black hole. The lattice discretized path integral is numerically calculated in the Schwarzschild metric and in its approximated metric. We study spontaneous symmetry breaking of a real scalar field theory. We observe inhomogeneous symmetry breaking induced by an inhomogeneous gravitational field.
Microbial contamination in poultry chillers estimated by Monte Carlo simulations
The risk of microbial contamination during poultry processing may be reduced by the operating characteristics of the chiller. The performance of air chillers and immersion chillers were compared in terms of pre-chill and post-chill contamination using Monte Carlo simulations. Three parameters were u...
Monte Carlo simulation of tomography techniques using the platform Gate
Simulations play a key role in functional imaging, with applications ranging from scanner design, scatter correction, protocol optimisation. GATE (Geant4 for Application Tomography Emission) is a platform for Monte Carlo Simulation. It is based on Geant4 to generate and track particles, to model geometry and physics process. Explicit modelling of time includes detector motion, time of flight, tracer kinetics. Interfaces to voxellised models and image reconstruction packages improve the integration of GATE in the global modelling cycle. In this work Monte Carlo simulations are used to understand and optimise the gamma camera's performances. We study the effect of the distance between source and collimator, the diameter of the holes and the thick of the collimator on the spatial resolution, energy resolution and efficiency of the gamma camera. We also study the reduction of simulation's time and implement a model of left ventricle in GATE. (Author). 7 refs
Monte Carlo simulations of plutonium gamma-ray spectra
Monte Carlo calculations were investigated as a means of simulating the gamma-ray spectra of Pu. These simulated spectra will be used to develop and evaluate gamma-ray analysis techniques for various nondestructive measurements. Simulated spectra of calculational standards can be used for code intercomparisons, to understand systematic biases and to estimate minimum detection levels of existing and proposed nondestructive analysis instruments. The capability to simulate gamma-ray spectra from HPGe detectors could significantly reduce the costs of preparing large numbers of real reference materials. MCNP was used for the Monte Carlo transport of the photons. Results from the MCNP calculations were folded in with a detector response function for a realistic spectrum. Plutonium spectrum peaks were produced with Lorentzian shapes, for the x-rays, and Gaussian distributions. The MGA code determined the Pu isotopes and specific power of this calculated spectrum and compared it to a similar analysis on a measured spectrum
Assessing Excel VBA Suitability for Monte Carlo Simulation
Botchkarev, Alexei
2015-01-01
Monte Carlo (MC) simulation includes a wide range of stochastic techniques used to quantitatively evaluate the behavior of complex systems or processes. Microsoft Excel spreadsheets with Visual Basic for Applications (VBA) software is, arguably, the most commonly employed general purpose tool for MC simulation. Despite the popularity of the Excel in many industries and educational institutions, it has been repeatedly criticized for its flaws and often described as questionable, if not complet...
Monte Carlo simulation of photon migration path in turbid media
无
2008-01-01
A new method of Monte Carlo simulation is developed to simulate the photon migration path in a scattering medium after an ultrashort-pulse laser beam comes into the medium.The most probable trajectory of photons at an instant can be obtained with this method.How the photon migration paths are affected by the optical parameters of the scattering medium is analyzed.It is also concluded that the absorption coefficient has no effect on the most probable trajectory of photons.
Monte Carlo simulation of a two-dimensional magnetic foam
A two-dimensional Ising-like model with spin 1 and long-range interactions is studied numerically through a Monte Carlo simulation. The goal of the simulation is to describe pattern formations and critical temperature of two-dimensional magnetic structures. Three sets of parameters are considered, that give rise to stripes, labyrinths or cellular domain structures. We determine for each configuration the transition ordering temperatures, the relaxation of the energy, the hysteresis cycle, and the average size of the domains
Monte Carlo simulation of virtual Compton scattering below pion threshold
This paper describes the Monte Carlo simulation developed specifically for the Virtual Compton Scattering (VCS) experiments below pion threshold that have been performed at MAMI and JLab. This simulation generates events according to the (Bethe-Heitler + Born) cross-section behaviour and takes into account all relevant resolution-deteriorating effects. It determines the 'effective' solid angle for the various experimental settings which are used for the precise determination of the photon electroproduction absolute cross-section
Multipurpose Monte Carlo simulator for photon transport in turbid media
Guerra, Pedro; Aguirre, Juan; Ortuño, Juan E.; María J Ledesma-Carbayo; Vaquero, Juan José; Desco, Manuel; Santos, Andrés
2009-01-01
Monte Carlo methods provide a flexible and rigorous solution to the problem of light transport in turbid media, which enable approaching complex geometries for a closed analytical solution is not feasible. The simulator implements local rules of propagation in the form of probability density functions that depend on the local optical properties of the tissue. This work presents a flexible simulator that can be applied in multiple applications related to optical tomography. In particular...
Perspectives for Monte Carlo simulations on the CNN Universal Machine
Ercsey-Ravasz, M.; Roska, T.; Neda, Z.
2006-01-01
Possibilities for performing stochastic simulations on the analog and fully parallelized Cellular Neural Network Universal Machine (CNN-UM) are investigated. By using a chaotic cellular automaton perturbed with the natural noise of the CNN-UM chip, a realistic binary random number generator is built. As a specific example for Monte Carlo type simulations, we use this random number generator and a CNN template to study the classical site-percolation problem on the ACE16K chip. The study reveal...
Components of Detector Response Function: Experiment and Monte Carlo Simulation
Components of the response function of an HPGe (high-purity germanium) detector due to full or partial energy deposition by gamma- and X-rays were studied. Experimental response functions for 241Am, Ba and Tb were compared with those obtained from the Monte Carlo simulations. The role of physical mechanisms for each component was investigated by considering escape/absorption of photons, photoelectrons, Auger electrons, recoil electrons and X-rays of the detector material. A detailed comparison of the experimental Compton, photoelectron, detector X-ray escape components and full-energy peaks with those obtained from Monte Carlo program are presented
Genetic algorithms and Monte Carlo simulation for optimal plant design
We present an approach to the optimal plant design (choice of system layout and components) under conflicting safety and economic constraints, based upon the coupling of a Monte Carlo evaluation of plant operation with a Genetic Algorithms-maximization procedure. The Monte Carlo simulation model provides a flexible tool, which enables one to describe relevant aspects of plant design and operation, such as standby modes and deteriorating repairs, not easily captured by analytical models. The effects of deteriorating repairs are described by means of a modified Brown-Proschan model of imperfect repair which accounts for the possibility of an increased proneness to failure of a component after a repair. The transitions of a component from standby to active, and vice versa, are simulated using a multiplicative correlation model. The genetic algorithms procedure is demanded to optimize a profit function which accounts for the plant safety and economic performance and which is evaluated, for each possible design, by the above Monte Carlo simulation. In order to avoid an overwhelming use of computer time, for each potential solution proposed by the genetic algorithm, we perform only few hundreds Monte Carlo histories and, then, exploit the fact that during the genetic algorithm population evolution, the fit chromosomes appear repeatedly many times, so that the results for the solutions of interest (i.e. the best ones) attain statistical significance
Martini - Monte Carlo Simulation of Jet Evolution
We present the Modular Algorithm for Relativistic Treatment of heavy IoN Interactions (MARTINI), an event generator for the hard and penetrating probes in high energy nucleus-nucleus collisions. The simulation consists of a time evolution model for the soft background, such as hydrodynamics, PYTHIA 8.1 to generate and hadronize the hard partons after the medium evolution, which is based on the McGill-AMY formalism and includes both radiative and elastic processes. MARTINI allows for the generation of full event configurations in the high pT region. We present results for the neutral pion and photon nuclear modification factor in Au + Au collisions at RHIC. (authors)
Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro
2001-01-01
This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.
Meaningful timescales from Monte Carlo simulations of molecular systems
Costa, Liborio I
2016-01-01
A new Markov Chain Monte Carlo method for simulating the dynamics of molecular systems with atomistic detail is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.
Monte Carlo simulations of neutron oil well logging tools
Monte Carlo simulations of simple neutron oil well logging tools into typical geological formations are presented. The simulated tools consist of both 14 MeV pulsed and continuous Am-Be neutron sources with time gated and continuous gamma ray detectors respectively. The geological formation consists of pure limestone with 15% absolute porosity in a wide range of oil saturation. The particle transport was performed with the Monte Carlo N-Particle Transport Code System, MCNP-4B. Several gamma ray spectra were obtained at the detector position that allow to perform composition analysis of the formation. In particular, the ratio C/O was analyzed as an indicator of oil saturation. Further calculations are proposed to simulate actual detector responses in order to contribute to understand the relation between the detector response with the formation composition. (author)
Monte Carlo simulation of quantum Zeno effect in the brain
Georgiev, Danko
2014-01-01
Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved ...
Monte Carlo Simulations of Neutron Oil well Logging Tools
Monte Carlo simulations of simple neutron oil well logging tools into typical geological formations are presented.The simulated tools consist of both 14 MeV pulsed and continuous Am-Be neutron sources with time gated and continuous gamma ray detectors respectively.The geological formation consists of pure limestone with 15% absolute porosity in a wide range of oil saturation.The particle transport was performed with the Monte Carlo N-Particle Transport Code System, MCNP-4B.Several gamma ray spectra were obtained at the detector position that allow to perform composition analysis of the formation.In particular, the ratio C/O was analyzed as an indicator of oil saturation.Further calculations are proposed to simulate actual detector responses in order to contribute to understand the relation between the detector response with the formation composition
Monte Carlo Simulations of Neutron Oil well Logging Tools
Azcurra, M
2002-01-01
Monte Carlo simulations of simple neutron oil well logging tools into typical geological formations are presented.The simulated tools consist of both 14 MeV pulsed and continuous Am-Be neutron sources with time gated and continuous gamma ray detectors respectively.The geological formation consists of pure limestone with 15% absolute porosity in a wide range of oil saturation.The particle transport was performed with the Monte Carlo N-Particle Transport Code System, MCNP-4B.Several gamma ray spectra were obtained at the detector position that allow to perform composition analysis of the formation.In particular, the ratio C/O was analyzed as an indicator of oil saturation.Further calculations are proposed to simulate actual detector responses in order to contribute to understand the relation between the detector response with the formation composition
A new lattice Monte Carlo method for simulating dielectric inhomogeneity
Duan, Xiaozheng; Wang, Zhen-Gang; Nakamura, Issei
We present a new lattice Monte Carlo method for simulating systems involving dielectric contrast between different species by modifying an algorithm originally proposed by Maggs et al. The original algorithm is known to generate attractive interactions between particles that have different dielectric constant than the solvent. Here we show that such attractive force is spurious, arising from incorrectly biased statistical weight caused by the particle motion during the Monte Carlo moves. We propose a new, simple algorithm to resolve this erroneous sampling. We demonstrate the application of our algorithm by simulating an uncharged polymer in a solvent with different dielectric constant. Further, we show that the electrostatic fields in ionic crystals obtained from our simulations with a relatively small simulation box correspond well with results from the analytical solution. Thus, our Monte Carlo method avoids the need for the Ewald summation in conventional simulation methods for charged systems. This work was supported by the National Natural Science Foundation of China (21474112 and 21404103). We are grateful to Computing Center of Jilin Province for essential support.
Monte Carlo Simulation of HERD Calorimeter
Xu, M; Dong, Y W; Lu, J G; Quan, Z; Wang, L; Wang, Z G; Wu, B B; Zhang, S N
2014-01-01
The High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station is planned for operation starting around 2020 for about 10 years. It is designed as a next generation space facility focused on indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. The calorimeter plays an essential role in the main scientific objectives of HERD. A 3-D cubic calorimeter filled with high granularity crystals as active material is a very promising choice for the calorimeter. HERD is mainly composed of a 3-D calorimeter (CALO) surrounded by silicon trackers (TK) from all five sides except the bottom. CALO is made of 9261 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. Here the simulation results of the performance of CALO with GEANT4 and FLUKA are presented: 1) the total absorption CALO and its absorption depth for precise energy measure...
Computed radiography simulation using the Monte Carlo code MCNPX
Simulating x-ray images has been of great interest in recent years as it makes possible an analysis of how x-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data. (author)
Monte Carlo simulation of a prototype photodetector used in radiotherapy
Kausch, C; Albers, D; Schmidt, R; Schreiber, B
2000-01-01
The imaging performance of prototype electronic portal imaging devices (EPID) has been investigated. Monte Carlo simulations have been applied to calculate the modulation transfer function (MTF( f )), the noise power spectrum (NPS( f )) and the detective quantum efficiency (DQE( f )) for different new type of EPIDs, which consist of a detector combination of metal or polyethylene (PE), a phosphor layer of Gd sub 2 O sub 2 S and a flat array of photodiodes. The simulated results agree well with measurements. Based on simulated results, possible optimization of these devices is discussed.
Monte Carlo simulation of primary recrystallization and annealing twinning
The formation of annealing twins has been studied from the beginning of the 20th century and a variety of mechanisms have been suggested. Molecular dynamics simulations on the atomic scale have also been performed. This paper reports a microscale simulation of primary recrystallization and twinning of a nickel alloy based on the Monte Carlo approach. Different twin morphologies were simulated. A possible dependence of grain growth direction on twin formation during annealing was demonstrated. The formation of incoherent Σ3 and Σ9 boundaries is verified as the indirect outcome after coherent Σ3 formation
Modifications to the TRIM Monte Carlo simulation program
Macrander, A. T.
1979-04-01
Extensive modifications were made to the TRIM (TRansport of Ions in Matter) Monte Carlo computer code which simulates the ion irradiation of amorphous solids. The original FORTRAN code was translated into BASIC for use on minicomputers with 32 K words of memory. Versions have been written to simulate very low-energy irradiations and the irradiation of binary alloys. Furthermore, a version was written which added the capability of following a lateral direction, in addition to the penetration depth of an ion. Subsequently, a version was written to simulate the production of collision cascades. Details of these modifications were discussed and examples of their use were given.
Some improvements of BES II TOF Monte Carlo simulation
BES II detector has been upgraded from 1995, the TOF time resolution is about 180 ps for Bhabha events, a big improvement compared with 330 ps of BES I. With the upgrade of the detector, the software including calibration, reconstruction and Monte Carlo (M.C.) simulation needs corresponding improvement, especially for M.C. simulation. Using 50 M J/ψ data taken in the last two years at BES II, the authors studied the TOF resolution carefully, and made some improvements for TOF MC simulation. After such an improvement, the authors compared the TOF resolutions between real data and M.C. data and found they agree with each other
Monte Carlo simulations of (e,2e) experiments on solids
Vos, M. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre; Bottema, M. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Dept. of Mathematics and Statistics]|[Centre for Sensor Signal and Information Processing, Technology Park, SA (Australia)
1995-12-01
The aim of this work was to simulate the multiple scattering effects occuring in a real (e,2e) experiment for a free-electron solid. Realistic cross sections for elastic and inelastic scattering events were used for all electrons involved. The Monte Carlo simulation was successfully applied to investigate how multiple scattering parameters used affect the relation between the electronic structure of solid and actually measured intensity. Good agreement was found, on a semiquantitative level, between the simulation and the actual experiments. 24 refs., 1 tab., 10 figs.
Monte Carlo simulations of (e,2e) experiments on solids
The aim of this work was to simulate the multiple scattering effects occuring in a real (e,2e) experiment for a free-electron solid. Realistic cross sections for elastic and inelastic scattering events were used for all electrons involved. The Monte Carlo simulation was successfully applied to investigate how multiple scattering parameters used affect the relation between the electronic structure of solid and actually measured intensity. Good agreement was found, on a semiquantitative level, between the simulation and the actual experiments. 24 refs., 1 tab., 10 figs
Monte Carlo simulation of the Neutrino-4 experiment
Serebrov, A. P.; Fomin, A. K.; Onegin, M. S.; Ivochkin, V. G.; Matrosov, L. N.
2015-12-01
Monte Carlo simulation of the two-section reactor antineutrino detector of the Neutrino-4 experiment is carried out. The scintillation-type detector is based on the inverse beta-decay reaction. The antineutrino is recorded by two successive signals from the positron and the neutron. The simulation of the detector sections and the active shielding is performed. As a result of the simulation, the distributions of photomultiplier signals from the positron and the neutron are obtained. The efficiency of the detector depending on the signal recording thresholds is calculated.
Monte Carlo simulation of the Neutrino-4 experiment
Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Fomin, A. K.; Onegin, M. S.; Ivochkin, V. G.; Matrosov, L. N. [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation)
2015-12-15
Monte Carlo simulation of the two-section reactor antineutrino detector of the Neutrino-4 experiment is carried out. The scintillation-type detector is based on the inverse beta-decay reaction. The antineutrino is recorded by two successive signals from the positron and the neutron. The simulation of the detector sections and the active shielding is performed. As a result of the simulation, the distributions of photomultiplier signals from the positron and the neutron are obtained. The efficiency of the detector depending on the signal recording thresholds is calculated.
Monte Carlo Simulation of Callisto's Exosphere
Vorburger, Audrey; Wurz, Peter; Galli, André; Mousis, Olivier; Barabash, Stas; Lammer, Helmut
2014-05-01
to the surface the sublimated particles dominate the day-side exosphere, however, their density profiles (with the exception of H and H2) decrease much more rapidly with altitude than those of the sputtered particles, thus, the latter particles start to dominate at altitudes above ~1000 km. Since the JUICE flybys are as low as 200 km above Callisto's surface, NIM is expected to register both the sublimated as well as sputtered particle populations. Our simulations show that NIM's sensitivity is high enough to allow the detection of particles sputtered from the icy as well as the mineral surfaces, and to distinguish between the different composition models.
