Sample records for capillary-oxygenation-level-dependent near-infrared spectrometry

  1. Study of surfaces using near infrared optical fiber spectrometry

    Workman, G. L.; Arendale, W. A.; Hughes, C.


    The measurement and control of cleanliness for critical surfaces during manufacturing and in service provides a unique challenge for fulfillment of environmentally benign operations. Of particular interest has been work performed in maintaining quality in the production of bondline surfaces in propulsion systems and the identification of possible contaminants. This work requires an in-depth study of the possible sources of contamination, methodologies to identify contaminants, discrimination between contaminants and chemical species caused by environment, and the effect of particular contaminants on the bondline integrity of the critical surfaces. This presentation will provide an introduction to the use of optical fiber spectrometry in a nondestructive measurement system for process monitoring and how it can be used to help clarify issues concerning surface chemistry. Correlation of the Near Infrared (NIR) spectroscopic results with Optical Stimulated Electron Emission (OSEE) and ellipsometry will also be presented.

  2. Near-infrared emission spectrometry measurements for nonintrusive soot diagnostics in flames

    The present study focuses on measurement of line-of-sight emission intensity spectra in the near-infrared range by Fourier-transform infrared spectrometry for use in tomographic soot diagnostics. Measurements are carried out on an axisymmetric, laboratory grade, ethylene/air diffusion flame within the 1.1-1.7 μm (9000-6000 cm-1) spectral range. Presentation of the measurement and calibration methodology is followed by the description of noise and uncertainty assessment procedures. A novel noise characterization approach that accounts for both spectral and spatial fluctuations is introduced. Measured intensities are utilized to infer soot temperature and volume fraction profiles from an inversion technique based on gray refractive index assumption. Predictions at flame axis are found to be in reasonable agreement with properties reported in literature for similar flames, but steep volume fraction peaks at the flame edges are not sufficiently captured due to the expected effects of large beam diameter, suggesting that the present configuration requires improvement in terms of spatial resolution

  3. Non-destructive grading of peaches by near-infrared spectrometry

    Carlomagno, G.; Capozzo, L.; Attolico, G.; Distante, A.


    This paper describes an experimental study on non-destructive methods for sorting peaches according to their degree of ripeness. The method is based on near-infrared (NIR) transmittance spectrometry in the region between 730 and 900 nm. It estimates the ripeness in terms of internal sugar content and firmness. A station for acquiring the NIR signal has been designed and realized, carefully choosing between several options for each component. Four different stations have been realized and compared during the experimental phase. The signals acquired by the station have been pre-processed using a noise-reducing method based on a packets-wavelet transform. In addition, an outlier detection technique has been applied for identifying irregular behaviors inside each of the considered classes. Finally, a minimum distance classifier estimates the grade of each experimental data. The results obtained in classification show that this early version of the station enables the correct discrimination of peaches with a percentage of 82.5%.

  4. Determination of Propranolol Hydrochloride in Pharmaceutical Preparations Using Near Infrared Spectrometry with Fiber Optic Probe and Multivariate Calibration Methods

    Jucelino Medeiros Marques Junior


    Full Text Available A method for determination of propranolol hydrochloride in pharmaceutical preparation using near infrared spectrometry with fiber optic probe (FTNIR/PROBE and combined with chemometric methods was developed. Calibration models were developed using two variable selection models: interval partial least squares (iPLS and synergy interval partial least squares (siPLS. The treatments based on the mean centered data and multiplicative scatter correction (MSC were selected for models construction. A root mean square error of prediction (RMSEP of 8.2 mg g−1 was achieved using siPLS (s2i20PLS algorithm with spectra divided into 20 intervals and combination of 2 intervals (8501 to 8801 and 5201 to 5501 cm−1. Results obtained by the proposed method were compared with those using the pharmacopoeia reference method and significant difference was not observed. Therefore, proposed method allowed a fast, precise, and accurate determination of propranolol hydrochloride in pharmaceutical preparations. Furthermore, it is possible to carry out on-line analysis of this active principle in pharmaceutical formulations with use of fiber optic probe.

  5. Comparison of Pyrolysis Mass Spectrometry and Near Infrared Spectroscopy for Genetic Analysis of Lignocellulose Chemical Composition in Populus

    Jianxing Zhang


    Full Text Available Genetic analysis of wood chemical composition is often limited by the cost and throughput of direct analytical methods. The speed and low cost of Fourier transform near infrared (FT-NIR overcomes many of these limitations, but it is an indirect method relying on calibration models that are typically developed and validated with small sample sets. In this study, we used >1500 young greenhouse grown trees from a clonally propagated single Populus family, grown at low and high nitrogen, and compared FT-NIR calibration sample sizes of 150, 250, 500 and 750 on calibration and prediction model statistics, and heritability estimates developed with pyrolysis molecular beam mass spectrometry (pyMBMS wood chemical composition. As calibration sample size increased from 150 to 750, predictive model statistics improved slightly. Overall, stronger calibration and prediction statistics were obtained with lignin, S-lignin, S/G ratio, and m/z 144 (an ion from cellulose, than with C5 and C6 carbohydrates, and m/z 114 (an ion from xylan. Although small differences in model statistics were observed between the 250 and 500 sample calibration sets, when predicted values were used for calculating genetic control, the 500 sample set gave substantially more similar results to those obtained with the pyMBMS data. With the 500 sample calibration models, genetic correlations obtained with FT-NIR and pyMBMS methods were similar. Quantitative trait loci (QTL analysis with pyMBMS and FT-NIR predictions identified only three common loci for lignin traits. FT-NIR identified four QTLs that were not found with pyMBMS data, and these QTLs were for the less well predicted carbohydrate traits.

  6. Near-infrared spectroscopy

    Virendra Jain


    Full Text Available Tissue ischaemia can be a significant contributor to increased morbidity and mortality. Conventional oxygenation monitoring modalities measure systemic oxygenation, but regional tissue oxygenation is not monitored. Near-infrared spectroscopy (NIRS is a non-invasive monitor for measuring regional oxygen saturation which provides real-time information. There has been increased interest in the clinical application of NIRS following numerous studies that show improved outcome in various clinical situations especially cardiac surgery. Its use has shown improved neurological outcome and decreased postoperative stay in cardiac surgery. Its usefulness has been investigated in various high risk surgeries such as carotid endarterectomy, thoracic surgeries, paediatric population and has shown promising results. There is however, limited data supporting its role in neurosurgical population. We strongly feel, it might play a key role in future. It has significant advantages over other neuromonitoring modalities, but more technological advances are needed before it can be used more widely into clinical practice.

  7. Multivariate Analysis of Combined Fourier Transform Near-Infrared Spectrometry (FT-NIR) and Raman Datasets for Improved Discrimination of Drying Oils.

    Carlesi, Serena; Ricci, Marilena; Cucci, Costanza; La Nasa, Jacopo; Lofrumento, Cristiana; Picollo, Marcello; Becucci, Maurizio


    This work explores the application of chemometric techniques to the analysis of lipidic paint binders (i.e., drying oils) by means of Raman and near-infrared spectroscopy. These binders have been widely used by artists throughout history, both individually and in mixtures. We prepared various model samples of the pure binders (linseed, poppy seed, and walnut oils) obtained from different manufacturers. These model samples were left to dry and then characterized by Raman and reflectance near-infrared spectroscopy. Multivariate analysis was performed by applying principal component analysis (PCA) on the first derivative of the corresponding Raman spectra (1800-750 cm(-1)), near-infrared spectra (6000-3900 cm(-1)), and their combination to test whether spectral differences could enable samples to be distinguished on the basis of their composition. The vibrational bands we found most useful to discriminate between the different products we studied are the fundamental ν(C=C) stretching and methylenic stretching and bending combination bands. The results of the multivariate analysis demonstrated the potential of chemometric approaches for characterizing and identifying drying oils, and also for gaining a deeper insight into the aging process. Comparison with high-performance liquid chromatography data was conducted to check the PCA results. PMID:26036244

  8. Near infrared testbed sensor

    Sanderson, R. B.; McCalmont, J. F.; Montgomery, J. B.; Johnson, R. S.; McDermott, D. J.


    A new tactical airborne multicolor missile warning testbed was developed and fielded as part of an Air Force Research Laboratory (AFRL) initiative focusing on clutter and missile signature measurements for algorithm development. Multicolor discrimination is one of the most effective ways of improving the performance of infrared missile warning sensors, particularly for heavy clutter situations. Its utility has been demonstrated in multiple fielded sensors. Traditionally, multicolor discrimination has been performed in the mid-infrared, 3-5 μm band, where the molecular emission of CO and CO2 characteristic of a combustion process is readily distinguished from the continuum of a black body radiator. Current infrared warning sensor development is focused on near infrared (NIR) staring mosaic detector arrays that provide similar spectral discrimination in different bands to provide a cost effective and mechanically simpler system. This, in turn, has required that multicolor clutter data be collected for both analysis and algorithm development. The developed sensor test bed is a multi-camera system 1004x1004 FPA coupled with optimized filters integrated with the optics. The collection portion includes a ruggedized field-programmable gate array processor coupled with with an integrated controller/tracker and fast disk array capable of real-time processing and collection of up to 60 full frames per second. This configuration allowed the collection and real-time processing of temporally correlated, radiometrically calibrated data in multiple spectral bands that was then compared to background and target imagery taken previously

  9. Quality assessment of ozone total column amounts as monitored by ground-based solar absorption spectrometry in the near infrared (> 3000 cm−1

    O. E. García


    Full Text Available This study examines the possibility of ground-based remote sensing ozone total column amounts (OTC from spectral signatures at 3040 and 4030 cm−1. These spectral regions are routinely measured by the NDACC (Network for the Detection of Atmospheric Composition Change ground-based FTIR (Fourier Transform InfraRed experiments. In addition, they are potentially detectable by the TCCON (Total Carbon Column Observing Network FTIR instruments. The ozone retrieval strategy presented here estimates the OTC from NDACC FTIR high resolution spectra with a theoretical precision of about 2% and 5% in the 3040 cm−1 and 4030 cm−1 regions, respectively. Empirically, these OTC products are validated by inter-comparison to FTIR OTC reference retrievals in the 1000 cm−1 spectral region (standard reference for NDACC ozone products, using a 8 year FTIR time series (2005–2012 taken at the subtropical ozone super-site of the Izaña Observatory (Tenerife, Spain. Associated with the weaker ozone signatures at the higher wavenumber regions, the 3040 cm−1 and 4030 cm−1 retrievals show lower vertical sensitivity than the 1000 cm−1 retrievals. Nevertheless, we observe that the rather consistent variations are detected: the variances of the 3040 cm−1 and the 4030 cm−1 retrievals agree within 90% and 75%, respectively, with the variance of the 1000 cm−1 standard retrieval. Furthermore, all three retrievals show very similar annual cycles. However, we observe a large systematic difference of about 7% between the OTC obtained at 1000 cm−1 and 3040 cm−1, indicating a significant inconsistency between the spectroscopic ozone parameters (HITRAN 2012 of both regions. Between the 1000 cm−1 and the 4030 cm−1 retrieval the systematic difference is only 2–3%. Finally, the long-term stability of the OTC retrievals has also been examined, observing that both near infrared retrievals can monitor the long-term OTC evolution in consistency to the 1000 cm−1

  10. Visible-Near Infrared Point Spectrometry of Drill Core Samples from Río Tinto, Spain: Results from the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) Drilling Exercise

    Sutter, Brad; Brown, Adrian J.; Stoker, Carol R.


    Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.

  11. Synegies Between Visible/Near-Infrared Imaging Spectrometry and the Thermal Infrared in an Urban Environment: An Evaluation of the Hyperspectral Infrared Imager (HYSPIRI) Mission

    Roberts, Dar A.; Quattrochi, Dale A.; Hulley, Glynn C.; Hook, Simon J.; Green, Robert O.


    A majority of the human population lives in urban areas and as such, the quality of urban environments is becoming increasingly important to the human population. Furthermore, these areas are major sources of environmental contaminants and sinks of energy and materials. Remote sensing provides an improved understanding of urban areas and their impacts by mapping urban extent, urban composition (vegetation and impervious cover fractions), and urban radiation balance through measures of albedo, emissivity and land surface temperature (LST). Recently, the National Research Council (NRC) completed an assessment of remote sensing needs for the next decade (NRC, 2007), proposing several missions suitable for urban studies, including a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer and a multispectral thermal infrared (TIR) instrument called the Hyperspectral Infrared Imagery (HyspIRI). In this talk, we introduce the HyspIRI mission, focusing on potential synergies between VSWIR and TIR data in an urban area. We evaluate potential synergies using an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS-ASTER (MASTER) image pair acquired over Santa Barbara, United States. AVIRIS data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. Surface reflectance was calculated using ACORN and a ground reflectance target to remove atmospheric and sensor artifacts. MASTER data were processed to generate estimates of spectral emissivity and LST using Modtran radiative transfer code and the ASTER Temperature Emissivity Separation algorithm. A spectral library of common urban materials, including urban vegetation, roofs and roads was assembled from combined AVIRIS and field-measured reflectance spectra. LST and emissivity were also retrieved from MASTER and reflectance/emissivity spectra for a subset of urban materials were retrieved from co-located MASTER and

  12. Synergies between Visible/Near-Infrared imaging spectrometry and the Thermal Infrared in an urban environment: An evaluation of the Hyperspectral Infrared Imager (HyspIRI) mission

    Roberts, D. A.; Quattrochi, D. A.; Hulley, G. C.; Hook, S.; Green, R. O.


    More than half of humanity lives in urban areas, projected to exceed 80% by 2015. Urban areas are major sources of environmental contaminants and sinks of energy and materials. Globally, remote sensing contributes to improved understanding of urban impacts through mapping urban extent, vegetation and impervious cover fractions and urban energy balance including albedo, emissivity and land surface temperature (LST). HyspIRI is a NRC "Decadal Survey" mission combining a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer with a multispectral thermal infrared (TIR) instrument . Potential synergies between VSWIR and TIR data were explored using analogous airborne data acquired over Santa Barbara in June, 2008. These data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. A spectral library of common urban materials (e.g., grass, trees, soil, roofs, roads) was built from field and airborne-measured spectra . LST and emissivity were also retrieved from the airborne data. Co-located pixels from airborne data were used to generate reflectance/emissivity spectra for a subset of urban materials. Multiple Endmember Spectral Mixture Analysis (MESMA) was used to map fractions of impervious, soil, green vegetation (GV) and non-photosynthetic vegetation (NPV) at the different spatial resolutions and to compare the fractional estimates across spatial scales. Surface energy parameters, including albedo, vegetation cover fraction, broadband emissivity and LST were also determined for urban and natural land-cover classes in the region. Fractions were validated using 1m digital photography. GV and NPV Fractions were highly correlated with validation data at all spatial scales, producing a near 1:1 relationship but with a urban areas and soil overestimated. Comparison of fractions across scales showed high correlation between GV and NPV at 7.5 and 60m resolution, suggesting that

  13. Advances in near-infrared measurements

    Patonay, Gabor


    Advances in Near-Infrared Measurements, Volume 1 provides an overview of near-infrared spectroscopy. The book is comprised of six chapters that tackle various areas of near-infrared measurement. Chapter 1 discusses remote monitoring techniques in near-infrared spectroscopy with an emphasis on fiber optics. Chapter 2 covers the applications of fibers using Raman techniques, and Chapter 3 tackles the difficulties associated with near-infrared data analysis. The subsequent chapters present examples of the capabilities of near-infrared spectroscopy from various research groups. The text wi

  14. Adulteration and Quality Analysis of Olive Oil by Near-Infrared Spectrometry and Gas Chromatography-Mass Spectrometry%近红外光谱和气相色谱-质谱联用技术对橄榄油掺杂及品质分析研究


    分别采用近红外光谱技术及气相色谱-质谱联用技术对橄榄油样品进行分析。采用透射方式采集橄榄油样品的近红外光谱比漫反射方式可以获得更好的重现性;通过直观分析、二阶求导以及主成分分析可快速判别橄榄油与掺杂橄榄油。0.10 g橄榄油样品经过10 mL的KOH-甲醇溶液甲酯化处理后,加入10 mL正己烷和10 mL水进行液液萃取,并对正己烷提取液进行气相色谱-质谱分析,对39种橄榄油脂肪酸甲酯含量的分析结果与近红外光谱的主成分分析图对比得出,油酸和亚油酸是影响橄榄油近红外光谱扫描结果的主要成分。%Olive oil was analyzed by near-infrared spectrometry and gas chromatography-mass spectrometry.The reproducibility of near-infrared spectrum acquired through transmission is better than that acquired through diffuse reflection.The adulteration of olive oil was differentiated rapidly by visual analysis,derivation of two order analysis and principal component analysis(PCA).0.10 g of olive oil was added 10 mL of KOH-methanol to methyl-etherification.Then 10 mL of n-hexane and 10 mL of water were added to liquid-liquid extraction.The extracts of n-hexane were analyzed by gas chromatography-mass spectrometry and the fatty acid methyl ester(FAME) of 39 olive oil samples were compared with the PCA of near-infrared spectrometry.The results indicated that oleic acid and linoleic acid were major impact components to the near-infrared spectrums of olive oil.

  15. The TNG Near Infrared Camera Spectrometer

    Baffa, C.; Comoretto, G.; Gennari, S.; F. Lisi; Oliva, E; Biliotti, V.; Checcucci, A.; Gavrioussev, V.; Giani, E; Ghinassi, F.; Hunt, L. K.; Maiolino, R.; Mannuci, F.; Marcucci, G.; Sozzi, M.


    NICS (acronym for Near Infrared Camera Spectrometer) is the near-infrared cooled camera-spectrometer that has been developed by the Arcetri Infrared Group at the Arcetri Astrophysical Observatory, in collaboration with the CAISMI-CNR for the TNG (the Italian National Telescope Galileo at La Palma, Canary Islands, Spain). As NICS is in its scientific commissioning phase, we report its observing capabilities in the near-infrared bands at the TNG, along with the measured performance and the limi...

  16. TIRSPEC : TIFR Near Infrared Spectrometer and Imager

    Ninan, J P; Ghosh, S K; D'Costa, S L A; Naik, M B; Poojary, S S; Sandimani, P R; Meshram, G S; Jadhav, R B; Bhagat, S B; Gharat, S M; Bakalkar, C B; Prabhu, T P; Anupama, G C; Toomey, D W


    We describe the TIFR Near Infrared Spectrometer and Imager (TIRSPEC) designed and built in collaboration with M/s. Mauna Kea Infrared LLC, Hawaii, USA, now in operation on the side port of the 2-m Himalayan Chandra Telescope (HCT), Hanle (Ladakh), India at an altitude of 4500 meters above mean sea level. The TIRSPEC provides for various modes of operation which include photometry with broad and narrow band filters, spectrometry in single order mode with long slits of 300" length and different widths, with order sorter filters in the Y, J, H and K bands and a grism as the dispersing element as well as a cross dispersed mode to give a coverage of 1.0 to 2.5 microns at a resolving power R of ~1200. The TIRSPEC uses a Teledyne 1024 x 1024 pixel Hawaii-1 PACE array detector with a cutoff wavelength of 2.5 microns and on HCT, provides a field of view of 307" x 307" with a plate scale of 0.3"/pixel. The TIRSPEC was successfully commissioned in June 2013 and the subsequent characterization and astronomical observatio...

  17. Near infrared spectroscopy and exercise

    Near infrared spectroscopy (NIRS) provides a non-invasive method for the continuous monitoring of changes in tissue oxygenation and blood volume during aerobic exercise. During incremental exercise in adult subjects there was a positive correlation between lactate threshold (measured by blood sampling) and changes in the rate of muscle deoxygenation (measured by NIRS). However, the 7% failure rate for the NIRS test mitigated against the general use of this method. NIRS did not provide a valid method for LT determination in an adolescent population. NIRS was then used to examine whether haemodynamic changes could be a contributing factor to the mechanism underlying the cross-transfer effect. During a one-legged incremental aerobic exercise test the muscle was more deoxygenated in the exercising leg than in the non-exercising leg, consistent with oxygen consumption outstripping blood flow to the exercising limb. However, muscle blood volume increased equally in both legs. This suggests that blood flow may be raised to similar levels in both the legs; although local factors may signal an increase in blood volume, this effect is expressed in both legs. Muscle blood flow and changes in muscle blood volume were then measured directly by NIRS during an incremental one-arm aerobic exercise test. There was no significant difference in either blood volume or blood flow in the two arms at the end of the test. In the non-exercising arm changes in blood flow and blood volume were measured throughout the protocol. At higher exercise intensities, blood volume continued to rise as muscle blood flow plateaued, indicating that blood volume changes become independent of changes in blood flow. Finally, the effect of different training regimes on changes in muscle blood volume was examined. Subjects were assigned to a training group; two-arm training, one-arm training or a control group. Training did not affect blood volume changes during two-arm exercise. However, during one

  18. Near-infrared thermochromic diazapentalene dyes

    Qian, Gang [Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario (Canada); Wang, Zhi Yuan [Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario (Canada); State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)


    A series of 2,5-diazapentalene containing dyes with tunable energy gaps are visible and near-infrared halochromic towards various acids and their protonated counterparts represent a new class of thermochromic materials with the near-infrared absorption being switched on at room temperature and off above 50 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Illuminant estimation and detection using near infrared

    Fredembach, Clement; Süsstrunk, Sabine


    Digital camera sensors are sensitive to wavelengths ranging from the ultraviolet (200-400nm) to the near-infrared (700-100nm) bands. This range is, however, reduced because the aim of photographic cameras is to capture and reproduce the visible spectrum (400-700nm) only. Ultraviolet radiation is filtered out by the optical elements of the camera, while a specifically designed "hot-mirror" is placed in front of the sensor to prevent near-infrared contamination of the visible image. We propose ...

  20. Near-infrared scintillation of liquid argon

    Alexander, T.; Escobar, C. O.; Lippincott, W. H.; Rubinov, P.


    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 μm motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  1. Near infrared polymer light-emitting diodes

    ZHANG Yong; YANG Jian; HOU Qiong; MO Yueqi; PENG Junbiao; CAO Yong


    High efficiency of near infrared polymer light-emitting diodes with bilayer structure was obtained. The diode structure is ITO/PEDOT/L1/L2/Ba/Al, where L1 is phenyl-substituted poly [p-phenylphenylene vinylene] derivative (P-PPV), L2 is 9,9-dioctylfluorene (DOF) and 4,7- bis(3-hexylthiophen)-2-yl-2,1,3-naphthothiadiazole (HDNT) copolymer (PFHDNT10). The electroluminescence (EL) spectrum of diodes from PFHDNT10 is at 750 nm located in the range of near infrared. The maximum external quantum efficiency is up to 2.1% at the current density of 35 mA/cm2. The improvement of the diode's performances was considered to be the irradiative excitons confined in the interface between L1 and L2 layers.

  2. Speeded Near Infrared Spectroscopy (NIRS) Response Detection

    Cui, Xu; Bray, Signe; Reiss, Allan L


    The hemodynamic response measured by Near Infrared Spectroscopy (NIRS) is temporally delayed from the onset of the underlying neural activity. As a consequence, NIRS based brain-computer-interfaces (BCIs) and neurofeedback learning systems, may have a latency of several seconds in responding to a change in participants' behavioral or mental states, severely limiting the practical use of such systems. To explore the possibility of reducing this delay, we used a multivariate pattern classificat...

  3. Multiphoton microscopy with near infrared contrast agents

    Yazdanfar, Siavash; Joo, Chulmin; Zhan, Chun; Berezin, Mikhail Y.; Akers, Walter J.; Achilefu, Samuel


    While multiphoton microscopy (MPM) has been performed with a wide range of excitation wavelengths, fluorescence emission has been limited to the visible spectrum. We introduce a paradigm for MPM of near-infrared (NIR) fluorescent molecular probes via nonlinear excitation at 1550 nm. This all-NIR system expands the range of available MPM fluorophores, virtually eliminates background autofluorescence, and allows for use of fiber-based, turnkey ultrafast lasers developed for telecommunications.

  4. The physics of near-infrared photography

    The physics behind the sometimes strange effects and ‘unnatural’ appearance of near-infrared (NIR) photographs is discussed in terms of reflection, absorption and transmission of NIR radiation with the respective objects. Besides discussing how NIR cameras work, several visible and NIR photograph pairs are presented, which include vegetation, natural water, clouds, the sky, and humans. In addition, some physics-oriented experimental NIR images are presented which clearly demonstrate some of the basic physics behind some of these awesome sights. (paper)

  5. Near-infrared scintillation of liquid argon

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab


    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  6. Precise Near-Infrared Radial Velocities

    Plavchan, Peter; Gagne, Jonathan; Furlan, Elise; Brinkworth, Carolyn; Bottom, Michael; Tanner, Angelle; Anglada-Escude, Guillem; White, Russel; Davison, Cassy; Mills, Sean; Beichman, Chas; Johnson, John Asher; Ciardi, David; Wallace, Kent; Mennesson, Bertrand; Vasisht, Gautam; Prato, Lisa; Kane, Stephen; Crawford, Sam; Crawford, Tim; Sung, Keeyoon; Drouin, Brian; Lin, Sean; Leifer, Stephanie; Catanzarite, Joe; Henry, Todd; von Braun, Kaspar; Walp, Bernie; Geneser, Claire; Ogden, Nick; Stufflebeam, Andrew; Pohl, Garrett; Regan, Joe


    We present the results of two 2.3 micron near-infrared radial velocity surveys to detect exoplanets around 36 nearby and young M dwarfs. We use the CSHELL spectrograph (R ~46,000) at the NASA InfraRed Telescope Facility, combined with an isotopic methane absorption gas cell for common optical path relative wavelength calibration. We have developed a sophisticated RV forward modeling code that accounts for fringing and other instrumental artifacts present in the spectra. With a spectral grasp of only 5 nm, we are able to reach long-term radial velocity dispersions of ~20-30 m/s on our survey targets.

  7. Multi-channel near infrared spectroradiometer

    A multichannel spectroradiometer has been developed by Sira Ltd. for the study of rapidly varying events in the near infrared. The instrument is being used in the examination of gun flashes, rocket motor exhaust efflux analysis and ordnance or pyrotechnic flash studies. The spectral range of about 1.4 to 5.2 microns is covered in two bands with the first order dispersion from a pair of ruled blazed gratings being imaged onto a pair of detector arrays. Data may be logged at a rate of 1000 complete spectra per second

  8. Near-infrared scintillation of liquid argon

    Alexander, T; Lippincott, W H; Rubinov, P


    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  9. Near-infrared spectroscopy for cocrystal screening

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad; Cornett, Claus; Rasmussen, Morten Arendt; Van Der Berg, Franciscus Winfried J; de Diego, Heidi Lopez; Rantanen, Jukka


    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate the...... retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those of...

  10. Speeded near infrared spectroscopy (NIRS) response detection.

    Cui, Xu; Bray, Signe; Reiss, Allan L


    The hemodynamic response measured by Near Infrared Spectroscopy (NIRS) is temporally delayed from the onset of the underlying neural activity. As a consequence, NIRS based brain-computer-interfaces (BCIs) and neurofeedback learning systems, may have a latency of several seconds in responding to a change in participants' behavioral or mental states, severely limiting the practical use of such systems. To explore the possibility of reducing this delay, we used a multivariate pattern classification technique (linear support vector machine, SVM) to decode the true behavioral state from the measured neural signal and systematically evaluated the performance of different feature spaces (signal history, history gradient, oxygenated or deoxygenated hemoglobin signal and spatial pattern). We found that the latency to decode a change in behavioral state can be reduced by 50% (from 4.8 s to 2.4 s), which will enhance the feasibility of NIRS for real-time applications. PMID:21085607

  11. Evaluation of a near-infrared photomultiplier

    Evans, W. E.


    A high performance near infrared sensitive photomultiplier tube was procured and evaluated with emphasis on those characteristics affecting its use over the very large amplitude range of signals encountered by an airborne lidar intended for mapping the distribution of stratospheric aerosols. A cathode quantum efficiency of 4.3 percent at 1.06 micrometer wavelength and a background count of less than 10,000 per second were realized. It is recommended that the tube be stored and operated at a temperature near -20 C, or cooler. Performance was found acceptable for the application in both pulse counting and analog modes, but careful design, probably including dynamic gain control, will be required to effectively utilize both modes on the same lidar shot.

