WorldWideScience

Sample records for candidate superheater tube

  1. Simulasi Thermal Stress Pada Tube Superheater Package Boiler

    OpenAIRE

    Hamdani

    2013-01-01

    This project investigates the thermal stress behavior and the mechanisms of superheater tube failure with experimental method and numerical analysis. First of all the procedures for failure analysis were applied to determine the root cause of them. A visual assessment of boiler critical pressure parts was carried out, and then the failed tube is examined by nondestructive evaluation. For the numerical domain, initially the elastic solution for a superheater tube subjected to an internal press...

  2. Non-contact Measurement of Remaining Thickness of Corroding Superheater Tubes. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Borggreen, Kjeld; Storesund, Jan

    2007-12-15

    The Electro Magnetic Acoustic Transducer (EMAT) is a contactless thickness gauge for detection of corrosion on superheater tubes; it candidates as substitute for conventional manually operated contact UT transducers. It is the aim of the project to demonstrate the usefulness of two simple EMAT systems, Panametrics and Sonatest, for fast and reliable tube thickness inspections in difficult-to-access superheater sections. The present Phase 2 of the project involves testing of the systems on real compact superheaters in remote operation with the help of a mechanical manipulator designed and built for the purpose. The results are the following: - Both EMAT systems work well when tested in the field during handheld operation on tubes with a moderate thick layer of corrosion products and ash. The practical obtainable speed of cross-panel inspection of easily accessible panels is approximately 6 tubes per minute (6 thickness readings per minute). - The Sonatest system works well when tested in the field during remote operation on heavily corroded superheater tubes with thick ash layer. The Panametrics system was not found suitable for this type of field work. - The mechanical manipulator works well for cross-panel inspection of difficult-to-access superheater sections independent of the tube dimensions and the free space between the panels. In its present design it needs few improvements. - The practical obtainable speed of cross-panel inspection is 3 tubes per minute (3 thickness readings per minute). This speed is limited by the detection rate of the EMAT system and not by the travelling speed of the probe. - Scanning of tubes along their axis was never attempted, because the EMAT instruments were not capable of collecting data coming as a continuous stream. - It cannot be judged from visual alone and hardly from the service data, if a tube or a panel can be inspected by the magnetostrictive EMAT method or not. - The main contribution to failure of the EMAT inspection

  3. Analysis of temperature and stress distribution of superheater tubes after attemperation or sootblower activation

    International Nuclear Information System (INIS)

    Madejski, Paweł; Taler, Dawid

    2013-01-01

    Highlights: • The CFD simulation was used to calculate 3D steam and tube wall temperature distributions in the platen superheater. • The CFD results can be used in design of superheaters made of tubes with complex cross-section. • The CFD analysis enables the proper selection of the steel grade. • The transient temperature and stress distributions were calculated using Finite Volume Method. • The detailed analysis prevents superheater tubes from excessive stresses during sootblower or attemperator activation. - Abstract: Superheaters are characterized by high metal temperatures due to higher steam temperature and low heat transfer coefficients on the tube inner surfaces. Superheaters have especially difficult operating conditions, particularly during attemperator and sootblower activations, when temperature and steam flow rate as well as tube wall temperature change with time. A detailed thermo-mechanical analysis of the superheater tubes makes it possible to identify the cause of premature high-temperature failures and aids greatly in the changes in tubing arrangement and improving start-up technology. This paper presents a thermal and strength analysis of a tube “double omega”, used in the steam superheaters in CFB boilers

  4. High-Temperature Graphitization Failure of Primary Superheater Tube

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Roy, H.; Mandal, N.; Shukla, A. K.

    2015-12-01

    Failure of boiler tubes is the main cause of unit outages of the plant, which further affects the reliability, availability and safety of the unit. So failure analysis of boiler tubes is absolutely essential to predict the root cause of the failure and the steps are taken for future remedial action to prevent the failure in near future. This paper investigates the probable cause/causes of failure of the primary superheater tube in a thermal power plant boiler. Visual inspection, dimensional measurement, chemical analysis, metallographic examination and hardness measurement are conducted as the part of the investigative studies. Apart from these tests, mechanical testing and fractographic analysis are also conducted as supplements. Finally, it is concluded that the superheater tube is failed due to graphitization for prolonged exposure of the tube at higher temperature.

  5. Non-contact Measurement of Remaining Thickness of Corroding Superheater Tubes. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Borggreen, Kjeld; Storesund, Jan

    2006-10-15

    Corrosion of superheaters has become a severe problem in many biomass boilers and incineration plants. This new situation calls for frequent tube wall thickness testing of the superheaters during very short shut-downs. To meet this demand Electro Magnetic Acoustic Transducer (EMAT) candidates as substitute for conventional manually operated contact UT-transducers. The EMAT can contactlessly generate an ultrasonic wave in the interphase between the external oxide and the metal. This means that measurements can be undertaken much quicker and with a much higher coverage simultaneously, without preceding blast operations. It is the aim of the project to demonstrate the usefulness of two simple EMAT systems, Panametrics and Sonatest, for fast and reliable tube thickness inspections in difficult-to-access superheater sections. The present Phase 1 of the project involves testing of the performance of the two systems in laboratory with the following results: 1. Both instruments work well on plate, tube, and pipe samples assuming the presence of an external oxide layer formed at a temperature above approximately 400 deg C. 2. Both instruments work well on all types of ferritic and martensitic steels but not on austenitic steels. 3. Both instruments work well independent of the thickness of the active oxide layer. 4. Both instruments work well independent of tube diameter, wall thickness, and sample width. 5. Both instruments work well over a very large range of wall thicknesses. Minimum tube wall thickness is less than 1.8 mm. 6. The tolerable lift-off (free distance between transducer and tube surface) is 2.4 - 3.0 mm for Panametrics system and 3.6 - 4.8 mm for Sonatest's system. The tolerable lift-off is a measure of the thickness of ash deposits, which can be tolerated on the tube surface as well as the misplacement, which can be tolerated in case of remote tube testing. 7. The tolerable off-set between tube axis and probe axis is very large for both instruments (10

  6. Phase Identification and Internal Stress Analysis of Steamside Oxides on Plant Exposed Superheater Tubes

    DEFF Research Database (Denmark)

    Pantleon, Karen; Montgomery, Melanie

    2012-01-01

    During long-term, high-temperature exposure of superheater tubes in thermal power plants, various oxides are formed on the inner side (steamside) of the tubes, and oxide spallation is a serious problem for the power plant industry. Most often, oxidation in a steam atmosphere is investigated...... in laboratory experiments just mimicking the actual conditions in the power plant for simplified samples. On real plant-exposed superheater tubes, the steamside oxides are solely investigated microscopically. The feasibility of X-ray diffraction for the characterization of steamside oxidation on real plant......-exposed superheater tubes was proven in the current work; the challenges for depth-resolved phase analysis and phase-specific residual stress analysis at the inner side of the tubes with concave surface curvature are discussed. Essential differences between the steamside oxides formed on two different steels...

  7. Lifetime evaluation of superheater tubes exposed to steam oxidation, high temperature corrosion and creep

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, N [Elsamprojekt A/S, Faelleskemikerne, Fredericia (Denmark); Hede Larsen, O; Blum, R [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark)

    1996-12-01

    Advanced fossil fired plants operating at high steam temperatures require careful design of the superheaters. The German TRD design code normally used in Denmark is not precise enough for the design of superheaters with long lifetimes. The authors have developed a computer program to be used in the evaluation of superheater tube lifetime based on input related to tube dimensions, material, pressure, steam temperature, mass flux, heat flux and estimated corrosion rates. The program is described in the paper. As far as practically feasible, the model seems to give a true picture of the reality. For superheaters exposed to high heat fluxes or low internal heat transfer coefficients as is the case for superheaters located in fluidized bed environments or radiant environments, the program has been extremely useful for evaluation of surface temperature, oxide formation and lifetime. The total uncertainty of the method is mainly influenced by the uncertainty of the determination of the corrosion rate. More precise models describing the corrosion rate as a function of tube surface temperature, fuel parameters and boiler parameters need to be developed. (au) 21 refs.

  8. Thermomechanical CSM analysis of a superheater tube in transient state

    Science.gov (United States)

    Taler, Dawid; Madejski, Paweł

    2011-12-01

    The paper presents a thermomechanical computational solid mechanics analysis (CSM) of a pipe "double omega", used in the steam superheaters in circulating fluidized bed (CFB) boilers. The complex cross-section shape of the "double omega" tubes requires more precise analysis in order to prevent from failure as a result of the excessive temperature and thermal stresses. The results have been obtained using the finite volume method for transient state of superheater. The calculation was carried out for the section of pipe made of low-alloy steel.

  9. Overheating failure of superheater suspension tubes of a captive thermal power plant boiler

    International Nuclear Information System (INIS)

    Bhattacharya, Sova; Amir, Q.M.; Kannan, C.; Mahapatra, S.B.

    2000-01-01

    Failure of boiler tubes is the foremost cause of forced boiler outages. One of the predominant failure mechanism of boiler tubes is the stress rupture failure in the form of either short term overheating or long term overheating which are normally encountered in superheater and reheater sections working in the creep range. The strength of the boiler tube depends on the stress level as well on the temperature of exposure in the creep range. An increase in either can reduce the time to rupture. Time at the exposure temperature is an important factor based on which the failures are categorised as either short term or long term. Though there is no established time duration criteria demarcating the short or long term stress rupture failures, depending on the various manifestations on the failed samples, one can categorise the failure. This paper addresses one such stress rupture failure in the superheater section of a captive thermal power plant of a refinery. Multiple failures on the suspension coil of a superheater section was investigated for the cause of failure. Laboratory investigation of the failed sample involved visual inspection, dimensional measurements, chemical analysis of internal deposits and microstructural study. On the basis of these, the failure was attributed to deposition of trisodium phosphate carried over by the feed water into the superheater section resulting in chokage and increase in local operating hoop stresses of the tube. The ultimate failure was thus categorised as long term overheating failure. (author)

  10. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Seitz, W.W. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1997-12-01

    In Phase 1 a variety of developmental and commercial tubing alloys and claddings were exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347 RA-85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 Ta modified, NF 709, 690 clad, and 671 clad for approximately 4,000, 12,000, and 16,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were assembled on an air-cooled, retractable corrosion probe, the probe was installed in the reheater activity of the boiler and controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. The results will be presented for the preliminary metallurgical examination of the corrosion probe samples after 16,000 hours of exposure. Continued metallurgical and interpretive analysis is still on going.

  11. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1996-08-01

    In Phase 1 of this project, a variety of developmental and commercial tubing alloys and claddings was exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF 709, 690 clad, and 671 clad for over 10,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy are being exposed for 4,000, 12,000, and 16,000 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after approximately 4,400 hours of exposure.

  12. Superheater Corrosion In Biomass Boilers: Today's Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, William (Sandy) [SharpConsultant

    2011-12-01

    This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, and creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through

  13. Premature failure of dissimilar metal weld joint at intermediate temperature superheater tube

    OpenAIRE

    Al Hajri, Mohammed; Malik, Anees U.; Meroufel, Abdelkader; Al-Muaili, Fahd

    2015-01-01

    Dissimilar metal weld (DMW) joint between alloyed steel (AS) and stainless steel (SS) failed at one of intermediate temperature superheater (ITSH) tube in steam/power generation plant boiler. The premature failure was detected after a relatively short time of operation (8 years) where the crack propagated circumferentially from AS side through the ITSH tube. Apart from physical examination, microstructural studies based on optical microscopy, SEM and EDX analysis were performed. The results o...

  14. Stress corrosion cracking in superheater and reheater austenitic tubing

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, R. Barry [Structural Integrity Associates, Inc., Charlotte, NC (United States); Bursik, Albert [PowerPlant Chemistry GmbH, Neulussheim (Germany)

    2011-02-15

    University 101 courses are typically designed to help incoming first-year undergraduate students to adjust to the university, develop a better understanding of the college environment, and acquire essential academic success skills. Why are we offering a special Boiler and HRSG Tube Failures PPChem 101? The answer is simple, yet very conclusive: - There is a lack of knowledge on the identification of tube failure mechanisms and for the implementation of adequate counteractions in many power plants, particularly at industrial power and steam generators. - There is a lack of knowledge to prevent repeat tube failures. The vast majority of BTF/HTF have been, and continue to be, repeat failures. It is hoped that the information about the failure mechanisms of BTF supplied in this course will help to put plant engineers and chemists on the right track. The major goal of this course is the avoidance of repeat BTF. This eights lesson is focused on Stress Corrosion Cracking in Superheater and Reheater Austenitic Tubing. (orig.)

  15. Soft Sensor for Oxide Scales on the Steam Side of Superheater Tubes under Uneven Circumferential Load

    Directory of Open Access Journals (Sweden)

    Qing Wei Li

    2015-01-01

    Full Text Available A soft sensor for oxide scales on the steam side of superheater tubes of utility boiler under uneven circumferential loading is proposed for the first time. First finite volume method is employed to simulate oxide scales growth temperature on the steam side of superheater tube. Then appropriate time and spatial intervals are selected to calculate oxide scales thickness along the circumferential direction. On the basis of the oxide scale thickness, the stress of oxide scales is calculated by the finite element method. At last, the oxide scale thickness and stress sensors are established on support vector machine (SMV optimized by particle swarm optimization (PSO with time and circumferential angles as inputs and oxide scale thickness and stress as outputs. Temperature and stress calculation methods are validated by the operation data and experimental data, respectively. The soft sensor is applied to the superheater tubes of some power plant. Results show that the soft sensor can give enough accurate results for oxide scale thickness and stress in reasonable time. The forecasting model provides a convenient way for the research of the oxide scale failure.

  16. Thermal load non-uniformity estimation for superheater tube bundle damage evaluation

    Directory of Open Access Journals (Sweden)

    Naď Martin

    2018-01-01

    Full Text Available Industrial boiler damage is a common phenomenon encountered in boiler operation which usually lasts several decades. Since boiler shutdown may be required because of localized failures, it is crucial to predict the most vulnerable parts. If damage occurs, it is necessary to perform root cause analysis and devise corrective measures (repairs, design modifications, etc.. Boiler tube bundles, such as those in superheaters, preheaters and reheaters, are the most exposed and often the most damaged boiler parts. Both short-term and long-term overheating are common causes of tube failures. In these cases, the design temperatures are exceeded, which often results in decrease of remaining creep life. Advanced models for damage evaluation require temperature history, which is available only in rare cases when it has been measured and recorded for the whole service life. However, in most cases it is necessary to estimate the temperature history from available operation history data (inlet and outlet pressures and temperatures etc.. The task may be very challenging because of the combination of complex flow behaviour in the flue gas domain and heat transfer phenomena. This paper focuses on estimating thermal load non-uniformity on superheater tubes via Computational Fluid Dynamics (CFD simulation of flue gas flow including heat transfer within the domain consisting of a furnace and a part of the first stage of the boiler.

  17. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Seitz, W.W.; Girshik, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1998-06-01

    In Phase 1 of this project, laboratory experiments were performed on a variety of developmental and commercial tubing alloys and claddings by exposing them to fireside corrosion tests which simulated a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, RA253MA, Fe{sub 3}Al + 5Cr, Ta-modified 310, NF 709, 690 clad, 671 clad, and 800HT for up to approximately 16,000 hours to the actual operating conditions of a 250-MW, coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, and controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy were exposed for 4,483, 11,348, and 15,883 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after the full 15,883 hours of exposure. A previous topical report has been issued for the 4,483 hours of exposure.

  18. Investigation into Cause of High Temperature Failure of Boiler Superheater Tube

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Roy, H.; Shukla, A. K.

    2015-04-01

    The failure of the boiler tubes occur due to various reasons like creep, fatigue, corrosion and erosion. This paper highlights a case study of typical premature failure of a final superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement, chemical analysis, oxide scale thickness measurement, microstructural examination are conducted as part of the investigations. Apart from these investigations, sulfur print, Energy Dispersive spectroscopy (EDS) and X ray diffraction analysis (XRD) are also conducted to ascertain the probable cause of failure of final super heater tube. Finally it has been concluded that the premature failure of the super heater tube can be attributed to the combination of localized high tube metal temperature and loss of metal from the outer surface due to high temperature corrosion. The corrective actions have also been suggested to avoid this type of failure in near future.

  19. Failure Investigation of Radiant Platen Superheater Tube of Thermal Power Plant Boiler

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Mandal, A.; Roy, H.

    2015-04-01

    This paper highlights a case study of typical premature failure of a radiant platen superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement and chemical analysis, are conducted as part of the investigations. Apart from these, metallographic analysis and fractography are also conducted to ascertain the probable cause of failure. Finally it has been concluded that the premature failure of the super heater tube can be attributed to localized creep at high temperature. The corrective actions has also been suggested to avoid this type of failure in near future.

  20. Complementary Methods for the Characterization of Corrosion Products on a Plant-Exposed Superheater Tube

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Nießen, Frank; Villa, Matteo

    2017-01-01

    In this work, complex corrosion products on a superheater tube exposed to biomass firing were characterized by the complementary use of energy-dispersive synchrotron diffraction, electron microscopy, and energy-dispersive X-ray spectroscopy. Non-destructive synchrotron diffraction in transmission......-rich austenite phase to selective removal of Fe and Cr from the alloy, via a KCl-induced corrosion mechanism. Compositional variations were related to diffraction results and revealed a qualitative influence of the spinel cation concentration on the observed diffraction lines.......In this work, complex corrosion products on a superheater tube exposed to biomass firing were characterized by the complementary use of energy-dispersive synchrotron diffraction, electron microscopy, and energy-dispersive X-ray spectroscopy. Non-destructive synchrotron diffraction in transmission...... geometry measuring with a small gauge volume from the sample surface through the corrosion product allowed depth-resolved phase identification and revealed the presence of (Fe,Cr)2O3 and FeCr2O4. This was supplemented by microstructural and elemental analysis correlating the additional presence of a Ni...

  1. Premature failure of dissimilar metal weld joint at intermediate temperature superheater tube

    Directory of Open Access Journals (Sweden)

    Mohammed Al Hajri

    2015-04-01

    Full Text Available Dissimilar metal weld (DMW joint between alloyed steel (AS and stainless steel (SS failed at one of intermediate temperature superheater (ITSH tube in steam/power generation plant boiler. The premature failure was detected after a relatively short time of operation (8 years where the crack propagated circumferentially from AS side through the ITSH tube. Apart from physical examination, microstructural studies based on optical microscopy, SEM and EDX analysis were performed. The results of the investigation point out the limitation of Carbides precipitation at the alloyed steel/welding interface. This is synonym of creep stage I involvement in the failure of ITSH. Improper post-welding operation and bending moment are considered as root causes of the premature failure.

  2. Failure Analysis and Magnetic Evaluation of Tertiary Superheater Tube Used in Gas-Fired Boiler

    Science.gov (United States)

    Mohapatra, J. N.; Patil, Sujay; Sah, Rameshwar; Krishna, P. C.; Eswarappa, B.

    2018-02-01

    Failure analysis was carried out on a prematurely failed tertiary superheater tube used in gas-fired boiler. The analysis includes a comparative study of visual examination, chemical composition, hardness and microstructure at failed region, adjacent and far to failure as well as on fresh tube. The chemistry was found matching to the standard specification, whereas the hardness was low in failed tube compared to the fish mouth opening region and the fresh tube. Microscopic examination of failed sample revealed the presence of spheroidal carbides of Cr and Mo predominantly along the grain boundaries. The primary cause of failure is found to be localized heating. Magnetic hysteresis loop (MHL) measurements were carried out to correlate the magnetic parameters with microstructure and mechanical properties to establish a possible non-destructive evaluation (NDE) for health monitoring of the tubes. The coercivity of the MHL showed a very good correlation with microstructure and mechanical properties deterioration enabling a possible NDE technique for the health monitoring of the tubes.

  3. Review about corrosion of superheaters tubes in biomass plants

    International Nuclear Information System (INIS)

    Berlanga-Labari, C.; Fernandez-Carrasquilla, J.

    2006-01-01

    The design of new biomass-fired power plants with increased steam temperature raises concerns of high-temperature corrosion. The high potassium and chlorine contents in many biomass, specially in wheat straw, are potentially harmful elements with regard to corrosion. Chlorine may cause accelerated corrosion resulting in increased oxidation, metal wastage, internal attack, void formations and loose non-adherent scales. The most severe corrosion problems in biomass-fired systems are expected to occur due to Cl-rich deposits formed on superheater tubes. In the first part of this revision the corrosion mechanism proposed are described in function of the conditions and compounds involved. The second part is focused on the behaviour of the materials tested so far in the boiler and in the laboratory. First the traditional commercial alloys are studied and secondly the new alloys and the coasting. (Author). 102 refs

  4. Oxidation rate in ferritic superheater materials

    International Nuclear Information System (INIS)

    Falk, I.

    1992-05-01

    On the steam side of superheater tubes, compact oxide layers are formed which have a tendency to crack and flake off (exfoliate). Oxide particles then travel with the steam and can give rise to erosion damage in valves and on turbine blades. In an evaluation of conditions in superheater tubes from Swedish power boilers, it was found that the exfoliation frequency for one material quality (SS 2218) was greater than for other qualities. Against this background, a literature study has been carried out in order to determine which mechanisms govern the build-up of oxide and the exfoliation phenomenon. The study reveals that the oxide morphology is similar on all ferritic steels with Cr contents up to 5%. and that the oxide properties can therefore be expected to be similar. The reason why the exfoliation frequency is greater for tubes of SS 2218 is probably that the tubes have been exposed to higher temperatures. SS 2218 (2.25 Cr) is normally used in a higher temperature range which is accompanied by improved strength data as compared with SS 2216 (1 Cr). The principal cause of the exfoliation is said to be stresses which arise in the oxide during the cooling-down process associated with shutdowns. The stresses give rise to longitudinal cracks in the oxide, and are formed as a result of differences in thermal expansion between the oxide and the tube material. In addition, accounts are presented of oxidation constants and growth velocities, and thickness and running time. These data constitute a valuable basis for practical estimates of the operating temperature in routine checks and investigations into damage in superheater tubes. (au)

  5. Can the lifetime of the superheater tubes be predicted according to the fuel analyses? Assessment from field and laboratory data

    Energy Technology Data Exchange (ETDEWEB)

    Salmenoja, K [Kvaerner Pulping Oy, Tampere (Finland)

    1999-12-31

    Lifetime of the superheaters in different power boilers is more or less still a mystery. This is especially true in firing biomass based fuels (biofuels), such as bark, forest residues, and straw. Due to the unhomogeneous nature of the biofuels, the lifetime of the superheaters may vary from case to case. Sometimes the lifetime is significantly shorter than originally expected, sometimes no corrosion even in the hottest tubes is observed. This is one of the main reasons why the boiler operators often demand for a better predictability on the corrosion resistance of the materials to avoid unscheduled shutdowns. (orig.) 9 refs.

  6. Can the lifetime of the superheater tubes be predicted according to the fuel analyses? Assessment from field and laboratory data

    Energy Technology Data Exchange (ETDEWEB)

    Salmenoja, K. [Kvaerner Pulping Oy, Tampere (Finland)

    1998-12-31

    Lifetime of the superheaters in different power boilers is more or less still a mystery. This is especially true in firing biomass based fuels (biofuels), such as bark, forest residues, and straw. Due to the unhomogeneous nature of the biofuels, the lifetime of the superheaters may vary from case to case. Sometimes the lifetime is significantly shorter than originally expected, sometimes no corrosion even in the hottest tubes is observed. This is one of the main reasons why the boiler operators often demand for a better predictability on the corrosion resistance of the materials to avoid unscheduled shutdowns. (orig.) 9 refs.

  7. The creep life of superheater and reheater tubes under varying pressure conditions in operational boilers

    International Nuclear Information System (INIS)

    Mizen, D.C.; Plastow, B.

    1975-01-01

    The first of each manufacturer's 500 MW boilers supplied to the CEGB (Central Electricity Generating Board) have been subjected to an extensive programme of tests for performance optimization and safe operation. Around 250 thermocouples on superheater and reheater tubes have in each case been monitored as part of the exercise. The readings are corrected and used to compute creep rupture damage based on internationally agreed stress rupture data and a simple cumulative damage concept. Comparison of the design creep rupture life and the cumulative life consumed has in several applications been invaluable in influencing operating procedures and arranging tube modifications or replacements, so that loss of generation by creep rupture failure is minimized. (author)

  8. Microscopical investigation of steamside oxide on X20CrMoV121 superheater tubes

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Hansson, Anette Nørgaard; Jensen, Søren A.

    2011-01-01

    X20CrMoV121 is a 12%Cr martensitic steel which has been used in power plants in Europe for many decades. Superheater tubes exposed for various durations up to 135,000 hours in power plants in Denmark at steam temperatures varying from 450 to 575°C were investigated. Light optical and scanning ele...... electron microscopy was used to investigate steamside oxide morphologies. At all temperatures there is a double layered oxide, however, the inner:outer oxide thickness is not always equal. At the lower steam temperature range of...

  9. Degradation of superheater tubes made of austenitic T321H steel after long term service

    Energy Technology Data Exchange (ETDEWEB)

    Hernas, Adam [Silesian Technical Univ., Katowice (Poland). Faculty of Material Science; Augustyniak, Boleslaw; Chmielewski, Marek [Gdansk Univ. of Technology (Poland). Mechanical Dept.; Sablik, M.J. [Applied Magnetic and Physical Modeling, LLC, San Antonio, TX (United States)

    2010-07-01

    There are presented results of complementary tests performed for the evaluation of creep damage in austenitic steel grade T321H exploited over 200,000 hours in the secondary superheater part of a power plant boiler. The following techniques have been applied: SEM microscopy, X-ray diffraction, tensile tests, hardness measurements and novel eddy current inspection. The novel eddy current inspection is proposed as a non-destructive method of estimating the creep damage stage of austenite steel boiler tubes after long-term service in power plants. We compare the results provided by the different techniques and discuss the correlations and also point out the problems which need to be addressed in order to elaborate the remaining life assessment of austenitic boiler tubes. (orig.)

  10. A computational approach for thermomechanical fatigue life prediction of dissimilarly welded superheater tubes

    Energy Technology Data Exchange (ETDEWEB)

    Krishnasamy, Ram-Kumar; Seifert, Thomas; Siegele, Dieter [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany)

    2010-07-01

    In this paper a computational approach for fatigue life prediction of dissimilarly welded superheater tubes is presented and applied to a dissimilar weld between tubes made of the nickel base alloy Alloy617 tube and the 12% chromium steel VM12. The approach comprises the calculation of the residual stresses in the welded tubes with a multi-pass dissimilar welding simulation, the relaxation of the residual stresses in a post weld heat treatment (PWHT) simulation and the fatigue life prediction using the remaining residual stresses as initial condition. A cyclic fiscoplasticity model is used to calculate the transient stresses and strains under thermocyclic service loadings. The fatigue life is predicted with a damage parameter which is based on fracture mechanics. The adjustable parameters of the model are determined based on LCF and TMF experiments. The simulations show, that the residual stresses that remain after PWHT further relax in the first loading cycles. The predicted fatigue lives depend on the residual stresses and, thus, on the choice of the loading cycle in which the damage parameter is evaluated. It the first loading cycle, where residual stresses are still present, is considered, lower fatigue lives are predicted compared to predictions considering loading cycles with relaxed residual stresses. (orig.)

  11. Effects of Different Fuel Specifications and Operation Conditions on the Performance of Coated and Uncoated Superheater Tubes in Two Different Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Wu, Duoli; Dahl, Kristian V.; Madsen, Jesper L.

    2018-01-01

    Fireside corrosionis a serious concern in biomass firing powerplants such that the efficiency of boilers is limited by high temperature corrosion. Application of protective coatings on superheater tubes is a possible solution to combat fireside corrosion. The current study investigates the corros......Fireside corrosionis a serious concern in biomass firing powerplants such that the efficiency of boilers is limited by high temperature corrosion. Application of protective coatings on superheater tubes is a possible solution to combat fireside corrosion. The current study investigates...... the corrosion performance of coated tubes compared to uncoated Esshete 1250 and TP347H tubes, which were exposed in two different biomass-fired boilers for one year. Data on the fuel used, temperature of the boilers, and temperature fluctuations are compared for the two boilers, and how these factors influence...... deposit formation, corrosion, and the stability of the coatings is discussed. The coatings (Ni and Ni2Al3) showed protective behavior ina wood-fired plant where the outlet steam temperature was 520 °C. However, at the plant that fired straw with an outlet steam temperature of 540 °C and where severe...

  12. Phase identification and internal stress analysis of steamside oxides on superheater tubes by means of X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Pantleon, Karen; Montgomery, Melanie [Technical Univ. of Denmark, Lyngby (Denmark). Inst. of Manufacturing Engineering and Management

    2005-05-01

    For superheater tubes, the adherence of the inner steamside oxide is especially important as spallation of this oxide results in a) blockage of loops which cause insufficient steam flow through the superheaters and subsequently overheating and tube failure and b) spalled oxide can cause erosion of turbine blades. Oxide spallation is a serious problem for austenitic steels where the significant differences of the thermal expansion coefficients of steel and oxide cause relatively high thermal stresses. Usually, various oxides layered within the scale are suggested from microscopical observations of the morphology and/or topography of the oxide scale accompanied by the analysis of chemical elements present. Reports about the application of X-ray diffraction on the study of steamside oxide formation are very scarce in literature. If applied at all, XRD-studies are restricted to ideally flat samples oxidized under laboratory conditions, but relation to real operating conditions and the effect of the real sample geometry is missing. Within the frame of the project, steamside oxides on plant exposed components of ferritic/ martensitic X20CrMoV12-1 as well as fine- and coarse-grained austenitic TP347H were studied by means of X-ray diffraction. Depth dependent phase analysis on sample segments cut from the tubes was carried out by means of grazing incidence diffraction and, in order to obtain information from a larger depth, conventional XRD was combination with stepwise mechanical removal of the steamside oxides. After each removal step phase analysis was performed both on the segments and on the removed powders. Phase specific stress analysis was carried out on rings cut from the tube. Results show that steamside oxides on X20CrMoV12-1 consist of pure Hematite at the surface followed by a relatively thick layer of pure Magnetite. Both phases are under relatively high tensile stresses. While the phase composition of the Hematite layer appears to be the same for all

  13. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jun-Lin; Zhou, Ke-Yi, E-mail: boiler@seu.edu.cn; Xu, Jian-Qun [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu Province (China); Wang, Xin-Meng; Tu, Yi-You [School of Materials Science and Engineering, Southeast University, Nanjing 210096, Jiangsu Province (China)

    2014-07-28

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  14. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    Science.gov (United States)

    Huang, Jun-Lin; Zhou, Ke-Yi; Wang, Xin-Meng; Tu, Yi-You; Xu, Jian-Qun

    2014-07-01

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  15. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    International Nuclear Information System (INIS)

    Huang, Jun-Lin; Zhou, Ke-Yi; Xu, Jian-Qun; Wang, Xin-Meng; Tu, Yi-You

    2014-01-01

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  16. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    Science.gov (United States)

    Moore, Robert [Edgewood, NM; Pickard, Paul S [Albuquerque, NM; Parma, Jr., Edward J.; Vernon, Milton E [Albuquerque, NM; Gelbard, Fred [Albuquerque, NM; Lenard, Roger X [Edgewood, NM

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  17. Research on the Superheater Material Properties for USC Boiler with 700°C Steam Parameter

    Science.gov (United States)

    Chongbin, Wang; Xueyuan, Xu; Yufeng, Zhu; Yongqiang, Jin; Hui, Tong; Yu, Wang; Xiaoli, Lu

    This paper discusses the materials' properties of superheater for 700°C USC boiler, including Sanicro25, HR6W, 617mod and 740H, and analyzes the range of applicable temperature of superheater made of different tubes, such as T91, T92, Super304H, TP310HCbN, Sanicro25, HR6W, 617Mod and 740H. In addition, some suggestions on the material selection have been proposed.

  18. Corrosion evaluation of heat recovery steam generator superheater tube in two methods of testing: Tafel polarization and electrochemical impedance spectroscopy (EIS)

    Science.gov (United States)

    Santoso, Rio Pudjidarma; Riastuti, Rini

    2018-05-01

    The purpose of this research is to evaluate the corrosion process which occurs on the water side of Heat Recovery Steam Generator (HRSG) superheater tube. The tube was 13CrMo44 and divided into 3 types of specimen: new tube, used tube (with oxide layer on surface), cleaned-used tube (without oxide layer on surface). The evaluation of corrosion parameters wasperformed using deaerated ultra-high purity water (boiler feed water) in two methods of testing: Tafel polarization and Electrochemical Impedance Spectroscopy (EIS). Tafel polarization was excellent as its capability to show the value of corrosion current and the corrosion rate explicitly, on the other hand, EIS was excellent as its capability to explain for corrosion mechanism on metal interface in detail. Both methods showed that the increase of electrolyte temperature from 25°C to 55°C would increase the corrosion rate with the mechanism of decreasing polarization resistance due to thinning out the passive film thickness and enlarge the area of reduction reaction of cathode. Magnetite oxide scale which is laid on the surface of used tube specimen shows protective nature to reduce the corrosion rate, and clear up this oxide would increase the corrosion rate back as new tube.

  19. Probabilistic approach to determining the optimum replacement of a superheater stage in 680 MW coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Bos, Robert; Star, Ruud van der [Nuon Power Generation, Amsterdam (Netherlands)

    2009-07-01

    The boiler of the NUON power plant HW08 that went into operation in 1993 is designed as Benson boiler and mainly fired with hard coal. A creep-related tube failure occurred in the tertiary superheater that had been due to increased wall temperature caused by steam side formation of oxide layers. The theoretical lifetime of the components was calculated with the aid of the results of steam side oxide measurements and condition evaluation of the tertiary superheater with the aid of tube samples. The objective is to establish an operation and maintenance schedule for the desired operating lifetime of 300,000 hours. (orig.)

  20. Long term testing of materials for tube shielding, stage 2; Laangtidsprovning av tubskyddsmaterial, etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Norling, Rikard; Hjoernhede, Anders; Mattsson, Mattias

    2012-02-15

    Circulating Fluidized Bed (CFB) boilers are commonly used for combustion of biomass and are used to some extent for Waste-to-Energy (WtE) plants as well. The superheaters of the latter are for obvious reasons more prone to suffer from high temperature corrosion caused by the corrosive species in the fuel, mainly chlorides. Frequently the final (hottest) superheater is positioned in the loop seal, where the circulating bed material is returned to the furnace after being separated from the flue gas by a cyclone. The environment in the loop seal is relatively free of chlorides, since these primarily follow the flue gas into the convection pass. Hence, higher steam temperature can be allowed without excessive damage to the final superheater. On the other hand the superheaters, which are located in the convection pass, are more exposed to the corrosive species of the flue gas. Further, they are eroded by particles entrained in the gas flow. Particles and condensing gaseous species are to a large extent deposited on the superheaters, which limits the heat transfer and promotes corrosion. The deposits are regularly removed e.g. by soot blowers. The pressurized steam from soot blowers causes additional erosion damage to that caused by entrained particles. It shall be noted that the actual damage is caused by a combined mechanism of erosion and corrosion denoted erosion-corrosion, which usually results in dramatically accelerated wear. To avoid excessive erosion damage on the superheater tubes the first tube row of each bundle is protected by tube shielding. In its simplest form the shields are made from a steel sheet that has been bent into a semi-circular half-cylinder shell. These shields are attached onto the wind-side of the tubes by hangers. A typical material for tube shielding is the austenitic high temperature resistant stainless steel 253MA. Life of tube shielding depends on numerous factors such as boiler design, superheater location, fuel and operating

  1. Pre-oxidation and its effect on reducing high-temperature corrosion of superheater tubes during biomass firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Kvisgaard, M.; Montgomery, Melanie

    2017-01-01

    Superheater tubes in biomass-fired power plants experience high corrosion rates due to condensation of corrosive alkali chloride-rich deposits. To explore the possibility of reducing the corrosion attack by the formation of an initial protective oxide layer, the corrosion resistance of pre......-oxidised Al and Ti-containing alloys (Kanthal APM and Nimonic 80A, respectively) was investigated under laboratory conditions mimicking biomass firing. The alloys were pre-oxidised at 900°C for 1 week. Afterwards, pre-oxidised samples, and virgin non-pre-oxidised samples as reference, were coated...... with a synthetic deposit of KCl and exposed at 560°C for 1 week to a gas mixture typical of biomass firing. Results show that pre-oxidation could hinder the corrosion attack; however, the relative success was different for the two alloys. While corrosion attack was observed on the pre-oxidised Kanthal APM, the pre...

  2. Improved superheater tubing material - Ti and Nb bearing austenitic steel

    International Nuclear Information System (INIS)

    Kinoshita, K.; Mimino, T.; Minegishi, I.

    1975-01-01

    A newly developed 18 Cr-8 Ni stainless steel modified with small amounts of Ti and Nb has considerably high stress-rupture strength and is considered to be suitable for superheater material for power boilers. Data for stress-rupture and creep for long times, the strength of welded joints, the changes of characteristics due to exposure to high temperatures, etc., are presented and discussed. Some investigations after trial services indicate that the experimental data are applicable to actual applications. (author)

  3. Some aspects of metallurgical assessment of boiler tubes-Basic principles and case studies

    International Nuclear Information System (INIS)

    Chaudhuri, Satyabrata

    2006-01-01

    Microstructural changes in boiler tubes during prolong operation at high temperature and pressure decrease load bearing capacity limiting their useful lives. When the load bearing capacity falls below a critical level depending on operating parameters and tube geometry, failure occurs. In order to avoid such failures mainly from the view point of economy and safety, this paper describes some basic principles behind remaining life assessment of service exposed components and also a few case studies related to failure of a reheater tube of 1.25Cr-0.5Mo steel, a carbon steel tube and final superheater tubes of 2.25Cr-1Mo steel and remaining creep life assessment of service exposed but unfailed platen superheater and reheater tubes of 2.25Cr-1Mo steel. Sticking of fly ash particles causing reduction in effective tube wall thickness is responsible for failure of reheater tubes. Decarburised metal containing intergranular cracks at the inner surface of the carbon steel tube exhibiting a brittle window fracture is an indicative of hydrogen embrittlement responsible for this failure. In contrast, final superheater tube showed that the failure took place due to short-term overheating. The influence of prolong service revealed that unfailed reheater tubes exhibit higher tensile properties than that of platen superheater tubes. In contrast both the tubes at 50 MPa meet the minimum creep rupture properties when compared with NRIM data. The remaining creep life of platen superheater tube as estimated at 50 MPa and 570 deg. C (1058 o F) is more than 10 years and that of reheater tube at 50 MPa and 580 deg. C (1076 o F) is 9 years

  4. Microwave superheaters for fusion

    International Nuclear Information System (INIS)

    Campbell, R.B.; Hoffman, M.A.; Logan, B.G.

    1987-01-01

    The microwave superheater uses the synchrotron radiation from a thermonuclear plasma to heat gas seeded with an alkali metal to temperatures far above the temperature of material walls. It can improve the efficiency of the Compact Fusion Advanced Rankine (CFAR) cycle described elsewhere in these proceedings. For a proof-of-principle experiment using helium, calculations show that a gas superheat ΔT of 2000 0 K is possible when the wall temperature is maintained at 1000 0 K. The concept can be scaled to reactor grade systems. Because of the need for synchrotron radiation, the microwave superheater is best suited for use with plasmas burning an advanced fuel such as D- 3 He. 5 refs

  5. Failure evaluation on a high-strength alloy SA213-T91 super heater tube of a power generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, J.; Purbolaksono, J.; Beng, L.C.; Ahmad, A. [University of Tenaga Nas, Kajang (Malaysia). Dept. of Mechanical Engineering

    2010-07-01

    This article presents failure investigation on a high-strength alloy SA213-T91 superheater tube. This failure is the first occurrence involving the material in Kapar Power Station Malaysia. The investigation includes visual inspections, hardness measurements, and microscopic examinations. The failed super-heater tube shows a wide open rupture with thin and blunt edges. Hardness readings on all the as-received tubes are used for estimating the operating metal temperature of the super-heater tubes. Microstructures of the failed tube show numerous creep cavities consisting of individual pores and chain of pores which form micro-and macro-cracks. The findings confirmed that the super-heater tube is failed by short-term overheating. Higher temperatures of the flue gas due to the inconsistent feeding of pulverized fuels into the burner is identified to cause overheating of the failed tube.

  6. Superheater corrosion in biomass-fired power plants: Investigation of Welds

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Carlsen, B; Biede, O

    2002-01-01

    -fired Masnedø combined heat and power (CHP) plant to investigate corrosion at temperatures higher than that of the actual plant. The highest steam temperature investigated was 570°C. Various alloys of 12-22% chromium content were welded into this test loop. Their corrosion rates were similar and increased...... condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A test superheater was built into the straw...... with temperature. The mechanism of attack was grain boundary attack as a precursor to selective chromium depletion of the alloy. In addition welds coupling various tubes sections were also investigated. It was seen that there was preferential attack around those welds that had a high nickel content. The welds...

  7. The CP 1 type separators-superheaters

    International Nuclear Information System (INIS)

    Palacio, G.

    1984-01-01

    Analysis of the functionnement of the separators superheaters in the first French 900 MW PWR units (Fessenhein 1-2 and Bugey 2-3-4-5) and in the program CP 1 units: localization of the separators superheaters, design, tests and choice of the materials, description of the separators superheaters (shells, separators, superheater bundles, internal lagging, purging tank and condensate stank, steam line equipments); study of the various operation modes (nominals, transients, malfunctions, conservation during shutdowns) and the in service behaviour of the components; study of the modifications on the CP 1 equipments and their behaviour; description of the measures, tests and on site controls (controls during planned shutdowns and controls during service) [fr

  8. Expansion lyre-shaped tube

    International Nuclear Information System (INIS)

    Andro, Jean.

    1973-01-01

    The invention relates the expansion lyre-shaped tube portions formed in dudgeoned tubular bundles between two bottom plates. An expansion lyre comprises at least two sets of tubes of unequal lengths coplanar and symmetrical with respect to the main tube axis, with connecting portions between the tubes forming said sets. The invention applies to apparatus such as heat exchangers, heaters, superheaters or breeders [fr

  9. Review about corrosion of superheaters tubes in biomass plants; Revision sobre la corrosion de tubos sobrecalentadores en plantas de biomasa

    Energy Technology Data Exchange (ETDEWEB)

    Berlanga-Labari, C.; Fernandez-Carrasquilla, J.

    2006-07-01

    The design of new biomass-fired power plants with increased steam temperature raises concerns of high-temperature corrosion. The high potassium and chlorine contents in many biomass, specially in wheat straw, are potentially harmful elements with regard to corrosion. Chlorine may cause accelerated corrosion resulting in increased oxidation, metal wastage, internal attack, void formations and loose non-adherent scales. The most severe corrosion problems in biomass-fired systems are expected to occur due to Cl-rich deposits formed on superheater tubes. In the first part of this revision the corrosion mechanism proposed are described in function of the conditions and compounds involved. The second part is focused on the behaviour of the materials tested so far in the boiler and in the laboratory. First the traditional commercial alloys are studied and secondly the new alloys and the coasting. (Author). 102 refs.

  10. Critical superheats upon boiling of dissociating liquids

    International Nuclear Information System (INIS)

    Kolykhan, L.I.; Solov'ev, V.N.

    1985-01-01

    The experimental data on critical superheats of dissociating liquids, i.e. nitrogen tetroxide and nitrine are presented (nitrine is the solution of nitrogen oxide in nitrogen tetroxide). The experiments with boiling N 2 O 4 have been carried out in the pressure range 0.1-3.0 MPa and with boiling nitrine within the pressure range 0.2-9.0 MPa. The experiments have revealed an anomalous dependence of critical superheats on pressure P, thus at P>=2.5 MPa the critical superheat values exceed the limiting ones, and at P=4.5 MPa this excess amounts to more than 16 K, essentially exceeding the errors of the experiments. The results for N 2 O 4 critical superheats agree with experimental data of other authors. Complex phenomena observed upon boiling of dissociating liquids require further theoretical and experimental studies

  11. Comparison between two rheocasting processes of damper cooling tube method and low superheat casting

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoli

    2014-09-01

    Full Text Available To produce a high quality semisolid slurry that consists of fine primary particles uniformly suspended in the liquid matrix for rheoforming, chemical refining and electromagnetic or mechanical stirring are the two methods commonly used. But these two methods either contaminate the melt or incur high cost. In this study, the damper cooling tube (DCT method was designed to prepare semisolid slurry of A356 aluminum alloy, and was compared with the low superheat casting (LSC method - a conventional process used to produce casting slab with equiaxed dendrite microstructure for thixoforming route. A series of comparative experiments were performed at the pouring temperatures of 650 °C, 638 °C and 622 °C. Metallographic observations of the casting samples were carried out using an optical electron microscope with image analysis software. Results show that the microstructure of semisolid slurry produced by the DCT process consists of spherical primary α-Al grains, while equiaxed grains microstructure is found in the LSC process. The lower the pouring temperature, the smaller the grain size and the rounder the grain morphology in both methods. The copious nucleation, which could be generated in the DCT, owing to the cooling and stirring effect, is the key to producing high quality semisolid slurry. DCT method could produce rounder and smaller α-Al grains, which are suitable for semisolid processing; and the equivalent grain size is no more than 60 μm when the pouring temperature is 622 °C.

  12. A steam superheater exchanger provided with two coaxial casings and an horizontal axis

    International Nuclear Information System (INIS)

    Marjollet, Jacques; Palacio, Gerard; Tondeur, Gerard.

    1976-01-01

    This invention concerns the general lay-out of an horizontal axis separator-superheater for supplying steam to a high power turbine, particularly for a nuclear power station. The invention significantly reduces the length of the pipework connecting the superheated steam outlet and its inlet to the turbine. For this, the outer casing is provided with a coaxial internal annular sleeve in which are housed, one above the other, the separator and the bundle of superheater tubes through which circulates the water emulsion to be separated and steam to be superheated. At the end of its treatment, the superheated steam spreads out in the space between the sleeve and the outer casing from whence it can be drawn off at any point of its periphery, thus making it possible to choose an extraction point as near as possible to the inlet of the turbine to be fed [fr

  13. Diagnosis of Heat Exchanger Tube Failure in Fossil Fuel Boilers Through Estimation of Steady State Operating Conditions

    International Nuclear Information System (INIS)

    Herszage, A.; Toren, M.

    1998-01-01

    Estimation of operating conditions for fossil fuel boiler heat exchangers is often required due to changes in working conditions, design modifications and especially for monitoring performance and failure diagnosis. Regular heat exchangers in fossil fuel boilers are composed of tube banks through which water or steam flow, while hot combustion (flue) gases flow outside the tubes. This work presents a top-down approach to operating conditions estimation based on field measurements. An example for a 350 MW unit superheater is thoroughly discussed. Integral calculations based on measurements for all unit heat exchangers (reheaters, superheaters) were performed first. Based on these calculations a scheme of integral conservation equations (lumped parameter) was then formulated at the single tube level. Steady state temperatures of superheater tube walls were obtained as a main output, and were compared to the maximum allowable operating temperatures of the tubes material. A combined lumped parameter - CFD (Computational Fluid Dynamics, FLUENT code) approach constitutes an efficient tool in certain cases. A brief report of such a case is given for another unit superheater. We conclude that steady state evaluations based on both integral and detailed simulations are a valuable monitoring and diagnosis tool for the power generation industry

  14. Neural network for prediction of superheater fireside corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Makkonen, P [Foster Wheeler Energia Oy, Karhula R and D Center, Karhula (Finland)

    1999-12-31

    Superheater corrosion causes vast annual losses to the power companies. If the corrosion could be reliably predicted, new power plants could be designed accordingly, and knowledge of fuel selection and determination of process conditions could be utilized to minimize superheater corrosion. If relations between inputs and the output are poorly known, conventional models depending on corrosion theories will fail. A prediction model based on a neural network is capable of learning from errors and improving its performance as the amount of data increases. The neural network developed during this study predicts superheater corrosion with 80 % accuracy at early stage of the project. (orig.) 10 refs.

  15. Neural network for prediction of superheater fireside corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Makkonen, P. [Foster Wheeler Energia Oy, Karhula R and D Center, Karhula (Finland)

    1998-12-31

    Superheater corrosion causes vast annual losses to the power companies. If the corrosion could be reliably predicted, new power plants could be designed accordingly, and knowledge of fuel selection and determination of process conditions could be utilized to minimize superheater corrosion. If relations between inputs and the output are poorly known, conventional models depending on corrosion theories will fail. A prediction model based on a neural network is capable of learning from errors and improving its performance as the amount of data increases. The neural network developed during this study predicts superheater corrosion with 80 % accuracy at early stage of the project. (orig.) 10 refs.

  16. Adaptive Superheat Control of a Refrigeration Plant using Backstepping

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    2008-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. The new idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. This gives a highly nonlinear transfer operator from compressor speed input to the superheat output....... A new low order nonlinear model of the evaporator is developed and used in a backstepping design of an adaptive nonlinear controller.  The stability of the proposed method is validated theoretically by Lyapunov analysis and experimental results shows the performance of the system for a wide range...

  17. Current Status of Superheat Spray Modeling With NCC

    Science.gov (United States)

    Raju, M. S.; Bulzan, Dan L.

    2012-01-01

    An understanding of liquid fuel behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA's supersonics project office initiative on high altitude emissions, we have undertaken an effort to assess the accuracy of various existing CFD models used in the modeling of superheated sprays. As a part of this investigation, we have completed the implementation of a modeling approach into the national combustion code (NCC), and then applied it to investigate the following three cases: (1) the validation of a flashing jet generated by the sudden release of pressurized R134A from a cylindrical nozzle, (2) the differences between two superheat vaporization models were studied based on both hot and cold flow calculations of a Parker-Hannifin pressure swirl atomizer, (3) the spray characteristics generated by a single-element LDI (Lean Direct Injector) experiment were studied to investigate the differences between superheat and non-superheat conditions. Further details can be found in the paper.

  18. Superheat in magma oceans

    Science.gov (United States)

    Jakes, Petr

    1992-01-01

    The existence of 'totally molten' planets implies the existence of a superheat (excess of heat) in the magma reservoirs since the heat buffer (i.e., presence of crystals having high latent heat of fusion) does not exist in a large, completely molten reservoir. Any addition of impacting material results in increase of the temperature of the melt and under favorable circumstances heat is stored. The behavior of superheat melts is little understood; therefore, we experimentally examined properties and behavior of excess heat melts at atmospheric pressures and inert gas atmosphere. Highly siliceous melts (70 percent SiO2) were chosen for the experiments because of the possibility of quenching such melts into glasses, the slow rate of reaction in highly siliceous composition, and the fact that such melts are present in terrestrial impact craters and impact-generated glasses. Results from the investigation are presented.

  19. A thin-lip rupture of carbon steel superheater boiler tube

    International Nuclear Information System (INIS)

    Khalil, E.O.; Alzoye, K.S.; Elwaer, A.M.

    1993-01-01

    A ruptured A 42 medium carbon steel tube was collected by the engineering department in one of our steam power stations. Inspection of ruptured tube revealed a thin - lip fracture with brownish thin layer of oxide film on inner tube surfaces. There was no evidence of pitting, the outer surfaces of the tube exhibited a general oxidized conditions. A micro section taken near the fracture surface consists of ferrite and martensite, the amount of martensite decreased as we away from the fracture surface. Presence of martensite phase in the microstructure indicates that the tube material has been overheated. An erosion corrosion mechanism in conjunction with overheated. An erosion corrosion mechanism in conjunction with overheating resulted in strength deterioration with consequent premature failure. 4 fig., 1 tab

  20. A steam separator-superheater apparatus

    International Nuclear Information System (INIS)

    Androw, Jean; Bessouat, Roger; Peyrelongue, J.-P.