Non-analogue Monte Carlo method, application to neutron simulation
With most of the traditional and contemporary techniques, it is still impossible to solve the transport equation if one takes into account a fully detailed geometry and if one studies precisely the interactions between particles and matters. Nowadays, only the Monte Carlo method offers such possibilities. However with significant attenuation, the natural simulation remains inefficient: it becomes necessary to use biasing techniques where the solution of the adjoint transport equation is essential. The Monte Carlo code Tripoli has been using such techniques successfully for a long time with different approximate adjoint solutions: these methods require from the user to find out some parameters. If this parameters are not optimal or nearly optimal, the biases simulations may bring about small figures of merit. This paper presents a description of the most important biasing techniques of the Monte Carlo code Tripoli ; then we show how to calculate the importance function for general geometry with multigroup cases. We present a completely automatic biasing technique where the parameters of the biased simulation are deduced from the solution of the adjoint transport equation calculated by collision probabilities. In this study we shall estimate the importance function through collision probabilities method and we shall evaluate its possibilities thanks to a Monte Carlo calculation. We compare different biased simulations with the importance function calculated by collision probabilities for one-group and multigroup problems. We have run simulations with new biasing method for one-group transport problems with isotropic shocks and for multigroup problems with anisotropic shocks. The results show that for the one-group and homogeneous geometry transport problems the method is quite optimal without splitting and russian roulette technique but for the multigroup and heterogeneous X-Y geometry ones the figures of merit are higher if we add splitting and russian roulette
Monte Carlo simulations on a 9-node PC cluster
Monte Carlo simulation methods are frequently used in the fields of medical physics, dosimetry and metrology of ionising radiation. Nevertheless, the main drawback of this technique is to be computationally slow, because the statistical uncertainty of the result improves only as the square root of the computational time. We present a method, which allows to reduce by a factor 10 to 20 the used effective running time. In practice, the aim was to reduce the calculation time in the LNHB metrological applications from several weeks to a few days. This approach includes the use of a PC-cluster, under Linux operating system and PVM parallel library (version 3.4). The Monte Carlo codes EGS4, MCNP and PENELOPE have been implemented on this platform and for the two last ones adapted for running under the PVM environment. The maximum observed speedup is ranging from a factor 13 to 18 according to the codes and the problems to be simulated. (orig.)
Application of Monte Carlo Simulations to Improve Basketball Shooting Strategy
Min, Byeong June
2016-01-01
The underlying physics of basketball shooting seems to be a straightforward example of the Newtonian mechanics that can easily be traced by numerical methods. However, a human basketball player does not make use of all the possible basketball trajectories. Instead, a basketball player will build up a database of successful shots and select the trajectory that has the greatest tolerance to small variations of the real world. We simulate the basketball player's shooting training as a Monte Carlo sequence to build optimal shooting strategies, such as the launch speed and angle of the basketball, and whether to take a direct shot or a bank shot, as a function of the player's court positions and height. The phase space volume that belongs to the successful launch velocities generated by Monte Carlo simulations are then used as the criterion to optimize a shooting strategy that incorporates not only mechanical, but human factors as well.
Conceptual design and Monte Carlo simulations of the AGATA array
Farnea, E., E-mail: Enrico.Farnea@pd.infn.i [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Recchia, F.; Bazzacco, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Kroell, Th. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Darmstadt (Germany); Podolyak, Zs. [Department of Physics, University of Surrey, Guildford (United Kingdom); Quintana, B. [Departamento de Fisica Fundamental, Universidad de Salamanca, Salamanca (Spain); Gadea, A. [Instituto de Fisica Corpuscular, CSIC-Universidad de Valencia, Valencia (Spain)
2010-09-21
The aim of the Advanced GAmma Tracking Array (AGATA) project is the construction of an array based on the novel concepts of pulse shape analysis and {gamma}-ray tracking with highly segmented Ge semiconductor detectors. The conceptual design of AGATA and its performance evaluation under different experimental conditions has required the development of a suitable Monte Carlo code. In this article, the description of the code as well as simulation results relevant for AGATA, are presented.
Calculating Variable Annuity Liability 'Greeks' Using Monte Carlo Simulation
Cathcart, Mark J.; Steven Morrison; McNeil, Alexander J.
2011-01-01
Hedging methods to mitigate the exposure of variable annuity products to market risks require the calculation of market risk sensitivities (or "Greeks"). The complex, path-dependent nature of these products means these sensitivities typically must be estimated by Monte Carlo simulation. Standard market practice is to measure such sensitivities using a "bump and revalue" method. As well as requiring multiple valuations, such approaches can be unreliable for higher order Greeks, e.g., gamma. In...
Monte Carlo simulation of PET images for injection doseoptimization
Boldyš, Jiří; Dvořák, Jiří; Skopalová, M.; Bělohlávek, O.
2013-01-01
Roč. 29, č. 9 (2013), s. 988-999. ISSN 2040-7939 R&D Projects: GA MŠk 1M0572 Institutional support: RVO:67985556 Keywords : positron emission tomography * Monte Carlo simulation * biological system modeling * image quality Subject RIV: FD - Oncology ; Hematology Impact factor: 1.542, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/boldys-0397175.pdf
Modular Monte Carlo Simulation Including Secondary Electron Raytracing
Gnieser, D.; Frase, C. G.; Bosse, H.; Konvalina, Ivo; Müllerová, Ilona
Brno: Institute of Scientific Instruments AS CR, v.v.i, 2008 - (Mika, F.), s. 31-32 ISBN 978-80-254-0905-3. [International Seminar on Recent Trends in Charged Particle Optics and Surface Physics Instrumentation /11./. Skalský dvůr (CZ), 14.07.2008-18.07.2008] Institutional research plan: CEZ:AV0Z20650511 Keywords : Monte Carlo simulation * SEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Monte Carlo Simulations of Novel Scintillator Detectors and Dosimetry Calculations
Lo Meo, Sergio
2009-01-01
Monte Carlo (MC) simulation techniques are becoming very common in the Medical Physicists community. MC can be used for modeling Single Photon Emission Computed Tomography (SPECT) and for dosimetry calculations. 188Re, is a promising candidate for radiotherapeutic production and understanding the mechanisms of the radioresponse of tumor cells "in vitro" is of crucial importance as a first step before "in vivo" studies. The dosimetry of 188Re, used to target different lines of c...
Image reconstruction using Monte Carlo simulation and artificial neural networks
PET data sets are subject to two types of distortions during acquisition: the imperfect response of the scanner and attenuation and scattering in the active distribution. In addition, the reconstruction of voxel images from the line projections composing a data set can introduce artifacts. Monte Carlo simulation provides a means for modeling the distortions and artificial neural networks a method for correcting for them as well as minimizing artifacts. (author) figs., tab., refs
Monte Carlo simulation of particle acceleration at astrophysical shocks
Campbell, Roy K.
1989-09-01
A Monte Carlo code was developed for the simulation of particle acceleration at astrophysical shocks. The code is implemented in Turbo Pascal on a PC. It is modularized and structured in such a way that modification and maintenance are relatively painless. Monte Carlo simulations of particle acceleration at shocks follow the trajectories of individual particles as they scatter repeatedly across the shock front, gaining energy with each crossing. The particles are assumed to scatter from magnetohydrodynamic (MHD) turbulence on both sides of the shock. A scattering law is used which is related to the assumed form of the turbulence, and the particle and shock parameters. High energy cosmic ray spectra derived from Monte Carlo simulations have observed power law behavior just as the spectra derived from analytic calculations based on a diffusion equation. This high energy behavior is not sensitive to the scattering law used. In contrast with Monte Carlo calculations diffusive calculations rely on the initial injection of supra-thermal particles into the shock environment. Monte Carlo simulations are the only known way to describe the extraction of particles directly from the thermal pool. This was the triumph of the Monte Carlo approach. The question of acceleration efficiency is an important one in the shock acceleration game. The efficiency of shock waves efficient to account for the observed flux of high energy galactic cosmic rays was examined. The efficiency of the acceleration process depends on the thermal particle pick-up and hence the low energy scattering in detail. One of the goals is the self-consistent derivation of the accelerated particle spectra and the MHD turbulence spectra. Presumably the upstream turbulence, which scatters the particles so they can be accelerated, is excited by the streaming accelerated particles and the needed downstream turbulence is convected from the upstream region. The present code is to be modified to include a better
Monte Carlo simulations in small animal PET imaging
This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using -F and [18F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies
Monte Carlo simulations in small animal PET imaging
Branco, Susana [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)], E-mail: susana.silva@fc.ul.pt; Jan, Sebastien [Service Hospitalier Frederic Joliot, CEA/DSV/DRM, Orsay (France); Almeida, Pedro [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)
2007-10-01
This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using {sup -}F and [{sup 18}F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies.
Monte Carlo simulations of neoclassical transport in toroidal plasmas
FORTEC-3D code, which solves the drift-kinetic equation for torus plasmas and radial electric field using the δf Monte Carlo method, has developed to study the variety of issues relating to neoclassical transport phenomena in magnetic confinement plasmas. Here the numerical techniques used in FORTEC-3D are reviewed, and resent progress in the simulation method to simulate GAM oscillation is also explained. A band-limited white noise term is introduced in the equation of time evolution of radial electric field to excite GAM oscillation, which enables us to analyze GAM frequency using FORTEC-3D even in the case the collisionless GAM damping is fast. (author)
Multi-Level Monte Carlo Simulations with Importance Sampling
Przemyslaw S. Stilger and Ser-Huang Poon
2013-01-01
We present an application of importance sampling to multi-asset options under the Heston and the Bates models as well as to the Heston-Hull-White and the Heston-Cox-Ingersoll-Ross models. Moreover, we provide an efficient importance sampling scheme in a Multi-Level Monte Carlo simulation. In all cases, we explain how the Greeks can be computed in the different simulation schemes using the Likelihood Ratio Method, and how combining it with importance sampling leads to a significant variance re...
Monte Carlo simulation of gamma ray shielding parameters of concretes
Highlights: • MCNP simulation of photon interaction parameters of concretes at 1.5, 2, 3, 4, 5 and 6 MeV. • Compared MCNP, experiment and XCOM photon cross-section database. • μ and TVL of the concretes were found dependent upon chemical composition, density and photon energy. • TVL values of the concretes decrease with increase Fe content and increase with increase in photon energy. - Abstract: The mass attenuation coefficients, linear attenuation coefficients and tenth value layer of seven types of concretes having density (2.3–5.11 g cm−3) have been simulated by Monte Carlo simulation techniques at photon energies 1.5, 2, 3, 4, 5 and 6 MeV. Numerical simulation results have been compared with experimental and XCOM photon cross section database and showed a good agreement. Linear attenuation coefficient and tenth value layer of the concretes were found chemical composition, density and photon energy dependent. The tenth value layer of the concretes decrease with increase iron content and increase with increase in photon energy. The linear attenuation coefficients values of the concretes increase with density and decrease with photon energy. Monte Carlo simulation, calculated and experimental results show that the ordinary concrete having lowest iron content (0.63%) have minimum linear attenuation coefficient
Monte Carlo simulations of particle acceleration at oblique shocks
Baring, Matthew G.; Ellison, Donald C.; Jones, Frank C.
1994-02-01
The Fermi shock acceleration mechanism may be responsible for the production of high-energy cosmic rays in a wide variety of environments. Modeling of this phenomenon has largely focused on plane-parallel shocks, and one of the most promising techniques for its study is the Monte Carlo simulation of particle transport in shocked fluid flows. One of the principal problems in shock acceleration theory is the mechanism and efficiency of injection of particles from the thermal gas into the accelerated population. The Monte Carlo technique is ideally suited to addressing the injection problem directly, and previous applications of it to the quasi-parallel Earth bow shock led to very successful modeling of proton and heavy ion spectra, as well as other observed quantities. Recently this technique has been extended to oblique shock geometries, in which the upstream magnetic field makes a significant angle ThetaB1 to the shock normal. Spectral resutls from test particle Monte Carlo simulations of cosmic-ray acceleration at oblique, nonrelativistic shocks are presented. The results show that low Mach number shocks have injection efficiencies that are relatively insensitive to (though not independent of) the shock obliquity, but that there is a dramatic drop in efficiency for shocks of Mach number 30 or more as the obliquity increases above 15 deg. Cosmic-ray distributions just upstream of the shock reveal prominent bumps at energies below the thermal peak; these disappear far upstream but might be observable features close to astrophysical shocks.
Monte Carlo simulation of transition radiation and δ electrons
This paper employs Monte Carlo simulations of the performance of a transition radiation detector (TRD). The program has been written for the TRD in the ZEUS spectrometer, which separates electrons from hadrons in the momentum range between 1 GeV/c and 30 GeV/c. Both, total charge method and cluster counting method were simulated taking into account various experimental parameters. In particular, it was found that the cluster counting method relies on a quantitative understanding of the background originating from the production of δ-electrons by charged particles. The results of the Monte Carlo calculations are in agreement with experimental data obtained with prototypes within a systematic uncertainty of 20%. We applied our Monte Carlo program to studies in order to find an optimum layout for the TRD within available space in the ZEUS spectrometer. In this context, the performance of TRD layouts with different geometries and materials has been evaluated comprehensively. The geometry found by optimization promises an improvement on hadron suppression by a factor of about two for both methods compared with present results from test measurements. Applying algorithms for a detailed analysis of the energy and space distributions of the clusters in the TRD, hadrons in the momentum range from 1 to 30 GeV/c can be suppressed to a level of less than 2%. This method of cluster analysing improves the suppression of hadrons by a factor of about two compared to the total charge method. (orig.)
Pattern Recognition for a Flight Dynamics Monte Carlo Simulation
Restrepo, Carolina; Hurtado, John E.
2011-01-01
The design, analysis, and verification and validation of a spacecraft relies heavily on Monte Carlo simulations. Modern computational techniques are able to generate large amounts of Monte Carlo data but flight dynamics engineers lack the time and resources to analyze it all. The growing amounts of data combined with the diminished available time of engineers motivates the need to automate the analysis process. Pattern recognition algorithms are an innovative way of analyzing flight dynamics data efficiently. They can search large data sets for specific patterns and highlight critical variables so analysts can focus their analysis efforts. This work combines a few tractable pattern recognition algorithms with basic flight dynamics concepts to build a practical analysis tool for Monte Carlo simulations. Current results show that this tool can quickly and automatically identify individual design parameters, and most importantly, specific combinations of parameters that should be avoided in order to prevent specific system failures. The current version uses a kernel density estimation algorithm and a sequential feature selection algorithm combined with a k-nearest neighbor classifier to find and rank important design parameters. This provides an increased level of confidence in the analysis and saves a significant amount of time.
Monte-Carlo Simulations of Star Clusters; 1, First Results
Giersz, M
1998-01-01
A revision of Stodolkiewicz's Monte-Carlo code is used to simulate evolution of star clusters. The new method treats each superstar as a single star and follows the evolution and motion of all individual stellar objects. The first calculations for isolated, equal-mass N-body systems with three-body energy generation according to Spitzer's formulae show good agreement with direct N-body calculations for N=2000, 4096 and 10000 particles. The density, velocity, mass distributions, energy generation, number of binaries etc. follow the N-body results. Only the number of escapers is slightly too high compared to N-body results and there is no level off anisotropy for advanced post-collapse evolution of Monte-Carlo models as is seen in N-body simulations for N 10000 gravothermal oscillations are clearly visible. The calculations of N=2000, 4096, 10000, 32000 and 100000 models take about 2, 6, 20, 130 and 2500 hours, respectively. The Monte-Carlo code is at least 10^5 times faster than the N-body one for N=32768 wit...
Monte Carlo simulation for statistical decay of compound nucleus
We perform Monte Carlo simulations for particle and γ-ray emissions from a compound nucleus based on the Hauser-Feshbach statistical theory; the Monte Carlo Hauser-Feshbach (MCHF) method. The MCHF calculation, which gives us correlated information between emitted particles and γ-rays, will be a powerful tool in many applications, because we are able to probe nuclear reactions in more microscopic way. For example, the MCHF code can be used as an event generator in a radiation transport code. Having the correlated neutron and γ-ray emission process in the transport calculations, energy conservation is satisfied automatically event-by-event. In addition, the correlations amongst particles and γ-ray can be a signature of a particular nuclear reaction occurred in a nuclear system. We have been developing the MCHF code, CGM, which solves the Hauser-Feshbach equation with the Monte Carlo method. The code includes all the common models that emerge in a standard Hauser-Feshbach code, namely the particle transmission generator, the level density module, interface to the discrete level database, and so on. The code allows to emit multiple neutrons, as long as the excitation energy of the compound nucleus is larger than the neutron separation energy. The γ-ray competition is always included at each compound decay stage, and the angular momentum conservation holds too. In this paper, we discuss our technique to calculate the particle and γ-ray correlations in the statistical model framework, and some simulation examples are shown
Monte Carlo simulation of positronium thermalization in gases
Marjanović Srđan D.
2010-01-01
Full Text Available In this paper we present the results of Monte Carlo simulations of positronium (Ps swarm thermalization in helium (He and water vapour. We have investigated the temporal evolution of energy and spatial parameters of the swarm and their sensitivity to the shape of the cross-section and the initial energy distribution. Positron anihilation spectroscopy (PAS and positron emission tomography (PET are techniques that depend on anihilation of positronium in materials and tissue. The results obtained point that the Monte Carlo technique shows good agreement with experimental results and is capable of accurately describing the behaviour of Ps particles including the energy, particle lifetime and the moment and location of the anihilation.
Fast Monte Carlo-assisted simulation of cloudy Earth backgrounds
Adler-Golden, Steven; Richtsmeier, Steven C.; Berk, Alexander; Duff, James W.