  12. Designed blending for near infrared calibration.

    Scheibelhofer, Otto; Grabner, Bianca; Bondi, Robert W; Igne, Benoît; Sacher, Stephan; Khinast, Johannes G


    Spectroscopic methods are increasingly used for monitoring pharmaceutical manufacturing unit operations that involve powder handling and processing. With that regard, chemometric models are required to interpret the obtained spectra. There are many ways to prepare artificial powder blend samples used in a chemometric model for predicting the chemical content. Basically, an infinite number of possible concentration levels exist in terms of the individual components. In our study, design of experiments for ternary mixtures was used to establish a suitable number of blend compositions that represents the entire mixture region of interest for a three component blend. Various experimental designs and their effect on the predictive power of a chemometric model for near infrared spectra were investigated. It was determined that a particular choice of experimental design could change the predictive power of a model, even with the same number of calibration experiments. PMID:25980978

  13. Near infrared microcoupler with multilayer isotropic metamaterials

    Li, Kun; Tian, Chao; Liu, Shengchun; Zhang, Jintao; Lv, Houjun; Zhu, Xuefeng


    This paper reports the design of a microcoupler in the near-infrared region. The proposed structure consists of two alternately arranged complementary media. The complementary media, which consist of double-positive material and double-negative material, also can be made of a pair of single-negative materials. Simulation results show that the proposed structure has an excellent coupling efficiency compared to direct coupling. It has a maximum coupling efficiency closing to 1 at 1550 nm. As the total size of the coupling structure decreases, the passband exhibits a property of gradual blue shift. Therefore, we can design couplers operating in different frequency bands with high coupling efficiency. The influence of the permittivity and the thickness of each material layer on the coupling efficiency are also studied in detail. The proposed microcoupler has potential guidance in the design and development of high-performance coupling structures.

  14. Probing brain oxygenation with near infrared spectroscopy

    Gersten, Alexander; Raz, Amir; Fried, Robert


    The fundamentals of near infrared spectroscopy (NIRS) are reviewed. This technique allows to measure the oxygenation of the brain tissue. The particular problems involved in detecting regional brain oxygenation (rSO2) are discussed. The dominant chromophore (light absorber) in tissue is water. Only in the NIR light region of 650-1000 nm, the overall absorption is sufficiently low, and the NIR light can be detected across a thick layer of tissues, among them the skin, the scull and the brain. In this region, there are many absorbing light chromophores, but only three are important as far as the oxygenation is concerned. They are the hemoglobin (HbO2), the deoxy-hemoglobin (Hb) and cytochrome oxidase (CtOx). In the last 20 years there was an enormous growth in the instrumentation and applications of NIRS. . The devices that were used in our experiments were : Somanetics's INVOS Brain Oximeter (IBO) and Toomim's HEG spectrophotometer. The performances of both devices were compared including their merits and draw...

  15. Near-infrared fluorescence sensor technology

    Evans, Lawrence, III; Casay, Guillermo A.; Dai, Dong; Patonay, Gabor


    Fluorescence spectroscopy has been used extensively to solve environmental problems (including biological, water quality, separation and etc.). Despite its numerous applications, long wavelength, near- infrared (NIR) fluorescence has been the subject of very few studies. This wavelength region is advantageous, if we wish to minimize the effect of background interference. Lowering the background interference is especially advantageous in environmental monitoring applications where very little or no preseparation is necessary to achieve selective measurements. The applications of NIR absorbing fluorophores which usually have high molar absorptivities and good quantum yields can be especially advantageous when laser diodes are employed as the excitation source. This paper will focus on several general practical analytical applications of NIR fluorescence spectroscopy for solving environmental related analytical problems, including but not limited to: use of NIR fluorophores as labels (in conjunction with immunosensor technology) and the use of NIR chromophores as direct probes (pH, metal ion, etc.). Additionally the use of laser diodes and semiconductor detectors (silicon photodiodes and avalanche photodiodes) as light sources and detectors will be discussed.

  16. Near-infrared fluorophores as biomolecular probes

    Patonay, Gabor; Beckford, Garfield; Strekowski, Lucjan; Henary, Maged; Merid, Yonathan


    Near-Infrared (NIR) fluorescence has been valuable in analytical and bioanalytical chemistry. NIR probes and labels have been used for several applications, including hydrophobicity of protein binding sites, DNA sequencing, immunoassays, CE separations, etc. The NIR region (700-1100 nm) has advantages for the spectroscopist due to the inherently lower background interference from the biological matrix and the high molar absorptivities of NIR chromophores. During the studies we report here several NIR dyes were prepared to determine the role of the hydrophobicity of NIR dyes and their charge in binding to amino acids and proteins, e.g., serum albumins. We synthesized NIR dye homologs containing the same chromophore but substituents of varying hydrophobicity. Hydrophobic moieties were represented by alkyl and aryl groups. These NIR dyes of varying hydrophobicity exhibited varying degrees of H-aggregation in aqueous solution indicating that the degree of H-aggregation could be used as an indicator to predict binding characteristics to serum albumins. In order to understand what factors may be important in the binding process, spectral behavior of these varying hydrophobicity dyes were examined in the presence of amino acids. Typical dye structures that exhibit large binding constants to biomolecules were compared in order to optimize applications utilizing non-covalent interactions.

  17. Near-infrared spectroscopy during peripheral vascular surgery

    Eiberg, J P; Schroeder, T V; Vogt, K C; Secher, N H


    Near-infrared spectroscopy was performed perioperatively on the dorsum of the foot in 14 patients who underwent infrainguinal bypass surgery using a prosthesis or the greater saphenous vein. Dual-wavelength continuous light spectroscopy was used to assess changes in tissue saturation before, during...... indicate that near-infrared spectroscopy is appropriate for perioperative monitoring during vascular grafting....

  18. Near-infrared probes: design and applications

    Patonay, G.; Strekowski, L.; Raszkiewicz, A.; Kim, J. S.


    Near-Infrared (NIR) absorbing chromophores have been valuable in analytical and bioanalytical chemistry. NIR probes and labels have been used for several applications, including solvent polarity, hydrophobicity, DNA sequencing, immunoassays, CE separations, etc. The NIR region (700-1100 nm) is more advantageous for the bioanalytical chemist due to the inherently lower background interference and the high molar absorptivities. NIR dyes can be used as simple probes to investigate biomolecule properties or just simply to detect the presence of biomolecules. Another typical application is the use of NIR fluorophores as labels. In these applications covalent labeling is the preferred method but it requires NIR dyes with appropriate reactive moieties. Due to the hydrophobic nature of NIR chromophores non-covalent labeling may be a viable alternative. For this purpose novel bis(carbocynines) have been developed in our laboratories. These dyes form intramolecular H-aggregates in polar solvents, even at very low concentrations. Spectral properties of this intramolecular dimer greatly depend on the properties of heterocyclic moieties and the length, the location and/or flexibility of the connecting chain. This form of the dye can be described as a clamshell complex with two interacting hydrophobic carbocyanine moieties. This intramolecular H-aggregate has a low extinction coefficient and fluorescence quantum yield. Upon opening the clamshell that can be facilitated by changing microhydrophobicity (i.e., binding to biomolecules) the H-and D- bands are decreased and the monomeric band is increased, with concomitant increase in fluorescence intensity. The main analytical utility of these bis(carbocyanines) is that the free dye (i.e., not complexed to an analyte) has negligible fluorescence in a typical aqueous buffer environment. Examples of different applications of these bis(carbocyanines) are given including forensic applications.

  19. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

    Brunet, Didier; Woignier, Thierry; Lesueur-Jannoyer, M.; R. Achard; Rangon, Luc; Barthès, Bernard


    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q(2) = 0.75, R-2 = 0.8...

  20. Hyperspectral visible-near infrared imaging for the detection of waxed rice

    Zhao, Mantong


    Presently, unscrupulous traders in the market use the industrial wax to wax the rice. The industrial wax is a particularly hazardous substance. Visible-near infrared hyperspectral images (400-1,000 nm) can be used for the detection of the waxed rice and the non-waxed rice. This study was carried out to find effective testing methods based on the visible-near infrared imaging spectrometry to detect whether the rice was waxed or not. An imaging spectroscopy system was assembled to acquire hyperspectral images from 80 grains of waxed rice and 80 grains of non-waxed rice over visible and near infrared spectral region. Spectra of 100 grains of rice were analyzed by principal component analysis (PCA) to extract the information of hyperspectral images. PCA provides an effective compressed representation of the spectral signal of each pixel in the spectral domain. We used PCA to acquire the effective wavelengths from the spectra. Based on the effective wavelengths, the predict models were set up by using partial least squares (PLS) analysis and linear discriminant analysis (LDA). Also, compared with the PLS of 80% for the waxed rice and 86.7% for the non-waxed rice detection rate, LDA gives 93.3% and 96.7% detection rate. The results demonstrated that the LDA could detect the waxed rice better, while illustrating the hyperspectral imaging technique with the visible-near infrared region could be a reliable method for the waxed rice detection.

  1. LED-based near infrared sensor for cancer diagnostics

    Bogomolov, Andrey; Ageev, Vladimir; Zabarylo, Urszula; Usenov, Iskander; Schulte, Franziska; Kirsanov, Dmitry; Belikova, Valeria; Minet, Olaf; Feliksberger, E.; Meshkovsky, I.; Artyushenko, Viacheslav


    Optical spectroscopic technologies are increasingly used for cancer diagnostics. Feasibility of differentiation between malignant and healthy samples of human kidney using Fluorescence, Raman, MIR and NIR spectroscopy has been recently reported . In the present work, a simplification of NIR spectroscopy method has been studied. Traditional high-resolution NIR spectrometry was replaced by an optical sensor based on a set of light-emitting diodes at selected wavelengths as light sources and a photodiode. Two prototypes of the sensor have been developed and tested using 14 in-vitro samples of seven kidney tumor patients. Statistical evaluation of results using principal component analysis and partial least-squares discriminant analysis has been performed. Despite only partial discrimination between tumor and healthy tissue achieved by the presented new technique, the results evidence benefits of LED-based near-infrared sensing used for oncological diagnostics. Publisher's Note: This paper, originally published on 4 March, 2016, was replaced with a corrected/revised version on 7 April, 2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.

  2. Precise radial velocities in the near infrared

    Redman, Stephen L.

    Since the first detection of a planet outside our Solar System byWolszczan & Frail (1992), over 500 exoplanets have been found to date2, none of which resemble the Earth. Most of these planets were discovered by measuring the radial velocity (hereafter, RV) of the host star, which wobbles under the gravitational influence of any existing planetary companions. However, this method has yet to achieve the sub-m/s precision necessary to detect an Earth-mass planet in the Habitable Zone (the region around a star that can support liquid water; hereafter, HZ) (Kasting et al. 1993) around a Solar-type star. Even though Kepler (Borucki et al. 2010) has announced several Earth-sized HZ candidates, these targets will be exceptionally difficult to confirm with current astrophysical spectrographs (Borucki et al. 2011). The fastest way to discover and confirm potentiallyhabitable Earth-mass planets is to observe stars with lower masses - in particular, late M dwarfs. While M dwarfs are readily abundant, comprising some 70% of the local stellar population, their low optical luminosity presents a formidable challenge to current optical RV instruments. By observing in the near-infrared (hereafter, NIR), where the flux from M dwarfs peaks, we can potentially reach low RV precisions with significantly less telescope time than would be required by a comparable optical instrument. However, NIR precision RV measurements are a relatively new idea and replete with challenges: IR arrays, unlike CCDs, are sensitive to the thermal background; modal noise is a bigger issue in the NIR than in the optical; and the NIR currently lacks the calibration sources like the very successful thorium-argon (hereafter, ThAr) hollow-cathode lamp and Iodine gas cell of the optical. The PSU Pathfinder (hereafter, Pathfinder) was designed to explore these technical issues with the intention of mitigating these problems for future NIR high-resolution spectrographs, such as the Habitable-Zone Planet Finder (HZPF

  3. Design and spectroscopic characterization of novel series of near infrared indocyanine dyes

    Abd-El-Aziz, Alaa S.; Strohm, Elizabeth A.; Okasha, Rawda M.


    A novel series of near infrared heptamethine indocyanine dyes bearing various aromatic chromophores has been synthesized. The synthetic methodology was achieved via ester condensation reactions of heptamethine indocyanine parent dye with carboxylic moiety and aromatic compounds such as anthracene, pyrene and thiophene derivatives. Structural analysis of the newly prepared dyes was accomplished using one- and two-dimensional nuclear magnetic resonance, infrared spectroscopy and electrospray ionization mass spectrometry. These dyes exhibited high molar absorptivity based on the UV-visible/near-infrared spectral data. Fluorescence emission spectral data was used to determine the relative quantum yield. The new dyes displayed formation of H-aggregates in water at low concentrations, while this behavior was not observed in methanol.

  4. Development of silicon-germanium visible-near infrared arrays

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Haldar, Pradeep; Lewis, Jay S.; Dhar, Nibir K.; Wijewarnasuriya, Priyalal; Puri, Yash R.; Sood, Ashok K.


    Photodetectors based on germanium which do not require cooling and can provide good near-infrared (NIR) detection performance offer a low-cost alternative to conventional infrared sensors based on material systems such as InGaAs, InSb, and HgCdTe. As a result of the significant difference in thermal expansion coefficients between germanium and silicon, tensile strain incorporated into Ge epitaxial layers deposited on Si utilizing specialized growth processes can extend the operational range of detection to 1600 nm and longer wavelengths. We have fabricated Ge based PIN photodetectors on 300 mm diameter Si wafers to take advantage of high throughput, large-area complementary metal-oxide semiconductor (CMOS) technology. This device fabrication process involves low temperature epitaxial deposition of Ge to form a thin p+ (boron) Ge seed/buffer layer, and subsequent higher temperature deposition of a thicker Ge intrinsic layer. This is followed by selective ion implantation of phosphorus of various concentrations to form n+ Ge regions, deposition of a passivating oxide cap, and then top copper contacts to complete the PIN detector devices. Various techniques including transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have been employed to characterize the material and structural properties of the epitaxially grown layers and fabricated detector devices, and these results are presented. The I-V response of the photodetector devices with and without illumination was also measured, for which the Ge based photodetectors consistently exhibited low dark currents of around ~1 nA at -1 V bias.

  5. New and Better Near-Infrared Detectors for JWST Near Infrared Spectrograph

    Rauscher, Bernard J.; Mott, D. Brent; Wen, Yiting; Linder, Don; Greenhouse, Matthew A.; Hill, Robert J.


    ESA and NASA recently selected two 5 m cutoff Teledyne H2RG sensor chip assemblies (SCA) for flight on the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). These HgCdTe SCAs incorporate Teledynes improved barrier layer design that eliminates the degradation that affected earlier JWST H2RGs(Rauscher et al. 2012a). The better indium barrier, together with other design changes, has improved the performance and reliability of JWSTs SCAs. In this article, we describe the measured performance characteristics that most directly affect scientific observations including read noise, total noise, dark current, quantum efficiency (QE), and image persistence. As part of measuring QE, we measured the quantum yield as a function of photon energy,, and found that it exceeds unity for photon energies E (2.65.2) Eg, where Eg is the HgCdTe bandgap energy. This corresponds to. 2 m for NIRSpecs 5 m cutoff HgCdTe. Our measurements agree well with a previous measurement by McCullough et al. (2008) for. 1.3. For 1.3, we find a slower increase in with photon energy than McCullough et al. did. However, and as McCullough et al. note, their two state model of the yield process is not valid for large 1.

  6. New applications of near infrared spectroscopy in the food industry

    The near infrared spectroscopic method of analysis was initially developed for rapid analyses of protein in wheat. A brief explanation of the theory and history of near infrared spectroscopic analysis will be given. Research was done on the application of near infrared spectroscopic (NIR) in the food industry. Especially exciting was the breakthrough achieved in applying NIR to determine the dry solid content of bread. Such application could revolutionise the baking industry. Results will also be presented of research done on the application of NIR techniques for the determination of protein and fat in bread based on dry matter; hardness in wheat; absorption and sedimentation in pasta products; and use in process control in snack products manufacture. The limitations that were found in the application of NIR analysis will also be covered. The developments in NIR technology may result in these methods becoming standard practice in many food laboratories

  7. Tunable near infrared radiation for sensing of natural gas

    Near infrared radiation tunable from 3.04 to 3.40 microns for sensing of natural gas is generated through difference frequency mixing of Nd laser and the same pumped dye laser radiations in the recently developed Beta Barium Borate crystal. Exploiting very high laser damage threshold of the crystal, the conversion efficiency at the generated near infrared radiation in the mixing process can be increased to a large extent simply by raising the peak power densities of the input dye and Nd lasers

  8. FIRE near-infrared spectroscopic classifications of SN 2016dag

    Morrell, N.; Phillips, M. M.; Contreras, C.; Hsia, E. Y.


    We report the spectroscopic classification of SN 2016dag, discovered by the Backyard Observatory Supernova Search (BOSS), using a near-infrared spectrum (range 800-2500 nm) obtained on Jul 14.95 UT with the FoldedPort Infrared Echellette (FIRE) spectrograph on the 6.5-m Magellan Baade Telescope at Las Campanas Observatory.

  9. Near-infrared spectroscopy for monitoring muscle oxygenation

    Boushel, Robert Christopher; Piantadosi, C A


    Near-infrared spectroscopy (NIRS) is a non-invasive method for monitoring oxygen availability and utilization by the tissues. In intact skeletal muscle, NIRS allows semi-quantitative measurements of haemoglobin plus myoglobin oxygenation (tissue O2 stores) and the haemoglobin volume. Specialized...

  10. Detecting Counterfeit Antimalarial Tablets by Near-Infrared Spectroscopy

    Counterfeit antimalarial drugs are found in many developing countries, but it is challenging to differentiate between genuine and fakes due to their increasing sophistication. Near-infrared spectroscopy (NIRS) is a powerful tool in pharmaceutical forensics, and we tested this technique for discrim...

  11. Near Infrared Photoacoustic Detection of Heptane in Synthetic Air

    Duggen, Lars; Albu, Mihaela; Willatzen, Morten;


    Trace contaminations of n-heptane in synthetic air is measured in the parts-per-billion (ppb) range using near infrared photoacoustic detection. We describe the fundamental theory used in the design of the photoacoustic cell for trace gas analysis and determine the detection limit of the cell. On...

  12. Electromagnetically induced transparency in metamaterials at near-infrared frequency

    Zhang, Jingjing; Xiao, Sanshui; Jeppesen, Claus;


    We employ a planar metamaterial structure composed of a splitring-resonator (SRR) and paired nano-rods to experimentally realize a spectral response at near-infrared frequencies resembling that of electromagnetically induced transparency. A narrow transparency window associated with low loss is...

  13. Near-Infrared Quantum Cutting Long Persistent Luminescence

    Zou, Zehua; Feng, Lin; Cao, Cheng; Zhang, Jiachi; Wang, Yuhua


    By combining the unique features of the quantum cutting luminescence and long persistent luminescence, we design a new concept called “near-infrared quantum cutting long persistent luminescence (NQPL)”, which makes it possible for us to obtain highly efficient (>100%) near-infrared long persistent luminescence in theory. Guided by the NQPL concept, we fabricate the first NQPL phosphor Ca2Ga2GeO7:Pr3+,Yb3+. It reveals that both the two-step energy transfer of model (I) and the one-step energy transfer of model (IV) occur in 3P0 levels of Pr3+. Although the actual efficiency is not sufficient for the practical application at this primitive stage, this discovery and the associated materials are still expected to have important implications for several fields such as crystalline Si solar cells and bio-medical imaging. PMID:27143282

  14. Near-infrared photodetector with reduced dark current

    Klem, John F; Kim, Jin K


    A photodetector is disclosed for the detection of near-infrared light with a wavelength in the range of about 0.9-1.7 microns. The photodetector, which can be formed as either an nBp device or a pBn device on an InP substrate, includes an InGaAs light-absorbing layer, an InAlGaAs graded layer, an InAlAs or InP barrier layer, and an InGaAs contact layer. The photodetector can detect near-infrared light with or without the use of an applied reverse-bias voltage and is useful as an individual photodetector, or to form a focal plane array.

  15. TIRCAM2: The TIFR near infrared imaging camera

    Naik, M. B.; Ojha, D. K.; Ghosh, S. K.; Poojary, S. S.; Jadhav, R. B.; Meshram, G. S.; Sandimani, P. R.; Bhagat, S. B.; D'Costa, S. L. A.; Gharat, S. M.; Bakalkar, C. B.; Ninan, J. P.; Joshi, J. S.


    TIRCAM2 (TIFR near infrared imaging camera - II) is a closed cycle cooled imager that has been developed by the Infrared Astronomy Group at the Tata Institute of Fundamental Research for observations in the near infrared band of 1 to 3.7 μm with existing Indian telescopes. In this paper, we describe some of the technical details of TIRCAM2 and report its observing capabilities, measured performance and limiting magnitudes with the 2-m IUCAA Girawali telescope and the 1.2-m PRL Gurushikhar telescope. The main highlight is the camera's capability of observing in the nbL (3.59 mum) band enabling our primary motivation of mapping of Polycyclic Aromatic Hydrocarbon (PAH) emission at 3.3 mum.

  16. Underground fluid composition analysis based on the near infrared spectrum

    Li, Wenxi; Liao, Yanbiao; Zhang, Min


    The near-infrared spectrum is very practical for real-time analyzing in the field of industry. This paper describes the structure of optical system, which is a part of the well logging instruments. The optical system is designed to analyze the composition of underground fluid, using the differences between oil and water in near-infrared absorption. Using Beer- Lambert law, the article analyzes the light intensity when broad-spectrum light passes through the liquid. According to the results of analysis, a group of wavelength including center wavelength and bandwidth can be selected. With each selected wavelength, light intensity changes significantly as the concentration of liquid changes. By measuring the light intensity, the system can analyse the composition of underground fluid.

  17. Mapping the Surface Composition of Venus in the Near Infrared

    Helbert, J.; Müller, N.; Ferrari, Sabrina; Dyar, M.D.; Smrekar, S. E.; Head, J.W.; Elkins-Tanton, L.T.


    Observing the surface of Venus in the near-infrared from orbit or from an aerial platform will provide new insights into the mineralogy of Venus. In combination with a high-resolution radar mapper that provides accurate topographic data, this would allow global or regional mapping of the surface composition at a spatial scale of approximately 50km. In addition to the high scientific value of this data in itself, VEM will also provide important constraints for future landing site selections. T...

  18. Practical guide to interpretive near-infrared spectroscopy

    Workman, Jr, Jerry


    Containing focused, comprehensive coverage, Practical Guide to Interpretive Near-Infrared Spectroscopy gives you the tools necessary to interpret NIR spectra. The authors present extensive tables, charts, and figures with NIR absorption band assignments and structural information for a broad range of functional groups, organic compounds, and polymers. They include visual spectral representation of all major compound functional groupings and NIR frequency ranges. Organized by functional group type and chemical structure, based on standard compound classification, the chapters are easy to

  19. AMBER : a near infrared focal instrument for the VLTI

    Petrov, R. G.; Malbet, F.; Richichi, A.; Hofmann, K.H.; Mourard, Denis; Agabi, Karim; Antonelli, P.; Aristidi, Eric; Baffa, Carlo; Beckmann, Udo; Berio, Philippe; Bresson, Yves; Cassaing, Frederic; Chelli, Alain; Dreiss, Albrecht


    AMBER is the General User near-infrared focal instrument of the Very Large Telescope interferometer. Its specifications are based on three key programs on Young Stellar Objects, Active Galactic Nuclei central regions, masses and spectra of hot Extra Solar Planets. It has an imaging capacity because it combines up to three beams and very high accuracy measurement are expected from the spatial filtering of beams by single mode fibers and the comparison of measurements made simultaneously in dif...

  20. Studies of lipid oxidation in Salmon by Near infrared Spectroscopy

    Poon, Cheau Ling


    The purpose of this study was to examine if Near infrared (NIR) spectroscopy which is a rapid and non-destructive method, can be used to determine primary and secondary lipid oxidation products in salmon oils. PV (peroxide value) and TBARS (thiobarbituric acid reactive substances) were used as chemical measures of lipid oxidation. PV measures the degree of primary oxidation products, while TBARS measures the degree of secondary oxidation products formed from the oil. NIR spectroscopy with tra...

  1. Intrinsic Near-Infrared Spectroscopic Markers of Breast Tumors

    Shwayta Kukreti; Albert Cerussi; Bruce Tromberg; Enrico Gratton


    We have discovered quantitative optical biomarkers unique to cancer by developing a double-differential spectroscopic analysis method for near-infrared (NIR, 650–1000 nm) spectra acquired non-invasively from breast tumors. These biomarkers are characterized by specific NIR absorption bands. The double-differential method removes patient specific variations in molecular composition which are not related to cancer, and reveals these specific cancer biomarkers. Based on the spectral regions of a...

  2. Lymphatic Imaging in Humans with Near-Infrared Fluorescence

    Rasmussen, John C.; Tan, I-Chih; Marshall, Milton V.; Fife, Caroline E.; Sevick-Muraca, Eva M


    While the lymphatic system is increasingly associated with diseases of prevalence, study of these diseases is difficult owing to the paucity of imaging techniques with the sensitivity and temporal resolution to discriminate lymphatic function. Herein, we review the known, pertinent features of the human lymphatic system in health and disease and set the context for a number of emerging studies that use near-infrared fluorescence imaging to non-invasively assess tumor draining lymphatic basins...

  3. Near infrared face recognition using Zernike moments and Hermite kernels

    Farokhi, Sajad; Sheikh, U.U.; Flusser, Jan; Yang, Bo


    Roč. 316, č. 1 (2015), s. 234-245. ISSN 0020-0255 R&D Projects: GA ČR(CZ) GA13-29225S Keywords : face recognition * Zernike moments * Hermite kernel * Decision fusion * Near infrared Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.038, year: 2014

  4. Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices.

    Lai, May L; Tay, Timothy Y S; Sadhanala, Aditya; Dutton, Siân E; Li, Guangru; Friend, Richard H; Tan, Zhi-Kuang


    Infrared emitters are reasonably rare in solution-processed materials. Recently, research into hybrid organo-lead halide perovskite, originally popular in photovoltaics,1-3 has gained traction in light-emitting diodes (LED) due to their low-cost solution processing and good performance.4-9 The lead-based electroluminescent materials show strong colorful emission in the visible region, but lack emissive variants further in the infrared. The concerns with the toxicity of lead may, additionally, limit their wide-scale applications. Here, we demonstrate tunable near-infrared electroluminescence from a lead-free organo-tin halide perovskite, using an ITO/PEDOT:PSS/CH3NH3Sn(Br1-xIx)3/F8/Ca/Ag device architecture. In our tin iodide (CH3NH3SnI3) LEDs, we achieved a 945 nm near-infrared emission with a radiance of 3.4 W sr(-1) m(-2) and a maximum external quantum efficiency of 0.72%, comparable with earlier lead-based devices. Increasing the bromide content in these tin perovskite devices widens the semiconductor bandgap and leads to shorter wavelength emissions, tunable down to 667 nm. These near-infrared LEDs could find useful applications in a range of optical communication, sensing and medical device applications. PMID:27336412

  5. IR CMOS: near infrared enhanced digital imaging (Presentation Recording)

    Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani


    SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km

  6. Near-Infrared Fluorescent Materials for Sensing of Biological Targets

    Julia Xiaojun Zhao


    Full Text Available Near-infrared fluorescent (NIRF materials are promising labeling reagents for sensitive determination and imaging of biological targets. In the near-infrared region biological samples have low background fluorescence signals, providing high signal to noise ratio. Meanwhile, near-infrared radiation can penetrate into sample matrices deeply due to low light scattering. Thus, in vivo and in vitro imaging of biological samples can be achieved by employing the NIRF probes. To take full advantage of NIRF materials in the biological and biomedical field, one of the key issues is to develop intense and biocompatible NIRF probes. In this review, a number of NIRF materials are discussed including traditional NIRF dye molecules, newly developed NIRF quantum dots and single-walled carbon nanotubes, as well as rare earth metal compounds. The use of some NIRF materials in various nanostructures is illustrated. The enhancement of NIRF using metal nanostructures is covered as well. The fluorescence mechanism and bioapplications of each type of the NIRF materials are discussed in details.

  7. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q2 = 0.75, R2 = 0.82 for the total set), especially for samples with chlordecone content -1 or when the sample set was rather homogeneous (Q2 = 0.91, R2 = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg-1, nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. - Soil content in chlordecone, an organochlorine insecticide, can be determined time- and cost-effectively using near infrared reflectance spectroscopy (NIRS).

  8. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

    Brunet, Didier, E-mail: didier.brunet@ird.f [IRD - Institut de Recherche pour le Developpement, UMR Eco and Sols (Ecologie Fonctionnelle et Biogeochimie des Sols), Montpellier SupAgro, Batiment 12, 2 place Viala, 34060 Montpellier Cedex 1 (France); Woignier, Thierry [IRD, UMR Eco and Sols, PRAM (Pole de Recherche Agronomique de la Martinique), BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); CNRS - Centre National de la Recherche Scientifique, Universite Montpellier 2, place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Lesueur-Jannoyer, Magalie; Achard, Raphael [CIRAD (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement), PRAM, BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); Rangon, Luc [IRD, UMR Eco and Sols, PRAM (Pole de Recherche Agronomique de la Martinique), BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); Barthes, Bernard G. [IRD - Institut de Recherche pour le Developpement, UMR Eco and Sols (Ecologie Fonctionnelle et Biogeochimie des Sols), Montpellier SupAgro, Batiment 12, 2 place Viala, 34060 Montpellier Cedex 1 (France)


    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q{sup 2} = 0.75, R{sup 2} = 0.82 for the total set), especially for samples with chlordecone content <12 mg kg{sup -1} or when the sample set was rather homogeneous (Q{sup 2} = 0.91, R{sup 2} = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg{sup -1}, nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. - Soil content in chlordecone, an organochlorine insecticide, can be determined time- and cost-effectively using near infrared reflectance spectroscopy (NIRS).