    1973-01-01

    Description is given of a separator-superheater apparatus comprising an outer enclosure containing a separating-unit and a steam superheating unit according to the main patent. The present addition relates to an improvement in that apparatus, characterized in that the separating unit and the superheating unit, mounted in two distinct portions of the outer enclosure, are divided into the same number of sub-units of each unit being identical and operating in parallel, and in that to each separator sub-unit is associated a superheater sub-unit, said sub-units being mounted in series and located in one in the other of the enclosure two portions, respectively. This can be applied to the treatment of the exhaust steam of a turbine high pressure body, prior to re-injecting said steam into the low pressure body [fr

  1. Nonlinear Superheat Control of a Refrigeration Plant using Backstepping

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    2008-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. The main idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed and used in a backstepping design...... of a nonlinear controller. The proposed method is validated by experimental results....

  2. Automatic Tuning of the Superheat Controller in a Refrigeration Plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Thybo, Claus; Larsen, Lars F. S.

    2006-01-01

    This paper proposes an automatic tuning of the superheat control in a refrigeration system using a relay method. By means of a simple evaporator model that captures the important dynamics and non-linearities of the superheat a gain-scheduling that compensates for the variation of the process gain...

  3. CFD modeling of a boiler's tubes rupture

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi

    2006-01-01

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320 MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-ε turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9 MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8 MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections

  4. Application of composite tubes in power plants

    International Nuclear Information System (INIS)

    Toernblom, H.; Egnell, L.; Gullberg, R.

    1975-01-01

    Composite tubes with metallurgical bond are now being used on an industrial scale in recovery boilers. Service trials in power plants are viewed and the possibilities to solve fireside corrosion problems in the boiler and superheater sections are discussed. The present and potential future application in nuclear power plants is summarized. A brief presentation of the manufacture and fabrication of composite tubes is made and specific material properties are discussed. Composite tubes are concluded to be an established product and a useful means of meeting conflicting material requirements under severe service conditions. (author)

  5. Creep-Rupture Behavior of Ni-Based Alloy Tube Bends for A-USC Boilers

    Science.gov (United States)

    Shingledecker, John

    Advanced ultrasupercritical (A-USC) boiler designs will require the use of nickel-based alloys for superheaters and reheaters and thus tube bending will be required. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section II PG-19 limits the amount of cold-strain for boiler tube bends for austenitic materials. In this summary and analysis of research conducted to date, a number of candidate nickel-based A-USC alloys were evaluated. These alloys include alloy 230, alloy 617, and Inconel 740/740H. Uniaxial creep and novel structural tests and corresponding post-test analysis, which included physical measurements, simplified analytical analysis, and detailed microscopy, showed that different damage mechanisms may operate based on test conditions, alloy, and cold-strain levels. Overall, creep strength and ductility were reduced in all the alloys, but the degree of degradation varied substantially. The results support the current cold-strain limits now incorporated in ASME for these alloys for long-term A-USC boiler service.

  6. Single Temperature Sensor Superheat Control Using a Novel Maximum Slope-seeking Method

    DEFF Research Database (Denmark)

    Vinther, Kasper; Rasmussen, Henrik; Izadi-Zamanabadi, Roozbeh

    2013-01-01

    Superheating of refrigerant in the evaporator is an important aspect of safe operation of refrigeration systems. The level of superheat is typically controlled by adjusting the flow of refrigerant using an electronic expansion valve, where the superheat is calculated using measurements from...

  7. The experimental and engineering programmes to support the PFR Safety Case following the Superheater 2 under sodium leak: In particular, large scale experiments in the Super Noah Rig at Dounreay

    International Nuclear Information System (INIS)

    Currie, R.; Henderson, J.D.C.

    1990-01-01

    The original safety Case for the Prototype Fast Reactor (PFR) at Dounreay was based on the Double-ended-guillotine failure (DEGF) of one tube followed by six more DEGFs spread out at 3s intervals. Because the DEGF flowrate in the Evaporator units was considerably greater than those for the Superheater and Reheater units, pressure loading predictions were based on a leak incident in the Evaporator. As data became available from sodium-water reaction experiments, this Design Basis Accident (DBA) was revised to be the failure of a single tube (1DEGF). Pressure loadings for the plant were still based on the Evaporator. The plant was, however, designed against the original DBA of 1+6 DEGFs. The under sodium leak in Superheater 2, in which a total of 40 DEGFs occurred in a short period of time, cast doubt on the choice of DBA for PFR and it was obvious that multiple tube failure incidents had to be considered. A revised Safety Case for PFR was constructed based on an event tree and is presented in this paper. Also, in this paper the engineering work carried out on the plant in order to reduce the frequency of occurrence of multiple tube failures and the R and D programme initiated to remove unnecessary pessimism from the postulated multiple tube failure incidents are described. (author). 2 refs, 16 figs, 1 tab

  8. CFD modeling of a boiler's tubes rupture

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi [Chemical Engineering Department, Faculty of Engineering, Razi University, Kermanshah (Iran)

    2006-12-15

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-{epsilon} turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections. (author)

  9. Nonlinear Superheat and Evaporation Temperature Control of a Refrigeration Plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Thybo, Claus; Larsen, Lars F. S.

    2006-01-01

    This paper proposes novel control of the superheat of the evaporator in a refrigeration system. A new model of the evaporator is developed and based on this model the superheat is transferred to a referred variable. It is shown that control of this variable leads to a linear system independent...... of the working point. The model also gives a method for control of the evaporation temperature. The proposed method is validated by experimental results....

  10. Steam separator-superheater with drawing of a fraction of the dried steam

    International Nuclear Information System (INIS)

    Bessouat, Roger; Marjollet, Jacques.

    1976-01-01

    This invention concerns a vertical separator-superheater of the steam from a high pressure expansion turbine before it is admitted to an expansion turbine at a lower pressure, by heat exchange with steam under a greater pressure, and drawing of a fraction of the dried steam before it is superheated. Such drawing off is necessary in the heat exchange systems of light water nuclear reactors. Its purpose is to provide a separator-superheater that provides an even flow of non superheated steam and a regular distribution of the steam to be superheated to the various superheating bundles, with a significantly uniform temperature of the casing, thereby preventing thermal stresses and ensuring a minimal pressure drop. The vertical separator-superheater of the invention is divided into several vertical sections comprising as from the central area, a separation area of the steam entrained water and a superheater area and at least one other vertical section with only a separation area of the steam entrained water [fr

  11. Re-evaluation of superheat conditions postulated in NRC Information Notice 84-90

    International Nuclear Information System (INIS)

    Alsammarae, A.; Kruger, D.; Beutel, D.; Spisak, M.

    1994-01-01

    Information Notice 84-90, ''Main Steam Line Break Effect on Environmental Qualification of Equipment,'' describes a potential problem regarding existing plant analyses and Equipment Qualification (EQ) related to a postulated Main Steam Line Break (MSLB) with releases of superheated stream. This notice states that certain methodologies for computing mass and energy releases for a postulated MSLB did not account for heat transfer from the steam generator tube bundles if they were uncovered. Due to this potential change in the original environmental analysis, the EQ of various components may not consider the thermal environment which could result from superheated steam. Subsequent technical assessments may determine that the existing qualification basis for equipment/components does not envelop the postulated superheat condition. Corrective actions need to be taken to demonstrate that the affected equipment is qualified

  12. Remaining Life Estimation Of Secondary Superheater Outlet On Industrial Electrical Boiler

    International Nuclear Information System (INIS)

    Soedardjo; Andryansyah; Arhatari, B.D.; Natsir, Muhammad; Triyadi, Ari; Farokhi

    2001-01-01

    Remaining life estimation of secondary superheater header outlet (SSHO) on industrial electrical boiler has been carried out. Estimation conducted by the observation of microstructure cavitation development based on Neubauer and Wedel theory. The result is available for isolated cavitation development present yet. That Secondary Superheater Outlet component is in good condition after 14 years operated and predicted could be operated for 36 years again

  13. DYNAM, Once Through Boiling Flow with Steam Superheat, Laplace Transformation

    International Nuclear Information System (INIS)

    Schlueter, G.; Efferding, L.E.

    1973-01-01

    1 - Description of problem or function: DYNAM performs a dynamic analysis of once-through boiling flow oscillations with steam superheat. The model describing the superheat regime (single- phase, variable density fluid) for subcritical pressure operation is also applicable to the study of once-through operation using supercritical pressure water. 2 - Method of solution: Linearized partial differential conservation equations are solved using Laplace transformation of the temporal terms and integration of the spatial variations. DYNAM is written in complex variable notation. 3 - Restrictions on the complexity of the problem - Maxima of: 30 intervals used to describe the power distribution in the non-boiling and boiling regions, 29 boiling nodes, 7 intervals and corresponding friction multipliers read in per case, 14 exit qualities read in per case, 40 superheat nodes, 10 coefficients read in for the phi 2 vs, x-polynomial fit, 48 frequencies at which open-loop frequency response is desired, 48 frequencies at which signal output is desired

  14. Study of microstructural changes in boiler tubes and usage of time approach for determining of tube's failure

    International Nuclear Information System (INIS)

    Hemasi Taherabadi, L.; Raeiatpour, M.; Mehdizadeh, M.

    2001-01-01

    Operation condition of boilers such as corrosive media, high temperature and pressure has a pronounced effect on quality and performance of its components. Among these, the effect of temperature in microstructure and degradation of mechanical properties of boiler tubes is of most importance. Change in dimension, morphology, chemical composition and carbide spacing are the most important microstructural changes. Methods of study of such changes (through the investigation of composition, carbide spacing and thermal softening) are pointed in this article. Then, a number of failed super-heater tubes of a power plant were microlithography examined. Remaining life of tubes could be estimated by comparison of the results of metallographic and replication tests with microstructural standards

  15. Externally finned circular tube immerse in a phase-change material

    International Nuclear Information System (INIS)

    Alves, C.L.F.; Ismail, K.A.R.

    1985-01-01

    In an attempt to increase the heat transfer rate and reduce the convective currents during the freezing of phase change materials (PCM) in storage tanks, externally finned circular tubes are studied experimentally. The parameters analysed in this work include number of fins, fin length, initial degree of superheat and freezing time

  16. Fire-Side Corrosion: A Case Study of Failed Tubes of a Fossil Fuel Boiler

    OpenAIRE

    Asnavandi, Majid; Kahram, Mohaddeseh; Rezaei, Milad; Rezakhani, Davar

    2017-01-01

    The failures of superheater and reheater boiler tubes operating in a power plant utilizing natural gas or mazut as a fuel have been analysed and the fire-side corrosion has been suggested as the main reason for the failure in boiler tubes. The tubes have been provided by a fossil fuel power plant in Iran and optical and electron microscopy investigations have been performed on the tubes as well as the corrosion products on their surfaces. The results showed that the thickness of the failed tu...

  17. Pressure tests to assess the significance of defects in boiler and superheater tubing

    International Nuclear Information System (INIS)

    Guest, J.C.; Hutchings, J.A.

    1975-01-01

    Internal pressure tests on 9 per cent Cr-1 per cent Mo steel tubing containing artificial defects demonstrated that the resultant loss of strength was less than a simple calculation based on the reduced tube thickness would suggest. Bursting tests on tubes containing longitudinal defects of varying length, depth and acuity showed notch strengthening at ambient temperature and at 550 0 C. A flow stress concept developed for simple bursting tests was shown to apply to creep conditions at 550 0 C. Results of creep and short-term bursting tests show that the length as well as the depth of the defect is an important factor affecting the life of bursting strength of the tubes. Defects less than 10 per cent of the tube thickness were found to have an insignificant effect. (author)

  18. Influence of Superheated Steam Temperature Regulation Quality on Service Life of Boiler Steam Super-Heater Metal

    Directory of Open Access Journals (Sweden)

    G. T. Kulakov

    2009-01-01

    Full Text Available The paper investigates influence of change in quality of superheated steam temperature regulations on service life of super-heater metal. А dependence between metal service life and dispersion value for different steel grades has been determined in the paper. Numerical values pertaining to increase of super-heater metal service life in case of transferring from manual regulation to standard system of automatic regulation (SAR have been determined and in case of transferring from standard SAR to improved SAR. The analysis of tabular data and plotted dependencies makes it possible to conclude that any change in conditions of convection super-heater metal work due to better quality of the regulation leads to essential increase of time period which is left till the completion of the service life of a super-heater heating surface.

  19. Fireside corrosion of superheaters/reheaters in advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Syed, A.U.; Simms, N.J.; Oakey, J.E. [Cranfield Univ. (United Kingdom). Energy Technology Centre

    2010-07-01

    being used for the development of statistical models to predict the lifetimes of candidate materials for use in superheaters/reheaters in the advanced power plants. (orig.)

  20. Delayed hydride cracking and elastic properties of Excel, a candidate CANDU-SCWR pressure tube material

    International Nuclear Information System (INIS)

    Pan, Z.L.

    2010-01-01

    Excel, a Zr alloy which contains 3.5%Sn, 0.8%Nb and 0.8%Mo, shows high strength, good corrosion resistance, excellent creep-resistance and dimension stability and thus is selected as a candidate pressure tube material for CANDU-SCWR. In the present work, the delayed hydride cracking properties (K IH and the DHC growth rates), the hydrogen solubility and elastic modulus were measured in the irradiated and unirradiated Excel pressure tube material. (author)

  1. Superheater fireside corrosion mechanisms in MSWI plants: Lab-scale study and on-site results

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, J.M.; Chaucherie, X.; Nicol, F. [Veolia Environnement R and D, Zone Portuaire de Limay, 291 Avenue Dreyfous Ducas, Limay 78520 (France); Diop, I. [Veolia Environnement R and D, Zone Portuaire de Limay, 291 Avenue Dreyfous Ducas, Limay 78520 (France); Institut Jean Lamour, departement Chimie et physique des solides et des surfaces, UMR 7198 CNRS - Universite Henri Poincare Nancy 1, Vandoeuvre-Les-Nancy (France); Rapin, C.; Vilasi, M. [Institut Jean Lamour, departement Chimie et physique des solides et des surfaces, UMR 7198 CNRS - Universite Henri Poincare Nancy 1, Vandoeuvre-Les-Nancy (France)

    2011-06-15

    Combustion of municipal waste generates highly corrosive gases (HCl, SO{sub 2}, NaCl, KCl, and heavy metals chlorides) and ashes containing alkaline chlorides and sulfates. Currently, corrosion phenomena are particularly observed on superheater's tubes. Corrosion rates depend mainly on installation design, operating conditions i.e., gas and steam temperature and velocity of the flue gas containing ashes. This paper presents the results obtained using an innovative laboratory-scale corrosion unit, which simulates MSWI (Municipal Solid Waste Incineration) boilers conditions characterized by a temperature gradient at the metal tube in the presence of corrosive gases and ashes. The presented corrosion tests were realized on carbon steel at fixed metal temperature (400 C). The influence of the flue gas temperature, synthetic ashes composition, and flue gas flow pattern were investigated. After corrosion test, cross sections of tube samples were characterized to evaluate thickness loss and estimate corrosion rate while the elements present in corrosion layers were analyzed. Corrosion tests were carried out twice in order to validate the accuracy and reproducibility of results. First results highlight the key role of molten phase related to the ash composition and flue gas temperature as well as the deposit morphology, related to the flue gas flow pattern, on the mechanisms and corrosion rates. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. High-Speed Imaging of Explosive Droplet Boiling at the Superheat Limit

    Science.gov (United States)

    Ferris, F. Robert; Hermanson, Jim; Asadollahi, Arash; Esmaeeli, Asghar

    2017-11-01

    The explosive boiling processes of droplets of diethyl ether (1-2 mm in diameter) at the superheat limit were examined both experimentally and computationally. Experimentally, droplet explosion was studied using a heated bubble column to bring the test droplet to the superheat limit. The droplet fluid was diethyl ether (superheat limit 147 C at 1 bar) with immiscible glycerol employed as the heated host fluid. Tests were carried out at pressures between 0.5 and 4 bar absolute. The pressure rise associated with the explosive boiling event was captured using a piezoelectric quartz pressure transducer with a 1 MHz DAQ system. High-speed imaging of the interfacial behavior during explosive boiling was performed using a Phantom v12.1 camera at a frame rate of up to one million frames per second with the droplets illuminated by diffuse back-lighting. The imaging reveals features of the Rayleigh-Taylor instability at the vapor-liquid interface resulting from the unstable boiling process. Computationally, Direct Numerical Simulations are performed at Southern Illinois University Carbondale to compliment the experimental tests. NSF Award Number 1511152.

  3. Alkali chloride induced corrosion of superheaters under biomass firing conditions: Improved insights from laboratory scale studies

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    One of the major operational challenges experienced by power plants firing biomass is the high corrosion rate of superheaters. This limits the outlet steam temperature of the superheaters and consequently, the efficiency of the power plants. The high corrosion rates have been attributed to the fo......One of the major operational challenges experienced by power plants firing biomass is the high corrosion rate of superheaters. This limits the outlet steam temperature of the superheaters and consequently, the efficiency of the power plants. The high corrosion rates have been attributed......, [1–3]). However, complete understanding of the corrosion mechanism under biomass-firing conditions has not yet been achieved. This is attributed partly to the complex nature of the corrosion process since there are many species produced from fuel combustion which can interact with one another...... and the steel surface. Many studies have focused on specific parameters such as, deposit composition (KCl, K2SO4, K2CO3, etc.) or gas species such as HCl, SO2, H2O [4–6], however, more research is necessary to understand the interaction of deposits and gas mixtures with each other and metallic superheater...

  4. CFD analysis of temperature imbalance in superheater/reheater region of tangentially coal-fired boiler

    Science.gov (United States)

    Zainudin, A. F.; Hasini, H.; Fadhil, S. S. A.

    2017-10-01

    This paper presents a CFD analysis of the flow, velocity and temperature distribution in a 700 MW tangentially coal-fired boiler operating in Malaysia. The main objective of the analysis is to gain insights on the occurrences in the boiler so as to understand the inherent steam temperature imbalance problem. The results show that the root cause of the problem comes from the residual swirl in the horizontal pass. The deflection of the residual swirl due to the sudden reduction and expansion of the flow cross-sectional area causes velocity deviation between the left and right side of the boiler. This consequently results in flue gas temperature imbalance which has often caused tube leaks in the superheater/reheater region. Therefore, eliminating the residual swirl or restraining it from being diverted might help to alleviate the problem.

  5. Contamination prevention of superheaters and reheaters during initial startup and operation

    International Nuclear Information System (INIS)

    Gabrielli, F.; Sylvester, W.R.; Thimot, G.W.

    1976-01-01

    The general precautions that should be taken to minimize the potential for harmful contamination or oxygen corrosion of power plant superheaters and reheaters during the period from field storage through operation are discussed and summarized. Present boiler industry start-up and operating practices intended to minimize the introduction of solids to the superheater are, as proven by experience, adequate to avoid contamination-related problems. No basic changes to general industry practice are necessary. What is needed, however, is a continuing awareness of the potential for contamination-related problems so that in the specific application of these practices all likely sources of contamination will be considered

  6. Survey of the current state of knowledge of incipient boiling superheat in sodium

    International Nuclear Information System (INIS)

    Greer, B.

    1979-01-01

    Superheat data obtained by various investigators indicate that many parameters affect this phenomenon. Controlling parameters appear to be inert gas concentration, oxide concentration, system pressure, pressure-temperature history, rate of temperature rise, heat flux, flow rate, operating time on the system, surface conditions, and radiation. Of these, the two believed most influential in controlling incipient boiling superheat are the inert gas concentration and oxide concentration. Experimental results for the heat flux and rate of temperature rise appear to be the most inconsistent

  7. LMFBR steam generator development: duplex bayonet tube steam generator. Volume II

    International Nuclear Information System (INIS)

    DeFur, D.D.

    1975-04-01

    This report represents the culmination of work performed in fulfillment of ERDA Contract AT(11-1)-2426, Task Agreement 2, in which alternate steam generator designs were developed and studied. The basic bayonet tube generator design previously developed by C-E under AEC Contract AT(11-1)-3031 was expanded by incorporating duplex heat transfer tubes to enhance the unit's overall safety and reliability. The effort consisted of providing and evaluating conceptual designs of the evaporator, superheater and reheater components for a large plant LMFBR steam generator (950 MWt per heat transport loop)

  8. SEM Investigation of Superheater Deposits from Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Frandsen, Flemming; Hansen, Jørn

    2004-01-01

    , mature superheater deposit samples were extracted from two straw-fired boilers, Masnedø and Ensted, with fuel inputs of 33 MWth and 100 MWth, respectively. SEM (scanning electron microscopy) images and EDX (energy dispersive X-ray) analyses were performed on the deposit samples. Different strategies...

  9. Nonlinear superheat and capacity control of a refrigeration plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2009-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. A new low order nonlinear model of the evaporator is developed and used in a backstepping design of a nonlinear controller. The stability of the proposed method is validated theoretically by Lyapunov...

  10. Prevention of superheater corrosion caused by chlorine; Tulistimien kloorikorroosion estaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Roppo, J. [Kvaerner Power Oy, Tampere (Finland)

    2006-12-19

    Combustion of CO{sub 2}-neutral fuels is becoming more attractive and common method to decrease CO2 emissions of energy production. Also well managed and controlled combustion of waste fractions compared to their landfilling produces much less greenhouse gas emissions. In combustion of these fuels in high efficiency power plants notably increased superheater corrosion risk is prevailing, mainly caused by chlorine. Typical such fuels are forest, agricultural and household residues, biological sludge's of pulp and paper industry and RDF made from separated municipal and industrial solid waste. The goal of the project is to develop clearly cheaper and more effective method to protect superheaters, which enables combustion of biomass and waste fuels with higher energy shares. Tests in pilot and full scale power plants will reveal the potential and applicability of the developed method for commercial use. (orig.)

  11. Effective new chemicals to prevent corrosion due to chlorine in power plant superheaters

    Energy Technology Data Exchange (ETDEWEB)

    Martti Aho; Pasi Vainikka; Raili Taipale; Patrik Yrjas [VTT, Jyvaeskylae (Finland)

    2008-05-15

    Firing or co-firing of biomass in efficient power plants can lead to high-temperature corrosion of superheaters due to condensation of alkali chlorides into superheater deposits. Corrosion can be prevented if a significant portion of the alkali chlorides present in the flue gases is destroyed before reaching the superheaters. The alkali capturing power of aluminium and ferric sulphates was determined in a pilot-scale fluidised bed (FB) reactor. The reagents were added in solution, through a spraying nozzle, to the upper part of the freeboard. Both reagents, at economical dosages, fast and effectively destroyed the alkali chlorides by producing sufficient SO{sub 3} for the sulphation. Both the mass flow rate and type of sulphate affected the sulphation ability. Thus, the cation, too, plays a role in the reaction. The required chemical dosage is not directly proportional to the S{sub reagent}/Cl{sub 2fuel} ratio because alkali chlorides must compete with calcium and magnesium oxides and probably also with alkali oxides for the available SO{sub 3}. 17 refs., 16 figs., 1 tab.

  12. Irradiation of Superheater Test Fuel Elements in the Steam Loop of the R2 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ravndal, F

    1967-12-15

    The design, fabrication, irradiation results, and post-irradiation examination for three superheater test fuel elements are described. During the spring of 1966 these clusters, each consisting of six fuel rods, were successfully exposed in the superheater loop No. 5 in the R2 reactor for a maximum of 24 days at a maximum outer cladding surface temperature of {approx} 650 deg C. During irradiation the linear heat rating of the rods was in the range 400-535 W/cm. The diameter of the UO{sub 2} pellets was 11.5 and 13.0 mm; the wall thickness of the 20/25 Nb and 20/35 cladding was in every case 0.4 mm. The diametrical gap between fuel and cladding was one of the main parameters and was chosen to be 0.05, 0.07 and 0.10 mm. These experiments, to be followed by one high cladding temperature irradiation ({approx} 750 deg C) and one long time irradiation ({approx} 6000 MWd/tU), were carried out to demonstrate the operational capability of short superheater test fuel rods at steady and transient operational environments for the Marviken superheater fuel elements and also to provide confirmation of design criteria for the same fuel elements.

  13. Failure analysis of a boiler tube in USC coal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, N.H.; Kim, S.; Choe, B.H.; Yoon, K.B.; Kwon, D.I. [Kangnung National University, Kangnung (Republic of Korea)

    2009-10-15

    This paper presents failure analysis of final superheater tube in ultra-supercritical (USC) coal power plant. Visual inspection was performed to find out the characteristics of fracture of the as-received material. And the micro-structural changes such as grain growth and carbide coarsening was examined by scanning electron microscope. Detailed microscopic studies were made to find out the behavior of the scale exfoliation on the waterside of tubes. From those investigations, the creep rupture may be caused by the softened structure induced by carbide coarsening and accelerated by the metal temperature increase by the impediment of heat transfer due to voids.

  14. A thermodynamic approach on vapor-condensation of corrosive salts from flue gas on boiler tubes in waste incinerators

    International Nuclear Information System (INIS)

    Otsuka, Nobuo

    2008-01-01

    Thermodynamic equilibrium calculation was conducted to understand the effects of tube wall temperature, flue gas temperature, and waste chemistry on the type and amount of vapor-condensed 'corrosive' salts from flue gas on superheater and waterwall tubes in waste incinerators. The amount of vapor-condensed compounds from flue gases at 650-950 deg. C on tube walls at 350-850 deg. C was calculated, upon combustion of 100 g waste with 1.6 stoichiometry (in terms of the air-fuel ratio). Flue gas temperature, rather than tube wall temperature, influenced the deposit chemistry of boiler tubes significantly. Chlorine, sulfur, sodium, potassium, and calcium contents in waste affected it as well

  15. A fault tolerant superheat control strategy for supermarket refrigeration systems

    DEFF Research Database (Denmark)

    Vinther, Kasper; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik

    2013-01-01

    , based on a maximum slope-seeking control method and only a single temperature sensor, is developed to drive the evaporator outlet temperature to a level that gives a suitable superheat of the refrigerant. The FTC strategy requires no a priori system knowledge or additional hardware and functions...

  16. Tuning and performance evaluation of PID controller for superheater steam temperature control of 200 MW boiler using gain phase assignment algorithm

    Science.gov (United States)

    Begum, A. Yasmine; Gireesh, N.

    2018-04-01

    In superheater, steam temperature is controlled in a cascade control loop. The cascade control loop consists of PI and PID controllers. To improve the superheater steam temperature control the controller's gains in a cascade control loop has to be tuned efficiently. The mathematical model of the superheater is derived by sets of nonlinear partial differential equations. The tuning methods taken for study here are designed for delay plus first order transfer function model. Hence from the dynamical model of the superheater, a FOPTD model is derived using frequency response method. Then by using Chien-Hrones-Reswick Tuning Algorithm and Gain-Phase Assignment Algorithm optimum controller gains has been found out based on the least value of integral time weighted absolute error.

  17. The Phenomenon of Superheat of Liquids: In Memory of Vladimir P. Skripov

    Science.gov (United States)

    Skripov, P. V.; Skripov, A. P.

    2010-05-01

    This article is devoted to the memory of Vladimir P. Skripov (1927-2006). He has received worldwide recognition for his monograph on metastable liquids published in 1972 (the English edition was published in 1974). We briefly discuss some studies deal with the phenomenon of attainable superheat of liquids and with measurements of thermophysical properties of liquids under conditions of a moderate degree of superheat. Main attention is paid to the studies performed by V.P. Skripov and his research group in the 1960s and 1970s. Experimental methods which provided break-throughs in research on both spontaneous boiling-up kinetics and substance properties (the specific volume, isobaric heat capacity, ultrasound speed, and viscosity) in super-heated states are presented.

  18. A Stochastic mesoscopic model for predicting the globular grain structure and solute redistribution in cast alloys at low superheat

    International Nuclear Information System (INIS)

    Nastac, Laurentiu; El Kaddah, Nagy

    2012-01-01

    It is well known that casting at low superheat has a strong influence on the solidification morphology and macro- and microstructures of the cast alloy. This paper describes a stochastic mesoscopic solidification model for predicting the grain structure and segregation in cast alloy at low superheat. This model was applied to predict the globular solidification morphology and size as well as solute redistribution of Al in cast Mg AZ31B alloy at superheat of 5°C produced by the Magnetic Suspension Melting (MSM) process, which is an integrated containerless induction melting and casting process. The castings produced at this low superheat have fine globular grain structure, with an average grain size of 80 μm, which is about 3 times smaller than that obtained by conventional casting techniques. The stochastic model was found to reasonably predict the observed grain structure and Al microsegregation. This makes the model a useful tool for controlling the structure of cast magnesium alloys.

  19. Preventing superheater corrosion by additives; Tulistimien kloorikorroosion estaeminen lisaeainein

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Vainikka, P. [VTT, Espoo (Finland); Skrifvars, B.J.; Yrjas, P. [Aabo Akademi, Process Chemistry, Turku (Finland)

    2006-12-19

    The new superheater protection methods enable combustion of demanding biomass with higher portions than at present. This benefit reduces CO{sub 2} emissions from energy production and the use of demanding biomass in energy production will extend replacing biowaste landfilling with strong CH{sub 4} formation. The results assist also to meet the goals of the use of logging residues in energy production in Finland. (orig.)

  20. CLUMPED LIGHT WATER MODERATED UO$sub 2$ SUPERHEAT CRITICALS. PART II. ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G. T.

    1963-11-15

    Critical and subcritical reactivity measurements on an EVESR-type core, using EVESR UO/sub 2/ superheat fuel elements, are analyzed in order to obtain a physics design model for use in the EVESR. (T.F.H.)

  1. Long-term creep rupture strength of weldment of Fe-Ni based alloy as candidate tube and pipe for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Gang; Sato, Takashi [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Research Laboratory; Marumoto, Yoshihide [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Div.

    2010-07-01

    A lot of works have been going to develop 700C USC power plant in Europe and Japan. High strength Ni based alloys such as Alloy 617, Alloy 740 and Alloy 263 were the candidates for boiler tube and pipe in Europe, and Fe-Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti) is also a candidate for tube and pipe in Japan. One of the Key issues to achieve 700 C boilers is the welding process of these alloys. Authors investigated the weldability and the long-term creep rupture strength of HR6W tube. The weldments were investigated metallurgically to find proper welding procedure and creep rupture tests are ongoing exceed 38,000 hours. The long-term creep rupture strengths of the HST weld joints are similar to those of parent metals and integrity of the weldments was confirmed based on with other mechanical testing results. (orig.)

  2. Superheater fouling in a BFB boiler firing wood-based fuel blends

    NARCIS (Netherlands)

    Stam, A.F.; Haasnoot, K.; Brem, Gerrit

    2014-01-01

    Four different fuel blends have been fired in a 28 MWel BFB. Wood pellets (test 0) were not problematic for about ten years, contrary to a mixture of demolition wood, wood cuttings, compost overflow, paper sludge and roadside grass (test 1) which caused excessive fouling at a superheater bundle

  3. Fire-Side Corrosion: A Case Study of Failed Tubes of a Fossil Fuel Boiler

    Directory of Open Access Journals (Sweden)

    Majid Asnavandi

    2017-01-01

    Full Text Available The failures of superheater and reheater boiler tubes operating in a power plant utilizing natural gas or mazut as a fuel have been analysed and the fire-side corrosion has been suggested as the main reason for the failure in boiler tubes. The tubes have been provided by a fossil fuel power plant in Iran and optical and electron microscopy investigations have been performed on the tubes as well as the corrosion products on their surfaces. The results showed that the thickness of the failed tubes is not uniform which suggests that fire-side corrosion has happened on the tubes. Fire-side corrosion is caused by the reaction of combustion products with oxide layers on the tube surface resulting in metal loss and consequently tubes fracture. However, the tubes corrosion behaviour did not follow the conventional models of the fire-side corrosion. Given that, using the corrosion monitoring techniques for these boiler tubes seems essential. As a result, the thickness of the boiler tubes in different parts of the boiler has been recorded and critical points are selected accordingly. Such critical points are selected for installation of corrosion monitoring probes.

  4. Dynamic performances of wet turbine and steam-separator-superheater and their mathematical simulation as objects of temperature control

    International Nuclear Information System (INIS)

    Golovach, E.A.

    1985-01-01

    A mathematical model of a turbine and steam-separator-superheater (SSS) as applied to solution of the tasks of steam temperature regulaton after SSS has been developed. SSS as objects of steam temperature control are considerably less inertial, than intermediate superheaters (IS) of power units in thermal power plants, since for typical SSS and IS considered the duration of transition process according to steam temperature after SSS is 5-10 times loweA than for IS

  5. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Steven; Rapp, Robert

    2014-08-31

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zone and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in

  6. Preliminary design study of removable integral steam generator units of the multiple helically wound tube type for a 1250 MW(th) H.T.G.C. reactor

    International Nuclear Information System (INIS)

    Gilli, P.V.; Fritz, K.; Lippitsch, J.; Sandri, A.H.; Weiss, B.

    1965-11-01

    The possibilities of designing a multiple steam generator for a 1250 MW(th) High Temperature Gas-Cooled Reactor, consisting of 18 units which are able to pass through 5 ft diam. holes in the integral prestressed concrete pressure vessel are investigated. A lay-out and design with bundles of multi-start helical tubes is evolved, particular attention being paid to the questions of tube blanking and removal of the unit, and of selection of materials for superheater and reheater tubes. Thermal and stress calculations have been carried out, using the Waagner-Biro Computer Code ADURHELIX. (author)

  7. High temperature corrosion investigations at AW2-bio. Final report; Biomass boiler

    Energy Technology Data Exchange (ETDEWEB)

    Borg, U.

    2011-01-15

    The measured corrosion rates in the test superheaters and ordinary superheaters of Avedoere 2 biomass boiler reveal that the corrosion rate increases with metal temperature and is significantly accelerated above steam temperatures of 540 deg. C. For the boiler with a live steam temperature of 540 deg. C, the measured corrosion rates in superheater 2 and 3 were up to 1mm pr. 10000 hours. It was observed that the flue gas temperature and heat flux had a significant effect on the corrosion rates through the surface metal temperature. Thus, the highest corrosion rates in the ordinary superheaters were not found at the position of the highest steam temperature in the outlet of superheater 3, but at the outlet of superheater 2. A steam temperature of approximately 580 deg. C at the outlet of one of the test superheater loops caused a tube fracture after a few months. A HVOF coating was applied to a section of superheater 2 and at a higher temperature in the test superheater loop. Analyses of the tube section after exposure showed that parts of the coating were not present and corrosion of the underlying TP347H FG was apparent. This indicates that the coating had spalled during operation. Furthermore, chlorine diffusion through the coating was observed causing attack at the coating-alloy interface. The project work has shown that it is not possible to increase the live steam temperature of the biomass fired boiler to more than 540 deg. C without a significant increase in superheater corrosion rates for the applied tube materials and coatings. (Author)

  8. Axial propagation of free surface boiling into superheated liquids in vertical tubes

    International Nuclear Information System (INIS)

    Grolmes, M.A.; Fauske, H.K.

    1974-01-01

    A unique free surface boiling phenomenon has been observed as a result of rapid depressurization of an initially saturated or slightly subcooled stagnant liquid column in the absence of wall and bulk nucleation sites. Closeup high-speed photographs of water, refrigerant-11, and methyl alcohol in tubes from 0.2 to 15 in. dia reveal that the initiation of violent free surface flashing (vapor plus entrained liquid) follows from the development of Marangoni-type surface waves. The rate of propagation of the flashing surface shows evidence of choked flow limitations and proceeds at a rate which is several orders of magnitude greater than surface evaporation (vapor only) alone. The onset of free surface flashing was found to be dependent upon both the degree of initial liquid superheat and the tube diameter. (U.S.)

  9. Factors in the selection of broiler tube materials for a civil fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tyzack, C; Chitty, A

    1975-07-01

    This paper briefly considers some of the factors which must be balanced in the selection of a boiler tube material for a Civil Fast Reactor. The merits and possible demerits of low alloy ferritic steels and the austenitic Alloy 800 are compared with respect to waterside corrosion resistance, mechanical properties, fabrication and weldability and possible effects of exposure to the sodium environment under normal and fault conditions. It is pointed out that although there is operational experience of most of the materials in boiler superheater applications there is little or none in evaporative regimes. (author)

  10. Modeling the quenching of a calandria tube following a critical break LOCA in a CANDU reactor

    International Nuclear Information System (INIS)

    Jiang, J.T.; Luxat, J.C.

    2008-01-01

    Following a postulated critical large break LOCA a pressure tube (PT) can experience creep deformation and balloon uniformly into contact with the calandria tube (CT). The resultant heat flux to CT is high as stored heat is transferred out of the hot PT. This heat flux can cause dryout on the outer surface of the CT and establish film boiling. This paper presents a model of buoyancy-driven natural convection film boiling on the outside of a horizontal tube with diameter relevant to a CANDU CT (approximately 130mm). The model has been developed to analyze the variation of steady state vapor film thickness as a function of sub-cooling temperature, wall superheat and incident heat flux. The CT outer surface heat flux and effective film boiling heat transfer coefficient from the model are in good agreement with available experimental data. (author)

  11. Modeling the quenching of a calandria tube following a critical break LOCA in a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.T.; Luxat, J.C. [McMaster Univ., Dept. of Engineering Physics, Hamilton, Ontario (Canada)

    2008-07-01

    Following a postulated critical large break LOCA a pressure tube (PT) can experience creep deformation and balloon uniformly into contact with the calandria tube (CT). The resultant heat flux to CT is high as stored heat is transferred out of the hot PT. This heat flux can cause dryout on the outer surface of the CT and establish film boiling. This paper presents a model of buoyancy-driven natural convection film boiling on the outside of a horizontal tube with diameter relevant to a CANDU CT (approximately 130mm). The model has been developed to analyze the variation of steady state vapor film thickness as a function of sub-cooling temperature, wall superheat and incident heat flux. The CT outer surface heat flux and effective film boiling heat transfer coefficient from the model are in good agreement with available experimental data. (author)

  12. Effect of Chlorine and Sulphur on Stainless Steel (AISI 310) Due To High Temperature Corrosion.

    OpenAIRE

    Onaivi Daniel Azamata; Titus Yusuf Jibatswen; Odinize C. Michael

    2016-01-01

    In a power station boiler, there are temperature of regimes of corrosion which occurs mainly in the economizer, boiler steam generation tubes, super-heater tubes and air tubes. The specific gas temperatures in degrees centigrade for the following include: 150 – 370oC for the economizer, 1000 – 1650oC for the boiler steam generation tubes, 650 – 1000oC for super-heater tubes and 1000 – 1200oC for air tubes. For power station boilers that burn coal as the source of fuel it is recommended that a...

  13. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

    2007-12-31

    The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel

  14. Evaporator Superheat Control With One Temperature Sensor Using Qualitative System Knowledge

    DEFF Research Database (Denmark)

    Vinther, Kasper; Hillerup Lyhne, Casper; Baasch Sørensen, Erik

    2012-01-01

    This paper proposes a novel method for superheat control using only a single temperature sensor at the outlet of the evaporator, while eliminating the need for a pressure sensor. An inner loop controls the outlet temperature and an outer control loop provides a reference set point, which is based...... filling of the evaporator, with only one temperature sensor. No a priori model knowledge was used and it is anticipated that the method is applicable on a wide variety of refrigeration systems....

  15. On-line Auto-Tuning of PI Control of the Superheat for a Supermarket Refrigeration System

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Andersen, Casper; Izadi-Zamanabadi, Roozbeh

    2011-01-01

    An online PI auto-tuning method is proposed for superheat control for a type of supermarket refrigeration systems. The proposed procedure consists of three serial steps: Step-One uses one of the two proposed empirical methods, namely multi-step method and relay method, for modeling initialization...

  16. High temperature (salt melt) corrosion tests with ceramic-coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Schütz, Adelheid [University Bayreuth, Metals and Alloys, Ludwig-Thoma-Str. 36b, D-95447 Bayreuth (Germany); Günthner, Martin; Motz, Günter [University Bayreuth, Ceramic Materials Engineering, L.-Thoma-Str. 36b, D-95447 Bayreuth (Germany); Greißl, Oliver [EnBW Kraftwerke AG, Schelmenwasenstraße 13-15, D-70567 Stuttgart (Germany); Glatzel, Uwe, E-mail: uwe.glatzel@uni-bayreuth.de [University Bayreuth, Metals and Alloys, Ludwig-Thoma-Str. 36b, D-95447 Bayreuth (Germany)

    2015-06-01

    Thermal recycling of refuse in waste-to-energy plants reduces the problems connected to waste disposal, and is an alternative source of electric energy. However, the combustion process in waste incinerators results in a fast degradation of the steam-carrying superheater steel tubes by corrosive attack and abrasive wear. Higher firing temperatures are used to increase their efficiency but lead to higher corrosion rates. It is more economical to apply protective coatings on the superheater steel tubes than to replace the base material. In-situ tests were conducted in a waste-to-energy plant first in order to identify and quantify all involved corrosive elements. Laboratory scale experiments with salt melts were developed accordingly. The unprotected low-alloyed steel displayed substantial local corrosion. Corrosion was predominant along the grain boundaries of α-ferrite. The corrosion rate was further increased by FeCl{sub 3} and a mixture of HCL and FeCl{sub 3}. Coatings based on pre-ceramic polymers with specific filler particles were engineered to protect superheater tubes. Tests proved their suitability to protect low-alloYed steel tubes from corrosive attack under conditions typical for superheaterS in waste incinerators, rendering higher firing temperatures in waste-to-energy plants possible. - Highlights: • Corrosion wall thickness losses of 400 μm/2 weeks occurred in a waste incinerator. • Abrasion is a major problem on superheater tubes in waste incinerators. • Laboratory salt melt tests can simulate metal corrosion in waste incinerators. • Corrosion protection coatings for steel (temperature: max. 530 °C) were developed. • Higher steam temperatures are possible in WIs with the developed coatings.

  17. Experience gained from shifting a PK-19 boiler to operate with increased superheating and with a load higher than its rated value

    Science.gov (United States)

    Kholshchev, V. V.

    2011-08-01

    Failures of steam superheater tubes occurred after the boiler was shifted to operate with a steam temperature of 540°C. The operation of the steam superheater became more reliable after it had been subjected to retrofitting. The modernization scheme is described. An estimate is given to the temperature operating conditions of tubes taking into account the thermal-hydraulic nonuniformity of their heating.

  18. Experiences with high temperature corrosion at straw‐firing power plants in Denmark

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Jensen, S. A.; Borg, U.

    2011-01-01

    to enable better lifetime prediction of vulnerable components in straw‐firing plants since the corrosion rates are so much faster than in coal firing plants. Therefore, there are continued investigations in recently commissioned plants with test tubes installed into actual superheaters. In addition...... temperature is measured on the specific tube loops where there are test tube sections. Thus a corrosion rate can be coupled to a temperature histogram. This is important since although a superheater has a defined steam outlet temperature, there is variation in the tube bundle due to variations of heat flux...

  19. Heat transfer characteristics evaluation of heat exchangers of mock-up test facility with full-scale reaction tube for HTTR hydrogen production system (Contract research)

    International Nuclear Information System (INIS)

    Shimizu, Akira; Ohashi, Hirofumi; Kato, Michio; Hayashi, Koji; Aita, Hideki; Nishihara, Tetsuo; Inaba, Yoshitomo; Takada, Shoji; Morisaki, Norihiro; Sakaki, Akihiro; Maeda, Yukimasa; Sato, Hiroyuki; Inagaki, Yoshiyuki; Hanawa, Hiromi; Fujisaki, Katsuo; Yonekawa, Hideo

    2005-06-01

    Connection of hydrogen production system by steam reforming of methane to the High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Research Institute (JAERI) has been surveyed until now. Mock-up test facility of this steam reforming system with full-scale reaction tube was constructed in FY 2001 and hydrogen of 120 Nm 3 /h was successfully produced in overall performance test. Totally 7 times operational tests were performed from March 2002 to December 2004. A lot of operational test data on heat exchanges were obtained in these tests. In this report specifications and structures of steam reformer, steam superheater, steam generator, condenser, helium gas cooler, feed gas heater and feed gas superheater were described. Heat transfer correlation equations for inside and outside tube were chosen from references. Spreadsheet programs were newly made to evaluate heat transfer characteristics from measured test data such as inlet and outlet temperature pressure and flow-rate. Overall heat-transfer coefficients obtained from the experimental data were compared and evaluated with the calculated values with heat transfer correlation equation. As a result, actual measurement values of all heat exchangers gave close agreement with the calculated values with correlation equations. Thermal efficiencies of the heat exchangers were adequate as they were well accorded with design value. (author)

  20. Influence of surface roughness and melt superheat on HDA process to form a tritium permeation barrier on RAFM steel

    Energy Technology Data Exchange (ETDEWEB)

    Purushothaman, J. [B.S. Abdur Rahman University, Chennai 600048 (India); MTD, MMG, IGCAR, Kalpakkam 603102 (India); Ramaseshan, R., E-mail: seshan@igcar.gov.in [TFCS, SND, MSG, IGCAR, Kalpakkam 603102 (India); Albert, S.K. [MTD, MMG, IGCAR, Kalpakkam 603102 (India); Rajendran, R. [B.S. Abdur Rahman University, Chennai 600048 (India); Gowrishankar, N. [IP Rings Ltd., Maraimalainagar, Chennai 603209 (India); Ramasubbu, V. [MTD, MMG, IGCAR, Kalpakkam 603102 (India); Murugesan, S.; Dasgupta, Arup [PMG, MMG, IGCAR, Kalpakkam 603102 (India); Jayakumar, T. [MTD, MMG, IGCAR, Kalpakkam 603102 (India)

    2015-12-15

    Highlights: • Surface modified RAFMS samples were subjected to HDA and thermal oxidation. • Sample modified by SB process showed better coating and interface morphology. • Aluminized samples at 740 °C for 2 min showed Fe{sub 2}Al{sub 9}Si{sub 2} intermetallic phase. • Oxidized samples showed Fe{sub 2}Al{sub 8}Si, Fe{sub 2}Al{sub 3}Si{sub 3} and Fe{sub 3}Al{sub 2}Si{sub 3} intermetallic phases. • A uniform permeation barrier Al{sub 2}O{sub 3} was formed on the coating of oxidized HDA samples. - Abstract: The most optimal candidate material for fabrication of Test Blanket Module (TBM) in the installation of ITER and future fusion reactors is Reduced Activation Ferritic Martensitic (RAFM) steel, yet one of the major challenges that need to be addressed with RAFM is minimizing the loss of tritium in a reactor environment through the formation of tritium permeation barrier. One of the most promising methods for the tritium permeation barrier is through duplex coating with Al{sub 2}O{sub 3}/Fe–Al which is well known to reduce tritium permeation rate by several orders of magnitude. The present work aims to form an alumina layer on RAFM steel by a two-step method, which consists of (i) Hot Dip Aluminizing (HDA) and (ii) conversion of Al into alumina by a subsequent oxidation process. In addition, the influence of surface roughness of the substrate, superheat condition of the Al alloy melt and its composition on microstructural properties of coating before and after oxidation were investigated using OM, SEM–EDS, XRD, indentation micro hardness and scratch test. The experimental results confirmed the formation of alumina layer on RAFM steel after the HDA and oxidation process. Moreover, the surface roughness of the substrate, melt superheat of Al alloy and its composition are found to have a significant influence on the microstructure, thickness, micro-hardness, nature of intermetallic compounds formed and adhesion strength of the coating.

  1. Determination of the concentration profile of chemical elements in superheater pipes

    International Nuclear Information System (INIS)

    Aldape U, F.; Aspiazu F, J.

    1986-05-01

    This work has for object to determine the profile of concentration of chemical elements at trace level in a superheater pipe of Thermoelectric Plants using the X-ray emission spectroscopy technique induced by protons coming from the Accelerator of the Nuclear Center. In the X-ray detection, a Si Li detector was used. The technique was chosen because it allows a multielemental analysis, of high sensitivity and precision. The results can help to understand the problems that are had in the change of flexibility or of corrosion. This will be from utility to the Federal Electricity Commission (CFE). (Author)

  2. Mechanistic modeling of pool film-boiling and quench on a Candu calandria tube following a critical break LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.T.; Luxat, J.C. [McMaster University, A315 JHE Building, 1280 Main St.W. Hamilton, ON, L8S 4L7 (Canada)

    2008-07-01

    Following a postulated critical LBLOCA a pressure tube (PT) can experience creep deformation and balloon uniformly into contact with the calandria tube (CT). The resultant heat flux to CT is high as stored heat is transferred out of the hot PT. This heat flux can cause dryout on the outer surface of the CT and establish film boiling. This paper presents a model of buoyancy-driven natural convection film boiling on the outside of a horizontal tube with diameter relevant to a Candu CT (approximately 13 cm). A second order, non-linear and non-homogeneous ODE for vapour film thickness has been derived. The variation of steady state vapour film thickness prior to quench as a function of subcooling temperature, wall superheat, and incident heat flux is examined. The CT outer surface heatup rate and effective film boiling heat transfer coefficient from the model are in good agreement with available experimental data. (authors)

  3. Mechanistic modeling of pool film-boiling and quench on a Candu calandria tube following a critical break LOCA

    International Nuclear Information System (INIS)

    Jiang, J.T.; Luxat, J.C.

    2008-01-01

    Following a postulated critical LBLOCA a pressure tube (PT) can experience creep deformation and balloon uniformly into contact with the calandria tube (CT). The resultant heat flux to CT is high as stored heat is transferred out of the hot PT. This heat flux can cause dryout on the outer surface of the CT and establish film boiling. This paper presents a model of buoyancy-driven natural convection film boiling on the outside of a horizontal tube with diameter relevant to a Candu CT (approximately 13 cm). A second order, non-linear and non-homogeneous ODE for vapour film thickness has been derived. The variation of steady state vapour film thickness prior to quench as a function of subcooling temperature, wall superheat, and incident heat flux is examined. The CT outer surface heatup rate and effective film boiling heat transfer coefficient from the model are in good agreement with available experimental data. (authors)

  4. Candidate cave entrances on Mars

    Science.gov (United States)

    Cushing, Glen E.

    2012-01-01

    This paper presents newly discovered candidate cave entrances into Martian near-surface lava tubes, volcano-tectonic fracture systems, and pit craters and describes their characteristics and exploration possibilities. These candidates are all collapse features that occur either intermittently along laterally continuous trench-like depressions or in the floors of sheer-walled atypical pit craters. As viewed from orbit, locations of most candidates are visibly consistent with known terrestrial features such as tube-fed lava flows, volcano-tectonic fractures, and pit craters, each of which forms by mechanisms that can produce caves. Although we cannot determine subsurface extents of the Martian features discussed here, some may continue unimpeded for many kilometers if terrestrial examples are indeed analogous. The features presented here were identified in images acquired by the Mars Odyssey's Thermal Emission Imaging System visible-wavelength camera, and by the Mars Reconnaissance Orbiter's Context Camera. Select candidates have since been targeted by the High-Resolution Imaging Science Experiment. Martian caves are promising potential sites for future human habitation and astrobiology investigations; understanding their characteristics is critical for long-term mission planning and for developing the necessary exploration technologies.

  5. PWR steam generator tubing sample library

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In order to compile the tubing sample library, two approaches were employed: (a) tubing sample replication by either chemical or mechanical means, based on field tube data and metallography reports for tubes already destructively examined; and (b) acquisition of field tubes removed from operating or retired steam generators. In addition, a unique mercury modeling concept is in use to guide the selection of replica samples. A compendium was compiled that summarizes field observations and morphologies of steam generator tube degradation types based on available NDE, destructive examinations, and field reports. This compendium was used in selecting candidate degradation types that were manufactured for inclusion in the tube library

  6. Mitigating the Risk of Stress Corrosion of Austenitic Stainless Steels in Advanced Gas Cooled Reactor Boilers

    International Nuclear Information System (INIS)

    Bull, A.; Owen, J.; Quirk, G.; G, Lewis; Rudge, A.; Woolsey, I.S.