2012-11-01
A calculation method has been developed for rapidly synthesizing radiometrically accurate ultraviolet through longwavelengthinfrared spectral imagery of the Earth for arbitrary locations and cloud fields. The method combines cloudfree surface reflectance imagery with cloud radiance images calculated from a first-principles 3-D radiation transport model. The MCScene Monte Carlo code [1-4] is used to build a cloud image library; a data fusion method is incorporated to speed convergence. The surface and cloud images are combined with an upper atmospheric description with the aid of solar and thermal radiation transport equations that account for atmospheric inhomogeneity. The method enables a wide variety of sensor and sun locations, cloud fields, and surfaces to be combined on-the-fly, and provides hyperspectral wavelength resolution with minimal computational effort. The simulations agree very well with much more time-consuming direct Monte Carlo calculations of the same scene.
The MCLIB library: Monte Carlo simulation of neutron scattering instruments
Monte Carlo is a method to integrate over a large number of variables. Random numbers are used to select a value for each variable, and the integrand is evaluated. The process is repeated a large number of times and the resulting values are averaged. For a neutron transport problem, first select a neutron from the source distribution, and project it through the instrument using either deterministic or probabilistic algorithms to describe its interaction whenever it hits something, and then (if it hits the detector) tally it in a histogram representing where and when it was detected. This is intended to simulate the process of running an actual experiment (but it is much slower). This report describes the philosophy and structure of MCLIB, a Fortran library of Monte Carlo subroutines which has been developed for design of neutron scattering instruments. A pair of programs (LQDGEOM and MC RUN) which use the library are shown as an example
Atomistic Kinetic Monte Carlo Simulations of Polycrystalline Copper Electrodeposition
Treeratanaphitak, Tanyakarn; Abukhdeir, Nasser Mohieddin
2014-01-01
A high-fidelity kinetic Monte Carlo (KMC) simulation method (T. Treeratanaphitak, M. Pritzker, N. M. Abukhdeir, Electrochim. Acta 121 (2014) 407--414) using the semi-empirical multi-body embedded-atom method (EAM) potential has been extended to model polycrystalline metal electrodeposition. The presented KMC-EAM method enables true three-dimensional atomistic simulations of electrodeposition over experimentally relevant timescales. Simulations using KMC-EAM are performed over a range of overpotentials to predict the effect on deposit texture evolution. Results show strong agreement with past experimental results both with respect to deposition rates on various copper surfaces and roughness-time power law behaviour. It is found that roughness scales with time $\\propto t^\\beta$ where $\\beta=0.62 \\pm 0.12$, which is in good agreement with past experimental results. Furthermore, the simulations provide insights into sub-surface deposit morphologies which are not directly accessible from experimental measurements.
Monte carlo simulation for designing an explosive-inspection system
In order to optimize the design of γ-ray detectors and data analysis of the system for inspection of explosive with associated alpha particle technique, Monte Carlo code EGSnrc was used to simulated detection efficiency and response function of inorganic scintillator detector for γ-rays, aimed at choosing the right type detector. Pulse height spectra of γ-rays of φ5' x 8' NaI(Tl) from graphite, water, ammonium nitrate and simulated explosive induced by 14 MeV neutron were simulated. The calculated results were analyzed and compared with experiments results, demonstrating that simulation method is reliable and it can be used to obtain the database of response function for explosive inspection. (authors)
Research on Monte Carlo simulation method of industry CT system
There are a series of radiation physical problems in the design and production of industry CT system (ICTS), including limit quality index analysis; the effect of scattering, efficiency of detectors and crosstalk to the system. Usually the Monte Carlo (MC) Method is applied to resolve these problems. Most of them are of little probability, so direct simulation is very difficult, and existing MC methods and programs can't meet the needs. To resolve these difficulties, particle flux point auto-important sampling (PFPAIS) is given on the basis of auto-important sampling. Then, on the basis of PFPAIS, a particular ICTS simulation method: MCCT is realized. Compared with existing MC methods, MCCT is proved to be able to simulate the ICTS more exactly and effectively. Furthermore, the effects of all kinds of disturbances of ICTS are simulated and analyzed by MCCT. To some extent, MCCT can guide the research of the radiation physical problems in ICTS. (author)
Accelerating particle-in-cell simulations using multilevel Monte Carlo
Ricketson, Lee
2015-11-01
Particle-in-cell (PIC) simulations have been an important tool in understanding plasmas since the dawn of the digital computer. Much more recently, the multilevel Monte Carlo (MLMC) method has accelerated particle-based simulations of a variety of systems described by stochastic differential equations (SDEs), from financial portfolios to porous media flow. The fundamental idea of MLMC is to perform correlated particle simulations using a hierarchy of different time steps, and to use these correlations for variance reduction on the fine-step result. This framework is directly applicable to the Langevin formulation of Coulomb collisions, as demonstrated in previous work, but in order to apply to PIC simulations of realistic scenarios, MLMC must be generalized to incorporate self-consistent evolution of the electromagnetic fields. We present such a generalization, with rigorous results concerning its accuracy and efficiency. We present examples of the method in the collisionless, electrostatic context, and discuss applications and extensions for the future.
On Monte Carlo Simulation and Analysis of Electricity Markets
This dissertation is about how Monte Carlo simulation can be used to analyse electricity markets. There are a wide range of applications for simulation; for example, players in the electricity market can use simulation to decide whether or not an investment can be expected to be profitable, and authorities can by means of simulation find out which consequences a certain market design can be expected to have on electricity prices, environmental impact, etc. In the first part of the dissertation, the focus is which electricity market models are suitable for Monte Carlo simulation. The starting point is a definition of an ideal electricity market. Such an electricity market is partly practical from a mathematical point of view (it is simple to formulate and does not require too complex calculations) and partly it is a representation of the best possible resource utilisation. The definition of the ideal electricity market is followed by analysis how the reality differs from the ideal model, what consequences the differences have on the rules of the electricity market and the strategies of the players, as well as how non-ideal properties can be included in a mathematical model. Particularly, questions about environmental impact, forecast uncertainty and grid costs are studied. The second part of the dissertation treats the Monte Carlo technique itself. To reduce the number of samples necessary to obtain accurate results, variance reduction techniques can be used. Here, six different variance reduction techniques are studied and possible applications are pointed out. The conclusions of these studies are turned into a method for efficient simulation of basic electricity markets. The method is applied to some test systems and the results show that the chosen variance reduction techniques can produce equal or better results using 99% fewer samples compared to when the same system is simulated without any variance reduction technique. More complex electricity market models
Monte Carlo Simulation Of Emission Tomography And Other Medical Imaging Techniques
Harrison, Robert L.
2010-01-01
An introduction to Monte Carlo simulation of emission tomography. This paper reviews the history and principles of Monte Carlo simulation, then applies these principles to emission tomography using the public domain simulation package SimSET (a Simulation System for Emission Tomography) as an example. Finally, the paper discusses how the methods are modified for X-ray computed tomography and radiotherapy simulations.
Review of neutron noise analysis theory by Monte Carlo simulation
Some debates on the theory of neutron noise analysis for reactor kinetic parameter measurement were found before 1970 but a report firmly clearing these debates has not been found, and a question was raised when neutron noise experiments for the TRIGA and HANARO reactors in Korea were performed. In order to clarify this question, the neutron noise experiment is simulated by the Monte Carlo method. This simulation confirms that the widely used equation is approximately valid and that the confusion was caused from the explanation on the derivation of the equation. Rossi-α technique is one of the representative methods of noise analyses for the reactor kinetic parameter measurement, but different opinions were raised for the chain reaction related term in the equation. The equation originally derived at the Los Alamos National Laboratory (LANL) has been widely accepted. However, the others were supported by strict mathematics and experiments as well, and the reason of discrepancy has not been clarified. Since it is the problem of basic concept before the effect of neutron energy or geometry is included, the Monte Carlo simulation for the simplest reactor model could clarify it. For this purpose, the experiment measuring the neutron noise is simulated, and it results that the original equation is approximately valid. However, it is judged that the explanation on the equation by the authors derived it for the first time is not so correct, but Orndoff who made the first experiment by the Ross-α technique explained it rather correctly
Modeling and Computer Simulation: Molecular Dynamics and Kinetic Monte Carlo
Wirth, B.D.; Caturla, M.J.; Diaz de la Rubia, T.
2000-10-10
Recent years have witnessed tremendous advances in the realistic multiscale simulation of complex physical phenomena, such as irradiation and aging effects of materials, made possible by the enormous progress achieved in computational physics for calculating reliable, yet tractable interatomic potentials and the vast improvements in computational power and parallel computing. As a result, computational materials science is emerging as an important complement to theory and experiment to provide fundamental materials science insight. This article describes the atomistic modeling techniques of molecular dynamics (MD) and kinetic Monte Carlo (KMC), and an example of their application to radiation damage production and accumulation in metals. It is important to note at the outset that the primary objective of atomistic computer simulation should be obtaining physical insight into atomic-level processes. Classical molecular dynamics is a powerful method for obtaining insight about the dynamics of physical processes that occur on relatively short time scales. Current computational capability allows treatment of atomic systems containing as many as 10{sup 9} atoms for times on the order of 100 ns (10{sup -7}s). The main limitation of classical MD simulation is the relatively short times accessible. Kinetic Monte Carlo provides the ability to reach macroscopic times by modeling diffusional processes and time-scales rather than individual atomic vibrations. Coupling MD and KMC has developed into a powerful, multiscale tool for the simulation of radiation damage in metals.
'Odontologic dosimetric card' experiments and simulations using Monte Carlo methods
The techniques for data processing, combined with the development of fast and more powerful computers, makes the Monte Carlo methods one of the most widely used tools in the radiation transport simulation. For applications in diagnostic radiology, this method generally uses anthropomorphic phantoms to evaluate the absorbed dose to patients during exposure. In this paper, some Monte Carlo techniques were used to simulation of a testing device designed for intra-oral X-ray equipment performance evaluation called Odontologic Dosimetric Card (CDO of 'Cartao Dosimetrico Odontologico' in Portuguese) for different thermoluminescent detectors. This paper used two computational models of exposition RXD/EGS4 and CDO/EGS4. In the first model, the simulation results are compared with experimental data obtained in the similar conditions. The second model, it presents the same characteristics of the testing device studied (CDO). For the irradiations, the X-ray spectra were generated by the IPEM report number 78, spectrum processor. The attenuated spectrum was obtained for IEC 61267 qualities and various additional filters for a Pantak 320 X-ray industrial equipment. The results obtained for the study of the copper filters used in the determination of the kVp were compared with experimental data, validating the model proposed for the characterization of the CDO. The results shower of the CDO will be utilized in quality assurance programs in order to guarantee that the equipment fulfill the requirements of the Norm SVS No. 453/98 MS (Brazil) 'Directives of Radiation Protection in Medical and Dental Radiodiagnostic'. We conclude that the EGS4 is a suitable code Monte Carlo to simulate thermoluminescent dosimeters and experimental procedures employed in the routine of the quality control laboratory in diagnostic radiology. (author)
Monte Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (Emc2.xls).
U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...
Monte Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (Emc2.xls)
U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...
Mont Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (emcee.xls).xml
U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...
Mont Carlo Simulation Program from the World Petroleum Assessment 2000, DDS-60 (emcee.xls)
U.S. Geological Survey, Department of the Interior — Monte Carlo programs described in chapter MC, Monte Carlo Simulation Method. Emc2.xls was the program used to calculate the estimates of undiscovered resources for...
Monte Carlo simulations for design of the KFUPM PGNAA facility
Naqvi, A A; Maslehuddin, M; Kidwai, S
2003-01-01
Monte Carlo simulations were carried out to design a 2.8 MeV neutron-based prompt gamma ray neutron activation analysis (PGNAA) setup for elemental analysis of cement samples. The elemental analysis was carried out using prompt gamma rays produced through capture of thermal neutrons in sample nuclei. The basic design of the PGNAA setup consists of a cylindrical cement sample enclosed in a cylindrical high-density polyethylene moderator placed between a neutron source and a gamma ray detector. In these simulations the predominant geometrical parameters of the PGNAA setup were optimized, including moderator size, sample size and shielding of the detector. Using the results of the simulations, an experimental PGNAA setup was then fabricated at the 350 kV Accelerator Laboratory of this University. The design calculations were checked experimentally through thermal neutron flux measurements inside the PGNAA moderator. A test prompt gamma ray spectrum of the PGNAA setup was also acquired from a Portland cement samp...
Monte Carlo Simulation Tool Installation and Operation Guide
Aguayo Navarrete, Estanislao; Ankney, Austin S.; Berguson, Timothy J.; Kouzes, Richard T.; Orrell, John L.; Troy, Meredith D.; Wiseman, Clinton G.
2013-09-02
This document provides information on software and procedures for Monte Carlo simulations based on the Geant4 toolkit, the ROOT data analysis software and the CRY cosmic ray library. These tools have been chosen for its application to shield design and activation studies as part of the simulation task for the Majorana Collaboration. This document includes instructions for installation, operation and modification of the simulation code in a high cyber-security computing environment, such as the Pacific Northwest National Laboratory network. It is intended as a living document, and will be periodically updated. It is a starting point for information collection by an experimenter, and is not the definitive source. Users should consult with one of the authors for guidance on how to find the most current information for their needs.
Lanczos and Recursion Techniques for Multiscale Kinetic Monte Carlo Simulations
Rudd, R E; Mason, D R; Sutton, A P
2006-03-13
We review an approach to the simulation of the class of microstructural and morphological evolution involving both relatively short-ranged chemical and interfacial interactions and long-ranged elastic interactions. The calculation of the anharmonic elastic energy is facilitated with Lanczos recursion. The elastic energy changes affect the rate of vacancy hopping, and hence the rate of microstructural evolution due to vacancy mediated diffusion. The elastically informed hopping rates are used to construct the event catalog for kinetic Monte Carlo simulation. The simulation is accelerated using a second order residence time algorithm. The effect of elasticity on the microstructural development has been assessed. This article is related to a talk given in honor of David Pettifor at the DGP60 Workshop in Oxford.
Monte Carlo Simulation for Statistical Decay of Compound Nucleus
Chadwick M.B.
2012-02-01
Full Text Available We perform Monte Carlo simulations for neutron and γ-ray emissions from a compound nucleus based on the Hauser-Feshbach statistical theory. This Monte Carlo Hauser-Feshbach (MCHF method calculation, which gives us correlated information between emitted particles and γ-rays. It will be a powerful tool in many applications, as nuclear reactions can be probed in a more microscopic way. We have been developing the MCHF code, CGM, which solves the Hauser-Feshbach theory with the Monte Carlo method. The code includes all the standard models that used in a standard Hauser-Feshbach code, namely the particle transmission generator, the level density module, interface to the discrete level database, and so on. CGM can emit multiple neutrons, as long as the excitation energy of the compound nucleus is larger than the neutron separation energy. The γ-ray competition is always included at each compound decay stage, and the angular momentum and parity are conserved. Some calculations for a fission fragment 140Xe are shown as examples of the MCHF method, and the correlation between the neutron and γ-ray is discussed.
Monte Carlo simulation of quantum Zeno effect in the brain
Georgiev, Danko
2015-12-01
Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.
Monte Carlo simulations and dosimetric studies of an irradiation facility
Belchior, A.; Botelho, M. L.; Vaz, P.
2007-09-01
There is an increasing utilization of ionizing radiation for industrial applications. Additionally, the radiation technology offers a variety of advantages in areas, such as sterilization and food preservation. For these applications, dosimetric tests are of crucial importance in order to assess the dose distribution throughout the sample being irradiated. The use of Monte Carlo methods and computational tools in support of the assessment of the dose distributions in irradiation facilities can prove to be economically effective, representing savings in the utilization of dosemeters, among other benefits. One of the purposes of this study is the development of a Monte Carlo simulation, using a state-of-the-art computational tool—MCNPX—in order to determine the dose distribution inside an irradiation facility of Cobalt 60. This irradiation facility is currently in operation at the ITN campus and will feature an automation and robotics component, which will allow its remote utilization by an external user, under REEQ/996/BIO/2005 project. The detailed geometrical description of the irradiation facility has been implemented in MCNPX, which features an accurate and full simulation of the electron-photon processes involved. The validation of the simulation results obtained was performed by chemical dosimetry methods, namely a Fricke solution. The Fricke dosimeter is a standard dosimeter and is widely used in radiation processing for calibration purposes.
Monte Carlo simulation for simultaneous particle coagulation and deposition
ZHAO; Haibo; ZHENG; Chuguang
2006-01-01
The process of dynamic evolution in dispersed systems due to simultaneous particle coagulation and deposition is described mathematically by general dynamic equation (GDE). Monte Carlo (MC) method is an important approach of numerical solutions of GDE. However, constant-volume MC method exhibits the contradictory of low computation cost and high computation precision owing to the fluctuation of the number of simulation particles; constant-number MC method can hardly be applied to engineering application and general scientific quantitative analysis due to the continual contraction or expansion of computation domain. In addition, the two MC methods depend closely on the "subsystem" hypothesis, which constraints their expansibility and the scope of application. A new multi-Monte Carlo (MMC) method is promoted to take account of GDE for simultaneous particle coagulation and deposition. MMC method introduces the concept of "weighted fictitious particle" and is based on the "time-driven" technique. Furthermore MMC method maintains synchronously the computational domain and the total number of fictitious particles, which results in the latent expansibility of simulation for boundary condition, the space evolution of particle size distribution and even particle dynamics. The simulation results of MMC method for two special cases in which analytical solutions exist agree with analytical solutions well, which proves that MMC method has high and stable computational precision and low computation cost because of the constant and limited number of fictitious particles. Lastly the source of numerical error and the relative error of MMC method are analyzed, respectively.