  9. [Detection of Adulteration in Milk Powder with Starch Near Infrared].

    Wang, Ning-ning; Shen, Bing-hui; Guan, Jian-jun; Zhao, Zhong-rui; Zhu, Ye-wei; Zhang, Lu-da; Yan, Yan-lu; Zheng, Yu-yan; Dong, Cheng-yu; Kang, Ding-ming


    Three China trademarks of milk powder called Mengniu, Yili, Wandashan were taken as testing samples. Each of them mixed varied amount of starch in different gradient, which were consisted of 32 adulterated milk powder samples mixed with starch, was taken as standard samples for constructing predicted model. To those 32 samples, the reflecting spectrum characteristics in middle wave of near infrared spectrum with Near Infrared Spectrum Analyzer (Micro NIR 1700) produced by JDSU Ltd. USA were collected for five repeats in five different days. The time span was nearly two months. Firstly, we build the model used the reflecting spectrum characteristics of those samples with biomimetic pattern recognition (BPR) arithmetic to do the qualitative analysis. The analysis included the reliability of testing result and stability of the model. When we took ninety percent as the evaluation threshold of testing result of CAR (Correct Acceptance Rate) and CRR (Correct Rejection Rate), the lowest starch content of adulterate milk powder in all tested samples which the tested result were bigger than that abovementioned threshold was designated CAR threshold (CAR-T) and CRR threshold (CRR-T). CAR means the correct rate of accepting a sample which is belong to itself, CRR means correct rate of refusing to accept a sample which is not belong to itself. The results were shown that, when we constructed a model based on the near infrared spectrum data from each of three China trademark milk powders, respectively, if we constructed a model with infrared spectrum data tested in a same day, both the CAR-T and CRR-T of adulterate starch content of a sample can reach 0.1% in predicting the remainder infrared spectrum data tested within a same day. The three China trademarks of milk powder had the same result. In addition, when we ignored the trademarks, put the spectrum data of adulterate milk powder samples mixed with the same content of starch of three China trademarks milk powder together

  10. Visible/near-infrared spectra of experimentally shocked plagioclase feldspars

    Johnson, Jeffrey R.; Hörz, Friedrich


    High shock pressures cause structural changes in plagioclase feldspars such as mechanical fracturing and disaggregation of the crystal lattice at submicron scales, the formation of diaplectic glass (maskelynite), and genuine melting. Past studies of visible/near-infrared spectra of shocked feldspars demonstrated few spectral variations with pressure except for a decrease in the depth of the absorption feature near 1250-1300 nm and an overall decrease in reflectance. New visible/near-infrared spectra (400-2500 nm) of experimentally shocked (17-56 GPa) albite- and anorthite-rich rock powders demonstrate similar trends, including the loss of minor hydrated mineral bands near 1410, 1930, 2250, and 2350 nm. However, the most interesting new observations are increases in reflectance at intermediate pressures, followed by subsequent decreases in reflectance at higher pressures. The amount of internal scattering and overall sample reflectance is controlled by the relative proportions of micro-fractures, submicron grains, diaplectic glass, and melts formed during shock metamorphism. We interpret the observed reflectance increases at intermediate pressures to result from progressively larger proportions of submicron feldspar grains and diaplectic glass. The ensuing decreases in reflectance occur after diaplectic glass formation is complete and the proportion of genuine melt inclusions increases. The pressure regimes over which these reflectance variations occur differ between albite and anorthite, consistent with thermal infrared spectra of these samples and previous studies of shocked feldspars. These types of spectral variations associated with different peak shock pressures should be considered during interpretation and modeling of visible/near-infrared remotely sensed spectra of planetary and asteroidal surfaces.

  11. Compressive Acquisition of Color and Near-Infrared Images

    Sadeghipoor Kermani, Zahra; Lu, Yue; Süsstrunk, Sabine


    We propose using a single silicon sensor and a modified Bayer CFA for joint acquisition of color and near-infrared (NIR) images. Silicon sensors, which are placed in most color cameras, are inherently sensitive to NIR. Hence, our proposed design is very similar to consumer color cameras in terms of hardware. The main contribution of this work is an algorithm that estimates full-resolution color and NIR images from subsampled and mixed sensor measurements. Our method results in high-quality RG...

  12. Near-infrared organic materials and emerging applications

    Wang, Zhi Yuan


    Highlighting emerging applications of near-infrared (NIR) organic materials that are currently receiving great attention due to their potential use in optical communications, biomedicine, and camouflage materials, this cutting-edge book reviews important recent advances in an accessible style suitable for researchers and graduates in the field on organic/polymer solar cells, optical communications, and advanced optoelectronics. A beacon in the field literature, this comprehensive work discusses several areas of research and development including thermal control and emission detectors in which

  13. Cerebral near infrared spectroscopy oximetry in extremely preterm infants

    Hyttel-Sorensen, Simon; Pellicer, Adelina; Alderliesten, Thomas;


    ultrasonography. RANDOMISATION: Allocation sequence 1:1 with block sizes 4 and 6 in random order concealed for the investigators. The allocation was stratified for gestational age (<26 weeks or ≥ 26 weeks). BLINDING: Cerebral oxygenation measurements were blinded in the control group. All outcome assessors were......OBJECTIVE: To determine if it is possible to stabilise the cerebral oxygenation of extremely preterm infants monitored by cerebral near infrared spectroscopy (NIRS) oximetry. DESIGN: Phase II randomised, single blinded, parallel clinical trial. SETTING: Eight tertiary neonatal intensive care units...... infants using a dedicated treatment guideline in combination with cerebral NIRS monitoring.Trial registration NCT01590316....

  14. Near-infrared spectroscopy. Innovative technology summary report

    A near-infrared (NIR) spectroscopy system with a remote fiber-optic probe was developed and demonstrated to measure the water content of high-level radioactive wastes from the underground storage tanks at the Hanford Site in richland Washington. The technology was developed as a cost-effective and safer alternative to the thermogravimetric analysis (TGA) technique in use as the baseline. This work was supported by the Tanks Focus Area (TFA) within the Department of Energy's (DOE) Office of Science and Technology (OST) in cooperation with the Hanford Tank Waste Remediation System (TWRS) Program

  15. Cerebral near infrared spectroscopy oximetry in extremely preterm infants

    Hyttel-Sørensen, Simon; Pellicer, Adelina; Alderliesten, Thomas;


    OBJECTIVE: To determine if it is possible to stabilise the cerebral oxygenation of extremely preterm infants monitored by cerebral near infrared spectroscopy (NIRS) oximetry. DESIGN: Phase II randomised, single blinded, parallel clinical trial. SETTING: Eight tertiary neonatal intensive care units...... group compared with 1.1 (0.1-23.4) %hours in the control group (P=0.98). We found no statistically significant differences between the two groups at term corrected age. No severe adverse reactions were associated with the device. CONCLUSIONS: Cerebral oxygenation was stabilised in extremely preterm...

  16. Analytical applications of near-infrared fluorescent probes

    Patonay, Gabor; Tarazi, Leila A.; George, Abraham; Van Aken, Koen; Gorecki, Tadeusz; Strekowski, Lucjan


    By combining near-infrared (NIR) fluorophores and commercially available laser diodes, a promising technique emerges where visible probes are less effective due to background interference. The application of NIR fluorophores in fiber-optic probes for the determination of metal ions in the environment and for biological assays will be discussed. The spectral behavior of a new NIR fluorophore TG-170 in the presence of metal ions and the first synthesis and spectral characterization of a NIR dye KVA-22 substituted with a crown ether, a metal complexing functionality, will be presented.

  17. Cartilage-Specific Near-Infrared Fluorophores for Biomedical Imaging.

    Hyun, Hoon; Owens, Eric A; Wada, Hideyuki; Levitz, Andrew; Park, GwangLi; Park, Min Ho; Frangioni, John V; Henary, Maged; Choi, Hak Soo


    A novel class of near-infrared fluorescent contrast agents was developed. These agents target cartilage with high specificity and this property is inherent to the chemical structure of the fluorophore. After a single low-dose intravenous injection and a clearance time of approximately 4 h, these agents bind to all three major types of cartilage (hyaline, elastic, and fibrocartilage) and perform equally well across species. Analysis of the chemical structure similarities revealed a potential pharmacophore for cartilage targeting. Our results lay the foundation for future improvements in tissue engineering, joint surgery, and cartilage-specific drug development. PMID:26095685

  18. Endoscopically compatible near-infrared photon migration probe

    Lubawy, Carmalyn; Ramanujam, Nirmala


    We have developed a 2.3-mm-diameter fiber-optic probe for near-infrared photon migration spectroscopy that can be inserted into the body through an endoscope or biopsy needle. This probe is specifically designed to be inserted into a core biopsy needle to facilitate optical sampling of lesions during breast needle biopsy. This probe was tested on tissue phantoms containing heterogeneities (to stimulate breast lesions) of various sizes and optical properties. Under the conditions tested, the probe can measure the absorption coefficient to within 30% for heterogeneities with radii as small as 10 mm.

  19. Near Infrared absorbing iron-complexed colorants for photovoltaic applications

    Sekar, N., E-mail: [Department of Dyestuff Technology, University Institute of Chemical Technology (UICT), University of Bombay, Mumbai 400019 (India); Raut, Rajesh K.; Umape, Prashant G. [Department of Dyestuff Technology, University Institute of Chemical Technology (UICT), University of Bombay, Mumbai 400019 (India)


    Near Infrared absorbing colorants have several applications in the high technology area like heat ray blocking, energy conversion, and optical data storage. All these applications require that the colorants need to have broadband absorption extending up to the NIR region as well improved thermal stability. With the above objective in mind several analogues of pigment Green B (C.I. Acid Green 1) are prepared with improved thermal stability. These novel colorants are obtained by the incorporation of carboxamide group which imparts higher thermal stability. The spectral and TGA studies have shown that they are superior colorants, for application into photovoltaic cells.

  20. NIRS - Near infrared spectroscopy - investigations in neurovascular diseases

    Schytz, Henrik Winther


    The purpose of this thesis was to explore and develop methods, where continuous wave near infrared spectroscopy (CW-NIRS) can be applied in different neurovascular diseases, in order to find biological markers that are useful in clinical neurology. To develop a new method to detect changes in...... requires an acceptable LFOs variation between hemispheres and over time in the healthy brain. The second study therefore investigated day-to-day and hemispheric variations in LFOs with NIRS. It was shown that NIRS might be useful in assessing LFOs between hemispheres, as well as interhemispheric phase and...

  1. Monitoring Key Parameters in Bioprocesses Using Near-Infrared Technology

    Elena Tamburini


    Full Text Available Near-infrared spectroscopy (NIRS is known to be a rapid and non-destructive technique for process monitoring. Bioprocesses are usually complex, from both the chemical (ill-defined medium composition and physical (multiphase matrix aspects, which poses an additional challenge to the development of robust calibrations. We investigated the use of NIRS for on-line and in-line monitoring of cell, substrate and product concentrations, during aerobic and anaerobic bacterial fermentations, in different fermentation strategies. Calibration models were built up, then validated and used for the automated control of fermentation processes. The capability of NIR in-line to discriminate among differently shaped bacteria was tested.

  2. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS).

    Brunet, Didier; Woignier, Thierry; Lesueur-Jannoyer, Magalie; Achard, Raphaël; Rangon, Luc; Barthès, Bernard G


    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q(2) = 0.75, R(2) = 0.82 for the total set), especially for samples with chlordecone content Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg(-1), nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. PMID:19493598

  3. Near-Infrared Camera Calibration for Optical Surgical Navigation.

    Cai, Ken; Yang, Rongqian; Lin, Qinyong; Liu, Sujuan; Chen, Huazhou; Ou, Shanxing; Huang, Wenhua; Zhou, Jing


    Near-infrared optical tracking devices, which are important components of surgical navigation systems, need to be calibrated for effective tracking. The calibration results has a direct influence on the tracking accuracy of an entire system. Therefore, the study of calibration techniques is of theoretical significance and practical value. In the present work, a systematic calibration method based on movable plates is established, which analyzes existing calibration theories and implements methods using calibration reference objects. First, the distortion model of near-infrared cameras (NICs) is analyzed in the implementation of this method. Second, the calibration images from different positions and orientations are used to establish the required linear equations. The initial values of the NIC parameters are calculated with the direct linear transformation method. Finally, the accurate internal and external parameters of the NICs are obtained by conducting nonlinear optimization. Analysis results show that the relative errors of the left and right NICs in the tracking system are 0.244 and 0.282 % for the focal lengths and 0.735 and 1.111 % for the principal points, respectively. The image residuals of the left and right image sets are both less than 0.01 pixel. The standard error of the calibration result is lower than 1, and the measurement error of the tracking system is less than 0.3 mm. The experimental data show that the proposed method of calibrating NICs is effective and can generate favorable calibration results. PMID:26728393

  4. Airborne laser systems for atmospheric sounding in the near infrared

    Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David


    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.

  5. The Surface of 2003EL61 in the Near Infrared

    Trujillo, C A; Barkume, K M; Schaller, E L; Rabinowitz, D L


    We report the detection of crystalline water ice on the surface of 2003EL61. Reflectance spectra were collected from Gemini North telescope from 1.0 to 2.4 micron wavelength range, and from the Keck telescope across the 1.4 to 2.4 micron wavelength range. The signature of crystalline water ice is clear and obvious in all data collected. Like the surface of many outer solar system bodies, the surface of 2003EL61 is rich in crystalline water ice, which is energetically less favored than amorphous water ice at cold temperatures, suggesting resurfacing processes may be taking place. The near infrared color of the object is much bluer than a pure water ice model. Adding a near infrared blue component such as hydrogen cyanide or phyllosilicate clays improves the fit considerably, with hydrogen cyanide providing the greatest improvement. The addition of hydrated tholins and bitumens also improves the fit but is inconsistent with the neutral V-J reflectance of 2003EL61. A small decrease in reflectance beyond 2.3 micr...

  6. Near-infrared neuroimaging with NinPy

    Gary E Strangman


    Full Text Available There has been substantial recent growth in the use of non-invasive optical brain imaging in studies of human brain function in health and disease. Near-infrared neuroimaging (NIN is one of the most promising of these techniques and, although NIN hardware continues to evolve at a rapid pace, software tools supporting optical data acquisition, image processing, statistical modeling and visualization remain less refined. Python, a modular and computationally efficient development language, can support functional neuroimaging studies of diverse design and implementation. In particular, Python's easily readable syntax and modular architecture allow swift prototyping followed by efficient transition to stable production systems. As an introduction to our ongoing efforts to develop Python software tools for structural and functional neuroimaging, we discuss: (i the role of noninvasive diffuse optical imaging in measuring brain function, (ii the key computational requirements to support NIN experiments, (iii our collection of software tools to support near-infrared neuroimaging, called NinPy, and (iv future extensions of these tools that will allow integration of optical with other structural and functional neuroimaging data sources. Source code for the software discussed here will be made available at

  7. Using near infrared light for deep sea mining observation systems

    Lu, Huimin; Li, Yujie; Li, Xin; Yang, Jianmin; Serikawa, Seiichi


    In this paper, we design a novel deep-sea near infrared light based imaging equipment for deep-sea mining observation systems. The spectral sensitivity peaks are in the red region of the invisible spectrum, ranging from 750nm to 900nm. In addition, we propose a novel underwater imaging model that compensates for the attenuation discrepancy along the propagation path. The proposed model fully considered the effects of absorption, scattering and refraction. We also develop a locally adaptive Laplacian filtering for enhancing underwater transmission map after underwater dark channel prior estimation. Furthermore, we propose a spectral characteristic-based color correction algorithm to recover the distorted color. In water tank experiments, we made a linear scale of eight turbidity steps ranging from clean to heavily scattered by adding deep sea soil to the seawater (from 500 to 2000 mg/L). We compared the results of different turbidity underwater scene, illuminated alternately with near infrared light vs. white light. Experiments demonstrate that the enhanced NIR images have a reasonable noise level after the illumination compensation in the dark regions and demonstrates an improved global contrast by which the finest details and edges are significantly enhanced. We also demonstrate that the effective distance of the designed imaging system is about 1.5 meters, which can meet the requirement of micro-terrain observation around the deep-sea mining systems. Remotely Operated Underwater Vehicle (ROV)-based experiments also certified the effectiveness of the proposed method.

  8. Near-infrared spectral methods for noninvasively measuring blood glucose

    Fei, Sun; Kong, Deyi; Mei, Tao; Tao, Yongchun


    Determination of blood glucose concentrations in diabetic patients is a frequently occurring procedure and an important tool for diabetes management. Use of noninvasive detection techniques can relieve patients from the pain of frequent finger pokes and avoid the infection of disease via blood. This thesis discusses current research and analyzes the advantages and shortages of different measurement methods, including: optical methods (Transmission, Polarimetry and scattering), then, we give emphasis to analyze the technology of near-infrared (NIR) spectra. NIR spectral range 700 nm ~2300 nm was used because of its good transparency for biological tissue and presence of glucose absorption band. In this work, we present an outline of noninvasive blood glucose measurement. A near-infrared light beam is passed through the finger, and the spectral components of the emergent beam are measured using spectroscopic techniques. The device includes light sources having the wavelengths of 600 nm - 1800 nm to illuminate the tissue. Receptors associated with the light sources for receiving light and generating a transmission signal representing the light transmitted are also provided. Once a transmission signal is received by receptors, and the high and low values from each of the signals are stored in the device. The averaged values are then analyzed to determine the glucose concentration, which is displayed on the device.

  9. Aqueous synthesis of near-infrared highly fluorescent platinum nanoclusters.

    García Fernández, Jenifer; Trapiella-Alfonso, Laura; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo


    A one-step synthesis of near infrared fluorescent platinum nanoclusters (PtNCs) in aqueous medium is described. The proposed optimized procedure for PtNC synthesis is rather simple, fast and it is based on the direct metal reduction with NaBH4. Bidentated thiol ligands (lipoic acid) were selected as nanoclusters stabilizers in water media. The structural characterization revealed attractive features of the PtNCs, including small size, high water solubility, near-infrared luminescence centered at 680 nm, long-term stability and the highest quantum yield in water reported so far (47%) for PtNCs. Moreover, their stability in different pH media and an ionic strength of 0.2 M NaCl was studied and no significant changes in fluorescence emission were detected. In brief, they offer a new type of fluorescent noble metal nanoprobe with a great potential to be applied in several fields, including biolabeling and imaging experiments. PMID:25944823

  10. Near infrared cathodoluminescence of III-V heterostructures

    The spectral range of the existing CL spectrometer (∼ 300 nm - 850 nm) was extended to the near infrared region of the electromagnetic spectrum by adding a liquid nitrogen-cooled germanium (Ge) diode detector. A special adapter was constructed in order to use both the existing and the near infrared apparatus in quick succession. The spectral range of the modified CL spectrometer was between ∼ 300 nm (4.13 eV) and ∼ 1800 nm (0.69 eV). The efficiency of the spectrometer was increased by ∼ 3 orders of magnitude by replacing the inefficient fibre-optic based connection with a more efficient aluminium mirror-based connection, by introducing a GaAs photomultipliers (PMT) and by carefully aligning the optical components. The efficiency of the near infrared CL spectrometer was increased by ∼ 3 orders of magnitude by adding a phase sensitive detection apparatus. The monochromator wavelength error was measured to be between ∼ -1.1 nm and +1.9 nm. The absolute response of the spectrometer was measured for the first time using a novel calibration procedure which correctly reproduced the throughput occurring during routine CL analysis. Using this spectrometer, quantitative measurements of CL intensity may be made with a precision of up to ∼ 7% in the near infrared region of the spectrum. The modified CL spectrometer had a spatial resolution of up to ∼ 200 nm and was able to detect up to ∼ 1 in 6300 photons/s in the near infrared region of the spectrum. This quantitative CL spectrometer was used to measure the black-body temperature of tungsten-strip lamps with a precision of ∼ 1-2%. The lamps may be used as tertiary radiance standards to measure the absolute response of spectrometers between ∼ 500 nm and ∼ 1050 nm. The CL spectrometer was used to study MOVPE grown InGaAsP/InP-based mesa overgrowths and InGaAsP/InP-based butt-coupled laser-waveguide devices, to be used for the fabrication of opto-electronic integrated circuits (OEICs). Growth induced

  11. The Munich Near-Infrared Cluster Survey -- IV. Biases in the Completeness of Near-Infrared Imaging Data

    Snigula, J; Bender, R; Botzler, C S; Feulner, G; Hopp, U


    We present the results of completeness simulations for the detection of point sources as well as redshifted elliptical and spiral galaxies in the K'-band images of the Munich Near-Infrared Cluster Survey (MUNICS). The main focus of this work is to quantify the selection effects introduced by threshold-based object detection algorithms used in deep imaging surveys. Therefore, we simulate objects obeying the well-known scaling relations between effective radius and central surface brightness, both for de Vaucouleurs and exponential profiles. The results of these simulations, while presented for the MUNICS project, are applicable in a much wider context to deep optical and near-infrared selected samples. We investigate the detection probability as well as the reliability for recovering the true total magnitude with Kron-like (adaptive) aperture photometry. The results are compared to the predictions of the visibility theory of Disney and Phillipps in terms of the detection rate and the lost-light fraction. Addit...

  12. Near-infrared LIF spectroscopy of HfF

    Grau, Matt; Loh, Huanqian; Sinclair, Laura C; Stutz, Russel P; Yahn, Tylser S; Cornell, Eric A


    The molecular ion HfF$^+$ is the chosen species for a JILA experiment to measure the electron electric dipole moment (eEDM). Detailed knowledge of the spectrum of HfF is crucial to prepare HfF$^+$ in a state suitable for performing an eEDM measurement\\cite{Leanhardt}. We investigated the near-infrared electronic spectrum of HfF using laser-induced fluorescence (LIF) of a supersonic molecular beam. We discovered eight unreported bands, and assign each of them unambiguously, four to vibrational bands belonging to the transition $[13.8]0.5 \\leftarrow X1.5$, and four to vibrational bands belonging to the transition $[14.2]1.5 \\leftarrow X1.5$. Additionally, we report an improved measurement of vibrational spacing of the ground state, as well as anharmonicity $\\omega_e x_e$.

  13. Compositional stratigraphy of crustal material from near-infrared spectra

    Pieters, Carle M.


    An Earth-based telescopic program to acquire near-infrared spectra of freshly exposed lunar material now contains data for 17 large impact craters with central peaks. Noritic, gabbroic, anorthositic and troctolitic rock types can be distinguished for areas within these large craters from characteristic absorptions in individual spectra of their walls and central peaks. Norites dominate the upper lunar crust while the deeper crustal zones also contain significant amounts of gabbros and anorthosites. Data for material associated with large craters indicate that not only is the lunar crust highly heterogeneous across the nearside, but that the compositional stratigraphy of the lunar crust is nonuniform. Crustal complexity should be expected for other planetary bodies, which should be studied using high spatial and spectral resolution data in and around large impact craters.

  14. Near-infrared extinction with discretised stellar colours

    Juvela, M


    Several methods exist to convert near-infrared (NIR) stellar observations into extinction maps. We present a new method based on NIR multiband observations. The method uses a discretised version of the distribution of intrinsic stellar colours. A number of variations of the basic method are tested, and the results are compared to NICER calculations. When photometric errors are large, the results are close to those of NICER method but some advantages can be seen when the distribution of intrinsic colours cannot be described well with a single covariance matrix. A priori information about relative column density variations at sub-beam scales can result in a significant increase in accuracy. The results may be further improved by considering the magnitude dependence of the intrinsic colours. Thus, the new methods are useful mostly when photometric errors are small, the distribution of intrinsic colours is well known, or one has prior knowledge of the small-scale structures.

  15. Review of functional near-infrared spectroscopy in neurorehabilitation.

    Mihara, Masahito; Miyai, Ichiro


    We provide a brief overview of the research and clinical applications of near-infrared spectroscopy (NIRS) in the neurorehabilitation field. NIRS has several potential advantages and shortcomings as a neuroimaging tool and is suitable for research application in the rehabilitation field. As one of the main applications of NIRS, we discuss its application as a monitoring tool, including investigating the neural mechanism of functional recovery after brain damage and investigating the neural mechanisms for controlling bipedal locomotion and postural balance in humans. In addition to being a monitoring tool, advances in signal processing techniques allow us to use NIRS as a therapeutic tool in this field. With a brief summary of recent studies investigating the clinical application of NIRS using motor imagery task, we discuss the possible clinical usage of NIRS in brain-computer interface and neurofeedback. PMID:27429995

  16. Near-Infrared Spectroscopy of Young Galactic Supernova Remnants

    Koo, Bon-Chul


    Young Galactic supernova remnants (SNRs) are where we can observe closely the supernova (SN) ejecta and its interaction with circumstellar/interstellar medium. Therefore, they provide an opportunity to explore the explosion and the final stage of the evolution of massive stars. Near-infrared (NIR) emission lines in SNRs mostly originate from shocked dense material. In shocked SN ejecta, forbidden lines from heavy ions are prominent, while in shocked circumstellar/interstellar medium, [Fe II] and H2 lines are prominent. [Fe II] lines are strong in both media, and therefore [Fe II] line images provide a good starting point for the NIR study of SNRs. There are about twenty SNRs detected in [Fe II] lines, some of which have been studied in NIR spectroscopy. We will review the NIR [Fe II] observations of SNRs and introduce our recent NIR spectroscopic study of the young core-collapse SNR Cas A where we detected strong [P II] lines.

  17. Near-infrared Spectroscopy in the Brewing Industry.

    Sileoni, Valeria; Marconi, Ombretta; Perretti, Giuseppe


    This article offers an exhaustive description of the use of Near-Infrared (NIR) Spectroscopy in the brewing industry. This technique is widely used for quality control testing of raw materials, intermediates, and finished products, as well as process monitoring during malting and brewing. In particular, most of the reviewed works focus on the assessment of barley properties, aimed at quickly selecting the best barley varieties in order to produce a high-quality malt leading to high-quality beer. Various works concerning the use of NIR in the evaluation of raw materials, such as barley, malt, hop, and yeast, are also summarized here. The implementation of NIR sensors for the control of malting and brewing processes is also highlighted, as well as the use of NIR for quality assessment of the final product. PMID:24915307

  18. Near-infrared fluorescent proteins engineered from bacterial phytochromes.

    Shcherbakova, Daria M; Baloban, Mikhail; Verkhusha, Vladislav V


    Near-infrared fluorescent proteins (NIR FPs), photoactivatable NIR FPs and NIR reporters of protein-protein interactions developed from bacterial phytochrome photoreceptors (BphPs) have advanced non-invasive deep-tissue imaging. Here we provide a brief guide to the BphP-derived NIR probes with an emphasis on their in vivo applications. We describe phenotypes of NIR FPs and their photochemical and intracellular properties. We discuss NIR FP applications for imaging of various cell types, tissues and animal models in basic and translational research. In this discussion, we focus on NIR FPs that efficiently incorporate endogenous biliverdin chromophore and therefore can be used as straightforward as GFP-like proteins. We also overview a usage of NIR FPs in different imaging platforms, from planar epifluorescence to tomographic and photoacoustic technologies. PMID:26115447

  19. Analysis of silage composition by near-infrared reflectance spectroscopy

    Reeves, James B., III; Blosser, Timothy H.; Colenbrander, V. F.


    Two studies were performed to investigate the feasibility of using near infrared reflectance spectroscopy (NIRS) with undried silages. In the first study silages were analyzed for major components (e. g. dry matter crude protein and other forms of nitrogen fiber and in vitro digestible dry matter) and short chain fatty acids (SCFA). NIRS was found to operate satisfactorily except for some forms of nitrogen and SCFA. In study two various methods of grinding spectral regions and sample presentation were examined. Undried Wiley ground samples in a rectangular cell gave the best overall results for non-dry ice undried grinds with wavelengths between 1100 and 2498 nm. Silages scanned after drying however produced the best results. Intact samples did not perform as well as ground samples and wavelengths below 1100 nm were of little use. 2 .

  20. Theoretical analysis of crosstalk in near-infrared topography

    Okada, E.; Okui, N.


    Crosstalk between changes in concentration of oxy-and deoxy-haemoglobin calculated by modified Lambert-Beer law in near-infrared topography is theoretically investigated. The change in intensity detected with source-detector pairs on the scalp caused by global or focal ahsorption change in the brain is predicted by Monte Carlo simulation. The topographic images of changes in oxy- and deoxy-haemoglobin are obtained from the changes in intensity detected with source-detector pairs on the scalp. The crosstalk depends on the relative position of the focal absorption change to source-detector pairs. The crosstalk is minimised when the focal absorption change is located below a measurement point that is the midpoint between a source and a detector.