    2012-09-01

    Advanced Gas-Cooled Reactors (AGRs) operated in the UK by EDF Energy have once-through boilers, which deliver superheated steam at high temperature (∼500 deg. C) and pressure (∼150 bar) to the HP turbine. The boilers have either a serpentine or helical geometry for the tubing of the main heat transfer sections of the boiler and each individual tube is fabricated from mild steel, 9%Cr1%Mo and Type 316 austenitic stainless steel tubing. Type 316 austenitic stainless steel is used for the secondary (final) superheater and steam tailpipe sections of the boiler, which, during normal operation, should operate under dry, superheated steam conditions. This is achieved by maintaining a specified margin of superheat at the upper transition joint (UTJ) between the 9%Cr1%Mo primary superheater and the Type 316 secondary superheater sections of the boiler. Operating in this mode should eliminate the possibility of stress corrosion cracking of the Type 316 tube material on-load. In recent years, however, AGRs have suffered a variety of operational problems with their boilers that have made it difficult to maintain the specified superheat margin at the UTJ. In the case of helical boilers, the combined effects of carbon deposition on the gas side and oxide deposition on the waterside of the tubing have resulted in an increasing number of austenitic tubes operating with less than the specified superheat margin at the UTJ and hence the possibility of wetting the austenitic section of the boiler. Some units with serpentine boilers have suffered creep-fatigue damage of the high temperature sections of the boiler, which currently necessitates capping the steam outlet temperature to prevent further damage. The reduction in steam outlet temperature has meant that there is an increased risk of operation with less than the specified superheat margin at the UTJ and hence stress corrosion cracking of the austenitic sections of the boiler. In order to establish the risk of stress

  7. Production of A356 aluminum alloy wheels by thixo-forging combined with a low superheat casting process

    Directory of Open Access Journals (Sweden)

    Wang Shuncheng

    2013-09-01

    Full Text Available The A356 aluminum alloy wheels were produced by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of thixo-forged wheels made from the A356 aluminum alloy were studied. The results show that the A356 aluminum alloy round billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 篊. When the round billet is reheated at 600 篊 for 60 min, the non-dendritic grains are changed into spherical ones and the round billet can be easily thixo-forged into wheels. The tensile strength, yield strength and elongation of the thixo-forged wheels with T6 heat treatment are 327.6 MPa, 228.3 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties.

  8. A study on LMFBR steam generator design without tube failure propagation in water leak events

    International Nuclear Information System (INIS)

    Futagami, Satoshi; Hayafune, Hiroki; Fujimura, Ken; Sato, Mitsuru

    2009-01-01

    The major target performance of the SG for commercialized FBR is not only economic performance but also property protection performance. The candidate SG design will be selected at the end of JFY 2010. The straight double wall tube SG is one of the SG candidates for commercialized FBR, and other SG concepts were studied in this paper. In proposing an alternative SG, alternative technological measures with a double wall tube were investigated and included reinforcing the tube against wastage and quick detection of initial tube leaks. Alternative SG concept candidates for preventing tube failure propagation and mitigation of water leak accidents were proposed through a combination of technological measures. The candidates were then comparatively evaluated from the point of view of property protection performance, total weight, technological issues, and so on. A coated wall tube SG and protective wall tube SG were decided on as the alternative SGs because of superior property protection performance and with the technological issues. At the end of JFY 2010, the straight double wall tube SG will be decided upon as the result of R and D activities, and alternative SGs evaluated in feasibility studies. A plan for studying feasibility with the technological issues of the alternative SG was proposed. (author)

  9. Evaluation of materials' corrosion and chemistry issues for advanced gas cooled reactor steam generators using full scale plant simulations

    International Nuclear Information System (INIS)

    Woolsey, I.S.; Rudge, A.J.; Vincent, D.J.

    1998-01-01

    Advanced Gas Cooled Reactors (AGRS) employ once-through steam Generators of unique design to provide steam at approximately 530 degrees C and 155 bar to steam turbines of similar design to those of fossil plants. The steam generators are highly compact, and have either a serpentine or helical tube geometry. The tubes are heated on the outside by hot C0 2 gas, and steam is generated on the inside of the tubes. Each individual steam generator tube consists of a carbon steel feed and primary economiser section, a 9%Cr steel secondary economiser, evaporator and primary superheater, and a Type 316L austenitic stainless steel secondary superheater, all within a single tube pass. The multi-material nature of the individual tube passes, the need to maintain specific thermohydraulic conditions within the different material sections, and the difficulties of steam generator inspection and repair, have required extensive corrosion-chemistry test programmes to ensure waterside corrosion does not present a challenge to their integrity. A major part of these programmes has been the use of a full scale steam generator test facility capable of simulating all aspects of the waterside conditions which exist in the plant. This facility has been used to address a wide variety of possible plant drainage/degradation processes. These include; single- and two-phase flow accelerated corrosion of carbon steel, superheat margins requirements and the stress-corrosion behaviour of the austenitic superheaters, on-load corrosion of the evaporator materials, and iron transport and oxide deposition behaviour. The paper outlines a number of these, and indicates how they have been of value in helping to maintain reliable operation of the plant. (author)

  10. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...... controlled arm. Higher sintering temperatures resulted in greater adhesion strengths, with a sharp increase observed near the melting point of the ash. Repetition of experiments with fixed operation conditions revealed considerable variation in the obtained adhesion strengths, portraying the stochastic...

  11. Effect of reinforcement amount, mold temperature, superheat, and mold thickness on fluidity of in-situ Al-Mg2Si composites

    Directory of Open Access Journals (Sweden)

    Reza Vatankhah Barenji

    2018-01-01

    Full Text Available In the present study, the effects of mold temperature, superheat, mold thickness, and Mg2Si amount on the fluidity of the Al-Mg2Si as-cast in-situ composites were investigated using the mathematical models. Composites with different amounts of Mg2Si were fabricated, and the fluidity and microstructure of each were then analyzed. For this purpose, the experiments were designed using a central composite rotatable design, and the relationship between parameters and fluidity were developed using the response surface method. In addition, optical and scanning electron microscopes were used for microstructural observation. The ANOVA shows that the mathematical models can predict the fluidity accurately. The results show that by increasing the mold temperature from 25 °C to 200 °C, superheat from 50 °C to 250 °C, and thickness from 3 mm to 12 mm, the fluidity of the composites decreases, where the mold thickness is more effective than other factors. In addition, the higher amounts of Mg2Si in the range from 15wt.% to 25wt.% lead to the lower fluidity of the composites. For example, when the mold temperature, superheat, and thickness are respectively 100 °C, 150 °C, and 7 mm, the fluidity length is changed in the range of 11.9 cm to 15.3 cm. By increasing the amount of Mg2Si, the morphology of the primary Mg2Si becomes irregular and the size of primary Mg2Si is increased. Moreover, the change of solidification mode from skin to pasty mode is the most noticeable microstructural effect on the fluidity.

  12. Tube tightness survey during Phenix steam generator operation

    International Nuclear Information System (INIS)

    Cambillard, E.

    1976-01-01

    Phenix steam generators are once-through vessels with single-wall heat-exchange tubes. This design means that any leakage of water into the sodium must be detected as quickly as possible so that the installation can be shut down before extensive damage occurs. The detection of water leaks in Phenix steam generators is based on measurement of the concentration in the sodium, of hydrogen produced by the sodium-water reaction. Since the various modules--evaporators, superheaters, and reheaters--have no free sodium surfaces, detection of hydrogen in argon is not used in Phenix steam generators. The measurement systems employ a probe made of nickel tubes 0.3 mm thick. Hydrogen in the sodium diffuses into a chamber kept under vacuum by an ion pump. The hydrogen pressure in the chamber is measured by a quadrupole mass spectrometer. The nine measurement systems (three per steam generator) are calibrated by injecting hydrogen into the sodium of the secondary circuits. The data-processing computer calculates the hydrogen concentration in the sodium from the spectrometer signals and the probe temperatures, which are not regulated in Phenix; it generates instructions that enable the operator to act if a leak appears. So far, no leaks have been detected. These systems also make it possible to determine rates of hydrogen diffusion caused by corrosion of the steel walls on the water side

  13. Development of heat treated Zr-2.5% Nb alloy tubes for pressure tubes

    International Nuclear Information System (INIS)

    Saibaba, N.; Jha, S.K.; Tonpe, S.

    2011-01-01

    Zr-2.5% Nb alloy is the candidate material for pressure tubes of Pressurized Heavy Water Reactors (PHWR), and are manufactured in cold working condition while heat treated pressure tubes are used in RBMK and FUGEN type of reactors. The diametral creep of these tubes is the life limiting factor. This paper presents the extensive work carried out for the optimization of process parameters to manufacture heat treated Zr-2.5% Nb pressure tubes. Extensive dilactometry study was carried out to establish the transus temperature for the alloy and the effect of soaking temperature and cooling rate on the microstructure was characterized. On the basis of the study, water quenching (at 883 deg C) in the a b region with 20-25% primary a phase was selected, further cold worked, aged and finally autoclaved. Mechanical properties of the finished tubes were found to be comparable to the cold worked route. Large number of full sized tubes of about 700 - 800 mm long was produced to establish the repeatability. (author)

  14. Erosion–corrosion behaviour of Ni-based superalloy Superni-75

    Indian Academy of Sciences (India)

    The super-heater and re-heater tubes of the boilers used in thermal power plants are ... mechanism, resulting in the tube wall thinning and premature failure. The nickel-based superalloys can be used as boiler tube materials to increase the ...

  15. Detection and Repair of Ligament Cracks in a 109mm Thick Superheater Outlet Header

    International Nuclear Information System (INIS)

    Day, Peter

    2006-01-01

    Conventional thermal power station boilers are constructed of drums and a series of headers which are interconnected with many hundreds of tubes. Typically feed water enters the boiler at about 250 deg C at a pressure of around 250 bar with steam outlet temperatures of 540 deg C and a pressure of 170 bar. Superheater outlet headers may be subjected to quite arduous conditions during service. Not only are they exposed to high pressure stresses but also to high thermal stresses due to varying thermal gradients through the section thickness particularly at start up and during two shift operation. The area that is exposed to the greatest thermal gradients is the narrow ligament that exists between the tube hole penetrations in the header bore. In the mid the 1980's industry wide surveys found cracking in a large percentage (25-50%) of headers after 15 years of service. Detection and sizing of ligament cracking and estimates of the rate of growth are therefore a major consideration especially in plant that is two shifted. In order to manage the risk both remote visual and ultrasonic inspection are performed during each major unit overhaul. Conclusion: Ultrasonic techniques used for this inspection need to be carefully evaluated with respect to their effectiveness. Conventional pulse echo is capable of detection but using for example a technique such as AS2207 level 1 will not show the defect size. Time of flight diffraction has shown itself to be effective in accurately sizing ligament cracking. However the complex geometry of header ligaments appears to cause a narrowing of the beam with the effect that crack tip responses can be concentrated at the centre of the ligament. Therefore great care needs to be taken during data interrogation because errors in sizing can occur. Wherever possible both 'B' and 'D' scan data should be collected. It appears that the greatest accuracy is obtained with respect to defect growth from the B scan image. With respect to the welding a

  16. Review of Development Status of Nuclear Superheat; Expose sur l'etat actuel des travaux concernant la surchauffe nucleaire; Obzor razrabotki voprosa o yadernykh peregrevatelyakh; Estudio de los progresos realizados en niateria de sobrecalentamiento nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Imhoff, D. H.; Pennington, R. T. [General Electric Company, San Jose, CA (United States)

    1963-10-15

    The General Electric Company has been actively engaged in development work on nuclear superheat from light-water-moderated reactors since 1959, at which time the Company-financed Superheat Advance Demonstration Experiment (SADE) produced the first nuclear superheated steam in the United States. The current status of nuclear superheat is divided into two major categories. The first is a description of the three major superheat fuel irradiation facilities used by the General Electric Company, and the second is a description of the two major development programme activities with an up-to-date review of the significant superheat development results. 1. Major development facilities: (a) A brief description is given of the Superheat Advance Demonstration Experiment (SADE) utilized in the Vallecitos Boiling Water Reactor (VBWR), with tables of operating conditions, fuel elements irradiated during the period between May 1959, and June 1962, and a discussion of significant experimental results. (b) A brief description is given of the Expanded Superheat Advance Demonstration Experiment (E-SADE) in operation in the Vallecitos Boiling Water Reactor, with tables of operating conditions, fuel elements irradiated in the E-SADE facility and a discussion of the significant development results. (c) A brief description is given of the Empire States Atomic Development Associates-Vallecitos Experimental Superheat Reactor (ESADA-VESR), list of expected operated conditions including design conditions of the initial superheat core loading, and a report on the current status of construction. 2. Major superheat development programme activities: (a) A brief description is given of the United States Atomic Energy Commission (USAEC) sponsored Nuclear Superheat Project which has been in progress at the San Jose site of the General Electric Company since July 1959 A brief description of the individual tasks is given with tables giving significant development results in the areas of superheat

  17. Deposit Shedding in Biomass-fired Boilers: Shear Adhesion Strength Measurements

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared...... on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, deposit composition, sintering duration, and steel type...... on the adhesion strength....

  18. SUS 321 HTB boiler tubing with fire grained internal surface resistant to steam-induced oxidation

    International Nuclear Information System (INIS)

    Kanero, Takahiro; Minami, Yuusuke; Kodera, Toshihide

    1981-01-01

    Considerable amount of scale is produced by high temperature steam on the austenitic stainless steel tubes used for the superheaters and reheaters of large boilers for power generation. The scale of outer layer separates off due to the thermal stress at the time of starting-up and stopping, and causes the blocking of pipes and the erosion of turbine blades. Following the increase of nuclear power generation, large boilers are used for medium load, accordingly it is expected that the troubles like these increase. In this paper, the manufacturing method and the properties of SUS 321 HTB with fine grain internal surface are reported, which was developed to reduce the rate of growth of scale and to prevent the separation of scale. In order to prevent the separation of scale from austenitic stainless steel tubes, the reduction of scale thickness, surface treatment such as chrome plating, the use of alloys with excellent oxidation resistance, the formation of chrome-rich film rapidly, the heat treatment of cold-worked tubes and so on were carried out. The nitrification of SUS 321 H steel brought about two-phase structure of the fine grain internal surface with excellent oxidation resistance and the rest of coarse grains with high creep strength. (Kako, I.)

  19. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    LENUS (Irish Health Repository)

    Pangilinan, Faith

    2012-08-02

    AbstractBackgroundNeural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T) and MTHFD1 rs2236225 (R653Q)) have been found to increase NTD risk. We hypothesized that variants in additional folate\\/B12 pathway genes contribute to NTD risk.MethodsA tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate\\/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents), including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects.ResultsNearly 70 SNPs in 30 genes were found to be associated with NTDs at the p < 0.01 level. The ten strongest association signals (p-value range: 0.0003–0.0023) were found in nine genes (MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury)) and included the known NTD risk factor MTHFD1 R653Q (rs2236225). The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele). Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing.ConclusionsTo our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the

  20. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    Directory of Open Access Journals (Sweden)

    Pangilinan Faith

    2012-08-01

    Full Text Available Abstract Background Neural tube defects (NTDs are common birth defects (~1 in 1000 pregnancies in the US and Europe that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T and MTHFD1 rs2236225 (R653Q have been found to increase NTD risk. We hypothesized that variants in additional folate/B12 pathway genes contribute to NTD risk. Methods A tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents, including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects. Results Nearly 70 SNPs in 30 genes were found to be associated with NTDs at the p MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury and included the known NTD risk factor MTHFD1 R653Q (rs2236225. The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele. Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing. Conclusions To our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the stringency of correction are likely to have contributed to real associations failing to survive

  1. Estimation of residual life of boiler tubes using steamside oxide scale thickness

    International Nuclear Information System (INIS)

    Vikrant, K.S.N.; Ramareddy, G.V.; Pavan, A.H.V.; Singh, Kulvir

    2013-01-01

    In thermal power plants, remaining-life-estimation of boiler tubes is required at regular intervals for a safer and a better functionality of boilers. In this paper, a new method is proposed for the residual life estimation of service exposed boiler tubes using Non-Destructive Ultrasonic Oxide scale thickness measurements, average metal temperature and creep master curve. While steady state conduction heat transfer equations are solved to calculate the average metal temperature, creep master curve is generated from short term stress rupture data of rupture life less than 5000 h on a virgin material. In the present study, the residual life of T22 (2.25Cr-1Mo) service exposed Platen Superheater tube is estimated using two master creep curves, i.e. Larson-Miller Parametric (LMP) method of standard ASME T22 creep data and Wilshire approach of short term stress rupture data of T22. As the residual life is calculated from fundamental conduction heat transfer theory and creep rupture data, the proposed method can be applied for different grades of boiler materials. -- Highlights: ► Residual life is calculated from non-destructive oxide scale thickness, creep master curve and average metal temperature. ► A new method is proposed for calculating residual life using above parameters and from conduction heat transfer principles. ► The method can be applied to different boiler grades for estimating residual life and hence the method is generic

  2. The development and application of overheating failure model of FBR steam generator tubes. 3

    International Nuclear Information System (INIS)

    Miyake, Osamu; Hamada, Hirotsugu; Tanabe, Hiromi; Wada, Yusaku; Miyakawa, Akira; Okabe, Ayao; Nakai, Ryodai; Hiroi, Hiroshi

    2002-03-01

    The model has been developed for the assessment of the overheating tube failure in an event of sodium-water reaction accident of fast breeder reactor's steam generators (SGs). The model has been applied to the Monju SG studies. Major results obtained in the studies are as follows: 1. To evaluate the structural integrity of tube material, the strength standard for 2. 25Cr-1Mo steel was established taking account of time dependent effect based on the high temperature (700-1200degC) creep data. This standard has been validated with the tube rupture simulation test data. 2. The conditions for overheating by the high temperature reaction were determined by use of the SWAT-3 experimental data. The realistic local heating conditions (reaction zone temperature and related heat transfer conditions) for the sodium-water reaction were proposed as the cosine-shaped temperature profile. 3. For the cooling effects inside of target tubes, LWR's studies of critical heat flux (CHF) and post-CHF heat transfer correlations have been examined and considered in the model. 4. The model has been validated with experimental data obtained by SWAT-3 and LLTR. The results were satisfactory with conservatism. The PFR superheater leak event in 1987 was studied, and the cause of event and the effectiveness of the improvement after the leak event could be identified by the analysis. 5. The model has been applied to the Monju SG studies. It is revealed consequently that no tube failure occurs in 100%, 40%, and 10% water flow operating conditions when an initial leak is detected by the cover gas pressure detection system. (author)

  3. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the qualitative and quantitative understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash...... deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, ash/deposit composition......, sintering duration, and steel type on the adhesion strength....

  4. Effects of Degree of Superheat on the Running Performance of an Organic Rankine Cycle (ORC Waste Heat Recovery System for Diesel Engines under Various Operating Conditions

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-04-01

    Full Text Available This study analyzed the variation law of engine exhaust energy under various operating conditions to improve the thermal efficiency and fuel economy of diesel engines. An organic Rankine cycle (ORC waste heat recovery system with internal heat exchanger (IHE was designed to recover waste heat from the diesel engine exhaust. The zeotropic mixture R416A was used as the working fluid for the ORC. Three evaluation indexes were presented as follows: waste heat recovery efficiency (WHRE, engine thermal efficiency increasing ratio (ETEIR, and output energy density of working fluid (OEDWF. In terms of various operating conditions of the diesel engine, this study investigated the variation tendencies of the running performances of the ORC waste heat recovery system and the effects of the degree of superheat on the running performance of the ORC waste heat recovery system through theoretical calculations. The research findings showed that the net power output, WHRE, and ETEIR of the ORC waste heat recovery system reach their maxima when the degree of superheat is 40 K, engine speed is 2200 r/min, and engine torque is 1200 N·m. OEDWF gradually increases with the increase in the degree of superheat, which indicates that the required mass flow rate of R416A decreases for a certain net power output, thereby significantly decreasing the risk of environmental pollution.

  5. Phase identification and internal stress analysis of steamside oxides on superheater tubes by means of X-ray diffraction

    DEFF Research Database (Denmark)

    Pantleon, Karen; Montgomery, Melanie

    Steamside oxides formed on plant exposed superheated tubes were investigated using X-ray diffraction. Phase identification and stress analysis revealed that on ferritic X20CrMoV12-1 pure Hematite and pure Magnetite formed and both phases are under tensile stress. IN contrast, on austenitic TP347H...... Mn-, Cr- and/or Ni-containing oxides are observed, instead of pure Magnetite, underneath a pure Hematite surface layer. Oxides on the austenitic steel are under compressive stress or even stress-free....

  6. Experimental study of nonequilibrium post-chf heat transfer in rod bundles

    International Nuclear Information System (INIS)

    Unal, C.; Tuzla, K.; Badr, O.; Neti, S.; Chen, J.

    1986-01-01

    Verifications and improvements of nonequilibrium heat transfer models, for post-critical-heat-flux convective boiling, has been greatly affected by the lack of experimental data regarding the degree of thermodynamic nonequilibrium. Recent studies had been successful in measuring vapor superheats in a vertical single tube. This paper extends the nonequilibrium convective boiling data to a rod bundle geometry. Vapor superheat measurements were obtained in a rod bundle with nine heated rods and a heated shroud. Tests were carried out with water at low mass fluxes with a wide range of dryout conditions. Significant nonequilibrium was observed, with vapor superheats of up to 600 0 C. Parametric effects of mass flux, heat flux and inlet conditions on vapor superheat are presented

  7. Analysis of refrigerant mal-distribution

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian

    2009-01-01

    to be two straight tubes. The refrigerant maldistribution is then induced to the evaporator by varying the vapor quality at the inlet to each tube and the air-flow across each tube. Finally it is shown that mal-distribution can be compensated by an intelligent distributor, that ensures equal superheat...

  8. Damage distribution and remnant life assessment of a super-heater outlet header used for long time

    Energy Technology Data Exchange (ETDEWEB)

    Hiroyuki, Okamura [Science Univ. of Tokyo (Japan); Ryuichi, Ohotani [Kyoto Univ. (Japan); Kazuya, Fujii [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Masashi, Nakashiro; Fumio, Takemasa; Hideo, Umaki; Tomiyasu, Masumura [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-11-01

    This paper presents the results of investigation on evaluating damage distribution to base metals and welded joints in the thickness direction and evaluate damage on ligaments. Thick wall tested sample was the superheater outlet header component long term serviced in high pressure and temperature condition in thermal power plant. The simulate unused steel of component material was made from sample by suitable heat treatment, and the extent of damage was assessed based on a comparison of nondestructive and destructive test results between simulate unused and aged samples. Damage evaluation was also made by FEM structural stress analysis. (orig./MM)

  9. Investigation of thermodynamic cycle for generic 1200 MW{sub el} pressure channel reactor with nuclear steam superheat

    Energy Technology Data Exchange (ETDEWEB)

    Vincze, A.; Sidawi, K.; Abdullah, R.; Baldock, M.; Saltanov, E.; Pioro, I., E-mail: andrei.vincze@uoit.net, E-mail: khalil.sidawi@uoit.net, E-mail: rand.abdullah@uoit.net, E-mail: matthew.baldock@uoit.net, E-mail: eugene.saltanov@uoit.ca, E-mail: igor.pioro@uoit.ca [Univ. of Ontario Inst. of Tech., Oshawa, ON (Canada)

    2014-07-01

    Current Nuclear Power Plants (NPPs) play a significant role in energy production around the world. All NPPs operating today employ a Rankine steam cycle for the conversion of thermal power to electricity. This paper will examine the steam cycle arrangement an experimental pressure channel reactor using Nuclear Steam Superheat (NSS) and compare it to two advanced reactor designs, the Advanced CANDU Reactor 1000 (ACR-1000) and the Advanced Boiling Water Reactor (ABWR) designs. The thermodynamic cycle layout and thermal efficiencies of the three reactor types will be discussed. (author)

  10. Investigation of steam oxidation behaviour of TP347H FG Part 2: Exposure at 91 bar

    DEFF Research Database (Denmark)

    Jianmin, J; Montgomery, Melanie; Larsen, OH

    2005-01-01

    Tube specimens of TP347FG were exposed in a test superheater loop in a biomass plant in Denmark. The specimens were exposed to surface metal temperatures in the range of 455-568C, steam pressure of 91 bar and exposure duration of 3500 and 8700 hours. The oxide thickness and morphology was investi......Tube specimens of TP347FG were exposed in a test superheater loop in a biomass plant in Denmark. The specimens were exposed to surface metal temperatures in the range of 455-568C, steam pressure of 91 bar and exposure duration of 3500 and 8700 hours. The oxide thickness and morphology...

  11. Effects of Dihedral Angle on Pool Boiling Heat Transfer from Two Tubes in Vertical Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myeong-Gie [Andong National University, Andong (Korea, Republic of)

    2014-10-15

    One of the major issues in pool boiling heat transfer is a tube arrangement. The upper tube is affected by the lower tube and the enhancement of the heat transfer on the upper tube is estimated by the bundle effect ( h{sub r} ). It is defined as the ratio of the heat transfer coefficient ( h{sub b} ) for an upper tube in a bundle with lower tubes activated to that for the same tube activated alone in the bundle. Since heat transfer is related with the conditions of a tube surface, bundle geometries, and a liquid type, lots of studies have been carried out for the combinations of those parameters. The most effective parameter must be the tube pitch. Many researchers have been investigated its effect on heat transfer enhancement for the tube bundles and the tandem tubes. The heat transfer on the upper tube of the tubes is enhanced compared with the single tube. The upper tube within a tube bundle can significantly increase nucleate boiling heat transfer compared to the lower tubes at moderate heat fluxes. At high heat fluxes these influences disappear and the data merge onto the pool boiling curve of a single tube. It was explained that the major influential factor is the convective effects due to the fluid velocity and the rising bubbles. They used microstructure-R134a or FC-3184 combinations and identified that the increase in the heat flux of the lower tube decreased the superheat ( ∆T{sub sat} ) of the upper tube. The passive condensers adopted in SWR1000 and APR+ has U-type tubes. Those tubes are slightly inclined from the horizontal to prevent the occurrence of the water hammer. Since the pitch between the upper and lower tubes is varying along the tube length, the results for the fixed pitch are not applicable to the analysis of these condensers. Although there are lots of studies introducing results for the effects of inclination angle on pool boiling heat transfer, no results are treating the angle between two tubes. Therefore, the present study is aimed

  12. Heat transfer during condensation of HFC-134a and R-404A inside of a horizontal smooth and micro-fin tube

    Energy Technology Data Exchange (ETDEWEB)

    Sapali, S N [Govt. College of Engineering, Department of Mechanical Engineering, Shivaji Nagar, Pune, Maharashtra 411 005 (India); Patil, Pradeep A [AISSMS College of Engineering, Pune University, Mechanical Engineering Department, Kennedy Road, Near R.T.O., Pune, Maharashtra 411 001 (India)

    2010-11-15

    In recent small and medium capacity refrigeration systems, the condenser tubes are provided with micro-fins from inside. The vapour refrigerant at the compressor outlet and the condenser inlet is in superheat state. As it advances in the condenser it is in two phases and at the outlet it is in sub cooled liquid. The heat transfer coefficient (HTC) during condensation of HFC-134a and R-404A in a smooth (8.56 mm ID) and micro-fin tubes (8.96 mm ID) are experimentally investigated. Different from previous studies, the present experiments are performed for various condensing temperatures, with superheating and sub cooling and using hermetically sealed compressor. The test runs are done at average saturated condensing temperatures ranging from 35 C to 60 C. The mass fluxes are between 90 and 800 kg m{sup -2} s{sup -1}. The experimental results indicate that the average HTC increases with mass flux but decreases with increasing condensing temperature for both smooth and micro-fin tubes. The average condensation HTCs of HFC-134a and R-404A for the micro-fin tubes were 1.5-2.5 and 1.3-2 times larger than that in smooth tube respectively. The HTCs for R-404A are less than that of HFC-134a. New correlations based on the data gathered during the experimentation for predicting condensation HTCs are proposed for wide range of operating conditions. (author)

  13. Wastage-resistant characteristics of 12Cr steel tube material. Small leak sodium-water reaction test

    International Nuclear Information System (INIS)

    Shimoyama, Kazuhito

    2004-03-01

    In the water leak accident of a steam generator designed for a sodium cooled reactor in the Feasibility Study, the localization of tube failure propagation by using an advanced water leak detector will be required from the viewpoints of the safety and economical efficiency of the plant. So far, the conventional knowledge and analytical tools have been used in the investigation and evaluation of water leak phenomenon; nevertheless, there was neither test data nor the study of quantitative evaluation on the corrosion behavior, so-called wastage-resistant characteristics, of 12Cr steel tube material in sodium-water reactions. Wastage tests for the 12Cr steel tube material were conducted in small water leaks by use of the Sodium-Water Reaction Test Rig (SWAT-1R), and the data of wastage rate were obtained in the parameter of water leak rate under the constant sodium temperature and distance between leak and target tubes. The test results lead to the following conclusions: (1) The wastage-resistibility of 12Cr steel is 1.6 times greater than that of 9Cr steel and is 2.7 times greater than that of 2.25Cr-1Mo steel. (2)The wastage-resistibility of 12Cr steel increases in smaller water leaks; especially in water leak rates of 1 g/sec or less, it is more excellent than that of SUS321 stainless steel used as Monju superheater tube material. (3) Based on the correlation of wastage rate for the 9Cr steel, the correlation for the 12Cr steel has been obtained to be used for the evaluation of tube failure propagation. As the correlation of wastage rate for the 12Cr steel is based on the correlation for the 9Cr steel, it gives enough conservatism in smaller water leaks. To serve in accurately evaluating the tube failure propagation in smaller water leaks, it is necessary to obtain new correlation of wastage rate for the 12Cr steel based on the data in the wide range of water leak rates. (author)

  14. Heat removal capability of divertor coaxial tube assembly

    International Nuclear Information System (INIS)

    Shibui, Masanao; Nakahira, Masataka; Tada, Eisuke; Takatsu, Hideyuki

    1994-05-01

    To deal with high power flowing in the divertor region, an advanced divertor concept with gas target has been proposed for use in ITER/EDA. The concept uses a divertor channel to remove the radiated power while allowing neutrals to recirculate. Candidate channel wall designs include a tube array design where many coaxial tubes are arranged in the toroidal direction to make louver. The coaxial tube consists of a Be protection tube encases many supply tubes wound helically around a return tube. V-alloy and hardened Cu-alloy have been proposed for use in the supply and return tubes. Some coolants have also been proposed for the design including pressurized He and liquid metals, because these coolants are consistent with the selection of coolants for the blanket and also meet the requirement of high temperature operation. In the coaxial tube design, the coolant area is restricted and brittle Be material is used under severe thermal cyclings. Thus, to obtain the coaxial tube with sufficient safety margin for the expected fusion power excursion, it is essential to understand its applicability limit. The paper discusses heat removal capability of the coaxial tube and recommends some design modifications. (author)

  15. Seventeen years of LMFBR experience: Experimental Breeder Reactor II (EBR-II)

    International Nuclear Information System (INIS)

    Perry, W.H.; Lentz, G.L.; Richardson, W.J.; Wolz, G.C.

    1982-01-01

    Operating experience at EBR-II over the past 17 years has shown that a sodium-cooled pool-type reactor can be safely and efficiently operated and maintained. The reactor has performed predictably and benignly during normal operation and during both unplanned and planned plant upsets. The duplex-tube evaporators and superheaters have never experienced a sodium/water leak, and the rest of the steam-generating system has operated without incident. There has been no noticeable degradation of the heat transfer efficiency of the evaporators and superheaters, except for the one superheater replaced in 1981. There has been no need to perform any chemical cleaning of steam-system components

  16. Ultrasonic wall thickness gauging for ferritic steam generator tubing as an in-service inspection tool

    International Nuclear Information System (INIS)

    Haesen, W.M.J.; Tromp, Th.J.

    1980-01-01

    In-service inspection of LWR steam generators is more or less a standard routine operation. The situation can be very different for LMFBRs. For the SNR 300 (Kalkar Power Station) the situation is different because the steam generators have ferritic tubing. The tube walls are comparatively thick, 2 to 4.5 mm. During inservice examinations the steam generators will be drained on both sides, however on the sodium side a sodium film will be present. Furthermore the SNR 300 will have two types of steam generator. A straight tube design and a helical coil design will be used. Both types consist of a evaporator and superheater. The steam generators are of course not radioactive. It is obvious that in this case the eddy current (EC) technique is not an enviable inservice inspection tool. Basically EC is a surface flaw detection technique. Only the saturation magnetisation method will improve the EC technique sufficiently for ferritic material. However the 'in bore examination' with the saturation technique was, in case of the SNR 300 steam generator tubing, considered impossible since the inner diameters are fairly small. Furthermore sodium traces may influence the EC method. Although multifrequency methods can solve this problem, EC is not considered as a useful tool for examining ferritic tubing. Another method is to employ the 'stray flux' method which is under development with the TNO organization in Holland. The EC and stray flux method do have one drawback, these methods do not detect gradual changes in wall thickness. Ultrasonic examinations will be used in the SNR 300 as the main inspection tool for the steam generators. In this paper the reasons why ultrasonic examination was selected are explained. The results of the development work on this subject are discussed

  17. Dynamic Response of a 50 kW Organic Rankine Cycle System in Association with Evaporators

    Directory of Open Access Journals (Sweden)

    Yuh-Ren Lee

    2014-04-01

    Full Text Available The influences of various evaporators on the system responses of a 50 kW ORC system using R-245fa are investigated in this study. First the effect of the supplied hot water flowrate into the evaporator is examined and the exit superheat on the system performance between plate and shell-and-tube evaporator is also reported. Test results show that the effect of hot water flowrate on the evaporator imposes a negligible effect on the transient response of the ORC system. These results prevail even for a 3.5-fold increase of the hot water flowrate and the system shows barely any change subject to this drastic hot water flowrate change. The effect of exit superheat on the ORC system depends on the type of the evaporator. For the plate evaporator, an exit superheat less than 10 °C may cause ORC system instability due to considerable liquid entrainment. To maintain a stable operation, the corresponding Jakob number of the plate heat evaporator must be above 0.07. On the other hand, by employing a shell and tube heat evaporator connected to the ORC system, no unstable oscillation of the ORC system is observed for exit superheats ranging from 0 to 17 °C.

  18. Boomers versus Millennials: Online Media Influence on Media Performance and Candidate Evaluations

    Directory of Open Access Journals (Sweden)

    Terri Towner

    2016-09-01

    Full Text Available Facebook posts, YouTube videos, tweets and wooing political bloggers have become standard practice in marketing political campaigns. Research has demonstrated the effect of new media on a host of politically-related behavior, including political participation, knowledge acquisition, group formation and self-efficacy. Yet, issues related to media trust, media performance and candidate evaluations have not been fully explored. In addition, much of the political marketing research looks exclusively at the Millennial age cohort, ignoring other age groups, particularly Baby Boomers. This case study addresses whether attention to traditional (i.e., television, hard-copy newspapers and radio and online media sources (i.e., political candidate websites, television network websites, online newspapers, Facebook, Twitter, YouTube, Tumblr and political blogs about the 2012 U.S. presidential campaign influences Millennials and Baby Boomers’ media trust and performance ratings, as well as candidate evaluations. Panel surveys were completed by both age cohorts, Millennials (n = 431 and Baby Boomers (n = 360, during the last two weeks of the presidential election. Findings indicate that traditional sources, specifically television, rather than online sources are significantly linked to media trust and performance ratings among both Boomers and Millennials. Attention to traditional media for campaign information predicts Boomers’ candidate evaluations, whereas Millennials’ candidate evaluations are influenced by online sources, such as Facebook and candidate websites.

  19. Circumferential tensile test method for mechanical property evaluation of SiC/SiC tube

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ju-Hyeon, E-mail: 15096018@mmm.muroran-it.ac.jp [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Kishimoto, Hirotatsu [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Park, Joon-soo [OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Nakazato, Naofumi [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Kohyama, Akira [OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan)

    2016-11-01

    Highlights: • NITE SiC/SiC cooling channel system to be a candidate of divertor system in future. • Hoop strength is one of the important factors for a tube. • This research studies the relationship between deformation and strain of SiC/SiC tube. - Abstract: SiC fiber reinforced/SiC matrix (SiC/SiC) composite is expected to be a candidate material for the first-wall, components in the blanket and divertor of fusion reactors in future. In such components, SiC/SiC composites need to be formed to be various shapes. SiC/SiC tubes has been expected to be employed for blanket and divertor after DEMO reactor, but there is not established mechanical investigation technique. Recent progress of SiC/SiC processing techniques is likely to realize strong, having gas tightness SiC/SiC tubes which will contribute for the development of fusion reactors. This research studies the relationship between deformation and strain of SiC/SiC tube using a circumferential tensile test method to establish a mechanical property investigation method of SiC/SiC tubes.

  20. Analisa Efisiensi Water Tube Boiler Berbahan Bakar Fiber, Cangkang Sawit dan Kulit Kayu Menggunakan Metode Langsung

    OpenAIRE

    Gaol, Dosma Putra Lumban

    2016-01-01

    Some of the factors that affect the efficiency of the boiler is a superheater pressure, water feed temperature, steam temperature, the amount of steam produced, the amount of fuel consumption and calorific value fuel combustion. Steamtab chemicallogic use companion software to calculate the value of enthalpy. The aim of this study is to get relations variations in pressure superheater with boiler efficiency, the relationship of variation of temperature feed water to the boiler efficiency, the...

  1. PROFIL-360 high resolution steam generator tube profilometry system

    International Nuclear Information System (INIS)

    Glass, S.W.

    1985-01-01

    A high-resolution profilometry system, PROFIL 360, has been developed to assess the condition of steam generator tubes and rapidly produce the data to evaluate the potential for developing in-service leaks. The probe has an electromechanical sensor in a rotating head. This technique has been demonstrated in the field, saving tubes that would have been plugged with the go-gauge criterion and indicating plugging other high-risk candidates that might otherwise not have been removed from service

  2. Profil-360 high resolution steam generator tube profilometry system

    International Nuclear Information System (INIS)

    Glass, S.W.

    1985-01-01

    A high-resolution profilometry system, PROFIL 360, has been developed to assess the condition of steam generator tubes and rapidly produce the data to evaluate the potential for developing in-service leaks. The probe has an electromechanical sensor in a rotating head. This technique has been demonstrated in the field, saving tubes that would have been plugged with the go-gauge criterion and indicating plugging other high-risk candidates that might otherwise not have been removed from service

  3. Design of PFBR steam generator

    International Nuclear Information System (INIS)

    Chetal, S.C.; Bhoje, S.B.; Mitra, T.K.; Paranjpe, S.R.; Vaidyanathan, G.

    1990-01-01

    Vertical straight tube with an expansion bend in sodium path is the design selected for the steam generators of 500 MWe Prototype Fast Breeder Reactor (PFBR). There are 4 secondary loops with each loop consisting of 3 modules. With sodium reheat incorporated each module comprises of one evaporator, superheater and reheater. Material of construction is 2.25Cr-1Mo for evaporator and 9Cr-1Mo for superheater and reheater. The tube to tubesheet weld is internal bore butt weld with tubesheet having raised spigot. Aim is to have reliable design with higher plant availability. Design considerations leading to the choice of design features selected are discussed in the paper and a ''reference'' design has been described. (author). 2 figs, 1 tab

  4. Viability of thin wall tube forming of ATF FeCrAl

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-16

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys from ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.

  5. Study on superheat of TiAl melt during cold crucible levitation melting. TiAl no cold crucible levitation yokai ni okeru yoto kanetsudo no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, K.; Kobayashi, K.; Ninomiya, M. (Government Industrial Research Institute, Nagoya, Nagoya (Japan))

    1992-06-20

    Investigations were given on effects of test sample weights and sample positions in cold crucibles on superheat of melts when the intermetallic compound TiAl is melted using cold crucible levitation melting process, one of noncontaminated melting processes. The cold crucibles used in the experiment are a water-cooled copper crucible with an inner diameter of 42 mm and a length of 140 mm, into which a column-like ingot sample with an outer diameter of 32 mm (Al containing Ti at 33.5% by mass) was put and melted using the levitation melting. Comparisons and discussions were given on the relationship between sample weights and melt temperatures, the relationship between positions of the inserted samples and melt temperatures, and the state of contamination at melting of casts obtained from the melts resulted from the levitation melting and high-frequency melting poured into respective ceramic dies. Elevating the superheat temperature of the melts requires optimizing the sample weights and positions. Melt temperatures were measured using a radiation thermometer and a thermocouple, and the respective measured values were compared. 7 refs., 4 figs., 1 tab.

  6. RIA simulation tests using driver tube for ATF cladding

    Energy Technology Data Exchange (ETDEWEB)

    Cinbiz, Mahmut N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, N. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, R. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, K. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Pellet-cladding mechanical interaction (PCMI) is a potential failure mechanism for accident-tolerant fuel (ATF) cladding candidates during a reactivity-initiated accident (RIA). This report summarizes Fiscal Year (FY) 2017 research activities that were undertaken to evaluate the PCMI-like hoop-strain-driven mechanical response of ATF cladding candidates. To achieve various RIA-like conditions, a modified-burst test (MBT) device was developed to produce different mechanical pulses. The calibration of the MBT instrument was accomplished by performing mechanical tests on unirradiated Generation-I iron-chromium-aluminum (FeCrAl) alloy samples. Shakedown tests were also conducted in both FY 2016 and FY 2017 using unirradiated hydrided ZIRLO™ tube samples. This milestone report focuses on testing of ATF materials, but the benchmark tests with hydrided ZIRLO™ tube samples are documented in a recent journal article.a For the calibration and benchmark tests, the hoop strain was monitored using strain gauges attached to the sample surface in the hoop direction. A novel digital image correlation (DIC) system composed of a single high-speed camera and an array of six mirrors was developed for the MBT instrument to better resolve the failure behavior of samples and to provide useful data for validation of high-fidelity modeling and simulation tools. The DIC system enable a 360° view of a sample’s outer surface. This feature was added to the instrument to determine the precise failure location on a sample’s surface for strain predictions. The DIC system was tested on several silicon carbide fiber/silicon carbide matrix (SiC/SiC) composite tube samples at various pressurization rates of the driver tube (which correspond to the strain rates for the samples). The hoop strains for various loading conditions were determined for the SiC/SiC composite tube samples. Future work is planned to enhance understanding of the failure behavior of the ATF cladding candidates of age

  7. Mechanism of subcooled water flow boiling critical heat flux in a circular tube at high liquid Reynolds number

    International Nuclear Information System (INIS)

    Hata, K.; Fukuda, K.; Masuzaki, S.

    2014-01-01

    The subcooled boiling heat transfer and the steady state critical heat flux (CHF) in a vertical circular tube for the flow velocities (u=3.95 to 30.80 m/s) are systematically measured by the experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The SUS304 test tube of inner diameter (d=6 mm) and heated length (L=59.5 mm) is used in this work. The outer surface temperatures of the SUS304 test tube with heating are observed by an infrared thermal imaging camera and a video camera. The subcooled boiling heat transfers for SUS304 test tube are compared with the values calculated by other workers' correlations for the subcooled boiling heat transfer. The influence of flow velocity on the subcooled boiling heat transfer and the CHF is investigated into details based on the experimental data. Nucleate boiling surface superheats at the CHF are close to the lower limit of the heterogeneous spontaneous nucleation temperature and the homogeneous spontaneous nucleation temperature. The dominant mechanism of the subcooled flow boiling CHF on the SUS304 circular tube is discussed at high liquid Reynolds number. On the other hand, theoretical equations for k-ε turbulence model in a circular tube of a 3 mm in diameter and a 526 mm long are numerically solved for heating of water on heated section of a 3 mm in diameter and a 67 mm long with various thicknesses of conductive sub-layer by using PHOENICS code under the same conditions as the experimental ones previously obtained considering the temperature dependence of thermo-physical properties concerned. The Platinum (Pt) test tube of inner diameter (d=3 mm) and heated length (L=66.5 mm) was used in this experiment. The thicknesses of conductive sub-layer from non-boiling regime to CHF are clarified. The thicknesses of conductive sub-layer at the CHF point are evaluated for various flow velocities. The experimental values of the CHF are also compared with the corresponding

  8. Vapor generation rate model for dispersed drop flow

    International Nuclear Information System (INIS)

    Unal, C.; Tuzla, K.; Cokmez-Tuzla, A.F.; Chen, J.C.

    1991-01-01

    A comparison of predictions of existing nonequilibrium post-CHF heat transfer models with the recently obtained rod bundle data has been performed. The models used the experimental conditions and wall temperatures to predict the heat flux and vapor temperatures at the location of interest. No existing model was able to reasonably predict the vapor superheat and the wall heat flux simultaneously. Most of the models, except Chen-Sundaram-Ozkaynak, failed to predict the wall heat flux, while all of the models could not predict the vapor superheat data or trends. A recently developed two-region heat transfer model, the Webb-Chen two-region model, did not give a reasonable prediction of the vapor generation rate in the far field of the CHF point. A new correlation was formulated to predict the vapor generation rate in convective dispersed droplet flow in terms of thermal-hydraulic parameters and thermodynamic properties. A comparison of predictions of the two-region heat transfer model, with the use of a presently developed correlation, with all the existing post-CHF data, including single-tube and rod bundle, showed significant improvements in predicting the vapor superheat and tube wall heat flux trends. (orig.)

  9. On possibility of application of the parallel-mixed type coolant flow scheme to NPP steam generators linked with superheaters

    International Nuclear Information System (INIS)

    Malkis, V.A.; Lokshin, V.A.

    1983-01-01

    Optimum distribution of the coolant straight-through flow between the superheater, evaporator and economizer is determined and the parallel-mixed type flow scheme is compared with other schemes. The calculations are performed for the 250 MW(e) steam generator for the WWER-1000 reactor unit the inlet and outlet primary coolant temperature of which is 324 and 290 deg C, respectively, while the feed water and saturation temperatures are 220 and 278.5 deg C, respectively. The rated superheating temperature is 300 deg C. The comparison of different schemes has been performed according to the average temperature head value at the steam-generator under the condition of equality as well as essential difference in the heat transfer coefficients in certain steam-generator sections. The calculations have shown that the use of parallel-mixed type flow permits to essentially increase the temperature head of the steam generator. At a constant heat transfer coefficient in all steam generator sections the highest temperature head is reached. At relative flow rates in the steam generator, economizer and evaporator equal to 6, 8 and 86%, respectively. The superheated steam generator temperature head in this case by 12% exceeds the temperature head of the WWER-1000 reactor unit wet steam generator. In case of heat transfer coefficient reduction in the superheater by a factor of three, the choice of the primary coolant, optimum distribution permits to maintain the steam generator temperature head at the level of the WWER-1000 reactor unit wet-steam steam generator. The use of the parallel-mixed type flow scheme permits to design a steam generator of slightly superheated steam for the parameters of the WWER-1000 unit

  10. Steam generator arrangement

    International Nuclear Information System (INIS)

    Ssinegurski, E.

    1981-01-01

    A steam flow path arrangement for covering the walls of the rear gas pass of a steam generator is disclosed. The entire flow passes down the sidewalls with a minor portion then passing up through the rear wall to a superheater inlet header at an intermediate elevation. The major portion of the flow passes up the front wall and through hanger tubes to a roof header. From there the major portion passes across the roof and down the rear wall to the superheater inlet header at the intermediate elevation

  11. Preliminary studies of microchannel plate photomultiplier tube neutron detectors for flight test applications

    International Nuclear Information System (INIS)

    Dolan, K.W.

    1978-10-01

    Electrical, mechanical, thermal, and neutron response data indicate that microchannel plate photomultiplier tubes are viable candidates as miniature, ruggedized neutron detectors for flight test applications in future weapon systems

  12. Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers

    International Nuclear Information System (INIS)

    Gruber, Thomas; Scharler, Robert; Obernberger, Ingwald

    2015-01-01

    To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s −1 to 8 m·s −1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential. - Highlights: • Online corrosion probe measurements in a fixed bed/drop tube reactor. • Development of an empirical corrosion model. • Application of the model in a CFD simulation of flow and heat transfer. • Variation of boundary conditions and their effects on the corrosion potential

  13. Reduced order model of draft tube flow

    International Nuclear Information System (INIS)

    Rudolf, P; Štefan, D

    2014-01-01

    Swirling flow with compact coherent structures is very good candidate for proper orthogonal decomposition (POD), i.e. for decomposition into eigenmodes, which are the cornerstones of the flow field. Present paper focuses on POD of steady flows, which correspond to different operating points of Francis turbine draft tube flow. Set of eigenmodes is built using a limited number of snapshots from computational simulations. Resulting reduced order model (ROM) describes whole operating range of the draft tube. ROM enables to interpolate in between the operating points exploiting the knowledge about significance of particular eigenmodes and thus reconstruct the velocity field in any operating point within the given range. Practical example, which employs axisymmetric simulations of the draft tube flow, illustrates accuracy of ROM in regions without vortex breakdown together with need for higher resolution of the snapshot database close to location of sudden flow changes (e.g. vortex breakdown). ROM based on POD interpolation is very suitable tool for insight into flow physics of the draft tube flows (especially energy transfers in between different operating points), for supply of data for subsequent stability analysis or as an initialization database for advanced flow simulations

  14. Quantification of Release of Critical Elements, Formation of Fly Ash and Aerosols: Status on Current Understanding and Research Needs

    DEFF Research Database (Denmark)

    Jappe Frandsen, Flemming

    2017-01-01

    Deposit formation in utility boilers occurs via a number of consecutive steps; 1) release of critical elements like K, Na, Pb, Zn, S and Cl, 2) formation of gaseous species, fly ash and aerosols, 3) transport and adhesion of ash species, 4) deposit build-up and consolidation, and, finally, 5...... formation (slagging and fouling) on superheater tubes, leading to a potential reduction in heat transfer efficiency to the water/steam cycle, or, to chemical attack (corrosion) or physical wear (erosion) of superheater tubes. These problems may give rise to irregular operation, or even costly shutdowns...... of combustion units.Through several years, high quality research has been conducted on characterization of fuels, ashes and deposit formation in utility boilers fired with coal, biomass and waste fractions. Huge amounts of experimental data have been reported, from such work, but the fact...

  15. LMFBR steam generators in the United Kingdom

    International Nuclear Information System (INIS)

    Anderson, R.; Hayden, O.