Monte-Carlo Simulation on Neutron Instruments at CARR
2001-01-01
The design of high resolution neutron powder diffractometer(HRPD) and two cold neutron guides(CNGs) to be built at China advanced research reactor(CARR) are studied by Monte-Carlo simulation technique.The HRPD instrument is desiged to have a minimum resolution of 0.2% and neutron fluence rate of greater than 106 cm-2 ·s-1 at sample position. The resolution curves, neutron fluence rate and effective neutron beam size at sample position are given. Differences in resolutions and intensity between the
Anisotropic flows from colour strings: Monte-Carlo simulations
Braun, M A; Vechernin, V V
2012-01-01
By direct Monte-Carlo simulations it is shown that the anisotropic flows can be successfully described in the colour string picture with fusion and percolation provided anisotropy of particle emission from the fused string is taken into account. Quenching of produced particles in the strong colour field of the string is the basic mechanism for this anisotropy. The concrete realization of this mechanism is borrowed from the QED. Due to dependence of this mechanism on the external field strength the found flows grow with energy, with values for $v_2$ at LHC energies greater by ~15% than at RHIC energies.
Proceedings of the first symposium on Monte Carlo simulation
The first symposium on Monte Carlo simulation was held at Mitsubishi Research Institute, Otemachi, Tokyo, on 10th and 11st of September, 1998. This symposium was organized by Nuclear Code Research Committee at Japan Atomic Energy Research Institute. In the sessions, were presented orally 21 papers on code development, parallel calculation, reactor physics, burn-up, criticality, shielding safety, dose evaluation, nuclear fusion reactor, thermonuclear fusion plasma, nuclear transmutation, electromagnetic cascade, fuel cycle facility. Those presented papers are compiled in this proceedings. The 21 of the presented papers are indexed individually. (J.P.N.)
Proceedings of the first symposium on Monte Carlo simulation
NONE
2001-01-01
The first symposium on Monte Carlo simulation was held at Mitsubishi Research Institute, Otemachi, Tokyo, on 10th and 11st of September, 1998. This symposium was organized by Nuclear Code Research Committee at Japan Atomic Energy Research Institute. In the sessions, were presented orally 21 papers on code development, parallel calculation, reactor physics, burn-up, criticality, shielding safety, dose evaluation, nuclear fusion reactor, thermonuclear fusion plasma, nuclear transmutation, electromagnetic cascade, fuel cycle facility. Those presented papers are compiled in this proceedings. The 21 of the presented papers are indexed individually. (J.P.N.)
Monte Carlo simulations of charge transport in heterogeneous organic semiconductors
Aung, Pyie Phyo; Khanal, Kiran; Luettmer-Strathmann, Jutta
2015-03-01
The efficiency of organic solar cells depends on the morphology and electronic properties of the active layer. Research teams have been experimenting with different conducting materials to achieve more efficient solar panels. In this work, we perform Monte Carlo simulations to study charge transport in heterogeneous materials. We have developed a coarse-grained lattice model of polymeric photovoltaics and use it to generate active layers with ordered and disordered regions. We determine carrier mobilities for a range of conditions to investigate the effect of the morphology on charge transport.
Monte Carlo simulation experiments on box-type radon dosimeter
Jamil, Khalid; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid
2014-11-01
Epidemiological studies show that inhalation of radon gas (222Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the 222Rn concentrations (Bq/m3) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter's dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (ηint) and alpha hit efficiency (ηhit). The ηint depends upon only on the dimensions of the dosimeter and ηhit depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper explains that how radon concentration from the
Implict Monte Carlo Radiation Transport Simulations of Four Test Problems
Gentile, N
2007-08-01
Radiation transport codes, like almost all codes, are difficult to develop and debug. It is helpful to have small, easy to run test problems with known answers to use in development and debugging. It is also prudent to re-run test problems periodically during development to ensure that previous code capabilities have not been lost. We describe four radiation transport test problems with analytic or approximate analytic answers. These test problems are suitable for use in debugging and testing radiation transport codes. We also give results of simulations of these test problems performed with an Implicit Monte Carlo photonics code.
Monte Carlo simulation of the Tien-Shan effect
Monte Carlo simulation of the Tien-Shan effect is carried out. Interaction between hadrons with the energy above 10 TeV and the nuclei of lead atoms with the cross sections ∼ 40% of inelastic interaction is shown to result in production of decaying (unstable) particles (Λc-baryon and D-meson), extracting the main share of interacting hadron energy. These particles production results in irregular energy dependence of the mean-free path for absorption of energy flux of hadron component of a wide atmosphere shower (Tien-Shan effect)
Monte Carlo simulation experiments on box-type radon dosimeter
Jamil, Khalid, E-mail: kjamil@comsats.edu.pk; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid
2014-11-11
Epidemiological studies show that inhalation of radon gas ({sup 222}Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the {sup 222}Rn concentrations (Bq/m{sup 3}) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter’s dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (η{sub int}) and alpha hit efficiency (η{sub hit}). The η{sub int} depends upon only on the dimensions of the dosimeter and η{sub hit} depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper
Monte Carlo simulation on backward steps of single kinesin molecule
Wang Hong; Zhang Yong; Dou Shuo-Xing; Wang Peng-Ye
2008-01-01
Kinesin is a stepping molecular motor travelling along the microtubule. It moves primarily in the plus end direction of the microtubule and occasionally in the minus-end, backward, direction. Recently, the backward steps of kinesin under different loads and temperatures start to attract interests, and the relations among them are revealed. This paper aims to theoretically understand these relations observed in experiments. After introducing a backward pathway into the previous model of the ATPase cycle of kinesin movement, the dependence of the backward movement on the load and the temperature is explored through Monte Carlo simulation. Our results agree well with previous experiments.
Polarization Properties of Ferroelectric Superlattice Studied by Monte Carlo Simulation
Guiwu LU; Hairui XIA; Pijun LIU
2001-01-01
The polarization property of a ferroelectric superlattice formed from two alternating materials was studied using Monte Carlo computer simulation. Our study has been developed in a framework of the transverse Ising model with nearest-neighbor interactions. Both the effect of the transverse field and interface coupling strength have been taken into consideration. In view of our results which is in good agreement with previous theoretical results, it is concluded that the Curie temperature of the superlattice increases with the increase of the interface coupling strength JAB.The remanent polarization and saturation coercive force of the superlattice are also presented.
New electron multiple scattering distributions for Monte Carlo transport simulation
Chibani, Omar (Haut Commissariat a la Recherche (C.R.S.), 2 Boulevard Franz Fanon, Alger B.P. 1017, Alger-Gare (Algeria)); Patau, Jean Paul (Laboratoire de Biophysique et Biomathematiques, Faculte des Sciences Pharmaceutiques, Universite Paul Sabatier, 35 Chemin des Maraichers, 31062 Toulouse cedex (France))
1994-10-01
New forms of electron (positron) multiple scattering distributions are proposed. The first is intended for use in the conditions of validity of the Moliere theory. The second distribution takes place when the electron path is so short that only few elastic collisions occur. These distributions are adjustable formulas. The introduction of some parameters allows impositions of the correct value of the first moment. Only positive and analytic functions were used in constructing the present expressions. This makes sampling procedures easier. Systematic tests are presented and some Monte Carlo simulations, as benchmarks, are carried out. ((orig.))
Lattice Monte Carlo simulation of Galilei variant anomalous diffusion
The observation of an increasing number of anomalous diffusion phenomena motivates the study to reveal the actual reason for such stochastic processes. When it is difficult to get analytical solutions or necessary to track the trajectory of particles, lattice Monte Carlo (LMC) simulation has been shown to be particularly useful. To develop such an LMC simulation algorithm for the Galilei variant anomalous diffusion, we derive explicit solutions for the conditional and unconditional first passage time (FPT) distributions with double absorbing barriers. According to the theory of random walks on lattices and the FPT distributions, we propose an LMC simulation algorithm and prove that such LMC simulation can reproduce both the mean and the mean square displacement exactly in the long-time limit. However, the error introduced in the second moment of the displacement diverges according to a power law as the simulation time progresses. We give an explicit criterion for choosing a small enough lattice step to limit the error within the specified tolerance. We further validate the LMC simulation algorithm and confirm the theoretical error analysis through numerical simulations. The numerical results agree with our theoretical predictions very well
Lattice Monte Carlo simulation of Galilei variant anomalous diffusion
Guo, Gang, E-mail: hndzgg@aliyun.com [School of Information System and Management, National University of Defense Technology, Changsha, 410073 (China); Institute of Computer Science, University of Rostock, Albert Einstein Str. 22, Rostock, 18059 (Germany); Bittig, Arne, E-mail: arne.bittig@uni-rostock.de [Institute of Computer Science, University of Rostock, Albert Einstein Str. 22, Rostock, 18059 (Germany); Uhrmacher, Adelinde, E-mail: lin@informatik.uni-rostock.de [Institute of Computer Science, University of Rostock, Albert Einstein Str. 22, Rostock, 18059 (Germany)
2015-05-01
The observation of an increasing number of anomalous diffusion phenomena motivates the study to reveal the actual reason for such stochastic processes. When it is difficult to get analytical solutions or necessary to track the trajectory of particles, lattice Monte Carlo (LMC) simulation has been shown to be particularly useful. To develop such an LMC simulation algorithm for the Galilei variant anomalous diffusion, we derive explicit solutions for the conditional and unconditional first passage time (FPT) distributions with double absorbing barriers. According to the theory of random walks on lattices and the FPT distributions, we propose an LMC simulation algorithm and prove that such LMC simulation can reproduce both the mean and the mean square displacement exactly in the long-time limit. However, the error introduced in the second moment of the displacement diverges according to a power law as the simulation time progresses. We give an explicit criterion for choosing a small enough lattice step to limit the error within the specified tolerance. We further validate the LMC simulation algorithm and confirm the theoretical error analysis through numerical simulations. The numerical results agree with our theoretical predictions very well.
Benchmarking of proton transport in Super Monte Carlo simulation program
Full text of the publication follows. The Monte Carlo (MC) method has been traditionally applied in nuclear design and analysis due to its capability of dealing with complicated geometries and multi-dimensional physics problems as well as obtaining accurate results. The Super Monte Carlo Simulation Program (SuperMC) is developed by FDS Team in China for fusion, fission, and other nuclear applications. The simulations of radiation transport, isotope burn-up, material activation, radiation dose, and biology damage could be performed using SuperMC. Complicated geometries and the whole physical process of various types of particles in broad energy scale can be well handled. Bi-directional automatic conversion between general CAD models and full-formed input files of SuperMC is supported by MCAM, which is a CAD/image-based automatic modeling program for neutronics and radiation transport simulation. Mixed visualization of dynamical 3D dataset and geometry model is supported by RVIS, which is a nuclear radiation virtual simulation and assessment system. Continuous-energy cross section data from hybrid evaluated nuclear data library HENDL are utilized to support simulation. Neutronic fixed source and critical design parameters calculates for reactors of complex geometry and material distribution based on the transport of neutron and photon have been achieved in our former version of SuperMC. Recently, the proton transport has also been integrated in SuperMC in the energy region up to 10 GeV. The physical processes considered for proton transport include electromagnetic processes and hadronic processes. The electromagnetic processes include ionization, multiple scattering, Bremsstrahlung, and pair production processes. Public evaluated data from HENDL are used in some electromagnetic processes. In hadronic physics, the Bertini intra-nuclear cascade model with excitons, preequilibrium model, nucleus explosion model, fission model, and evaporation model are incorporated to
Study of Gamma spectra by Monte Carlo simulation
The purpose of this paper is obtaining gamma ray spectra by means of a scintillation detector applying the Monte Carlo statistic simulation method using the EGS4 program. The Monte Carlo algorithm implies that the physical system is described by the probability density function which allows generating random figures and the result is taken as an average of numbers which were observed. The EGS4 program allows the simulation of the following physical processes: the photo-electrical effect, the Compton effect, the electron positron pairs generation and the Rayleigh diffusion. The gamma rays recorded by the detector are converted into electrical pulses and the gamma ray spectra are acquired and processed by means of the Nomad Plus portable spectrometer connected to a computer. As a gamma ray sources 137Cs and 60Co are used whose spectra drawn and used for study the interaction of the gamma radiations with the scintillation detector. The parameters which varied during the acquisition of the gamma ray spectra are the distance between source and detector and the measuring time. Due to the statistical processes in the detector, the peak looks like a Gauss distribution. The identification of the gamma quantum energy value is achieved by the experimental spectra peaks, thus gathering information about the position of the peak, the width and the area of the peak respectively. By means of the EGS4 program a simulation is run using these parameters and an 'ideal' spectrum is obtained, a spectrum which is not influenced by the statistical processes which take place inside the detector. Then, the convolution of the spectra is achieved by means of a normalised Gauss function. There is a close match between the experimental results and those simulated in the EGS4 program because the interactions which occurred during the simulation have a statistical behaviour close to the real one. (authors)
A Monte Carlo simulation of ion transport at finite temperatures
We have developed a Monte Carlo simulation for ion transport in hot background gases, which is an alternative way of solving the corresponding Boltzmann equation that determines the distribution function of ions. We consider the limit of low ion densities when the distribution function of the background gas remains unchanged due to collision with ions. Special attention has been paid to properly treating the thermal motion of the host gas particles and their influence on ions, which is very important at low electric fields, when the mean ion energy is comparable to the thermal energy of the host gas. We found the conditional probability distribution of gas velocities that correspond to an ion of specific velocity which collides with a gas particle. Also, we have derived exact analytical formulae for piecewise calculation of the collision frequency integrals. We address the cases when the background gas is monocomponent and when it is a mixture of different gases. The techniques described here are required for Monte Carlo simulations of ion transport and for hybrid models of non-equilibrium plasmas. The range of energies where it is necessary to apply the technique has been defined. The results we obtained are in excellent agreement with the existing ones obtained by complementary methods. Having verified our algorithm, we were able to produce calculations for Ar+ ions in Ar and propose them as a new benchmark for thermal effects. The developed method is widely applicable for solving the Boltzmann equation that appears in many different contexts in physics. (paper)
Monte Carlo simulation of medical linear accelerator using primo code
The use of monte Carlo simulation has become very important in the medical field and especially in calculation in radiotherapy. Various Monte Carlo codes were developed simulating interactions of particles and photons with matter. One of these codes is PRIMO that performs simulation of radiation transport from the primary electron source of a linac to estimate the absorbed dose in a water phantom or computerized tomography (CT). PRIMO is based on Penelope Monte Carlo code. Measurements of 6 MV photon beam PDD and profile were done for Elekta precise linear accelerator at Radiation and Isotopes Center Khartoum using computerized Blue water phantom and CC13 Ionization Chamber. accept Software was used to control the phantom to measure and verify dose distribution. Elektalinac from the list of available linacs in PRIMO was tuned to model Elekta precise linear accelerator. Beam parameter of 6.0 MeV initial electron energy, 0.20 MeV FWHM, and 0.20 cm focal spot FWHM were used, and an error of 4% between calculated and measured curves was found. The buildup region Z max was 1.40 cm and homogenous profile in cross line and in line were acquired. A number of studies were done to verily the model usability one of them is the effect of the number of histories on accuracy of the simulation and the resulted profile for the same beam parameters. The effect was noticeable and inaccuracies in the profile were reduced by increasing the number of histories. Another study was the effect of Side-step errors on the calculated dose which was compared with the measured dose for the same setting.It was in range of 2% for 5 cm shift, but it was higher in the calculated dose because of the small difference between the tuned model and measured dose curves. Future developments include simulating asymmetrical fields, calculating the dose distribution in computerized tomographic (CT) volume, studying the effect of beam modifiers on beam profile for both electron and photon beams.(Author)
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
Methods for variance reduction in Monte Carlo simulations
Bixler, Joel N.; Hokr, Brett H.; Winblad, Aidan; Elpers, Gabriel; Zollars, Byron; Thomas, Robert J.
2016-03-01
Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, due to the probabilistic nature of these simulations, large numbers of photons are often required in order to generate relevant results. Here, we present methods for reduction in the variance of dose distribution in a computational volume. Dose distribution is computed via tracing of a large number of rays, and tracking the absorption and scattering of the rays within discrete voxels that comprise the volume. Variance reduction is shown here using quasi-random sampling, interaction forcing for weakly scattering media, and dose smoothing via bi-lateral filtering. These methods, along with the corresponding performance enhancements are detailed here.
A Transport Condensed History Algorithm for Electron Monte Carlo Simulations
An advanced multiple scattering algorithm for the Monte Carlo simulation of electron transport problems is developed. Unlike established multiple scattering algorithms, this new method, called transport condensed history (TCH), is a true transport process - it simulates a transport equation that approximates the exact Boltzmann transport process. In addition to having a larger mean free path and a more isotropic scattering operator than the Boltzmann equation, the approximate transport equation also preserves the zeroth- and first-order angular moments of the exact equation. These features enable TCH to accurately predict electron position as a function of energy (path length) and to move particles across material boundaries and interfaces with acceptable accuracy and efficiency. Numerical results and dose calculations are shown to reveal the advantages of TCH over conventional condensed history schemes
Treatment planning in radiosurgery: parallel Monte Carlo simulation software
Scielzo, G. [Galliera Hospitals, Genova (Italy). Dept. of Hospital Physics; Grillo Ruggieri, F. [Galliera Hospitals, Genova (Italy) Dept. for Radiation Therapy; Modesti, M.; Felici, R. [Electronic Data System, Rome (Italy); Surridge, M. [University of South Hampton (United Kingdom). Parallel Apllication Centre
1995-12-01
The main objective of this research was to evaluate the possibility of direct Monte Carlo simulation for accurate dosimetry with short computation time. We made us of: graphics workstation, linear accelerator, water, PMMA and anthropomorphic phantoms, for validation purposes; ionometric, film and thermo-luminescent techniques, for dosimetry; treatment planning system for comparison. Benchmarking results suggest that short computing times can be obtained with use of the parallel version of EGS4 that was developed. Parallelism was obtained assigning simulation incident photons to separate processors, and the development of a parallel random number generator was necessary. Validation consisted in: phantom irradiation, comparison of predicted and measured values good agreement in PDD and dose profiles. Experiments on anthropomorphic phantoms (with inhomogeneities) were carried out, and these values are being compared with results obtained with the conventional treatment planning system.