  1. Portable multichannel multiwavelength near-infrared diffusive light imager

    Chen, Nan Guang; Xia, Hongjun; Piao, Daqing; Zhu, Quing


    We have developed a near infrared optical tomography system features fast optical switching, three-wavelength excitations, and avalanche photodiode (APD) detectors with a high dynamic range. Pigtailed laser diodes at 660, 780, and 830 nm are used as light sources and their outputs are distributed sequentially to one of nine source fibers. The crosstalk between source channels is around 65 dB, equivalent to 130 dB in opto-electrical signals. 10 Silicon APD"s detect diffusive photon density waves simultaneously. The dynamic range of an APD is several orders higher than that of a photomultiplier tube (PMT), which eliminates the need of multi-step system gain control. However, the internal gain of the APD we are using is about 3 orders lower than an ordinary PMT. Efforts have been made to suppress the feed through interferences from the transmission part to the reception part so as to reduce the errors in amplitude and phase measurements.

  2. Near-infrared surface photometry of barred spiral galaxies

    On the basis of a number of theoretical studies, it must be concluded that bar-like stellar structures are a preferred dynamical form in the process of galaxy formation and evolution. The objective of the observational research reported in this paper is to study by surface photometry parameters which describe the radial and azimuthal luminosity distributions of the bars of barred spiral galaxies. Such information is important for a comparison with theoretical models. The observational data are discussed, taking into account the photographic material, the reduction of data, and the decomposition of the radial luminosity profiles. Attention is also given to the structure of the bars, a comparison with the Miller and Smith models, and a discussion of the results. The considered study has provided near-infrared surface photometry for the stellar bars of a number of barrel spiral galaxies. 53 references

  3. Predicting rapeseed oil content with near-infrared spectroscopy

    Roberta Rossato


    Full Text Available The objective of this work was to establish a calibration equation and to estimate the efficiency of near-infrared reflectance (NIR spectroscopy for evaluating rapeseed oil content in Southern Brazil. Spectral data from 124 half-sib families were correlated with oil contents determined by the chemical method. The accuracy of the equation was verified by coefficient of determination (R² of 0.92, error of calibration (SEC of 0.78, and error of performance (SEP of 1.22. The oil content of ten genotypes, which were not included in the calibration with NIR, was similar to the one obtained by the standard chemical method. NIR spectroscopy is adequate to differentiate oil content of rapeseed genotypes.

  4. Near-Infrared Bulge-Disk Correlations of Lenticular Galaxies

    Barway, Sudhanshu; Kembhavi, Ajit K; Mayya, Y D


    We consider the luminosity and environmental dependence of structural parameters of lenticular galaxies in the near-infrared K band. Using a two-dimensional galaxy image decomposition technique, we extract bulge and disk structural parameters for a sample of 36 lenticular galaxies observed by us in the K band. By combining data from the literature for field and cluster lenticulars with our data, we study correlations between parameters that characterise the bulge and the disk as a function of luminosity and environment. We find that scaling relations such as the Kormendy relation, photometric plane and other correlations involving bulge and disk parameters show a luminosity dependence. This dependence can be explained in terms of galaxy formation models in which faint lenticulars (M_T > -24.5) formed via secular formation processes that likely formed the pseudobulges of late-type disk galaxies, while brighter lenticulars (M_T < -24.5) formed through a different formation mechanism most likely involving maj...

  5. Deep Near-Infrared Survey toward the M17 Region

    Jiang, Zhibo; Yao, Yongqiang; Yang, Ji; Ando, Minoru; Kato, Daisuke; Kawai, Toshihide; Kurita, Mikio; Nagata, Tetsuya; Nagayama, Takahiro; Nakajima, Yasushi; Nagashima, Chie; Sato, Shuji; Tamura, Motohide; Nakaya, Hidehiko; Sugitani, Koji


    We conducted a deep JHKs-band imaging survey of the M17 region, using a near-infrared camera, the Simultaneous 3-color InfraRed Imager for Unbiased Survey (SIRIUS), mounted on the InfraRed Survey Facility (IRSF) 1.4 m telescope at the South African Astronomical Observatory. This survey covers an area of ~200 arcmin2 with 10 σ limiting magnitudes of J~18.7, H~18.2, and Ks~17.5. The near-infrared (NIR) images reveal an unprecedented view of the region. The NIR nebulae are highly structured, with two nebular bars corresponding to, but a little larger than, the H II region defined by Felli, Massi, & Churchwell, constructing a conical shape. Fine structures are found all over the nebular area. The central region contains a congregation of intermediate- to high-mass stars. From the slope of the Ks-band luminosity function and the frequency of young stellar objects (YSOs) we infer that the central cluster has an age less than 3 Myr. The central OB cluster provides tremendous energy that heats and ionizes its surrounding materials, triggering the star formation of second-generation in the nebular bars. The second generation stars are so numerous that could they affect the star formation efficiency in the whole region. To the southwest of the central cluster and the nebular bars, where a giant molecular cloud core is located, a large number of red stars are detected. We argue that these red stars are most probably associated YSOs with intrinsic color excesses, not normal field stars reddened by the molecular cloud in front of them. Being located beyond the photodissociation region, the star-forming process in the molecular region could be independent of the impact of the central cluster.

  6. Asteroid 951 Gaspra Near Infrared Mapping Spectrometer Radiance Data

    Granahan, J. C., Jr.


    Five radiance spectra of asteroid 951 Gaspra have been archived in the Small Bodies Node of the NASA Planetary Data System [Granahan, 2014]. The radiance spectra were created from uncalibrated Galileo spacecraft Near Infrared Mapping Spectrometer files archived in the Imaging Node of the NASA Planetary Data System. The NASA Galileo spacecraft observed asteroid 951 Gaspra on October 29, 1991 with the Near Infrared Mapping Spectrometer (NIMS) at wavelengths ranging from 0.7 - 5.2 micrometers [Carlson et al., 1992]. The five radiance spectra consist of two 17, two 100, and one 329 spectral channel data sets. They record data that was acquired by NIMS at ranges between 27232.6 to 14723.8 kilometers from asteroid 951 Gaspra. The uncalibrated NIMS data were converted into radiance spectra using calibration coefficients obtained during the Galileo mission's first Earth encounter on December 8, 1990. The archived radiance spectral data is located at the URL (Universal Record Locator): and contains radiance, solar, incidence over flux, and data documentation. This archived data set contains a variety of spectral signatures. These signatures include absorptions near 1.0, 2.0, 2.8, 3.4, and 4.5 micrometers. The 1.0 and 2.0 micrometer features are indicators of olivine and pyroxene on the asteroid surface. The 2.8 micrometer feature has a shape similar to the combined spectra of multiple iron bearing phyllosilicates. The 3.4 micrometer feature is in the same location as absorptions created by a carbon-hydrogen bond. The 4.5 micrometer feature, present only in the 329 channel data set, corresponds in position to absorptions detected in sulfate minerals. Carlson, R. W., et al. (1992) Bull. of the A.A.S., 24, 932. Granahan, J. C. (2014), GO-A-NIMS-3-GASPRASPEC-V1.0, NASA Planetary Data System.

  7. A near-infrared magnetic aptasensor for Ochratoxin A based on near-infrared upconversion nanoparticles and magnetic nanoparticles.

    Dai, Shaoliang; Wu, Shijia; Duan, Nuo; Wang, Zhouping


    A multiplexed, sensitive and specific detection method is highly desirable for the simultaneous detection of several pathogenic bacteria and bio-toxins. In our previous work, multicolor upconversion nanoparticles (UCNPs) via doping with various rare-earth ions to obtain well-separated emission peaks by means of a solvothermal method were synthesized and were successfully applied as luminescence labels in the detection of three pathogenic bacteria. One of the basic achievements of our group has been to establish that the key to increasing the number of simultaneous detection components is the preparation of more UCNPs, the emission peaks of which can be distinguished from each other. According to this vision, NaYF4:Yb0.2, Tm0.02 UCNPs were obtained via a thermal-decomposition protocol, which has a main near-infrared (NIR) UC emission at 804nm under 980nm excitation. The emission peak at 804nm was well-separated from the emission peaks of UCNPs we have reported at 477nm, 542nm, and 660nm. It means both the excitation and the emission of NaYF4:Yb0.2, Tm0.02 UCNPs are located in the NIR spectral range (NIR-to-NIR UC emission), the so-called biological window. This result establishes the basis of achieving simultaneous detection of four components. To confirm the analytical performance of this NaYF4:Yb0.2, Tm0.02 UCNPs, a novel near-infrared magnetic aptasensor for the detection of Ochratoxin A (OTA) was developed using the OTA aptamer-conjugated near-infrared upconversion nanoparticles (apt-UCNPs) and the complementary oligonucleotide-modified magnetic nanoparticles (cDNA-MNPs). The apt-UCNPs and cDNA-MNPs were hybridized to form a poly-network structure of MNP-UCNP nanocomposites. When the target OTA was introduced, the aptamer combined with the priority target and the cDNA-MNPs were replaced. The proposed method achieved a linear range between 0.01 and 100ngmL(-1), with a detection limit as low as 0.005ngmL(-1). Then, we successfully applied this method to measure

  8. Near infrared absorbing near infrared emitting highly-sensitive luminescent nanothermometer based on Nd(3+) to Yb(3+) energy transfer.

    Marciniak, Ł; Bednarkiewicz, A; Stefanski, M; Tomala, R; Hreniak, D; Strek, W


    A new type of near infrared absorbing near infrared emitting (NANE) luminescent nanothermometer is presented, with a physical background that relies on efficient Nd(3+) to Yb(3+) energy transfer under 808 nm photo-excitation. The emission spectra of LiLa0.9-xNd0.1YbxP4O12 (x = 0.05, 0.1, 0.2, 0.3, 0.5) nanocrystals were measured in a wide 100-700 °C temperature range. The ratio between the Nd(3+) ((4)F3/2→(4)I9/2) and Yb(3+) ((2)F5/2→(2)F7/2) luminescence bands, and the thermometer sensitivity were found to be strongly dependent on the Yb(3+) concentration. These phenomenological relations were discussed in terms of the competition between three phenomena, namely (a) Nd(3+)→ Yb(3+) phonon assisted energy transfer, (b) Yb(3+)→ Nd(3+) back energy transfer and (c) energy diffusion between Yb(3+) ions. The highest sensitivity of the temperature measurement was found for x = 0.5 (LiLa0.4Nd0.1Yb0.5P4O12), which was equal to 4 × 10(-3) K(-1) at 330 K. In stark contrast to conventional approaches, the proposed phosphate host matrix allows for a high level of doping, and thus, owing to the negligible concentration quenching, the presented luminophores exhibit a high absorption cross section and bright emission. Moreover, such optical remote thermometers, whose excitation and emission wavelengths are weakly scattered or absorbed and fall into the optical transmission window of the skin, may therefore become a practical solution for biomedical applications, such as remote control of thermotherapy. PMID:26327196

  9. Gratings and Random Reflectors for Near-Infrared PIN Diodes

    Gunapala, Sarath; Bandara, Sumith; Liu, John; Ting, David


    Crossed diffraction gratings and random reflectors have been proposed as means to increase the quantum efficiencies of InGaAs/InP positive/intrinsic/ negative (PIN) diodes designed to operate as near-infrared photodetectors. The proposal is meant especially to apply to focal-plane imaging arrays of such photodetectors to be used for near-infrared imaging. A further increase in quantum efficiency near the short-wavelength limit of the near-infrared spectrum of such a photodetector array could be effected by removing the InP substrate of the array. The use of crossed diffraction gratings and random reflectors as optical devices for increasing the quantum efficiencies of quantum-well infrared photodetectors (QWIPs) was discussed in several prior NASA Tech Briefs articles. While the optical effects of crossed gratings and random reflectors as applied to PIN photodiodes would be similar to those of crossed gratings and random reflectors as applied to QWIPs, the physical mechanisms by which these optical effects would enhance efficiency differ between the PIN-photodiode and QWIP cases: In a QWIP, the multiple-quantum-well layers are typically oriented parallel to the focal plane and therefore perpendicular or nearly perpendicular to the direction of incidence of infrared light. By virtue of the applicable quantum selection rules, light polarized parallel to the focal plane (as normally incident light is) cannot excite charge carriers and, hence, cannot be detected. A pair of crossed gratings or a random reflector scatters normally or nearly normally incident light so that a significant portion of it attains a component of polarization normal to the focal plane and, hence, can excite charge carriers. A pair of crossed gratings or a random reflector on a PIN photodiode would also scatter light into directions away from the perpendicular to the focal plane. However, in this case, the reason for redirecting light away from the perpendicular is to increase the length of the

  10. Determination of Oxygen Saturation and Photoplethysmogram from Near Infrared Scattering Images

    Ri, Yong-U; Pyon, Young-Hui; Sin, Kye-Ryong


    The near infrared scattering images of human muscle include some information on bloodstream and hemoglobin concentration according to skin depth and time. This paper addressed a method of determining oxygen saturation and photoplethysmogram from the near infrared (NIR) scattering images of muscle. Depending on the modified Beer-Lambert Law and the diffuse scattering model of muscular tissue, we determined an extinction coefficient matrix of hemoglobin from the near infrared scattering images ...

  11. The near infrared camera for the Subaru Prime Focus Spectrograph

    Smee, Stephen A.; Gunn, James E.; Golebiowski, Mirek; Barkhouser, Robert; Vivès, Sebastien; Pascal, Sandrine; Carr, Michael; Hope, Stephen C.; Loomis, Craig; Hart, Murdock; Sugai, Hajime; Tamura, Naoyuki; Shimono, Atsushi


    We present the detailed design of the near infrared camera for the SuMIRe (Subaru Measurement of Images and Redshifts) Prime Focus Spectrograph (PFS) being developed for the Subaru Telescope. The PFS spectrograph is designed to collect spectra from 2394 objects simultaneously, covering wavelengths that extend from 380 nm - 1.26 μm. The spectrograph is comprised of four identical spectrograph modules, with each module collecting roughly 600 spectra from a robotic fiber positioner at the telescope prime focus. Each spectrograph module will have two visible channels covering wavelength ranges 380 nm - 640 nm and 640 nm - 955 nm, and one near infrared (NIR) channel with a wavelength range 955 nm - 1.26 μm. Dispersed light in each channel is imaged by a 300 mm focal length, f/1.07, vacuum Schmidt camera onto a 4k x 4k, 15 µm pixel, detector format. For the NIR channel a HgCdTe substrate-removed Teledyne 1.7 μm cutoff device is used. In the visible channels, CCDs from Hamamatsu are used. These cameras are large, having a clear aperture of 300 mm at the entrance window, and a mass of ~ 250 kg. Like the two visible channel cameras, the NIR camera contains just four optical elements: a two-element refractive corrector, a Mangin mirror, and a field flattening lens. This simple design produces very good imaging performance considering the wide field and wavelength range, and it does so in large part due to the use of a Mangin mirror (a lens with a reflecting rear surface) for the Schmidt primary. In the case of the NIR camera, the rear reflecting surface is a dichroic, which reflects in-band wavelengths and transmits wavelengths beyond 1.26 μm. This, combined with a thermal rejection filter coating on the rear surface of the second corrector element, greatly reduces the out-of-band thermal radiation that reaches the detector. The camera optics and detector are packaged in a cryostat and cooled by two Stirling cycle cryocoolers. The first corrector element serves as the

  12. A near-Infrared SETI Experiment: Alignment and Astrometric precision

    Duenas, Andres; Maire, Jerome; Wright, Shelley; Drake, Frank D.; Marcy, Geoffrey W.; Siemion, Andrew; Stone, Remington P. S.; Tallis, Melisa; Treffers, Richard R.; Werthimer, Dan


    Beginning in March 2015, a Near-InfraRed Optical SETI (NIROSETI) instrument aiming to search for fast nanosecond laser pulses, has been commissioned on the Nickel 1m-telescope at Lick Observatory. The NIROSETI instrument makes use of an optical guide camera, SONY ICX694 CCD from PointGrey, to align our selected sources into two 200µm near-infrared Avalanche Photo Diodes (APD) with a field-of-view of 2.5"x2.5" each. These APD detectors operate at very fast bandwidths and are able to detect pulse widths extending down into the nanosecond range. Aligning sources onto these relatively small detectors requires characterizing the guide camera plate scale, static optical distortion solution, and relative orientation with respect to the APD detectors. We determined the guide camera plate scale as 55.9+- 2.7 milli-arcseconds/pixel and magnitude limit of 18.15mag (+1.07/-0.58) in V-band. We will present the full distortion solution of the guide camera, orientation, and our alignment method between the camera and the two APDs, and will discuss target selection within the NIROSETI observational campaign, including coordination with Breakthrough Listen.

  13. Functional nanomaterials for near-infrared-triggered cancer therapy.

    Liu, Bei; Li, Chunxia; Cheng, Ziyong; Hou, Zhiyao; Huang, Shanshan; Lin, Jun


    The near-infrared (NIR) region (700-1100 nm) is the so-called transparency "therapeutic window" for biological applications owing to its deeper tissue penetration and minimal damage to healthy tissues. In recent years, various NIR-based therapeutic and interventional strategies, such as NIR-triggered drug delivery, photothermal therapy (PTT) and photodynamic therapy (PDT), are under research in intensive preclinical and clinical investigations for cancer treatment. The NIR control in these cancer therapy systems is considered crucial to boost local effective tumor suppression while minimizing side effects, resulting in improved therapeutic efficacy. Some researchers even predict the NIR-triggered cancer therapy to be a new and exciting possibility for clinical nanomedicine applications. In this review, the rapid development of NIR light-responsive cancer therapy based on various smartly designed nanocomposites for deep tumor treatments is introduced. In detail, the use of NIR-sensitive materials for chemotherapy, PTT as well as PDT is highlighted, and the associated challenges and potential solutions are discussed. The applications of NIR-sensitive cancer therapy modalities summarized here can highlight their potential use as promising nanoagents for deep tumor therapy. PMID:26971704

  14. Near Infrared Imaging of Molecular Beacons in Cancers

    Chance, Britton


    The recent demonstrations of the efficacy of the tumor to background contrast in breast cancer using the tricarbo-cyanine near infrared (NIR) agent with time domain 2-D imaging presages the greater efficacy of site-directed optical contrast agents for early detection of cancers which show contrast (tissue to background) of over 20 fold. Further increases of contrast are obtained with structures that quench the fluorescence until the agent is delivered, recognized, and opened by specific enzymatic activity of the tumor. These are termed ``Molecular Beacons". In order to image the localization of the Beacons, we employ light pen ( 20μ) in LN2 gives the desired 3D high resolution image of the location of the Beacon within in the cancer cell. Since cancer prevention is linked to early detection, the high signal to background obtainable with Molecular Beacons enables the detection of very early subsurface cancers, especially breast and prostate (NIH, UIP). Thus the fluorescent Beacon excites and emits in the NIR window and signals from several cm deep in breast are detected by diffusive wave optical tomography (DWOT). Detection of objects ( 800 nm) affording 0.2 mm object detection of even low Beacon concentrations. One, two, and 3-D localization is made possible by one, two, and three orthogonal phase array null planes.

  15. Spiral galaxy distance indicators based on near-infrared photometry

    De Grijs, R


    We compare two methods of distance determination to spiral galaxies using optical/near-infrared (NIR) observations, the (I-K) versus M_K colour - absolute magnitude (CM) relation and the I and K-band Tully-Fisher relation (TFR). Dust-free colours and NIR absolute magnitudes greatly enhance the usefulness of the NIR CM relation as a distance indicator for moderately to highly inclined_spiral_ galaxies_in the field_ (inclinations between ~ 80 and 90 deg); by avoiding contamination by dust the scatter in the CM relation is significantly reduced, compared to similar galaxy samples published previously. The CM relation can be used to determine distances to field spiral galaxies with M_K > -25.5, to at least M_K ~ -20. Our results, supplemented with previously published observations for which we can - to some degree - control the effects of extinction, are consistent with a universal nature of the CM relation for field spiral galaxies. High-resolution observations done with the Hubble Space Telescope can provide a ...

  16. Measurement of subcutaneous adipose tissue thickness by near-infrared

    Obesity is strongly associated with the risks of diabetes and cardiovascular disease, and there is a need to measure the subcutaneous adipose tissue (SAT) layer thickness and to understand the distribution of body fat. A device was designed to illuminate the body parts by near-infrared (NIR), measure the backscattered light, and predict the SAT layer thickness. The device was controlled by a single-chip microcontroller (SCM), and the thickness value was presented on a liquid crystal display (LCD). There were 30 subjects in this study, and the measurements were performed on 14 body parts for each subject. The paper investigated the impacts of pressure and skin colour on the measurement. Combining with principal component analysis (PCA) and support vector regression (SVR), the measurement accuracy of SAT layer thickness was 89.1 % with a mechanical caliper as reference. The measuring range was 5–11 mm. The study provides a non-invasive and low-cost technique to detect subcutaneous fat thickness, which is more accessible and affordable compared to other conventional techniques. The designed device can be used at home and in community.

  17. Implanted near-infrared spectroscopy for cardiac monitoring

    Bhunia, Sourav K.; Cinbis, Can


    Implanted Cardioverter Defibrillator (ICD) provides one of the most effective therapies for the prevention of sudden cardiac death, but also delivers some high voltage shocks inappropriately, causing morbidity and mortality. Implanted near-infrared spectroscopy (NIRS) may augment ICD arrhythmia detection by monitoring skeletal muscle perfusion. A two-wavelength, single-distance, continuous-wave implanted NIRS has been evaluated in-vivo. A weighted difference of the changes in attenuation at two wavelengths, across the isobestic point of the hemoglobin spectra, was taken to be the microvascular oxygenation trend indicator (O2 Index). Although the exact weight depends on the local vascular distribution and their oxygen levels, the hypothesis that a constant weight may be adequate for hemodynamic trending during short arrhythmic episodes, was tested. The sensor was implanted subcutaneously both on fresh tissue and inside scar tissue that formed around a pre-existing implant, in 3 animals each. Attenuations were recorded at 660 and 890 nm during normal sinus rhythm (NSR) and induced ventricular fibrillation (VF). The slope of the O2 Index over 10 seconds was computed for 7 NSR and 8 VF episodes in fresh and 13 NSR and 15 VF episodes in scar tissue pockets. The mean O2 Index slope was significantly different (pdetection of VF during electromagnetic interference, double counting of ECG T-wave as an R-wave, ICD lead failure, electrocardiographic aberrancy etc.

  18. Near-infrared measurements of brain oxygenation in stroke.

    Moreau, François; Yang, Runze; Nambiar, Vivek; Demchuk, Andrew M; Dunn, Jeff F


    We investigated the feasibility of using frequency-domain near-infrared spectroscopy (fdNIRS) to study brain oxygenation in the first few hours of stroke onset. The OxiplexTS(®) fdNIRS system was used in this study. Using a standard probing protocol based on surface landmarks, we measured brain tHb and [Formula: see text] in healthy volunteers, cadavers, and acute stroke patients within 9 h of stroke onset and 3 days later. We obtained measurements from 11 controls, 5 cadavers, and 5 acute stroke patients. [Formula: see text] values were significantly lower in cadavers compared to the controls and stroke patients. Each stroke patient had at least one area with reduced [Formula: see text] on the stroke side compared to the contralateral side. The evolution of tHb and [Formula: see text] at 3 days differed depending on whether a large infarct occurred. This study shows the proof of principle that quantified measurements of brain oxygenation using NIRS could be used in the hectic environment of acute stroke management. It also highlights the current technical limitations and future challenges in the development of this unique bedside monitoring tool for stroke. PMID:26958577

  19. Near-Infrared Variability in the Orion Nebula Cluster

    Rice, Thomas S; Wolk, Scott J; Vaz, Luiz Paolo; Cross, N J G


    Using the United Kingdom Infrared Telescope on Mauna Kea, we have carried out a new near-infrared J, H, K monitoring survey of almost a square degree of the star-forming Orion Nebula Cluster with observations on 120 nights over three observing seasons, spanning a total of 894 days. We monitored ~15,000 stars down to J=20 using the WFCAM instrument, and have extracted 1203 significantly variable stars from our data. By studying variability in young stellar objects (YSOs) in the H-K, K color-magnitude diagram, we are able to distinguish between physical mechanisms of variability. Many variables show color behavior indicating either dust-extinction or disk/accretion activity, but we find that when monitored for longer periods of time, a number of stars shift between these two variability mechanisms. Further, we show that the intrinsic timescale of disk/accretion variability in young stars is longer than that of dust-extinction variability. We confirm that variability amplitude is statistically correlated with ev...

  20. Near-infrared spectropolarimetry of a delta-spot

    Balthasar, H; Louis, R E; Verma, M; Denker, C


    Sunspots harboring umbrae of both magnetic polarities within a common penumbra (delta-spots) are often but not always related to flares. We present first near-infrared (NIR) observations (Fe I 1078.3 nm and Si I 1078.6 nm spectra) obtained with the Tenerife Infrared Polarimeter (TIP) at the Vacuum Tower Telescope (VTT) in Tenerife on 2012 June 17, which afford accurate and sensitive diagnostics to scrutinize the complex fields along the magnetic neutral line of a delta-spot within active region NOAA 11504. We examine the vector magnetic field, line-of-sight (LOS) velocities, and horizontal proper motions of this rather inactive delta-spot. We find a smooth transition of the magnetic vector field from the main umbra to that of opposite polarity (delta-umbra), but a discontinuity of the horizontal magnetic field at some distance from the delta-umbra on the polarity inversion line. The magnetic field decreases faster with height by a factor of two above the delta-umbra. The latter is surrounded by its own Eversh...

  1. The Phoenix Deep Survey: Optical and near infrared imaging catalogs

    Sullivan, M; Afonso, J; Georgakakis, A; Chan, B; Cram, L; Mobasher, B; Almeida, C; Sullivan, Mark; Hopkins, Andrew; Afonso, Jose; Georgakakis, Antonis; Chan, Ben; Cram, Lawrence; Mobasher, Bahram; Almeida, Cesario


    The Phoenix Deep Survey is a multi-wavelength galaxy survey based on deep 1.4 GHz radio imaging (Hopkins et al., 2003). The primary goal of this survey is to investigate the properties of star formation in galaxies and to trace the evolution in those properties to a redshift z=1, covering a significant fraction of the age of the Universe. By compiling a sample of star-forming galaxies based on selection at radio wavelengths we eliminate possible biases due to dust obscuration, a significant issue when selecting objects at optical and ultraviolet wavelengths. In this paper, we present the catalogs and results of deep optical (UBVRI) and near-infrared (Ks) imaging of the deepest region of the existing decimetric radio imaging. The observations and data-processing are summarised and the construction of the optical source catalogs described, together with the details of the identification of candidate optical counterparts to the radio catalogs. Based on our UBVRIKs imaging, photometric redshift estimates for the ...

  2. Near-infrared imaging spectroscopy for counterfeit drug detection

    Arnold, Thomas; De Biasio, Martin; Leitner, Raimund


    Pharmaceutical counterfeiting is a significant issue in the healthcare community as well as for the pharmaceutical industry worldwide. The use of counterfeit medicines can result in treatment failure or even death. A rapid screening technique such as near infrared (NIR) spectroscopy could aid in the search for and identification of counterfeit drugs. This work presents a comparison of two laboratory NIR imaging systems and the chemometric analysis of the acquired spectroscopic image data. The first imaging system utilizes a NIR liquid crystal tuneable filter and is designed for the investigation of stationary objects. The second imaging system utilizes a NIR imaging spectrograph and is designed for the fast analysis of moving objects on a conveyor belt. Several drugs in form of tablets and capsules were analyzed. Spectral unmixing techniques were applied to the mixed reflectance spectra to identify constituent parts of the investigated drugs. The results show that NIR spectroscopic imaging can be used for contact-less detection and identification of a variety of counterfeit drugs.

  3. The application of near infrared spectroscopy in nutritional intervention studies

    Philippa A Jackson


    Full Text Available Functional near infrared spectroscopy (NIRS is a non-invasive optical imaging technique used to monitor cerebral blood flow (CBF and by proxy neuronal activation. The use of NIRS in nutritional intervention studies is a relatively novel application of this technique, with only a small, but growing, number of trials published to date. These trials—in which the effects on CBF following administration of dietary components such as caffeine, polyphenols and omega-3 polyunsaturated fatty acids are assessed—have successfully demonstrated NIRS as a sensitive measure of change in haemodynamic response during cognitive tasks in both acute and chronic treatment intervention paradigms. The existent research in this area has been limited by the constraints of the technique itself however advancements in the measurement technology, paired with studies endeavouring increased sophistication in number and locations of channels over the head should render the use of NIRS in nutritional interventions particularly valuable in advancing our understanding of the effects of nutrients and dietary components on the brain.

  4. Near-infrared oxygen airglow from the Venus nightside

    Crisp, D.; Meadows, V. S.; Allen, D. A.; Bezard, B.; Debergh, C.; Maillard, J.-P.