    2002-01-01

    Experience has been gained in the UK on the operation of LMFBR Steam Generator Units (SGU) over a period of 20 years from the Dounreay Fast Reactor (DFR) and the Prototype Fast Reactor (PFR). The DFR steam generator featured a double barrier and therefore did not represent a commercial design. PFR, however, faced the challenge of a single wall design and it is experience from this which is most valuable. The PFR reactor went critical in March 1974 and the plant operating history since then has been dominated by experience with leaks in the tube to tube plate welds of the high performance U-tubes SGU's. Operation at high power using the full complement of three secondary sodium circuits was delayed until July 1976 by the occurrence of leaks in the tube to tube plate welds of the superheater and reheater units which are fabricated in stainless steel. Repairs were carried out to the two superheaters and they were returned to service. The reheater tube bundle was removed from circuit after sodium was found to have entered the steam side. When the sodium had been removed and inspection carried out it was decided not to recover the unit. Since 1976 the remaining five stainless steel units have operated satisfactorily. This year a replacement reheater unit has been installed. This is of a new design in 9-Cr-Mo ferritic steel using a sleeve through which the steam tube passes to eliminate the tube to tube plate weld. Despite a few early leaks in evaporator tube to tube plate welds up to 1979, these failures did not initially present a major problem. However, in 1980 the rate of evaporator weld failures increased and despite the successful application of a shot peening process to eliminate stress corrosion failures from the water side of the weld, failures traced to the sodium side continued. A sleeving process was developed for application to complete evaporator units on a production basis with the objective of bypassing the welds at each end of the 500 tubes. The decision

  16. Failure problems in superheater spacers of steam generators; Problematica de fallas en espaciadores de sobrecalentadores de generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Nava, Jose G; Martinez Villafane, Alberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Fuentes Samaniego, Raul [Universidad Autonoma de Nuevo Leon (Mexico); Mojica Calderon, Cecilio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    In this article the general aspects of the steam generator superheater fixed spacers failures are analyzed, emphasis is made on the influence several aspects such as the operation of the unit have, the appropriate execution of welds and the selection of binding materials. Likewise several recommendations are made to bring the failures to a minimum. [Espanol] En este articulo se analizan aspectos generales de fallas en espaciadores fijos de sobrecalentadores de generadores de vapor, y se hace hincapie en la influencia que tienen diversos aspectos tales como la operacion de la unidad, la adecuada ejecucion de soldaduras y la seleccion del material de aporte. Asimismo, se proponen algunas recomendaciones para reducir al minimo las fallas.

  17. FARO tests corium-melt cooling in water pool: Roles of melt superheat and sintering in sediment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gisuk [Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 (United States); Kaviany, Massoud [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Moriyama, Kiyofumi [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Hwang, Byoungcheol; Lee, Mooneon; Kim, Eunho; Park, Jin Ho [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Nasersharifi, Yahya [Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 (United States)

    2016-08-15

    Highlights: • The numerical approach for FARO experimental data is suggested. • The cooling mechanism of ex-vessel corium is suggested. • The predicted minimum pool depth for no cake formation is suggested. - Abstract: The FARO tests have aimed at understanding an important severe accident mitigation action in a light water reactor when the accident progresses from the reactor pressure vessel boundary. These tests have aimed to measure the coolability of a molten core material (corium) gravity dispersed as jet into a water pool, quantifying the loose particle diameter distribution and fraction converted to cake under range of initial melt superheat and pool temperature and depth. Under complete hydrodynamic breakup of corium and consequent sedimentation in the pool, the initially superheated corium can result in debris bed consisting of discrete solid particles (loose debris) and/or a solid cake at the bottom of the pool. The success of the debris bed coolability requires cooling of the cake, and this is controlled by the large internal resistance. We postulate that the corium cake forms when there is a remelting part in the sediment. We show that even though a solid shell forms around the melt particles transiting in the water pool due to film-boiling heat transfer, the superheated melt allows remelting of the large particles in the sediment (depending on the water temperature and the transit time) using the COOLAP (Coolability Analysis with Parametric fuel-cooant interaction models) code. With this remelting and its liquid-phase sintering of the non-remelted particles, we predict the fraction of the melt particles converting to a cake through liquid sintering. Our predictions are in good agreement with the existing results of the FARO experiments. We address only those experiments with pool depths sufficient/exceeding the length required for complete breakup of the molten jet. Our analysis of the fate of molten corium aimed at devising the effective

  18. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... any of these problems: a dislodged tube a blocked or clogged tube any signs of infection (including redness, swelling, or warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain lasting ...

  19. Manufacturing of FeCrAl/Zr Dual Layer tube for its application to LWR Fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun; Lim, Do Wan; Jung, Yang Il; Kim, Hyun Gil; Park, Jeong Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Many advanced materials such as MAX phases, Mo, SiC, and Fe-based alloys are being considered a possible candidate to substitute the Zr-based alloy cladding has been used in light water reactors. Among the proposed candidate materials, Fe-based alloy is one of the most promising candidates owing to its excellent formability, very good high strength, and corrosion resistance at high temperature. However, neutron cross section of FeCrAl alloy is much higher than that of existing Zr-based alloys. In this study, FeCrAl/Zr dual layer tube was manufactured by using a hot isostatic pressing (HIP) method. The thickness of outer FeCrAl layer was varied from 50 to 250 μm but all the FeCrAl/Zr dual layer tube samples maintained its total thickness of 570 μm. For a detailed microstructural characterization of FeCrAl/Zr dual layer, polarized optical microscopy and scanning electron microscopy (SEM) study carried out and its mechanical property was measured by ring compression test. FeCrAl/Zr dual layer tube sample was successfully manufactured with good adhesion between both layers. Inter layer showing gradual element variation was observed at interface. Result obtained from simulated LOCA test indicates that FeCrAl/Zr dual layer tube may maintain its integrity during LOCA and its accident tolerance had greatly improved compared to that of Zr-based alloy.

  20. Pcl/Chitosan Blended Nanofibrous Tubes Made by Dual Syringe Electrospinning

    Directory of Open Access Journals (Sweden)

    Hild Martin

    2015-03-01

    Full Text Available 3D tubular scaffolds made from Poly-(Ɛ-caprolactone (PCL/chitosan (CS nanofibres are very promising candidate as vascular grafts in the field of tissue engineering. In this work, the fabrication of PCL/CS-blended nanofibrous tubes with small diameters by electrospinning from separate PCL and CS solutions is studied. The influence of different CS solutions (CS/polyethylene glycol (PEO/glacial acetic acid (AcOH, CS/trifluoroacetic acid (TFA, CS/ AcOH on fibre formation and producibility of nanofibrous tubes is investigated. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR is used to verify the presence of CS in the blended samples. Tensile testing and pore size measurements are done to underline the good prerequisites of the fabricated blended PCL/ CS nanofibrous tubes as potential scaffolds for vascular grafts. Tubes fabricated from the combination of PCL and CS dissolved in AcOH possesses properties, which are favourable for future cell culture studies.

  1. Field test corrosion experiments in Denmark with biomass fuels Part I Straw firing

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, A; Larsen, OH

    2002-01-01

    plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A series of field tests have been undertaken in the various straw-fired power plants in Denmark, namely Masnedø, Rudkøbing and Ensted. Three types of exposure were undertaken......In Denmark, straw and other types of biomass are used for generating energy in power plants. Straw has the advantage that it is a "carbon dioxide neutral fuel" and therefore environmentally acceptable. Straw combustion is associated with corrosion problems which are not encountered in coal-fired...... to investigate corrosion: a) the exposure of metal rings on water/air cooled probes, b) the exposure of test tubes in a test superheater, and c) the exposure of test tubes in existing superheaters. Thus both austenitic steels and ferritic steels were exposed in the steam temperature range of 450-600°C...

  2. Corrosion Investigations in Straw-Fired Power Plants in Denmark

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Frandsen, Flemming; Karlsson, A

    2001-01-01

    of accelerated corrosion. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A series of field tests have been undertaken in the various straw-fired power plants in Denmark, namely the Masnedø, Rudkøbing and Ensted CHP plants. Three types......In Denmark, straw and other types of biomass are used for generating energy in power plants. Straw has the advantage that it is a "carbon dioxide neutral fuel" and therefore environmentally acceptable. Straw combustion is associated with corrosion problems which are not encountered in coal-fired...... of exposure were undertaken to investigate corrosion: a) the exposure of metal rings on water/air cooled probes, b) the exposure of test tubes in a test superheater, and c) the exposure of test tubes in existing superheaters. Thus both austenitic steels and ferritic steels were exposed in the steam...

  3. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    Science.gov (United States)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  4. Subcooled boiling heat transfer in a short vertical SUS304-tube at liquid Reynolds number range 5.19 x 104 to 7.43 x 105

    International Nuclear Information System (INIS)

    Hata, Koichi; Masuzaki, Suguru

    2009-01-01

    The subcooled boiling heat transfer and the steady-state critical heat fluxes (CHFs) in a short vertical SUS304-tube for the flow velocities (u = 17.28-40.20 m/s), the inlet liquid temperatures (T in = 293.30-362.49 K), the inlet pressures (P in = 842.90-1467.93 kPa) and the exponentially increasing heat input (Q = Q 0 exp(t/τ), τ = 8.5 s) are systematically measured by the experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The SUS304 test tubes of inner diameters (d = 3 and 6 mm), heated lengths (L = 33 and 59.5 mm), effective lengths (L eff = 23.3 and 49.1 mm), L/d (=11 and 9.92), L eff /d (=7.77 and 8.18), and wall thickness (δ = 0.5 mm) with average surface roughness (Ra = 3.18 μm) are used in this work. The inner surface temperature and the heat flux from non-boiling to CHF are clarified. The subcooled boiling heat transfer for SUS304 test tube is compared with our Platinum test tube data and the values calculated by other workers' correlations for the subcooled boiling heat transfer. The influence of flow velocity on the subcooled boiling heat transfer and the CHF is investigated into details and the widely and precisely predictable correlation of the subcooled boiling heat transfer for turbulent flow of water in a short vertical SUS304-tube is given based on the experimental data. The correlation can describe the subcooled boiling heat transfer obtained in this work within 15% difference. Nucleate boiling surface superheats for the SUS304 test tube become very high. Those at the high flow velocity are close to the lower limit of Heterogeneous Spontaneous Nucleation Temperature. The dominant mechanisms of the flow boiling CHF in a short vertical SUS304-tube are discussed.

  5. Corrosion protection on superheaters of waste to energy plants. Experience with material and application; Korrosionsschutz im Ueberhitzerbereich. Erfahrungen mit Werkstoff und Applikation aus Qualitaetsbegleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidl, Werner; Herzog, Thomas; Magel, Gabi; Mueller, Wolfgang; Spiegel, Wolfgang [CheMin GmbH, Augsburg (Germany)

    2011-07-01

    Corrosion induced by chlorine at high temperatures and corrosion by salt melts sometimes cause severe risk and loss of operational availability in waste- and biomass-fired power plants. This corrosion very often affects the superheater. Due to high maintenance needs, several approaches to anti-corrosion coating have been developed. Nickel-based alloys such as alloy 625 are chosen to be applied as cladding or by thermal spraying. Operation periods have been considerably increased by these methods. But still there are some shortcomings in corrosion protection due to application and/or material. (orig.)

  6. Determination of the concentration profile of chemical elements in superheater pipes; Determinacion del perfil de concentracion de elementos quimicos en tubos de sobrecalentadores

    Energy Technology Data Exchange (ETDEWEB)

    Aldape U, F; Aspiazu F, J [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1986-05-15

    This work has for object to determine the profile of concentration of chemical elements at trace level in a superheater pipe of Thermoelectric Plants using the X-ray emission spectroscopy technique induced by protons coming from the Accelerator of the Nuclear Center. In the X-ray detection, a Si Li detector was used. The technique was chosen because it allows a multielemental analysis, of high sensitivity and precision. The results can help to understand the problems that are had in the change of flexibility or of corrosion. This will be from utility to the Federal Electricity Commission (CFE). (Author)

  7. Abdominal Plain Film Before Gastrostomy Tube Placement to Predict Success of Percutaneous Endoscopic Procedure

    NARCIS (Netherlands)

    Pruijsen, J. M.; de Bruin, A.; Sekema, G.; Koetse, H. A.; van Rheenen, P. F.

    Objectives: Percutaneous endoscopic gastrostomy (PEG) tube feeding is a convenient method for children requiring long-term enteral nutrition. Preoperative fitness of the majority of pediatric PEG candidates is graded as American Society of Anesthesiologists physical status >= III, indicating

  8. Experimental investigation of heat transfer of R134a in pool boiling on stainless steel and aluminum tubes

    Science.gov (United States)

    Wengler, C.; Addy, J.; Luke, A.

    2018-03-01

    Due to high energy demand required for chemical processes, refrigeration and process industries the increase of efficiency and performance of thermal systems especially evaporators is indispensable. One of the possibilities to meet this purpose are investigations in enhancement of the heat transfer in nucleate boiling where high heat fluxes at low superheat are transferred. In the present work, the heat transfer in pool boiling is investigated with pure R134a over wide ranges of reduced pressures and heat fluxes. The heating materials of the test tubes are aluminum and stainless steel. The influence of the thermal conductivity on the heat transfer coefficients is analysed by the surface roughness of sandblasted surfaces. The heat transfer coefficient increases with increasing thermal conductivity, surface roughness and reduced pressures. The experimental results show a small degradation of the heat transfer coefficients between the two heating materials aluminum and stainless steel. In correlation with the VDI Heat Atlas, the experimental results are matching well with the predictions but do not accurately consider the stainless steel material reference properties.

  9. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  10. Fail-safety of the EBR-II steam generator system

    International Nuclear Information System (INIS)

    Chopra, P.S.; Stone, C.C.; Hutter, E.; Barney, W.K.; Staker, R.G.

    1976-01-01

    Fail-safe analyses of the EBR-II steam-generator system show that a postulated non-instantaneous leak of water or steam into sodium, through a duplex tube or a tubesheet, at credible leak rates will not structurally damage the evaporators and superheaters. However, contamination of the system and possible shell wastage by sodium-water reaction products may render the system inoperable for a period exceeding six months. This period would be shortened to three months if the system were modified by adding a remotely operated water dump system, a steam vent system, a secondary sodium superheater relief line, and a tubesheet leak-detection system

  11. Functional performance of the helical coil steam generator, Consolidated Nuclear Steam Generator (CNSG) IV system. Executive summary report

    International Nuclear Information System (INIS)

    Watson, G.B.

    1975-10-01

    The objective of this project was to study the functional performance of the CNSG - IV helical steam generator to demonstrate that the generator meets steady-state and transient thermal-hydraulic performance specifications and that secondary flow instability will not be a problem. Economic success of the CNSG concepts depends to a great extent on minimizing the size of the steam generator and the reactor vessel for ship installation. Also, for marine application the system must meet stringent specifications for operating stability, transient response, and control. The full-size two-tube experimental unit differed from the CNSG only in the number of tubes and the mode of primary flow. In general, the functional performance test demonstrated that the helical steam generator concept will exceed the specified superheat of 35F at 100% load. The experimental measured superheat at comparable operating conditions was 95F. Testing also revealed that available computer codes accurately predict trends and overall performance characteristics

  12. Nucleate pool boiling, film boiling and single-phase free convection at pressures up to the critical state. Part I: Integral heat transfer for horizontal copper cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Gorenflo, Dieter; Baumhoegger, Elmar; Windmann, Thorsten; Herres, Gerhard [Institut fuer Energie- und Verfahrenstechnik, Universitaet Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)

    2010-11-15

    Transcritical working cycles for refrigerants have led to increased interest in heat transfer near the Critical State. In general, experimental results for this region differ significantly from those far from it because some fluid properties vary much more there than at a greater distance. In this paper, measurements for two-phase and single-phase free convective heat transfer from an electrically heated copper tube with 25 mm O.D. to refrigerant R125 are discussed for fluid states very close to the Critical Point and far from it. It is shown that heat transfer for film boiling slightly below and for free convection slightly above the critical pressure is very similar. The new - and also previous - experimental data for nucleate boiling, film boiling, and single-phase free convection are compared with calculated results between atmospheric and critical pressure. It can be concluded that the Principle of Corresponding States in its simplest form is very well suited to transfer the results to other refrigerants. In Part II, particular attention will be given to a minimum superheat for nucleate boiling and a maximum superheat for film boiling and single-phase free convection within the circumferential variation of the isobaric wall superheat on the lower parts of the tube. (author)

  13. Long-term follow-up of otitis media with effusion in children: comparisons between a ventilation tube group and a non-ventilation tube group.

    Science.gov (United States)

    Hong, Hye Ran; Kim, Tae Su; Chung, Jong Woo

    2014-06-01

    patients with otitis media with effusion and should explain the risks to patients who are a candidate for repeated ventilation tube insertion. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Release of Corrosive Species above the Grate in a Waste Boiler and the Implication for Improved Electrical Efficiency

    DEFF Research Database (Denmark)

    Bøjer, Martin; Jensen, Peter Arendt; Dam-Johansen, Kim

    2010-01-01

    A relatively low electrical efficiency of 20−25% is obtained in typical west European waste boilers. Ash species released from the grate combustion zone form boiler deposits with high concentrations of Cl, Na, K, Zn, Pb, and S that cause corrosion of superheater tubes at high temperature....... The superheater steam temperature has to be limited to around 425 °C, and thereby, the electrical efficiency remains low compared to wood or coal-fired boilers. If a separate part of the flue gas from the grate has a low content of corrosive species, it may be used to superheat steam to a higher temperature......, and thereby, the electrical efficiency of the plant can be increased. In this study, the local temperature, the gas concentrations of CO, CO2, and O2, and the release of the volatile elements Cl, S, Na, K, Pb, Zn, Cu, and Sn were measured above the grate in a waste boiler to investigate if a selected fraction...

  15. Lava Tubes as Martian Analog sites on Hawaii Island

    Science.gov (United States)

    Andersen, Christian; Hamilton, J. C.; Adams, M.

    2013-10-01

    The existence of geologic features similar to skylights seen in Mars Reconnaissance Orbiter HIRISE imagery suggest Martian lava tube networks. Along with pit craters, these features are evidence of a past era of vulcanism. If these were contemporary with the wet Mars eras, then it is suggestive that any Martian life may have retreated into these subsurface oases. Hawaii island has numerous lava tubes of differing ages, humidity, lengths and sizes that make ideal analog test environments for future Mars exploration. PISCES has surveyed multiple candidate sites during the past summer with a team of University of Hawaii at Hilo student interns. It should be noted that Lunar features have also been similarly discovered via Lunar Reconnaissance Orbiter LROC imagery.

  16. Investigation on steam oxidation behaviour of TP347H FG Part I Exposure at 256 bar

    DEFF Research Database (Denmark)

    Jianmin, J; Montgomery, Melanie; Larsen, OH

    2005-01-01

    with the aforementioned steel in coal-fired boilers and this paper focuses on the steam oxidation behaviour for specimens tested at various metal temperatures for exposure times of 7700, 23000 and 30000 hours as investigated by light optical and scanning electron microscopy. The oxide present on the specimens is a duplex......The stainless steel TP347H FG is a candidate material for the final stage tubing of superheater and reheater sections of ultra supercritical boilers operated at steam temperatures up to 620C in the mild corrosion environments of coal-firing. A series of field tests has been conducted...... oxide, where the outer layer consists of two sub-layers, an iron oxide layer and an iron-nickel oxide layer; the inner layer is chromium rich chromium-iron-nickel oxide. Microstructure examination showed that for all these samples the varying grain size of subsurface metal affected the oxide thickness...

  17. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1999-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  18. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  19. Sequence Design for a Test Tube of Interacting Nucleic Acid Strands.

    Science.gov (United States)

    Wolfe, Brian R; Pierce, Niles A

    2015-10-16

    We describe an algorithm for designing the equilibrium base-pairing properties of a test tube of interacting nucleic acid strands. A target test tube is specified as a set of desired "on-target" complexes, each with a target secondary structure and target concentration, and a set of undesired "off-target" complexes, each with vanishing target concentration. Sequence design is performed by optimizing the test tube ensemble defect, corresponding to the concentration of incorrectly paired nucleotides at equilibrium evaluated over the ensemble of the test tube. To reduce the computational cost of accepting or rejecting mutations to a random initial sequence, the structural ensemble of each on-target complex is hierarchically decomposed into a tree of conditional subensembles, yielding a forest of decomposition trees. Candidate sequences are evaluated efficiently at the leaf level of the decomposition forest by estimating the test tube ensemble defect from conditional physical properties calculated over the leaf subensembles. As optimized subsequences are merged toward the root level of the forest, any emergent defects are eliminated via ensemble redecomposition and sequence reoptimization. After successfully merging subsequences to the root level, the exact test tube ensemble defect is calculated for the first time, explicitly checking for the effect of the previously neglected off-target complexes. Any off-target complexes that form at appreciable concentration are hierarchically decomposed, added to the decomposition forest, and actively destabilized during subsequent forest reoptimization. For target test tubes representative of design challenges in the molecular programming and synthetic biology communities, our test tube design algorithm typically succeeds in achieving a normalized test tube ensemble defect ≤1% at a design cost within an order of magnitude of the cost of test tube analysis.

  20. Boomers versus Millennials: Online Media Influence on Media Performance and Candidate Evaluations

    OpenAIRE

    Terri Towner; Caroline Lego Munoz

    2016-01-01

    Facebook posts, YouTube videos, tweets and wooing political bloggers have become standard practice in marketing political campaigns. Research has demonstrated the effect of new media on a host of politically-related behavior, including political participation, knowledge acquisition, group formation and self-efficacy. Yet, issues related to media trust, media performance and candidate evaluations have not been fully explored. In addition, much of the political marketing research looks exclusiv...

  1. Quantitative experiments on thermal hydraulic characteristics of an annular tube with twisted fins

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Dairaku, Masayuki; Taniguchi, Masaki; Sato, Kazuyoshi; Suzuki, Satoshi; Akiba, Masato

    2003-11-01

    Thermal hydraulic experiments measuring critical heat flux (CHF) and pressure drop of an annular tube with twisted fins, ''annular swirl tube'', has been performed to examine its applicability to the ITER divertor cooling structure. The annular swirl tube consists of two concentric circular tubes, the outer and inner tubes. The outer tube with outer and inner diameters (OD and ID) of 21 mm and 15 mm is made of Cu-alloy that is CuCrZr and oe of candidate materials of the ITER divertor cooling tube. The inner tube with OD of 11 mm and ID of 9 mm is made of stainless steal. It has an external swirl fin with twist ratio (y) of three to enhance its heat transfer performance. In this tube, cooling water flows inside of the inner tube first, and then returns into an annulus between the outer and inner tubes with a swirl flow at an end-return of the cooling tube. The CHF experiments show that no degradation of CHF of the annular swirl tube in comparison with the conventional swirl tube whose dimensions are similar to those of the outer tube of the annular swirl tube. A minimum axial velocity of 7.1 m/s is required to remove the incident heat flux of 28MW/m 2 , the ITER design value. Applicability of the JAERI's correlation for the heat transfer to the annular swirl tube is also demonstrated by comparing the experimental results with those of the numerical analysis. The friction factor correlation for the annular flow with the twisted fins is also proposed for the hydrodynamic design of the ITER vertical target. The least pressure drop at the end-return is obtained by using the hemispherical end-plug. Its radius is the same as that of ID of the outer cooling tube. These results show that thermal-hydraulic performance of the annular swirl tube is promising in application to the cooling structure for the ITER vertical target. (author)

  2. Field test corrosion experiences when co-firing straw and coal: 10 year status within Elsam

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Berg; Montgomery, Melanie; Larsen, Ole Hede

    2007-01-01

    and straw at the 150 MW pulverized coal fired boiler Studstrup unit 1. Two exposure series lasting 3000 hours each were performed for co-firing 10 and 20% of straw (% energy basis) with coal. Using built in test tubes in the hot end of the actual superheaters and air/water cooled corrosion probes...... to 575 degrees C and for the flue gas from 1025 to 1300 degrees C. All these test tubes have been removed during the last three years at one year intervals for corrosion studies. The corrosion studies performed on all investigated tubes included measurements of the corrosion attack, light optical...

  3. Design of Monju steam generator - with regard to maintenance and repair

    International Nuclear Information System (INIS)

    Takahashi, T.; Yamagishi, Y.; Mukaibo, R.

    2002-01-01

    The steam generator design of 'Monju' started in 1968 and since then, extensive research and design work has been done. 'Monju' steam generator consists of one evaporator and one superheater to each of the three independent cooling systems. Ultrasonic and eddy current tubing inspection devices have been developed for maintenance. And for failed tubes, welding or explosive plugging is applied. Following the completed safety review and the coming design and construction licensing, 'Monju' is expected to reach criticality in fiscal year 1990. (author)

  4. Evaluation of sampling plans for in-service inspection of steam generator tubes

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Heasler, P.G.; Baird, D.B.

    1994-02-01

    This report summarizes the results of three previous studies to evaluate and compare the effectiveness of sampling plans for steam generator tube inspections. An analytical evaluation and Monte Carlo simulation techniques were the methods used to evaluate sampling plan performance. To test the performance of candidate sampling plans under a variety of conditions, ranges of inspection system reliability were considered along with different distributions of tube degradation. Results from the eddy current reliability studies performed with the retired-from-service Surry 2A steam generator were utilized to guide the selection of appropriate probability of detection and flaw sizing models for use in the analysis. Different distributions of tube degradation were selected to span the range of conditions that might exist in operating steam generators. The principal means of evaluating sampling performance was to determine the effectiveness of the sampling plan for detecting and plugging defective tubes. A summary of key results from the eddy current reliability studies is presented. The analytical and Monte Carlo simulation analyses are discussed along with a synopsis of key results and conclusions

  5. Effect of boric acid on intergranular corrosion in tube support plate crevices

    International Nuclear Information System (INIS)

    Brunet, J.P.; Campan, J.L.

    1993-10-01

    Intergranular attack on steam generator tubing is one important phenomenon involved in availability of Pressurized Water Reactors. Boric acid appears to be a possible candidate for inhibiting the corrosion process. The program performed in Cadarache was supposed to give statistical informations on the boric acid effect. It was based on a large number of samples initially attacked during a program performed by BABCOCK ampersand WILCOX. These samples were sleeved onto Alloy 690 tubes, in order to prevent premature cracking. Unfortunately it was not possible to find chemical conditions able to produce significant additional corrosion; we postulated mainly due to a drastic reduction of the thermal flux resulting from the increase of the tube wall thickness under the tube support plates (TSP). The tests demonstrate that such sleeve could be a possible remedy of the corrosion when introduced under the TSP. The tests show indications of a possible beneficial effect of the boric acid, a large variability of the heats sensitivity to the IGA and a predominant effect of Na 2 CO 3 on IGA production

  6. A study on integrity of LMFBR secondary cooling system to hypothetical tube failure propagation in the steam generator

    International Nuclear Information System (INIS)

    Yoshihisa Shindo; Kazuo Haga

    2005-01-01

    -LT code also developed in ANL. In this preliminary work event trees have been prepared to make clear the scenario from the initial small-scale leak to the severest large-scale leak due to the tube failure propagation in SG. The probability of failures of leak detectors, nickel membrane-type hydrogen detectors in sodium and pressure gauges that observe the cover gas pressure of SG (EV: evaporator and SH: superheater), is considered in the event trees. On the other hand, rupture disks in SH and EV were assumed to have the normal function in leak detection and reaction products release. In some cases, water/steam blow valves to mitigate leak propagation were assumed hypothetically to fail after the plant trip, and the water and steam remained in SG are not released. A relation between the maximum leak rate resulting from the tube failure propagation and the probability of its occurrence was obtained tentatively from these considerations. Then, the effect of pressure generated by the sodium-water reaction was evaluated to the structural integrity of the secondary cooling system components. (authors)

  7. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into a...

  8. Erosion-corrosion behaviour of Ni-based superalloy Superni-75 in the real service environment of the boiler

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, T.S.; Prakash, S.; Agrawal, R.D.; Bhagat, R. [Shaheed Bhagat Singh College of Engineering & Technology, Ferozepur (India)

    2009-04-15

    The super-heater and re-heater tubes of the boilers used in thermal power plants are subjected to unacceptable levels of surface degradation by the combined effect of erosion-corrosion mechanism, resulting in the tube wall thinning and premature failure. The nickel-based superalloys can be used as boiler tube materials to increase the service life of the boilers, especially for the new generation ultra-supercritical boilers. The aim of the present investigation is to evaluate the erosion-corrosion behaviour of Ni-based superalloy Superni-75 in the real service environment of the coal-fired boiler of a thermal power plant. The cyclic experimental study was performed for 1000 h in the platen superheater zone of the coal-fired boiler where the temperature was around 900{sup o}C. The corrosion products have been characterized with respect to surface morphology, phase composition and element concentration using the combined techniques of X-ray diffractometry (XRD), scanning electron microscopy/energy-dispersive analysis (SEM/EDAX) and electron probe micro analyser (EPMA). The Superni-75 performed well in the coal-fired boiler environment, which has been attributed mainly to the formation of a thick band of chromium in scale due to selective oxidation of the chromium.

  9. Tube plug

    International Nuclear Information System (INIS)

    Zafred, P. R.

    1985-01-01

    The tube plug comprises a one piece mechanical plug having one open end and one closed end which is capable of being inserted in a heat exchange tube and internally expanded into contact with the inside surface of the heat exchange tube for preventing flow of a coolant through the heat exchange tube. The tube plug also comprises a groove extending around the outside circumference thereof which has an elastomeric material disposed in the groove for enhancing the seal between the tube plug and the tube

  10. Ultrasonic inspection of tube to tube plate welds

    International Nuclear Information System (INIS)

    Telford, D.W.; Peat, T.S.

    1985-01-01

    To monitor the deterioration of a weld between a tube and tube plate which has been repaired by a repair sleeve inside the tube and brazed at one end to the tube, ultrasound from a crystal at the end of a rod is launched, in the form of Lamb-type waves, into the tube through the braze and allowed to travel along the tube to the weld and be reflected back along the tube. The technique may also be used for the type of heat exchanger in which, during construction, the tubes are welded to the tube plate via external sleeves in which case the ultrasound is used in a similar manner to inspect the sleeve/tube plate weld. an electromagnetic transducer may be used to generate the ultrasound. The ultrasonic head comprising the crystal and an acoustic baffle is mounted on a Perspex (RTM) rod which may be rotated by a stepping motor. Echo signals from the region of deterioration may be isolated by use of a time gate in the receiver. The device primarily detects circumferentially orientated cracks, and may be used in heat exchangers in nuclear power plants. (author)

  11. A study of the dispersed flow interfacial heat transfer model of RELAP5/MOD2.5 and RELAP5/MOD3

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, M. [Swiss Federal Institute of Technology, Zurich (Switzerland); Analytis, G.T.; Aksan, S.N. [Paul Scherrer Institute, Villigen (Switzerland)

    1995-09-01

    The model of interfacial heat transfer for the dispersed flow regime used in the RELAP5 computer codes is investigated in the present paper. Short-transient calculations of two low flooding rate tube reflooding experiments have been performed, where the hydraulic conditions and the heat input to the vapour in the post-dryout region were controlled for the predetermined position of the quench front. Both RELAP5/MOD2.5 and RELAP5/MOD3 substantially underpredicted the exit vapour temperature. The mass flow rate and quality, however, were correct and the heat input to the vapour was larger than the actual one. As the vapour superheat at the tube exit depends on the balance between the heat input from the wall and the heat exchange with the droplets, the discrepancy between the calculated and the measured exit vapour temperature suggested that the inability of both codes to predict the vapour superheat in the dispersed flow region is due to the overprediction of the interfacial heat transfer rate.

  12. Combating corrosion in biomass and waste fired plant

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Pamela [Vattenfall AB, Stockholm (Sweden). Research and Development; Hjoernhede, Anders [Vattenfall AB, Gothenburg (Sweden). Power Consultant

    2010-07-01

    Many biomass- or waste-fired plants have problems with high temperature corrosion especially if the steam temperature is greater than 500 C. An increase in the combustion of waste fuels means that an increasing number of boilers have had problems. Therefore, there is great interest in reducing the costs associated with high temperature corrosion and at the same time there exists a desire to improve the electrical efficiency of a plant by the use of higher steam temperatures. Assuming that the fuel is well-mixed and that there is good combustion control, there are in addition a number of other measures which can be used to reduce superheater corrosion in biomass and waste fired plants, and these are described in this paper. These include the use of fuel additives, specifically sulphur-containing ones; design aspects like placing superheaters in less corrosive positions in a boiler, using tube shielding, a wider pitch between the tubes; operational considerations such as more controlled soot-blowing and the use of better materials. (orig.)

  13. Heat Exchanger Tube to Tube Sheet Joints Corrosion Behavior

    Directory of Open Access Journals (Sweden)

    M. Iancu

    2013-03-01

    Full Text Available Paper presents the studies made by the authors above the tube to tube sheet fittings of heat exchanger with fixed covers from hydrofining oil reforming unit. Tube fittings are critical zones for heat exchangers failures. On a device made from material tube and tube sheet at real joints dimensions were establish axial compression force and traction force at which tube is extracted from expanded joint. Were used two shapes joints with two types of fittings surfaces, one with smooth hole of tube sheet and other in which on boring surface we made a groove. From extracted expanded tube zones were made samples for corrosion tests in order to establish the corrosion rate, corrosion potential and corrosion current in working mediums such as hydrofining oil and industrial water at different temperatures. The corrosion rate values and the temperature influence are important to evaluate joints durability and also the results obtained shows that the boring tube sheet shape with a groove on hole tube shape presents a better corrosion behavior then the shape with smooth hole tube sheet.

  14. Qualification of stainless steel for OTEC heat exchanger tubes

    Energy Technology Data Exchange (ETDEWEB)

    LaQue, F.L.

    1979-01-01

    The history of the AL-6X alloy is reviewed and its credentials as a candidate for use as tubing in Ocean Thermal Energy Conversion Heat Exchangers are examined. Qualification is based on results of accelerated tests using ferric chloride for resistance to crevice corrosion and pitting, long-time crevice corrosion and pitting tests in natural sea water and anticipated resistance to attack by ammonia and mixtures of ammonia and sea water. Since the alloy has no natural resistance to fouling by marine organisms, it must be able to accomodate action to prevent fouling by chlorination or to remove it by mechanical cleaning techniques or appropriate chemical cleaning methods. The satisfactory behavior indicated by the various accelerated and long-time corrosion tests has been confirmed by excellent performance of several million feet of tubing in condensers in coastal power plants. Early evaluation tests demonstrated the need for proper heat treatment to avoid the presence of a sigma phase, which promoted severe pitting of some, but not all, specimens in tests in natural sea water. The available data qualify the AL-6X alloy as being a satisfactory alternate to titanium for tubes in OTEC heat exchangers.

  15. Tube spacer grid for a heat-exchanger tube bundle

    International Nuclear Information System (INIS)

    Scheidl, H.

    1976-01-01

    A tube spacer grid for a heat-exchanger tube bundle is formed by an annular grid frame having a groove formed in its inner surface in which the interspaced grid bars have their ends positioned and held in interspaced relationship by short sections of tubes passed through holes axially formed in the grid frame so that the tubes are positioned between the ends of the grid bars in the grooves. The tube sections may be cut from the same tubes used to form the tube bundle. 5 claims, 3 drawing figures

  16. Rapid evaporation at the superheat limit of methanol, ethanol, butanol and n-heptane on platinum films supported by low-stress SiN membranes.

    Science.gov (United States)

    Ching, Eric J; Avedisian, C Thomas; Cavicchi, Richard C; Chung, Do Hyun; Rah, Jeff; Carrier, Michael J

    2016-10-01

    The bubble nucleation temperatures of several organic liquids (methanol, ethanol, butanol, n-heptane) on stress-minimized platinum (Pt) films supported by SiN membranes is examined by pulse-heating the membranes for times ranging from 1 µs to 10 µs. The results show that the nucleation temperatures increase as the heating rates of the Pt films increase. Measured nucleation temperatures approach predicted superheat limits for the smallest pulse times which correspond to heating rates over 10 8 K/s, while nucleation temperatures are significantly lower for the longest pulse times. The microheater membranes were found to be robust for millions of pulse cycles, which suggests their potential in applications for moving fluids on the microscale and for more fundamental studies of phase transitions of metastable liquids.

  17. Nature of fireside deposits in a bagasse and groundnut shell fired 20 MW thermal boiler

    International Nuclear Information System (INIS)

    Srikanth, S.; Das, S.K.; Ravikumar, B.; Rao, D.S.; Nandakumar, K.; Vijayan, P.

    2004-01-01

    The nature of deposit formation on the fireside surfaces of the boiler tubes in the various parts (water walls, platen superheater, final superheater, economizer, electrostatic precipitator etc.) of a commercial 20 MW stoker-fired boiler being fired with a mixture of 80% bagasse and 20% groundnut shell has been analyzed. The deposits in the various portions of the boiler were characterized by particle size analysis, chemical analysis, X-ray diffraction and scanning electron microscopy. The deposits were found to be mainly quartz, alkali and alkaline earth silicates and sulfates. From the phase constitution and other microscopic characteristics of the deposit, it can be inferred that the silicates in the deposit formed through inertial impaction and the sulfates formed by vapor phase deposition

  18. Operating experience of the EBR-II steam generating system

    International Nuclear Information System (INIS)

    Buschman, H.W.; Penney, W.H.; Quilici, M.D.; Radtke, W.H.

    1981-01-01

    The Experimental Breeder Reactor II (EBR-II) is a Liquid Metal Fast Breeder Reactor (LMFBR) with integrated power producing capability. Superheated steam is produced by eight natural circulation evaporators, two superheaters, and a conventional steam drum. Steam throttle conditions are 438 C (820 F) and 8.62 MPa (1250 psi). The designs of the evaporators and superheaters are essentially identical; both are counterflow units with low pressure nonradioactive sodium on the shell side. Safety and reliability are maximized by using duplex tubes and tubesheets. The performance of the system has been excellent and essentially trouble free. The operating experience of EBR-II provides confidence that the technology can be applied to commercial LMFBR's for an abundant supply of energy for the future. 5 refs

  19. Nature of fireside deposits in a bagasse and groundnut shell fired 20 MW thermal boiler

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, S.; Rao, D.S. [National Metallurgical Laboratory Madras Centre, Chennai (India); Swapan, S.K.; Das, K.; Ravikumar, B. [National Metallurgical Laboratory, Jamshedpur (India). Materials Characterization Division; Nandakumar, K.; Vijayan, P. [Bharat Heavy Electricals Limited, Tiruchirappalli (India). Research and Development Section

    2004-10-01

    The nature of deposit formation on the fireside surfaces of the boiler tubes in the various parts (water walls, platen superheater, final superheater, economizer, electrostatic precipitator etc.) of a commercial 20 MW stoker-fired boiler being fired with a mixture of 80% bagasse and 20% groundnut shell has been analyzed. The deposits in the various portions of the boiler were characterized by particle size analysis, chemical analysis, X-ray diffraction and scanning electron microscopy. The deposits were found to be mainly quartz, alkali and alkaline earth silicates and sulfates. From the phase constitution and other microscopic characteristics of the deposit, it can be inferred that the silicates in the deposit formed through inertial impaction and the sulfates formed by vapor phase deposition. (author)

  20. NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes

    International Nuclear Information System (INIS)

    Wong, W.A.; Cairelli, J.E.; Swec, D.M.; Doeberling, T.J.; Lakatos, T.F.; Madi, F.J.

    1994-01-01

    Free-piston Stirling power converters are a candidate for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. This paper describes experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions

  1. Repair technology for steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Jung, Hyun Kyu; Jung, Seung Ho; Kim, Chang Hoi; Jung, Young Moo; Seo, Yong Chil; Kim, Jung Su; Seo, Moo Hong

    2001-02-01

    The most commonly used sleeving materials are thermally treated Alloy 600 and thermally treated Alloy 690 Alloy. Currently, thermally treated Alloy 690 and Alloy 800 are being offered although Alloy 800 has not been licensed in the US. To install sleeve, joint strength, leak tightness, PWSCC resistance, evaluation on process parameter range and the effect of equipments and procedures on repair plan and radiation damage have to be investigated before sleeving. ABB CE provides three type of leak tight Alloy 690 TIG welded and PLUSS sleeve. Currently, Direct Tube Repair technique using Nd:YAG laser has been developed by ABB CE and Westinghouse. FTI has brazed and kinetic sleeve designs for recirculating steam generator and hydraulic and rolled sleeve designs for one-through steam generators. Westinghouse provides HEJ, brazed and laser welded sleeve design. When sleeve is installed in order to repair the damaged S/G tubes, it is certain that defects can be occurred due to the plastic induced stress and thermal stress. Therefore it is important to minimize the residual stress. FTI provides the electrosleeve technique as a future repair candidate using electroplating.

  2. Repair technology for steam generator tubes

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Jung, Hyun Kyu; Jung, Seung Ho; Kim, Chang Hoi; Jung, Young Moo; Seo, Yong Chil; Kim, Jung Su; Seo, Moo Hong

    2001-02-01

    The most commonly used sleeving materials are thermally treated Alloy 600 and thermally treated Alloy 690 Alloy. Currently, thermally treated Alloy 690 and Alloy 800 are being offered although Alloy 800 has not been licensed in the US. To install sleeve, joint strength, leak tightness, PWSCC resistance, evaluation on process parameter range and the effect of equipments and procedures on repair plan and radiation damage have to be investigated before sleeving. ABB CE provides three type of leak tight Alloy 690 TIG welded and PLUSS sleeve. Currently, Direct Tube Repair technique using Nd:YAG laser has been developed by ABB CE and Westinghouse. FTI has brazed and kinetic sleeve designs for recirculating steam generator and hydraulic and rolled sleeve designs for one-through steam generators. Westinghouse provides HEJ, brazed and laser welded sleeve design. When sleeve is installed in order to repair the damaged S/G tubes, it is certain that defects can be occurred due to the plastic induced stress and thermal stress. Therefore it is important to minimize the residual stress. FTI provides the electrosleeve technique as a future repair candidate using electroplating

  3. Multi-walled carbon nano-tubes for energy storage and production applications

    International Nuclear Information System (INIS)

    Andrews, R.; Jacques, D.; Likpa, S.; Qian, D.; Rantell, T.; Anthony, J.

    2005-01-01

    Full text of publication follows: Since their discovery, carbon nano-tubes have been proposed as candidate materials for a broad range of applications, including high strength composites, molecular electronics, and energy storage. In many cases, nano-tubes have been proposed to replace traditional carbon materials, such as activated carbons in energy storage devices. In other cases, novel applications have been proposed, such as the use of carbon nano-tube arrays in photovoltaic devices. The use of multi-walled carbon nano-tubes in energy storage devices has generated great interest due to their high inherent conductivity, layered structure, and high surface area per volume compared to traditional graphitic materials. However as produced nano-tubes do not possess ideal properties, and exhibit only modest charge storage. We have explored the charge storage abilities of nano-tubes with varying morphologies (fullerenic versus stacked cones), nano-tubes containing N or B dopants, as well as various post-treatments of the nano-tubes. The use of nano-tubes in charge storage devices will be described, as well as modification of the nano-tube surfaces or morphology to improve this performance. The synthesis of nano-tubes with several differing hetero-atom dopants will also be described, as well as the effect of heat treatment on these structures. One of the most significant problems in organic photovoltaics is the typically low charge-carrier mobility in organic thin films which, coupled with short exciton diffusion lengths, means that photo-generated charge-carrier pairs are more likely to re-combine than reach an electrode to generate current. Two organic systems with high charge-carrier mobilities are carbon nano-tubes (here, MWNTs) and acene-based organic semiconductors. We believe that blended devices based on MWNTs and organic semiconductors could lead to the next class of efficient, flexible and inexpensive organic photovoltaic systems. We have developed methods to

  4. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G; Hulsizer, P [Welding Services Inc., Norcross, GA (United States); Brooks, R [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1999-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  5. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G.; Hulsizer, P. [Welding Services Inc., Norcross, GA (United States); Brooks, R. [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1998-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  6. Environmental Assessment for Authorizing the Puerto Rico Electric Power Authority (PREPA) to allow Public Access to the Boiling Nuclear Superheat (BONUS) Reactor Building, Rincon, Puerto Rico

    International Nuclear Information System (INIS)

    2003-01-01

    The U.S. Department of Energy (DOE) proposes to consent to a proposal by the Puerto Rico Electric Power Authority (PREPA) to allow public access to the Boiling Nuclear Superheat (BONUS) reactor building located near Rincon, Puerto Rico for use as a museum. PREPA, the owner of the BONUS facility, has determined that the historical significance of this facility, as one of only two reactors of this design ever constructed in the world, warrants preservation in a museum, and that this museum would provide economic benefits to the local community through increased tourism. Therefore, PREPA is proposing development of the BONUS facility as a museum

  7. Tube holding system

    International Nuclear Information System (INIS)

    Cunningham, R.C.

    1978-01-01

    A tube holding rig is described for the lateral support of tubes arranged in tight parcels in a heat exchanger. This tube holding rig includes not less than two tube supporting assemblies, with a space between them, located crosswise with respect to the tubes, each supporting assembly comprising a first set of parallel components in contact with the tubes, whilst a second set of components is also in contact with the tubes. These two sets of parts together define apertures through which the tubes pass [fr

  8. HF electronic tubes. Technologies, grid tubes and klystrons

    International Nuclear Information System (INIS)

    Lemoine, Th.

    2009-01-01

    This article gives an overview of the basic technologies of electronic tubes: cathodes, electronic optics, vacuum and high voltage. Then the grid tubes, klystrons and inductive output tubes (IOT) are introduced. Content: 1 - context and classification; 2 - electronic tube technologies: cathodes, electronic optics, magnetic confinement (linear tubes), periodic permanent magnet (PPM) focussing, collectors, depressed collectors; 3 - vacuum technologies: vacuum quality, surface effects and interaction with electrostatic and RF fields, secondary emission, multipactor effect, thermo-electronic emission; 4 - grid tubes: operation of a triode, tetrodes, dynamic operation and classes of use, 'common grid' and 'common cathode' operation, ranges of utilisation and limitations, operation of a tetrode on unadjusted load, lifetime of a tetrode, uses of grid tubes; 5 - klystrons: operation, impact of space charge, multi-cavity klystrons, interaction efficiency, extended interaction klystrons, relation between interaction efficiency, perveance and efficiency, ranges of utilization and power limitations, multi-beam klystrons and sheet beam klystrons, operation on unadjusted load, klystron band pass and lifetime, uses; 6 - IOT: principle of operation, ranges of utilisation and limitations, interaction efficiency and depressed collector IOT, IOT lifetime and uses. (J.S.)

  9. Tube to tube excursive instability - sensitivities and transients

    International Nuclear Information System (INIS)

    Brown, M.; Layland, M.W.

    1980-01-01

    A simple basic analysis of excursive instability in a boiler tube shows how it depends upon operating conditions and physical properties. A detailed mathematical model of an AGR boiler is used to conduct a steady state parameter sensitivity survey. It is possible from this basis to anticipate the effects of changes in operating conditions and changes in design parameters upon tube to tube stability. Dynamic responses of tubes operating near the stability threshold are examined using a mathematical model. Simulated excursions are triggered by imparting small abrupt pressure changes on the boiler inlet pressure. The influences of the magnitude of the pressure change, waterside friction factor and gas side coupling between tubes are examined. (author)

  10. Tube-support response to tube-denting evaluation. Volume 1. Final report

    International Nuclear Information System (INIS)

    Anderson, P.L.; Hall, J.F.; Shah, P.K.; Wills, R.L.

    1983-05-01

    The response of the tube supports is one of the important considerations of tube denting in a steam generator. Investigations have indicated that damaged tube supports have the potential to distort and damage tubes. This investigation considers the response to tube denting of the Combustion Engineering type tube supports. Drilled support plates and eggcrate tube supports are tested in a model steam generator in which tube denting is induced. The experimental data is used to verify and refine analytical predictor models developed using finite element techniques. It was found that analytical models underpredicted the deformations of the tube supports and appropriate modifications to enhance the predictive capability are identified. Non-destructive examination methods are evaluated for application to operating steam generators. It was found that the standard eddy current and profilometry techniques are acceptable methods for determining tube deformations, but these techniques are not adequate to assess tube support damage. Radiography is judged to be the best available means of determining the extent and progression of damage in tube supports

  11. Condenser tube buckling within tube-tubesheet joints

    International Nuclear Information System (INIS)

    Willertz, L.E.; Kalnins, A.; Updike, D.P.

    1991-01-01

    The problem of the appearance of protrusions, or bumps, in the interior of roller-expanded tubes within a tubesheet is addressed. Such bumps have been observed in condensers of power plants. A brief history of the reported occurrences of the bumps is given. The hypothesis is advanced that the mechanics of the formation of the bumps is similar to a buckling problem that has 'bifurcation at infinity'. Following this hypothesis, a two-dimensional physical model is developed, and the application of this model to study a three-dimensional bump is proposed. It is proposed in this paper that an initial deviation from the circular shape of the tube required to produce a bump. It is shown that without such a deviation the tubes cannot buckle. An experiment with short tube segments has been performed that verifies some of the features of the observed condenser tube bumps. Exactly what force produced the initial deviation for the observed bumps is still unknown. Available evidence implicates the hydro-laser jet that is used in the cleaning of tubes and tubesheets. A scenario of how a bump could have been produced by the hydro-laser jet is proposed. (author)

  12. Calreticulin is required for calcium homeostasis and proper pollen tube tip growth in Petunia.

    Science.gov (United States)

    Suwińska, Anna; Wasąg, Piotr; Zakrzewski, Przemysław; Lenartowska, Marta; Lenartowski, Robert

    2017-05-01

    Calreticulin is involved in stabilization of the tip-focused Ca 2+ gradient and the actin cytoskeleton arrangement and function that is required for several key processes driving Petunia pollen tube tip growth. Although the precise mechanism is unclear, stabilization of a tip-focused calcium (Ca 2+ ) gradient seems to be critical for pollen germination and pollen tube growth. We hypothesize that calreticulin (CRT), a Ca 2+ -binding/buffering chaperone typically residing in the lumen of the endoplasmic reticulum (ER) of eukaryotic cells, is an excellent candidate to fulfill this role. We previously showed that in Petunia pollen tubes growing in vitro, CRT is translated on ER membrane-bound ribosomes that are abundant in the subapical zone of the tube, where CRT's Ca 2+ -buffering and chaperone activities might be particularly required. Here, we sought to determine the function of CRT using small interfering RNA (siRNA) to, for the first time in pollen tubes growing in vitro, knockdown expression of a gene. We demonstrate that siRNA-mediated post-transcriptional silencing of Petunia hybrida CRT gene (PhCRT) expression strongly impairs pollen tube growth, cytoplasmic zonation, actin cytoskeleton organization, and the tip-focused Ca 2+ gradient. Moreover, reduction of CRT alters the localization and disturbs the structure of the ER in abnormally elongating pollen tubes. Finally, cytoplasmic streaming is inhibited, and most of the pollen tubes rupture. Our data clearly show an interplay between CRT, Ca 2+ gradient, actin-dependent cytoplasmic streaming, organelle positioning, and vesicle trafficking during pollen tube elongation. Thus, we suggest that CRT functions in Petunia pollen tube growth by stabilizing Ca 2+ homeostasis and acting as a chaperone to assure quality control of glycoproteins passing through the ER.

  13. Nonstationary behavior in a delayed feedback traveling wave tube folded waveguide oscillator

    International Nuclear Information System (INIS)

    Ryskin, N.M.; Titov, V.N.; Han, S.T.; So, J.K.; Jang, K.H.; Kang, Y.B.; Park, G.S.

    2004-01-01

    Folded waveguide traveling-wave tubes (FW TWT) are among the most promising candidates for powerful compact amplifiers and oscillators in millimeter and submillimeter wave bands. In this paper, the nonstationary behavior of a FW TWT oscillator with delayed feedback is investigated. Starting conditions of the oscillations are derived analytically. Results of numerical simulation of single-frequency, self-modulation (multifrequency) and chaotic generation regimes are presented. Mode competition phenomena, multistability and hysteresis are discussed

  14. Properties of thick welded joints on superheater collectors made from new generation high alloy martensitic creep-resisting steels for supercritical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzanski, Janusz; Zielinski, Adam [Institute for Ferrous Metallurgy, Gliwice (Poland); Pasternak, Jerzy [Boiler Engineering Company RAFAKO S.A., Raciborz (Poland)

    2010-07-01

    The continuously developing power generation sector, including boilers with supercritical parameters, requires applications of new creep-resistant steel grades for construction of boilers steam superheater components. This paper presents selected information, experience within the field of research and implementation of a new group of creep-resistant as X10CrMoVNb9-1(P91), X10CrWMoVNb9-2(P92) and X12CrCoWVNb12-2-2(VM12) grades, containing 9-12%Cr. During welding and examination process the results of mechanical properties, requested level for base material and welded joints, as well as: tensile strength, impact strength and technological properties have been evaluated. Additional destructive examinations, with evaluation of structure stability, hardness distribution, for base material and welded joints after welding, heat treatment, again process have been determined. Recommendations due to the implementation influence of operating parameters of the main boiler components are part of this paper. (orig.)