Monte Carlo simulation of electrical corona discharge in air
Settaouti, A.; Settaouti, L. [Electrotechnic Department, University of Sciences and Technology, P.O. Box 1505, El-M' naouar, Oran (Algeria)
2011-01-15
Electrical discharges play a key role in technologies; there are many industrial applications where the corona discharge is used. Air as insulator is probably the best compromise solution for many applications. All of this reflects on the great importance of the evaluation of the corona performance characteristics. Numerical simulation of the corona discharge helps to better understand the involved phenomena and optimize the corona devices. This paper is aimed at calculating the corona discharge in negative point-plane air gaps. To describe the non-equilibrium behavior of the electronic avalanches and to simulate the development of corona discharge the method of Monte Carlo has been used. This model provides the spatial-temporal local field and particles charged densities variations as well as the ionization front velocity. (author)
Treatment planning in radiosurgery: parallel Monte Carlo simulation software
The main objective of this research was to evaluate the possibility of direct Monte Carlo simulation for accurate dosimetry with short computation time. We made us of: graphics workstation, linear accelerator, water, PMMA and anthropomorphic phantoms, for validation purposes; ionometric, film and thermo-luminescent techniques, for dosimetry; treatment planning system for comparison. Benchmarking results suggest that short computing times can be obtained with use of the parallel version of EGS4 that was developed. Parallelism was obtained assigning simulation incident photons to separate processors, and the development of a parallel random number generator was necessary. Validation consisted in: phantom irradiation, comparison of predicted and measured values good agreement in PDD and dose profiles. Experiments on anthropomorphic phantoms (with inhomogeneities) were carried out, and these values are being compared with results obtained with the conventional treatment planning system
Virtual detector characterisation with Monte-Carlo simulations
Sukowski, F.; Yaneu Yaneu, J. F.; Salamon, M.; Ebert, S.; Uhlmann, N.
2009-08-01
In the field of X-ray imaging flat-panel detectors which convert X-rays into electrical signals, are widely used. For different applications, detectors differ in several specific parameters that can be used for characterizing the detector. At the Development Center X-ray Technology EZRT we studied the question how well these characteristics can be determined by only knowing the layer composition of a detector. In order to determine the required parameters, the Monte-Carlo (MC) simulation program ROSI [J. Giersch et al., Nucl. Instr. and Meth. A 509 (2003) 151] was used while taking into account all primary and secondary particle interactions as well as the focal spot size of the X-ray tube. For the study, the Hamamatsu C9311DK [Technical Datasheet Hamamatsu C9311DK flat panel sensor, Hamamatsu Photonics, ( www.hamamatsu.com)], a scintillator-based detector, and the Ajat DIC 100TL [Technical description of Ajat DIC 100TL, Ajat Oy Ltd., ( www.ajat.fi)], a direct converting semiconductor detector, were used. The layer compositions of the two detectors were implemented into the MC simulation program. The following characteristics were measured [N. Uhlmann et al., Nucl. Instr. and Meth. A 591 (2008) 46] and compared to simulation results: The basic spatial resolution (BSR), the modulation transfer function (MTF), the contrast sensitivity (CS) and the specific material thickness range (SMTR). To take scattering of optical photons into account DETECT2000 [C. Moisan et al., DETECT2000—A Program for Modeling Optical Properties of Scintillators, Department of Electrical and Computer Engineering, Laval University, Quebec City, 2000], another Monte-Carlo simulation was used.
Neutronic analysis of the PULSTAR reactor using Monte Carlo simulations
Neutronic analysis of the PULSTAR nuclear reactor was performed in support of its utilization and power upgrade from 1-MWth to 2-MWth. The PULSTAR is an open pool research reactor that is currently fueled with UO2 enriched to 4% in U-235. Detailed models were constructed of its core using the MCNP6 Monte Carlo code and its standard nuclear data libraries. The models covered all eight variations of the core starting with the first critical core in 1972 to the current core that was configured in 2011. Three dimensional heterogeneous models were constructed that faithfully reflected the geometry of the core and its surroundings using the original as-built engineering drawings. The Monte Carlo simulations benefited extensively from measurements that were performed upon the loading of each core and its subsequent operation. This includes power distribution and peaking measurements, depletion measurements (reflecting a core's excess reactivity), and measurements of reactivity feedback coefficients. Furthermore, to support the PULSTAR's fuel needs, the simulations explored the utilization of locally existing inventory of fresh UO2 fuel that is enriched to 6% in U-235. The analysis shows reasonable agreement between the results of the MCNP6 simulations and the available measured data. In general, most discrepancies between simulations and measurements may be attributed to the limited knowledge of the exact conditions of the historical measurements and the procedures used to analyze the measured data. Nonetheless, the results indicate the ability of the constructed models to support safety analysis and licensing action in relation to the on-going upgrades of the PULSTAR reactor. (author)
Neutron-induced semiconductor soft error simulation using the PHITS Monte Carlo simulator
We have performed a neutron-induced soft error simulation using the PHITS Monte Carlo simulator. We validated our technique by comparing the MBGR (Modified Burst Generation Rate) values estimated by our simulation and a well known MBGR table by Fujitsu Laboratories, Ltd. We also evaluated a neutron-induced soft error rate of a SRAM cell as a function of the critical charge as well as a representation using a generally used unit, FIT rate [error/109 hour/device]. (author)
Monte Carlo simulation of gamma ray tomography for image reconstruction
The Monte Carlo simulations of known density and shape object was validate with Gamma Ray Tomography in static experiments. An aluminum half-moon piece placed inside a steel pipe was the MC simulation test object that was also measured by means of gamma ray transmission. Wall effect of the steel pipe due to irradiation geometry in a single pair source-detector tomography was evaluated by comparison with theoretical data. MCNPX code requires a defined geometry to each photon trajectory which practically prevents this usage for tomography reconstruction simulation. The solution was found by writing a program in Delphi language to create input files automation code. Simulations of tomography data by automated MNCPX code were carried out and validated by experimental data. Working in this sequence the produced data needed a databank to be stored. Experimental setup used a Cesium-137 isotopic radioactive source (7.4 × 109 Bq), and NaI(Tl) scintillation detector of (51 × 51) × 10−3 m crystal size coupled to a multichannel analyzer. A stainless steel tubes of 0,154 m internal diameter, 0.014 m thickness wall. The results show that the MCNPX simulation code adapted to automated input file is useful for generating a matrix data M(θ,t), of a computerized gamma ray tomography for any known density and regular shape object. Experimental validation used RMSE from gamma ray paths and from attenuation coefficient data. (author)
Monte Carlo simulation of x-ray spectra in mammography
A model for generating x-ray spectra in mammography is presented. This model used the ITS version 3 Monte Carlo code for simulating the radiation transport. Various target/filter combinations such as tungsten/aluminium, molybdenum/molybdenum, molybdenum/rhodium and rhodium/rhodium were used in the simulation. Both bremsstrahlung and characteristic x-ray production were included in the model. The simulated x-ray emission spectra were compared with two sets of spectra, those of Boone et al (1997 Med. Phys. 24 1863-74) and IPEM report 78. The χ2 test was used for the overall goodness of fit of the spectral data. There is good agreement between the simulated x-ray spectra and the comparison spectra as the test yielded a probability value of nearly 1. When the transmitted x-ray spectra for specific target/filter combinations were generated and compared with a measured molybdenum/rhodium spectrum and spectra generated in IPEM report 78, close agreement is also observed. This was demonstrated by the probability value for the χ2 test being almost 1 for all the cases. However, minor differences between the simulated spectra and the 'standard' ones are observed. (author)
Monte Carlo simulation of x-ray spectra in mammography
Ng, K.P. [Department of Optometry and Radiography, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China). E-mail: benngkp at netvigator.com; Kwok, C.S.; Ng, K.P.; Tang, F.H. [Department of Optometry and Radiography, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)
2000-05-01
A model for generating x-ray spectra in mammography is presented. This model used the ITS version 3 Monte Carlo code for simulating the radiation transport. Various target/filter combinations such as tungsten/aluminium, molybdenum/molybdenum, molybdenum/rhodium and rhodium/rhodium were used in the simulation. Both bremsstrahlung and characteristic x-ray production were included in the model. The simulated x-ray emission spectra were compared with two sets of spectra, those of Boone et al (1997 Med. Phys. 24 1863-74) and IPEM report 78. The {chi}{sup 2} test was used for the overall goodness of fit of the spectral data. There is good agreement between the simulated x-ray spectra and the comparison spectra as the test yielded a probability value of nearly 1. When the transmitted x-ray spectra for specific target/filter combinations were generated and compared with a measured molybdenum/rhodium spectrum and spectra generated in IPEM report 78, close agreement is also observed. This was demonstrated by the probability value for the {chi}{sup 2} test being almost 1 for all the cases. However, minor differences between the simulated spectra and the 'standard' ones are observed. (author)
Monte Carlo simulation of gamma ray tomography for image reconstruction
Guedes, Karlos A.N.; Moura, Alex; Dantas, Carlos; Melo, Silvio; Lima, Emerson, E-mail: karlosguedes@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Meric, Ilker [University of Bergen (Norway)
2015-07-01
The Monte Carlo simulations of known density and shape object was validate with Gamma Ray Tomography in static experiments. An aluminum half-moon piece placed inside a steel pipe was the MC simulation test object that was also measured by means of gamma ray transmission. Wall effect of the steel pipe due to irradiation geometry in a single pair source-detector tomography was evaluated by comparison with theoretical data. MCNPX code requires a defined geometry to each photon trajectory which practically prevents this usage for tomography reconstruction simulation. The solution was found by writing a program in Delphi language to create input files automation code. Simulations of tomography data by automated MNCPX code were carried out and validated by experimental data. Working in this sequence the produced data needed a databank to be stored. Experimental setup used a Cesium-137 isotopic radioactive source (7.4 × 109 Bq), and NaI(Tl) scintillation detector of (51 × 51) × 10−3 m crystal size coupled to a multichannel analyzer. A stainless steel tubes of 0,154 m internal diameter, 0.014 m thickness wall. The results show that the MCNPX simulation code adapted to automated input file is useful for generating a matrix data M(θ,t), of a computerized gamma ray tomography for any known density and regular shape object. Experimental validation used RMSE from gamma ray paths and from attenuation coefficient data. (author)
The impact of Monte Carlo simulation. A scientometric analysis of scholarly literature
A scientometric analysis of Monte Carlo simulation and Monte Carlo codes has been performed over a set of representative scholarly journals related to radiation physics. The results of this study are reported and discussed. They document and quantitatively appraise the role of Monte Carlo methods and codes in scientific research and engineering applications. (author)
Construction of the quantitative analysis environment using Monte Carlo simulation
The thoracic phantom image was acquisitioned of the axial section to construct maps of the source and density with Monte Carlo (MC) simulation. The phantom was Heart/Liver Type HL (Kyoto Kagaku Co., Ltd.) single photon emission CT (SPECT)/CT machine was Symbia T6 (Siemence) with the collimator LMEGP (low-medium energy general purpose). Maps were constructed from CT images with an in-house software using Visual studio C Sharp (Microsoft). The code simulation of imaging nuclear detectors (SIMIND) was used for MC simulation, Prominence processor (Nihon Medi-Physics) for filter processing and image reconstruction, and the environment DELL Precision T7400 for all image processes. For the actual experiment, the phantom was given 15 MBq of 99mTc assuming the uptake 2% at the dose of 740 MBq in its myocardial portion and SPECT image was acquisitioned and reconstructed with Butter-worth filter and filter back projection method. CT images were similarly obtained in 0.3 mm thick slices, which were filed in one formatted with digital imaging and communication in medicine (DICOM), and then processed for application to SIMIND for mapping the source and density. Physical and mensuration factors were examined in ideal images by sequential exclusion and simulation of those factors as attenuation, scattering, spatial resolution deterioration and statistical fluctuation. Gamma energy spectrum, SPECT projection and reconstructed images given by the simulation were found to well agree with the actual data, and the precision of MC simulation was confirmed. Physical and mensuration factors were found to be evaluable individually, suggesting the usefulness of the simulation for assessing the precision of their correction. (T.T.)
Monte Carlo simulation of the TRIGA mark 2 criticality experiment
The criticality analysis of the TRIGA-2 bench-mark experiment at the Musashi Institute of Technology Research Reactor (MuITR, 100 kW) was performed by the three-dimensional continuous-energy Monte Carlo code (MCNP4A). To minimize errors due to an inexact geometry model, all fresh fuel and control rods as well as vicinity of the core were precisely modeled. Core multiplication factors (Keff) in the initial core critical experiment and in the excess reactivity adjustment for the several fuel-loading patterns as well as the fuel element reactivity worth distributions were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated Keff overestimated the experimental data by 1.0% for both the initial core and the several fuel-loading arrangements (fuel or graphite element was added only to the outer-ring), but the discrepancy increased to 1.8% for the some fuel-loading patterns (graphite element was positioned in the inner-ring). The comparison result of the fuel element worth distribution showed above tendency. Al in all, the agreement between the MCNP predictions and the experimentally determined values is good, which indicates that the Monte Carlo model is enough to simulate criticality of the TRIGA-2 reactor. (author)
Monte Carlo simulation of the spear reflectometer at LANSCE
The Monte Carlo instrument simulation code, MCLIB, contains elements to represent several components found in neutron spectrometers including slits, choppers, detectors, sources and various samples. Using these elements to represent the components of a neutron scattering instrument, one can simulate, for example, an inelastic spectrometer, a small angle scattering machine, or a reflectometer. In order to benchmark the code, we chose to compare simulated data from the MCLIB code with an actual experiment performed on the SPEAR reflectometer at LANSCE. This was done by first fitting an actual SPEAR data set to obtain the model scattering-length-density profile, Β(z), for the sample and the substrate. Then these parameters were used as input values for the sample scattering function. A simplified model of SPEAR was chosen which contained all of the essential components of the instrument. A code containing the MCLIB subroutines was then written to simulate this simplified instrument. The resulting data was then fit and compared to the actual data set in terms of the statistics, resolution and accuracy
Learning About Ares I from Monte Carlo Simulation
Hanson, John M.; Hall, Charlie E.
2008-01-01
This paper addresses Monte Carlo simulation analyses that are being conducted to understand the behavior of the Ares I launch vehicle, and to assist with its design. After describing the simulation and modeling of Ares I, the paper addresses the process used to determine what simulations are necessary, and the parameters that are varied in order to understand how the Ares I vehicle will behave in flight. Outputs of these simulations furnish a significant group of design customers with data needed for the development of Ares I and of the Orion spacecraft that will ride atop Ares I. After listing the customers, examples of many of the outputs are described. Products discussed in this paper include those that support structural loads analysis, aerothermal analysis, flight control design, failure/abort analysis, determination of flight performance reserve, examination of orbit insertion accuracy, determination of the Upper Stage impact footprint, analysis of stage separation, analysis of launch probability, analysis of first stage recovery, thrust vector control and reaction control system design, liftoff drift analysis, communications analysis, umbilical release, acoustics, and design of jettison systems.
Modelling laser light propagation in thermoplastics using Monte Carlo simulations
Parkinson, Alexander
Laser welding has great potential as a fast, non-contact joining method for thermoplastic parts. In the laser transmission welding of thermoplastics, light passes through a semi-transparent part to reach the weld interface. There, it is absorbed as heat, which causes melting and subsequent welding. The distribution and quantity of light reaching the interface are important for predicting the quality of a weld, but are experimentally difficult to estimate. A model for simulating the path of this laser light through these light-scattering plastic parts has been developed. The technique uses a Monte-Carlo approach to generate photon paths through the material, accounting for absorption, scattering and reflection between boundaries in the transparent polymer. It was assumed that any light escaping the bottom surface contributed to welding. The photon paths are then scaled according to the input beam profile in order to simulate non-Gaussian beam profiles. A method for determining the 3 independent optical parameters to accurately predict transmission and beam power distribution at the interface was established using experimental data for polycarbonate at 4 different glass fibre concentrations and polyamide-6 reinforced with 20% long glass fibres. Exit beam profiles and transmissions predicted by the simulation were found to be in generally good agreement (R2>0.90) with experimental measurements. The simulations allowed the prediction of transmission and power distributions at other thicknesses as well as information on reflection, energy absorption and power distributions at other thicknesses for these materials.
Residual entropy of ice III from Monte Carlo simulation.
Kolafa, Jiří
2016-03-28
We calculated the residual entropy of ice III as a function of the occupation probabilities of hydrogen positions α and β assuming equal energies of all configurations. To do this, a discrete ice model with Bjerrum defect energy penalty and harmonic terms to constrain the occupation probabilities was simulated by the Metropolis Monte Carlo method for a range of temperatures and sizes followed by thermodynamic integration and extrapolation to N = ∞. Similarly as for other ices, the residual entropies are slightly higher than the mean-field (no-loop) approximation. However, the corrections caused by fluctuation of energies of ice samples calculated using molecular models of water are too large for accurate determination of the chemical potential and phase equilibria. PMID:27036463
Monte Carlo simulations of medium-scale CMB anisotropy
Kogut, A J
1996-01-01
Recent detections of cosmic microwave background (CMB) anisotropy at half-degree angular scales show considerable scatter in the reported amplitude even at similar angular resolution. We use Monte Carlo techniques to simulate the current set of medium-scale CMB observations, including all relevant aspects of sky coverage and measurement technique. The scatter in the reported amplitudes is well within the range expected for the standard cold dark matter (CDM) cosmological model, and results primarily from the restricted sky coverage of each experiment. Within the context of standard CDM current observations of CMB anisotropy support the detection of a ``Doppler peak'' in the CMB power spectrum consistent with baryon density 0.01 < Omega_b < 0.13 (95% confidence) for Hubble constant H_0 = 50 km/s/Mpc. The uncertainties are approximately evenly divided between instrument noise and cosmic variance arising from the limited sky coverage.