    Groundbased imaging and spectroscopic observations of Venus reveal intense near-infrared oxygen airglow emission from the upper atmosphere and provide new constraints on the oxygen photochemistry and dynamics near the mesopause (approximately 100 km). Atomic oxygen is produced by the Photolysis of CO2 on the dayside of Venus. These atoms are transported by the general circulation, and eventually recombine to form molecular oxygen. Because this recombination reaction is exothermic, many of these molecules are created in an excited state known as O2(delta-1). The airglow is produced as these molecules emit a photon and return to their ground state. New imaging and spectroscopic observations acquired during the summer and fall of 1991 show unexpected spatial and temporal variations in the O2(delta-1) airglow. The implications of these observations for the composition and general circulation of the upper venusian atmosphere are not yet understood but they provide important new constraints on comprehensive dynamical and chemical models of the upper mesosphere and lower thermosphere of Venus.

  5. Near-infrared laser diodes in monitoring applications

    Patonay, Gabor; Zen, Jyh-Myng; Czuppon, Tibor


    Absorption and fluorescence spectroscopy has proven to be a valuable analytical tool for environmental and process monitoring. Several publications have addressed different spectroscopic applications related to process monitoring. Since most chemicals absorb in the UVIVis part of the spectrum, the majority of laser applications utilize this shorter wavelength region. Nevertheless, the utilization of the longer wavelength part of the electromagnetic spectrum may be advantageous due to its relatively low interference. The environmental and process monitoring applications of this spectral region may be especially advantageous if semiconductor lasers are utilized as light sources. Laser diodes have all the properties of other types of lasers with the added benefits of compactness, low power consumption, low cost and long lifetime. However, to utilize this spectral region for environmental or process monitoring applications, appropriate near-infrared (NIR) absorbing probe molecules need to be employed. These probes may be used to determine analytical properties important for environmental or process monitoring applications, e.g., pH, oxygen concentration, metal ion determinations, solvent hydrophobicity, just to mention a few. These NIR probes may be incorporated into polymers to form a stable probe arrangement for convenient monitoring using semiconductor lasers. The utility can be further enhanced using fiber optics. In this paper the use of MR absorption and fluorescence spectroscopy for monitoring applications will be demonstrated.

  6. Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors.

    Xuan, Mingjun; Wu, Zhiguang; Shao, Jingxin; Dai, Luru; Si, Tieyan; He, Qiang


    We describe fuel-free, near-infrared (NIR)-driven Janus mesoporous silica nanoparticle motors (JMSNMs) with diameters of 50, 80, and 120 nm. The Janus structure of the JMSNMs is generated by vacuum sputtering of a 10 nm Au layer on one side of the MSNMs. Upon exposure to an NIR laser, a localized photothermal effect on the Au half-shells results in the formation of thermal gradients across the JMSNMs; thus, the generated self-thermophoresis can actively drive the nanomotors to move at an ultrafast speed, for instance, up to 950 body lengths/s for 50 nm JMSNMs under an NIR laser power of 70.3 W/cm(2). The reversible "on/off" motion of the JMSNMs and their directed movement along the light gradient can be conveniently modulated by a remote NIR laser. Moreover, dynamic light scattering measurements are performed to investigate the coexisting translational and rotational motion of the JMSNMs in the presence of both self-thermophoretic forces and strong Brownian forces. These NIR-powered nanomotors demonstrate a novel strategy for overcoming the necessity of chemical fuels and exhibit a significant improvement in the maneuverability of nanomotors while providing potential cargo transportation in a biofriendly manner. PMID:27152728

  7. Gemini Near-infrared Spectroscopy of Luminous z~6 Quasars

    Jiang, Linhua; Fan, Xiaohui; Vestergaard, Marianne;


    We present Gemini near-infrared spectroscopic observations of six luminous quasars at z=5.8$\\sim$6.3. Five of them were observed using Gemini-South/GNIRS, which provides a simultaneous wavelength coverage of 0.9--2.5 $\\mu$m in cross dispersion mode. The other source was observed in K band with...... Gemini-North/NIRI. We calculate line strengths for all detected emission lines and use their ratios to estimate gas metallicity in the broad-line regions of the quasars. The metallicity is found to be supersolar with a typical value of $\\sim$4 Z_{\\sun}, and a comparison with low-redshift observations...... shows no strong evolution in metallicity up to z$\\sim$6. The FeII/MgII ratio of the quasars is 4.9+/-1.4, consistent with low-redshift measurements. We estimate central BH masses of 10^9 to 10^{10} M_{\\sun} and Eddington luminosity ratios of order unity. We identify two MgII $\\lambda\\lambda$2796...

  8. Near infrared light responsive hybrid nanoparticles for synergistic therapy.

    Liang, Yan; Gao, Wenxia; Peng, Xinyu; Deng, Xin; Sun, Changzhen; Wu, Huayue; He, Bin


    A near infrared (NIR) light responsive chromophore 7-(diethylamino)-4-(hydroxymethyl)-2H-chromen-2-one (DEACM) was synthesized and incorporated to β-cyclodextrins with cRGD functionalized poly(ethylene glycol), the amphiphiles were coordinated with Au nanorods or nanoparticles to load anticancer drug doxorubicin (DOX) for fabricating hybrid nanoparticles. The π-π stacking interaction between DEACM and DOX was formed in the hybrid nanoparticles, which contributed to the high drug loading content. The Au nanorods or nanoparticles enhanced the photosolvolysis of DEACM under the irradiation of NIR with 808 nm wavelength and triggered the accelerated drug release from the nanoparticles. The drug loaded hybrid nanoparticles with NIR irradiation exhibited efficient inhibition effect on the proliferation of 4T1 breast cancer cells in vitro. The in vivo anticancer activity study on breast cancer bearing mice revealed that the hybrid nanoparticles containing Au nanorods exhibited excellent anticancer activity under the irradiation of 808 nm wavelength NIR with 800 mW. PMID:27244691

  9. Application of functional near-infrared spectroscopy in psychiatry.

    Ehlis, Ann-Christine; Schneider, Sabrina; Dresler, Thomas; Fallgatter, Andreas J


    Two decades ago, the introduction of functional near-infrared spectroscopy (fNIRS) into the field of neuroscience created new opportunities for investigating neural processes within the human cerebral cortex. Since then, fNIRS has been increasingly used to conduct functional activation studies in different neuropsychiatric disorders, most prominently schizophrenic illnesses, affective disorders and developmental syndromes, such as attention-deficit/hyperactivity disorder as well as normal and pathological aging. This review article provides a comprehensive overview of state of the art fNIRS research in psychiatry covering a wide range of applications, including studies on the phenomenological characterization of psychiatric disorders, descriptions of life-time developmental aspects, treatment effects, and genetic influences on neuroimaging data. Finally, methodological shortcomings as well as current research perspectives and promising future applications of fNIRS in psychiatry are discussed. We conclude that fNIRS is a valid addition to the range of neuroscientific methods available to assess neural mechanisms underlying neuropsychiatric disorders. Future research should particularly focus on expanding the presently used activation paradigms and cortical regions of interest, while additionally fostering technical and methodological advances particularly concerning the identification and removal of extracranial influences on fNIRS data as well as systematic artifact correction. Eventually, fNIRS might be a useful tool in practical psychiatric settings involving both diagnostics and the complementary treatment of psychological disorders using, for example, neurofeedback applications. PMID:23578578

  10. Near-infrared fluorescent dyes for fiber optic sensing

    Patonay, Gabor; Kim, Jun Seok; Medou-Ovono, Martial; Strekowski, Lucjan


    Fiber optic sensing requires the use of molecular probes such as fluorescent dyes or indicators that can be induced during analysis to produce a detectable spectral change. Spectroscopic techniques have long been applied to the determination of analytical and bioanalytical measurements using fiber optic sensors; however, relatively few studies have been reported utilizing near-infrared (NIR) absorbing chromophores. This longer wavelength region of the electromagnetic spectrum is more advantageous because of the inherently lower background interference and the high molar absorptivities of NIR absorbing chromophores. Low background interference is especially important in samples containing a complex matrix. The design and operation of an NIR probe are similar to that of conventional UV-visible probes. In principle optical fiber or other optical sensors can be made selective to a particular analyte. The selectivity will be determined primarily by the selectivity of the sensor dye and by the nature of the matrix entrapping the dye if the probe is non-covalently attached. This presentation discusses the development of different NIR dyes for fiber optic sensor applications. Examples are given for determining basic analytical properties, e.g., pH, metal ion concentration, and solvent hydrophobicity. Similarly, NIR dyes are very useful for bioanalytical probes (immunochemistry, etc.) as well.

  11. Resolved Near-Infrared Stellar Populations in Nearby Galaxies

    Dalcanton, Julianne J; Melbourne, Jason L; Girardi, Léo; Dolphin, Andy; Rosenfield, Philip A; Boyer, Martha L; de Jong, Roelof S; Gilbert, Karoline; Marigo, Paola; Olsen, Knut; Seth, Anil C; Skillman, Evan


    We present near-infrared (NIR) color-magnitude diagrams (CMDs) for the resolved stellar populations within 26 fields of 23 nearby galaxies (<4 Mpc), based on F110W and F160W images from Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). The CMDs sample both old dormant and young star-forming populations. We match key NIR CMD features with their counterparts in optical CMDs, and identify the red core Helium burning (RHeB) sequence as a significant contributor to the NIR flux in stellar populations younger than a few 100 Myrs old, suggesting that star formation can drive surprisingly rapid variations in the NIR mass-to-light ratio. The NIR luminosity of star forming galaxies is therefore not necessarily proportional to the stellar mass. We note that these individual bright RHeB stars may be misidentified as old stellar clusters in low resolution imaging. We also discuss the CMD location of asymptotic giant branch (AGB) stars, and the separation of AGB sub-populations using a combination of optic...

  12. Near-Infrared Photobiomodulation in Retinal Injury and Disease.

    Eells, Janis T; Gopalakrishnan, Sandeep; Valter, Krisztina


    Evidence is growing that exposure of tissue to low energy photon irradiation in the far-red (FR) to near-infrared (NIR) range of the spectrum, collectively termed "photobiomodulation" (PBM) can restore the function of damaged mitochondria, upregulate the production of cytoprotective factors and prevent apoptotic cell death. PBM has been applied clinically in the treatment of soft tissue injuries and acceleration of wound healing for more than 40 years. Recent studies have demonstrated that FR/NIR photons penetrate diseased tissues including the retina. The therapeutic effects of PBM have been hypothesized to result from intracellular signaling pathways triggered when FR/NIR photons are absorbed by the mitochondrial photoacceptor molecule, cytochrome c oxidase, culminating in improved mitochondrial energy metabolism, increased cytoprotective factor production and cell survival. Investigations in rodent models of methanol-induced ocular toxicity, light damage, retinitis pigmentosa and age-related macular degeneration have demonstrated the PBM attenuates photoreceptor cell death, protects retinal function and exerts anti-inflammatory actions. PMID:26427443

  13. Analyzing near-infrared images for utility assessment

    Salamati, Neda; Sadeghipoor, Zahra; Süsstrunk, Sabine


    Visual cognition is of significant importance in certain imaging applications, such as security and surveillance. In these applications, an important issue is to determine the cognition threshold, which is the maximum distortion level that can be applied to the images while still ensuring that enough information is conveyed to recognize the scene. The cognition task is usually studied with images that represent the scene in the visible part of the spectrum. In this paper, our goal is to evaluate the usefulness of another scene representation. To this end, we study the performance of near-infrared (NIR) images in cognition. Since surface reflections in the NIR part of the spectrum is material dependent, an object made of a specific material is more probable to have uniform response in the NIR images. Consequently, edges in the NIR images are likely to correspond to the physical boundaries of the objects, which are considered to be the most useful information for cognition. This feature of the NIR images leads to the hypothesis that NIR is better than a visible scene representation to be used in cognition tasks. To test this hypothesis, we compared the cognition thresholds of NIR and visible images performing a subjective study on 11 scenes. The images were compressed with different compression factors using JPEG2000 compression. The results of this subjective test show that recognizing 8 out of the 11 scenes is significantly easier based on the NIR images when compared to their visible counterparts.

  14. DIAGNOcam--a Near Infrared Digital Imaging Transillumination (NIDIT) technology.

    Abdelaziz, Marwa; Krejci, Ivo


    In developed countries, clinical manifestation of carious lesions is changing: instead of dentists being confronted with wide-open cavities, more and more hidden caries are seen. For a long time, the focus of the research community was on finding a method for the detection of carious lesions without the need for radiographs. The research on Digital Imaging Fiber-Optic Transillumination (DIFOTI) has been an active domain. The scope of the present article is to describe a novel technology for caries diagnostics based on Near Infrared Digital Imaging Transillumination (NIDIT), and to give first examples of its clinical indications. In addition, the coupling of NIDIT with a head-mounted retinal image display (RID) to improve clinical workflow is presented. The novel NIDIT technology was shown to be useful as a diagnostic tool in several indications, including mainly the detection of proximal caries and, less importantly, for occlusal caries, fissures, and secondary decay around amalgam and composite restorations. The coupling of this technology with a head-mounted retinal image system allows for its very efficient implementation into daily practice. PMID:25625132

  15. The Visible and Near Infrared module of EChO

    Adriani, A; Gambicorti, L; Focardi, M; Oliva, E; Farina, M; Di Giorgio, A M; Santoli, F; Pace, E; Piccioni, G; Filacchione, G; Pancrazzi, M; Tozzi, A; Micela, G


    The Visible and Near Infrared (VNIR) is one of the modules of EChO, the Exoplanets Characterization Observatory proposed to ESA for an M-class mission. EChO is aimed to observe planets while transiting by their suns. Then the instrument had to be designed to assure a high efficiency over the whole spectral range. In fact, it has to be able to observe stars with an apparent magnitude Mv= 9-12 and to see contrasts of the order of 10-4 - 10-5 necessary to reveal the characteristics of the atmospheres of the exoplanets under investigation. VNIR is a spectrometer in a cross-dispersed configuration, covering the 0.4-2.5 micron spectral range with a resolving power of about 330 and a field of view of 2 arcsec. It is functionally split into two channels respectively working in the 0.4-1 and 1.0-2.5 micron spectral ranges. Such a solution is imposed by the fact the light at short wavelengths has to be shared with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars under observation. The spectromete...

  16. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy.

    Pociask, Elżbieta; Jaworek-Korjakowska, Joanna; Malinowski, Krzysztof Piotr; Roleder, Tomasz; Wojakowski, Wojciech


    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects. PMID:27610191

  17. Near-infrared (NIR) up-conversion optogenetics

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Hoque, Mohammad Razuanul; Yamashita, Takayuki; Yamanaka, Akihiro; Sugano, Eriko; Tomita, Hiroshi; Yawo, Hiromu


    Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650-1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called ‘imaging window’. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system.

  18. Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy

    Alford, K.; Wickramasinghe, Y.


    Near infrared spectroscopy (NIRS) instruments that rely on phase sensitive detection suffer from what is called "phase-amplitude crosstalk," i.e., the phase measured is dependent on the average light intensity entering the detector. Changes in detector rise time with input light intensity is the accepted explanation of this phenomenon. It is concluded here that an additional simple mechanism can cause phase-amplitude errors, particularly if the ratio of the ac component of the detected signal to the dc component is low. It is shown that the form of the phase distortion encountered during the development of a new phase sensitive NIR instrument can be modeled by assuming the presence of a synchronous interfering signal, due to rf coupling, at the detector output. This modeling allows a required margin between the detected signal of interest, i.e., the signal from the tissue and the interfering signal to be set in order to achieve a measured phase accuracy necessary to derive sufficiently accurate clinical parameters.

  19. Near-infrared detectors for ITER LIDAR Thomson scattering

    In this paper we discuss strategies for the development of fast photodetectors suitable for operation in the λ > 850 nm near-infrared (NIR) spectral region in the ITER core LIDAR Thomson scattering (TS) system. Detection of this spectral range is necessary if a Nd:YAG laser operating at the fundamental wavelength (λ = 1.06 μm) will be used as the input laser source. Different types of NIR photodetectors are potentially suitable for use in ITER LIDAR TS: the transferred electron (TE) InGaAsP/InP hybrid photodiodes and microchannel plate photomultipliers (MCP PMTs), the InxGa1-xAs MCP image intensifiers and PMTs, and the detectors based on transmission Si photocathodes. But their characteristics of either sensitivity, active area or speed of response, do not match the ITER specifications and all devices require some developmental work. For each of these detector types we review the characteristics of devices presently available and suggest a realistic development strategy suitable to extend their performances to meet the ITER specifications. Finally the expected performance of the ITER LIDAR TS system for different detector choices are compared by calculating the expected signal-to-noise ratio of the measured plasma temperature and density.

  20. Studying hot exozodiacal dust with near-infrared interferometry

    Absil, Olivier; Defrère, Denis; Le Bouquin, Jean-Baptiste; Mollier, Benjamin; Augereau, Jean-Charles; Coudé du Foresto, Vincent; Di Folco, Emmanuel; Ertel, Steve; ten Brummelaar, Theo


    Since our first detection of a resolved near-infrared emission around the main sequence star Vega, which we identified as the signature of hot dust grains close to the sublimation limit, we have been systematically searching for similar signatures around a magnitude-limited sample of nearby main sequence stars with the FLUOR instrument at the CHARA array. About 40 targets with spectral types ranging from A to K have been observed within the last 6 years, leading to first statistical trends on the occurence of the bright exozodi phenomenon as a function of spectral type. Our target sample is balanced between stars known to harbour cold dust populations from space-based missions (e.g., Spitzer, Herschel) and stars without cold dust, so that the occurence of abundant hot dust can also be correlated with the presence of large reservoirs of cold planetesimals. In this paper, we present preliminary conclusions from the CHARA/FLUOR survey. We also discuss the first results obtained in 2011/2012 with the new PIONIER visiting instrument at the VLTI, which is now used to extend our survey sample to the Southern hemisphere and to fainter targets. A first measurement of the exozodi/star flux ratio as a function of wavelength within the H band is presented, thanks to the low spectral resolution capability of PIONIER. Finally, we also briefly discuss our plans for extending the survey to fainter targets in the Northern hemisphere with an upgraded version of the FLUOR beam combiner.

  1. Prediction of chicken quality attributes by near infrared spectroscopy.

    Barbin, Douglas Fernandes; Kaminishikawahara, Cintia Midori; Soares, Adriana Lourenco; Mizubuti, Ivone Yurika; Grespan, Moises; Shimokomaki, Massami; Hirooka, Elisa Yoko


    In the present study, near-infrared (NIR) reflectance was tested as a potential technique to predict quality attributes of chicken breast (Pectoralis major). Spectra in the wavelengths between 400 and 2500nm were analysed using principal component analysis (PCA) and quality attributes were predicted using partial least-squares regression (PLSR). PCA performed on NIR dataset revealed the influence of muscle reflectance (L(∗)) influencing the spectra. PCA was not successful to completely discriminate between pale, soft and exudative (PSE) and pale-only muscles. High-quality PLSR were obtained for L(∗) and pH models predicted individually (R(2)CV of 0.91 and 0.81, and SECV of 1.99 and 0.07, respectively). Water-holding capacity was the most challenging attribute to determine (R(2)CV of 0.70 and SECV of 2.40%). Sample mincing and different spectra pre-treatments were not necessary to maximise the predictive performance of models. Results suggest that NIR spectroscopy can become useful tool for quality assessment of chicken meat. PMID:25172747

  2. Near infrared Raman spectroscopy for Alzheimer's disease detection

    Sudworth, Caroline D.; Archer, John K. J.; Mann, David


    In recent years, the use of Raman spectroscopy for the detection and diagnosis of disease has steadily grown within the research field. However, this research has primarily been restricted to oncology. This research expands the use of Raman spectroscopy as a potential tool for the diagnosis of Alzheimer's disease, which is currently the most prevalent, and fastest growing type of dementia in the Western world. Using a commercial Raman spectrometer (Renishaw PLC ®, UK) flash frozen post-mortem ex vivo brain tissue sections were illuminated using a high power (20mW) 830 nm near infrared diode laser, and subsequently spectra were gained in the region of 2000-200 cm-1 from a 10 second accumulation time. Ethical approval was gained for the examination of 18 individual donors exhibiting varying states of Alzheimer's disease, Huntingdon's disease and their corresponding age-matched healthy controls. Following on from previous preliminary studies, the Raman spectra were found to be highly reproducible, and when examined further, the spectra showed differences relating to the content and structure of the proteins in the individual brain samples, in particular, the beta-amyloid protein structure found in Alzheimer's disease patients. Principle components analysis further determined these protein structural changes, with Alzheimer's disease and Huntingdon's disease samples being defined from the healthy controls, and from each other.

  3. Retinal safety of near-infrared lasers in cataract surgery

    Wang, Jenny; Sramek, Christopher; Paulus, Yannis M.; Lavinsky, Daniel; Schuele, Georg; Anderson, Dan; Dewey, David; Palanker, Daniel


    Femtosecond lasers have added unprecedented precision and reproducibility to cataract surgery. However, retinal safety limits for the near-infrared lasers employed in surgery are not well quantified. We determined retinal injury thresholds for scanning patterns while considering the effects of reduced blood perfusion from rising intraocular pressure and retinal protection from light scattering on bubbles and tissue fragments produced by laser cutting. We measured retinal damage thresholds of a stationary, 1030-nm, continuous-wave laser with 2.6-mm retinal spot size for 10- and 100-s exposures in rabbits to be 1.35 W (1.26 to 1.42) and 0.78 W (0.73 to 0.83), respectively, and 1.08 W (0.96 to 1.11) and 0.36 W (0.33 to 0.41) when retinal perfusion is blocked. These thresholds were input into a computational model of ocular heating to calculate damage threshold temperatures. By requiring the tissue temperature to remain below the damage threshold temperatures determined in stationary beam experiments, one can calculate conservative damage thresholds for cataract surgery patterns. Light scattering on microbubbles and tissue fragments decreased the transmitted power by 88% within a 12 deg angle, adding a significant margin for retinal safety. These results can be used for assessment of the maximum permissible exposure during laser cataract surgery under various assumptions of blood perfusion, treatment duration, and scanning patterns.

  4. Graphene surface plasmons at the near-infrared optical regime

    Zhang, Qiming; Li, Xiangping; Hossain, Md Muntasir; Xue, Yunzhou; Zhang, Jie; Song, Jingchao; Liu, Jingying; Turner, Mark D.; Fan, Shanhui; Bao, Qiaoliang; Gu, Min


    Graphene has been identified as an emerging horizon for a nanoscale photonic platform because the Fermi level of intrinsic graphene can be engineered to support surface plasmons (SPs). The current solid back electrical gating and chemical doping methods cannot facilitate the demonstration of graphene SPs at the near-infrared (NIR) window because of the limited shift of the Fermi level. Here, we present the evidence for the existence of graphene SPs on a tapered graphene-silicon waveguide tip at a NIR wavelength, employing a surface carrier transfer method with molybdenum trioxides. The coupling between the graphene surface plasmons and the guiding mode in silicon waveguides allows for the observation of the concentrated field of the SPs in the tip by near-field scanning optical microscopy. Thus the hot spot from the concentrated SPs in the graphene layer can be used as a key experimental signature of graphene SPs. The NIR graphene SPs opens a new perspective for optical communications, optical sensing and imaging, and optical data storage with extreme spatial confinement, broad bandwidth and high tunability. PMID:25297570

  5. The application of near infrared spectroscopy (NIR technique for

    Sandor Barabassy


    Full Text Available The production of cow’s milk in Hungary fluctuates by 15-20 % annualy. Surplus milk is dried into powder and can also be converted to modified milk powders using techniques such as ultra filtration. From approximetely 20.000 tonnes, of all milk powder types, 3.000 tonnes, is converted using ultra filtration technology. Multivariable near infrared (NIR calibration was performed on powder mixtures of whole milk, skimmed milk, whey, retenate (protein concentrate and lactose for rapid fat, protein, lactose, water and ash content determination. More than 150 samples were prepared and measured in two NIRS labs (Scottish Agriculture College – SAC – Aberdeen and University of Horticulture and Food Science - UHFS – Budapest. The results obtained from the same samples were compared. The aims of the study were: 1. Rapid quantitative and qualitative determination of mixtures of milk powder products using NIR technique. 2. Comparison of the results achieved in Aberdeen (SAC and Budapest (UHFS institutes. The mass per cent varied between 0.0-2.8% for fat, 0.0-80% for protein, 6.6-100 % for lactose, 0.0-5.0 % for water and 0.0-8.0 % for ash. High correlation coefficients (0.97-0.99 were found for all five components.

  6. The near-infrared spectrum of ethynyl radical

    Le, Anh T; Sears, Trevor J


    Transient diode laser absorption spectroscopy has been used to measure three strong vibronic bands in the near infrared spectrum of the C$_2$H, ethynyl, radical not previously observed in the gas phase. The radical was produced by ultraviolet excimer laser photolysis of either acetylene or (1,1,1)-trifluoropropyne in a slowly flowing sample of the precursor diluted in inert gas, and the spectral resolution was Doppler-limited. The character of the upper states was determined from the rotational and fine structure in the observed spectra and assigned by measurement of ground state rotational combination differences. The upper states include a $^2\\Sigma ^+$ state at 6696 cm$^{-1}$, a second $^2\\Sigma ^+$ state at 7088 cm$^{-1}$, and a $^2\\Pi$ state at 7110 cm$^{-1}$. By comparison with published calculations (R. Tarroni and S. Carter, \\textit{J. Chem. Phys} \\textbf{119}, 12878 (2003) and \\textit{Mol. Phys}. \\textbf{102}, 2167 (2004)), the vibronic character of these levels was also assigned. The observed states...

  7. Novel near infrared sensors for hybrid BCI applications

    Almajidy, Rand K.; Le, Khang S.; Hofmann, Ulrich G.


    This study's goal is to develop a low cost, portable, accurate and comfortable NIRS module that can be used simultaneously with EEG in a dual modality system for brain computer interface (BCI). The sensing modules consist of electroencephalography (EEG) electrodes (at the positions Fp1, Fpz and Fp2 in the international 10-20 system) with eight custom made functional near infrared spectroscopy (fNIRS) channels, positioned on the prefrontal cortex area with two extra channels to measure and eliminate extra-cranial oxygenation. The NIRS sensors were designed to guarantee good sensor-skin contact, without causing subject discomfort, using springs to press them to the skin instead of pressing them by cap fixture. Two open source software packages were modified to carry out dual modality hybrid BCI experiments. The experimental paradigm consisted of a mental task (arithmetic task or text reading) and a resting period. Both oxygenated hemoglobin concentration changes (HbO), and EEG signals showed an increase during the mental task, but the onset, period and amount of that increase depends on each modality's characteristics. The subject's degree of attention played an important role especially during online sessions. The sensors can be easily used to acquire brain signals from different cerebral cortex parts. The system serves as a simple technological test bed and will be used for stroke patient rehabilitation purposes.

  8. Clutter and signatures from near infrared testbed sensor

    Sanderson, R. B.; McCalmont, J. F.; Montgomery, J. B.; Johnson, R. S.; McDermott, D. J.


    A new tactical airborne multicolor missile warning testbed was developed as part of an Air Force Research Laboratory (AFRL) initiative focusing on the development of sensors operating in the near infrared where commercially available silicon detectors can be used. At these wavelengths, the rejection of solar induced false alarms is a critical issue. Multicolor discrimination provides one of the most promising techniques for improving the performance of missile warning sensors, particularly for heavy clutter situations. This, in turn, requires that multicolor clutter data be collected for both analysis and algorithm development. The developed sensor test bed, as described in previous papers1, is a two-camera system with 1004x1004 FPA coupled with optimized filters integrated with the optics. The collection portion includes a high speed processor coupled with a high capacity disk array capable of collecting up to 48 full frames per second. This configuration allows the collection of temporally correlated, radiometrically calibrated data in two spectral bands that provide a basis for evaluating the performance of spectral discrimination algorithms. The presentation will describe background and clutter data collected from ground and flight locations in both detection and guard bands and the statistical analysis to provide a basis for evaluation of sensor performance. In addition, measurements have been made of discrete targets, both threats and false alarms. The results of these measurements have shown the capability of these sensors to provide a useful discrimination capability to distinguish threats from false alarms.

  9. Quantitative Tissue Spectroscopy of Near Infrared Fluorescent Nanosensor Implants.

    Iverson, Nicole M; Bisker, Gili; Farias, Edgardo; Ivanov, Vsevolod; Ahn, Jiyoung; Wogan, Gerald N; Strano, Michael S


    Implantable, near infrared (nIR) fluorescent nanosensors are advantageous for in vivo monitoring of biological analytes since they can be rendered selective for a particular target molecule while utilizing their unique optical properties and the nIR tissue transparency window for information transfer without an internal power source or telemetry. However, basic questions remain regarding the optimal encapsulation platform, geometrical properties, and concentration ranges required for high signal to noise ratio and effective detection through biological tissue. In this work, we systematically explore these variables quantitatively to optimize the performance of such optical nanosensors for biomedical applications. We investigate both alginate and polyethylene glycol (PEG) as model hydrogel systems, encapsulating d(GT)15 ssDNA-wrapped single-walled carbon nanotubes (SWNT) as model fluorescent nanoparticle sensors, responsive to riboflavin. Hydrogel sensors implanted 0.5 mm into thick tissue samples exhibit 50% reduction of initial fluorescence intensity, allowing an optical detection limit of 5.4 mm and 5.1 mm depth in tissue for alginate and PEG gels, respectively, at a SWNT concentration of 10 mg L(-1), and 785 nm laser excitation of 80 mW and 30 s exposure. These findings are supported with in vivo nIR fluorescent imaging of SWNT hydrogels implanted subcutaneously in mice. For the case of SWNT, we find that the alginate system is preferable in terms of emission intensity, sensor response, rheological properties, and shelf life. PMID:27305824

  10. Near-Infrared Versus Mid-Infrared for the Quantitative and Qualitative Analysis of Soils

    Over several decades, near-infrared reflectance spectroscopy has been shown to be extremely versatile for the rapid analysis of many agricultural materials including forages, foods and grains. More recently, mid-infrared and near-infrared diffuse reflectance spectroscopy (DRIFTS and NIRS, respective...