  15. Modelling and verification of once-through subcritical heat recovery steam generator

    International Nuclear Information System (INIS)

    Lee, Chae Soo; Choi, Young Jun; Kim, Hyun Gee; Yang, Ok Chul; Chong Chae Hon

    2004-01-01

    The once-through heat recovery steam generator is ideally matched to very high temperature and pressure, well into the supercritical range. Moreover this type of boiler is structurally simpler than drum type boiler. In drum type boiler, each tube play a well-defined role: water preheating, vaporization, superheating. Empirical equations are available to predict the average heat transfer coefficient for each regime. For once-through heat recovery steam generator, this is no more the case and mathematical models have to be adapted to account for the disappearance of drum type economizer, boiler, superheater. General equations have to be used for each tube of boiler, and actual heat transfer condition in each tube has to be identified

  16. Chest tube insertion

    Science.gov (United States)

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... Be careful there are no kinks in your tube. The drainage system should always sit upright and be placed ...

  17. Vibro-impact responses of a tube with tube--baffle interaction

    International Nuclear Information System (INIS)

    Shin, Y.S.; Sass, D.E.; Jendrzejczyk, J.A.

    1978-01-01

    The relatively small, inherent tube-to-baffle hole clearances associated with manufacturing tolerances in heat exchangers affect the vibrational characteristics and the response of the tube. Numerical studies were made to predict the vibro-impact response of a tube with tube-baffle interaction. The finite element method has been employed with a non-linear elastic contact spring-dashpot to model the effect of the relative approach between the tube and the baffle plate. The coupled equations of motion are directly integrated with a proportional system damping represented by a linear combination of mass and stiffness. Lumped mass approach with explicit time integration scheme was found to be a suitable choice for tube-baffle impacting analysis. Fourier analyses indicate that the higher mode contributions to the tube response are significant for strong tube-baffle impacting. The contact damping forces are negligible compared with the contact spring forces. The numerical analysis results are in reasonably good agreement with those of the experiments

  18. Evaluation of candidate photomultiplier tubes for the upgrade of the CDF end plug calorimeter

    International Nuclear Information System (INIS)

    Koska, W.; Delchamps, S.W.; Freeman, J.; Kinney, W.; Lewis, D.; Limon, P.; Strait, J.; Fiori, I.; Gallinaro, M.; Shen, Q.

    1994-01-01

    The Collider Detector at Fermilab is upgrading its end plug calorimeter from a gas detector system to one using scintillating tiles and wavelength shifting fibers. This tile-fiber calorimeter will be read out through 1,824 photomultiplier tubes. The performance requirements of the calorimeter require that the PMTs have good response to light in the 500 nm region, provide adequate amplification for signals from minimum ionizing particles yet provide linear response for peak anode currents up to 25 mA at a gain of 50,000, and fit into the restricted space at the rear of the plugs. This paper will describe the evaluation process used to determine the adequacy of the commercially available PMTs which appeared to meet these performance requirements

  19. Corrosion in waste incineration facilities; Korrosion i avfallsfoerbraenningsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Staalenheim, Annika; Henderson, Pamela

    2004-11-01

    Waste is a heterogeneous fuel, often with high levels of chlorine, alkali and heavy metals. This leads to much more severe corrosion problems than combustion of fossil fuels. The corrosion rates of the materials used can be extremely high. Materials used for heat transferring parts are usually carbon steel or low alloyed steel. These are significantly cheaper than other steels. Austenitic stainless steel is also used, but is often avoided due to its sensitivity to stress corrosion cracking. More advanced materials, such as nickel base alloys, can be used in extremely aggressive environments. Since these materials are expensive and do not always have sufficient mechanical properties, they are often used as coatings on carbon steel tubes or as composite tubes. A new method, which shows good results at the first tests in plants, is electroplating with nickel. Plastic materials can be used in low temperature parts if the temperature does not exceed 150 deg C. A glass fibre inforced material is probably the best choice. The parts of the furnace that are most prone to corrosion are waterwalls where the refractory coating is lost, has not been applied to a sufficient height in the boiler or is not used at all. Failures of superheaters often occur in areas near soot blowers or on the tubes exposed to the highest flue gas temperatures. Few cases of low temperature corrosion are reported in the literature, possibly because these problems are unusual or because low temperature corrosion rarely causes costly and dramatic failures. Waterwall tubes should be made of carbon steel, because of the price and to minimise the risk for stress corrosion cracking. Usually the tubes must be covered with a more corrosion resistant material to withstand the environment in the boiler. Metal coatings can be used in less demanding environments. Refractory is probably the best protection for waterwalls from severe erosion. Surfaces in extremely corrosive areas, e.g. the fuel feed area, should

  20. Transcriptome analysis of tube foot and large scale marker discovery in sea cucumber, Apostichopus japonicus.

    Science.gov (United States)

    Zhou, Xiaoxu; Wang, Hongdi; Cui, Jun; Qiu, Xuemei; Chang, Yaqing; Wang, Xiuli

    2016-12-01

    Tube foot as one of the ambulacral appendages types in Aspidochirote holothurioids, is known for their functions in locomotion, feeding, chemoreception, light sensitivity and respiration. In this study, we explored the characteristic of transcriptome in the tube foot of sea cucumber (Apostichopus japonicus). Our results showed that among 390 unigenes which specifically expressed in the tube foot, 190 of them were annotated. Based on the assembly transcriptome, we found 219,860 SNPs from 34,749 unigenes, 97,683, 53,624, 27,767 and 40,786 were located in CDSs, 5'-UTRs, 3'-UTRs and non-CDS separately. Furthermore, 12,114 SSRs were detected from 7394 unigenes. Target genes of four specifically expressed miRNAs (miR-29a, miR-29b, miR-278-3p and miR-2005) in tube foot were also predicted based on the transcriptome, which contain immune-related factors (MBL, VLRA, AjC3, MyD88, CFB), skin pigmentation (MITF), candidate regeneration factor (TRP) and holothurians autolysis-related factor (CL). These results develop a relatively large number of molecular markers and transcriptome resources, and will provide a foundation for further analyses on the function and molecular mechanisms underlying A. japonicas tube foot. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Pressure tube reactor

    International Nuclear Information System (INIS)

    Susuki, Akira; Murata, Shigeto; Minato, Akihiko.

    1993-01-01

    In a pressure tube reactor, a reactor core is constituted by arranging more than two units of a minimum unit combination of a moderator sealing pipe containing a calandria tube having moderators there between and a calandria tube and moderators. The upper header and a lower header of the calandria tank containing moderators are communicated by way of the moderator sealing tube. Further, a gravitationally dropping mechanism is disposed for injecting neutron absorbing liquid to a calandria gas injection portion. A ratio between a moderator volume and a fuel volume is defined as a function of the inner diameter of the moderator sealing tube, the outer diameter of the calandria tube and the diameter of fuel pellets, and has no influence to intervals of a pressure tube lattice. The interval of the pressure tube lattice is enlarged without increasing the size of the pressure tube, to improve production efficiency of the reactor and set a coolant void coefficient more negative, thereby enabling to improve self controllability and safety. Further, the reactor scram can be conducted by injecting neutron absorbing liquid. (N.H.)

  2. Vertical steam generator with slab-type tube-plate with even tube bundle washing

    International Nuclear Information System (INIS)

    Manek, O.; Masek, V.; Motejl, V.; Quitta, R.

    1980-01-01

    A shielding plate supporting the tubes attached to the tube plate of a vertical steam generator is mounted above the tube plate. Tube sleeves are designed with a dimensional tolerance relative to the heat transfer tubes and the sleeve end and the tube plate end. A separate space is thus formed above the tube plate in which circulation or feed water is introduced to flow between the branch and the heat transfer tube. This provides intensive washing of heat transfer tubes at a critical point and prevents deposit formation, thus excluding heat transfer tube failures. (J.B.)

  3. Selection on plant male function genes identifies candidates for reproductive isolation of yellow monkeyflowers.

    Directory of Open Access Journals (Sweden)

    Jan E Aagaard

    Full Text Available Understanding the genetic basis of reproductive isolation promises insight into speciation and the origins of biological diversity. While progress has been made in identifying genes underlying barriers to reproduction that function after fertilization (post-zygotic isolation, we know much less about earlier acting pre-zygotic barriers. Of particular interest are barriers involved in mating and fertilization that can evolve extremely rapidly under sexual selection, suggesting they may play a prominent role in the initial stages of reproductive isolation. A significant challenge to the field of speciation genetics is developing new approaches for identification of candidate genes underlying these barriers, particularly among non-traditional model systems. We employ powerful proteomic and genomic strategies to study the genetic basis of conspecific pollen precedence, an important component of pre-zygotic reproductive isolation among yellow monkeyflowers (Mimulus spp. resulting from male pollen competition. We use isotopic labeling in combination with shotgun proteomics to identify more than 2,000 male function (pollen tube proteins within maternal reproductive structures (styles of M. guttatus flowers where pollen competition occurs. We then sequence array-captured pollen tube exomes from a large outcrossing population of M. guttatus, and identify those genes with evidence of selective sweeps or balancing selection consistent with their role in pollen competition. We also test for evidence of positive selection on these genes more broadly across yellow monkeyflowers, because a signal of adaptive divergence is a common feature of genes causing reproductive isolation. Together the molecular evolution studies identify 159 pollen tube proteins that are candidate genes for conspecific pollen precedence. Our work demonstrates how powerful proteomic and genomic tools can be readily adapted to non-traditional model systems, allowing for genome-wide screens

  4. Precise muon drift tube detectors for high background rate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Albert

    2011-08-04

    The muon spectrometer of the ATLAS-experiment at the Large Hadron Collider consists of drift tube chambers, which provide the precise measurement of trajectories of traversing muons. In order to determine the momentum of the muons with high precision, the measurement of the position of the muon in a single tube has to be more accurate than {sigma}{<=}100 {mu}m. The large cross section of proton-proton-collisions and the high luminosity of the accelerator cause relevant background of neutrons and {gamma}s in the muon spectrometer. During the next decade a luminosity upgrade to 5.10{sup 34} cm{sup -2}s{sup -1} is planned, which will increase the background counting rates considerably. In this context this work deals with the further development of the existing drift chamber technology to provide the required accuracy of the position measurement under high background conditions. Two approaches of improving the drift tube chambers are described: - In regions of moderate background rates a faster and more linear drift gas can provide precise position measurement without changing the existing hardware. - At very high background rates drift tube chambers consisting of tubes with a diameter of 15 mm are a valuable candidate to substitute the CSC muon chambers. The single tube resolution of the gas mixture Ar:CO{sub 2}:N{sub 2} in the ratio of 96:3:1 Vol %, which is more linear and faster as the currently used drift gas Ar:CO{sub 2} in the ratio of 97:3 Vol %, was determined at the Cosmic Ray Measurement Facility at Garching and at high {gamma}-background counting rates at the Gamma Irradiation Facility at CERN. The alternative gas mixture shows similar resolution without background. At high background counting rates it shows better resolution as the standard gas. To analyse the data the various parts of the setup have to be aligned precisely to each other. The change to an alternative gas mixture allows the use of the existing hardware. The second approach are drift tubes

  5. Use of CATHENA to model calandria-tube/moderator heat transfer after pressure-tube/calandria-tube ballooning contact

    International Nuclear Information System (INIS)

    Fan, H.Z.; Bilanovic, Z.; Nitheanandan, T.

    2004-01-01

    A study was performed to assess the effect of the calandria-tube/moderator heat transfer after pressure-tube/calandria tube ballooning contact using CATHENA. Results of this study indicated that the analytical tool, CATHENA, can be applied for pool boiling heat transfer on the external surface of a large diameter tube, such as the calandria tube used in CANDU reactors. The methodology in such CANDU-generic study can be used to simulate the tube surface with multiple boiling regimes and to assess the benefits of closely coupling thermalhydraulics modelling and fuel/fuel channel behaviour modelling. CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a one-dimensional, two-fluid thermalhydraulic simulation code designed by AECL to analyse two-phase flow and heat transfer in piping networks. The detailed heat transfer package in CATHENA allows a connection to be established from the multiple solid surfaces of tubes to the surrounding large amount of moderator water, which acts as a heat sink during a postulated loss of coolant event. The generalized heat transfer package within CATHENA allows the tube walls to be divided into several layers in the radial direction and several sectors in the circumferential direction, to account for heat transfer conditions in these two directions. The CATHENA code with the generalized heat transfer package is capable of capturing key pool-boiling phenomena such as nucleate, transition and film boiling heat transfer as well as an ability to model the rewet phenomenon to some extent. A CATHENA input model was generated and used in simulations of selected contact boiling experiment test cases. The transient wall temperatures have been calculated in different portions of the calandria tube. By using this model an adequate agreement was achieved between CATHENA calculation and experimental measurement The CATHENA code enables one to investigate the transient and local thermal-mechanical behaviour of the calandria tube

  6. Improvement of pump tubes for gas guns and shock tube drivers

    Science.gov (United States)

    Bogdanoff, D. W.

    1990-01-01

    In a pump tube, a gas is mechanically compressed, producing very high pressures and sound speeds. The intensely heated gas produced in such a tube can be used to drive light gas guns and shock tubes. Three concepts are presented that have the potential to allow substantial reductions in the size and mass of the pump tube to be achieved. The first concept involves the use of one or more diaphragms in the pump tube, thus replacing a single compression process by multiple, successive compressions. The second concept involves a radical reduction in the length-to-diameter ratio of the pump tube and the pump tube piston. The third concept involves shock heating of the working gas by high explosives in a cyclindrical geometry reusable device. Preliminary design analyses are performed on all three concepts and they appear to be quite feasible. Reductions in the length and mass of the pump tube by factors up to about 11 and about 7, respectively, are predicted, relative to a benchmark conventional pump tube.

  7. Characterization of the Hamamatsu 8" R5912-MOD Photomultiplier tube

    Science.gov (United States)

    Kaptanoglu, Tanner

    2018-05-01

    Current and future neutrino and direct detection dark matter experiments hope to take advantage of improving technologies in photon detection. Many of these detectors are large, monolithic optical detectors that use relatively low-cost, large-area, and efficient photomultiplier tubes (PMTs). A candidate PMT for future experiments is a newly developed prototype Hamamatsu PMT, the R5912-MOD. In this paper we describe measurements made of the single photoelectron time and charge response of the R5912-MOD, as well as detail some direct comparisons to similar PMTs. Most of these measurements were performed on three R5912-MOD PMTs operating at gains close to 1 × 107. The transit time spread (σ) and the charge peak-to-valley were measured to be on average 680ps and 4.2 respectively. The results of this paper show the R5912-MOD is an excellent candidate for future experiments in several regards, particularly due to its narrow spread in timing.

  8. Vibro-impact responses of a tube with tube--baffle interaction. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y S; Sass, D E; Jendrzejczyk, J A

    1978-01-01

    The relatively small, inherent tube-to-baffle hole clearances associated with manufacturing tolerances in heat exchangers affect the vibrational characteristics and the response of the tube. Numerical studies were made to predict the vibro-impact response of a tube with tube-baffle interaction. The finite element method has been employed with a non-linear elastic contact spring-dashpot to model the effect of the relative approach between the tube and the baffle plate. The coupled equations of motion are directly integrated with a proportional system damping represented by a linear combination of mass and stiffness. Lumped mass approach with explicit time integration scheme was found to be a suitable choice for tube-baffle impacting analysis. Fourier analyses indicate that the higher mode contributions to the tube response are significant for strong tube-baffle impacting. The contact damping forces are negligible compared with the contact spring forces. The numerical analysis results are in reasonably good agreement with those of the experiments.

  9. Bender/Coiler for Tubing

    Science.gov (United States)

    Stoltzfus, J. M.

    1983-01-01

    Easy-to-use tool makes coils of tubing. Tubing to be bend clamped with stop post. Die positioned snugly against tubing. Operator turns handle to slide die along tubing, pushing tubing into spiral groove on mandrel.

  10. Steam generator tube extraction

    International Nuclear Information System (INIS)

    Delorme, H.

    1985-05-01

    To enable tube examination on steam generators in service, Framatome has now developed a process for removing sections of steam generator tubes. Tube sections can be removed without being damaged for treating the tube section expanded in the tube sheet

  11. A shock tube and laser absorption study of ignition delay times and OH reaction rates of ketones: 2-Butanone and 3-buten-2-one

    KAUST Repository

    Badra, Jihad; Elwardani, Ahmed Elsaid; Khaled, Fathi; Vasu, Subith S.; Farooq, Aamir

    2014-01-01

    Ketones are potential biofuel candidates and are also formed as intermediate products during the oxidation of large hydrocarbons or oxygenated fuels, such as alcohols and esters. This paper presents shock tube ignition delay times and OH reaction

  12. Incoloy 800 stands up to radiation and corrosion in high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Incoloy 800 has been selected for heat exchangers in helium cooled nuclear reactor prototypes for exposure to 350 to 800 0 C helium and high temperature high purity water and steam. 304H stainless steel used in heat exchangers in original design cracked in the superheater area, bellows and tubing after static pressure tests but before exposure to steam. Residual stress, chlorides, and oxygen were deduced to have caused the failures

  13. Feeding tube - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  14. Eustachian tube patency

    Science.gov (United States)

    Eustachian tube patency refers to how much the eustachian tube is open. The eustachian tube runs between the middle ear and the throat. It controls the pressure behind the eardrum and middle ear space. This helps keep ...

  15. Effect of tube-support interaction on the dynamic responses of heat exchanger tubes

    International Nuclear Information System (INIS)

    Shin, Y.S.; Jendrzejczyk, J.A.; Wambsganss, M.W.

    1977-01-01

    Operating heat exchangers have experienced tube damages due to excessive flow-induced vibration. The relatively small inherent tube-to-baffle hole clearances associated with manufacturing tolerances in heat exchangers affect the tube vibrational characteristics. In attempting a theoretical analysis, questions arise as to the effects of tube-baffle impacting on dynamic responses. Experiments were performed to determine the effects of tube-baffle impacting in vertical/horizontal tube orientation, and in air/water medium on the vibrational characteristics (resonant frequencies, mode shapes, and damping) and displacement response amplitudes of a seven-span tube model. The tube and support conditions were prototypic, and overall length approximately one-third that of a straight tube segment of the steam generator designed for the CRBR. The test results were compared with the analytical results based on the multispan beam with ''knife-edge'' supports

  16. Annular gap measurement between pressure tube and calandria tube by eddy current technique

    International Nuclear Information System (INIS)

    Bhole, V.M.; Rastogi, P.K.; Kulkarni, P.G.

    1992-01-01

    In pressurised heavy water reactor (PHWR) major distinguishing feature is that there are number of identical fuel channels in the reactor core. Each channel consists of pressure tube of Zr-2.5 Nb or zircaloy-2 through which high temperature, high pressure primary coolant is passing. The pressure tube contains fuel. Surrounding the pressure tube there is low pressure, cool heavy water (moderator). The moderator is thermally separated from coolant by the tube which is nominally concentric with pressure tube called calandria tube. There are four garter springs in the annular gap between pressure tube and calandria tube. During the life of the reactor there are number of factors by which the pressure tube sags, most important factors are irradiation creep, thermal creep, fuel load etc. Because of the sag of pressure tube it can touch the calandria tube resulting in formation of cold spot. This leads to hydrogen concentration at that spot by which the material at that place becomes brittle and can lead to catastrophic failure of pressure tube. There is no useful access for measurement of annular gap either through the gas annular space or from exterior of calandria tube. So the annular gap was measured from inside surface of pressure tube which is accessible. Eddy current technique was used for finding the gap. The paper describe the details of split coil design of bobbin probe, selection of operating point on normalised impedance diagram by choosing frequency. Experimental results on full scale mock up, and actual gap measurement in reactor channel, are also given. (author). 7 figs

  17. Categorising YouTube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube......’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition...... and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within...

  18. Pressure tube type reactors

    International Nuclear Information System (INIS)

    Komada, Masaoki.

    1981-01-01

    Purpose: To increase the safety of pressure tube type reactors by providing an additional ECCS system to an ordinary ECCS system and injecting heavy water in the reactor core tank into pressure tubes upon fractures of the tubes. Constitution: Upon fractures of pressure tubes, reduction of the pressure in the fractured tubes to the atmospheric pressure in confirmed and the electromagnetic valve is operated to completely isolate the pressure tubes from the fractured portion. Then, the heavy water in the reactor core tank flows into and spontaneously recycles through the pressure tubes to cool the fuels in the tube to prevent their meltdown. By additionally providing the separate ECCS system to the ordinary ECCS system, fuels can be cooled upon loss of coolant accidents to improve the safety of the reactors. (Moriyama, K.)

  19. Dismantling Experiment of Mock-up Tube Bundle of Steam Generator

    International Nuclear Information System (INIS)

    Kim, Sung Kyun; Lee, Kune Woo

    2010-01-01

    A SG (steam generator) is one of the biggest decommissioning components in nuclear power plants and one has been replaced 2∼6 times during the whole operation of a nuclear power plant. The old SG should be decommissioned for the purpose of the volume reduction of radioactive waste. Among the components of SG, the tube bundle is one of the most difficult items to be dismantled due to the fact that it is very hard to cut since it is made of Inconel 600 which has high resistance of corrosion and abrasion. Moreover, All cutting process should be performed by remotely since radioactive contamination of the internal surface of SG tubes is very high (about 150,000∼300,000 Bq/cm 2 ). Therefore, it is necessary to choose the appropriate cutting methods by the pros and cons analysis for candidate dismantling technologies and to do experiment study for the validation. In this study, the results of cutting experiment for a mock-up bundle by using band saw cutting method are described herein

  20. Rotating sensor technology for the inspection of steam generator tubing

    International Nuclear Information System (INIS)

    Glass, S.W.; Richards, T.A.

    1986-01-01

    A high-resolution profilometry system, has been developed to assess the dimensional condition of steam generator tubes and rapidly produce the data to evaluate the potential for developing in-service leaks. The probe has an electromechanical sensor in a rotating head. This technique has been demonstrated in the field at four U.S. plants and one plant owned by Electricite de France. The Indian Point-2 plant of Consolidated Edison has twice used this technology to save tubes that would have been plugged with the go-gauge criterion and identifying other high-risk candidates for plugging that might otherwise not have been removed from service. As an extension of the PROFIL-360 technology, a rotating eddy current system (EDDY-360) has also been developed. The system provides improved sensitivity, resolution, and characterization of small-volume flaws and complete circumferential coverage as compared to conventional (bobbin and 8 x 1) eddy current techniques. Enhanced eddy current data processing provides on-line data analysis and real-time imaging of detected flaws. (author)

  1. Tube-in-shell heat exchangers

    International Nuclear Information System (INIS)

    Richardson, J.

    1976-01-01

    Tube-in-shell heat exchangers normally comprise a bundle of parallel tubes within a shell container, with a fluid arranged to flow through the tubes in heat exchange with a second fluid flowing through the shell. The tubes are usually end supported by the tube plates that separate the two fluids, and in use the tube attachments to the tube plates and the tube plates can be subject to severe stress by thermal shock and frequent inspection and servicing are required. Where the heat exchangers are immersed in a coolant such as liquid Na such inspection is difficult. In the arrangement described a longitudinally extending central tube is provided incorporating axially spaced cylindrical tube plates to which the opposite ends of the tubes are attached. Within this tube there is a tubular baffle that slidably seals against the wall of the tube between the cylindrical tube plates to define two co-axial flow ducts. These ducts are interconnected at the closed end of the tube by the heat exchange tubes and the baffle comprises inner and outer spaced walls with the interspace containing Ar. The baffle is easily removable and can be withdrawn to enable insertion of equipment for inspecting the wall of the tube and tube attachments and to facilitate plugging of defective tubes. Cylindrical tube plates are believed to be superior for carrying pressure loads and resisting the effects of thermal shock. Some protection against thermal shock can be effected by arranging that the secondary heat exchange fluid is on the tube side, and by providing a thermal baffle to prevent direct impingement of hot primary fluid on to the cylindrical tube plates. The inner wall of the tubular baffle may have flexible expansible region. Some nuclear reactor constructions incorporating such an arrangement are described, including liquid metal reactors. (U.K.)

  2. Heat exchanger tube tool

    International Nuclear Information System (INIS)

    Gugel, G.

    1976-01-01

    Certain types of heat-exchangers have tubes opening through a tube sheet to a manifold having an access opening offset from alignment with the tube ends. A tool for inserting a device, such as for inspection or repair, is provided for use in such instances. The tool is formed by a flexible guide tube insertable through the access opening and having an inner end provided with a connector for connection with the opening of the tube in which the device is to be inserted, and an outer end which remains outside of the chamber, the guide tube having adequate length for this arrangement. A flexible transport hose for internally transporting the device slides inside of the guide tube. This hose is long enough to slide through the guide tube, into the heat-exchanger tube, and through the latter to the extent required for the use of the device. The guide tube must be bent to reach the end of the heat-exchanger tube and the latter may be constructed with a bend, the hose carrying anit-friction elements at interspaced locations along its length to make it possible for the hose to negotiate such bends while sliding to the location where the use of the device is required

  3. Observation of "YouTube" Language Learning Videos ("YouTube" LLVS)

    Science.gov (United States)

    Alhamami, Munassir

    2013-01-01

    This paper navigates into the "YouTube" website as one of the most usable online tools to learn languages these days. The paper focuses on two issues in creating "YouTube" language learning videos: pedagogy and technology. After observing the existing "YouTube" LLVs, the study presents a novel rubric that is directed…

  4. Effect of variable heat input on the heat transfer characteristics in an Organic Rankine Cycle system

    Directory of Open Access Journals (Sweden)

    Aboaltabooq Mahdi Hatf Kadhum

    2016-01-01

    Full Text Available This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement.

  5. Ash transformation and deposit build-up during biomass suspension and grate firing: Full-scale experimental studies

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    2012-01-01

    An attractive option for reducing the net CO2 emissions is to substitute coal with biomass in large power plant boilers. However, the presence of chlorine (Cl) and alkali metals (K, Na) in biomassmay induce large operational problems due to ash deposit formation on the superheater tubes. The aim...... of this study was to investigate ash transformation and deposition behavior in two biomass-fired boilers, firing wheat straw and/or wood. The influence of strawfiring technology (grate and suspension) on the ash transformation, deposit formation rate and deposit characteristics has been investigated. Bulk...... elemental analysis of fly ashes revealed that fly ash from suspension firing of straw has high contents of Si, K and Ca, while fly ash from straw firing on grate was rich in the volatile elements K, Cl and S. Investigations of deposit formation ratesweremade in the superheater and convective pass regions...

  6. Resistance of Coatings for Boiler Components of Waste-to-Energy Plants to Salt Melts Containing Copper Compounds

    Science.gov (United States)

    Galetz, Mathias Christian; Bauer, Johannes Thomas; Schütze, Michael; Noguchi, Manabu; Cho, Hiromitsu

    2013-06-01

    The accelerating effect of heavy metal compounds on the corrosive attack of boiler components like superheaters poses a severe problem in modern waste-to-energy plants (WTPs). Coatings are a possible solution to protect cheap, low alloyed steel substrates from heavy metal chloride and sulfate salts, which have a relatively low melting point. These salts dissolve many alloys, and therefore often are the limiting factor as far as the lifetime of superheater tubes is concerned. In this work the corrosion performance under artificial salt deposits of different coatings, manufactured by overlay welding, thermal spraying of self-fluxing as well as conventional systems was investigated. The results of our studies clearly demonstrate the importance of alloying elements such as molybdenum or silicon. Additionally, the coatings have to be dense and of a certain thickness in order to resist the corrosive attack under these severe conditions.

  7. CT colonography for preoperative examination of the proximal colon using a transanal drainage tube for acute malignant colonic obstruction

    International Nuclear Information System (INIS)

    Sasaki, Kazuaki; Hirano, Yuji; Oono, Keisuke; Sasaki, Kazunori; Someya, Tetsufumi; Harada, Keisuke; Ezoe, Eiri; Furuhata, Tomohisa; Hirata, Koichi

    2011-01-01

    The purpose of this study was to evaluate the feasibility of CT colonography for preoperative examination of the proximal colon using a transanal drainage tube in patients with acute colon obstruction caused by colorectal cancer. Ten patients who received initial treatment for acute malignant colon obstruction at our hospital between June 2004 and December 2008 were studied. In these patients, elective surgery was possible after transanal drainage tube insertion, and the colon on the oral side from the cancer lesion was examined using a drainage tube. Air was injected through the tube into the oral side of the colon, and CT colonography was assessed for the presence or absence of lesions on the oral side. The images of the oral side of the colon were good enough to allow adequate interpretation in 9 of the 10 patients. In the first patient, the visualization of the area near the lesion was somewhat fair, although the right side colon was well visualized. There were no complications associated with this examination. The present preoperative examination using a transanal drainage tube was useful for determining the extent of intestinal resection when patients were not candidates for colonoscopy or barium enema examination. (author)

  8. Steam oxidation of X20CrMoV121: Comparison of laboratory exposures and in situ exposure in power plants

    DEFF Research Database (Denmark)

    Montgomery, M.; Hansson, A. N.; Vilhelmsen, T.

    2012-01-01

    X20CrMoV121 is a 12% Cr martensitic steel which has been used in power plants in Europe for many decades. Specimens have been removed from superheater tubes to investigate long‐term exposure with respect to steam oxidation. These tubes have been exposed for various durations up to 135 000 h...... in power plants in Denmark at steam temperatures varying from 450–565 °C. This paper collates the data, compares oxide morphologies and assesses to what extent parabolic kinetics can be used to describe the oxidation rate. The steam oxidation behaviour has been investigated in the laboratory in an Ar‐46%H2...

  9. Helically coiled tube heat exchanger

    International Nuclear Information System (INIS)

    Harris, A.M.

    1981-01-01

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle

  10. Categorising YouTube

    OpenAIRE

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a...

  11. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... YouTube Videos » NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration ... Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: ...

  12. Effect of Tube Pitch on Pool Boiling Heat Transfer of Vertical Tube Bundle

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2016-01-01

    Summarizing the previous results it can be stated that heat transfer coefficients are highly dependent on the tube pitch and the heat flux of the relevant tube. The published results are mostly about the horizontal tubes. However, there are many heat exchangers consisting of vertical tubes like AP600. Therefore, the focus of the present study is an identification of the effects of a tube pitch as well as the heat flux of a relevant tube on the heat transfer of a tube bundle installed vertically. When the heat flux is increased many bubbles are generating due to the increase of the nucleation sites. The bubbles become coalescing with the nearby bubbles and generates big bunches of bubbles on the tube surface. This prevents the access of the liquid to the surface and deteriorates heat transfer. The bubble coalescence is competing with the mechanisms enhancing heat transfer. The pitch was varied from 28.5 mm to 95 mm and the heat flux of the nearby tube was changed from 0 to 90kW/m"2. The enhancement of the heat transfer is clearly observed when the heat flux of the nearby tube becomes larger and the heat flux of the upper tube is less than 40kW/m"2. The effect of the tube pitch on heat transfer is negligible as the value of DP/ is increased more than 4.

  13. Optimizing Tube Precurvature to Enhance Elastic Stability of Concentric Tube Robots.

    Science.gov (United States)

    Ha, Junhyoung; Park, Frank C; Dupont, Pierre E

    2017-02-01

    Robotic instruments based on concentric tube technology are well suited to minimally invasive surgery since they are slender, can navigate inside small cavities and can reach around sensitive tissues by taking on shapes of varying curvature. Elastic instabilities can arise, however, when rotating one precurved tube inside another. In contrast to prior work that considered only tubes of piecewise constant precurvature, we allow precurvature to vary along the tube's arc length. Stability conditions for a planar tube pair are derived and used to formulate an optimal design problem. An analytic formulation of the optimal precurvature function is derived that achieves a desired tip orientation range while maximizing stability and respecting bending strain limits. This formulation also includes straight transmission segments at the proximal ends of the tubes. The result, confirmed by both numerical and physical experiment, enables designs with enhanced stability in comparison to designs of constant precurvature.

  14. Heat Transfer Experiment with Supercritical CO2 Flowing Upward in a Circular Tube

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Kim, Hwan Yeol; Song, Jin Ho; Kim, Hee Dong; Bae, Yoon Yeong

    2005-01-01

    SCWR (SuperCritical Water-cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project, which aims at the development of new reactors with enhanced economy and safety. Heat transfer experiments under supercritical conditions are required in relevant geometries for the proper prediction of thermo-hydraulic phenomena in a reactor core. A heat transfer test loop, named as SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), has been constructed in KAERI. The loop uses carbon dioxide as a surrogate fluid for water since the critical pressure and temperature of CO 2 are much lower those of water. As a first stage of heat transfer experiments, a single tube test is being performed in the test loop. Controlled parameters for the tests are operating pressure, mass flux, and heat flux. Wall temperatures are measured along the tube. Experimental data are compared with existing correlations

  15. A Method to Establishing Tube Plugging Criterion for Heat Exchangers with Straight Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungnam [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The difference of thermal expansion coefficients between the shell and tube materials causes the stress in axial direction of tube. Because of the axial stress due to thermal load, the straight tubes are used for heat exchangers operated in low temperature such as CCW (Component Cooling Water) heat exchangers and condensers. It is inevitable for the materials of the components to be degraded as the power plants become older. The degradation accompanies increasing maintenance cost as well as creating safety issues. The materials and wall thickness of heat exchanger tubes in nuclear power plants are selected to withstand system temperature, pressure, and corrosion. There are many codes and standards to be referred for calculating the minimum thickness of the heat exchanger tube in the designing stage. However, the codes and standards related to show the tube plugging criteria may not exist currently. In this paper, a method to establish the tube plugging criteria of BOP heat exchangers, which is based on the USNRC Regulatory Guide 1.121, is introduced and the tube plugging criteria for the TPCCW heat exchanger of Yonggwang NPP No. 1 and 2. A method to establish the tube plugging criteria of heat exchangers with straight tubes are introduced based on the USNRC Regulatory Guide 1.121. As an example, the tube plugging criterion for the CCW heat exchanger of a nuclear power plant is provided.

  16. Automation in tube finishing bay

    International Nuclear Information System (INIS)

    Bhatnagar, Prateek; Satyadev, B.; Raghuraman, S.; Syama Sundara Rao, B.

    1997-01-01

    Automation concept in tube finishing bay, introduced after the final pass annealing of PHWR tubes resulted in integration of number of sub-systems in synchronisation with each other to produce final cut fuel tubes of specified length, tube finish etc. The tube finishing bay which was physically segregated into four distinct areas: 1. tube spreader and stacking area, 2. I.D. sand blasting area, 3. end conditioning, wad blowing, end capping and O.D. wet grinding area, 4. tube inspection, tube cutting and stacking area has been studied

  17. CRL X-ray tube

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed. (authors)

  18. Pediatric cuffed endotracheal tubes

    Directory of Open Access Journals (Sweden)

    Neerja Bhardwaj

    2013-01-01

    Full Text Available Endotracheal intubation in children is usually performed utilizing uncuffed endotracheal tubes for conduct of anesthesia as well as for prolonged ventilation in critical care units. However, uncuffed tubes may require multiple changes to avoid excessive air leak, with subsequent environmental pollution making the technique uneconomical. In addition, monitoring of ventilatory parameters, exhaled volumes, and end-expiratory gases may be unreliable. All these problems can be avoided by use of cuffed endotracheal tubes. Besides, cuffed endotracheal tubes may be of advantage in special situations like laparoscopic surgery and in surgical conditions at risk of aspiration. Magnetic resonance imaging (MRI scans in children have found the narrowest portion of larynx at rima glottides. Cuffed endotracheal tubes, therefore, will form a complete seal with low cuff pressure of <15 cm H 2 O without any increase in airway complications. Till recently, the use of cuffed endotracheal tubes was limited by variations in the tube design marketed by different manufacturers. The introduction of a new cuffed endotracheal tube in the market with improved tracheal sealing characteristics may encourage increased safe use of these tubes in clinical practice. A literature search using search words "cuffed endotracheal tube" and "children" from 1980 to January 2012 in PUBMED was conducted. Based on the search, the advantages and potential benefits of cuffed ETT are reviewed in this article.

  19. Pressure tube type research reactor

    International Nuclear Information System (INIS)

    Ueda, Hiroshi.

    1976-01-01

    Object: To prevent excessive heat generation due to radiation of a pressure tube vessel. Structure: A pressure tube encasing therein a core comprises a dual construction comprising inner and outer tubes coaxially disposed. High speed cooling water is passed through the inner tube for cooling. In addition, in the outer periphery of said outer tube there is provided a forced cooling tube disposed coaxially thereto, into which cooling fluid, for example, such as moderator or reflector is forcibly passed. This forced cooling tube has its outer periphery surrounded by the vessel into which moderator or reflector is fed. By the provision of the dual construction of the pressure tube and the forced cooling tube, the vessel may be prevented from heat generation. (Ikeda, J.)

  20. Streak tube development

    International Nuclear Information System (INIS)

    Hinrichs, C.K.; Estrella, R.M.

    1979-01-01

    A research program for the development of a high-speed, high-resolution streak image tube is described. This is one task in the development of a streak camera system with digital electronic readout, whose primary application is for diagnostics in underground nuclear testing. This program is concerned with the development of a high-resolution streak image tube compatible with x-ray input and electronic digital output. The tube must be capable of time resolution down to 100 psec and spatial resolution to provide greater than 1000 resolution elements across the cathode (much greater than presently available). Another objective is to develop the capability to make design changes in tube configurations to meet different experimental requirements. A demountable prototype streak tube was constructed, mounted on an optical bench, and placed in a vacuum system. Initial measurements of the tube resolution with an undeflected image show a resolution of 32 line pairs per millimeter over a cathode diameter of one inch, which is consistent with the predictions of the computer simulations. With the initial set of unoptmized deflection plates, the resolution pattern appeared to remain unchanged for static deflections of +- 1/2-inch, a total streak length of one inch, also consistent with the computer simulations. A passively mode-locked frequency-doubled dye laser is being developed as an ultraviolet pulsed light source to measure dynamic tube resolution during streaking. A sweep circuit to provide the deflection voltage in the prototype tube has been designed and constructed and provides a relatively linear ramp voltage with ramp durations adjustable between 10 and 1000 nsec

  1. Technique employed to seal a tube leaking in a heat exchanger of the tube type by explosives with supporting means for the adjacent tubes

    International Nuclear Information System (INIS)

    Larson, G.C.

    1978-01-01

    This invention concerns the technique employed to seal a tube leaking in a heat exchanger of the tube and tube plate type by detonating metal plugs activated by an explosive and inserted in both ends of the tube. It refers in particular to an apparatus and process in which the deformation or distortion of the adjacent tubes and tube plate ties under the effect of the explosive forces is significantly reduced [fr

  2. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1983-08-01

    A review of the performance of steam generator tubes in 110 water-cooled nuclear power reactors showed that tubes were plugged at 46 (42 percent) of the reactors. The number of tubes removed from service increased from 1900 (0.14 percent) in 1980 to 4692 (0.30 percent) in 1981. The leading causes of tube failures were stress corrosion cracking from the primary side, stress corrosion cracking (or intergranular attack) from the secondary side and pitting corrosion. The lowest incidence of corrosion-induced defects from the secondary side occurred in reactors that used all-volatile treatment since start-up. At one reactor a large number of degraded tubes were repaired by sleeving which is expected to become an important method of tube repair in the future

  3. Comparative study of linear and nonlinear ultrasonic techniques for evaluation thermal damage of tube like structures

    International Nuclear Information System (INIS)

    Li, Weibin; Cho, Younho; Li, Xianqiang

    2013-01-01

    Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro damages in a tube like structure

  4. Study on antioxidant experiment on forged steel tube sheet and tube hole for steam generator

    International Nuclear Information System (INIS)

    Zong Hai; Wang Detai; Ding Yang

    2012-01-01

    Antioxidant experiment on forged steel tube sheet and tube hole for steam generator was studied and the influence of different simulated heat treatments on the antioxidant performance of tube sheet and tube hole was made. The influence of different antioxidant methods on the size of tube hole was drawn. Furthermore, the change of size and weight of 18MnD5 forged steel tube sheet on the condition of different simulated heat treatments was also studied. The analytical results have proved reference information for the use of 18MnD5 material and for key processes of processing tube hole and wearing and expanding U-style tube. (authors)

  5. Characterization of Friction Stir Welded Tubes by Means of Tube Bulge Test

    International Nuclear Information System (INIS)

    D'Urso, G.; Longo, M.; Giardini, C.

    2011-01-01

    Mechanical properties of friction stir welded joints are generally evaluated by means of conventional tensile test. This testing method might provide insufficient information because maximum strain obtained in tensile test before necking is small; moreover, the application of tensile test is limited when the joint path is not linear or even when the welds are executed on curved surfaces. Therefore, in some cases, it would be preferable to obtain the joints properties from other testing methods. Tube bulge test can be a valid solution for testing circumferential or longitudinal welds executed on tubular workpieces. The present work investigates the mechanical properties and the formability of friction stir welded tubes by means of tube bulge tests. The experimental campaign was performed on tubular specimens having a thickness of 3 mm and an external diameter of 40 mm, obtained starting from two semi-tubes longitudinally friction stir welded. The first step, regarding the fabrication of tubes, was performed combining a conventional forming process and friction stir welding. Sheets in Al-Mg-Si-Cu alloy AA6060 T6 were adopted for this purpose. Plates having a dimension of 225x60 mm were bent (with a bending axis parallel to the main dimension) in order to obtain semi-tubes. A particular care was devoted to the fabrication of forming devices (punch and die) in order to minimize the springback effects. Semi-tubes were then friction stir welded by means of a CNC machine tool. Some preliminary tests were carried out by varying the welding parameters, namely feed rate and rotational speed. A very simple tool having flat shoulder and cylindrical pin was used. The second step of the research was based on testing the welded tubes by means of tube bulge test. A specific equipment having axial actuators with a conical shape was adopted for this study. Some analyses were carried out on the tubes bulged up to a certain pressure level. In particular, the burst pressure and the

  6. Heat exchanger with layers of helical tubes provided with improved tube supports

    International Nuclear Information System (INIS)

    Carnoy, M.; Mathieu, B.; Renaux, C.

    1986-01-01

    The present heat exchanger comprises coaxial layers of helically wound tubes; these tubes are supported by support plates, each comprising a row of perforations through which the tubes of a same layer pass. Truncated sleeves are in compression around the tubes within the perforations and mounted on the support plates. Pins fix the plates of different layers together against transverse movement but allowing radial movement. The present invention finds an application with nuclear reactor steam generators [fr

  7. Pressure tube reactor

    International Nuclear Information System (INIS)

    Seki, Osamu; Kumasaka, Katsuyuki.

    1988-01-01

    Purpose: To remove the heat of reactor core using a great amount of moderators at the periphery of the reactor core as coolants. Constitution: Heat of a reactor core is removed by disposing a spontaneous recycling cooling device for cooling moderators in a moderator tank, without using additional power driven equipments. That is, a spontaneous recycling cooling device for cooling the moderators in the moderator tank is disposed. Further, the gap between the inner wall of a pressure tube guide pipe disposed through the vertical direction of a moderator tank and the outer wall of a pressure tube inserted through the guide pipe is made smaller than the rupture distortion caused by the thermal expansion upon overheating of the pressure tube and greater than the minimum gap required for heat shiels between the pressure tube and the pressure tube guide pipe during usual operation. In this way, even if such an accident as can not using a coolant cooling device comprising power driven equipment should occur in the pressure tube type reactor, the rise in the temperature of the reactor core can be retarded to obtain a margin with time. (Kamimura, M.)

  8. An in-tube radar for detecting cracks in metal tubing

    International Nuclear Information System (INIS)

    Caffey, Thurlow W. H.; Nassersharif, Bahram; Garcia, Gabe V.; Smith, Phillip R.; Jedlicka, Russell P.; Hensel, Edward C.

    2000-01-01

    A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique will be described for detection of defects using a continuous-wave radar device within metal tubing. The technique is 100% volumetric, and may find smaller defects, find them more rapidly, and find them less expensively than present methods. Because this project was started only recently, there is no demonstrated performance to report so far. However, the basic engineering concepts will be presented together with a description of the milestone tasks and dates

  9. Heat Transfer Experiment with Supercritical CO{sub 2} Flowing Upward in a Circular Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Rae; Kim, Hwan Yeol; Song, Jin Ho; Kim, Hee Dong; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    SCWR (SuperCritical Water-cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project, which aims at the development of new reactors with enhanced economy and safety. Heat transfer experiments under supercritical conditions are required in relevant geometries for the proper prediction of thermo-hydraulic phenomena in a reactor core. A heat transfer test loop, named as SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), has been constructed in KAERI. The loop uses carbon dioxide as a surrogate fluid for water since the critical pressure and temperature of CO{sub 2} are much lower those of water. As a first stage of heat transfer experiments, a single tube test is being performed in the test loop. Controlled parameters for the tests are operating pressure, mass flux, and heat flux. Wall temperatures are measured along the tube. Experimental data are compared with existing correlations.

  10. Steam generator tube failures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  11. Studies of Young Hawai'ian Lava Tubes: Implications for Planetary Habitability and Human Exploration

    Science.gov (United States)

    McAdam, Amy; Bleacher, Jacob; Young, Kelsey; Johnson, Sarah Stewart; Needham, Debra; Schmerr, Nicholas; Shiro, Brian; Garry, Brent; Whelley, Patrick; Knudson, Christine; hide

    2017-01-01

    Habitability: Subsurface environments may preserve records of habitability or biosignatures, with more stable environmental conditions compared to surface (e.g., smaller variations in temperature and humidity) and reduced exposure to radiation; Lava tubes are expected on Mars, and candidates are observed from orbit; Few detailed studies of microbial populations in terrestrial lava caves; Also contain a variety of secondary minerals; Microbial activity may play a role in mineral formation or be preserved in these minerals; Minerals can provide insight into fluids (e.g., pH, temperature).

  12. Prospects for stronger calandria tubes

    International Nuclear Information System (INIS)

    Ells, C.E.; Coleman, C.E.; Hosbons, R.R.; Ibrahim, E.F.; Doubt, G.L.

    1990-12-01

    The CANDU calandria tubes, made of seam welded and annealed Zircaloy-2, have given exemplary service in-reactor. Although not designed as a system pressure containment, calandria tubes may remain intact even in the face of pressure tube rupture. One such incident at Pickering Unit 2 demonstrated the economic advantage of such an outcome, and a case can be made for increasing the probability that other calandria tubes would perform in a similar fashion. Various methods of obtaining stronger calandria tubes are available, and reviewed here. When the tubes are internally pressurized, the weld is the weak section of the tube. Increasing the oxygen concentration in the starting sheet, and thickening the weld, are promising routes to a stronger tube

  13. Fabrication of seamless calandria tubes

    International Nuclear Information System (INIS)

    Saibaba, N.; Phanibabu, C.; Bhaskara Rao, C.V.; Kalidas, R.; Ganguly, C.

    2002-01-01

    Full text: Calandria tube is a large diameter, thin walled zircaloy-4 tube and is an important structural component of PHWR type of reactors. These tubes are lifetime components and remain during the full life of the reactor. Calandria tubes are classified as extremely thin walled tubes with a diameter to wall thickness ratio of around 96. Such thin walled tubes are conventionally produced by seam welded route comprising of extrusion of slabs followed by a series of hot and rolling passes, shaping into O-shape and eventual welding. An alternative and superior method of fabricating the calandria tubes, the seamless route, has been developed, which involves hot extrusion of mother blanks followed by three successive cold pilger reductions. Eccentricity correction of the extruded blanks is carried out on a special purpose grinding equipment to bring the wall thickness variation within permissible limits. Predominant wall thickness reductions are given during cold pilgering to ensure high Q-factor values. The texture in the finished tubes could be closely, controlled with an average f r value of 0.65. Pilgering parameters and tube guiding system have been specially designed to facilities rolling of thin walled tubes. Seamless calandria tubes have distinct advantages over welded tubes. In addition to the absence of weld, they are dimensionally more stable, lighter in weight and possess uniform grains with superior grain size. The cycle time from billet to finished product is substantially reduced and the product is amenable to high level of quality assurance. The most significant feature of the seamless route is its material recovery over welded route. Residual stresses measured in the tubes indicate that these are negligible and uniform along the length of the tube. In view of their superior quality, the first charge of seamless calandria tubes will be rolled into the first 500 MWe Pressurised Heavy Water Reactor at Tarapur

  14. Method for shaping polyethylene tubing

    Science.gov (United States)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  15. Spring/dimple instrument tube restraint

    International Nuclear Information System (INIS)

    DeMario, E.E.; Lawson, C.N.

    1993-01-01

    A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs. 7 figures

  16. Separators/reheaters for nuclear turbines

    International Nuclear Information System (INIS)

    Guignard, S.

    1986-01-01

    During the past few years, the Nuclear Department of Stein Industrie has implemented a broad development programme for the design of superheating separators for nuclear power plant turbines. These units separate the water in the steam leaving the high-pressure section, and superheat the dry steam before expansion in the medium - and low - pressure sections. Thorough research, confirmed by tests, was conducted in different areas, and especially on problems of water and steam separation, and heat transfers in the tube bundle(s) required to superheat the steam. Special systems were designed to avoid processes detrimental to the operation of the units, such as vibrations, erosion/corrosion etc. Experimental feedback on the superheating separators of 900 MW nuclear power plants helped to substantiate the assumptions made for the thermal and hydraulic calculations, as well as the optimizations carried out on the different functions. These results confirmed the industrial application of the design methods to other superheating separators intended for 1300 MW nuclear power plants and for export [fr

  17. Ash Deposit Formation and Removal in a Straw and Wood Suspension-Fired Boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    ). The shedding investigation was also made when the nearby plant sootblower (4m below) was working. It was identified that the mass uptake signal remained stable and the deposits in small pieces were continuously removed during 35% and 65% straw-firing. Previous findings of Vattenfall indicated that a mixture...... was limited to two weeks when 100% straw was fired due to ash deposition in the superheater region that has tube spacing specified for coal-firing (113mm). A series of 3-5 days deposit probe experiments were conducted utilizing 35 to 100% straw with wood on mass basis. The applied deposit probe was water...... two hours deposit mass uptake rate was 52.8 (g/m2/h), while it was 353.8 (g/m2/h) during 100% straw-firing. All tests in the superheater region for all applied straw shares indicated that with increase in straw share, final deposit mass uptake increased. The comparison of current and previous full...

  18. Chromium Enrichment on P11 Ferritic Steel by Pack Cementation

    OpenAIRE

    Fauzi F. A.; Kurniawan T.; Salwani M. S.; Bin Y. S.; Harun W. S. W.

    2016-01-01

    The future thermal power plant is expected to operate at higher temperature to improve its efficiency and to reduce greenhouse gas emission. This target requires better corrosion properties of ferritic steels, which commonly used as materials for superheater and reheater of boiler tubes. In this work, chromium enrichment on the surface of ferritic steel is studied. The deposited chromium is expected to become a reservoir for the formation of chromia protective layer. Chromium was deposited on...

  19. Sodium reflux pool-boiler solar receiver on-sun test results

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, C E; Moreno, J B; Diver, R B; Moss, T A [Oak Ridge National Lab., TN (United States)

    1992-06-01

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW{sub t} sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW{sub t} parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the form of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90% when operated at full power and 800{degree}C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.

  20. Intercostal drainage tube or intracardiac drainage tube?

    Science.gov (United States)

    Anitha, N; Kamath, S Ganesh; Khymdeit, Edison; Prabhu, Manjunath

    2016-01-01

    Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure.