Monte Carlo simulations and benchmark studies at CERN's accelerator chain
AUTHOR|(CDS)2083190; Brugger, Markus
2015-01-01
Mixed particle and energy radiation fields present at the Large Hadron Collider (LHC) and its accelerator chain are responsible for failures on electronic devices located in the vicinity of the accelerator beam lines. These radiation effects on electronics and, more generally, the overall radiation damage issues have a direct impact on component and system lifetimes, as well as on maintenance requirements and radiation exposure to personnel who have to intervene and fix existing faults. The radiation environments and respective radiation damage issues along the CERN’s accelerator chain were studied in the framework of the CERN Radiation to Electronics (R2E) project and are hereby presented. The important interplay between Monte Carlo simulations and radiation monitoring is also highlighted.
Monte Carlo simulations of air showers in atmospheric electric fields
Buitink, S; Falcke, H; Heck, D; Kuijpers, J
2009-01-01
The development of cosmic ray air showers can be influenced by atmospheric electric fields. Under fair weather conditions these fields are small, but the strong fields inside thunderstorms can have a significant effect on the electromagnetic component of a shower. Understanding this effect is particularly important for radio detection of air showers, since the radio emission is produced by the shower electrons and positrons. We perform Monte Carlo simulations to calculate the effects of different electric field configurations on the shower development. We find that the electric field becomes important for values of the order of 1 kV/cm. Not only can the energy distribution of electrons and positrons change significantly for such field strengths, it is also possible that runaway electron breakdown occurs at high altitudes, which is an important effect in lightning initiation.
Monte Carlo simulations of landmine detection using neutron backscattering imaging
Datema, Cor P. E-mail: c.datema@iri.tudelft.nl; Bom, Victor R.; Eijk, Carel W.E. van
2003-11-01
Neutron backscattering is a technique that has successfully been applied to the detection of non-metallic landmines. Most of the effort in this field has concentrated on single detectors that are scanned across the soil. Here, two new approaches are presented in which a two-dimensional image of the hydrogen distribution in the soil is made. The first method uses an array of position-sensitive {sup 3}He-tubes that is placed in close proximity of the soil. The second method is based on coded aperture imaging. Here, thermal neutrons from the soil are projected onto a detector which is typically placed one to several meters above the soil. Both methods use a pulsed D/D neutron source. The Monte Carlo simulation package GEANT 4 was used to investigate the performance of both imaging systems.
Monte Carlo simulations of gases adsorbed within nanopores
Trasca, Raluca A.; Mercedes Calbi, M.; Cole, Milton W.
2003-03-01
Condensation of gases within nanopores is different from bulk condensation because of the role of confinement including reduced dimensionality. For a typical range of nanotube radii, the adsorption may take place on two different sites (corresponding to different interaction energies with the nanopore), which we call shell and axial sites. Thus, we model the shell and axial adatoms as interacting species, and employ both a lattice gas model and Monte Carlo simulations to find their corresponding adsorption isotherms and specific heat. We compare these results with exact results at T=0 and with mean field results at finite T, obtained in a previous paper (1,*). 1. Raluca A. Trasca, M. Mercedes Calbi and Milton W. Cole, PRE 65, 061607 (2002) * This research is supported by the Petroleum Research of the American Chemical Society.
Monte Carlo simulations of random non-commutative geometries
Barrett, John W.; Glaser, Lisa
2016-06-01
Random non-commutative geometries are introduced by integrating over the space of Dirac operators that form a spectral triple with a fixed algebra and Hilbert space. The cases with the simplest types of Clifford algebra are investigated using Monte Carlo simulations to compute the integrals. Various qualitatively different types of behaviour of these random Dirac operators are exhibited. Some features are explained in terms of the theory of random matrices but other phenomena remain mysterious. Some of the models with a quartic action of symmetry-breaking type display a phase transition. Close to the phase transition the spectrum of a typical Dirac operator shows manifold-like behaviour for the eigenvalues below a cut-off scale.
Monte Carlo simulations of random non-commutative geometries
Barrett, John W
2015-01-01
Random non-commutative geometries are introduced by integrating over the space of Dirac operators that form a spectral triple with a fixed algebra and Hilbert space. The cases with the simplest types of Clifford algebra are investigated using Monte Carlo simulations to compute the integrals. Various qualitatively different types of behaviour of these random Dirac operators are exhibited. Some features are explained in terms of the theory of random matrices but other phenomena remain mysterious. Some of the models with a quartic action of symmetry-breaking type display a phase transition. Close to the phase transition the spectrum of a typical Dirac operator shows manifold-like behaviour for the eigenvalues below a cut-off scale.
Optimization of Monte Carlo transport simulations in stochastic media
This paper presents an accurate and efficient approach to optimize radiation transport simulations in a stochastic medium of high heterogeneity, like the Very High Temperature Gas-cooled Reactor (VHTR) configurations packed with TRISO fuel particles. Based on a fast nearest neighbor search algorithm, a modified fast Random Sequential Addition (RSA) method is first developed to speed up the generation of the stochastic media systems packed with both mono-sized and poly-sized spheres. A fast neutron tracking method is then developed to optimize the next sphere boundary search in the radiation transport procedure. In order to investigate their accuracy and efficiency, the developed sphere packing and neutron tracking methods are implemented into an in-house continuous energy Monte Carlo code to solve an eigenvalue problem in VHTR unit cells. Comparison with the MCNP benchmark calculations for the same problem indicates that the new methods show considerably higher computational efficiency. (authors)
The Monte Carlo simulation of the absorbed dose in quartz
Chen Shaowen [School of Physics Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275 (China) and Electron Engineering Department, Dongguan University of Technology, Dongguan 523808 (China)], E-mail: siumon@163.com; Liu Xiaowei; Zhang Chunxiang; Tang Qiang [School of Physics Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275 (China)
2009-05-15
Regeneration irradiation is a necessary procedure in TL or OSL dating protocol. The accuracy of measuring the absorbed dose is one of the important factors in dating. Since a beta source is often used in the regeneration irradiation process, the size of the quartz sample, pressure of nitrogen gas and the material of the sample holder may cause significant uncertainties in delivering the absorbed dose. In this work, the effects of the size of the quartz sample, the pressure of nitrogen gas and the material of the sample holder are simulated using the Monte Carlo method, and the uncertainties are discussed in these cases. The results show that they need to be considered in the dating.
Monte Carlo simulations for optimization of neutron shielding concrete
Piotrowski, Tomasz; Tefelski, Dariusz; Polański, Aleksander; Skubalski, Janusz
2012-06-01
Concrete is one of the main materials used for gamma and neutron shielding. While in case of gamma rays an increase in density is usually efficient enough, protection against neutrons is more complex. The aim of this paper is to show the possibility of using the Monte Carlo codes for evaluation and optimization of concrete mix to reach better neutron shielding. Two codes (MCNPX and SPOT — written by authors) were used to simulate neutron transport through a wall made of different concretes. It is showed that concrete of higher compressive strength attenuates neutrons more effectively. The advantage of heavyweight concrete (with barite aggregate), usually used for gamma shielding, over the ordinary concrete was not so clear. Neutron shielding depends on many factors e.g. neutron energy, barrier thickness and atomic composition. All this makes a proper design of concrete as a very important issue for nuclear power plant safety assurance.
Characterization of parallel-hole collimator using Monte Carlo Simulation
Accuracy of in vivo activity quantification improves after the correction of penetrated and scattered photons. However, accurate assessment is not possible with physical experiment. We have used Monte Carlo Simulation to accurately assess the contribution of penetrated and scattered photons in the photopeak window. Simulations were performed with Simulation of Imaging Nuclear Detectors Monte Carlo Code. The simulations were set up in such a way that it provides geometric, penetration, and scatter components after each simulation and writes binary images to a data file. These components were analyzed graphically using Microsoft Excel (Microsoft Corporation, USA). Each binary image was imported in software (ImageJ) and logarithmic transformation was applied for visual assessment of image quality, plotting profile across the center of the images and calculating full width at half maximum (FWHM) in horizontal and vertical directions. The geometric, penetration, and scatter at 140 keV for low-energy general-purpose were 93.20%, 4.13%, 2.67% respectively. Similarly, geometric, penetration, and scatter at 140 keV for low-energy high-resolution (LEHR), medium-energy general-purpose (MEGP), and high-energy general-purpose (HEGP) collimator were (94.06%, 3.39%, 2.55%), (96.42%, 1.52%, 2.06%), and (96.70%, 1.45%, 1.85%), respectively. For MEGP collimator at 245 keV photon and for HEGP collimator at 364 keV were 89.10%, 7.08%, 3.82% and 67.78%, 18.63%, 13.59%, respectively. Low-energy general-purpose and LEHR collimator is best to image 140 keV photon. HEGP can be used for 245 keV and 364 keV; however, correction for penetration and scatter must be applied if one is interested to quantify the in vivo activity of energy 364 keV. Due to heavy penetration and scattering, 511 keV photons should not be imaged with HEGP collimator
Monte Carlo simulation of ICRF discharge initiation in ITER
Tripský, M.; Wauters, T.; Lyssoivan, A.; Křivská, A.; Louche, F.; Van Schoor, M.; Noterdaeme, J.-M.
2015-12-01
Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC). The here presented simulations aim at ensuring that the ITER ICRH&CD system can be safely employed for ICWC and at finding optimal parameters to initiate the plasma. The 1D Monte Carlo code RFdinity1D3V was developed to simulate ICRF discharge initiation. The code traces the electron motion along one toroidal magnetic field line, accelerated by the RF field in front of the ICRF antenna. Electron collisions in the calculations are handled by a Monte Carlo procedure taking into account their energies and the related electron collision cross sections for collisions with H2, H2+ and H+. The code also includes Coulomb collisions between electrons and ions (e - e, e - H2+ , e - H+). We study the electron multiplication rate as a function of the RF discharge parameters (i) antenna input power (0.1-5MW), and (ii) the neutral pressure (H2) for two antenna phasing (monopole [0000]-phasing and small dipole [0π0π]-phasing). Furthermore, we investigate the electron multiplication rate dependency on the distance from the antenna straps. This radial dependency results from the decreasing electric amplitude and field smoothening with increasing distance from the antenna straps. The numerical plasma breakdown definition used in the code corresponds to the moment when a critical electron density nec for the low hybrid resonance (ω = ωLHR) is reached. This numerical definition was previously found in qualitative agreement with experimental breakdown times obtained from the literature and from experiments on the ASDEX Upgrade and TEXTOR.
Monte Carlo simulation of photon way in clinical laser therapy
Ionita, Iulian; Voitcu, Gabriel
2011-07-01
The multiple scattering of light can increase efficiency of laser therapy of inflammatory diseases enlarging the treated area. The light absorption is essential for treatment while scattering dominates. Multiple scattering effects must be introduced using the Monte Carlo method for modeling light transport in tissue and finally to calculate the optical parameters. Diffuse reflectance measurements were made on high concentrated live leukocyte suspensions in similar conditions as in-vivo measurements. The results were compared with the values determined by MC calculations, and the latter have been adjusted to match the specified values of diffuse reflectance. The principal idea of MC simulations applied to absorption and scattering phenomena is to follow the optical path of a photon through the turbid medium. The concentrated live cell solution is a compromise between homogeneous layer as in MC model and light-live cell interaction as in-vivo experiments. In this way MC simulation allow us to compute the absorption coefficient. The values of optical parameters, derived from simulation by best fitting of measured reflectance, were used to determine the effective cross section. Thus we can compute the absorbed radiation dose at cellular level.
Monte Carlo simulations for design of the KFUPM PGNAA facility
Naqvi, A.A. E-mail: aanaqvi@kfupm.edu.sa; Nagadi, M.M.; Khateeb-ur-Rehman; Maslehuddin, M.; Kidwai, S
2003-02-01
Monte Carlo simulations were carried out to design a 2.8 MeV neutron-based prompt gamma ray neutron activation analysis (PGNAA) setup for elemental analysis of cement samples. The elemental analysis was carried out using prompt gamma rays produced through capture of thermal neutrons in sample nuclei. The basic design of the PGNAA setup consists of a cylindrical cement sample enclosed in a cylindrical high-density polyethylene moderator placed between a neutron source and a gamma ray detector. In these simulations the predominant geometrical parameters of the PGNAA setup were optimized, including moderator size, sample size and shielding of the detector. Using the results of the simulations, an experimental PGNAA setup was then fabricated at the 350 kV Accelerator Laboratory of this University. The design calculations were checked experimentally through thermal neutron flux measurements inside the PGNAA moderator. A test prompt gamma ray spectrum of the PGNAA setup was also acquired from a Portland cement sample, using a pulsed beam of 2.8 MeV neutrons. Prompt gamma ray peaks due to the calcium, silicon and iron content of the Portland cement were detected.
Monte Carlo simulations for design of the KFUPM PGNAA facility
Monte Carlo simulations were carried out to design a 2.8 MeV neutron-based prompt gamma ray neutron activation analysis (PGNAA) setup for elemental analysis of cement samples. The elemental analysis was carried out using prompt gamma rays produced through capture of thermal neutrons in sample nuclei. The basic design of the PGNAA setup consists of a cylindrical cement sample enclosed in a cylindrical high-density polyethylene moderator placed between a neutron source and a gamma ray detector. In these simulations the predominant geometrical parameters of the PGNAA setup were optimized, including moderator size, sample size and shielding of the detector. Using the results of the simulations, an experimental PGNAA setup was then fabricated at the 350 kV Accelerator Laboratory of this University. The design calculations were checked experimentally through thermal neutron flux measurements inside the PGNAA moderator. A test prompt gamma ray spectrum of the PGNAA setup was also acquired from a Portland cement sample, using a pulsed beam of 2.8 MeV neutrons. Prompt gamma ray peaks due to the calcium, silicon and iron content of the Portland cement were detected
Monte Carlo simulation of transport from an electrothermal vaporizer
Monte Carlo simulations were developed to elucidate the time and spatial distribution of analyte during the transport process from an electrothermal vaporizer to an inductively coupled plasma. A time-of-flight mass spectrometer was employed to collect experimental data that was compared with the simulated transient signals. Consideration was given to analyte transport as gaseous species as well as aerosol particles. In the case of aerosols, the simulation assumed formation of 5 nm particles and used the Einstein-Stokes equation to estimate the aerosol's diffusion coefficient, which was ca. 1% of the value for free atom diffusion. Desorption conditions for Cu that had been previously elucidated for electrothermal atomic absorption spectrometry were employed for the release processes from the electrothermal vaporizer. The primary distinguishing feature in the output signal to differentiate between gas and aerosol transport was a pronounced, long lived signal after the transient peak if aerosols were transported. Time and spatial distributions of particles within the transport system are presented. This characteristic was supported by independent atomic absorption measurements using a heated (or unheated) quartz T-tube with electrothermal vaporizer introduction
A Monte Carlo simulation study of branched polymers.
Yethiraj, Arun
2006-11-28
Monte Carlo simulations are presented for the static properties of highly branched polymer molecules. The molecules consist of a semiflexible backbone of hard-sphere monomers with semiflexible side chains, also composed of hard-sphere monomers, attached to either every backbone bead or every other backbone bead. The conformational properties and structure factor of this model are investigated as a function of the stiffness of the backbone and side chains. The average conformations of the side chains are similar to self-avoiding random walks. The simulations show that there is a stiffening of the backbone as degree of crowding is increased, for example, if the branch spacing is decreased or side chain length is increased. The persistence length of the backbone is relatively insensitive to the stiffness of the side chains over the range investigated. The simulations reproduce most of the qualitative features of the structure factor observed in experiment, although the magnitude of the stiffening of the backbone is smaller than in experiment. PMID:17144734
Improving computational efficiency of Monte Carlo simulations with variance reduction
CCFE perform Monte-Carlo transport simulations on large and complex tokamak models such as ITER. Such simulations are challenging since streaming and deep penetration effects are equally important. In order to make such simulations tractable, both variance reduction (VR) techniques and parallel computing are used. It has been found that the application of VR techniques in such models significantly reduces the efficiency of parallel computation due to 'long histories'. VR in MCNP can be accomplished using energy-dependent weight windows. The weight window represents an 'average behaviour' of particles, and large deviations in the arriving weight of a particle give rise to extreme amounts of splitting being performed and a long history. When running on parallel clusters, a long history can have a detrimental effect on the parallel efficiency - if one process is computing the long history, the other CPUs complete their batch of histories and wait idle. Furthermore some long histories have been found to be effectively intractable. To combat this effect, CCFE has developed an adaptation of MCNP which dynamically adjusts the WW where a large weight deviation is encountered. The method effectively 'de-optimises' the WW, reducing the VR performance but this is offset by a significant increase in parallel efficiency. Testing with a simple geometry has shown the method does not bias the result. This 'long history method' has enabled CCFE to significantly improve the performance of MCNP calculations for ITER on parallel clusters, and will be beneficial for any geometry combining streaming and deep penetration effects. (authors)
Scalable Metropolis Monte Carlo for simulation of hard shapes
Anderson, Joshua A.; Eric Irrgang, M.; Glotzer, Sharon C.