  11. A near infrared luminescent metal-organic framework for temperature sensing in the physiological range.

    Lian, Xiusheng; Zhao, Dian; Cui, Yuanjing; Yang, Yu; Qian, Guodong


    A near infrared pumped luminescent metal-organic framework thermometer Nd(0.577)Yb(0.423)BDC-F4, with near infrared fluorescence and excellent sensitivity in the physiological temperature range (293-313 K), has been first realized, and might be potentially applied for biomedical systems. PMID:26489451

  12. Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy.

    McGoverin, Cushla M; Hanifi, Arash; Palukuru, Uday P; Yousefi, Farzad; Glenn, Padraig B M; Shockley, Michael; Spencer, Richard G; Pleshko, Nancy


    Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a nondestructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes nondestructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm(-1), R = 0.68, p = 0.03), proteoglycan (at 4310 cm(-1), R = 0.82, p = 0.007), and collagen (at 4610 cm(-1), R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a nondestructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications. PMID:26817457

  13. Fetal oxygenation measurement using wireless near infrared spectroscopy

    Macnab, Andrew; Shadgan, Babak; Janssen, Patricia; Rurak, Dan


    Background: Fetal well-being is determined in large part by how well the placenta is able to supply oxygen and nutrients, but current technology is unable to directly measure how well a placenta functions. Near-infrared spectroscopy (NIRS) utilizes optical methods to measure tissue oxygenation. This pilot project evaluated the feasibility of NIRS for fetal monitoring through the maternal abdominal wall using a sheep model. Methods: A miniature wireless 2-wavelength NIRS device was placed on the abdominal skin over the placenta of a pregnant ewe whose fetus had been chronically catheterized to allow arterial sampling for measurement of arterial oxygen saturation. The NIRS device has 3-paired light emitting diodes and a single photodiode detector; allowing measurement of an index of tissue oxygen saturation (TSI%). Fetal limb TSI% values were compared before and during fetal breathing movements. Correlation was made during these events between arterial values and placental TSI% monitored continuously in real time. Results: Serial measurements were obtained in a single experiment. The correlation between transcutaneous NIRS derived TSI% and direct arterial oxygen saturation was very high (R2=0.86). Measures of fetal limb TSI% were declined after episodes of fetal breathing (P<0.005). Conclusions: This correlation suggests that NIRS is sensitive enough to detect changes in fetal tissue oxygenation noninvasively through the maternal abdominal wall in real-time in a sheep model. NIRS data confirmed that fetal breathing movements decrease arterial oxygen saturation in fetal lambs. If validated by further study this optical methodology could be applied as means of monitoring fetal wellbeing in humans.

  14. Effect of mechanical optical clearing on near-infrared spectroscopy.

    Idelson, Christopher R; Vogt, William C; King-Casas, Brooks; LaConte, Stephen M; Rylander, Christopher G


    Near-infrared Spectroscopy (NIRS) is a broadly utilized technology with many emerging applications including clinical diagnostics, sports medicine, and functional neuroimaging, to name a few. For functional brain imaging NIR light is delivered at multiple wavelengths through the scalp and skull to the brain to enable spatial oximetry measurements. Dynamic changes in brain oxygenation are highly correlated with neural stimulation, activation, and function. Unfortunately, NIRS is currently limited by its low spatial resolution, shallow penetration depth, and, perhaps most importantly, signal corruption due to light interactions with superficial non-target tissues such as scalp and skull. In response to these issues, we have combined the non-invasive and rapidly reversible method of mechanical tissue optical clearing (MOC) with a commercially available NIRS system. MOC utilizes a compressive loading force on tissue, causing the lateral displacement of blood and water, while simultaneously thinning the tissue. A MOC-NIRS Breath Hold Test displayed a ∼3.5-fold decrease in the time-averaged standard deviation between channels, consequentially promoting greater channel agreement. A Skin Pinch Test was implemented to negate brain and muscle activity from affecting the recorded signal. These results displayed a 2.5-3.0 fold increase in raw signal amplitude. Existing NIRS instrumentation has been further integrated within a custom helmet device to provide a uniform force distribution across the NIRS sensor array. These results showed a gradual decrease in time-averaged standard deviation among channels with an increase in applied pressure. Through these experiments, and the development of the MOC-NIRS helmet device, MOC appears to provide enhancement of NIRS technology beyond its current limitations. PMID:26041069

  15. Near-infrared dyes for molecular probes and imaging

    Patonay, Gabor; Beckford, Garfield; Strekowski, Lucjan; Henary, Maged; Kim, Jun Seok; Crow, Sidney


    Near-Infrared (NIR) fluorescence has been used both as an analytical tool as molecular probes and in in vitro or in vivo imaging of individual cells and organs. The NIR region (700-1100 nm) is ideal with regard to these applications due to the inherently lower background interference and the high molar absorptivities of NIR chromophores. NIR dyes are also useful in studying binding characteristics of large biomolecules, such as proteins. Throughout these studies, different NIR dyes have been evaluated to determine factors that control binding to biomolecules, including serum albumins. Hydrophobic character of NIR dyes were increased by introducing alkyl and aryl groups, and hydrophilic moieties e.g., polyethylene glycols (PEG) were used to increase aqueous solubility. Recently, our research group introduced bis-cyanines as innovative NIR probes. Depending on their microenvironment, bis-cyanines can exist as an intramolecular dimer with the two cyanines either in a stacked form, or in a linear conformation in which the two subunits do not interact with each other. In this intramolecular H-aggregate, the chromophore has a low extinction coefficient and low fluorescence quantum yield. Upon addition of biomolecules, the H-and D- bands are decreased and the monomeric band is increased, with concomitant increase in fluorescence intensity. Introduction of specific moieties into the NIR dye molecules allows for the development of physiological molecular probes to detect pH, metal ions and other parameters. Examples of these applications include imaging and biomolecule characterizations. Water soluble dyes are expected to be excellent candidates for both in vitro and in vivo imaging of cells and organs.

  16. [Determination of adulteration in honey using near-infrared spectroscopy].

    Chen, Lan-Zhen; Zhao, Jing; Ye, Zhi-Hua; Zhong, Yan-Ping


    The objective of the present research is to study the potential of using Fourier transform near-infrared spectroscopy (FT-NIR) in conjunction with discriminant partial least squares (DPLS) chemometric techniques for the discrimination of honey authenticity. First, seventy one commercial honey samples from Chinese market were analyzed to detect the levels of honey adulteration by stable carbon isotope ratio and the chemical result showed that the samples include unadulterated (n = 27) and adulterated (n = 44) products. The samples were scanned in the spectral region between 4 000 and 11 000 cm(-1) by FT-NIR spectrometer with an optic fiber of 2 mm path-length and an InGaAs detector and then divided randomly five times into two sets, namely calibration sets and validation sets, respectively. Five kinds of mathematic models of honey samples were established for classification of honeys as authentic or adulterated by using DPLS. Different spectra pretreatment methods, spectral range and different principal component factors were selected to optimize the calibration models. The calibration models were successfully validated with exterior cross-validation methods. Through comparison analysis of the results, the overall corrected identification rate of authentic and adulterated honey samples in five calibration models were 91.49%, 94.68%, 92.98%, 93.86% and 94.87%, respectively. The correct classification rate of the validation samples was 93.75%, 89.58%, 89.29%, 92.31% and 86.96% from model one to model five, respectively and 100% of adulterated honey samples were correctly identified and classified in validation models 2, 3 and 4. The results demonstrated that FT-NIR together with DPLS could be used as a rapid and cost-efficient screening tool for discrimination of commercial honey adulteration, and the analytical technique would be significant to Chinese honey quality supervision. PMID:19271491

  17. Near-infrared (NIR) optogenetics using up-conversion system

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Yawo, Hiromu


    Non-invasive remote control technologies designed to manipulate neural functions for a comprehensive and quantitative understanding of the neuronal network in the brain as well as for the therapy of neurological disorders have long been awaited. Recently, it has become possible to optically manipulate the neuronal activity using biological photo-reactive molecules such as channelrhodopsin-2 (ChR2). However, ChR2 and its relatives are mostly reactive to visible light which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light penetrates deep into the tissues because biological systems are almost transparent to light within this so-called `imaging window'. Here we used lanthanide nanoparticles (LNPs), which are composed of rare-earth elements, as luminous bodies to activate channelrhodopsins (ChRs) since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Neuron-glioma-hybrid ND-7/23 cells were cultured with LNP(NaYF4:Sc/Yb/Er) particles (peak emission, 543 nm) and transfected to express C1V1 (peak absorbance, 539 nm), a chimera of ChR1 and VChR1. The photocurrents were generated in response to NIR laser light (976 nm) to a level comparable to that evoked by a filtered Hg lamp (530-550 nm). NIR light pulses also evoked action potentials in the cultured neurons that expressed C1V1. It is suggested that the green luminescent light emitted from LNPs effectively activated C1V1 to generate the photocurrent. With the optimization of LNPs, acceptor photo-reactive biomolecules and optics, this system could be applied to non-invasively actuate neurons deep in the brain.

  18. Near-infrared mapping of spiral barred galaxies

    The results presented were obtained with a 32 x 32 InSb charge injection device (CID) array cooled at 4K, at the f/36 cassegrain focus of the 3m60 Canada-France-Hawaii telescope with a spatial resolution of 0.5 inches per pixel. The objects presented are spiral barred galaxies mapped at J(1.25 microns), H(1.65 microns) and K(2.2 microns). The non-axisymetric potential due to the presence of a bar induces dynamical processes leading to the confinement of matter and peculiar morphologies. Infrared imaging is used to study the link between various components. Correlations with other wavelengths ranges and 2-colors diagrams ((J-H), (H-K)) lead to the identification of star forming regions, nucleus. Maps show structures connected to the central core. The question is, are they flowing away or toward the nucleus. Observations of M83 lead to several conclusions. The star forming region, detected in the visible and the infrared cannot be very compact and must extend to the edge of the matter concentration. The general shape of the near-infrared emission and the location of radio and 10 micron peaks suggest the confinement of matter between the inner Linblad resonances localized from CO measurements about 100 and 400 pc. The distribution of color indices in the arc from southern part to the star forming region suggests an increasing amount of gas and a time evolution eventually triggered by supernova explosions. Close to the direction of the bar, a bridge-like structure connects the arc to the nucleus with peculiar color indices

  19. Near infrared spectroscopy monitoring in the pediatric cardiac catheterization laboratory.

    Tanidir, Ibrahim Cansaran; Ozturk, Erkut; Ozyilmaz, Isa; Saygi, Murat; Kiplapinar, Neslihan; Haydin, Sertac; Guzeltas, Alper; Odemis, Ender


    Near-infrared spectroscopy (NIRS) is a noninvasive method used to evaluate tissue oxygenation. We evaluated the relationship between cerebral and renal NIRS parameters during transcatheter intervention and adverse events in the catheterization room. Between January 1 and May 31, 2012, 123 of 163 pediatric patients undergoing cardiac catheterization were followed by NIRS. All were monitored by electrocardiography, noninvasive blood pressure measurement, pulse oxymetry, initial and final blood lactate level measurement. The number of interventional procedures was 73 (59%). During the procedures, 39 patients experienced a total of 41 adverse events: 18 (19.5%) had desaturation, 10 (8.1%) arrhythmia, three (2.4%) had respiratory difficulty, six (4.8%) had a situation calling for cardiopulmonary resuscitation, three (2.4%) had anemia necessitating transfusion, and one (0.8%) had a cyanotic spell. Cranial NIRS values worsened in 12 (9.8%) and renal measurements worsened in 13 (12.5%) patients. The sensitivity and specificity of a 9% impairment of cranial values were 90 and 61%, respectively, while the corresponding calculations for a 21% fall in renal measurements were 54% sensitivity and 90% specificity. When arrhythmia developed, NIRS values fell simultaneously, while the development of a desaturation problem was heralded by NIRS falling 10-15 s earlier than changes in pulse oxymetry; on improving saturation, NIRS returned to earlier values 10-15 s before pulse oxymetry readings. NIRS monitoring may provide an early warning with regard to complications likely to develop during a procedure. A fall of 9% in cranial NIRS values, or of 21% in renal measurements, should raise clinician awareness. PMID:24404951

  20. The near-infrared spectrum of ethynyl radical.

    Le, Anh T; Hall, Gregory E; Sears, Trevor J


    Transient diode laser absorption spectroscopy has been used to measure three strong vibronic bands in the near infrared spectrum of the C2H, ethynyl, radical not previously observed in the gas phase. The radical was produced by ultraviolet excimer laser photolysis of either acetylene or (1,1,1)-trifluoropropyne in a slowly flowing sample of the precursor diluted in inert gas, and the spectral resolution was Doppler-limited. The character of the upper states was determined from the rotational and fine structure in the observed spectra and assigned by measurement of ground state rotational combination differences. The upper states include a (2)Σ(+) state at 6696 cm(-1), a second (2)Σ(+) state at 7088 cm(-1), and a (2)Π state at 7110 cm(-1). By comparison with published calculations [R. Tarroni and S. Carter, J. Chem. Phys 119, 12878 (2003); Mol. Phys. 102, 2167 (2004)], the vibronic character of these levels was also assigned. The observed states contain both X(2)Σ(+) and A(2)Π electronic characters. Several local rotational level perturbations were observed in the excited states. Kinetic measurements of the time-evolution of the ground state populations following collisional relaxation and reactive loss of the radicals formed in a hot, non-thermal, population distribution were made using some of the strong rotational lines observed. The case of C2H may be a good place to investigate the behavior at intermediate pressures of inert colliders, where the competition between relaxation and reaction can be tuned and observed to compare with master equation models, rather than deliberately suppressed to measure thermal rate constants. PMID:27544104

  1. Spectra Transfer Between a Fourier Transform Near-Infrared Laboratory and a Miniaturized Handheld Near-Infrared Spectrometer.

    Hoffmann, Uwe; Pfeifer, Frank; Hsuing, Chang; Siesler, Heinz W


    The aim of this contribution is to demonstrate the transfer of spectra that have been measured on two different laboratory Fourier transform near-infrared (FT-NIR) spectrometers to the format of a handheld instrument by measuring only a few samples with both spectrometer types. Thus, despite the extreme differences in spectral range and resolution, spectral data sets that have been collected and quantitative as well as qualitative calibrations that have been developed thereof, respectively, over a long period on a laboratory instrument can be conveniently transferred to the handheld system. Thus, the necessity to prepare completely new calibration samples and the effort required to develop calibration models when changing hardware platforms is minimized. The enabling procedure is based on piecewise direct standardization (PDS) and will be described for the data sets of a quantitative and a qualitative application case study. For this purpose the spectra measured on the FT-NIR laboratory spectrometers were used as "master" data and transferred to the "target" format of the handheld instrument. The quantitative test study refers to transmission spectra of three-component liquid solvent mixtures whereas the qualitative application example encompasses diffuse reflection spectra of six different current polymers. To prove the performance of the transfer procedure for quantitative applications, partial least squares (PLS-1) calibrations were developed for the individual components of the solvent mixtures with spectra transferred from the master to the target instrument and the cross-validation parameters were compared with the corresponding parameters obtained for spectra measured on the master and target instruments, respectively. To test the retention of the discrimination ability of the transferred polymer spectra sets principal component analyses (PCAs) were applied exemplarily for three of the six investigated polymers and their identification was demonstrated by

  2. Use of near-infrared spectroscopy for determining the total arsenic content in prostrate amaranth

    Font, R.; Del Rio, M.; Velez, D.; Montoro, R.; De Haro, A


    The potential of near infrared spectroscopy (NIRS) for determining the total arsenic (As) content in the prostrate amaranth (Amaranthus blitoides S. Watson) was assessed. Seventy-four samples belonging to this species, were harvested at different maturity stages along the polluted area, and then were scanned by NIRS. Their As reference values were obtained by atomic absorption spectrometry and they were regressed against different spectral transformations using modified partial least square (MPLS) regression. First derivative transformation equation of the raw optical data, previously standardized by standard normal variate (SNV) and De-trending (DT) transformations, resulted in a coefficient of determination (r{sup 2}) in the external validation of 0.63, indicative of equations that can be used for a correct separation of the samples into low, medium and high groups. The standard deviation to standard error of prediction ratio (RPD) and range to standard error of prediction ratio (RER) for the first derivative equation were similar to those obtained for other trace metal calibrations reported in NIRS reflectance. Major cell components such as chlorophyll, lipids, starch and proteins were used by MPLS for modeling the equations. The use of NIRS for the determination of the As content in A. blitoides plants offers an important saving of time and cost of analysis.

  3. Use of near-infrared spectroscopy for determining the total arsenic content in prostrate amaranth

    The potential of near infrared spectroscopy (NIRS) for determining the total arsenic (As) content in the prostrate amaranth (Amaranthus blitoides S. Watson) was assessed. Seventy-four samples belonging to this species, were harvested at different maturity stages along the polluted area, and then were scanned by NIRS. Their As reference values were obtained by atomic absorption spectrometry and they were regressed against different spectral transformations using modified partial least square (MPLS) regression. First derivative transformation equation of the raw optical data, previously standardized by standard normal variate (SNV) and De-trending (DT) transformations, resulted in a coefficient of determination (r2) in the external validation of 0.63, indicative of equations that can be used for a correct separation of the samples into low, medium and high groups. The standard deviation to standard error of prediction ratio (RPD) and range to standard error of prediction ratio (RER) for the first derivative equation were similar to those obtained for other trace metal calibrations reported in NIRS reflectance. Major cell components such as chlorophyll, lipids, starch and proteins were used by MPLS for modeling the equations. The use of NIRS for the determination of the As content in A. blitoides plants offers an important saving of time and cost of analysis

  4. Design and development of wafer-level near-infrared micro-camera

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Haldar, Pradeep; Dhar, Nibir K.; Lewis, Jay S.; Wijewarnasuriya, Priyalal; Puri, Yash R.; Sood, Ashok K.


    SiGe offers a low-cost alternative to conventional infrared sensor material systems such as InGaAs, InSb, and HgCdTe for developing near-infrared (NIR) photodetector devices that do not require cooling and can offer high bandwidths and responsivities. As a result of the significant difference in thermal expansion coefficients between germanium and silicon, tensile strain incorporated into Ge epitaxial layers deposited on Si utilizing specialized growth processes can extend the operational range of detection to 1600 nm and longer wavelengths. We have fabricated SiGe based PIN detector devices on 300 mm diameter Si wafers in order to take advantage of high throughput, large-area complementary metal-oxide semiconductor (CMOS) technology. This device fabrication process involves low temperature epitaxial deposition of Ge to form a thin p+ seed/buffer layer, followed by higher temperature deposition of a thicker Ge intrinsic layer. An n+-Ge layer formed by ion implantation of phosphorus, passivating oxide cap, and then top copper contacts complete the PIN photodetector design. Various techniques including transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have been employed to characterize the material and structural properties of the epitaxial growth and fabricated detector devices. In addition, electrical characterization was performed to compare the I-V dark current vs. photocurrent response as well as the time and wavelength varying photoresponse properties of the fabricated devices, results of which are likewise presented.

  5. Molecular Basis of Spectral Diversity in Near-Infrared Phytochrome-Based Fluorescent Proteins.

    Shcherbakova, Daria M; Baloban, Mikhail; Pletnev, Sergei; Malashkevich, Vladimir N; Xiao, Hui; Dauter, Zbigniew; Verkhusha, Vladislav V


    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are the probes of choice for deep-tissue imaging. Detection of several processes requires spectrally distinct NIR FPs. We developed an NIR FP, BphP1-FP, which has the most blue-shifted spectra and the highest fluorescence quantum yield among BphP-derived FPs. We found that these properties result from the binding of the biliverdin chromophore to a cysteine residue in the GAF domain, unlike natural BphPs and other BphP-based FPs. To elucidate the molecular basis of the spectral shift, we applied biochemical, structural and mass spectrometry analyses and revealed the formation of unique chromophore species. Mutagenesis of NIR FPs of different origins indicated that the mechanism of the spectral shift is general and can be used to design multicolor NIR FPs from other BphPs. We applied pairs of spectrally distinct point cysteine mutants to multicolor cell labeling and demonstrated that they perform well in model deep-tissue imaging. PMID:26590639

  6. Near infrared spectroscopy in animal science production: principles and applications

    Roberto Riovanto


    Full Text Available Near infrared (NIR is one of the techniques belonging to vibrational spectroscopy. Its radiation (750 to 2500nm interacts with organic matter, and the absorption spectrum is rich in chemical and physical information of organic molecules. In order to extract valuable information on the chemical properties of samples, it is necessary to mathematically process spectral data by chemometric tools. The most important part in the development of an NIR method is building the predicting model generally called calibration. NIR spectroscopy has several advantages over other analytical techniques: rapidity of analysis, no use of chemicals, minimal or no samples preparation, easily applicable in different work environments (on/in/at line applications. On the other hand, NIR spectroscopy has some disadvantages: low ability to predict compounds at low concentration (<0.1%, necessity of accurate analysis as reference, development of calibration models required high trained personnel, need of a large and up-to-date calibration data set (often difficult to obtain, difficulties to transfer calibration among instruments, initial high financial investments. In the feed industry, NIR spectroscopy is used for: feed composition, digestibility (in vivo, in vitro, in situ, traceability assessment (to avoid possible frauds. As far as animal products are concerned, NIR spectroscopy has been used to determine the main composition of meat, milk, fish, cheese, eggs. Furthermore, it was also used to predict some physical properties (tenderness, WHC (Water Holding Capacity, drip loss, colour and pH in meat; coagulation ability in milk; freshness, flavour and other sensorial parameters in cheese. Interesting applications of NIR spectroscopy regard issues like: determination of animal products’ authenticity and the detection of adulteration (in order to prevent frauds, discrimination PDO (Protected Designation of Origin and PGI (Protected Geographical Indication from other non

  7. Effects of Near-Infrared Laser on Neural Cell Activity

    Near-infrared laser has been used to relieve patients from various kinds of pain caused by postherpetic neuralgesia, myofascial dysfunction, surgical and traumatic wound, cancer, and rheumatoid arthritis. Clinically, He-Ne (λ=632.8 nm, 780 nm) and Ga-Al-As (805 ± 25 nm) lasers are used to irradiate trigger points or nerve ganglion. However the precise mechanisms of such biological actions of the laser have not yet been resolved. Since laser therapy is often effective to suppress the pain caused by hyperactive excitation of sensory neurons, interactions with laser light and neural cells are suggested. As neural excitation requires large amount of energy liberated from adenosine triphosphate (ATP), we examined the effect of 830-nm laser irradiation on the energy metabolism of the rat central nervous system and isolated mitochondria from brain. The diode laser was applied for 15 min with irradiance of 4.8 W/cm2 on a 2 mm-diameter spot at the brain surface. Tissue ATP content of the irradiated area in the cerebral cortex was 19% higher than that of the non-treated area (opposite side of the cortex), whereas the ADP content showed no significant difference. Irradiation at another wavelength (652 nm) had no effect on either ATP or ADP contents. The temperature of the brain tissue was increased 4.5-5.0 deg. C during the irradiation of both 830-nm and 652-nm laser light. Direct irradiation of the mitochondrial suspension did not show any wavelength-dependent acceleration of respiration rate nor ATP synthesis. These results suggest that the increase in tissue ATP content did not result from the thermal effect, but from specific effect of the laser operated at 830 nm. Electrophysiological studies showed the hyperpolarization of membrane potential of isolated neurons and decrease in membrane resistance with irradiation of the laser, suggesting an activation of potassium channels. Intracellular ATP is reported to regulate some kinds of potassium channels. Possible mechanisms

  8. [Main Components of Xinjiang Lavender Essential Oil Determined by Partial Least Squares and Near Infrared Spectroscopy].

    Liao, Xiang; Wang, Qing; Fu, Ji-hong; Tang, Jun


    This work was undertaken to establish a quantitative analysis model which can rapid determinate the content of linalool, linalyl acetate of Xinjiang lavender essential oil. Totally 165 lavender essential oil samples were measured by using near infrared absorption spectrum (NIR), after analyzing the near infrared spectral absorption peaks of all samples, lavender essential oil have abundant chemical information and the interference of random noise may be relatively low on the spectral intervals of 7100~4500 cm(-1). Thus, the PLS models was constructed by using this interval for further analysis. 8 abnormal samples were eliminated. Through the clustering method, 157 lavender essential oil samples were divided into 105 calibration set samples and 52 validation set samples. Gas chromatography mass spectrometry (GC-MS) was used as a tool to determine the content of linalool and linalyl acetate in lavender essential oil. Then the matrix was established with the GC-MS raw data of two compounds in combination with the original NIR data. In order to optimize the model, different pretreatment methods were used to preprocess the raw NIR spectral to contrast the spectral filtering effect, after analysizing the quantitative model results of linalool and linalyl acetate, the root mean square error prediction (RMSEP) of orthogonal signal transformation (OSC) was 0.226, 0.558, spectrally, it was the optimum pretreatment method. In addition, forward interval partial least squares (FiPLS) method was used to exclude the wavelength points which has nothing to do with determination composition or present nonlinear correlation, finally 8 spectral intervals totally 160 wavelength points were obtained as the dataset. Combining the data sets which have optimized by OSC-FiPLS with partial least squares (PLS) to establish a rapid quantitative analysis model for determining the content of linalool and linalyl acetate in Xinjiang lavender essential oil, numbers of hidden variables of two

  9. Design of camouflage material for visible and near infrared based on thin film technology

    Miao, Lei; Shi, Jia-ming; Zhao, Da-peng; Liu, Hao; Wang, Chao; Xu, Yan-liang


    Visible light and near infrared based camouflage materials achieve good stealth under traditional optical detection equipment but its spectral differences with green plants can be taken advantage of by high spectrum based detection technologies. Based on the thin structure of bandpass filter, we designed an optical film with both green and near infrared spectrum. We conducted simulations using transfer matrix methods and optimized the result by simplex methods. The spectral reflectance curve of the proposed thin film matches that of green plants, and experiments show that the proposed thin film achieve good invisibility under visible light and near infrared in a wide viewing angle.

  10. Near-infrared photodetectors utilizing MoS2-based heterojunctions

    Near-infrared photodetectors are developed using graphene/MoS2 and WSe2/MoS2 vertical heterojunctions. These heterojunctions exhibit diode-rectifying behavior in the dark and enhanced photocurrent upon near-infrared irradiation. The photocurrent increases with increasing near-infrared power, leading to the photoresponsibility of 0.14 and 0.3 A W−1 for the graphene/MoS2 and WSe2/MoS2 heterojunctions, respectively, which are much higher than the photoresponsibility reported for a multilayer MoS2 phototransistor

  11. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  12. Near infrared spectroscopy--investigations in neurovascular diseases.

    Schytz, Henrik Winther


    The purpose of this thesis was to explore and develop methods, where continuous wave near infrared spectroscopy (CW-NIRS) can be applied in different neurovascular diseases, in order to find biological markers that are useful in clinical neurology. To develop a new method to detect changes in cerebral blood flow (CBF), the first study investigated a multi-source detector separation configuration and indocyanine green (ICG) as a tracer to calculate a corrected blood flow index (BFI) value. The study showed no correlation between CBF changes measured by 133Xenon single photon emission computer tomography (133Xe-SPECT) and the corrected BFI value. It was concluded, that it was not possible to obtain reliable BFI data with the ICG CW-NIRS method. NIRS measurements of low frequency oscillations (LFOs) may be a reliable method to investigate vascular alterations in neurovascular diseases, but this requires an acceptable LFOs variation between hemispheres and over time in the healthy brain. The second study therefore investigated day-to-day and hemispheric variations in LFOs with NIRS. It was shown that NIRS might be useful in assessing LFOs between hemispheres, as well as interhemispheric phase and gain directly and over time. Migraine may be associated with persistent impairment of neurovascular coupling, but there is no experimental evidence to support this. The third study therefore investigated interictal neurovascular coupling during a mental task by a Stroop test in migraine without aura (MO) patients, which is the most common type of migraine. The study showed intact neurovascular coupling in the prefrontal cortex outside of attacks in patients with MO. The fourth study aimed to investigate possible changes in LFOs amplitude following nitric oxide (NO) donor infusion in familial hemiplegic migraine (FHM), which is a rare Mendelian subtype of migraine with aura. This study showed increased LFOs amplitude only in FHM patients with co-existing common type of migraine

  13. A Near-Infrared Photon Counting Camera for High Sensitivity Astronomical Observation Project

    National Aeronautics and Space Administration — The innovation is a Near Infrared Photon-Counting Sensor (NIRPCS), an imaging device with sufficient sensitivity to capture the spectral signatures, in the...