  1. Pneumatic tube-transported blood samples in lithium heparinate gel separator tubes may be more susceptible to haemolysis than blood samples in serum tubes.

    Science.gov (United States)

    Böckel-Frohnhöfer, Nicole; Hübner, Ulrich; Hummel, Björn; Geisel, Jürgen

    2014-10-01

    Pneumatic tube systems are widely used in hospitals. Advantages are high speed and rapid availability of the samples. However, the transportation by pneumatic tube promotes haemolysis. Haemolysis interferes with many spectrophotometric assays and is a common problem in clinical laboratories. The haemolysis index (HI) as a semi-quantitative representation of the level of haemolysis was compared in unpaired tube-transported and hand-delivered routine lithium heparinate plasma samples (n = 1368 and n = 837, respectively). Additionally, the HI distribution was measured in lithium heparinate plasma samples with a HI above the threshold value of 20 and in paired serum samples after transportation by pneumatic tube system. HI values above 20 can interfere with the selected assays: Creatine kinase (CK), creatine kinase-MB (CK-MB) and alanine aminotransferase (ALT) activities. These parameters were determined to demonstrate how haemolysis affects the results. 17.5% of the tube-transported plasma samples and 2.6% of the hand-delivered plasma samples had a HI above 20. The median HI in pneumatic tube-transported lithium heparinate plasma was 85 and 33 in the paired serum samples. The median HI difference between paired plasma and serum was 46. Blood samples in lithium heparinate tubes may be substantially more susceptible to haemolysis by pneumatic tube transportation than serum tube samples. Although our results cannot be universally applied to laboratories with different pneumatic tube systems, it is recommended that each laboratory evaluate carefully the degree of haemolysis after the transportation by the own pneumatic tube system and in terms of the sample type.

  2. Progress in CPI Microwave Tube Development

    Science.gov (United States)

    Wright, Edward L.; Bohlen, Heinz

    2006-01-01

    CPI continues its role as a leading supplier of state-of-the-art, high-power microwave tubes; from linear beam, velocity- and density-modulated devices, to high frequency gyro-devices. Klystrons are the device-of-choice for many high-power microwave applications, and can provide multi-megawatts to multi-kilowatts of power from UHF to W-band, respectively. A number of recent and on-going developments will be described. At UHF frequencies, the inductive output tube (IOT) has replaced the klystron for terrestrial NTSC and HDTV broadcast, due to its high efficiency and linearity, and is beginning to see use in scientific applications requiring 300 kW or less. Recent advances have enabled use well into L-band. CPI has developed a number of multiple-beam amplifiers. The VKL-8301 multiple-beam klystron (MBK) was built for the TESLA V/UV and x-ray FEL projects, and is a candidate RF source for the International Linear Collider (ILC). We have also contributed to the development of the U.S. Naval Research Laboratory (NRL) high-power fundamental-mode S-band MBK. The VHP-8330B multiple-beam, high-order mode (HOM) IOT shows great promise as a compact, CW UHF source for high power applications. These topics will be discussed, along with CPI's development capabilities for new and novel applications. Most important is our availability to provide design and fabrication services to organizations requiring CPI's manufacturing and process control infrastructure to build and test state-of-the-art devices.

  3. A comparison of tape-tying versus a tube-holding device for securing endotracheal tubes in adults.

    Science.gov (United States)

    Murdoch, E; Holdgate, A

    2007-10-01

    During the transfer of intubated patients, endotracheal tube security is paramount. This study aims to compare two methods of securing an endotracheal tube in adults: tying with a cloth tape versus the Thomas Endotracheal Tube Holder (Laerdal). A manikin-based study was performed using paramedics and critical care doctors (consultants and senior trainees) as participants. Each participant was asked to secure an endotracheal tube that had been placed within the trachea of a manikin a total of six times, the first three times using tied cloth tape and the last three times using a Thomas Endotracheal Tube Holder. Following each 'fixation' and after the participant had left the room, the security of the tube was tested by applying a fixed force laterally and to the right by dropping a 1.25 kg weight a distance of 50 cm. The amount of movement of the tube with respect to the teeth was measured and recorded in millimetres. Two-hundred-and-seventy tube fixations (135 tied vs. 135 tube holder) were performed by 45 participants. The degree of tube movement was significantly higher when the tube was secured with a tie compared with when the tube holder was used (median movement 22 mm vs. 4 mm, P tube holder device minimised tube movement in a manikin model when compared with conventional tape tying. The use of this device when transporting intubated patients may reduce the risk of tube displacement though further clinical studies are warranted.

  4. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home >> NEI YouTube Videos >> NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia Animations Blindness Cataract ...

  5. Device for starting a steam generator by heating sodium in a reactor

    International Nuclear Information System (INIS)

    Nakano, Hisao.

    1975-01-01

    Object: To enhance cooperation between ventilation and steam conditions of turbine and ventilation condition relative to a superheater at the time of starting a plant using a fast breeder, and to enhance safety with respect to failure of heat transmission tubes at the time of start. Structure: In a device in which steam generated in an evaporator is fed to a high pressure turbine through a super-heater and an outlet steam of high pressure turbine is reheated by means of a re-heater and fed into a turbine on the side of low pressure to drive the turbine for power generation, opening and closing valves are mounted on outlet and inlet pipes, respectively, of the heat transmission pipe in the super heater, said outlet and inlet pipes being connected by a bypass pipe. Upstream side of the opening and closing valve on the inlet pipe and the downstream side of the opening and closing valve on the outlet pipe and connected by a bypass pipe in the re-heater and said bypass pipe in the re-heater is provided with a steam heat exchanger to be heated by steam in the outlet of the superheater, and a steam line in an auxiliary boiler is connected to the side of re-heater from the opening and closing valve on the heat transmission pipe in the re-heater. (Hanada, M.)

  6. Double wall steam generator tubing

    International Nuclear Information System (INIS)

    Padden, T.R.; Uber, C.F.

    1983-01-01

    Double-walled steam generator tubing for the steam generators of a liquid metal cooled fast breeder reactor prevents sliding between the surfaces due to a mechanical interlock. Forces resulting from differential thermal expansion between the outer tube and the inner tube are insufficient in magnitude to cause shearing of base metal. The interlock is formed by jointly drawing the tubing, with the inside wall of the outer tube being already formed with grooves. The drawing causes the outer wall of the inner tube to form corrugations locking with the grooves. (author)

  7. Learning from YouTube [Video Book

    Science.gov (United States)

    Juhasz, Alexandra

    2011-01-01

    YouTube is a mess. YouTube is for amateurs. YouTube dissolves the real. YouTube is host to inconceivable combos. YouTube is best for corporate-made community. YouTube is badly baked. These are a few of the things Media Studies professor Alexandra Juhasz (and her class) learned about YouTube when she set out to investigate what actually happens…

  8. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home » NEI YouTube Videos » NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia Animations Blindness Cataract ...

  9. Heat transfer performance during in-tube condensation in horizontal smooth, micro-fin and herringbone tubes

    OpenAIRE

    2008-01-01

    M.Ing. An experimental investigation was conducted into the heat transfer characteristics of horizontal smooth, micro-fin and herringbone tubes during in-tube condensation. The study focused on the heat transfer coefficients of refrigerants R-22, R-134a and R-407C inside the three tubes. The herringbone tube results were compared to the smooth and micro-fin tube results. The average increase in the heat transfer coefficient when compared to the smooth tube was found to be as high as 322% w...

  10. Plugging criteria for steam generator tubes with axial cracks near tube support plates

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel

    2000-01-01

    Stress corrosion cracking with intergranular attack occurs on the secondary side of steam generator (SG) tubes where impurities concentrate due to boiling under restricted flow conditions. In the most of cases, it can be called ODSCC (Outer Diameter Stress Corrosion Cracking). The typical locations are areas near support plates, in sludge piles and at top of tubesheet crevices. Though it can also occur on free spans under the relatively thin deposits that build up on the tube surfaces. ODSCC near tube plate supports have been the cause of plugging of many tubes. Thus, studies on SG tubes plugging criteria related to this degradation mechanism are presented in this paper. Th purpose is to avoid unnecessary tube plugging from either safety or reliability standpoint. Based on these studies some conclusions on the plugging criteria and on the difficulties to apply them are addressed. (author)

  11. Intercostal drainage tube or intracardiac drainage tube?

    Directory of Open Access Journals (Sweden)

    N Anitha

    2016-01-01

    Full Text Available Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure.

  12. Condensate subcooling near tube exit during horizontal in-tube condensation

    International Nuclear Information System (INIS)

    Hashizume, K.; Abe, N.; Ozeki, T.

    1992-01-01

    In-tube condensation is encountered in various applications for heat exchangers, such as domestic air-conditioning equipment, industrial air-cooled condensers, and moisture separator reheaters (MSRs) for nuclear power pants. Numerous research work has been conducted to predict the condensation heat transfer coefficient, and we have now enough information for thermal design of heat exchangers with horizontal in-tube condensation. Most of the research is analytical and/or experimental work in the annular or stratified flow regime, or experimental work on bulk condensation, i.e., from saturated vapor to complete condensation. On the other hand, there exist few data about the heat transfer phenomena in the very lower-quality region near the tube exit. The purpose of this paper is to clarify the condensation heat transfer phenomena near the tube exit experimentally and analytically, and to predict the degree of condensate subcooling

  13. Microdischarges in DC accelerator tubes

    International Nuclear Information System (INIS)

    Eastham, D.A.; Thorn, R.

    1978-07-01

    Voltage tests on the Daresbury ceramic/titanium accelerator tube have shown that microdischarges play an important role in the conditioning process. It has been found that the voltage onset for microdischarges in a tube is dependent on the surface contamination of the electrodes and the tube geometry (in particular the tube length). This geometrical effect can be related to the trajectories of secondary ions emitted from the electrode surfaces. Sensitive diagnostic techniques have been developed to study the mass and energy distribution of ions emitted along the axis of the tube during these predischarges. The energy distribution of protons (and H - ions) can be related to the origins of the discharges in the tube. Detailed results are presented for a particular tube geometry. (author)

  14. Expander for Thin-Wall Tubing

    Science.gov (United States)

    Pessin, R.

    1983-01-01

    Tool locally expands small-diameter tubes. Tube expander locally expands and deforms tube: Compressive lateral stress induced in elastomeric sleeve by squeezing axially between two metal tool parts. Adaptable to situations in which tube must have small bulge for mechanical support or flow control.

  15. The integrity of 9Cr-1Mo to stainless steel transition joints in AGR steam generators

    International Nuclear Information System (INIS)

    James, D.W.; Neumann, P.; Soo, J.

    1982-01-01

    The metallurgical aspects of the transition joint between 9Cr-1Mo and 316 stainless steel boiler tube sections are reviewed. A large minimum superheat margin (106 0 C) between the dryout zone and the 9Cr-1Mo to stainless steel transition joint was specified in the original design to eliminate the risk of wetting the stainless steel which is susceptible to stress corrosion cracking. However, small defects were discovered in the welds between the 9Cr-1Mo and Sanicro (72%Ni-16%Cr-10%Fe) transition piece, resulting from dilution of the weld pool by nickel from the transition piece. This led to the possibility of weld failure as a result of creep crack growth in service, and any significant reduction in operating temperature would mean that the large superheat margin could not be sustained. The creep properties of the joints, together with the transition joint temperature distribution, enabled tube failure rates to be determined as a function of operating temperature. A probabilistic model was developed so that the transition joint could be operated within a temperature 'window', the lower temperature limit being determined by stress corrosion considerations and the upper limit being set by creep rate limitations. This allows full load performance from the boilers throughout the anticipated life of the plant. (author)

  16. Categorising YouTube

    Directory of Open Access Journals (Sweden)

    Thomas Mosebo Simonsen

    2011-09-01

    Full Text Available This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC of YouTube. The article investigates the construction of navigationprocesses on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within the interacting relationship of new and old genres are discussed. It is argued that the utility of a conventional categorical system is primarily of analytical and theoretical interest rather than as a practical instrument.

  17. Mechanical characterization tests of a candidate skeleton for X-Gen fuel assembly

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu; Yoon, Kyung Ho; Lee, Kang Hee; Kim, Jae Yong; Lee, Young Ho

    2007-09-01

    Since the KNFC (KEPCO Nuclear Fuel Co.) requested a mechanical characterization tests of a candidate skeleton for X-Gen fuel assembly (some welding locations of a center guide tube are free of welding compared with the PLUS7 case) were requested, transverse vibration and stiffness tests were carried out by using the FAMeCT. The major results are as follows. - Transverse vibration test There was no distinguishable discrepancy in the free vibration characteristics between the skeleton without welding at some locations of a center guide tube and that of original assembly (PLUS7; welded at every spacer grid locations). The natural frequencies were measured as 6.8 - 6.9 for the 1st mode; 17.7 - 18.3 for the 2nd mode; 30.2 - 31.2 for the 3rd mode; 50.4 - 52.1 Hz for the 4th mode. As a result, the difference in the vibration characteristics was extremely small regardless of the number of welding of a center guide tube. - Transverse bending test. The transverse bending test results of the X-Gen no. 2 were similar to those of the PLUS7 skeleton. The relationship between the force and displacement was found linear. 521 N was observed at the deflection of 30 mm, and the stiffness at the 6th grid location (load exerting location) was 17.4, 16.3 N/mm in the two consecutive tests. The displacements at the grid locations lower than the 6th grid were at bit smaller than those upper than that due to a comparatively higher rigidity

  18. Corrosion behaviour of boiler tube materials during combustion of fuels containing Zn and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bankiewicz, D.

    2012-11-01

    Many power plants burning challenging fuels such as waste-derived fuels experience failures of the superheaters and/or increased waterwall corrosion due to aggressive fuel components already at low temperatures. To minimize corrosion problems in waste-fired boilers, the steam temperature is currently kept at a relatively low level which drastically limits power production efficiency. The elements found in deposits of waste and waste-derived fuels burning boilers that are most frequently associated with high-temperature corrosion are: Cl, S, and there are also indications of Br; alkali metals, mainly K and Na, and heavy metals such as Pb and Zn. The low steam pressure and temperature in waste-fired boilers also influence the temperature of the waterwall steel which is nowadays kept in the range of 300 deg C - 400 deg C. Alkali chloride (KCl, NaCl) induced high-temperature corrosion has not been reported to be particularly relevant at such low material temperatures, but the presence of Zn and Pb compounds in the deposits have been found to induce corrosion already in the 300 deg C - 400 deg C temperature range. Upon combustion, Zn and Pb may react with Cl and S to form chlorides and sulphates in the flue gases. These specific heavy metal compounds are of special concern due to the formation of low melting salt mixtures. These low melting, gaseous or solid compounds are entrained in the flue gases and may stick or condense on colder surfaces of furnace walls and superheaters when passing the convective parts of the boiler, thereby forming an aggressive deposit. A deposit rich in heavy metal (Zn, Pb) chlorides and sulphates increases the risk for corrosion which can be additionally enhanced by the presence of a molten phase. The objective of this study was to obtain better insight into high-temperature corrosion induced by Zn and Pb and to estimate the behaviour and resistance of some boiler superheater and waterwall materials in environments rich in those heavy metals

  19. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  20. X-ray tube current control

    International Nuclear Information System (INIS)

    Dupuis, W.A.; Resnick, T.A.

    1982-01-01

    A closed loop feedback system for controlling the current output of an x-ray tube. The system has circuitry for improving the transient response and stability of the x-ray tube current over a substantial nonlinear portion of the tube current production characteristic. The system includes a reference generator for applying adjustable step function reference signals representing desired tube currents. The system also includes means for instantaneous sensing of actual tube current. An error detector compares the value of actual and reference tube current and produces an error signal as a function of their difference. The system feedback loop includes amplification circuitry for controlling x-ray tube filament dc voltage to regulate tube current as a function of the error signal value. The system also includes compensation circuitry, between the reference generator and the amplification circuitry, to vary the loop gain of the feedback control system as a function of the reference magnitude

  1. Manipulation and functionalization of nano-tubes: application to boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Maguer, A.

    2007-01-01

    This PhD work is divided into two parts dealing with boron nitride (BNNT) and carbon nano-tubes. The first part is about synthesis, purification and chemical functionalization of BNNT. Single-walled BNNT are synthesized by LASER ablation of a hBN target. Improving the synthesis parameters first allowed us to limit the byproducts (hBN, boric acid). A specific purification process was then developed in order to enrich the samples in nano-tubes. Purified samples were then used to develop two new chemical functionalization methods. They both involve chemical molecules that present a high affinity towards the BN network. The use of long chain-substituted quinuclidines and borazines actually allowed the solubilization of BNNT in organic media. Purification and functionalization were developed for single-walled BNNT and were successfully applied to multi-walled BNNT. Sensibility of boron to thermic neutrons finally gave birth to a study about covalent functionalization possibilities of the network. The second part of the PhD work deals with separation of carbon nano-tubes depending on their properties. Microwave irradiation of carbon nano-tubes first allowed the enrichment of initially polydisperse samples in large diameter nano-tubes. A second strategy involving selective interaction between one type of tubes and fullerene micelles was finally envisaged to selectively solubilize carbon nano-tubes with specific electronic properties. (author) [fr

  2. [Prehospital airway management of laryngeal tubes. Should the laryngeal tube S with gastric drain tube be preferred in emergency medicine?].

    Science.gov (United States)

    Dengler, V; Wilde, P; Byhahn, C; Mack, M G; Schalk, R

    2011-02-01

    Laryngeal tubes (LT) are increasingly being used for emergency airway management. This article reports on two patients in whom out-of-hospital intubation with a single-lumen LT was associated with massive pulmonary aspiration in one patient and gastric overinflation in the other. In both cases peak inspiratory pressures exceeded the LT leak pressure of approximately 35 mbar. This resulted in gastric inflation and decreased pulmonary compliance and increased inspiratory pressure further, thereby creating a vicious circle. It is therefore recommended that laryngeal tube suction (LTS) should be used in all cases of emergency airway management and a gastric drain tube be inserted through the dedicated second lumen. Apart from gastric overinflation, incorrect LT/LTS placement must be detected and immediately corrected, e.g. in cases of difficult or impossible gastric tube placement, permanent drainage of air from the gastric tube, decreasing minute ventilation or an ascending capnography curve.

  3. Molybdenum Tube Characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Beaux II, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    Chemical vapor deposition (CVD) techniques have been utilized to produce free-standing molybdenum tubes with the end goal of nuclear fuel clad applications. In order to produce tubes with properties desirable for this application, deposition rates were lowered requiring long deposition durations on the order of 50 hours. Standard CVD methods as well as fluidized-bed CVD (FBCVD) methods were applied towards these objectives. Characterization of the tubes produced in this manner revealed material suitable for fuel clad applications, but lacking necessary uniformity across the length of the tubes. The production of freestanding Mo tubes that possess the desired properties across their entire length represents an engineering challenge that can be overcome in a next iteration of the deposition system.

  4. Apparatus for forming an explosively expanded tube-tube sheet joint

    International Nuclear Information System (INIS)

    Schroeder, J.W.

    1984-01-01

    The invention relates to apparatus for expanding a tube into a bore formed in a tube sheet. According to the invention, a primary explosive containing a relatively high number of grains of explosive per unit length extends within the tube coextensive with that portion of the tube to be expanded. An energy transfer cord extends between a detonator and the primary explosive and includes a relatively low number of grains of explosive per unit length which are insufficient to detonate the primary explosive. The transfer cord is covered by a sheath to contain the debris and gases associated with the explosion of the explosive therein. A booster extends between the energy transfer cord and the primary explosive and contains an explosive which can be detonated by the explosive in the energy transfer cord and can, upon exploding, in turn detonate the primary explosive. (author)

  5. Failure analysis of boiler tube

    International Nuclear Information System (INIS)

    Mehmood, K.; Siddiqui, A.R.

    2007-01-01

    Boiler tubes are energy conversion components where heat energy is used to convert water into high pressure superheated steam, which is then delivered to a turbine for electric power generation in thermal power plants or to run plant and machineries in a process or manufacturing industry. It was reported that one of the tubes of a fire-tube boiler used in a local industry had leakage after the formation of pits at the external surface of the tube. The inner side of the fire tube was working with hot flue gasses with a pressure of 10 Kg/cm/sup 2/ and temperature 225 degree C. The outside of the tube was surrounded by feed water. The purpose of this study was to determine the cause of pits developed at the external surface of the failed boiler tube sample. In the present work boiler tube samples of steel grade ASTM AI61/ASTM A192 were analyzed using metallographic analysis, chemical analysis, and mechanical testing. It was concluded that the appearance of defects on the boiler tube sample indicates cavitation type corrosion failure. Cavitation damage superficially resembled pitting, but surface appeared considerably rougher and had many closely spaced pits. (author)

  6. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  7. Importance of crevices formed between tubes and tube plate for the operational behaviour of heat exchangers

    International Nuclear Information System (INIS)

    Achten, N.; Herbsleb, G.; Wieling, N.

    1986-01-01

    It must be guaranteed by construction and manufacture of heat exchangers that primary and secondary medium are completely separated from each other. When this requirement is fullfilled, the operational use of heat exchangers can be impaired by corrosion reactions within the crevice formed between tube and tube plate which may result in corrosion damage. The various techniques which are in use to connect tubes and tube plate and which are described in the present report, must be valued with respect to the tightness of the connection as well as to the formation of crevices between tubes and tube plate. Corrosion resistant copperbase alloys and stainless steels are the most important materials which are in use for the construction of heat exchangers. The mechanisms of crevice corrosion with unalloyed and low alloy carbon steels, stainless steels, and mixed connections between tube and tube plate with these materials are described in detail. Crevice corrosion may be caused also by the formation of galvanic cells between materials of differing electrochemical response. Furthermore, the concentration of aggressive media in crevices between tubes and tube plate can lead to corrosion damage of heat exchanger tubes. For the service operation of heat exchangers without any hazard of corrosion damage in crevices between tubes and tube plate, such crevices must be avoided by proper construction and manufacture. As a model for suitable measures to avoid crevices, the manufacture of steam generators for PWR's is described. (orig.) [de

  8. A Study on the Profile Change Measurement of Steam Generator Tubes with Tube Expansion Methods

    International Nuclear Information System (INIS)

    Kim, Young Kyu; Song Myung Ho; Choi, Myung Sik

    2011-01-01

    Steam generator tubes for nuclear power plants contain the local shape transitions on their inner or outer surface such as dent, bulge, over-expansion, eccentricity, deflection, and so on by the application of physical force during the tube manufacturing and steam generator assembling and by the sludge (that is, corrosion products) produced during the plant operation. The structural integrity of tubes will be degraded by generating the corrosive crack at that location. The profilometry using the traditional bobbin probes which are currently applied for measuring the profile change of tubes gives us basic information such as axial locations and average magnitudes of deformations. However, the three-dimensional quantitative evaluation on circumferential locations, distributional angle, and size of deformations will have to be conducted to understand the effects of residual stresses increased by local deformations on corrosive cracking of tubes. Steam generator tubes of Korean standard nuclear power plants expanded within their tube-sheets by the explosive expansion method and suffered from corrosive cracks in the early stage of power operation. Thus, local deformations of steam generator tubes at the top of tube-sheet were measured with an advanced rotating probe and a laser profiling system for the two cases where the tubes expanded by the explosive expansion method and hydraulic expansion. Also, the trends of eccentricity, deflection, and over-expansion of tubes were evaluated. The advanced eddy current profilometry was confirmed to provide accurate information of local deformations compared with laser profilometry

  9. Procedure and device for extracting the end of a tube inserted into a hole in a tube plate

    International Nuclear Information System (INIS)

    1980-01-01

    When constructing heat exchangers and steam generators, particularly in the construction of steam generators for nuclear power stations, many small diameter tubes have to be secured into a very thick tube plate for instance 600 mm thick. This crimping or expanding of the tube is generally performed by rolling the internal surface of the tube inside a hole drilled right through the tube plate and slightly greater in diameter than the external diameter of the tube before the tube is rolled. To check the tubes for defects, it is necessary to extract certain tubes from the tube plate in order to move the tube to a testing and inspection point and examine the part of it that was secured in the plate hole. The invention concerns the uncrimping of these tubes [fr

  10. Radiation-resistant camera tube

    International Nuclear Information System (INIS)

    Kuwahata, Takao; Manabe, Sohei; Makishima, Yasuhiro

    1982-01-01

    It was a long time ago that Toshiba launched on manufacturing black-and-white radiation-resistant camera tubes employing nonbrowning face-plate glass for ITV cameras used in nuclear power plants. Now in compliance with the increasing demand in nuclear power field, the Company is at grips with the development of radiation-resistant single color-camera tubes incorporating a color-stripe filter for color ITV cameras used under radiation environment. Herein represented are the results of experiments on characteristics of materials for single color-camera tubes and prospects for commercialization of the tubes. (author)

  11. Jose Cabrera (Zorita) tube examination

    International Nuclear Information System (INIS)

    Kuchirka, P.J.

    1986-01-01

    Jose Cabrera (Zorita) tube examination procedures are discussed. This plant continues to use phosphate water chemistry (sodium/phosphate ratio = 2.1). Three hot leg tube segments were pulled from the Jose Cabera (Zorita) plant in 1985. One tube had a field EC indication on the OD at the first tube support plate and the other two had field EC indications on their ID about 3 inches above the bottom of the tube sheet. All three tubes were initially sent to Battelle for preliminary NDE and decontamination. Segments of two tubes were sent to Westinghouse for destructive examination. The results of the laboratory eddy current and radiographic examinations are given. The results of the visual examinations are also given. The tube with OD indications was destructively examined and shallow intergranular pitting and intergranular attack, up to 2 mils deep, were found on the OD in the tube sheet region. Local areas of IGA, up to 5 mils deep, were found on the OD within the tube support plate region. A summary of this information together with supporting micrographs is given. It was hypothesized that a caustic crevice environment was the cause of this mild degradation. Shallow areas of thinning or wastage, up to 3 mils, were found just above the top of the tube sheet in the sludge pile region. Even more shallow wastage was found at the edges of support plate locations. This wastage is believed to be the remnant of early plant chemistry when a higher sodium/phosphate ratio and higher phosphate concentration were allowed

  12. Analysis of flow maldistribution in fin-and-tube evaporators for residential air-conditioning systems

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl

    superheat by distributing individual channel mass flow rate continuously (perfect control). The compensation method is compared to the use of a larger evaporator in order to study their trade-off in augmenting system performance (cooling capacity and COP). The studies are performed by numerical modeling...... profile across the A-coil evaporator was predicted by means of CFD simulation software STAR-CD 3.26 (2005) and applied in the numerical model. The main reason for the better face split evaporator performance at uniform conditions or when compensating, is that the superheated "weak" zones with low UA...

  13. The effect of tube-support interaction on the dynamic response of heat exchanger tubes

    International Nuclear Information System (INIS)

    Shin, Y.S.; Jendrzejczyk, J.A.; Wambsganss, M.W.

    1977-01-01

    To avoid detrimental tube vibration in heat exchangers, resonant conditions and instabilitites must be avoided, and/or peak dynamic amplitudes must not exceed allowable limits. In attempting a theoretical analysis, questions arise as to the effects of tube/support interaction on tube vibrational characteristics (i.e. resonant frequencies, modes, damping) and response amplitude. As a part of ANL's Flow-Induced Vibration Program in support of the Clinch River Breeder Reactor Plant (CRBRP) steam generator design activity, tube/support interaction experiments are being performed not only to gain the insight into the dynamic behavior of CRBRP steam generator tubes, but also to provide the basis for developing design guidance. Test results were compared with anaytical results based on multispan tube with 'knife-edge' supports at the support locations. (Auth.)

  14. Twin-tubes: 3D tracking based on the ATLAS muon drift tubes

    International Nuclear Information System (INIS)

    Woudstra, M.; Bobbink, G.J.; Eldik, N. van; Graaf, H. van der; Kluit, P.; Koutsman, A.; Limper, M.; Linde, F.; Massaro, G.; Snuverink, J.; Vreeswijk, M.; Groenstege, H.; Koopstra, J.; Mos, S.; Rewiersma, P.; Timmermans, C.; Dijkema, J.

    2006-01-01

    The Monitored Drift Tubes (MDTs) of the ATLAS Muon Spectrometer have been paired to form so-called twin-tubes to measure the coordinate which runs along the wire direction. This modification endows the MDTs with full 3D track reconstruction using specially designed electronic boards. The performance of the twin-tubes has been measured for an equipped MDT chamber at the ATLAS Muon Cosmic Ray Test Stand at NIKHEF. The efficiency of a twin-tube has been determined to be 99.8%, and the measured resolution 17 cm per hit. By equipping one multilayer consisting of three layers and combining the measurements a resolution of 10 cm has been obtained

  15. Free Piston Double Diaphragm Shock Tube

    OpenAIRE

    OGURA, Eiji; FUNABIKI, Katsushi; SATO, Shunichi; ABE, Takashi; 小倉, 栄二; 船曳, 勝之; 佐藤, 俊逸; 安部, 隆士

    1997-01-01

    A free piston double diaphragm shock tube was newly developed for generation of high Mach number shock wave. Its characteristics was investigated for various operation parameters; such as a strength of the diaphragm at the end of the comparession tube, an initial pressure of low pressure tube, an initial pressure of medium pressure tube and the volume of compression tube. Under the restriction of fixed pressures for the driver high pressure tube (32×10^5Pa) and the low pressure tube (40Pa) in...

  16. Liquid-Nitrogen Test for Blocked Tubes

    Science.gov (United States)

    Wagner, W. R.

    1984-01-01

    Nondestructive test identifies obstructed tube in array of parallel tubes. Trickle of liquid nitrogen allowed to flow through tube array until array accumulates substantial formation of frost from moisture in air. Flow stopped and warm air introduced into inlet manifold to heat tubes in array. Tubes still frosted after others defrosted identified as obstructed tubes. Applications include inspection of flow systems having parallel legs.

  17. Citizen Candidates Under Uncertainty

    OpenAIRE

    Eguia, Jon X.

    2005-01-01

    In this paper we make two contributions to the growing literature on "citizen-candidate" models of representative democracy. First, we add uncertainty about the total vote count. We show that in a society with a large electorate, where the outcome of the election is uncertain and where winning candidates receive a large reward from holding office, there will be a two-candidate equilibrium and no equilibria with a single candidate. Second, we introduce a new concept of equilibrium, which we te...

  18. Study of tensile test behavior of austenitic stainless steel type 347 seamless thin-walled tubes in cold worked condition

    Energy Technology Data Exchange (ETDEWEB)

    Terui, Clarice, E-mail: clarice.terui@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CINA/CTMSP), Iperó, SP (Brazil). Centro Industrial Nuclear da Marinha; Lima, Nelson B. de, E-mail: nblima@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    These austenitic stainless steel type 347 seamless thin-walled tubes are potential candidates to be used in fuel elements of nuclear power plants (as PWR - Pressurized Water Reactor). So, their metallurgical condition and mechanical properties, as the tensile strength and yield strength, normally are very restrict in demanding project and design requirements. Several full size tensile tests at room temperature and high temperature (315 deg C) were performed in these seamless tubes in cold-worked condition. The results of specified tensile and yield strengths were achieved but the elongation of the tube, in the geometry of the component, could not be measured at high temperature due to unconventional mode of rupture (helical mode without separation of parts). The average value of elongation was obtained from stress-strain curves of hot tensile tests and was around 5%. The results obtained in this research show that this behavior of the full size tensile test samples of thin-walled tube (wall thickness less than 0.5 mm) in high temperature (315°C) is due to the combination of the manufacturing process, the material (crystallographic structure and chemical composition) and the final geometry of the component. In other words, the strong crystallographic texture of material induced by tube drawing process in addition with the geometry of the component are responsible for the behavior in hot uniaxial tensile tests. (author)

  19. Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube

    Science.gov (United States)

    2017-06-01

    suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188...the tube to the 110 cm mark. At the 110 cm mark, secure the tube with medical tape and remove the stylet completely allowing enough tube slack ...and it provides slack that allows tube to advance distally by the effect of natural peristalsis on the bolus-sized balloon. Results: Most feeding

  20. X-ray tubes

    International Nuclear Information System (INIS)

    Young, R.W.

    1979-01-01

    A form of x-ray tube is described which provides satisfactory focussing of the electron beam when the beam extends for several feet from gun to target. Such a tube can be used for computerised tomographic scanning. (UK)

  1. X-ray tube

    International Nuclear Information System (INIS)

    Webley, R.S.

    1975-01-01

    The object of the invention described is to provide an X-ray tube providing a scanned X-ray output which does not require a scanned electron beam. This is obtained by an X-ray tube including an anode which is rotatable about an axis, and a source of a beam of energy, for example an electron beam, arranged to impinge on a surface of the anode to generate X-radiation substantially at the region of incidence on the anode surface. The anode is rotatable about the axis to move the region of incidence over the surface. The anode is so shaped that the rotation causes the region of incidence to move in a predetermined manner relative to fixed parts of the tube so that the generated X-radiation is scanned in a predetermined manner relative to the tube. (UK)

  2. Pump element for a tube pump

    DEFF Research Database (Denmark)

    2011-01-01

    The invention relates to a tube pump comprising a tube and a pump element inserted in the tube, where the pump element comprises a rod element and a first and a second non-return valve member positioned a distance apart on the rod element. The valve members are oriented in the same direction...... relative to the rod element so as to allow for a fluid flow in the tube through the first valve member, along the rod element, and through the second valve member. The tube comprises an at least partly flexible tube portion between the valve members such that a repeated deformation of the flexible tube...... portion acts to alternately close and open the valve members thereby generating a fluid flow through the tube. The invention further relates to a pump element comprising at least two non-return valve members connected by a rod element, and for insertion in an at least partly flexible tube in such tube...

  3. Experimental investigation of heat transfer in the transition region

    International Nuclear Information System (INIS)

    Johannsen, K.; Weber, P.; Feng, Q.

    1990-10-01

    An experimental study of forced convective boiling heat transfer for upflow of water in a circular tube has been performed using a heat transfer system with temperature-controlled indirect Joule heating. By this way, complete boiling curves from incipience of boiling to fully established film boiling could be measured including the transition boiling regime. The boiling curves were traversed in a quasi-steady mode, usually by increasing the set-point wall temperature average at a constant time rate of 3.5 K/min. The vast majority of results covers the pressure range from 0.1 to 1.0 MPa, mass flux range from 25 to 200 kg/(m 2 s) and inlet subcooling from 5 to 30 K. The experimental results of transition boiling heat transfer obtained in the centre of the test section were correlated in terms of a heat flux/surface superheat relationship that was normalized by the maximum heat flux (local CHF) and its associated wall superheat, respectively, to anchor the transition boiling curve to its low temperature limit. The upper surface temperature limit of the transition boiling regime was determined by inspection of measured axial distributions of surface heat flux and corresponding wall temperature. The critical heat flux (CHF) and its corresponding wall superheat has been measured, too. These temperature-controlled results were compared also with power-controlled experiments. The data are presented in terms of a table and accurate empirical correlations following Katto's generalized correlation scheme. Taking into account previous CHF data at L/D ≤ 100 and same range of flow conditions the length effect was found to further depend on pressure and mass flux. The data for the critical wall superheat show a distinct dependence upon pressure, mass flux and inlet quality that has not been observed before with comparable clarity

  4. Ultrasonic measurement of gap between calandria tube and liquid injection shutdown system tube in PHWR

    International Nuclear Information System (INIS)

    Kim, Tae Ryong; Sohn, Seok Man; Lee, Jun Shin; Lee, Sun Ki; Lee, Jong Po

    2001-01-01

    Sag of CT or liquid injection shutdown system tubes in pressurized heavy water reactor is known to occur due to irradiation creep and growth during plant operation. When the sag of CT is big enough, the CT tube possibly comes in contact with liquid injection shutdown system tube (LIN) crossing beneath the CT, which subsequently may prevent the safe operation. It is therefore necessary to check the gap between the two tubes in order to confirm no contacts when using a proper measure periodically during the plant life. An ultrasonic gap measuring probe assembly which can be fed through viewing port installed on the calandria was developed and utilized to measure the sags of both tubes in a pressurized heavy water reactor in Korea. It was found that the centerlines of CT and LIN can be precisely detected by ultrasonic wave. The gaps between two tubes were easily obtained from the relative distance of the measured centerline elevations of the tubes. But the measured gap data observed at the viewing port were actually not the data at the crossing point of CT and LIN. To get the actual gap between two tubes, mathematical modeling for the deflection curves of two tubes was used. The sags of CT and LIN tubes were also obtained by comparison of the present centerlines with the initial elevations at the beginning of plant operation. The gaps between two tubes in the unmeasurable regions were calculated based on the measurement data and the channel power distribution

  5. Tubing misconnections: normalization of deviance.

    Science.gov (United States)

    Simmons, Debora; Symes, Lene; Guenter, Peggi; Graves, Krisanne

    2011-06-01

    Accidental connection of an enteral system to an intravenous (IV) system frequently results in the death of the patient. Misconnections are commonly attributed to the presence of universal connectors found in the majority of patient care tubing systems. Universal connectors allow for tubing misconnections between physiologically incompatible systems. The purpose of this review of case studies of tubing misconnections and of current expert recommendations for safe tubing connections was to answer the following questions: In tubing connections that have the potential for misconnections between enteral and IV tubing, what are the threats to safety? What are patient outcomes following misconnections between enteral and IV tubing? What are the current recommendations for preventing misconnections between enteral and IV tubing? Following an extensive literature search and guided by 2 models of threats and errors, the authors analyzed case studies and expert opinions to identify technical, organizational, and human errors; patient-related threats; patient outcomes; and recommendations. A total of 116 case studies were found in 34 publications. Each involved misconnections of tubes carrying feedings, intended for enteral routes, to IV lines. Overwhelmingly, the recommendations were for redesign to eliminate universal connectors and prevent misconnections. Other recommendations were made, but the analysis indicates they would not prevent all misconnections. This review of the published case studies and current expert recommendations supports a redesign of connectors to ensure incompatibility between enteral and IV systems. Despite the cumulative evidence, little progress has been made to safeguard patients from tubing misconnections.

  6. Resolution of lava tubes with ground penetrating radar: preliminary results from the TubeX project

    Science.gov (United States)

    Esmaeili, S.; Kruse, S.; Garry, W. B.; Whelley, P.; Young, K.; Jazayeri, S.; Bell, E.; Paylor, R.

    2017-12-01

    As early as the mid 1970's it was postulated that planetary tubes or caves on other planetary bodies (i.e., the Moon or Mars) could provide safe havens for human crews, protect life and shield equipment from harmful radiation, rapidly fluctuating surface temperatures, and even meteorite impacts. What is not clear, however, are the exploration methods necessary to evaluate a potential tube-rich environment to locate suitable tubes suitable for human habitation. We seek to address this knowledge gap using a suite of instruments to detect and document tubes in a terrestrial analog study at Lava Beds National Monument, California, USA. Here we describe the results of ground penetrating radar (GPR) profiles and light detection and ranging (LiDAR) scans. Surveys were conducted from the surface and within four lava tubes (Hercules Leg, Skull, Valentine and, Indian Well Caves) with varying flow composition, shape, and complexity. Results are shown across segments of these tubes where the tubes are 10 m in height and the ceilings are 1 - 10 m below the surface. The GPR profiles over the tubes are, as expected, complex, due to scattering from fractures in roof material and three-dimensional heterogeneities. Point clouds derived from the LiDAR scans of both the interior and exterior of the lava tubes provide precise positioning of the tube geometry and depth of the ceiling and floor with respect to the surface topography. GPR profiles over LiDAR-mapped tube cross-sections are presented and compared against synthetic models of radar response to the measured geometry. This comparison will help to better understand the origins of characteristic features in the radar profiles. We seek to identify the optimal data processing and migration approaches to aid lava tube exploration of planetary surfaces.

  7. Hydrogen permeation through Flinabe fluoride molten salts for blanket candidates

    Energy Technology Data Exchange (ETDEWEB)

    Nishiumi, Ryosuke, E-mail: r.nishiumi@aees.kyushu-u.ac.jp; Fukada, Satoshi; Nakamura, Akira; Katayama, Kazunari

    2016-11-01

    Highlights: • H{sub 2} diffusivity, solubility and permeability in Flinabe as T breeder are determined. • Effects in composition differences among Flibe, Fnabe and Flinabe are compared. • Changes of pressure dependence of Flinabe permeation rate are clarified. - Abstract: Fluoride molten salt Flibe (2LiF + BeF{sub 2}) is a promising candidate for the liquid blanket of a nuclear fusion reactor, because of its large advantages of tritium breeding ratio and heat-transfer fluid. Since its melting point is higher than other liquid candidates, another new fluoride molten salt Flinabe (LiF + NaF + BeF{sub 2}) is recently focused on because of its lower melting point while holding proper breeding properties. In this experiment, hydrogen permeation behavior through the three molten salts of Flibe (2LiF + BeF{sub 2}), Fnabe (NaF + BeF{sub 2}) and Flinabe are investigated in order to clarify the effects of their compositions on hydrogen transfer properties. After making up any of the three molten salts and purifying it using HF, hydrogen permeability, diffusivity and solubility of the molten salts are determined experimentally by using a system composed of tertiary cylindrical tubes. Close agreement is obtained between experimental data and analytical solutions. H{sub 2} permeability, diffusivity and solubility are correlated as a function of temperature and are compared among the three molten salts.

  8. The effect of tube rupture location on the consequences of multiple steam generator tube rupture event

    International Nuclear Information System (INIS)

    Jeong, Ji Hwan; Kweon, Young Chul

    2002-01-01

    A multiple steam generator tube rupture (MSGTR) event has never occurred in the commercial operation of nuclear reactors while single steam generator tube rupture (SGTR) events are reported to occur every 2 years. As there has been no occurrence of a MSGTR event, the understanding of transients and consequences of this event is very limited. In this study, a postulated MSGTR event in an advanced power reactor 1400 (APR 1400) is analyzed using the thermal-hydraulic system code, MARS1.4. The APR 1400 is a two-loop, 3893 MWt, PWR proposed to be built in 2010. The present study aims to understand the effects of rupture location in heat transfer tubes following a MSGTR event. The effects of five tube rupture locations are compared with each other. The comparison shows that the response of APR1400 allows the shortest time for operator action following a tube rupture in the vicinity of the hot-leg side tube sheet and allows the longest time following a tube rupture at the tube top. The MSSV lift time for rupture at the tube-top is evaluated as 24.5% larger than that for rupture at the hot-leg side tube sheet

  9. Experimental study of tube/support impact forces in multi-span PWR steam generator tubes

    International Nuclear Information System (INIS)

    Axisa, F.; Desseaux, A.; Gibert, R.J.

    1984-12-01

    The vibro-impact response of a straight part of a steam generator tube is investigated experimentally and using numerical simulation with the aim to relate tube overall dynamics with excitation and tube-support clearance. Configuration studied here corresponds to the tube being excited in only one direction at its first resonance presenting an antinode of vibration at the impacted support. Tests show namely that midspan displacement of tube is almost proportional to excitation level and clearance. Impact forces averaged over a cycle of vibration are almost proportional to excitation and poorly dependent on clearance. Results of numerical simulation are in fairly good agreement with test results

  10. Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for SCWR in superheated steam

    International Nuclear Information System (INIS)

    Abe, Hiroshi; Hong, Seung Mo; Watanabe, Yutaka

    2014-01-01

    Highlights: • Effect of cold work on oxidation kinetics was clearly observed for 15Cr–20Ni SS. • The tube-shaped 15Cr–20Ni SS showed very good oxidation resistance. • The machined layer by cold drawing has a significant role to mitigate oxidation. - Abstract: Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for supercritical-water-cooled reactor (SCWR), including three types of 15Cr–20Ni stainless steels (1520 SSs), in the temperature range of 700–780 °C superheated steam have been investigated. Effect of temperature, dissolved oxygen (DO), degree of cold work (CW), and machined layer by cold drawing process on the oxidation kinetics assuming power-law kinetics are discussed. Characteristics of oxide layers and its relation to oxidation behaviors are also discussed. The effect of DO on the weight gain behavior in superheated steam at 700 °C was minor for all specimens at least up to 200 ppb DO. The tube-shaped specimens of 1520 SSs showed very good oxidation resistance at 700–780 °C. There was no clear difference in the oxidation kinetics among the three investigated types of 1520 SSs. The machined layer formed at the tube surface has a significant role to mitigate oxidation in superheated steam. A fine-grained microstructure near the surface due to recrystallization by cold drawing process is effective to form the protective Cr 2 O 3 layer. It has been suggested that since Cr diffusion in the outside surface of tubes is accelerated as a result of an increased dislocation density and/or grain refinement by cold drawing, tube specimens show very slow oxidation kinetics. Breakdown of the protective Cr 2 O 3 layer and nodule oxide formation were partly observed on the tube-shaped specimens of 15Cr–20Ni SSs. The reliability of Cr 2 O 3 layer has to be carefully examined to predict the oxidation kinetics after long-term exposure

  11. Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for SCWR in superheated steam

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroshi, E-mail: hiroshi.abe@qse.tohoku.ac.jp; Hong, Seung Mo; Watanabe, Yutaka

    2014-12-15

    Highlights: • Effect of cold work on oxidation kinetics was clearly observed for 15Cr–20Ni SS. • The tube-shaped 15Cr–20Ni SS showed very good oxidation resistance. • The machined layer by cold drawing has a significant role to mitigate oxidation. - Abstract: Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for supercritical-water-cooled reactor (SCWR), including three types of 15Cr–20Ni stainless steels (1520 SSs), in the temperature range of 700–780 °C superheated steam have been investigated. Effect of temperature, dissolved oxygen (DO), degree of cold work (CW), and machined layer by cold drawing process on the oxidation kinetics assuming power-law kinetics are discussed. Characteristics of oxide layers and its relation to oxidation behaviors are also discussed. The effect of DO on the weight gain behavior in superheated steam at 700 °C was minor for all specimens at least up to 200 ppb DO. The tube-shaped specimens of 1520 SSs showed very good oxidation resistance at 700–780 °C. There was no clear difference in the oxidation kinetics among the three investigated types of 1520 SSs. The machined layer formed at the tube surface has a significant role to mitigate oxidation in superheated steam. A fine-grained microstructure near the surface due to recrystallization by cold drawing process is effective to form the protective Cr{sub 2}O{sub 3} layer. It has been suggested that since Cr diffusion in the outside surface of tubes is accelerated as a result of an increased dislocation density and/or grain refinement by cold drawing, tube specimens show very slow oxidation kinetics. Breakdown of the protective Cr{sub 2}O{sub 3} layer and nodule oxide formation were partly observed on the tube-shaped specimens of 15Cr–20Ni SSs. The reliability of Cr{sub 2}O{sub 3} layer has to be carefully examined to predict the oxidation kinetics after long-term exposure.

  12. YouTube and 'psychiatry'.

    Science.gov (United States)

    Gordon, Robert; Miller, John; Collins, Noel

    2015-12-01

    YouTube is a video-sharing website that is increasingly used to share and disseminate health-related information, particularly among younger people. There are reports that social media sites, such as YouTube, are being used to communicate an anti-psychiatry message but this has never been confirmed in any published analysis of YouTube clip content. This descriptive study revealed that the representation of 'psychiatry' during summer 2012 was predominantly negative. A subsequent smaller re-analysis suggests that the negative portrayal of 'psychiatry' on YouTube is a stable phenomenon. The significance of this and how it could be addressed are discussed.

  13. YouTube as an information source for pediatric adenotonsillectomy and ear tube surgery.

    Science.gov (United States)

    Sorensen, Jeffrey A; Pusz, Max D; Brietzke, Scott E

    2014-01-01

    Assess the overall quality of information on adenotonsillectomy and ear tube surgery presented on YouTube (www.youtube.com) from the perspective of a parent or patient searching for information on surgery. The YouTube website was systematically searched on select dates with a formal search strategy to identify videos pertaining to pediatric adenotonsillectomy and ear tube surgery. Only videos with at least 5 (ear tube surgery) or 10 (adenotonsillectomy) views per day were included. Each video was viewed and scored by two independent scorers. Videos were categorized by goal and scored for video/audio quality, accuracy, comprehensiveness, and procedure-specific content. Cross-sectional study. Public domain website. Fifty-five videos were scored for adenotonsillectomy and forty-seven for ear tube surgery. The most common category was educational (65.3%) followed by testimonial (28.4%), and news program (9.8%). Testimonials were more common for adenotonsillectomy than ear tube surgery (41.8% vs. 12.8%, p=0.001). Testimonials had a significantly lower mean accuracy (2.23 vs. 2.62, p=0.02), comprehensiveness (1.71 vs. 2.22, p=0.007), and TA specific content (0.64 vs. 1.69, p=0.001) score than educational type videos. Only six videos (5.9%) received high scores in both video/audio quality and accuracy/comprehensiveness of content. There was no significant association between the accuracy and comprehensive score and views, posted "likes", posted "dislikes", and likes/dislikes ratio. There was an association between "likes" and mean video quality (Spearman's rho=0.262, p=0.008). Parents/patients searching YouTube for information on pediatric adenotonsillectomy and ear tube surgery will generally encounter low quality information with testimonials being common but of significantly lower quality. Viewer perceived quality ("likes") did not correlate to formally scored content quality. Published by Elsevier Ireland Ltd.

  14. Performance comparison of air-source heat pump water heater with different expansion devices

    International Nuclear Information System (INIS)

    Peng, Jing-Wei; Li, Hui; Zhang, Chun-Lu

    2016-01-01

    Highlights: • An air-source heat pump water heater model was developed and validated. • System performance with EEV, capillary tube or short tube orifice were compared. • Short tube orifice is more suitable for heat pump water heater than capillary tube. - Abstract: Air source heat pump water heater (ASHPWH) is designed to work under wide operating conditions. Therefore, both the system and components require higher reliability and stability than ordinary heat pump air-conditioning systems. In this paper, a quasi-steady-state system model of ASHPWH using electronic expansion valve (EEV), capillary tube or short tube orifice as expansion device is developed and validated by a prototype using R134a and scroll compressor, by which the system performance is evaluated and compared at varying water temperature and different ambient temperature. Flow characteristics of those three expansion devices in ASHPWH are comparatively analyzed. Results show that the EEV throttling system performs best. Compared with capillary tube, flow characteristics of short tube orifice are closer to that of EEV and therefore more suitable for ASHPWH. Reliability concern of liquid carryover to the compressor in the system using short tube orifice is investigated as well. Higher superheat or less system refrigerant charge could help mitigate the risk.

  15. An investigation on SA 213-Tube to SA 387-Tube plate using friction welding process

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S. Pandia; Kumaraswamidhas, L. A. [Indian Institute of Technology, Jharkhand (India); Kumaran, S. Senthil [RVS School of Engineering and Technology, Tamil Nadu (India); Muthukumaran, S. [National Institute of Technology, Tamil Nadu (India)

    2016-01-15

    Friction welding of tube to tube plate using an external tool (FWTPET) is a relatively newer solid state welding process used for joining tube to tube plate of either similar or dissimilar materials with enhanced mechanical and metallurgical properties. In the present study, FWTPET has been used to weld SA 213 (Grade T12) tube with SA 387 (Grade 22) tube plate. The welded samples are found to have satisfactory joint strength and the Energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) study showed that inter metallic compound is absent in the weld zone. The different weld joints have been identified and the phase composition is found using EDX and XRD. Microstructures have been analyzed using optical and Scanning electron microscopy (SEM). The mechanical properties such as hardness, compressive shear strength and peel test for different weld conditions are studied and the hardness survey revealed that there is increase in hardness at the weld interface due to grain refinement. The corrosion behavior for different weld conditions have been analyzed and the weld zone is found to have better corrosion resistance due to the influence of the grain refinement after FWTPET welding process. Hence, the present investigation is carried out to study the behavior of friction welded dissimilar joints of SA 213 tube and SA 387 tube plate joints and the results are presented. The present study confirms that a high quality tube to tube plate joint can be achieved using FWTPET process at 1120 rpm.