2016-07-01
We design and implement a scalable hard particle Monte Carlo simulation toolkit (HPMC), and release it open source as part of HOOMD-blue. HPMC runs in parallel on many CPUs and many GPUs using domain decomposition. We employ BVH trees instead of cell lists on the CPU for fast performance, especially with large particle size disparity, and optimize inner loops with SIMD vector intrinsics on the CPU. Our GPU kernel proposes many trial moves in parallel on a checkerboard and uses a block-level queue to redistribute work among threads and avoid divergence. HPMC supports a wide variety of shape classes, including spheres/disks, unions of spheres, convex polygons, convex spheropolygons, concave polygons, ellipsoids/ellipses, convex polyhedra, convex spheropolyhedra, spheres cut by planes, and concave polyhedra. NVT and NPT ensembles can be run in 2D or 3D triclinic boxes. Additional integration schemes permit Frenkel-Ladd free energy computations and implicit depletant simulations. In a benchmark system of a fluid of 4096 pentagons, HPMC performs 10 million sweeps in 10 min on 96 CPU cores on XSEDE Comet. The same simulation would take 7.6 h in serial. HPMC also scales to large system sizes, and the same benchmark with 16.8 million particles runs in 1.4 h on 2048 GPUs on OLCF Titan.
Monte Carlo simulation of transport from an electrothermal vaporizer
Holcombe, James A. [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States)]. E-mail: holcombe@mail.utexas.edu; Ertas, Gulay [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States)
2006-06-15
Monte Carlo simulations were developed to elucidate the time and spatial distribution of analyte during the transport process from an electrothermal vaporizer to an inductively coupled plasma. A time-of-flight mass spectrometer was employed to collect experimental data that was compared with the simulated transient signals. Consideration was given to analyte transport as gaseous species as well as aerosol particles. In the case of aerosols, the simulation assumed formation of 5 nm particles and used the Einstein-Stokes equation to estimate the aerosol's diffusion coefficient, which was ca. 1% of the value for free atom diffusion. Desorption conditions for Cu that had been previously elucidated for electrothermal atomic absorption spectrometry were employed for the release processes from the electrothermal vaporizer. The primary distinguishing feature in the output signal to differentiate between gas and aerosol transport was a pronounced, long lived signal after the transient peak if aerosols were transported. Time and spatial distributions of particles within the transport system are presented. This characteristic was supported by independent atomic absorption measurements using a heated (or unheated) quartz T-tube with electrothermal vaporizer introduction.
Monte Carlo simulations of intensity profiles for energetic particle propagation
Tautz, R. C.; Bolte, J.; Shalchi, A.
2016-02-01
Aims: Numerical test-particle simulations are a reliable and frequently used tool for testing analytical transport theories and predicting mean-free paths. The comparison between solutions of the diffusion equation and the particle flux is used to critically judge the applicability of diffusion to the stochastic transport of energetic particles in magnetized turbulence. Methods: A Monte Carlo simulation code is extended to allow for the generation of intensity profiles and anisotropy-time profiles. Because of the relatively low number density of computational particles, a kernel function has to be used to describe the spatial extent of each particle. Results: The obtained intensity profiles are interpreted as solutions of the diffusion equation by inserting the diffusion coefficients that have been directly determined from the mean-square displacements. The comparison shows that the time dependence of the diffusion coefficients needs to be considered, in particular the initial ballistic phase and the often subdiffusive perpendicular coefficient. Conclusions: It is argued that the perpendicular component of the distribution function is essential if agreement between the diffusion solution and the simulated flux is to be obtained. In addition, time-dependent diffusion can provide a better description than the classic diffusion equation only after the initial ballistic phase.
Maria Grazia PiaINFN Sezione di Genova; Marcia BegalliState University Rio de Janeiro; Anton LechnerVienna University of Technology; Lina QuintieriINFN Laboratori Nazionali di Frascati; Paolo SaraccoINFN Sezione di Genova
2014-01-01
The issue of how epistemic uncertainties affect the outcome of Monte Carlo simulation is discussed by means of a concrete use case: the simulation of the longitudinal energy deposition profile of low energy protons. A variety of electromagnetic and hadronic physics models is investigated, and their effects are analyzed. Possible systematic effects are highlighted. The results identify requirements for experimental measurements capable of reducing epistemic uncertainties in the physics models.
Pia, Maria Grazia; Lechner, Anton; Quintieri, Lina; Saracco, Paolo
2010-01-01
The issue of how epistemic uncertainties affect the outcome of Monte Carlo simulation is discussed by means of a concrete use case: the simulation of the longitudinal energy deposition profile of low energy protons. A variety of electromagnetic and hadronic physics models is investigated, and their effects are analyzed. Possible systematic effects are highlighted. The results identify requirements for experimental measurements capable of reducing epistemic uncertainties in the physics models.
Complete Monte Carlo Simulation of Neutron Scattering Experiments
The majority of experiments investigating the elastic scattering of fast neutrons were done some 30 years ago. At that time it was not possible to obtain valid corrections for the finite geometry and the finite sample size of the experimental set up, not even having the main frame computers of the Los Alamos National Laboratory at one’s disposal. The reason was not only the limited calculation capacity of those ancient computers but also, to an even higher degree, the lack of powerful Monte Carlo codes and the very limited data base for the isotope in question. The computing power of a present day PC is about ten thousand times that of a super computer of the1970ies. Moreover, most PCs are idle over-night so that using a powerful Monte Carlo program, like MCNPX from Los Alamos, corrections of important scattering experiments can be determined reliably at practically no computer cost. Surely one of the most important experiments is neutron scattering from liquid helium-3, especially considering the expensive and complicated cryogenic target. A complete documentation of such an experiment as performed in the year 1971 at the Los Alamos National Laboratory is available. Therefore it is now possible to perform a thorough simulation of the experiment: starting from the production of mono-energetic neutrons in a gas target, followed by the interaction in the ambient air, and the interaction with the cryostat structure, and finally the scattering medium itself. Another simulation deals with the scattering from hydrogen as a reference measurement. As two thirds of all available differential scattering cross sections of that reaction depend on these measurements the newly arrived at corrections prove to be highly significant because they are smaller by a factor of five. Moreover, it was necessary to simulate another experiment on this reaction, using a white neutron source. This way it was possible to convert the corresponding relative yield excitation functions to
PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs
Rodriguez, Manuel Jairo; Sempau Roma, Josep; Brualla, Lorenzo
2013-01-01
Background: The accurate Monte Carlo simulation of a linac requires a detailed description of its geometry and the application of elaborate variance-reduction techniques for radiation transport. Both tasks entail a substantial coding effort and demand advanced knowledge of the intricacies of the Monte Carlo system being used. Methods: PRIMO, a new Monte Carlo system that allows the effortless simulation of most Varian and Elekta linacs, including their multileaf collimators and electron appli...
Monte Carlo simulation for dual head gamma camera
Monte Carlo (MC) simulation technique was used widely in medical physics applications. In nuclear medicine MC was used to design new medical imaging devices such as positron emission tomography (PET), gamma camera and single photon emission computed tomography (SPECT). Also it can be used to study the factors affecting image quality and internal dosimetry, Gate is on of monte Carlo code that has a number of advantages for simulation of SPECT and PET. There is a limit accessibilities in machines which are used in clinics because of the work load of machines. This makes it hard to evaluate some factors effecting machine performance which must be evaluated routinely. Also because of difficulties of carrying out scientific research and training of students, MC model can be optimum solution for the problem. The aim of this study was to use gate monte Carlo code to model Nucline spirit, medico dual head gamma camera hosted in radiation and isotopes center of Khartoum which is equipped with low energy general purpose LEGP collimators. This was used model to evaluate spatial resolution and sensitivity which is important factor affecting image quality and to demonstrate the validity of gate by comparing experimental results with simulation results on spatial resolution. The gate model of Nuclide spirit, medico dual head gamma camera was developed by applying manufacturer specifications. Then simulation was run. In evaluation of spatial resolution the FWHM was calculated from image profile of line source of Tc 99m gammas emitter of energy 140 KeV at different distances from modeled camera head at 5,10,15,20,22,27,32,37 cm and for these distances the spatial resolution was founded to be 5.76, 7.73, 10.7, 13.8, 14.01,16.91, 19.75 and 21.9 mm, respectively. These results showed a decrement of spatial resolution with increase of the distance between object (line source) and collimator in linear manner. FWHM calculated at 10 cm was compared with experimental results. The
Monte Carlo Simulation and Experimental Characterization of a Dual Head Gamma Camera
Rodrigues, S; Abreu, M C; Santos, N; Rato-Mendes, P; Peralta, L
2007-01-01
The GEANT4 Monte Carlo simulation and experimental characterization of the Siemens E.Cam Dual Head gamma camera hosted in the Particular Hospital of Algarve have been done. Imaging tests of thyroid and other phantoms have been made "in situ" and compared with the results obtained with the Monte Carlo simulation.
On the inclusion of macroscopic theory in Monte Carlo simulation using game theory
This paper presents the inclusion of macroscopic damage theory into Monte Carlo particle-range simulation using game theory. A new computer code called RADDI was developed on the basis of this inclusion. Results of Monte Carlo damage simulation after 6.3 MeV proton bombardment of silicon are compared with experimental data of Bulgakov et al. (orig.)
Monte Carlo Simulations of Necrotic Cell Targeted Alpha Therapy
Full text: Hypoxic tumour cells are radioresistant and are significant contributors to the locoregional recurrences and distant metastases that mark treatment failure. Due to restricted circulatory supply, hypoxic tumor cells frequently become necrotic and thus necrotic areas often lie near hypoxic tumour areas. In this study we investigate the feasibility of binding an alpha-emitting conjugate to necrotic cells located in the proximity of hypoxic, viable tumour cells. Monte Carlo radiation transport simulations were performed to investigate the dose distribution resulting from the thorium 227 (Th227) decay chain in a representative tumour geometry. The Geant4 software toolkit was used to simulate the decay and interactions of the Th227 decay chain. The distribution of Th227 was based on a study by Thomlinson and Gray of human lung cancer histological samples (Thomlinson RH, Gray LH. Br J Cancer 1955; 9:539). The normalized dose distribution obtained with Geant4 from a cylindrical Th227 source in water is illustrated in Fig. I. The relative contribution of the different decay channels is displayed, together with a profile through the centre of the accumulated dose map. The results support the hypothesis that significant α-particle doses will be deposited in the hypoxic tumor tissue immediately surrounding the necrotic core (where the majority of Th227 will be located). As an internal a-particle generator, the Th227-radioimmunoconjugate shows potential as an efficient hypoxic tumour sterilizer.
Parallelization of a Monte Carlo particle transport simulation code
Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.
2010-05-01
We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.
Mechanical properties of carbon nanostructures investigated by Monte Carlo simulations
Full text: Carbon nanostructures are a fascinating class of materials combining high stiffness with low weight and exceptional toughness that makes carbon a promising candidate for applications in structural mechanics. Understanding the mechanical behavior of carbon structures also on atomistic length scales is inevitable in describing the mechanical performance and stability of large, hierarchical structures like carbon onions and fibers. In the presented work ab initio calculations were used to extract classical potentials describing stretching, bending and torsion deformations of carbon bonds that were used in subsequent Monte Carlo simulations to perform computational mechanical tests on graphene, carbon nanotubes and fullerenes. These tests included the application of hydrostatic pressure, the application of a ring load and the deformation of a fullerene between two plates. We analyzed the elastic response, as well as the stability limits and post buckling behavior of the structures for different sizes. The simulation results were compared to the predictions of nite element methods to evaluate macroscopic parameters like elastic modulus or Poisson ratio of the investigated structures. In fullerenes special attention was paid to the influence of pentagons that are inherently present in these structures. It was observed that the pentagons deform less than the atomic bonds in hexagonal geometry. (author)
Direct Simulation Monte Carlo Investigation of Noncontinuum Couette Flow
Torczynski, J. R.; Gallis, M. A.
2009-11-01
The Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics is used to study noncontinuum effects in Couette flow. The walls have equal temperatures and equal accommodation coefficients but unequal tangential velocities. Simulations are performed for near-free-molecular to near-continuum gas pressures with accommodation coefficients of 0.25, 0.5, and 1. Ten gases are examined: argon, helium, nitrogen, sea-level air, and six Inverse-Power-Law (IPL) gases with viscosity temperature exponents of 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, as represented by the Variable Soft Sphere (VSS) interaction. In all cases, the wall shear stress is proportional to the slip velocity. The momentum transfer coefficient relating these two quantities can be accurately correlated in terms of the Knudsen number based on the wall separation. The two dimensionless parameters in the correlation are similar for all gases examined. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Monte Carlo simulation of electron swarms in H2
A Monte-Carlo simulation of the motion of an electron swarm in molecular hydrogen was studied in the range E/N = 1.4-170 Td (1 Td = 10-17V/cms2). The simulation was performed for 400-600 electrons at several values of E/N for two different sets of inelastic collision cross sections at high values of E/N. The longitudinal diffusion coefficient Dsub(L), lateral diffusion coefficient D, swarm drift velocity W, average swarm energy epsilon, and the ionization and excitation production coefficients were obtained and compared with experimental results where these are available. It was found that the results obtained differ significantly from the experimental values and this is attributed to the isotopic scattering model used in this work. However, the results lend support to the experimental technique reported by Blevin et al used to determine these transport parameters, and in particular confirm their result that Dsub(L) > D at high values of E/N. (author)
Monte Carlo simulations of lattice models for single polymer systems
Hsu, Hsiao-Ping, E-mail: hsu@mpip-mainz.mpg.de [Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz (Germany)
2014-10-28
Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N∼O(10{sup 4}). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and √(10), we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior.
Confidence interval procedures for Monte Carlo transport simulations
The problem of obtaining valid confidence intervals based on estimates from sampled distributions using Monte Carlo particle transport simulation codes such as MCNP is examined. Such intervals can cover the true parameter of interest at a lower than nominal rate if the sampled distribution is extremely right-skewed by large tallies. Modifications to the standard theory of confidence intervals are discussed and compared with some existing heuristics, including batched means normality tests. Two new types of diagnostics are introduced to assess whether the conditions of central limit theorem-type results are satisfied: the relative variance of the variance determines whether the sample size is sufficiently large, and estimators of the slope of the right tail of the distribution are used to indicate the number of moments that exist. A simulation study is conducted to quantify the relationship between various diagnostics and coverage rates and to find sample-based quantities useful in indicating when intervals are expected to be valid. Simulated tally distributions are chosen to emulate behavior seen in difficult particle transport problems. Measures of variation in the sample variance s2 are found to be much more effective than existing methods in predicting when coverage will be near nominal rates. Batched means tests are found to be overly conservative in this regard. A simple but pathological MCNP problem is presented as an example of false convergence using existing heuristics. The new methods readily detect the false convergence and show that the results of the problem, which are a factor of 4 too small, should not be used. Recommendations are made for applying these techniques in practice, using the statistical output currently produced by MCNP
Li, Junli; Li, Chunyan; Qiu, Rui; Yan, Congchong; Xie, Wenzhang; Wu, Zhen; Zeng, Zhi; Tung, Chuanjong
2015-09-01
The method of Monte Carlo simulation is a powerful tool to investigate the details of radiation biological damage at the molecular level. In this paper, a Monte Carlo code called NASIC (Nanodosimetry Monte Carlo Simulation Code) was developed. It includes physical module, pre-chemical module, chemical module, geometric module and DNA damage module. The physical module can simulate physical tracks of low-energy electrons in the liquid water event-by-event. More than one set of inelastic cross sections were calculated by applying the dielectric function method of Emfietzoglou's optical-data treatments, with different optical data sets and dispersion models. In the pre-chemical module, the ionised and excited water molecules undergo dissociation processes. In the chemical module, the produced radiolytic chemical species diffuse and react. In the geometric module, an atomic model of 46 chromatin fibres in a spherical nucleus of human lymphocyte was established. In the DNA damage module, the direct damages induced by the energy depositions of the electrons and the indirect damages induced by the radiolytic chemical species were calculated. The parameters should be adjusted to make the simulation results be agreed with the experimental results. In this paper, the influence study of the inelastic cross sections and vibrational excitation reaction on the parameters and the DNA strand break yields were studied. Further work of NASIC is underway. PMID:25883312
The method of Monte Carlo simulation is a powerful tool to investigate the details of radiation biological damage at the molecular level. In this paper, a Monte Carlo code called NASIC (Nanodosimetry Monte Carlo Simulation Code) was developed. It includes physical module, pre-chemical module, chemical module, geometric module and DNA damage module. The physical module can simulate physical tracks of low-energy electrons in the liquid water event-by-event. More than one set of inelastic cross sections were calculated by applying the dielectric function method of Emfietzoglou's optical-data treatments, with different optical data sets and dispersion models. In the pre-chemical module, the ionised and excited water molecules undergo dissociation processes. In the chemical module, the produced radiolytic chemical species diffuse and react. In the geometric module, an atomic model of 46 chromatin fibres in a spherical nucleus of human lymphocyte was established. In the DNA damage module, the direct damages induced by the energy depositions of the electrons and the indirect damages induced by the radiolytic chemical species were calculated. The parameters should be adjusted to make the simulation results be agreed with the experimental results. In this paper, the influence study of the inelastic cross sections and vibrational excitation reaction on the parameters and the DNA strand break yields were studied. Further work of NASIC is underway (authors)
Rapid Monte Carlo simulation of detector DQE(f)
Purpose: Performance optimization of indirect x-ray detectors requires proper characterization of both ionizing (gamma) and optical photon transport in a heterogeneous medium. As the tool of choice for modeling detector physics, Monte Carlo methods have failed to gain traction as a design utility, due mostly to excessive simulation times and a lack of convenient simulation packages. The most important figure-of-merit in assessing detector performance is the detective quantum efficiency (DQE), for which most of the computational burden has traditionally been associated with the determination of the noise power spectrum (NPS) from an ensemble of flood images, each conventionally having 107 − 109 detected gamma photons. In this work, the authors show that the idealized conditions inherent in a numerical simulation allow for a dramatic reduction in the number of gamma and optical photons required to accurately predict the NPS. Methods: The authors derived an expression for the mean squared error (MSE) of a simulated NPS when computed using the International Electrotechnical Commission-recommended technique based on taking the 2D Fourier transform of flood images. It is shown that the MSE is inversely proportional to the number of flood images, and is independent of the input fluence provided that the input fluence is above a minimal value that avoids biasing the estimate. The authors then propose to further lower the input fluence so that each event creates a point-spread function rather than a flood field. The authors use this finding as the foundation for a novel algorithm in which the characteristic MTF(f), NPS(f), and DQE(f) curves are simultaneously generated from the results of a single run. The authors also investigate lowering the number of optical photons used in a scintillator simulation to further increase efficiency. Simulation results are compared with measurements performed on a Varian AS1000 portal imager, and with a previously published simulation
Monte Carlo Simulations of the Response of the MARIE Instrument
Andersen, V.; Lee, K.; Pinsky, L.; Atwell, W.; Cleghorn, T.; Cucinotta, F.; Saganti, P.; Turner, R.; Zeitlin, C.