  14. Enhanced broadband near-infrared luminescence of Bi-doped oxyfluoride glasses.

    Xu, Beibei; Tan, Dezhi; Zhou, Shifeng; Hong, Zhanglian; Sharafudeen, Kaniyarakkal N; Qiu, Jianrong


    Broadband near-infrared luminescence covering 900 to 1600 nm has been observed in Bi-doped oxyfluoride silicate glasses. The partial substitution of fluoride for oxide in Bi-doped silicate glasses leads to an increase of the intensity and lifetime of the near-infrared luminescence and blue-shift of the near-infrared emission peaks. Both Bi-doped silicate and oxyfluoride silicate glasses show visible luminescence with blue, green, orange and red emission bands when excited by ultra-violet light. Careful investigation on the luminescence properties indicates that the change of near-infrared luminescence is related to optical basicity, phonon energy of the glass matrix and crystal field around Bi active centers. These results offer a valuable way to control the luminescence properties of Bi-doped materials and may find some applications in fiber amplifier and fiber laser. PMID:23263148

  15. Near-Infrared spectroscopy of the possible nova candidate PNV J17355050-2934240

    Srivastava, Mudit; Joshi, Vishal; Banerjee, D. P. K.; Ashok, N. M.


    We report near-infrared observations of PNV J17355050-2934240 which has been reported as a possible nova candidate in the CBAT TOCP site (

  16. Turn-key Near-Infrared Photon-Counting Detector Module for LIDAR Applications Project

    National Aeronautics and Space Administration — We propose to design and deliver a turn-key photon counting detector module for near-infrared wavelengths, based on large-area InGaAs/InP avalanche photodiodes...

  17. Transcranial red and near infrared light transmission in a cadaveric model.

    Jared R Jagdeo

    Full Text Available BACKGROUND AND OBJECTIVE: Low level light therapy has garnered significant interest within the past decade. The exact molecular mechanisms of how red and near infrared light result in physiologic modulation are not fully understood. Heme moieties and copper within cells are red and near infrared light photoreceptors that induce the mitochondrial respiratory chain component cytochrome C oxidase, resulting in a cascade linked to cytoprotection and cellular metabolism. The copper centers in cytochrome C oxidase have a broad absorption range that peaks around 830 nm. Several in vitro and in vivo animal and human models exist that have demonstrated the benefits of red light and near infrared light for various conditions. Clinical applications for low level light therapy are varied. One study in particular demonstrated improved durable functional outcomes status post-stroke in patients treated with near infrared low level light therapy compared to sham treatment [1]. Despite previous data suggesting the beneficial effect in treating multiple conditions, including stroke, with low level light therapy, limited data exists that measures transmission in a human model. STUDY DESIGN/MATERIALS AND METHODS: To investigate this idea, we measured the transmission of near infrared light energy, using red light for purposes of comparison, through intact cadaver soft tissue, skull bones, and brain using a commercially available LED device at 830 nm and 633 nm. RESULTS: Our results demonstrate that near infrared measurably penetrates soft tissue, bone and brain parenchyma in the formalin preserved cadaveric model, in comparison to negligible red light transmission in the same conditions. CONCLUSION: These findings indicate that near infrared light can penetrate formalin fixed soft tissue, bone and brain and implicate that benefits observed in clinical studies are potentially related to direct action of near infrared light on neural tissue.

  18. Low-temperature optical characterization of a near-infrared single-photon emitter in nanodiamonds

    Siyushev, P.; Jacques, V.; Aharonovich, I; Kaiser, F.; Müller, T; Lombez, L.; Atatüre, M.; Castelletto, S.; Prawer, S.; Jelezko, F.; Wrachtrup, J.


    In this paper, we study the optical properties of single defects emitting in the near infrared in nanodiamonds at liquid helium temperature. The nanodiamonds are synthesized using a microwave chemical vapor deposition method followed by nickel implantation and annealing. We show that single defects exhibit several striking features at cryogenic temperature: the photoluminescence is strongly concentrated into a sharp zero-phonon line in the near infrared, the radiative lifetime is in the nanos...

  19. Near infrared fluorescent chlorophyll nanoscale liposomes for sentinel lymph node mapping

    Fan L; Wu Q; Chu M


    Lina Fan,1,* Qiang Wu,1,* Maoquan Chu1,21School of Life Science and Technology, 2The Institute for Advanced Materials and Nano Biomedicine Tongji University, Shanghai, People's Republic of China *These authors contributed equally to this workBackground: Sentinel lymph node (SLN) mapping using in vivo near infrared fluorescence imaging has attracted great attention during the past few years. Here we report on the early use of poorly water-soluble chlorophyll with near infrared fluoresc...

  20. The impact of SCIAMACHY near-infrared instrument calibration on CH4 and CO total columns

    Gloudemans, A. M. S.; Schrijver, H.; Kleipool, Q.; Broek, M. M. P.; A. G. Straume; Lichtenberg, G.; Van Hees, R. M.; Aben, I.; Meirink, J. F.


    The near-infrared spectra measured with the SCIAMACHY instrument on board the ENVISAT satellite suffer from several instrument calibration problems. The effects of three important instrument calibration issues on the retrieved methane (CH4) and carbon monoxide (CO) total columns have been investigated: the effects of the growing ice layer on the near-infrared detectors, the effects of the orbital variation of the instrument dark signal, and the effects of the dead/bad ...

  1. Low loss liquid crystal photonic bandgap fiber in the near-infrared region

    Scolari, Lara; Wei, Lei; Gauza, S.;


    We infiltrate a photonic crystal fiber with a perdeuterated liquid crystal, which has a reduced infrared absorption. The lowest loss ever reported (about 1 dB) in the middle of the near-infrared bandgap is achieved.......We infiltrate a photonic crystal fiber with a perdeuterated liquid crystal, which has a reduced infrared absorption. The lowest loss ever reported (about 1 dB) in the middle of the near-infrared bandgap is achieved....

  2. Characterisation of polymeric rod-connected diamond photonic crystal at near-infrared range

    Chen, L; Taverne, M.P.C.; X. Zheng; Huang, C. C.; Garcia, Y.L.; Hewak, D.W.; Rarity, J.G.


    We present a low-index polymeric three-dimensional photonic crystal, rod-connected diamond structure, created via direct laser writing, showing a partial photonic band gap at near-infrared wavelengths in both P and S polarization, measured by angular resolved Fourier image spectroscopy. We show initial tests of backfilling with high refractive index material aimed at achieving a full photonic bandgap in the near-infrared.

  3. Functional near-infrared spectroscopy of the neonatal brain: Instrumentation, methods and experiments

    Kotilahti, Kalle


    Near-infrared spectroscopy (NIRS) is a noninvasive medical technology that uses visible red and near-infrared light to probe changes in the concentrations of absorbers in tissue. In functional NIRS (fNIRS), local hemoglobin concentration changes in brain are measured, which can be interpreted as changes in cerebral blood flow and volume, and are related to neuronal activation. NIRS is an especially suitable imaging modality for neonates as the instrumentation is safe, portable and silent comp...

  4. UV Written Integrated Optical Beam Combiner for Near Infrared Astronomical Interferometry

    Svalgaard, Mikael; Olivero, Massimo; Jocou, Laurent;


    A near infrared integrated optical beam combiner for astronomical interferometry is demonstrated for the first time by direct UV writing. High fringe contrast >95%, low total loss (0.7 dB), low crosstalk and broadband performance is demonstrated.......A near infrared integrated optical beam combiner for astronomical interferometry is demonstrated for the first time by direct UV writing. High fringe contrast >95%, low total loss (0.7 dB), low crosstalk and broadband performance is demonstrated....

  5. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice

    Welsher, Kevin; Liu, Zhuang; Sarah P Sherlock; Robinson, Joshua Tucker; Chen, Zhuo; Daranciang, Dan; Dai, Hongjie


    The near-infrared photoluminescence intrinsic to semiconducting single-walled carbon nanotubes is ideal for biological imaging owing to the low autofluorescence and deep tissue penetration in the near-infrared region beyond 1 µm. However, biocompatible single-walled carbon nanotubes with high quantum yield have been elusive. Here, we show that sonicating single-walled carbon nanotubes with sodium cholate, followed by surfactant exchange to form phospholipid–polyethylene glycol coated nanotube...

  6. Polymeric near-infrared absorbing dendritic nanogels for efficient in vivo photothermal cancer therapy

    Molina, Maria; Wedepohl, Stefanie; Calderón, Marcelo


    In recent years, several near-infrared light absorbing inorganic nanomaterials have been developed for photothermal therapy. However, their biological fate after injection limits their clinical utilization. In this work, we developed a novel polymeric near-infrared light absorbing material based on a biocompatible thermoresponsive nanogel that is semi-interpenetrated with polyaniline, a conjugated polymer with strong near-infrared absorbance. This polymeric nanocomposite generates heat after being irradiated by NIR light, thereby inducing a local hyperthermia that is used for photothermal cancer therapy in vitro and in vivo.In recent years, several near-infrared light absorbing inorganic nanomaterials have been developed for photothermal therapy. However, their biological fate after injection limits their clinical utilization. In this work, we developed a novel polymeric near-infrared light absorbing material based on a biocompatible thermoresponsive nanogel that is semi-interpenetrated with polyaniline, a conjugated polymer with strong near-infrared absorbance. This polymeric nanocomposite generates heat after being irradiated by NIR light, thereby inducing a local hyperthermia that is used for photothermal cancer therapy in vitro and in vivo. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07587d

  7. Application research on enhancing near-infrared micro-imaging quality by 2nd derivative

    Wang, Dong; Ma, Zhi-hong; Zhao, Liu; Wang, Bei-hong; Han, Ping; Pan, Li-gang; Wang, Ji-hua


    Near-infrared micro-imaging will not only provide the sample's spatial distribution information, but also the spectroscopic information of each pixel. In this thesis, it took the artificial sample of wheat flour and formaldehyde sodium sulfoxylate distribution given for example to research the data processing method for enhancing the quality of near-infrared micro-imaging. Near-infrared spectroscopic feature of wheat flour and formaldehyde sodium sulfoxylate being studied on, compare correlation imaging and 2nd derivative imaging were applied in the imaging processing of the near-infrared micro-image of the artificial sample. Furthermore, the two methods were combined, i.e. 2nd derivative compare correlation imaging was acquired. The result indicated that the difference of the correlation coefficients between the two substances, i.e. wheat flour and formaldehyde sodium sulfoxylate, and the reference spectrum has been increased from 0.001 in compare correlation image to 0.796 in 2nd derivative compare correlation image respectively, which enhances the imaging quality efficiently. This study will, to some extent, be of important reference significance to near-infrared micro-imaging method research of agricultural products and foods.

  8. A near-infrared SETI experiment: A multi-time resolution data analysis

    Tallis, Melisa; Maire, Jerome; Wright, Shelley; Drake, Frank D.; Duenas, Andres; Marcy, Geoffrey W.; Stone, Remington P. S.; Treffers, Richard R.; Werthimer, Dan; NIROSETI


    We present new post-processing routines which are used to detect very fast optical and near-infrared pulsed signals using the latest NIROSETI (Near-Infrared Optical Search for Extraterrestrial Intelligence) instrument. NIROSETI was commissioned in 2015 at Lick Observatory and searches for near-infrared (0.95 to 1.65μ) nanosecond pulsed laser signals transmitted by distant civilizations. Traditional optical SETI searches rely on analysis of coincidences that occur between multiple detectors at a fixed time resolution. We present a multi-time resolution data analysis that extends our search from the 1ns to 1ms range. This new feature greatly improves the versatility of the instrument and its search parameters for near-infrared SETI. We aim to use these algorithms to assist us in our search for signals that have varying duty cycles and pulse widths. We tested the fidelity and robustness of our algorithms using both synthetic embedded pulsed signals, as well as data from a near-infrared pulsed laser installed on the instrument. Applications of NIROSETI are widespread in time domain astrophysics, especially for high time resolution transients, and astronomical objects that emit short-duration high-energy pulses such as pulsars.

  9. Dissolved Gas-in-Oil Analysis in Transformers Based on Near-Infrared Photoacoustic Spectroscopy

    Mao, Xuefeng; Zhou, Xinlei; Zhai, Liang; Yu, Qingxu


    This paper investigates an application of near-infrared photoacoustic spectroscopy (PAS) to analyze the dissolved gas-in-oil of a transformer. A near-infrared tunable fiber laser-based PAS system has been developed. Using this system, the gas detection limits (signal-to-noise ratio = 1) of 4 ppb at 1531.59 nm for , 39 ppm at 1565.98 nm for CO, and 34 ppm at 1572.34 are reached. In addition, the fault gas () is produced by a transformer spatial discharge simulation system, and the productivity of the gas is measured quantitatively. The experiment demonstrates the near-infrared PAS system is able to be applied to the dissolved gas analysis of a transformer.

  10. Low temperature optical characterization of near infrared single photon emitter in nanodiamonds

    Siyushev, P; Aharonovich, I; Kaiser, F; Müller, T; Lombez, L; Atatüre, M; Castelletto, S; Prawer, S; Jelezko, F; Wrachtrup, J


    In this paper, we study the optical properties of single defects emitting in the near infrared in nanodiamonds at liquid helium temperature. The nanodiamonds are synthesized using a microwave chemical vapor deposition method followed by nickel implantation and annealing. We show that single defects exhibit several striking features at cryogenic temperature: the photoluminescence is strongly concentrated into a sharp zero-phonon line in the near infrared, the radiative lifetime is in the nanosecond range and the emission is perfectly linearly polarized. The spectral stability of the defects is then investigated. An optical resonance linewidth of 4 GHz is measured using resonant excitation on the zero-phonon line. Although Fourier-transform limited emission is not achieved, our results show that it might be possible to use consecutive photons emitted in the near infrared by single defects in diamond nanocrystals to perform two photon interference experiments, which are at the heart of linear quantum computing p...

  11. Nanostructured thin film-based near-infrared tunable perfect absorber using phase-change material

    Kocer, Hasan


    Nanostructured thin film absorbers embedded with phase-change thermochromic material can provide a large level of absorption tunability in the near-infrared region. Vanadium dioxide was employed as the phase-change material in the designed structures. The optical absorption properties of the designed structures with respect to the geometric and material parameters were systematically investigated using finite-difference time-domain computations. Absorption level of the resonance wavelength in the near-IR region was tuned from the perfect absorption level to a low level (17%) with a high positive dynamic range of near-infrared absorption intensity tunability (83%). Due to the phase transition of vanadium dioxide, the resonance at the near-infrared region is being turned on and turned off actively and reversibly under the thermal bias, thereby rendering these nanostructures suitable for infrared camouflage, emitters, and sensors.

  12. The GRAPHENE-SiC Substrate Interaction Enhanced Near-Infrared Absorption

    Xu, X. G.; Yin, R.; Xu, G. J.; Cao, J. C.

    When epitaxially grown on silicon carbide, a single layer graphene will exhibit a finite energy bandgap like a conventional semiconductor, and its energy dispersion is no longer linear in momentum space in the low energy regime. In this paper, we present a quantitative analysis on the effect of the SiC substrate in the optical absorption of π-electrons in graphene. We calculated the absorption matrix element and the optical absorption in the near infrared even to the visible region by taking into account the SiC substrate effect. It has been found that the substrate effect can significantly enhance the optical absorption in graphene in the near-infrared region, even by up to 90%. It may be helpful to eliminate the previous discrepancy of optical transmission between the theoretical results and the experimental results in the near-infrared to the visible region.

  13. AKARI/IRC Near-Infrared Spectral Atlas of Galactic Planetary Nebulae

    Ohsawa, Ryou; Sakon, Itsuki; Matsuura, Mikako; Kaneda, Hidehiro


    Near-infrared (2.5-5.0$\\,\\mu$m) low-resolution ($\\lambda/\\Delta\\lambda{\\sim}100$) spectra of 72 Galactic planetary nebulae (PNe) were obtained with the Infrared Camera (IRC) in the post-helium phase. The IRC, equipped with a $1'{\\times}1'$ window for spectroscopy of a point source, was capable of obtaining near-infrared spectra in a slit-less mode without any flux loss due to a slit. The spectra show emission features including hydrogen recombination lines and the 3.3-3.5$\\,\\mu$m hydrocarbon features. The intensity and equivalent width of the emission features were measured by spectral fitting. We made a catalog providing unique information on the investigation of the near-infrared emission of PNe. In this paper, details of the observations and characteristics of the catalog are described.

  14. Low-cost near-infrared imaging device for inspection of historical manuscripts

    Near-infrared (NIR) or sometimes called black light is a waveform beyond visible light and it is not detectable by human eyes. However electronic sensors such as the type used in digital cameras are able to detect signals in the infrared band. To avoid distortion in the pictures obtained near-infrared is blocked by optical filters inserted in digital cameras. By carrying out minor modification allowing near-infrared signal to be imaged while blocking the visible signal, the camera is turned into a low-cost NIR imaging instrument. NIR imaging can be a useful tool in historical manuscript study or restoration. A few applications have been successfully demonstrated in laboratory experiment using the instrument available in MINT. However, due to unavailability of historical items, easily available texts and paintings are used in the demonstrations. This paper reports achievements of early work on the application of digital camera in the detection of damaged prints or writings. (Author)

  15. An Optical Computed Tomography by Means of the Simplified Collimator in Near-infrared Region

    Mizumoto, Iwao; Odake, Sotoji; Mashiko, Shinro; Suzuki, Nobutaka

    The optical CT unit which was assembled with the laser diode working at the wavelength of 1.3 μm, and a glass optical fiber and a pin-hole with a diameter of the 100 μm yields the collimated near-infrared light through a scattering medium. Because the spatial collimator system needs no fast response time, a high sensitive Ge-PIN photodetector was employed the CT system. The optical CT image is allowed by use of near-infrared absorption characteristic. When the image construction of a grape was performed using projection data, so the comparatively good experimental results was obtained. The places of a grape seed was found without cutting. By means of the difference in characteristics of near-infrared absorption, the image of a cylindrical oil phantom in gelatin was reproduced.

  16. Determination of Oxygen Saturation and Photoplethysmogram from Near Infrared Scattering Images

    Ri, Yong-U; Sin, Kye-Ryong


    The near infrared scattering images of human muscle include some information on bloodstream and hemoglobin concentration according to skin depth and time. This paper addressed a method of determining oxygen saturation and photoplethysmogram from the near infrared (NIR) scattering images of muscle. Depending on the modified Beer-Lambert Law and the diffuse scattering model of muscular tissue, we determined an extinction coefficient matrix of hemoglobin from the near infrared scattering images and analyzed distribution of oxygen saturation of muscle with a depth from the extinction coefficient matrix. And we determined a dynamic attenuation variation curve with respect to fragmentary image frames sensitive to bloodstream from scattering image frames of muscle with time and then obtained the photoplethysmogram and heart rate by Fourier transformation and inverse transformation. This method based on the NIR scattering images can be applied in measurement of an average oxygen saturation and photoplethysmogram even...

  17. Standing wave integrated Fourier transform spectrometer for imaging spectrometry in the near infrared

    Osowiecki, Gaël. D.; Madi, Mohammad; Shorubalko, Ivan; Philipoussis, Irène; Alberti, Edoardo; Scharf, Toralf; Herzig, Hans P.


    We show the miniaturization and parallelization of a scanning standing wave spectrometer with a long term goal of creating a compact imaging spectrometer. In our standing wave integrated Fourier transform spectrometer, light is injected with micro-lenses into several optical polymer waveguides. A piezo actuated mirror located at the waveguide end-facet can shift the interferogram to increase its sampling frequency. The spatial distribution of the standing wave intensity inside the waveguide is partially scattered out of the plane by a periodic metallic grating and recorded by a CCD camera. We present spectra acquisition for six adjacent waveguides simultaneously at a wavelength of 632.8 nm.

  18. Near infrared fluorescent chlorophyll nanoscale liposomes for sentinel lymph node mapping

    Fan L


    Full Text Available Lina Fan,1,* Qiang Wu,1,* Maoquan Chu1,21School of Life Science and Technology, 2The Institute for Advanced Materials and Nano Biomedicine Tongji University, Shanghai, People's Republic of China *These authors contributed equally to this workBackground: Sentinel lymph node (SLN mapping using in vivo near infrared fluorescence imaging has attracted great attention during the past few years. Here we report on the early use of poorly water-soluble chlorophyll with near infrared fluorescence extracted from the leaf of Chimonanthus salicifolius, for mouse axillary SLN mapping.Methods and results: To improve the water solubility and SLN targeting of the chlorophyll, we encapsulated the chlorophyll in nanoscale liposomes. The liposome-coated chlorophyll nanocomposites obtained were spherical in shape and had an average diameter of 21.7 ± 6.0 nm. The nanocomposites dispersed well in water, and in aqueous suspension they exhibited brighter near infrared fluorescence than chlorophyll alone. After incubation of the nanocomposites with normal liver cells (QSG-7701 and macrophage cells (Ana-1 for no more than 48 hours, there was no obvious reduction in cell viability. When the nanocomposites were injected intradermally into the paw of a mouse, the axillary SLN was found to be strongly fluorescent and was easily visualized in real time without a requirement for surgery. The intensity of the near infrared fluorescence emitted by the SLN was obviously brighter than that emitted by the SLN of another mouse that had been intradermally injected with chlorophyll alone.Conclusion: Our data show that the liposome-coated chlorophyll nanocomposites could have great potential for clinical SLN mapping due to their lack of toxicity, bright near infrared fluorescence, and small diameter.Keywords: chlorophyll, liposomes, nanocomposites, near infrared fluorescence, sentinel lymph node mapping

  19. Near-Infrared Imaging of Barred Halo Dominated Low Surface Brightness Galaxies

    Honey, M.; Das, M.; Ninan, J. P.; Purvankara, M.


    We present a near-infrared (NIR) imaging study of barred low surface brightness (LSB) galaxies using the TIFR near-infrared Spectrometer and Imager (TIRSPEC). LSB galaxies are dark matter dominated, late type spirals that have low luminosity stellar disks but large neutral hydrogen (HI) gas disks. Using SDSS images of a very large sample of LSB galaxies derived from the literature, we found that the barred fraction is only 8.3%. We imaged twenty five barred LSB galaxies in the J, H, K$_S$ wav...

  20. Near-infrared spiroximetry: noninvasive measurements of venous saturation in piglets and human subjects

    Franceschini, Maria Angela; Boas, David A.; ZOURABIAN, ANNA; Diamond, Solomon G.; NADGIR, SHALINI; Lin, David W.; Moore, John B.; Fantini, Sergio


    We present a noninvasive method to measure the venous oxygen saturation (SvO2) in tissues using near-infrared spectroscopy (NIRS). This method is based on the respiration-induced oscillations of the near-infrared absorption in tissues, and we call it spiroximetry (the prefix spiro means respiration). We have tested this method in three piglets (hind leg) and in eight human subjects (vastus medialis and vastus lateralis muscles). In the piglet study, we compared our NIRS measurements of the Sv...

  1. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da


    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food. PMID:16395887

  2. Generation and performance of automated jarosite mineral detectors for visible/near-infrared spectrometers at Mars

    Gilmore, Martha S.; Bornstein, Benjamin; Merrill, Matthew D.; Castaño, Rebecca; Greenwood, James P.


    We have developed two automated detectors that can recognize the sulfate mineral jarosite in unknown visible to near-infrared spectra (350-2500 nm). The two detectors are optimized for use within the terrestrial and martian atmospheres. The detectors are built from Support Vector Machines trained using a generative model to create linear mixtures of library mineral spectra. Both detectors performed with an average ˜90% accuracy on laboratory spectra of single minerals and the laboratory and field spectra of rocks collected in a hydrothermal environment. This type of algorithm will contribute to the efficiency of onboard data analysis of landed and orbital visible/near-infrared spectrometers at Mars.

  3. The Development of Novel Near-Infrared (NIR Tetraarylazadipyrromethene Fluorescent Dyes

    Young-Tae Chang


    Full Text Available Novel structures of an near-infrared (NIR tetraarylazadipyrromethene (aza-BODIPY series have been prepared. We designed the core structure containing two amido groups at the para-position of the aromatic rings. The amido group was incorporated to secure insensitivity to pH and to ensure a bathochromic shift to the NIR region. Forty members of aza-BODIPY compounds were synthesized by substitution of the acetyl group with commercial amines on the alpha bromide. The physicochemical properties and photostability were investigated and the fluorescence emission maxima (745~755 nm were found to be in the near infrared (NIR range of fluorescence.

  4. Deep near-infrared observations of W3 Main star forming region

    Ojha, D. K.; Tamura, M.; Nakajima, Y; Fukagawa, M.; Sugitani ,K, Mimura, K, Takeuchi, M, Lepot, K, & Javaux E.J; Nagashima, C.; Nagayama, T.; Nagata, T.; Sato, S.; Pickles, A. J.; Ogura, K.


    We present a deep JHKs-band imaging survey of the W3 Main star forming region, using the near-infrared camera, SIRIUS, mounted on the University of Hawaii 2.2m telescope. The near-infrared survey covers an area of ~ 24 sq. arcmin with 10 sigma limiting magnitudes of ~ 19.0, 18.1, and 17.3 in J, H, and Ks-band, respectively. We construct JHK color-color and J/J-H and K/H-K color-magnitude diagrams to identify young stellar objects and estimate their masses. Based on these color-color and color...

  5. Simultaneous optical and near-infrared linear spectropolarimetry of the earthshine

    Miles-Páez, P. A.; Pallé, E.; Osorio, M. R. Zapatero


    Aims: We aim to extend our current observational understanding of the integrated planet Earth spectropolarimetry from the optical to the near-infrared wavelengths. Major biomarkers like O$_{\\rm 2}$ and water vapor are strong flux absorbents in the Earth atmosphere and some linear polarization of the reflected stellar light is expected to occur at these wavelengths. Methods: Simultaneous optical ($0.4-0.9$ $\\mu$m) and near-infrared ($0.9-2.3$ $\\mu$m) linear spectropolarimetric data of the eart...

  6. Near infrared spectra of galactic and magellanic Wolf-Rayet stars

    The first part of this paper presents near infrared spectra (λ 6150 - λ 10350 Angstroms) of galactic and mainly Magellanic Wolf Rayet Stars. The spectra are compared to the ones published previously in the Catalogue of near infrared spectra of southern galactic WR stars and some peculiarities are pointed out. In the second part, the hydrogen signature in the Paschen series is discussed. For all the galactic and Magellanic objects in which such a signature could be quantified, a value of the H+ / He++ ratio has been derived and compared to previous estimations based on the Balmer series

  7. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Peter L. Choyke; Kobayashi, Hisataka


    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was pro...

  8. Negative refraction in Al:ZnO/ZnO metamaterial in the near-infrared

    Naik, Gururaj V; Kildishev, Alexander V; Shalaev, Vladimir M; Boltasseva, Alexandra


    Noble metals such as gold and silver are the primary metallic building blocks of metamaterial devices. Making subwavelength-sized structural elements from these metals seriously limits the optical performance of a device, however, and complicates the manufacturing process of nearly all metamaterial devices in the optical wavelength range. As an alternative to noble metals, we propose to use heavily-doped oxide semiconductors that offer both functional and fabrication advantages in the near-infrared. In this letter, we report an experimental demonstration of negative refraction in a near-infrared metamaterial device that is designed and fabricated using aluminum-doped zinc oxide.

  9. Near-Infrared Properties of Metal-poor Globular Clusters in the Galactic Bulge Direction

    Chun, S. -H.; Kim, J. -W.; Shin, I. -G.; Chung, C.; Lim, D. -W.; Park, J. -H.; Kim, H. -I.; Han, W.; Sohn, Y. -J.


    Aims. J, H, and K' images obtained from the near-infrared imager CFHTIR on the Canada-France-Hawaii Telescope are used to derive the morphological parameters of the red giant branch (RGB) in the near-infrared color-magnitude diagrams for 12 metal-poor globular clusters in the Galactic bulge direction. Using the compiled data set of the RGB parameters for the observed 12 clusters, in addition to the previously studied 5 clusters, we discuss the properties of the RGB morphology for the clusters...

  10. Large-Area Metasurface Perfect Absorbers from Visible to Near-Infrared.

    Akselrod, Gleb M; Huang, Jiani; Hoang, Thang B; Bowen, Patrick T; Su, Logan; Smith, David R; Mikkelsen, Maiken H


    An absorptive metasurface based on film-coupled colloidal silver nanocubes is demonstrated. The metasurfaces are fabricated using simple dip-coating methods and can be deposited over large areas and on arbitrarily shaped objects. The surfaces show nearly complete absorption, good off-angle performance, and the resonance can be tuned from the visible to the near-infrared. PMID:26549512

  11. Towards a Low-Cost Mobile Subcutaneous Vein Detection Solution Using Near-Infrared Spectroscopy

    Simon Juric


    Full Text Available Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature. The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction.