  16. Compliant electrospun silk fibroin tubes for small vessel bypass grafting.

    Science.gov (United States)

    Marelli, Benedetto; Alessandrino, Antonio; Farè, Silvia; Freddi, Giuliano; Mantovani, Diego; Tanzi, Maria Cristina

    2010-10-01

    Processing silk fibroin (SF) by electrospinning offers a very attractive opportunity for producing three-dimensional nanofibrillar matrices in tubular form, which may be useful for a biomimetic approach to small calibre vessel regeneration. Bypass grafting of small calibre vessels, with a diameter less than 6mm, is performed mainly using autografts, like the saphenous vein or internal mammary artery. At present no polymeric grafts made of SF are commercially available, mainly due to inadequate properties (low compliance and lack of endothelium cells). The aim of this work was to electrospin SF into tubular structures (Ø=6mm) for small calibre vessel grafting, characterize the morphological, chemico-physical and mechanical properties of the electrospun SF structures and to validate their potential to interact with cells. The morphological properties of electrospun SF nanofibres were investigated by scanning electron microscopy. Chemico-physical analyses revealed an increase in the crystallinity of the structure of SF nanofibres on methanol treatment. Mechanical tests, i.e. compliance and burst pressure measurements, of the electrospun SF tubes showed that the inner pressure to radial deformation ratio was linear for elongation up to 15% and pressure up to 400 mm Hg. The mean compliance value between 80 and 120 mm Hg was higher than the values reported for both Goretex(R) and Dacron(R) grafts and for bovine heterografts, but still slightly lower than those of saphenous and umbilical vein, which nowadays represent the gold standard for the replacement of small calibre arteries. The electrospun tubes resisted up to 575+/-17 mmHg, which is more than four times the upper physiological pressure of 120 mmHg and more than twice the pathological upper pressures (range 180-220 mmHg). The in vitro tests showed a good cytocompatibility of the electrospun SF tubes. Therefore, the electrospun SF tubes developed within this work represent a suitable candidate for small calibre

  17. Comparison of tubeside condensation and evaporation characteristics of smooth and enhanced heat transfer 1EHT tubes

    International Nuclear Information System (INIS)

    Kukulka, David J.; Smith, Rick; Li, Wei

    2015-01-01

    tube are approximately two times greater than those of a smooth tube. Enhanced heat transfer tubes are important options to be considered in the design of high efficiency systems. A wide variety of industrial processes involve the transfer of heat energy during phase change. Many of those processes employ old technology; this makes those processes ideal candidates for a redesign using enhanced surfaces that would produce improved process performance. Vipertex 1EHT enhanced tubes recover more energy and provide an opportunity to advance the design of many heat transfer products. - Highlights: • Condensation heat transfer in the 1EHT tube provides above average performance. • Surface enhancement creates more nucleation sites and excellent evaporation. • Condensation and evaporation heat transfer performance factor is larger than unity.

  18. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1984-10-01

    A review of the performance of steam generator tubes in 116 water-cooled nuclear power reactors showed that tubes were plugged at 54 (46 percent) of the reactors. The number of tubes removed from service decreased from 4 692 (0.30 percent) in 1981 to 3 222 (0.20 percent) in 1982. The leading causes of tube failures were stress corrosion cracking from the primary side, stress corrosion cracking (or intergranular attack) from the secondary side and pitting corrosion. The lowest incidence of corrosion-induced defects from the secondary side occurred in reactors that have used only volatile treatment, with or without condensate demineralization

  19. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Tapping, R.L.; Stipan, L.

    1992-03-01

    A survey of steam generator operating experience for 1986 has been carried out for 184 pressurized water and pressurized heavy-water reactors, and 1 water-cooled, graphite-moderated reactor. Tubes were plugged at 75 of the reactors (40.5%). In 1986, 3737 tubes were plugged (0.14% of those in service) and 3148 tubes were repaired by sleeving. A small number of reactors accounted for the bulk of the plugged tubes, a phenomenon consistent with previous years. For 1986, the available tubesheet sludge data for 38 reactors has been compiled into tabular form, and sludge/deposit data will be incorporated into all future surveys

  20. Material physical properties of 11Cr-ferritic/martensitic steel (PNC-FMS) wrapper tube materials

    International Nuclear Information System (INIS)

    Yano, Yasuhide; Kaito, Takeji; Ohtsuka, Satoshi; Tanno, Takashi; Uwaba, Tomoyuki; Koyama, Shinichi

    2012-09-01

    It is necessary to develop core materials for fast reactors in order to achieve high-burnup. Ferritic steels are expected to be good candidate core materials to achieve this objective because of their excellent void swelling resistance. Therefore, oxide dispersion strengthened (ODS) ferritic steel and 11Cr-ferritic/martensitic steel (PNC-FMS) have been respectively developed for cladding and wrapper tube materials in Japan Atomic Energy Agency. In this study, various physical properties of PNC-FMS wrapper materials were measured and equations and future standard measurement technique of physical properties for the design and evaluation were conducted. (author)

  1. Sealed ion accelerator tubes (survey)

    International Nuclear Information System (INIS)

    Voitsik, L.R.

    1985-01-01

    The first publications on developing commercial models of small-scale sealed accelerator tubes in which neutrons are generated appeared in the foreign press in 1954 to 1957; they were very brief and were advertising-oriented. The tubes were designed for neutron logging of oil wells instead of ampule neutron sources (Po + Be, Ra + Be). Later, instruments of this type began to be called neutron tubes from the resulting neutron radiation that they gave off. In Soviet Union a neutron tube was developed in 1958 in connection with the development of the pulsed neutron-neutron method of studying the geological profile of oil wells. At that time the tube developed was intended, in the view of its inventors, to replace standard isotope sources with constant neutron yield. A fairly detailed survey of neutron tubes was made in the studies. 8 refs., 8 figs

  2. Steam generator tube integrity program

    International Nuclear Information System (INIS)

    Dierks, D.R.; Shack, W.J.; Muscara, J.

    1996-01-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given

  3. Optimized numerical annular flow dryout model using the drift-flux model in tube geometry

    International Nuclear Information System (INIS)

    Chun, Ji Han; Lee, Un Chul

    2008-01-01

    Many experimental analyses for annular film dryouts, which is one of the Critical Heat Flux (CHF) mechanisms, have been performed because of their importance. Numerical approaches must also be developed in order to assess the results from experiments and to perform pre-tests before experiments. Various thermal-hydraulic codes, such as RELAP, COBRATF, MARS, etc., have been used in the assessment of the results of dryout experiments and in experimental pre-tests. These thermal-hydraulic codes are general tools intended for the analysis of various phenomena that could appear in nuclear power plants, and many models applying these codes are unnecessarily complex for the focused analysis of dryout phenomena alone. In this study, a numerical model was developed for annular film dryout using the drift-flux model from uniform heated tube geometry. Several candidates of models that strongly affect dryout, such as the entrainment model, deposition model, and the criterion for the dryout point model, were tested as candidates for inclusion in an optimized annular film dryout model. The optimized model was developed by adopting the best combination of these candidate models, as determined through comparison with experimental data. This optimized model showed reasonable results, which were better than those of MARS code

  4. Tube plug removal machine

    International Nuclear Information System (INIS)

    Hawkins, P.J.

    1987-01-01

    In a nuclear steam generator wherein some faulty tubes have been isolated by mechanical plugging, to remove a selected plug without damaging the associated tube, a plug removal machine is used. The machine drills into a plug portion with a tap drill bit having a drill portion a tap portion and a threaded portion, engaging that plug portion with the threaded portion after the drilled hole has been threaded by the tap portion thereof, and removing a portion of the plug in the tube with a counterbore drill bit mounted concentrically about the tap drill bit. A trip pin and trip spline disengage the tap drill bit from the motor. The counterbore drill bit is thereafter self-centered with respect to the tube and plug about the now stationary tap drill bit. After a portion of the plug has been removed by the counterbore drill bit, pulling on the top drill bit by grippers on slots will remove the remaining plug portion from the tube. (author)

  5. Falling film evaporation on a tube bundle with plain and enhanced tubes

    International Nuclear Information System (INIS)

    Habert, M.

    2009-04-01

    The complexities of two-phase flow and evaporation on a tube bundle present important problems in the design of heat exchangers and the understanding of the physical phenomena taking place. The development of structured surfaces to enhance boiling heat transfer and thus reduce the size of evaporators adds another level of complexity to the modeling of such heat exchangers. Horizontal falling film evaporators have the potential to be widely used in large refrigeration systems and heat pumps, in the petrochemical industry and for sea water desalination units, but there is a need to improve the understanding of falling film evaporation mechanisms to provide accurate thermal design methods. The characterization of the effect of enhanced surfaces on the boiling phenomena occurring in falling film evaporators is thus expected to increase and optimize the performance of a tube bundle. In this work, the existing LTCM falling film facility was modified and instrumented to perform falling film evaporation measurements on single tube row and a small tube bundle. Four types of tubes were tested including: a plain tube, an enhanced condensing tube (Gewa-C+LW) and two enhanced boiling tubes (Turbo-EDE2 and Gewa-B4) to extend the existing database. The current investigation includes results for two refrigerants, R134a and R236fa, at a saturation temperature of T sat = 5 °C, liquid film Reynolds numbers ranging from 0 to 3000, at heat fluxes between 20 and 60 kW/m² in pool boiling and falling film configurations. Measurements of the local heat transfer coefficient were obtained and utilized to improve the current prediction methods. Finally, the understanding of the physical phenomena governing the falling film evaporation of liquid refrigerants has been improved. Furthermore, a method for predicting the onset of dry patch formation has been developed and a local heat transfer prediction method for falling film evaporation based on a large experimental database has been proposed

  6. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1982-04-01

    The performance of steam generator tubes in water-cooled nuclear power reactors has been reviewed for 1980. Tube defects occurred at 38% of the 97 reactors surveyed. This is a marginal improvement over 1979 when defects occurred at 41% of the reactors. The number of failed tubes was also lower, 0.14% of the tubes in service in 1980 compared with 0.20% of those in service in 1979. Analysis of the causes of these failures indicates that stress corrosion cracking was the leading failure mechanism. Reactors that used all-volatile treatment of secondary water, with or without full-flow condensate demineralization since start-up showed the lowest incidence of corrosion-related defects

  7. The dynamic single-tube concept; Le mono-tube dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Rivet, P. [Ste MC International (France)

    1997-12-31

    In the framework of greenhouse gas emission reduction and the utilization of cooling intermediate fluids with indirect refrigerating systems, a new concept of dynamical single-tube has been developed, which allows for the simultaneous cold distribution from a centralized plant towards various required temperature systems (as for example in a supermarket refrigerating system) with optimized efficiency, fluid flow and defrosting conditions; moreover, the dynamic single-tube concept is very well adapted to two-phase flows

  8. Fuel assembly and fuel cladding tube

    International Nuclear Information System (INIS)

    Tsutsumi, Shinro; Ito, Ken-ichi; Inagaki, Masatoshi; Nakajima, Junjiro.

    1996-01-01

    A fuel cladding tube is a zirconium liner tube formed by lining a pure zirconium layer on the inner side of a zirconium alloy tube. The fuel cladding tube is formed by extrusion molding of a composite billet formed by inserting a pure zirconium billet into a zirconium alloy billet. Accordingly, the pure zirconium layer and the zirconium alloy tube are strongly joined by metal bond. The fuel cladding tube has an external oxide film on the outer surface of the zirconium alloy tube and an internal oxide film on the inner side of the pure zirconium layer. The external oxide film has a thickness preferably of about 1μm. The internal oxide film has a thickness of not more than 10μm, preferably, from 1 to 5μm. With such a constitution, flaws to be formed on both inner and outer surfaces of the cladding tube upon assembling a fuel assembly can be reduced thereby enabling to reduce the amount of hydrogen absorbed to the cladding tube. (I.N.)

  9. Analysis of nature of brazed joints fracture under operating conditions

    International Nuclear Information System (INIS)

    Orlov, A.V.; Gura, P.M.

    1985-01-01

    Technique establishing causes leading to brazed joint fracture in pressure boundary components, operating under heavy conditions of high temperature and corrosive medium is described. Some cases of tube brazed joint fractures in a superheater of 12Kh1MF and 08Kh18N10T steels are considered. The attention is paid on using metallography for determination of mechanical or corrosion fracture properties. The diagram is developed permitting to take into account the interrelation between the fracture area in the given zone and its strength

  10. Damage evaluation system for materials used in fossil thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Hiroyuki [Science Univ. of Tokyo (Japan); Sakai, Shinsuke [Tokyo Univ. (Japan); Tomita, Akira [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Koyama, Teruo [Babcock Hitachi K.K., Tokyo (Japan); Sakurai, Shigeo; Kawasaki, Yoshiya [Hitachi Ltd., Ibaraki (Japan)

    1998-11-01

    The summary of this research paper is as follows: The fundamental design of the damage evaluation system is carried out based on the basic concept. Prototype systems for boilers and turbines have been constructed: (a) Boiler: (I) Evaluation part: Outer surface of the primary pendant superheater tube; (II) Damage mode: Creep; (III) Damage evaluation method: Hardness measurement method; (b) Turbine: (I) Evaluation part: Inner surface at the center bore of high pressure turbine rotor; (II) Damage mode: Creep; (III) Damage evaluation method: Electric potential method. (orig./MM)

  11. Comparison of digoxin concentration in plastic serum tubes with clot activator and heparinized plasma tubes.

    Science.gov (United States)

    Dukić, Lora; Simundić, Ana-Maria; Malogorski, Davorin

    2014-01-01

    Sample type recommended by the manufacturer for the digoxin Abbott assay is either serum collected in glass tubes or plasma (sodium heparin, lithium heparin, citrate, EDTA or oxalate as anticoagulant) collected in plastic tubes. In our hospital samples are collected in plastic tubes. Our hypothesis was that the serum sample collected in plastic serum tube can be used interchangeably with plasma sample for measurement of digoxin concentration. Our aim was verification of plastic serum tubes for determination of digoxin concentration. Concentration of digoxin was determined simultaneously in 26 venous blood plasma (plastic Vacuette, LH Lithium heparin) and serum (plastic Vacuette, Z Serum Clot activator; both Greiner Bio-One GmbH, Kremsmünster, Austria) samples, on Abbott AxSYM analyzer using the original Abbott Digoxin III assay (Abbott, Wiesbaden, Germany). Tube comparability was assessed using the Passing Bablok regression and Bland-Altman plot. Serum and plasma digoxin concentrations are comparable. Passing Bablok intercept (0.08 [95% CI = -0.10 to 0.20]) and slope (0.99 [95% CI = 0.92 to 1.11]) showed there is no constant or proportional error. Blood samples drawn in plastic serum tubes and plastic plasma tubes can be interchangeably used for determination of digoxin concentration.

  12. Development of techniques to dispose of the Windscale AGR heat exchangers

    International Nuclear Information System (INIS)

    Crossley, H.; Wakefield, J.R.

    1991-01-01

    In a gas-cooled nuclear power plant the gas side of the heat exchanger tubes becomes contaminated with radioactive deposits carried from the reactor in the coolant stream. In order to dispose of the heat exchangers in the safest and most cost-effective way during plant decommissioning, the deposits have to be removed. In situ chemical decontamination is considered to be the only viable method. This paper describes the research and development of chemical decontamination methods for the Windscale AGR heat exchangers, and the testing of a selected method on an in situ superheater. The research involved characterization of tube corrosion and radioactivity deposits, laboratory testing of chemical reagents on actual tube samples, and the provision and operation of a plant to apply the selected reagent. Disposal of radioactive effluent is an important consideration in chemical decontamination and in the present case was the major factor in determining the process

  13. Evaluation of burst probability for tubes by Weibull distributions

    International Nuclear Information System (INIS)

    Kao, S.

    1975-10-01

    The investigations of candidate distributions that best describe the burst pressure failure probability characteristics of nuclear power steam generator tubes has been continued. To date it has been found that the Weibull distribution provides an acceptable fit for the available data from both the statistical and physical viewpoints. The reasons for the acceptability of the Weibull distribution are stated together with the results of tests for the suitability of fit. In exploring the acceptability of the Weibull distribution for the fitting, a graphical method to be called the ''density-gram'' is employed instead of the usual histogram. With this method a more sensible graphical observation on the empirical density may be made for cases where the available data is very limited. Based on these methods estimates of failure pressure are made for the left-tail probabilities

  14. Dermatology on YouTube.

    Science.gov (United States)

    Boyers, Lindsay N; Quest, Tyler; Karimkhani, Chante; Connett, Jessica; Dellavalle, Robert P

    2014-06-15

    YouTube, reaches upwards of six billion users on a monthly basis and is a unique source of information distribution and communication. Although the influence of YouTube on personal health decision-making is well established, this study assessed the type of content and viewership on a broad scope of dermatology related content on YouTube. Select terms (i.e. dermatology, sun protection, skin cancer, skin cancer awareness, and skin conditions) were searched on YouTube. Overall, the results included 100 videos with over 47 million viewers. Advocacy was the most prevalent content type at 24% of the total search results. These 100 videos were "shared" a total of 101,173 times and have driven 6,325 subscriptions to distinct YouTube user pages. Of the total videos, 35% were uploaded by or featured an MD/DO/PhD in dermatology or other specialty/field, 2% FNP/PA, 1% RN, and 62% other. As one of the most trafficked global sites on the Internet, YouTube is a valuable resource for dermatologists, physicians in other specialties, and the general public to share their dermatology-related content and gain subscribers. However, challenges of accessing and determining evidence-based data remain an issue.

  15. Study of the Dynamics of a Condensing Bubble Using Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    Shahnawaz Ahmed

    2015-06-01

    Full Text Available Mesoscopic lattice Boltzmann method (LBM is used to discretize the governing equations for a steam bubble inside a tube filled with water. The bubbles are kept at higher temperature compared to its boiling point while the liquid is kept subcooled. Heat transfer is allowed to take place between the two phases by virtue of which the bubble will condense. Three separate probability distribution functions are used in LBM to handle continuity, momentum and energy equations separately. The interface is considered to be diffused within a narrow zone and it has been modeled using convective Cahn-Hillard equation. Combined diffused interface-LBM framework is adapted accordingly to handle complex interface separating two phases having high density ratio. Developed model is validated with respect to established correlations for instantaneous equivalent radius of a spherical condensing bubble. Numerical snapshots of the simulation depict that the bubble volume decreases faster for higher degree of superheat. The degrees of superheat are varied over a wide range to note its effect on bubble shape and size. Effect of initial volume of the bubble on the condensation rate is also studied. It has been observed that for a fixed degree of superheat, the condensation rate is not exactly proportional to its volume. Due to the variation in interfacial configuration for different sized bubbles, condensation rate changes drastically. Influence of gravity on the rate of condensation is also studied using the developed methodology.

  16. Bacterial Biofilms in Jones Tubes.

    Science.gov (United States)

    Ahn, Eric S; Hauck, Matthew J; Kirk Harris, Jonathan; Robertson, Charles E; Dailey, Roger A

    To investigate the presence and microbiology of bacterial biofilms on Jones tubes (JTs) by direct visualization with scanning electron microscopy and polymerase chain reaction (PCR) of representative JTs, and to correlate these findings with inflammation and/or infection related to the JT. In this study, prospective case series were performed. JTs were recovered from consecutive patients presenting to clinic for routine cleaning or recurrent irritation/infection. Four tubes were processed for scanning electron microscopy alone to visualize evidence of biofilms. Two tubes underwent PCR alone for bacterial quantification. One tube was divided in half and sent for scanning electron microscopy and PCR. Symptoms related to the JTs were recorded at the time of recovery. Seven tubes were obtained. Five underwent SEM, and 3 out of 5 showed evidence of biofilms (60%). Two of the 3 biofilms demonstrated cocci and the third revealed rods. Three tubes underwent PCR. The predominant bacteria identified were Pseudomonadales (39%), Pseudomonas (16%), and Staphylococcus (14%). Three of the 7 patients (43%) reported irritation and discharge at presentation. Two symptomatic patients, whose tubes were imaged only, revealed biofilms. The third symptomatic patient's tube underwent PCR only, showing predominantly Staphylococcus (56%) and Haemophilus (36%) species. Two of the 4 asymptomatic patients also showed biofilms. All symptomatic patients improved rapidly after tube exchange and steroid antibiotic drops. Bacterial biofilms were variably present on JTs, and did not always correlate with patients' symptoms. Nevertheless, routine JT cleaning is recommended to treat and possibly prevent inflammation caused by biofilms.

  17. Rectangular drift tube characteristics

    International Nuclear Information System (INIS)

    Denisov, D.S.; Musienko, Yu.V.

    1985-01-01

    Results on the study of the characteristics of a 50 x 100 mm aluminium drift tube are presented. The tube was filled with argon-methane and argon-isobutane mixtures. With 16 per cent methane concentration the largest deviation from a linear relation between the drift time and the drift path over 50 mm is less than 2 mm. The tube filled with argon-isobutane mixture is capable of operating in a limited streamer mode

  18. Chest tube insertion - series (image)

    Science.gov (United States)

    Chest tubes are inserted to drain blood, fluid, or air and allow full expansion of the lungs. The tube is placed in the pleural space. The area where the tube will be inserted is numbed (local anesthesia). The patient may also be sedated. The chest ...

  19. Boiling and condensation in microfin tubes

    Science.gov (United States)

    Schlager, Lynn M.

    A general overview of microfin tubes and their applications is presented. Manufacturing processes, commercial availability, experimental heat transfer, and pressure drop data for various refrigerants (including alternative refrigerants and refrigerant-oil mixtures), physical mechanisms of enhancement, and the incorporation of microfin tubes in common heat exchanger configurations are discussed. Microfin tubes, also known by various trade names, are characterized by numerous small fins which typically spiral down the inside wall of tubes at angles ranging from 10 to 30 degrees. The number of fins ranges from 48 to 70 with typical fin heights of 0.12 to 0.30 mm (fin height generally less than 3 percent of the inside diameter of the tube). Fin shapes may vary and the inside surface area of microfin tubes is 10 to 70 percent greater than the area of equivalent smooth tubes. Heat transfer can be enhanced by up to a factor of three with microfin tubes.

  20. Flux tubes at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cea, Paolo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Dipartimento di Fisica dell’Università di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cosmai, Leonardo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cuteri, Francesca; Papa, Alessandro [Dipartimento di Fisica, Università della Calabria & INFN-Cosenza,Ponte Bucci, cubo 31C, I-87036 Rende (Cosenza) (Italy)

    2016-06-07

    The chromoelectric field generated by a static quark-antiquark pair, with its peculiar tube-like shape, can be nicely described, at zero temperature, within the dual superconductor scenario for the QCD confining vacuum. In this work we investigate, by lattice Monte Carlo simulations of the SU(3) pure gauge theory, the fate of chromoelectric flux tubes across the deconfinement transition. We find that, if the distance between the static sources is kept fixed at about 0.76 fm ≃1.6/√σ and the temperature is increased towards and above the deconfinement temperature T{sub c}, the amplitude of the field inside the flux tube gets smaller, while the shape of the flux tube does not vary appreciably across deconfinement. This scenario with flux-tube “evaporation” above T{sub c} has no correspondence in ordinary (type-II) superconductivity, where instead the transition to the phase with normal conductivity is characterized by a divergent fattening of flux tubes as the transition temperature is approached from below. We present also some evidence about the existence of flux-tube structures in the magnetic sector of the theory in the deconfined phase.

  1. Gene expression profile indicates involvement of NO in Camellia sinensis pollen tube growth at low temperature.

    Science.gov (United States)

    Pan, Junting; Wang, Weidong; Li, Dongqin; Shu, Zaifa; Ye, Xiaoli; Chang, Pinpin; Wang, Yuhua

    2016-10-18

    Nitric oxide (NO) functions as a critical signaling molecule in the low-temperature stress responses in plants, including polarized pollen tube growth in Camellia sinensis. Despite this, the potential mechanisms underlying the participation of NO in pollen tube responses to low temperature remain unclear. Here, we investigate alterations to gene expression in C. sinensis pollen tubes exposed to low-temperature stress and NO using RNA-Seq technology, in order to find the potential candidate genes related to the regulation of pollen tube elongation by NO under low-temperature stress. Three libraries were generated from C. sinensis cv. 'Longjingchangye' pollen tubes cultured at 25 °C (CsPT-CK) and 4 °C (CsPT-LT) or with 25 μM DEA NONOate (CsPT-NO). The number of unigenes found for the three biological replications were 39,726, 40,440 and 41,626 for CsPT-CK; 36,993, 39,070 and 39,439 for CsPT-LT; and 39,514, 38,298 and 39,061 for CsPT-NO. A total of 36,097 unique assembled and annotated sequences from C. sinensis pollen tube reads were found in a BLAST search of the following databases: NCBI non-redundant nucleotide, Swiss-prot protein, Kyoto Encyclopedia of Genes and Genomes, Cluster of Orthologous Groups of proteins, and Gene Ontology. The absolute values of log 2 Ratio > 1 and probability > 0.7 were used as the thresholds for significantly differential gene expression, and 766, 497 and 929 differentially expressed genes (DEGs) were found from the comparison analyses of the CK-VS-LT, CK-VS-NO and LT-VS-NO libraries, respectively. Genes related to metabolism and signaling pathways of plant hormones, transcription factors (TFs), vesicle polarized trafficking, cell wall biosynthesis, the ubiquitination machinery of the ubiquitin system and species-specific secondary metabolite pathways were mainly observed in the CK-VS-LT and CK-VS-NO libraries. Differentially expressed unigenes related to the inhibition of C. sinensis pollen tube growth under low

  2. Managing a chest tube and drainage system.

    Science.gov (United States)

    Durai, Rajaraman; Hoque, Happy; Davies, Tony W

    2010-02-01

    Intercostal drainage tubes (ie, chest tubes) are inserted to drain the pleural cavity of air, blood, pus, or lymph. The water-seal container connected to the chest tube allows one-way movement of air and liquid from the pleural cavity. The container should not be changed unless it is full, and the chest tube should not be clamped unnecessarily. After a chest tube is inserted, a nurse trained in chest-tube management is responsible for managing the chest tube and drainage system. This entails monitoring the chest-tube position, controlling fluid evacuation, identifying when to change or empty the containers, and caring for the tube and drainage system during patient transport. This article provides an overview of indications, insertion techniques, and management of chest tubes. Copyright 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  3. Strong, corrosion-resistant aluminum tubing

    Science.gov (United States)

    Reed, M. W.; Adams, F. F.

    1980-01-01

    When aluminum tubing having good corrosion resistance and postweld strength is needed, type 5083 alloy should be considered. Chemical composition is carefully controlled and can be drawn into thin-wall tubing with excellent mechanical properties. Uses of tubing are in aircraft, boats, docks, and process equipment.

  4. Bottom nozzle to guide tube connection

    International Nuclear Information System (INIS)

    Bryan, W.J.

    1991-01-01

    This patent describes a nuclear fuel assembly which includes an upper end fitting and a lower end fitting spaced therefrom and connected thereto by elongated guide tubes of one alloy having an open upper end and a closed lower end with spaced fuel element retaining grids mounted on the guide tubes therebetween, the closed lower ends of the guide tubes including a threaded central passageway and the attachment of the guide tubes to the lower end fitting of another alloy. It comprises: an externally threaded bolt with a first end threadably received in the threaded central passageway of the lower end of the guide tube and a head at the other end of the side of the lower end fitting opposite the guide tube; an interruption in the external threads of the bolt which forms a groove which communicates the interior of the guide tube with the side of the lower end fitting opposite the guide tube and enhances its frictional engagement with the threaded central passageway, thereby to hold and attach the guide tube and lower end fitting firmly together, even through a series of temperature cycles

  5. Development of the double-wall-tube steam generator. Evaluation of inner tube leak detection system

    International Nuclear Information System (INIS)

    Teraoku, Takuji; Kisohara, Naoyuki

    1995-01-01

    A double-wall-tube steam generator (DWT-SG) is considered to have possibility of eliminating a secondary heat transport system to realize a reliable and simplified FBR plant. Thus, basic tests for inner/outer tube leak detection and prototypical leak tests by use of the 1MWt DWT-SG model have been performed to evaluate the feasibility of DWT-SG. Their results demonstrated that the inner leak detection system can definitely detect a steam leak from an inner tube flaw. Analyses of the inner tube leak and detection behavior obtained in the 1MWt DWT-SG test enabled to estimate the performance of the inner tube detection system of the commercial DWT-SG system. (author)

  6. Cross-talk in straw tube chambers

    Energy Technology Data Exchange (ETDEWEB)

    Marzec, J. E-mail: janusz.marzec@ire.pw.edu.pl

    2003-05-11

    An analytical model of the signal transmission between neighboring straw tubes with resistive cathodes (cross-talk) is presented. The dependence of the cross-talk level on the cathode resistance, tube length, particle detection point, the distance of the tube from the shielding planes, and termination of the tube ends is analyzed.

  7. Cross-talk in straw tube chambers

    International Nuclear Information System (INIS)

    Marzec, J.

    2003-01-01

    An analytical model of the signal transmission between neighboring straw tubes with resistive cathodes (cross-talk) is presented. The dependence of the cross-talk level on the cathode resistance, tube length, particle detection point, the distance of the tube from the shielding planes, and termination of the tube ends is analyzed

  8. Tubing cutter for tight spaces

    Science.gov (United States)

    Girala, A. S.

    1980-01-01

    Cutter requires few short swings of handle to rotate its cutting edge full 360 around tube. It will cut tubing installed in confined space that prevents free movement of conventional cutter. Cutter is snapped onto tube and held in place by spring-loaded clamp. Screw ratchet advances cutting wheel.

  9. Evaluation of the Effect of Tube Pitch and Surface Alterations on Temperature Field at Sprinkled Tube Bundle

    Directory of Open Access Journals (Sweden)

    Kracík Petr

    2015-01-01

    Full Text Available Water flowing on a sprinkled tube bundle forms three basic modes: It is the Droplet mode (liquid drips from one tube to another, the Jet mode (with an increasing flow rate droplets merge into a column and the Membrane (Sheet mode (with further increasing of falling film liquid flow rate columns merge and create sheets between the tubes. With sufficient flow rate sheets merge at this state and the tube bundle is completely covered by a thin liquid film. There are several factors influencing the individual mode types as well as heat transfer. Beside the above mentioned falling film liquid flow rate they are for instance tube diameters, tube pitches in a tube bundle or a physical condition of a falling film liquid. This paper presents a summary of data measured at atmospheric pressure at a tube bundle consisting of copper tubes of 12 milimeters diameter and of the studied tube length one meter. The tubes are positioned horizontally one above another with the tested pitches of 15, 20, 25 and 30 mm and there is a distribution tube placed above them with water flowing out. The thermal gradient of 15–40 has been tested with all pitches where the falling film liquid’s temperature at the inlet of the distribution tube was 15 °C. The liquid was heated during the flow through the exchanger and the temperature of the sprinkled (heater liquid at the inlet of the exchanger with a constant flow rate about 7.2 litres per minute was 40 °C. The tested flow of the falling film liquid ranged from 1.0 to 13.0 litres per minute. Sequences of 180 exposures have been recorded in partial flow rate stages by thermographic camera with record frequency of 30 Hz which were consequently assessed using the Matlab programme. This paper presents results achieved at the above mentioned pitches and at three types of tube bundle surfaces.

  10. An investigation on mechanical property of commercial copper tube to aluminium 2025 tube plate by FWTPET process

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, S., E-mail: kannan.dgl201127@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004 (India); Senthil Kumaran, S., E-mail: sskumaran@ymail.com [Research and Development Center, Department of Mechanical Engineering, RVS Educational Trust' s Group of Institutions, RVS School of Engineering and Technology, Dindigul, Tamilnadu 624005 (India); Kumaraswamidhas, L.A., E-mail: lakdhas1978@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004 (India)

    2016-07-05

    Frictional welding of tube to tube plate by external tool (FWTPET) posses wide spread industrial in mass production process for joint similar and dissimilar materials. Frictional welding process allows welding of some materials that are exceptionally hard to fusion weld. The good quality joint between the tube and tube plate is achieved by selecting the proper process parameter. In this present research, the frictional welding is done between the Aluminium 2025 tube plate and commercial copper tube possessing a clearance fit of 0.1 mm between tube and hole. In this study, two conditions were considered while handing out this experiment. The condiction1 is tube without holes [WOH] and condition 2 is tube with holes [WH] on the tube circumference. In total, twenty seven work pieces have been considered separately for both conditions and the mechanical property such as compression strength and hardness value has been measured for the both set of work piece in two conditions to analysis the joint strength of the welding process. Taguchi L{sub 27} orthogonal array has been used in this process to identify the process parameter which influences the joint strength of the welded samples. ANOVA method is used to calculate the percentage of contribution by each process parameter which influences the better joint strength. Genetic algorithm is used to authenticate the outcome obtained from the both experimental value and optimization value. Scanning Electron Microscope (SEM) and Energy-dispersive X-ray analysis (EDX) has been performed to probe microstructures and chemical compositions for work piece without holes which has higher mechanical property. - Highlights: • FWTPET for dissimilar metals commercial copper tube and Al 2025 tube plate. • The hardness value for tube without holes are 180.988 Hv. • The compression strength for tube without holes are 376.05 MPa. • SEM confirm heat production is done to melt parent metal by diffusion process. • EDX prove no trace

  11. Internal heat exchange tubes for industrial furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1992-05-26

    This patent describes a method for cooling the work within an industrial furnace. It comprises providing a longitudinally extending outer tube which extends into the furnace having a closed axial end and an open axial end; providing a preformed inner tube open at both ends within the outer tube; injecting a coolant into the inner tube so that the coolant flows from one axial end of the tube out the opposite end adjacent the closed end of the outer tube, and from the closed end of the outer tube to the open end thereof; circulating a gas within the furnace against the outer tube to effect heat transfer therewith.

  12. Square through tube

    International Nuclear Information System (INIS)

    Akita, Junji; Honma, Toei.

    1975-01-01

    Object: To provide a square through tube involving thermal movement in pipelines such as water supply pump driving turbine exhaust pipe (square-shaped), which is wide in freedom with respect to shape and dimension thereof for efficient installation at site. Structure: In a through tube to be airtightly retained for purpose of decontamination in an atomic power plant, comprising a seal rubber plate, a band and a bolt and a nut for securing said plate, the seal rubber plate being worked into the desired shape so that it may be placed in intimate contact with the concrete floor surface by utilization of elasticity of rubber, thereby providing airtightness at a corner portion of the square tube. (Kamimura, M.)

  13. Evaluation of onset of nucleate boiling models

    Energy Technology Data Exchange (ETDEWEB)

    Huang, LiDong [Heat Transfer Research, Inc., College Station, TX (United States)], e-mail: lh@htri.net

    2009-07-01

    This article discusses available models and correlations for predicting the required heat flux or wall superheat for the Onset of Nucleate Boiling (ONB) on plain surfaces. It reviews ONB data in the open literature and discusses the continuing efforts of Heat Transfer Research, Inc. in this area. Our ONB database contains ten individual sources for ten test fluids and a wide range of operating conditions for different geometries, e.g., tube side and shell side flow boiling and falling film evaporation. The article also evaluates literature models and correlations based on the data: no single model in the open literature predicts all data well. The prediction uncertainty is especially higher in vacuum conditions. Surface roughness is another critical criterion in determining which model should be used. However, most models do not directly account for surface roughness, and most investigators do not provide surface roughness information in their published findings. Additional experimental research is needed to improve confidence in predicting the required wall superheats for nucleation boiling for engineering design purposes. (author)

  14. Evaluation of onset of nucleate boiling models

    International Nuclear Information System (INIS)

    Huang, LiDong

    2009-01-01

    This article discusses available models and correlations for predicting the required heat flux or wall superheat for the Onset of Nucleate Boiling (ONB) on plain surfaces. It reviews ONB data in the open literature and discusses the continuing efforts of Heat Transfer Research, Inc. in this area. Our ONB database contains ten individual sources for ten test fluids and a wide range of operating conditions for different geometries, e.g., tube side and shell side flow boiling and falling film evaporation. The article also evaluates literature models and correlations based on the data: no single model in the open literature predicts all data well. The prediction uncertainty is especially higher in vacuum conditions. Surface roughness is another critical criterion in determining which model should be used. However, most models do not directly account for surface roughness, and most investigators do not provide surface roughness information in their published findings. Additional experimental research is needed to improve confidence in predicting the required wall superheats for nucleation boiling for engineering design purposes. (author)

  15. Process and device for locating a defective tube, particularly in the tube bundle of a steam generator

    International Nuclear Information System (INIS)

    Denis, Jean.

    1977-01-01

    A process is described for locating a defective tube, particularly in the tube bundle of a steam generator of the reversed U tube kind with the ends connected to a tube plate, marking with the bottom of the generator casing a space separated into two adjacent collectors, respectively for the inlet and outlet of a primary fluid flowing inside the tubes of the bundle, these being externally washed by a secondary vaporizing fluid. In this process a television camera that can be inserted into the casing is used. This process consists in transmitting to a display system outside the generator an image of the tube plate in each collector by means of a directional television camera and then to place over this image a luminous marker to locate the end or the faulty tube [fr

  16. Laser interferometer system for the measurement of creep in pressurized tubes

    International Nuclear Information System (INIS)

    Kirchner, T.L.

    1976-07-01

    A laser interferometer measurement system was developed to measure the length, diameter, and radius of various pressurized tube specimens. The machine measures and records profilometric data of the pressurized tubes prior to insertion in the reactor and then again after a predetermined fluence has been reached to determine the amount of creep which has occurred. This data provides a statistical basis for the description of steady-state in-reactor creep and creep rupture behavior of the reference fuel cladding and structural materials for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR). In addition, this data will be used to determine the relative in-reactor creep and creep rupture behavior of candidate alloys for advanced cladding and structural materials. The laser interferometer system, referred to as the Biaxial Creep Measurement Machine (BCMM), was built to meet or exceed design criteria such as: automatic measurement of the five biaxial creep specimens varying in size; complete automation of the machine using a mini-computer; complete specimen loading, unloading, and data processing in less than five minutes; storage of data on magnetic cassette tapes; quick-look data readout and error checking during each run to determine proper machine operation; and remote operation in a radioactive environment

  17. Gastrostomy feeding tube - bolus

    Science.gov (United States)

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... KEY, 3 to 8 weeks after surgery. These feedings will help your child grow strong and healthy. ...

  18. Feedwater heater tube-to-tubesheet connections

    International Nuclear Information System (INIS)

    Yokell, S.

    1993-01-01

    This paper discusses some practical aspects of expanded, welded, and welded-and-expanded feedwater heater tube-to-tubesheet joints. It outlines elastic-plastic tube expanding theory. It examines uniform-pressure-expanded tube joint strength and correlating roller-expanded joint strength with wall reduction and rolling torque. For materials subject to stress-corrosion cracking (SCC), it recommends heat treating tube ends before expanding. For materials subject to fatigue and tube-end cracking, it advocates two-stage expanding: (1) expanding enough to create firm tube-hole contact over the full tubesheet thickness; and (2) re-expanding at full pressure or torque. The paper emphasizes the desirability of segregating heats of tubing, mapping the tube-heat locations and making the heat map a permanent part of the heater maintenance file. It recommends when to provide TEMA/HEI Power Plant Standard annular grooves for roller-expanding and provides an equation for determining optimum groove width for uniform-pressure expanding. The paper also reviews welding requirements for welds of tubes to tubesheets. The review covers front-face welding before and after expanding and the reasons for welding first. It outlines current thinking about definitions of strength- and seal-welds of front-face welded joint in terms of their functions and load-carrying abilities. It presents a proposal for determining the required size of strength welds for use in Section VIII of the ASME Boiler and Pressure Vessel Code (the Code). It shows why welded-and-expanded feedwater heater tube-to-tubesheet joints should be full-strength and full-depth expanded. It makes recommendations for pressure- and leak-testing. This work also proposes the industry consider butt welding the tubes to the steam-side face of the tubesheet as a regular method of tube joining. The results of a survey of manufacturers practices are appended. 30 refs., 14 figs

  19. Pressure loss characteristics of LSTF steam generator heat-transfer tubes. Pressure loss increase due to tube internal instruments

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro

    1994-11-01

    The steam generator of the Large-Scale Test Facility (LSTF) includes 141 heat-transfer U-tubes with different lengths. Six U-tubes among them are furnished with 15 or 17 probe-type instruments (conduction probe with a thermocouple; CPT) protuberant into the primary side of the U-tubes. Other 135 U-tubes are not instrumented. This results in different hydraulic conditions between the instrumented and non-instrumented U-tubes with the same length. A series of pressure loss characteristics tests was conducted at a test apparatus simulating both types of U-tube. The following pressure loss coefficient (K CPT ) was reduced as a function of Reynolds number (Re) from these tests under single-phase water flow conditions. K CPT =0.16 5600≤Re≤52820, K CPT =60.66xRe -0.688 2420≤Re≤5600, K CPT =2.664x10 6 Re -2.06 1371≤Re≤2420. The maximum uncertainty is 22%. By using these results, the total pressure loss coefficients of full length U-tubes were estimated. It is clarified that the total pressure loss of the shortest instrumented U-tube is equivalent to that of the middle-length non-instrumented U-tube and also that a middle-length instrumented U-tube is equivalent to the longest non-instrumented U-tube. Concludingly. it is important to take account of the CPT pressure loss mentioned above in estimation of fluid behavior at the non-instrumented U-tubes either by using the LSTF experiment data from the CPT-installed U-tubes or by using any analytical codes. (author)

  20. Isolated Fallopian Tube Torsion in Adolescents

    Directory of Open Access Journals (Sweden)

    S. Rajaram

    2013-01-01

    Full Text Available Background. Fallopian tube torsion is a rare cause of acute abdomen, occurring commonly in females of reproductive age. It lacks pathognomonic symptoms, signs, or imaging features, thus causing delay in surgical intervention. Case. We report two cases of isolated fallopian tube torsion in adolescent girls. In the first case a 19-year-old patient presented with acute pain in the left iliac region associated with episodes of vomiting for one day and mild tenderness on examination. Laparoscopy revealed left sided twisted fallopian tube associated with hemorrhagic cyst of ovary. The tube was untwisted and salvaged. In another case an 18-year-old virgin girl presented with similar complaints since one week, associated with mild tenderness in the lower abdomen and tender cystic mass on per rectal examination. On laparoscopy right twisted fallopian tube associated with a paratubal cyst was found. Salpingectomy was done as the tube was gangrenous. Conclusion. Fallopian tube torsion, though rare, should be considered in women of reproductive age with unilateral pelvic pain. Early diagnostic laparoscopy is important for an accurate diagnosis and could salvage the tube.

  1. Sleeving repair of heat exchanger tubes

    International Nuclear Information System (INIS)

    Street, Michael D.; Schafer, Bruce W.

    2000-01-01

    Defective heat exchanger tubes can be repaired using techniques that do not involve the cost and schedule penalties of component replacement. FTI's years of experience repairing steam generator tubes have been successfully applied to heat exchangers. Framatome Technologies heat exchanger sleeves can bridge defective areas of the heat exchanger tubes, sleeves have been designed to repair typical heat exchanger tube defects caused by excessive tube vibration, stress corrosion cracking, pitting or erosion. By installing a sleeve, the majority of the tube's heat transfer and flow capacity is maintained and the need to replace the heat exchanger can be delayed or eliminated. Both performance and reliability are improved. FTI typically installs heat exchanger tube sleeves using either a roll expansion or hydraulic expansion process. While roll expansion of a sleeve can be accomplished very quickly, hydraulic expansion allows sleeves to be installed deep within a tube where a roll expander cannot reach. Benefits of FTI's heat exchanger tube sleeving techniques include: - Sleeves can be positioned any where along the tube length, and for precise positioning of the sleeve eddy current techniques can be employed. - Varying sleeve lengths can be used. - Both the roll and hydraulic expansion processes are rapid and both produce joints that do not require stress relief. - Because of low leak rates and speed of installations, sleeves can be used to preventatively repair likely-to-fail tubes. - Sleeves can be used for tube stiffening and to limit leakage through tube defects. - Because of installation speed, there is minimal impact on outage schedules and budgets. FTI's recently installed heat exchanger sleeving at the Kori-3 Nuclear Power Station in conjunction with Korea Plant Service and Engineering Co., Ltd. The sleeves were installed in the 3A and 3B component cooling water heat exchangers. A total of 859 tubesheet and 68 freespan sleeves were installed in the 3A heat

  2. Small size neutron tube UNG-1

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Mints, A.Z.; Shkol'nikov, A.S.

    A tube UNG-1 (universal neutron gas-filled) is designed for the use in the well neutron generators IGN-1 and IGN-1-M (a pulse neutron generator). Their serial production in the USSR has been started in 1963. At the same year, the serial production of the tubes UNG-1 has been started. Thus, this tube is the first serial logging accelerating tube in the USSR. A Penning source, equipped with a hot cathode, was selected as an ion source of the tube

  3. Thru-tubing inflatable workover systems

    International Nuclear Information System (INIS)

    Coronado, M.P.; Mody, R.K.; Craig, G.C.

    1991-01-01

    Recent technological advances in inflatable packing element design has allowed non-conventional workover techniques to be accomplished through the production tubing. The improved capabilities of these elements, coupled with new tool designs allowing workovers to be completed with coiled tubing or electric wireline, has seen growing applications. These workovers include, selective and zonal chemical treatments, temporary and permanent plugback operations, intermediate zone blankoff, production and injection flow profile modifications and formation fracturing. They are completed without pulling the production tubing from the well, and thus do not require a rig on the well. Since these tools are snubbed in the well with coiled tubing or electric wireline, thus eliminating the need to kill the well, heavy weight kill fluids, which may cause formation damage, are not required. These tools have been designed to operate with hydraulic pressure and workstring tension within the coiled tubing limitations. This paper outlines the development of these Thru-tubing systems and application techniques that have been developed as a result of their field use. It discusses case histories of applications using this technology and the resulting increase in well performance. This paper also describes auxiliary equipment that has been developed to allow these tool systems to be used safely on coiled tubing and electric wireline

  4. Tubing vs. buckets: a cost comparison

    Science.gov (United States)

    Neil K. Huyler

    1975-01-01

    Equipment investment for tubing-vacuum systems was significantly less than that for bucket systems. Tubing-vacuum systems required about 22 percent less labor input, the major labor input being completed before sap-flow periods. Annual cost of operation was less for tubing-vacuum than the bucket system. Small tubing-vacuum operations showed more profit potential than...

  5. Small-bore chest tubes seem to perform better than larger tubes in treatment of spontaneous pneumothorax

    DEFF Research Database (Denmark)

    Iepsen, Ulrik Winning; Ringbæk, Thomas

    2013-01-01

    The aim of this study was to compare the efficacy and complications of surgical (large-bore) chest tube drainage with smaller and less invasive chest tubes in the treatment of non-traumatic pneumothorax (PT). ......The aim of this study was to compare the efficacy and complications of surgical (large-bore) chest tube drainage with smaller and less invasive chest tubes in the treatment of non-traumatic pneumothorax (PT). ...

  6. Feeding tube insertion - gastrostomy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002937.htm Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...

  7. Precision heat forming of tetrafluoroethylene tubing

    Science.gov (United States)

    Ruiz, W. V.; Thatcher, C. S. (Inventor)

    1981-01-01

    An invention that provides a method of altering the size of tetrafluoroethylene tubing which is only available in limited combination of wall thicknesses and diameter are discussed. The method includes the steps of sliding the tetrafluoroethylene tubing onto an aluminum mandrel and clamping the ends of the tubing to the mandrel by means of clamps. The tetrafluorethylene tubing and mandrel are then placed in a supporting coil which with the mandrel and tetrafluorethylene tubing are then positioned in a insulated steel pipe which is normally covered with a fiber glass insulator to smooth out temperature distribution therein. The entire structure is then placed in an event which heats the tetrafluorethylene tubing which is then shrunk by the heat to the outer dimension of the aluminum mandrel. After cooling the aluminum mandrel is removed from the newly sized tetrafluorethylene tubing by a conventional chemical milling process.

  8. Improving the calandria tubes for CANDU reactors

    International Nuclear Information System (INIS)

    Coleman, C.E.; Fong, R.W.L.; Doubt, G.L.

    1997-01-01

    CANDU calandria tubes are made from annealed Zircaloy-2 sheet formed into a cylinder and welded along its length to make the tube. The current calandria tubes have given exemplary service for many years. With more stringent regulations and the need to accommodate warm cooling water in tropical countries, we started a development program to increase the margins for failure during postulated accidents. These improvements involve increasing the tube strength and optimising the heat-transfer from an excessively hot fuel channel to the cool moderator. If the postulated accident involves a pressure tube break, it would be desirable if the calandria tube withstood the full pressure of the heat-transport system. The weakest link in current calandria tubes is the weld. Thickening the weld can increase the strength by 20% while seamless tubes can be 45% stronger than current tubes. The latter tubes can hold full system pressure for many hours without failure. If during the postulated accident the fuel and pressure tube become excessively hot but do not touch the calandria tube, the radiant heat loss must be maximised. Current calandria tubes have an absorptivity (emissivity) of about 0.2. To protect the fuel and the fuel channel we have devised a finish to the inside surface of the calandria tube that increases the emissivity to 0.7. If during the postulated accident the hot pressure tube touches the cool calandria tube, the contact conductance and the critical heat flux must be optimised to ensure nucleate boiling of the moderator at the outside surface of the calandria tube and therefore efficient exploitation of the moderator as a heat sink. In laboratory tests small ridges on the inside surface and roughening of the outside surface have been shown to increase the margins against failure and increase the possible moderator temperatures thus providing the opportunity to decrease the cost of the moderator heat-exchange system and remove restrictions on reactor operation in

  9. Avoiding leakage flow-induced vibration by a tube-in-tube slip joint

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1985-01-01

    Parameters and operating conditions (a stability map) were determined for which a specific slip-joint design did not cause self-excited lateral vibration of the two cantilevered, telescoping tubes forming the joint. The joint design featured a localized annular constriction. Flowrate, modal damping, tube engagement length, and eccentric positioning were among the parameters tested. Interestingly, all self-excited vibrations could be avoided by following a simple design rule: place constrictions only at the downstream end of the annular region between the tubes. Also, overall modal damping decreased with increased flowrate, at least initially, for upstream constrictions while the damping increased for downstream constrictions

  10. Pyrotechnic Tubing Connector

    Science.gov (United States)

    Graves, Thomas J.; Yang, Robert A.

    1988-01-01

    Tool forms mechanical seal at joint without levers or hydraulic apparatus. Proposed tool intended for use in outer space used on Earth by heavily garbed workers to join tubing in difficult environments. Called Pyrotool, used with Lokring (or equivalent) fittings. Piston slides in cylinder when pushed by gas from detonating pyrotechnic charge. Impulse of piston compresses fittings, sealing around butting ends of tubes.

  11. Advanced steam cycles for light water reactors. Final report

    International Nuclear Information System (INIS)

    Mitchell, R.C.