2003-01-01
The MARIE instrument aboard Mars Odyssey functions as a telescope for the detection of charged, energetic, nuclei. The directionality that leads to the telescope description is achieved by requiring coincident signals in two designated detectors in MARIE s silicon detector stack for the instrument to trigger. Because of this, MARIE is actually a bi directional telescope. Triggering particles can enter the detector stack by passing through the lightly shielded front of the instrument, but can also enter the back of the instrument by passing through the bulk of Odyssey. Because of this, understanding how to relate the signals recorded by MARIE to astrophysically important quantities such as particle fluxes or spectra exterior to the spacecraft clearly requires detailed modeling of the physical interactions that occur as the particles pass through the spacecraft and the instrument itself. In order to facilitate in the calibration of the MARIE data, we have begun a program to simulate the response of MARIE using the FLUKA [1] [2] Monte Carlo radiation transport code.
Monte Carlo Simulation for the Adsorption of Symmetric Triblock Copolymers
彭昌军; 李健康; 刘洪来; 胡英
2004-01-01
The adsorption behavior of symmetric triblock copolymers, Am/2BnAm/2, from a nonselective solvent at solid-liquid interface has been studied by Monte Carlo simulations on a simple lattice model. Either segment A or segment B is attractive, while the other is non-attractive to the surface. Influences of the adsorption energy,bulk concentration, chain composition and chain length on the microstructure of adsorbed layers are presented.The results show that the total surface coverage and the adsorption amount increases monotonically as the bulk concentration increases. The larger the adsorption energy and the higher the fraction of adsorbing segments, the higher the total surface coverage is exhibited. The product of surface coverage and the proportion of non-attractive segments are nearly independent of the chain length, and the logarithm of the adsorption amount is a linear function of the reciprocal of the reduced temperature. When the adsorption energy is larger, the adsorption amount exhibits a maximum as the fraction of adsorbing segment increases. The adsorption isotherms of copolymers with different length of non-attractive segments can be mapped onto a single curve under given adsorption energy. The adsorption layer thickness decreases as the adsorption energy and the fraction of adsorbing segments increases, but it increhses as the length of non-attractive segments increases. The tails mainly govern the adsorption layer thickness.
Monte Carlo simulation of AB-copolymers with saturating bonds
Chertovich, A V; Khokhlov, A R; Bohr, J
2003-01-01
Structural transitions in a single AB-copolymer chain where saturating bonds can be formed between A-and B-units are studied by means of Monte Carlo computer simulations using the bond fluctuation model. Three transitions are found, coil-globule, coil-hairpin and globule-hairpin, depending on the nature of a particular AB-sequence: statistical random sequence, diblock sequence and 'random-complementary' sequence (one-half of such an AB-sequence is random with Bernoulli statistics while the other half is complementary to the first one). The properties of random-complementary sequences are closer to those of diblock sequences than to the properties of random sequences. The model (although quite rough) is expected to represent some basic features of real RNA molecules, i.e. the formation of secondary structure of RNA due to hydrogen bonding of corresponding bases and stacking interactions of the base pairs in helixes. We introduce the notation of RNA-like copolymers and discuss in what sense the sequences studie...
Optimization of reconstruction algorithms using Monte Carlo simulation
A method for optimizing reconstruction algorithms is presented that is based on how well a specified task can be performed using the reconstructed images. Task performance is numerically assessed by a Monte Carlo simulation of the complete imaging process including the generation of scenes appropriate to the desired application, subsequent data taking, reconstruction, and performance of the stated task based on the final image. The use of this method is demonstrated through the optimization of the Algebraic Reconstruction Technique (ART), which reconstructs images from their projections by a iterative procedure. The optimization is accomplished by varying the relaxation factor employed in the updating procedure. In some of the imaging situations studied, it is found that the optimization of constrained ART, in which a nonnegativity constraint is invoked, can vastly increase the detectability of objects. There is little improvement attained for unconstrained ART. The general method presented may be applied to the problem of designing neutron-diffraction spectrometers. 11 refs., 6 figs., 2 tabs
Performance of three-photon PET imaging: Monte Carlo simulations
Kacperski, K; Kacperski, Krzysztof; Spyrou, Nicholas M.
2005-01-01
We have recently introduced the idea of making use of three-photon positron annihilations in positron emission tomography. In this paper the basic characteristics of the three-gamma imaging in PET are studied by means of Monte Carlo simulations and analytical computations. Two typical configurations of human and small animal scanners are considered. Three-photon imaging requires high energy resolution detectors. Parameters currently attainable by CdZnTe semiconductor detectors, the technology of choice for the future development of radiation imaging, are assumed. Spatial resolution is calculated as a function of detector energy resolution and size, position in the field of view, scanner size, and the energies of the three gamma annihilation photons. Possible ways to improve the spatial resolution obtained for nominal parameters: 1.5 cm and 3.2 mm FWHM for human and small animal scanners, respectively, are indicated. Counting rates of true and random three-photon events for typical human and small animal scann...
Performance of three-photon PET imaging: Monte Carlo simulations
Kacperski, Krzysztof; Spyrou, Nicholas M.
2005-12-01
We have recently introduced the idea of making use of three-photon positron annihilations in positron emission tomography. In this paper, the basic characteristics of the three-gamma imaging in PET are studied by means of Monte Carlo simulations and analytical computations. Two typical configurations of human and small animal scanners are considered. Three-photon imaging requires high-energy resolution detectors. Parameters currently attainable by CdZnTe semiconductor detectors, the technology of choice for the future development of radiation imaging, are assumed. Spatial resolution is calculated as a function of detector energy resolution and size, position in the field of view, scanner size and the energies of the three-gamma annihilation photons. Possible ways to improve the spatial resolution obtained for nominal parameters, 1.5 cm and 3.2 mm FWHM for human and small animal scanners, respectively, are indicated. Counting rates of true and random three-photon events for typical human and small animal scanning configurations are assessed. A simple formula for minimum size of lesions detectable in the three-gamma based images is derived. Depending on the contrast and total number of registered counts, lesions of a few mm size for human and sub mm for small animal scanners can be detected.
Monte Carlo Simulation of SATs in 2D
无
1996-01-01
In this paper we use Monte Carlo simulation method to deal with SATs on a square lattice and a triangular lattice in two dimensions in the T→∞ limit.Besides that,the SAT model has been generalized in the coordination number q→∞ limit.The characteristics of SATs in the two limits q=3 and q→∞ have been qualitatively discussed.The obtained results reveal that the SATs have intermediate behaviors between that of SAWs and RWs.The critical exponents of SATs have intermediate behaviors between that of SAWs and RWs.The critical exponents of SATs are monotonous functions of q.With different q,SATs correspondingly belong to different universality classes.For example,on a hexagonal lattice,SATs and SAWs belong to the same universality class;in the limiting situation q→∞,SATs and RWs belong to the same universality class;when q=4 or q=6,SATs and SAWs or RWs belong to the different universality class.
Monte Carlo simulations of models for accelerator transmutation of waste
The Los Alamos Accelerator Transmutation of Waste (ATW) program is directed toward the dual goals of alleviating the problems associated with existing high-level radioactive defense wastes, and of developing systems for the generation of fission energy with minimal production of high-level, long-lived nuclear wastes. In the Los Alamos ATW concept, a high-current, high-energy proton accelerator creates and intense flux of neutrons through spallation in heavy metal targets. The high neutron flux levels available in such systems allow the rapid burning even of nuclides with small cross sections, the design of systems with dilute inventories, and the operation of systems far from criticality. A crucial tool for ATW simulations is the LAHET Code System (LCS), which consists of the Los Alamos version of the HETC Monte Carlo code, a special version of the MCNP code, and several tallying and postprocessing utilities. Here we present results for a baseline system designed to transmute technetium. 16 refs
Assessment of patient dose in mammography using Monte Carlo simulation
Breast doses due to mammographic examinations were assessed using a MIRD-type female phantom and Monte Carlo simulations. Clinical mammographic data, which vary according to the age group of the subject undergoing the examinations, were obtained from the Korea Cancer Center Hospital in Seoul. The tube potential was fixed to 26 kVp, most commonly used in the mammographic examination, and the source-film distance was kept constant at 65 cm. The breast tissue was assumed to have an even composition between glandular tissue and adipose tissue. The nominal breast equivalent doses were in the range from 0.6 to 1.8 mSv and the resulting effective doses ranged from 0.06 to 0.19 mSv depending on the age group and the projection modes. Lower doses were resulted at older ages. Contributions of organs other than the breast to the effective doses were negligible as long as the X-ray beam was adequately collimated and aligned to avoid exposure of other part of the body than the breast. This means that a simple breast-only phantom can be used in dosimetric calculations for mammography. (author)
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
Good, Brian S.
2015-01-01
Silicon-based ceramic components for next-generation jet turbine engines offer potential weight savings, as well as higher operating temperatures, both of which lead to increased efficiency and lower fuel costs. Silicon carbide (SiC), in particular, offers low density, good strength at high temperatures, and good oxidation resistance in dry air. However, reaction of SiC with high-temperature water vapor, as found in the hot section of jet turbine engines in operation, can cause rapid surface recession, which limits the lifetime of such components. Environmental Barrier Coatings (EBCs) are therefore needed if long component lifetime is to be achieved. Rare earth silicates such as Yb2Si2O7 and Yb2SiO5 have been proposed for such applications; in an effort to better understand diffusion in such materials, we have performed kinetic Monte Carlo (kMC) simulations of oxygen diffusion in Ytterbium disilicate, Yb2- Si2O7. The diffusive process is assumed to take place via the thermally activated hopping of oxygen atoms among oxygen vacancy sites or among interstitial sites. Migration barrier energies are computed using density functional theory (DFT).
A Monte Carlo simulation technique to determine the optimal portfolio
Hassan Ghodrati
2014-03-01
Full Text Available During the past few years, there have been several studies for portfolio management. One of the primary concerns on any stock market is to detect the risk associated with various assets. One of the recognized methods in order to measure, to forecast, and to manage the existing risk is associated with Value at Risk (VaR, which draws much attention by financial institutions in recent years. VaR is a method for recognizing and evaluating of risk, which uses the standard statistical techniques and the method has been used in other fields, increasingly. The present study has measured the value at risk of 26 companies from chemical industry in Tehran Stock Exchange over the period 2009-2011 using the simulation technique of Monte Carlo with 95% confidence level. The used variability in the present study has been the daily return resulted from the stock daily price change. Moreover, the weight of optimal investment has been determined using a hybrid model called Markowitz and Winker model in each determined stocks. The results showed that the maximum loss would not exceed from 1259432 Rials at 95% confidence level in future day.
Monte Carlo simulation of inelastic neutrino scattering in DUMAND
Detailed Monte Carlo calculations simulating the detection in the DUMAND 1-km3 optical detector of inelastic neutrino scattering by nucleons at 2 TeV and above show that the measurement of the y distribution is subject to systematic errors due to experimental errors and intrinsic fluctuations which produce errors in the energy determinations of hadronic cascade and muon; uncertainty in the exact amount of antineutrino fraction in the cosmic-ray neutrino flux. The nature of these errors is explored, and methods for removing them from the data developed. The remaining uncertainties are those in the evaluation of the errors in energy determination, and in the antineutrino contamination. It appears that these errors, not statistical ones, will eventually govern the accuracy of the y distributions obtained. Nonetheless, the effect of the boson propagator on the y distribution is so marked that no plausible scenario can be found in which the residual errors cast doubt on whether or not the propagator effect is present
Monte Carlo simulation of electron beam air plasma characteristics
Deng Yong-Feng; Han Xian-Wei; Tan Chang
2009-01-01
A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4,a model including complete physics processes is established to simulate the passage of the electron beam in air. Based on the model,the characteristics of the electron beam air plasma are calculated. The energy distribution of beam electrons (BEs) indicates that high-energy electrons almost reside in the centre region of the beam,but low-energy electrons always live in the fringe area. The energy deposition is calculated in two cases,i.e.,with and without secondary electrons (SEs). Analysis indicates that the energy deposition of Ses accounts for a large part of the total energy deposition. The results of the energy spectrum show that the electrons in the inlet layer of the low-pressure chamber (LPC) are monoenergetic,but the energy spectrum of the electrons in the outlet layer is not pure. The SEs are largely generated at the outlet of the LPC. Moreover,both the energy distribution of Bes and the magnitude of the density of SEs are closely related to the pressure of LPC. Thus,a conclusion is drawn that a low magnitude of LPC pressure is helpful for reducing the energy loss in the LPC and also useful for greatly increasing the secondary electron density in dense air.
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
Good, Brian S.
2015-01-01
Ytterbium disilicate is of interest as a potential environmental barrier coating for aerospace applications, notably for use in next generation jet turbine engines. In such applications, the transport of oxygen and water vapor through these coatings to the ceramic substrate is undesirable if high temperature oxidation is to be avoided. In an effort to understand the diffusion process in these materials, we have performed kinetic Monte Carlo simulations of vacancy-mediated and interstitial oxygen diffusion in Ytterbium disilicate. Oxygen vacancy and interstitial site energies, vacancy and interstitial formation energies, and migration barrier energies were computed using Density Functional Theory. We have found that, in the case of vacancy-mediated diffusion, many potential diffusion paths involve large barrier energies, but some paths have barrier energies smaller than one electron volt. However, computed vacancy formation energies suggest that the intrinsic vacancy concentration is small. In the case of interstitial diffusion, migration barrier energies are typically around one electron volt, but the interstitial defect formation energies are positive, with the result that the disilicate is unlikely to exhibit experience significant oxygen permeability except at very high temperature.
A Monte Carlo simulation approach for flood risk assessment
Agili, Hachem; Chokmani, Karem; Oubennaceur, Khalid; Poulin, Jimmy; Marceau, Pascal
2016-04-01
Floods are the most frequent natural disaster and the most damaging in Canada. The issue of assessing and managing the risk related to this disaster has become increasingly crucial for both local and national authorities. Brigham, a municipality located in southern Quebec Province, is one of the heavily affected regions by this disaster because of frequent overflows of the Yamaska River reaching two to three times per year. Since Irene Hurricane which hit the region in 2011 causing considerable socio-economic damage, the implementation of mitigation measures has become a major priority for this municipality. To do this, a preliminary study to evaluate the risk to which this region is exposed is essential. Conventionally, approaches only based on the characterization of the hazard (e.g. floodplains extensive, flood depth) are generally adopted to study the risk of flooding. In order to improve the knowledge of this risk, a Monte Carlo simulation approach combining information on the hazard with vulnerability-related aspects of buildings has been developed. This approach integrates three main components namely hydrological modeling through flow-probability functions, hydraulic modeling using flow-submersion height functions and the study of buildings damage based on damage functions adapted to the Quebec habitat. The application of this approach allows estimating the annual average cost of damage caused by floods on buildings. The obtained results will be useful for local authorities to support their decisions on risk management and prevention against this disaster.
Monte Carlo simulations of ionization potential depression in dense plasmas
Stransky, M.
2016-01-01
A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model.
Catastrophic rupture of lunar rocks - A Monte Carlo simulation
Hoerz, F.; Schneider, E.; Gault, D. E.; Hartung, J. B.; Brownlee, D. E.
1975-01-01
A computer model based on Monte Carlo techniques was developed to simulate the destruction of lunar rocks by 'catastrophic rupture' due to meteoroid impact. Energies necessary to accomplish catastrophic rupture were derived from laboratory experiments. A crater-production rate derived from lunar rocks was utilized to calculate absolute time scales. Calculated median survival times for crystalline lunar rocks are 1.9, 4.6, 10.3, and 22 m.y. for rock masses of 10, 100, 1000, and 10,000 g, respectively. Corresponding times of 6, 14.5, 32, and 68 million years are required before the probability of destruction reaches 0.99. These results are consistent with absolute exposure ages measured on returned rocks. Some results also substantiate previous conclusions that the catastrophic-rupture process is significantly more effective in obliterating lunar rocks than mass wasting by single-particle abrasion. The view is also corroborated that most rocks presently on the lunar surface either are exhumed from the regolith or are fragments of much larger boulders rather than primary ejecta excavated from pristine bedrock.
Monte Carlo simulation for moment-independent sensitivity analysis
The moment-independent sensitivity analysis (SA) is one of the most popular SA techniques. It aims at measuring the contribution of input variable(s) to the probability density function (PDF) of model output. However, compared with the variance-based one, robust and efficient methods are less available for computing the moment-independent SA indices (also called delta indices). In this paper, the Monte Carlo simulation (MCS) methods for moment-independent SA are investigated. A double-loop MCS method, which has the advantages of high accuracy and easy programming, is firstly developed. Then, to reduce the computational cost, a single-loop MCS method is proposed. The later method has several advantages. First, only a set of samples is needed for computing all the indices, thus it can overcome the problem of “curse of dimensionality”. Second, it is suitable for problems with dependent inputs. Third, it is purely based on model output evaluation and density estimation, thus can be used for model with high order (>2) interactions. At last, several numerical examples are introduced to demonstrate the advantages of the proposed methods.