  12. Visible/near-infrared spectroscopy for discrimination of HLB-infected citrus leaves from healthy leaves

    Researchers have used various hyperspectral systems, covering several areas of the electromagnetic spectrum to investigate all types of disease/plant interactions. The purpose of this research was to investigate using visible and near-infrared (400-1100nm) spectroscopy to differentiate HLB infected...

  13. Silica-porphyrin hybrid nanotubes for in vivo cell tracking by near-infrared fluorescence imaging.

    Hayashi, Koichiro; Nakamura, Michihiro; Ishimura, Kazunori


    Near-infrared fluorescent silica-porphyrin hybrid nanotubes (HNTs) were successfully synthesized by π-π stacking, electrostatic interaction and a sol-gel reaction. The HNTs-labeled macrophages were detected in vivo, and the minimum detectable number of cells was 200. Furthermore, the biodistribution of HNTs-labeled macrophages was tracked by fluorescence imaging. PMID:22437325

  14. Crude Oil Model Emulsion Characterised by means of Near Infrared Spectroscopy and Multivariate Techniques

    Kallevik, H.; Hansen, Susanne Brunsgaard; Sæther, Ø.; Sjöblom, J.; Kvalheim, O. M.


    Water-in-oil emulsions are investigated by means of multivariate analysis of near infrared (NIR) spectroscopic profiles in the range 1100 - 2250 nm. The oil phase is a paraffin-diluted crude oil from the Norwegian Continental Shelf. The influence of water absorption and light scattering of the...


    Luque-Escamilla, Pedro L. [Departamento de Ingeniería Mecánica y Minera, EPSJ, Universidad de Jaén, Campus Las Lagunillas s/n, A3-008, 23071 Jaén (Spain); Martí, Josep [Departamento de Física, EPSJ, Universidad de Jaén, Campus Las Lagunillas s/n, A3-420, 23071 Jaén (Spain); Muñoz-Arjonilla, Álvaro J., E-mail:, E-mail:, E-mail: [Grupo de Investigación FQM-322, Universidad de Jaén, Campus Las Lagunillas s/n, A3-065, 23071 Jaén (Spain)


    We present a new study of the microquasar system GRS 1758–258 in the near-infrared domain based on archival observations with the Hubble Space Telescope and the NICMOS camera. In addition to confirming the near-infrared counterpart pointed out by Muñoz-Arjonilla et al., we show that this object displays significant photometric variability. From its average magnitudes, we also find that GRS 1758–258 fits well within the correlation between the optical/near-infrared and X-ray luminosity known to exist for low-mass, black-hole candidate X-ray binaries in a hard state. Moreover, the spectral energy distribution built using all radio, near-infrared, and X-ray data available closest in time to the NICMOS observations can be reasonably interpreted in terms of a self-absorbed radio jet and an irradiated accretion disk model around a stellar-mass black hole. All these facts match the expected behavior of a compact binary system and strengthen our confidence in the counterpart identification.

  16. The First Maximum-light Ultraviolet through Near-infrared Spectrum of a Type Ia Supernova

    Foley, Ryan J.; Kromer, Markus; Howie Marion, G.;


    We present the first maximum-light ultraviolet (UV) through near-infrared (NIR) Type Ia supernova (SN Ia) spectrum. This spectrum of SN 2011iv was obtained nearly simultaneously by the Hubble Space Telescope at UV/optical wavelengths and the Magellan Baade telescope at NIR wavelengths. These data...

  17. External carotid artery flow maintains near infrared spectroscopy-determined frontal lobe oxygenation during ephedrine administration

    Sørensen, H; Rasmussen, P; Sato, K;


    BACKGROUND: Phenylephrine and ephedrine affect frontal lobe oxygenation ([Formula: see text]) differently when assessed by spatially resolved near infrared spectroscopy. We evaluated the effect of phenylephrine and ephedrine on extra- vs intra-cerebral blood flow and on [Formula: see text]. METHODS...

  18. Intact neurovascular coupling during executive function in migraine without aura: interictal near-infrared spectroscopy study

    Schytz, H W; Ciftçi, K; Akin, A; Ashina, M; Bolay, H


    An altered neurovascular coupling has been proposed in migraine. We aimed to investigate neurovascular coupling during a mental task interictally in patients with migraine without aura (MO) by near-infrared spectroscopy (NIRS). Twelve migraineurs and 12 healthy controls were included. Using NIRS,...

  19. Simultaneous optical and near-infrared linear spectropolarimetry of the earthshine

    Miles-Páez, P A; Osorio, M R Zapatero


    Aims: We aim to extend our current observational understanding of the integrated planet Earth spectropolarimetry from the optical to the near-infrared wavelengths. Major biomarkers like O$_{\\rm 2}$ and water vapor are strong flux absorbents in the Earth atmosphere and some linear polarization of the reflected stellar light is expected to occur at these wavelengths. Methods: Simultaneous optical ($0.4-0.9$ $\\mu$m) and near-infrared ($0.9-2.3$ $\\mu$m) linear spectropolarimetric data of the earthshine were acquired by observing the nightside of the waxing Moon. The data have sufficient spectral resolution (2.51 nm in the optical, and 1.83 and 2.91 nm in the near-infrared) to resolve major molecular species present in the Earth atmosphere. Results: We find the highest values of linear polarization ($\\ge 10\\%$) at the bluest wavelengths, which agrees with the literature. Linear polarization intensity steadily decreases towards red wavelengths reaching a nearly flat value beyond $\\sim$0.8 $\\mu$m. In the near-infrar...

  20. Near-infrared Single-photon-counting Detectors for Free-space Laser Receivers

    Krainak, Michael A.; Sun, Xiaoli; Hasselbrack, William; Wu, Stewart; Waczynski, Augustyn; Miko, Laddawan


    We compare several photon-counting detector technologies for use as near-infrared timeresolved laser receivers in science instrument, communication and navigation systems. The key technologies are InGaAs(P) photocathode hybrid photomultiplier tubes and InGaAs(P) and HgCdTe avalanche photodiodes. We discuss recent experimental results and application.

  1. Optical and near-infrared observations of the GRB 970616 error box

    Gorosabel, J.; Castro-Tirado, A.J.; Pedersen, Henrik;


    We report on near-infrared and optical observations of the GRB 970616 error box and of the X-ray sources discovered by ASCA and ROSAT in the region. No optical transient was found either within the IPN band or in the X-ray error boxes, similarly to other bursts, and we suggest that either...

  2. Huanglongbing (Citrus Greening Detection Using Visible, Near Infrared and Thermal Imaging Techniques

    Reza Ehsani


    Full Text Available This study demonstrates the applicability of visible-near infrared and thermal imaging for detection of Huanglongbing (HLB disease in citrus trees. Visible-near infrared (440–900 nm and thermal infrared spectral reflectance data were collected from individual healthy and HLB-infected trees. Data analysis revealed that the average reflectance values of the healthy trees in the visible region were lower than those in the near infrared region, while the opposite was the case for HLB-infected trees. Moreover, 560 nm, 710 nm, and thermal band showed maximum class separability between healthy and HLB-infected groups among the evaluated visible-infrared bands. Similarly, analysis of several vegetation indices indicated that the normalized difference vegetation index (NDVI, Vogelmann red-edge index (VOG and modified red-edge simple ratio (mSR demonstrated good class separability between the two groups. Classification studies using average spectral reflectance values from the visible, near infrared, and thermal bands (13 spectral features as input features indicated that an average overall classification accuracy of about 87%, with 89% specificity and 85% sensitivity could be achieved with classification models such as support vector machine for trees with symptomatic leaves.

  3. Quantitative analysis of melamine in milk powders using near-infrared hyperspectral imaging and band ratio

    Since 2008, the detection of the adulterant melamine (2,4,6-triamino-1,3,5-triazine) in food products has become the subject of research due to several food safety scares. Near-infrared (NIR) hyperspectral imaging offers great potential for food safety and quality research because it combines the fe...

  4. Targeted and Untargeted Detection of Skim Milk Powder Adulteration by Near-Infrared Spectroscopy

    Capuano, Edoardo; Boerrigter-Eenling, Rita; Koot, Alex; Ruth, van S.M.


    In the present study, near-infrared spectroscopy (NIRS) was explored as a fast and reliable screening method for the detection of adulteration of skim milk powder (SMP). Sixty genuine SMP were adulterated with acid whey (1–25 % w/w), starch (2 and 5 %) and maltodextrin (2 and 5 %) for a total of

  5. Use of visible and near-infrared spectroscopy to predict pork longissimus lean color stability

    This study evaluated using visible and near-infrared (VIS/NIR) spectroscopy to predict lean color stability in pork loin chops. Spectra were collected immediately following and approximately 1 h after rib removal from 1,208 loins. Loins were aged for 14 d before a 2.54-cm chop was placed in simula...

  6. Spectral reflectance from plant canopies and optimum spectral channels in the near infrared

    Allen, W. A.; Gausman, H. W.; Wiegand, C. L.


    Theoretical and experimental aspects of the interaction of light with a typical plant canopy are considered. Both theoretical and experimental results are used to establish optimum electromagnetic wavelength channels for remote sensing in agriculture. The spectral range considered includes half of the visible and much of the near-infrared regions.

  7. Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine

    Sørensen, Niels Henrik Breiner; Secher, Niels H; Siebenmann, Christoph;


    Perioperative optimization of spatially resolved near-infrared spectroscopy determined cerebral frontal lobe oxygenation (scO2) may reduce postoperative morbidity. Norepinephrine is routinely administered to maintain cerebral perfusion pressure and, thereby, cerebral blood flow, but norepinephrine...... reduces the scO2. We hypothesized that norepinephrine-induced reduction in scO2 is influenced by cutaneous vasoconstriction....

  8. Design of a solid state laser for low noise upconversion detection of near infrared light

    Høgstedt, Lasse; Tidemand-Lichtenberg, Peter; Pedersen, Christian


    To maximize signal-to-noise ratio for upconversion of near-infrared light we show that the mixing intensity should be 3 GW/m2. With emphasis on the noise contribution from random duty-cycle errors the optimum design parameters is discussed....

  9. Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy:A review

    Pei Wang; Zhiguo Yu


    Near infrared (NIR) spectroscopy as a rapid and nondestructive analytical technique, integrated with chemometrics, is a powerful process analytical tool for the pharmaceutical industry and is becoming an attractive complementary technique for herbal medicine analysis. This review mainly focuses on the recent applications of NIR spectroscopy in species authentication of herbal medicines and their geo-graphical origin discrimination.

  10. Investigation of vegetation history of buried chernozem soils using near-infrared spectroscopy (NIRS)

    Vysloužilová, B.; Ertlen, D.; Šefrna, L.; Novák, T.; Virágh, K.; Rué, M.; Campaner, A.; Dreslerová, Dagmar; Schwartz, D.


    Roč. 365, 16 April (2015), s. 203-211. ISSN 1040-6182 Institutional support: RVO:67985912 Keywords : Holocene * paleopedology * paleoecology * near-infrared spectroscopy * chernozem * buried paleosol Subject RIV: DF - Soil Science Impact factor: 2.062, year: 2014

  11. Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths

    Garcia, Cesar; Coello, Victor; Han, Zhanghua;


    Dielectric-loaded plasmonic waveguide-racetrack resonators (WRTRs) were designed and fabricated for operating at near-infrared wavelengths (750–850 nm) and characterized using leakage-radiation microscopy. The transmission spectra of the WRTRs are found experimentally and compared to the calculat...

  12. Authentication of Organic Feed by Near-Infrared Spectroscopy Combined with Chemometrics A Feasibilily Study

    Tres, A.; Veer, van der J.C.; Perez-Marin, M.D.; Ruth, van S.M.; Garrido-Varo, A.


    Organic products tend to retail at a higher price than their conventional counterparts, which makes them susceptible to fraud. In this study we evaluate the application of near-infrared spectroscopy (NIRS) as a rapid, cost-effective method to verify the organic identity of feed for laying hens. For

  13. A highly sensitive near-infrared luminescent metal-organic framework thermometer in the physiological range.

    Zhao, Dian; Zhang, Jun; Yue, Dan; Lian, Xiusheng; Cui, Yuanjing; Yang, Yu; Qian, Guodong


    A near-infrared luminescent metal-organic framework Nd0.866Yb0.134BTB was developed as a self-calibrated thermometer in the physiological range. Its features include high sensitivity and resolution, and good biocompatibility, making such a material useful for biomedical applications. PMID:27284589

  14. Is near-infrared spectroscopy clinically useful in the preterm infant?

    da Costa, Cristine Sortica; Greisen, Gorm; Austin, Topun


    Near-infrared spectroscopy (NIRS) has been used to study cerebral haemodynamics and oxygenation in the preterm infant for many years, but its use as a clinical tool has remained elusive. This has partly been due to the challenges of providing a continuous quantitative measurement that is valid an...

  15. Feasibility of noninvasive near-infrared spectroscopy to diagnose detrusor overactivity

    Farag, F.; Martens, F.M.J.; Feitz, W.F.J.; Heesakkers, J.P.F.A.


    Introduction: Near-infrared spectroscopy (NIRS) is an optical technology able to detect the hemodynamic changes in biological tissues. Our objective was to determine the feasibility of applying NIRS in the noninvasive diagnosis of detrusor overactivity (DO). Patients and Methods: Comparative analysi

  16. A near-infrared study of thermally induced structural changes in polyethylene crystal

    Watanabe, S.; Dybal, Jiří; Tashiro, K.; Ozaki, Y.


    Roč. 47, č. 6 (2006), s. 2010-2017. ISSN 0032-3861 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyethylene * near-infrared * phase transition Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.773, year: 2006

  17. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars

    Ajiki, Yoshiharu; Kan, Tetsuo; Yahiro, Masayuki; Hamada, Akiko; Adachi, Junji; Adachi, Chihaya; Matsumoto, Kiyoshi; Shimoyama, Isao


    We propose a silicon (Si) based near-infrared photodetector using self-assembled organic crystalline nano-pillars, which were formed on an n-type Si substrate and were covered with an Au thin-film. These structures act as antennas for near-infrared light, resulting in an enhancement of the light absorption on the Au film. Because the Schottky junction is formed between the Au/n-type Si, the electron excited by the absorbed light can be detected as photocurrent. The optical measurement revealed that the nano-pillar structures enhanced the responsivity for the near-infrared light by 89 (14.5 mA/W) and 16 (0.433 mA/W) times compared with those of the photodetector without nano-pillars at the wavelengths of 1.2 and 1.3 μm, respectively. Moreover, no polarization dependency of the responsivity was observed, and the acceptable incident angle ranged from 0° to 30°. These broad responses were likely to be due to the organic nano-pillar structures' having variation in their orientation, which is advantageous for near-infrared detector uses.

  18. Progress toward red and near-infrared (NIR) emitting saccharide sensors*

    Sibrian-Vazquez, Martha; Escobedo, Jorge O.; Lowry, Mark; Strongin, Robert M.


    Red-shifted and near-infrared (NIR)-active rhodamine analogs and their boronic acid derivatives were synthesized and studied. These latter compounds function as fluorogenic NIR active substrates for sugar sensing. The effects of benzannulation and boronic acid functionalization on fluorophore optical and sensing properties are described.

  19. Main-belt asteroids with WISE/NEOWISE: Near-infrared albedos

    We present revised near-infrared albedo fits of 2835 main-belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. Because our sample requires reflected light measurements, it undersamples small, low-albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the main belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 μm. Conversely, the 4.6 μm albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 μm albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 μm albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are important indicators of asteroid taxonomy and can identify interesting targets for spectroscopic follow-up.

  20. [The research progress in determining lignocellulosic content by near infrared reflectance spectroscopy technology].

    Du, Juan; An, Dong; Xia, Tian; Huang, Yan-Hua; Li, Hong-Chao; Zhang, Yun-Wei


    Near infrared reflectance spectroscopy technology, as a new analytic method, can be used to determine the content of lignin, cellulose and hemi-cellulose which is faster, effective, easier to operate, and more accurate than the traditional wet chemical methods. Nowadays it has been widely used in measuring the composition of lignocelluloses in woody plant and herbaceous plant. The domestic and foreign research progress in determining the lignin, cellulose and hemi-cellulose content in woody plant ( wood and bamboo used as papermaking raw materials and wood served as potential biomass energy) and herbaceous plant (forage grass and energy grass) by near infrared reflectance spectroscopy technology is comprehensively summarized and the advances in method studies of measuring the composition of lignocelluloses by near infrared reflectance spectroscopy technology are summed up in three aspects, sample preparation, spectral data pretreatment and wavelength selection methods, and chemometric analysis respectively. Four outlooks are proposed combining the development statues of wood, forage grass and energy grass industry. First of all, the authors need to establish more feasible and applicable models for a variety of uses which can be used for more species from different areas, periods and anatomical parts. Secondly, comprehensive near infrared reflectance spectroscopy data base of grass products quality index needs to be improved to realize on-line quality and process control in grassproducts industry, which can guarantee the quality of the grass product. Thirdly, the near infrared reflectance spectroscopy quality index model of energy plant need to be built which can not only contribute to breed screening, but also improve the development of biomass industry. Besides, modeling approaches are required to be explored and perfected any further. Finally, the authors need to try our best to boost the advancement in the determination method of lignin, cellulose and hemi

  1. Near-infrared hyperspectral imaging: the road traveled to a clinical burn application

    Levasseur, Michelle; Leonardi, Lorenzo; Payette, Jeri; Kohlenberg, Elicia; Sowa, Michael; Fish, Joel S.; Cross, Karen; Gomez, Manuel


    The process of taking a concept to a clinical device begins with the idea for a technological solution to an unmet clinical challenge. Burns are one of the most destructive insults to the skin causing damage, scarring, and in some cases death. The approach most commonly used to evaluate burns is based on the appearance of the wound. This technique is somewhat subjective and unreliable, relying on clinical experience to assess the burn. Instrument based diagnostic techniques as an adjunct to current practices has the potential to enhance the quality and timeliness of decisions concerning wound assessment and treatment. Near Infrared Spectroscopy is a promising technique that can track changes within the tissue, and can therefore provide insight as to how deep the burn actually penetrates before visual signs become apparent. Preliminary bench and animal studies were used to prove the concept of a near infrared based method of burn assessment. This study demonstrated the ability of near infrared imaging to detect and monitor the hemodynamics of burn injuries in the early post-burn period. Based on this study, a pre-prototype near infrared spectroscopic system was built with the goal of developing a reliable yet simple system that could be used in a clinical setting. A pilot clinical study was designed and implemented at the Ross Tilley Burn Center (Toronto, Canada) in order to assess the feasibility of our strategy in the clinical realm. The goal of this preliminary clinical study was to determine if the pre-prototype could be integrated into the strict regiment of an active burn centre. Both the instrument performance in a clinical setting and the injury assessment based on the analysis of near infrared reflectance measurements were a success.

  2. Slow light enhanced near infrared luminescence in CeO2: Er3+, Yb3+ inverse opal photonic crystals

    Highlights: • CeO2: Er3+, Yb3+ photonic crystals was prepared. • Near infrared emission in the CeO2: Er3+, Yb3+ inverse opal was obtained. • Near infrared emission was enhanced by slow light effect of photonic crystals. - Abstract: The surface plasmon resonances of metal nanoparticles and energy transfer between rare earth ions were used widely to enhance the near infrared emission of rare earth ions. In this paper, a new method for near infrared emission enhancement of rare-earth is reported. The CeO2: Er3+, Yb3+ inverse opals with the photonic band gaps at the 500 and 450 nm were prepared by using polystyrene colloidal crystal as templates, and their near infrared emission properties were investigated. The results show that the near infrared emission property of the CeO2: Er3+, Yb3+ inverse opals depends on the overlapped extend between the excited light and photonic band gap. The near infrared emission located at the 1540 nm of the CeO2: Er3+, Yb3+ inverse opals have been enhanced obviously when the wavelength of the excitation light overlapped with photonic band gaps edge, which is attributed to the slow light effect of photonic crystals. The enhancement of near infrared emission may be important for the development of infrared laser and amplifiers for optical communication

  3. Absorption and electrochromic modulation of near-infrared light: realized by tungsten suboxide

    Li, Guilian; Zhang, Shouhao; Guo, Chongshen; Liu, Shaoqin


    In the present study, needle-like tungsten suboxide W18O49 nanocrystals were fabricated as the optical active substance to realize the aim of optical control of near-infrared light. The W18O49 nanocrystals were selected in this regard due to their unique optical performance. As revealed by the powder absorption result, the needle-like W18O49 nanocrystals show strong and wide photoabsorption in the entire near infrared region of 780-2500 nm, from which thin films with the W18O49 nanocrystal coating thus benefits and can strongly shield off almost all near infrared irradiation, whereas transmitting the majority of visible light. To make it more tunable, the W18O49 nanocrystals were finally assembled onto an ITO glass via the layer-by-layer strategy for later electrochromic investigation. The nanostructured architectures of the W18O49 nanocrystal electrochromic films exhibit high contrast, faster switching response, higher coloration efficiencies (150 cm2 C-1 at 650 nm and 255 cm2 C-1 at 1300 nm), better long-term redox switching stability (reversibility of 98% after 500 cycles) and wide electrochromic spectrum coverage of both the visible and infrared regions.In the present study, needle-like tungsten suboxide W18O49 nanocrystals were fabricated as the optical active substance to realize the aim of optical control of near-infrared light. The W18O49 nanocrystals were selected in this regard due to their unique optical performance. As revealed by the powder absorption result, the needle-like W18O49 nanocrystals show strong and wide photoabsorption in the entire near infrared region of 780-2500 nm, from which thin films with the W18O49 nanocrystal coating thus benefits and can strongly shield off almost all near infrared irradiation, whereas transmitting the majority of visible light. To make it more tunable, the W18O49 nanocrystals were finally assembled onto an ITO glass via the layer-by-layer strategy for later electrochromic investigation. The nanostructured


    We performed a near-infrared spectroscopic survey toward an area of ∼10 deg2 of the Large Magellanic Cloud (LMC) with the infrared satellite AKARI. Observations were carried out as part of the AKARI Large-area Survey of the Large Magellanic Cloud (LSLMC). The slitless multi-object spectroscopic capability of the AKARI/IRC enabled us to obtain low-resolution (R ∼ 20) spectra in 2-5 μm for a large number of point sources in the LMC. As a result of the survey, we extracted about 2000 infrared spectra of point sources. The data are organized as a near-infrared spectroscopic catalog. The catalog includes various infrared objects such as young stellar objects (YSOs), asymptotic giant branch (AGB) stars, supergiants, and so on. It is shown that 97% of the catalog sources have corresponding photometric data in the wavelength range from 1.2 to 11 μm, and 67% of the sources also have photometric data up to 24 μm. The catalog allows us to investigate near-infrared spectral features of sources by comparison with their infrared spectral energy distributions. In addition, it is estimated that about 10% of the catalog sources are observed at more than two different epochs. This enables us to study a spectroscopic variability of sources by using the present catalog. Initial results of source classifications for the LSLMC samples are presented. We classified 659 LSLMC spectra based on their near-infrared spectral features by visual inspection. As a result, it is shown that the present catalog includes 7 YSOs, 160 C-rich AGBs, 8 C-rich AGB candidates, 85 O-rich AGBs, 122 blue and yellow supergiants, 150 red super giants, and 128 unclassified sources. Distributions of the classified sources on the color-color and color-magnitude diagrams are discussed in the text. Continuous wavelength coverage and high spectroscopic sensitivity in 2-5 μm can only be achieved by space observations. This is an unprecedented large-scale spectroscopic survey toward the LMC in the near-infrared

  5. Double ionization of helium by intense near-infrared and VUV laser pulses

    We investigate the dynamics of double ionization of He atom by an intense near-infrared and an attosecond vacuum ultraviolet (VUV) laser pulse, which are either applied in sequence or at the same time. To this end we solve the time-dependent Schroedinger equation for a two-electron model atom interacting with the two fields. We compare the double-ionization yields and probability density distributions, with and without the application of the attosecond pulse, for the different scenarios. The results of our numerical simulations show how ionization or excitation of the neutral atom by a preceding or simultaneously applied VUV pulse affects the double-ionization dynamics driven by the near-infrared laser pulse. The findings provide insights regarding the question if attosecond technology can be used to temporally resolve mechanisms of correlated emission of electrons in a strong laser field.

  6. Concurrent Application of TMS and Near-infrared Optical Imaging: Methodological Considerations and Potential Artifacts

    Nathan A Parks


    Full Text Available The simultaneous application of transcranial magnetic stimulation (TMS with non-invasive neuroimaging provides a powerful method for investigating functional connectivity in the human brain and the causal relationships between areas in distributed brain networks. TMS has been combined with numerous neuroimaging techniques including, electroencephalography (EEG, functional magnetic resonance imaging (fMRI, and positron emission tomography (PET. Recent work has also demonstrated the feasibility and utility of combining TMS with non-invasive near-infrared optical imaging techniques, functional near-infrared spectroscopy (fNIRS and the event-related optical signal (EROS. Simultaneous TMS and optical imaging affords a number of advantages over other neuroimaging methods but also involves a unique set of methodological challenges and considerations. This paper describes the methodology of concurrently performing optical imaging during the administration of TMS, focusing on experimental design, potential artifacts, and approaches to controlling for these artifacts.

  7. Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data

    Selb, Juliette; Yücel, Meryem A; Phillip, Dorte;


    Functional near-infrared spectroscopy is prone to contamination by motion artifacts (MAs). Motion correction algorithms have previously been proposed and their respective performance compared for evoked rain activation studies. We study instead the effect of MAs on "oscillation" data which is at...... the basis of functional connectivity and autoregulation studies. We use as our metric of interest the interhemispheric correlation (IHC), the correlation coefficient between symmetrical time series of oxyhemoglobin oscillations. We show that increased motion content results in a decreased IHC. Using a...... in the frequency band around 0.1 and 0.04 Hz, suggesting a physiological origin for the difference. We emphasize the importance of considering MAs as a confounding factor in oscillation-based functional near-infrared spectroscopy studies....

  8. Room-temperature near-infrared silicon carbide nanocrystalline emitters based on optically aligned spin defects

    Bulk silicon carbide (SiC) is a very promising material system for bio-applications and quantum sensing. However, its optical activity lies beyond the near infrared spectral window for in-vivo imaging and fiber communications due to a large forbidden energy gap. Here, we report the fabrication of SiC nanocrystals and isolation of different nanocrystal fractions ranged from 600 nm down to 60 nm in size. The structural analysis reveals further fragmentation of the smallest nanocrystals into ca. 10-nm-size clusters of high crystalline quality, separated by amorphization areas. We use neutron irradiation to create silicon vacancies, demonstrating near infrared photoluminescence. Finally, we detect room-temperature spin resonances of these silicon vacancies hosted in SiC nanocrystals. This opens intriguing perspectives to use them not only as in-vivo luminescent markers but also as magnetic field and temperature sensors, allowing for monitoring various physical, chemical, and biological processes

  9. Near-infrared imaging survey of faint companions around young dwarfs in the Pleiades cluster

    Yoichi Itoh; Yumiko Oasa; Hitoshi Funayama; Masahiko Hayashi; Misato Fukagawa; Toshio Hashiguchi; Thayne Currie


    We conducted a near-infrared imaging survey of 11 young dwarfs in the Pleiades cluster using the Subaru Telescope and the near-infrared coronagraph imager.We found ten faint point sources, with magnitudes as faint as 20 mag in the K-band,with around seven dwarfs. Comparison with the Spitzer archive images revealed that a pair of the faint sources around V 1171 Tau is very red in infrared wavelengths, which indicates very low-mass young stellar objects. However, the results of our follow-up proper motion measurements implied that the central star and the faint sources do not share common proper motions, suggesting that they are not physically associated.

  10. A near-infrared SETI experiment: probability distribution of false coincidences

    Maire, Jérôme; Werthimer, Dan; Treffers, Richard R; Marcy, Geoffrey W; Stone, Remington P S; Drake, Frank; Siemion, Andrew


    A Search for Extraterrestrial Life (SETI), based on the possibility of interstellar communication via laser signals, is being designed to extend the search into the near-infrared spectral region (Wright et al, this conference). The dedicated near-infrared (900 to 1700 nm) instrument takes advantage of a new generation of avalanche photodiodes (APD), based on internal discrete amplification. These discrete APD (DAPD) detectors have a high speed response ($>$ 1 GHz) and gain comparable to photomultiplier tubes, while also achieving significantly lower noise than previous APDs. We are investigating the use of DAPD detectors in this new astronomical instrument for a SETI search and transient source observations. We investigated experimentally the advantages of using a multiple detector device operating in parallel to remove spurious signals. We present the detector characterization and performance of the instrument in terms of false positive detection rates both theoretically and empirically through lab measureme...