    1975-07-01

    An appraisal of the potential of adding superheat to improve the overall LWR plant cycle performance is presented. The study assesses the economic and technical problems associated with the addition of approximately 500 0 F of superheat to raise the steam temperature to 1000 0 F. The practicality of adding either nuclear or fossil superheat to LWR's is reviewed. The General Electric Company Boiling Water Reactor (BWR) model 238-732 (BWR/6) is chosen as the LWR starting point for this evaluation. The steam conditions of BWR/6 are representative of LWR's. The results of the fossil superheat portion of the evaluation are considered directly applicable to all LWR's. In spite of the potential of a nuclear superheater to provide a substantial boost to the LWR cycle efficiency, nuclear superheat offers little promise of development at this time. There are difficult technical problems to resolve in the areas of superheat fuel design and emergency core cooling. The absence of a developed high integrity, high temperature fuel for operation in the steam/water environment is fundamental to this conclusion. Fossil superheat offers the potential opportunity to utilize fossil fuel supplies more efficiently than in any other mode of central station power generation presently available. Fossil superheat topping cycles evaluated included atmospheric fluidized beds (AFB), pressurized fluidized beds, pressurized furnaces, conventional furnaces, and combined gas/steam turbine cycles. The use of an AFB is proposed as the preferred superheat furnace. Fossil superheat provides a cycle efficiency improvement for the LWR of two percentage points, reduces heat rejection by 15 percent per kWe generated, increases plant electrical output by 54 percent, and burns coal with an incremental net efficiency of approximately 40 percent. This compares with a net efficiency of 36--37 percent which might be achieved with an all-fluidized bed fossil superheat plant design

  12. Preliminary thermal/hydraulic sizing calculations for duplex tube evaporator/superheater (interchangeable units). Revision 1

    International Nuclear Information System (INIS)

    Waszink, R.P.; Hwang, J.Y.; Efferding, L.E.

    1974-06-01

    This is a preliminry thermal/hydraulic report reflecting work under Subtask 6.2 of Ref. 1.1. This report is an extension of the previous thermal/hydraulic design report. Parts of this report have been transmitted to GE. The detailed design basis, listed by source, is given. Additional details are discussed

  13. SG tube identification

    International Nuclear Information System (INIS)

    Hoogstraten, P. van

    1994-01-01

    A ''Tracker'' system is described which is designed to identify any tube in a reactor steam generator quickly and safely. Occupational radiation doses to maintenance workers are reduced by using a Tracker and emergency down times are shortened. The system employs a television camera and light source in a stainless steel box with a large window. Both the camera and spotlight can be panned and tilted to reach any point on the tubesheet and are remotely controlled. An operator at a safe working distance can identify any tube visible on a real time video by comparison with the tubesheet pattern stored earlier in the computer memory. The identified tube can then be spotlighted and dealt with quickly by a maintenance worker inside the channel head. (UK)

  14. Numerical simulation of tubes-in-tube heat exchanger in a mixed refrigerant Joule-Thomson cryocooler

    Science.gov (United States)

    Damle, R. M.; Ardhapurkar, P. M.; Atrey, M. D.

    2017-02-01

    Mixed refrigerant Joule-Thomson (MRJT) cryocoolers can produce cryogenic temperatures with high efficiency and low operating pressures. As compared to the high system pressures of around 150-200 bar with nitrogen, the operational pressures with non-azeotropic mixtures (e.g., nitrogen-hydrocarbons) come down to 10-25 bar. With mixtures, the heat transfer in the recuperative heat exchanger takes place in the two-phase region. The simultaneous boiling and condensation of the cold and hot gas streams lead to higher heat transfer coefficients as compared to single phase heat exchange. The two-phase heat transfer in the recuperative heat exchanger drastically affects the performance of a MRJT cryocooler. In this work, a previously reported numerical model for a simple tube-in-tube heat exchanger is extended to a multi tubes-in-tube heat exchanger with a transient formulation. Additionally, the J-T expansion process is also considered to simulate the cooling process of the heat exchanger from ambient temperature conditions. A tubes-in-tube heat exchanger offers more heat transfer area per unit volume resulting in a compact design. Also, the division of flow in multiple tubes reduces the pressure drop in the heat exchanger. Simulations with different mixtures of nitrogen-hydrocarbons are carried out and the numerical results are compared with the experimental data.

  15. Optimized candidal biofilm microtiter assay

    NARCIS (Netherlands)

    Krom, Bastiaan P.; Cohen, Jesse B.; Feser, Gail E. McElhaney; Cihlar, Ronald L.

    Microtiter based candidal biofilm formation is commonly being used. Here we describe the analysis of factors influencing the development of candidal biofilms such as the coating with serum, growth medium and pH. The data reported here show that optimal candidal biofilm formation is obtained when

  16. Improper tube fixation causing a leaky cuff

    Directory of Open Access Journals (Sweden)

    Gupta Babita

    2010-01-01

    Full Text Available Leaking endotracheal tube cuffs are common problems in intensive care units. We report a case wherein the inflation tube was damaged by the adhesive plaster used for tube fixation and resulted in leaking endotracheal tube cuff. We also give some suggestions regarding the tube fixation and some remedial measures for damaged inflation system.

  17. The Mashups of YouTube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    2013-01-01

    This article focuses on YouTube mashups and how we can understand them as a specific subgenre on YouTube. The Mashups are analysed as audiovisual recontextualizations that are given new meaning, e.g., via collaborative social communities or for individual promotional purposes. This is elaborated......, but rather in its social and communicative abilities within the YouTube community. This leads to the article’s overall argument that the main characteristic of the YouTube Mashup can be explained in terms of connectivity. It is argued that Mashups reveal a double articulation of connectivity; one...... that involves the social mechanisms of the Mashups, and another mode, which concerns the explicit embedding of structural connectivity that accentuates the medium-specific infrastructure of YouTube. This double articulation of connectivity is furthermore elaborated on by including Grusin and Bolter’s concept...

  18. 100-ps framing-camera tube

    International Nuclear Information System (INIS)

    Kalibjian, R.

    1978-01-01

    The optoelectronic framing-camera tube described is capable of recording two-dimensional image frames with high spatial resolution in the <100-ps range. Framing is performed by streaking a two-dimensional electron image across narrow slits. The resulting dissected electron line images from the slits are restored into framed images by a restorer deflector operating synchronously with the dissector deflector. The number of framed images on the tube's viewing screen equals the number of dissecting slits in the tube. Performance has been demonstrated in a prototype tube by recording 135-ps-duration framed images of 2.5-mm patterns at the cathode. The limitation in the framing speed is in the external drivers for the deflectors and not in the tube design characteristics. Faster frame speeds in the <100-ps range can be obtained by use of faster deflection drivers

  19. Když se řekne YouTube

    OpenAIRE

    Voců, Ondřej

    2011-01-01

    This article describes basic characteristics of YouTube portal, explains its importance and provided services. The first part of this article is applied to basic characteristics of YouTube portal, the second part deals with processes related to videos on YouTube. YouTube users, YouTube partners and projects are mainspring of the third part of this article. Special subchapter outlines possibilites of YouTube in relation to information studies and librarianship. At the end of the fourth chapter...

  20. Water-storage-tube systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hemker, P.

    1981-12-24

    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  1. Preparation of metallic uranium tubes; Elaboration des tubes d'uranium metallique

    Energy Technology Data Exchange (ETDEWEB)

    Lerouge, G; Decours, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The production furnace is an induction heated vacuum furnace having a capacity at the moment of 250 kg. Previously the crucible was heated by the inductor, the mould being outside the inductor. The tubes thus produced contained cavities, the alloy structure was fine; this was cold-mould casting, At the moment the top of the moulds are pre-heated, this is the so called hot-mould casting. This method has the advantage of eliminating the cavities but leads to a less fine microstructure. The alloy used for the 18 x 40 mm and 23 x 43 mm tubes is U-Mo (1.1 per cent). Since the moulds are now heated at the top, the solidification of the metal is very slow in this zone leading to a pronounced {gamma} grain, whereas towards the base the faster cooling leads to a smaller {gamma} grain. The {gamma} structure depends essentially on the solidification rate and on the time spent in this zone. In order to obtain a fine and homogeneous grain along the whole length of the tube, a controlled cooling treatment is effected. It consists in heating the uranium tubes in the {gamma} place and then in cooling them at a rate of between 20 and 50 deg C/mm down to 400 deg C. The 77 x 95 mm and 54 x 70 mm annular elements are at the moment being produced for research purposes. Their preparation is similar to that of 18 x 40 mm and 23 x 43 mm elements. The 77 x 95 mm tubes are at the moment made from U-Cr alloy (0.1 per cent); because of their size, their preparation is carried out in 600 mm diameter furnaces. (authors) [French] Le four d'elaboration est un four sous vide chaufffe par induction, dont la capacite actuelle est de 250 kg. Anterieurement le creuset seul etait chauffe par l'inducteur, les moules etaient hors de l'inducteur. Les tubes obtenus presentaient des cavites, la structure de l'alliage etait fine, c'etait la coulee en moules froids. Actuellement on prechauffe le haut des moules, c'est la coulee dite en moules chauds. Cette facon de faire a l'avantage de supprimer les cavites

  2. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States); Siemon, John [Alcoa, Inc, Pittsburgh, PA (United States)

    2017-06-30

    The initial three atomization attempts resulted in “freeze-outs” within the pour tubes in the pilot-scale system and yielded no powder. Re-evaluation of the alloy liquidus temperatures and melting characteristics, in collaboration with Alcoa, showed further superheat to be necessary to allow the liquid metal to flow through the pour tube to the atomization nozzle. A subsequent smaller run on the experimental atomization system verified these parameters and was successful, as were all successive runs on the larger pilot scale system. One alloy composition froze-out part way through the atomization on both pilot scale runs. SEM images showed needle formation and phase segregations within the microstructure. Analysis of the pour tube freeze-out microstructures showed that large needles formed within the pour tube during the atomization experiment, which eventually blocked the melt stream. Alcoa verified the needle formation in this alloy using theoretical modeling of phase solidification. Sufficient powder of this composition was still generated to allow powder characterization and additive manufacturing trials at Alcoa.

  3. Destructive distillation; retorts

    Energy Technology Data Exchange (ETDEWEB)

    Beilby, G T

    1881-10-03

    For distilling shale and other oil-yielding minerals. Relates to apparatus described in Specification No. 2169 (1881) in which retorts arranged in sets, and mounted loosely in brickwork to allow expansion, are formed preferably of upper iron tubes, fixed by socket rings, to lower fireclay tubes formed with belts which, together with ledges in the sides of the oven, support fireclay slabs. In some cases the lower parts of the retorts may be formed of iron tubes. Each set of four upper tubes is supplied with a four-way hopper, suspended by means of a pair of counter-weighted levers, centered on bearing plates and connected with the hopper by links. A single pipe connected to the hopper serves for leading off the vapors from the four retorts. The retorts are heated by a furnace, the hot gases from which after acting on the retorts are led to ovens in which are placed steam generators and superheaters, from which steam is conveyed to the interior of the retorts to assist the decomposition.

  4. Gastroenteric tube feeding: Techniques, problems and solutions

    Science.gov (United States)

    Blumenstein, Irina; Shastri, Yogesh M; Stein, Jürgen

    2014-01-01

    Gastroenteric tube feeding plays a major role in the management of patients with poor voluntary intake, chronic neurological or mechanical dysphagia or gut dysfunction, and patients who are critically ill. However, despite the benefits and widespread use of enteral tube feeding, some patients experience complications. This review aims to discuss and compare current knowledge regarding the clinical application of enteral tube feeding, together with associated complications and special aspects. We conducted an extensive literature search on PubMed, Embase and Medline using index terms relating to enteral access, enteral feeding/nutrition, tube feeding, percutaneous endoscopic gastrostomy/jejunostomy, endoscopic nasoenteric tube, nasogastric tube, and refeeding syndrome. The literature showed common routes of enteral access to include nasoenteral tube, gastrostomy and jejunostomy, while complications fall into four major categories: mechanical, e.g., tube blockage or removal; gastrointestinal, e.g., diarrhea; infectious e.g., aspiration pneumonia, tube site infection; and metabolic, e.g., refeeding syndrome, hyperglycemia. Although the type and frequency of complications arising from tube feeding vary considerably according to the chosen access route, gastrointestinal complications are without doubt the most common. Complications associated with enteral tube feeding can be reduced by careful observance of guidelines, including those related to food composition, administration rate, portion size, food temperature and patient supervision. PMID:25024606

  5. An advanced tube wear and fatigue workstation to predict flow induced vibrations of steam generator tubes

    International Nuclear Information System (INIS)

    Gay, N.; Baratte, C.; Flesch, B.

    1997-01-01

    Flow induced tube vibration damage is a major concern for designers and operators of nuclear power plant steam generators (SG). The operating flow-induced vibrational behaviour has to be estimated accurately to allow a precise evaluation of the new safety margins in order to optimize the maintenance policy. For this purpose, an industrial 'Tube Wear and Fatigue Workstation', called 'GEVIBUS Workstation' and based on an advanced methodology for predictive analysis of flow-induced vibration of tube bundles subject to cross-flow has been developed at Electricite de France. The GEVIBUS Workstation is an interactive processor linking modules as: thermalhydraulic computation, parametric finite element builder, interface between finite element model, thermalhydraulic code and vibratory response computations, refining modelling of fluid-elastic and random forces, linear and non-linear dynamic response and the coupled fluid-structure system, evaluation of tube damage due to fatigue and wear, graphical outputs. Two practical applications are also presented in the paper; the first simulation refers to an experimental set-up consisting of a straight tube bundle subject to water cross-flow, while the second one deals with an industrial configuration which has been observed in some operating steam generators i.e., top tube support plate degradation. In the first case the GEVIBUS predictions in terms of tube displacement time histories and phase planes have been found in very good agreement with experiment. In the second application the GEVIBUS computation showed that a tube with localized degradation is much more stable than a tube located in an extended degradation zone. Important conclusions are also drawn concerning maintenance. (author)

  6. Tubing crimping pliers

    Science.gov (United States)

    Lindholm, G.T.

    1981-02-27

    The disclosure relates to pliers and more particularly to pliers for crimping two or more pieces of copper tubing together prior to their being permanently joined by brazing, soldering or the like. A die containing spring-loaded pins rotates within a cammed ring in the head of the pliers. As the die rotates, the pins force a crimp on tubing held within the pliers.

  7. Tube Length and Water Flow

    Directory of Open Access Journals (Sweden)

    Ben Ruktantichoke

    2011-06-01

    Full Text Available In this study water flowed through a straight horizontal plastic tube placed at the bottom of a large tank of water. The effect of changing the length of tubing on the velocity of flow was investigated. It was found that the Hagen-Poiseuille Equation is valid when the effect of water entering the tube is accounted for.

  8. Boiling heat transfer on horizontal tube bundles

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Nucleate boiling heat transfer characteristics for a tube in a bundle differ from that for a single tube in a pool and this difference is known as 'tube bundle effect.' There exist two bundle effects, positive and negative. The positive bundle effect enhances heat transfer due to convective flow induced by rising bubbles generated from the lower tubes, while the negative bundle effect deteriorates heat transfer due to vapor blanketing caused by accumulation of bubbles. Staggered tube bundles tested and found that the upper tubes in bundles have higher heat transfer coefficients than the lower tubes. The effects of various parameters such as pressure, tube geometry and oil contamination on heat transfer have been examined. Some workers attempted to clarify the mechanism of occurrence of 'bundle effect' by testing tube arrangements of small scale. All reported only enhancement in heat transfer but results showed the symptom of heat transfer deterioration at higher heat fluxes. As mentioned above, it has not been clarified so far even whether the 'tube bundle effect' should serve as enhancement or deterioration of heat transfer in nucleate boiling. In this study, experiments are performed in detail by using bundles of small scale, and effects of heat flux distribution, pressure and tube location are clarified. Furthermore, some consideration on the mechanisms of occurrence of 'tube bundle effect' is made and a method for prediction of heat transfer rate is proposed

  9. N Reactor pressure tube 1350 postirradiation examination

    International Nuclear Information System (INIS)

    Cook, D.J.

    1977-01-01

    The N Reactor pressure tubes were fabricated from Zircaloy-2 primarily due to the excellent corrosion resistance, low neutron absorption, and high strength properties of this alloy. Irradiation damage mechanisms increase the strength and decrease the ductility of the Zircaloy-2. Irradiation data available at the time the tubes were installed indicated that fast neutron irradiation damage mechanisms would not decrease the ductility to unacceptable levels over the estimated plant life of 25 to 30 years. However, because the tubes are a primary coolant system component and only limited data are available on irradiation effects at high fluences, a Postirradiation Examination (PIE) program was developed to assure that service factors do not compromise pressure tube integrity essential to reactor safety. The PIE program requires that a pressure tube be periodically removed from the reactor for destructive testing. The N Reactor Technical Specifications specify that the frequency of pressure tube removal and examination be based upon the previous PIE test results. Four pressure tubes were examined before tube 1350, and the test results were summarized in individual reports. PIE results on tube 1350 were summarized along with the test results on the previous four tubes in a previous report. The purpose of this report is to present in detail the results on PIE of pressure tube 1350, and, in particular, document the technique by which the fracture toughness of the pressure tube was determined

  10. Contrastive Analysis and Research on Negative Pressure Beam Tube System and Positive Pressure Beam Tube System for Mine Use

    Science.gov (United States)

    Wang, Xinyi; Shen, Jialong; Liu, Xinbo

    2018-01-01

    Against the technical defects of universally applicable beam tube monitoring system at present, such as air suction in the beam tube, line clogging, long sampling time, etc., the paper analyzes the current situation of the spontaneous combustion fire disaster forecast of mine in our country and these defects one by one. On this basis, the paper proposes a research thought that improving the positive pressure beam tube so as to substitute the negative pressure beam tube. Then, the paper introduces the beam tube monitoring system based on positive pressure technology through theoretical analysis and experiment. In the comparison with negative pressure beam tube, the paper concludes the advantage of the new system and draws the conclusion that the positive pressure beam tube is superior to the negative pressure beam tube system both in test result and test time. At last, the paper proposes prospect of the beam tube monitoring system based on positive pressure technology.

  11. Issue-Advocacy versus Candidate Advertising: Effects on Candidate Preferences and Democratic Process.

    Science.gov (United States)

    Pfau, Michael; Holbert, R. Lance; Szabo, Erin Alison; Kaminski, Kelly

    2002-01-01

    Examines the influence of soft-money-sponsored issue-advocacy advertising in U.S. House and Senate campaigns, comparing its effects against candidate-sponsored positive advertising and contrast advertising on viewers' candidate preferences and on their attitude that reflect democratic values. Reveals no main effects for advertising approach on…

  12. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, M. [National Radiation Protection Department - NRPD, Atomic Energy Organization of Iran - AEOI, Tehran (Iran, Islamic Republic of); End of North Kargar st, Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Kasesaz, Y.; Khalafi, H.; Shayesteh, M. [Radiation Application School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2015-07-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  13. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    International Nuclear Information System (INIS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Shayesteh, M.

    2015-01-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  14. Leakproof Swaged Joints in Thin-Wall Tubing

    Science.gov (United States)

    Stuckenberg, F. H.; Crockett, L. K.; Snyder, W. E.

    1986-01-01

    Tubular inserts reinforce joints, reducing incidence of leaks. In new swaging technique, tubular inserts placed inside ends of both tubes to be joined. Made from thicker-wall tubing with outside diameter that matches inside diameter of thin tubing swaged, inserts support tube ends at joint. They ensure more uniform contact between swage fitting and tubing. New swaging technique developed for Al/Ti/V-alloy hydraulic supply lines.

  15. Nasogastric tube versus gastrostomy tube for gastric decompression in abdominal surgery: a prospective, randomized trial comparing patients' tube-related inconvenience.

    Science.gov (United States)

    Hoffmann, S; Koller, M; Plaul, U; Stinner, B; Gerdes, B; Lorenz, W; Rothmund, M

    2001-11-01

    Perioperative decompression of the stomach is still a common procedure and can be achieved using either nasogastric tubes (NTs) or gastrostomy tubes (GTs). While both procedures appear to be equally effective, some authors believe that NTs are less convenient for patients than GTs. However, to date, no reliable prospective data are available on this issue. We conducted a prospective, randomized trial comparing NTs versus GTs with a total of 110 patients undergoing elective colon surgery. The primary outcome measure was the patient's tube-related inconvenience and pain, assessed in a standardized interview on day 2 after surgery and quantified by means of a visual-analog scale (VAS). A questionnaire including the EORTC QLQ-C30 and additional items regarding retrospective tube-related judgements was administered on the day of discharge and 4 weeks after discharge. Secondary endpoints were the therapy-related morbidity and general complications. When patients were asked which of their drainage tubes (all patients had three or four drainage tubes, such as decompression drains, urinary drains, central venous line) was most inconvenient, 43% (CI 33-53%) in the NT group reported that the NT was most inconvenient, while only 4% (CI 1-10%) of the GT patients judged the GT most inconvenient ( Ptube system (day 2 p.o.: 71%, CI 61-80%; 4 weeks p.o.: 66%, CI 56-75%) than did GT patients (day 2 p.o.: 94%, CI 88-98%; 4 weeks p.o.: 91% CI 84-96%); again, these differences were statistically significant ( Ptube system have to weigh up the possibilities of different averse clinical as well as subjective outcomes. It is then preferable to include patients' preferences in the individual decision making process (shared-decision making).

  16. Numerical investigation of heat transfer in annulus laminar flow of multi tubes-in-tube helical coil

    Science.gov (United States)

    Nada, S. A.; Elattar, H. F.; Fouda, A.; Refaey, H. A.

    2018-03-01

    In the present study, a CFD analysis using ANSYS-FLUENT 14.5 CFD package is used to investigate the characteristics of heat transfer of laminar flow in annulus formed by multi tubes in tube helically coiled heat exchanger. The numerical results are validated by comparison with previous experimental data and fair agreements were existed. The influences of the design and operation parameters such as heat flux, Reynolds numbers and annulus geometry on the heat transfer characteristics are investigated. Different annulus of different numbers of inner tubes, specifically 1, 2, 3, 4 and 5 tubes, are tested. The Results showed that for all the studied annulus, the heat flux has no effect on the Nusselt number and compactness parameter. The annulus formed by using five inner tubes showed the best heat transfer performance and compactness parameter. Correlation of predicting Nusselt number in terms of Reynolds number and number of inner tubes are presented.

  17. YouTube and ‘psychiatry’

    Science.gov (United States)

    Gordon, Robert; Miller, John; Collins, Noel

    2015-01-01

    YouTube is a video-sharing website that is increasingly used to share and disseminate health-related information, particularly among younger people. There are reports that social media sites, such as YouTube, are being used to communicate an anti-psychiatry message but this has never been confirmed in any published analysis of YouTube clip content. This descriptive study revealed that the representation of ‘psychiatry’ during summer 2012 was predominantly negative. A subsequent smaller re-analysis suggests that the negative portrayal of ‘psychiatry’ on YouTube is a stable phenomenon. The significance of this and how it could be addressed are discussed. PMID:26755987

  18. Grooved tube plug rolls in

    International Nuclear Information System (INIS)

    Krausser, P.

    1991-01-01

    The removable plugs used to date by the Power Generation Group (KWU) of Siemens to seal defective steam generator tubes have a good track record. Their sealing principle is based on the elastic tensioning of three seal disks against the inside wall of the tube. Now a further removable plug is available -a roll-in plug with a metal-coated surface. It is particularly suitable for use in the roller-expanded zone of the tubes at the tube sheet. The plugs can be used in both Siemens-KWU steam generators and in steam generators manufactured in compliance with the guidelines of the ASME Code. (author)

  19. Vibration characteristics of tubes in a heat exchanger

    International Nuclear Information System (INIS)

    Simonis; Steininger, D.

    1985-01-01

    Circumferential tube cracking has occurred in the once-through steam generators used in nuclear power plants. Analyses of failed tubes indicate that a fatigue process induced by tube vibration could cause the leaks. To investigate the vibration amplitude of tube spans during reactor operation, twenty-three tube spans were instrumented with accelerometers and strain gages at Three Mile Island Unit 2. To aid in the interpretation of the operational vibration measurements, tests were performed, in air, to determine the predominant resonant frequencies and mode shapes of selected tubes. By adapting modal analysis techniques, the two predominant response frequencies were determined for 100 randomly selected tube spans and the 23 instrumented tube spans; plus, the predominant mode shape was determined for five tube spans bounded by the tube sheet and the fifteenth support plate and one tube span bounded by the ninth and tenth support plate. The average value for the first and second predominant response frequency was 65 Hz and 170 Hz, respectively. The predominant frequencies for the individual tube spans are distributed randomly with no spatial orientation. The first predominant mode shape for the six tube spans tested corresponded to a classical beam with elastic supports. The equivalent stiffness of the elastic supports depend upon the tube span tested

  20. Method of repairing pressure tube type reactors

    International Nuclear Information System (INIS)

    Asada, Takashi.

    1983-01-01

    Purpose: To enable to re-start the reactor operation in a short time, upon occurrence of failures in a pressure tube, as well as directly examine the cause for the failures in the pressure tube. Method: The pressure tube reactor main body comprises a calandria tank of a briquette form, pressure tubes, fuel assemblies and an iron-water shielding body. If failure is resulted to a pressure tube, the reactor operation is at first shutdown and nuclear fuel assemblies are extracted to withdraw from the pressure tube. Then, to an inlet pipe way and an outlet pipeway connected to the failed pressure tube, are attached plugs by means of welding or the like at the appropriate position where the radiation exposure dose is lower and the repairing work can be performed with ease. The pressure tube is disconnected to withdraw from the inlet pipeway and the outlet pipeway and, instead, radiation shielding plug tube is inserted and shield cooling device is actuated if required, wherein the reactor is actuated to re-start the operation. (Yoshino, Y.)

  1. Practical acoustic thermometry with twin-tube and single-tube sensors

    Energy Technology Data Exchange (ETDEWEB)

    De Podesta, M.; Sutton, G.; Edwards, G.; Stanger, L.; Preece, H. [National Physical Laboratory, Teddington, (United Kingdom)

    2015-07-01

    Accurate measurement of high temperatures in a nuclear environment presents unique challenges. All secondary techniques inevitably drift because the thermometric materials in thermocouples and resistance sensors are sensitive not just to temperature, but also their own chemical and physical composition. The solution is to use primary methods that rely on fundamental links between measurable physical properties and temperature. In the nuclear field the best known technique is the measurement of Johnson Noise in a resistor (See Paper 80 at this conference). In this paper we describe the measurement of temperature in terms of the speed of sound in a gas confined in a tube - an acoustic waveguide. Acoustic thermometry is the most accurate technique of primary thermometry ever devised with the best uncertainty of measurement below 0.001 C. In contrast, the acoustic technique described in this work has a much larger uncertainty, approximately 1 deg. C. But the cost and ease of use are improved by several orders of magnitude, making implementation eminently practical. We first describe the basic construction and method of operation of thermometers using twin-tubes and single tubes. We then present results using a twin-tube design showing that showing long term stability (i.e. no detectable drift) at 700 deg. C over periods of several weeks. We then outline how the technique may be developed for different nuclear applications. (authors)

  2. Oral candidal species among smokers and non-smokers.

    Science.gov (United States)

    Rasool, S; Siar, C H; Ng, K P

    2005-11-01

    To determine the various oral Candidal species among healthy Malaysian adults. Case-control study. This study was collaborated between the Department of Medical Microbiology, Faculty of Medicine and Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia, between September 2002 till January 2004. One hundred adults (50 smokers and 50 non-smokers), aged between 40 and 70 years were studied. Swabs and carbohydrate assimilation (Saboraud Dextrose Agar, Corn Meal Agar, API 20C AUX System) were performed. Specimens were collected from dorsum of the tongue, buccal mucosa and commissures (right and left each). Colony forms were established by positive colony forming units, on SDA medium (24-48 hours). Germ tube test for (true/pseudohyphae) growth was done on Corn Meal Agar Medium. Candida biotypes were evaluated by API 20C AUX system, which had a numerical 7 digit profile, added to evaluate a definite Candida species. Thirty-five percent of Malaysian adults harbored Candida intraorally. Candidal species identified among 100 subjects had C. albicans (27) 77%, C. glabrata (3) 8%, C. famata, C. tropicalis, C. krusei, C. lusitaniae and C. guilliermondii (1) 3% each. Thirty-three positive cases comprised of 35 species i.e. two cases had two species each. Fifty seven percent of these were smokers and 43% non-smokers. These included 40% Chinese, 36% Malays and 24% Indians. Species were, however, not specified according to intra-oral sites i.e. buccal, commissural mucosa and dorsum of tongue. On this series C. albicans is the most common species found in the oral cavity of Malaysian adults. It is equally frequent in smokers and non-smokers, but showed a predilection for the ethnic Chinese group.

  3. Ultra-fast framing camera tube

    Science.gov (United States)

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  4. High temperature ceramic-tubed reformer

    Science.gov (United States)

    Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.

    1990-03-01

    The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.

  5. Physics of magnetic flux tubes

    CERN Document Server

    Ryutova, Margarita

    2015-01-01

    This book is the first account of the physics of magnetic flux tubes from their fundamental properties to collective phenomena in an ensembles of flux tubes. The physics of magnetic flux tubes is absolutely vital for understanding fundamental physical processes in the solar atmosphere shaped and governed by magnetic fields. High-resolution and high cadence observations from recent space and  ground-based instruments taken simultaneously at different heights and temperatures not only show the ubiquity of filamentary structure formation but also allow to study how various events are interconnected by system of magnetic flux tubes. The book covers both theory and observations. Theoretical models presented in analytical and phenomenological forms are tailored for practical applications. These are welded with state-of-the-art observations from early decisive ones to the most recent data that open a new phase-space for exploring the Sun and sun-like stars. Concept of magnetic flux tubes is central to various magn...

  6. Demonstration for the Applicability of the EPRI ETSS on the SG Tube Wear Defects Formed at the Tube Support Structure

    International Nuclear Information System (INIS)

    Shin, Ki Seok; Cheon, Keun Young; Nam, Min Woo; Min, Kyong Mahn

    2013-01-01

    In this paper, the authorized EPRI ETSS 27906.2 applied to the detection of tapered wear volumetric indications and depth sizing within the free span area, loose part not present was reviewed and applied to the site SG tubes for getting the actual value of the wear depth and providing structural integrity interpretation based on engineering evaluation. The experiment to demonstrate the applicability of EPRI ETSS was performed by the employment of the newly prepared STD tube and resulted in ensuring the effectiveness and equivalency of the EPRI ETSS as well. The authorized EPRI ETSS 27906.2 for getting the actual value of the wear depth and providing structural integrity interpretation based on engineering evaluation was reviewed and applied to the site SG tubes. The testing results were reviewed with the influences of SG tube material and the support structure. The impact of the tube materials was insignificant and that of the tube support structure showed somewhat conservative results. The testing resulted in successful demonstration of applicability of the EPRI ETSS on the SG tube wear defects at the tube support. One of the major flaw mechanisms detected in the currently operating domestic OPR-1000 pressurized water reactors(PWR's) steam generator(SG) tubes is wear defect. In general, wear defect has been constantly detected in the upper tube bundle imposed to the flow induced vibration interaction between tube and its support structure, and the quantity of the affected tubes has also shown the tendency to increase as plant operation life is added. In order to take appropriate measures and maintain the structural integrity for the SG tubes, wear defect is currently categorized as active damage mechanism and the tubes containing 40% or greater wear depth of the nominal tube wall thickness shall be plugged per SGMP(SG Management Program) Recently, a fairly large amplitude of wear defects on the Batwing(BW), one of the upper tube support structures in the SG tubes

  7. Demonstration for the Applicability of the EPRI ETSS on the SG Tube Wear Defects Formed at the Tube Support Structure

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Seok; Cheon, Keun Young; Nam, Min Woo [Korea Hydro and Nuclear Power Co. Ltd, Daejeon (Korea, Republic of); Min, Kyong Mahn [Universal Monitoring and Inspection Inc., Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, the authorized EPRI ETSS 27906.2 applied to the detection of tapered wear volumetric indications and depth sizing within the free span area, loose part not present was reviewed and applied to the site SG tubes for getting the actual value of the wear depth and providing structural integrity interpretation based on engineering evaluation. The experiment to demonstrate the applicability of EPRI ETSS was performed by the employment of the newly prepared STD tube and resulted in ensuring the effectiveness and equivalency of the EPRI ETSS as well. The authorized EPRI ETSS 27906.2 for getting the actual value of the wear depth and providing structural integrity interpretation based on engineering evaluation was reviewed and applied to the site SG tubes. The testing results were reviewed with the influences of SG tube material and the support structure. The impact of the tube materials was insignificant and that of the tube support structure showed somewhat conservative results. The testing resulted in successful demonstration of applicability of the EPRI ETSS on the SG tube wear defects at the tube support. One of the major flaw mechanisms detected in the currently operating domestic OPR-1000 pressurized water reactors(PWR's) steam generator(SG) tubes is wear defect. In general, wear defect has been constantly detected in the upper tube bundle imposed to the flow induced vibration interaction between tube and its support structure, and the quantity of the affected tubes has also shown the tendency to increase as plant operation life is added. In order to take appropriate measures and maintain the structural integrity for the SG tubes, wear defect is currently categorized as active damage mechanism and the tubes containing 40% or greater wear depth of the nominal tube wall thickness shall be plugged per SGMP(SG Management Program) Recently, a fairly large amplitude of wear defects on the Batwing(BW), one of the upper tube support structures in the SG

  8. Development, prevention, and treatment of feeding tube dependency.

    Science.gov (United States)

    Krom, Hilde; de Winter, J Peter; Kindermann, Angelika

    2017-06-01

    Enteral nutrition is effective in ensuring nutritional requirements and growth. However, when tube feeding lasts for a longer period, it can lead to tube dependency in the absence of medical reasons for continuation of tube feeding. Tube-dependent children are unable or refuse to start oral activities and they lack oral skills. Tube dependency has health-, psychosocial-, and economy-related consequences. Therefore, the transition to oral feeding is of great importance. However, this transition can be very difficult and needs a multidisciplinary approach. Most studies for treatment of tube dependency are based on behavioral interventions, such as family therapy, individual behavior therapy, neuro-linguistic programming, and parental anxiety reduction. Furthermore, oral motor therapy and nutritional adjustments can be helpful in tube weaning. The use of medication has been described in the literature. Although mostly chosen as the last resort, hunger-inducing methods, such as the Graz-model and the Dutch clinical hunger provocation program, are also successful in weaning children off tube feeding. The transition from tube to oral feeding is important in tube-dependent children but can be difficult. We present an overview for the prevention and treatment of tube dependency. What is known: • Longer periods of tube feeding can lead to tube dependency. • Tube weaning can be very difficult. What is new: • Weaning as soon as possible and therefore referral to a multidisciplinary team are recommended. • An overview of treatment options for tube dependency is presented in this article.

  9. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, A.; Verleur, R.

    2010-01-01

    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  10. Flow-induced decentering and tube support interaction for steam generator tubes: experiment and physical interpretation

    International Nuclear Information System (INIS)

    Gay, N.; Granger, S.

    1992-11-01

    Maintaining PWR components under reliable operating conditions requires a complex design to prevent various damaging processes including flow-induced vibration and wear mechanisms. To improve the prediction of tube/support interaction and wear in PWR components, EDF has undertaken a comprehensive program oriented to both experimental and computational studies. The present paper illustrates one aspect of this program, related to the determination of contact forces between steam generator tubes and anti-vibration bars (AVBs). The dynamic, nonlinear behavior of a U-tube excited by an air cross-flow is investigated on the CLAVECIN experiment. Interesting and rather unexpected results have been obtained, by varying clearances and flow velocities. The paper is focused on four main points: (i) the originality of the experiment with a force measurement device located in flow; (ii) the importance of a refined data processing for accurately measuring contact forces; (iii) the presentation of the unexpected phenomena revealed in the CLAVECIN experiment, i.e. a flow-induced decentering of the tube which changed the initial tube/AVB clearance, and the consequences on tube/support interaction; (iv) the influence of the actual tube/support clearance in flow on wear mechanisms. The work, presented in the second part of this paper, concentrates exclusively on the physical interpretation of the flow-induced decentering phenomenon and on the theoretical analysis of its consequences on dynamic tube/support interaction. We show that the flow-induced decentering phenomenon can be generated by an unstable quasi-static coupling between the flexible tube and the confined flow, in the vicinity of the support system. This phenomenon is not specific to the CLAVECIN tests and it can be expected every time that a movable obstacle is subjected to confined flow. Moreover, in single-sided impacting conditions, the theoretical analysis confirms the linear relation, found in the CLAVECIN tests

  11. Models for Automated Tube Performance Calculations

    International Nuclear Information System (INIS)

    Brunkhorst, C.

    2002-01-01

    High power radio-frequency systems, as typically used in fusion research devices, utilize vacuum tubes. Evaluation of vacuum tube performance involves data taken from tube operating curves. The acquisition of data from such graphical sources is a tedious process. A simple modeling method is presented that will provide values of tube currents for a given set of element voltages. These models may be used as subroutines in iterative solutions of amplifier operating conditions for a specific loading impedance

  12. PROBLEMS IN THE TUBING/PACKER SYSTEM

    OpenAIRE

    Davorin Matanović; Mario Livaja

    1993-01-01

    When gas and oil wells are completed and produced or treated through the tubing connected to packer, there is a great number of problems to be solved. Changes in temperatures and pressures that occure during various operations ussually result in changes in tubing lengths or tubing to packer forces, depending on tubing to packer connections. This paper summarises some earlier papers and explains partly elaborated details. It also gives a complete approach to solve problems in uniform strings r...

  13. Operating performance of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Price, E.G.

    1989-04-01

    The performance of Zircaloy-2 and Zr-2.5 Nb pressure tubes in CANDU reactors is reviewed. The accelerated hydriding of Zircaloy-2 in reducing water chemistries can lower the toughness of this material and it is essential that defect-initiating phenomena, such as hydride blister formation from pressure tube to calandria tube contact, be prevented. Zr-2.5 Nb pressure tubes are performing well with low rates of hydrogen pick-up and good retention of material properties

  14. Dynamics of explosively imploded pressurized tubes

    Science.gov (United States)

    Szirti, Daniel; Loiseau, Jason; Higgins, Andrew; Tanguay, Vincent

    2011-04-01

    The detonation of an explosive layer surrounding a pressurized thin-walled tube causes the formation of a virtual piston that drives a precursor shock wave ahead of the detonation, generating very high temperatures and pressures in the gas contained within the tube. Such a device can be used as the driver for a high energy density shock tube or hypervelocity gas gun. The dynamics of the precursor shock wave were investigated for different tube sizes and initial fill pressures. Shock velocity and standoff distance were found to decrease with increasing fill pressure, mainly due to radial expansion of the tube. Adding a tamper can reduce this effect, but may increase jetting. A simple analytical model based on acoustic wave interactions was developed to calculate pump tube expansion and the resulting effect on the shock velocity and standoff distance. Results from this model agree quite well with experimental data.

  15. Influence of tube spinning on formability of friction stir welded aluminum alloy tubes for hydroforming application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.S. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hu, Z.L., E-mail: zhilihuhit@163.com [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China); State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology (China); Yuan, S.J. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hua, L. [Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China)

    2014-06-01

    Due to economic and ecological reasons, the application of tailor-welded blanks of aluminum alloy has gained more and more attention in manufacturing lightweight structures for automotives and aircrafts. In the study, the research was aimed to highlight the influence of spinning on the formability of FSW tubes. The microstructural characteristics of the FSW tubes during spinning were studied by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The formability of the FSW tubes with different spinning reduction was assessed by hydraulic bulge test. It is found that the spinning process shows a grain refinement of the tube. The grains of the FSW tube decrease with increasing thickness reduction, and the effect of grain refinement is more obvious for the BM compared to that of the weld. The difference of grain size and precipitates between the weld and BM leads to an asymmetric W-type microhardness distribution after spinning. The higher thickness reduction of the tube, the more uniform distribution of grains and precipitates it shows, and consequently results in more significant increase of strength. As compared with the result of tensile test, the tube after spinning shows better formability when the stress state changes from uniaxial to biaxial stress state.

  16. Tube vibration in industrial size test heat exchanger

    International Nuclear Information System (INIS)

    Halle, H.; Wambsganss, M.W.

    1980-03-01

    Tube vibration data from tests of a specially built and instrumented, industrial-type, shell-and-tube heat exchanger are reported. The heat exchanger is nominally 0.6 m (2 ft) in dia and 3.7 m (12 ft) long. Both full tube and no-tubes-in-window bundles were tested for inlet/outlet nozzles of different sizes and with the tubes supported by seven, equally-spaced, single-segmental baffles. Prior to water flow testing, natural frequencies and damping of representative tubes were measured in air and water. Flow testing was accomplished by increasing the flow rates in stepwise fashion and also by sweeping through a selected range of flow rates. The primary variables measured and reported are tube accelerations and/or displacements and pressure drop through the bundle. Tests of the full tube bundle configuration revealed tube rattling to occur at intermediate flow rates, and fluidelastic instability, with resultant tube impacting, to occur when the flow rate exceeded a threshold level; principally, the four-span tubes were involved in the regions immediately adjacent to the baffle cut. For the range of flow rates tested, fluidelastic instability was not achieved in the no-tubes-in-window bundle; in this configuration the tubes are supported by all seven baffles and are, therefore, stiffer

  17. Numerical simulation of pulse-tube refrigerators

    NARCIS (Netherlands)

    Lyulina, I.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2004-01-01

    A new numerical model has been introduced to study steady oscillatory heat and mass transfer in the tube section of a pulse-tube refrigerator. Conservation equations describing compressible gas flow in the tube are solved numerically, using high resolution schemes. The equation of conservation of

  18. Stop Smoking—Tube-In-Tube Helical System for Flameless Calcination of Minerals

    Directory of Open Access Journals (Sweden)

    Nils Haneklaus

    2017-11-01

    Full Text Available Mineral calcination worldwide accounts for some 5–10% of all anthropogenic carbon dioxide (CO2 emissions per year. Roughly half of the CO2 released results from burning fossil fuels for heat generation, while the other half is a product of the calcination reaction itself. Traditionally, the fuel combustion process and the calcination reaction take place together to enhance heat transfer. Systems have been proposed that separate fuel combustion and calcination to allow for the sequestration of pure CO2 from the calcination reaction for later storage/use and capture of the combustion gases. This work presents a new tube-in-tube helical system for the calcination of minerals that can use different heat transfer fluids (HTFs, employed or foreseen in concentrated solar power (CSP plants. The system is labeled ‘flameless’ since the HTF can be heated by other means than burning fossil fuels. If CSP or high-temperature nuclear reactors are used, direct CO2 emissions can be divided in half. The technical feasibility of the system has been accessed with a brief parametric study here. The results suggest that the introduced system is technically feasible given the parameters (total heat transfer coefficients, mass- and volume flows, outer tube friction factors, and –Nusselt numbers that are examined. Further experimental work will be required to better understand the performance of the tube-in-tube helical system for the flameless calcination of minerals.

  19. Tube Thoracostomy: Complications and Its Management

    Directory of Open Access Journals (Sweden)

    Emeka B. Kesieme

    2012-01-01

    Full Text Available Background. Tube thoracostomy is widely used throughout the medical, surgical, and critical care specialities. It is generally used to drain pleural collections either as elective or emergency. Complications resulting from tube thoracostomy can occasionally be life threatening. Aim. To present an update on the complications and management of complications of tube thoracostomy. Methods. A review of the publications obtained from Medline search, medical libraries, and Google on tube thoracostomy and its complications was done. Results. Tube thoracostomy is a common surgical procedure which can be performed by either the blunt dissection technique or the trocar technique. Complication rates are increased by the trocar technique. These complications have been broadly classified as either technical or infective. Technical causes include tube malposition, blocked drain, chest drain dislodgement, reexpansion pulmonary edema, subcutaneous emphysema, nerve injuries, cardiac and vascular injuries, oesophageal injuries, residual/postextubation pneumothorax, fistulae, tumor recurrence at insertion site, herniation through the site of thoracostomy, chylothorax, and cardiac dysrhythmias. Infective complications include empyema and surgical site infection. Conclusion. Tube thoracostomy, though commonly performed is not without risk. Blunt dissection technique has lower risk of complications and is hence recommended.

  20. Tube Thoracostomy: Complications and Its Management

    Science.gov (United States)

    Kesieme, Emeka B.; Dongo, Andrew; Ezemba, Ndubueze; Irekpita, Eshiobo; Jebbin, Nze; Kesieme, Chinenye

    2012-01-01

    Background. Tube thoracostomy is widely used throughout the medical, surgical, and critical care specialities. It is generally used to drain pleural collections either as elective or emergency. Complications resulting from tube thoracostomy can occasionally be life threatening. Aim. To present an update on the complications and management of complications of tube thoracostomy. Methods. A review of the publications obtained from Medline search, medical libraries, and Google on tube thoracostomy and its complications was done. Results. Tube thoracostomy is a common surgical procedure which can be performed by either the blunt dissection technique or the trocar technique. Complication rates are increased by the trocar technique. These complications have been broadly classified as either technical or infective. Technical causes include tube malposition, blocked drain, chest drain dislodgement, reexpansion pulmonary edema, subcutaneous emphysema, nerve injuries, cardiac and vascular injuries, oesophageal injuries, residual/postextubation pneumothorax, fistulae, tumor recurrence at insertion site, herniation through the site of thoracostomy, chylothorax, and cardiac dysrhythmias. Infective complications include empyema and surgical site infection. Conclusion. Tube thoracostomy, though commonly performed is not without risk. Blunt dissection technique has lower risk of complications and is hence recommended. PMID:22028963

  1. Bradycardia after Tube Thoracostomy for Spontaneous Pneumothorax

    Directory of Open Access Journals (Sweden)

    Yomi Fashola

    2018-01-01

    Full Text Available We present the case of an elderly patient who became bradycardic after chest tube insertion for spontaneous pneumothorax. Arrhythmia is a rare complication of tube thoracostomy. Unlike other reported cases of chest tube induced arrhythmias, the bradycardia in our patient responded to resuscitative measures without removal or repositioning of the tube. Our patient, who had COPD, presented with shortness of breath due to spontaneous pneumothorax. Moments after tube insertion, patient developed severe bradycardia that responded to Atropine. In patients requiring chest tube insertion, it is important to be prepared to provide cardiopulmonary resuscitative therapy in case the patient develops a life-threatening arrhythmia.

  2. A comparative Thermal Analysis of conventional parabolic receiver tube and Cavity model tube in a Solar Parabolic Concentrator

    Science.gov (United States)

    Arumugam, S.; Ramakrishna, P.; Sangavi, S.

    2018-02-01

    Improvements in heating technology with solar energy is gaining focus, especially solar parabolic collectors. Solar heating in conventional parabolic collectors is done with the help of radiation concentration on receiver tubes. Conventional receiver tubes are open to atmosphere and loose heat by ambient air currents. In order to reduce the convection losses and also to improve the aperture area, we designed a tube with cavity. This study is a comparative performance behaviour of conventional tube and cavity model tube. The performance formulae were derived for the cavity model based on conventional model. Reduction in overall heat loss coefficient was observed for cavity model, though collector heat removal factor and collector efficiency were nearly same for both models. Improvement in efficiency was also observed in the cavity model’s performance. The approach towards the design of a cavity model tube as the receiver tube in solar parabolic collectors gave improved results and proved as a good consideration.

  3. Elastic-plastic analysis of tube expansion in tubesheets

    International Nuclear Information System (INIS)

    Kasraie, B.; O'Donnell, W.J.; Porowski, J.S.; Selz, A.

    1983-01-01

    Conditions for expansion of tubes in tubesheets are often determined by the test. The tightness of the joint and pull out force are used as criteria for evaluation of the results. For closely spaced tubes, it is also necessary to control development of the plastic regions in the ligaments surrounding the tube being expanded. High local strains may occur and excessive distortion may result if the expansion of the tube is continued beyond the admissible limits. Elastic-plastic finite element analyses are performed herein in order to establish conditions for rolling of the tubes in tubesheets of low ligament efficiency. Such penetration patterns are often required in the design of tubular reactors for catalytic processes. The model considered includes individual tube expansion in tubesheets with triangular penetration patterns. The effect of prior expansion of the neighboring tubes is also evaluated. Gap elements are used to model the initial clearance of the tube in the hole. Development of the plastic zones and distortion of the ligaments is monitored during radial expansion of the tube diameter. The residual stresses between the tube and the hole surface and the history of gap closing after removal of the expansion tool are determined. The effect of axial extension of the tube on the tube thinning is determined. Tube thinning is often used as a measure of tube expansion in manufacturing processes. For the analyzed ligament efficiency, reliable joints are obtained for a thinning range within 2% to 3%

  4. Tube bundle vibrations in transversal flow

    International Nuclear Information System (INIS)

    Gibert, R.J.; Sagner, M.

    1978-01-01

    This study gives important information concerning characteristic parameters about lock-in and whirling instability phenomena, in the case of tube arrays. The work is mainly an experimental one though models are also developed: 1) an equilateral pitch bundle (p=1,5 D with D=tube diameter) is tested. Tube damping (epsilon) and first eigenfrequency (f), flow velocity are explored in a large domain. Vibratory level of the tubes are measured and critical points are ploted on the fluidelastic parameters diagram. Several bundles with various usual pitches and arrangements (in line or staggered) are tested. Critical velocities are measured and the whirling instability characteristic coefficient is tabulated. A complementary experiment is made on tube rows with various pitches. This gives valuable informations concerning the look-in domain in VR and A'R diagram. Furthermore this puts in evidence the important effect of a frequency difference between two adjacent tubes on the whirling critical velocity

  5. A worked example using the SP249 advanced assessment route: the carregado unit 6 final superheater outlet header

    Energy Technology Data Exchange (ETDEWEB)

    Brear, J.M.; Jarvis, P.; Jones, G.T. [ERA Technology (United Kingdom); Jovanovic, A.S.; Friemann, M.; Kluttig, B.; Ober, M. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt; Batista, A. [EDP-PROET (Portugal); Araujo, C.L. de; Pires, A. [ISQ (Portugal)

    1995-12-31

    As a key part of its information resource, the SP249 Project contains a number of case studies, drawn from the collective experience of the partners and from the literature. The user of the system may search this data-base by component type and material or by assessment method, to find a practical example close to his own current problem. He can thus draw upon past experience as well as state-of-the-art knowledge to obtain advice. To facilitate this, a set of key-words has been defined to create links between the case studies and the overall assessment methodology. These relate to damage and failure types and causes as well as to techniques of investigation and assessment. For demonstration, validation and didactic purposes, certain of these case studies - one per end-user utility in the project - have been chosen for full elaboration as `worked-examples`. These real component evaluations are worked through by an expert group from the project team so as to provide the utility staff with `hands-on` training in both the practical techniques of component life. The assessment and the use of the knowledge based system. The exercise also provides valuable opportunity for feedback, allowing refinement of the technology package and the software. Amongst these worked examples, an assessment of EDP`s Carregado Unit 6 Final Superheater Outlet Header has been chosen for special attention - as the operators have kindly allowed direct CSS to the component during two outages. This article summarises the Carregado Case Study. It is intended to serve as a demonstration and as to how the Advanced Assessment Route (AAR) is used in practice. The actions performed and results obtained are summarised

  6. 21 CFR 888.4230 - Cement ventilation tube.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted into...

  7. Analysis of forming limit in tube hydroforming

    International Nuclear Information System (INIS)

    Kim, Chan Il; Yang, Seung Hang; Kim, Young Suk

    2013-01-01

    The automotive industry has shown increasing interest in tube hydroforming. Despite many automobile structural parts being produced from cylindrical tubes, failures frequently occur during tube hydroforming under improper forming conditions. These problems include wrinkling, buckling, folding back, and bursting. We perform analytical studies to determine forming limits in tube hydroforming and demonstrate how these forming limits are influenced by the loading path. Theoretical results for the forming limits of wrinkling and bursting are compared with experimental results for an aluminum tube.

  8. Integrating YouTube into the nursing curriculum.

    Science.gov (United States)

    Sharoff, Leighsa

    2011-08-17

    Nurse educators need to be innovative, stimulating, and engaging as they teach future nursing professionals. The use of YouTube in nursing education classes provides an easy, innovative, and user-friendly way to engage today's nursing students. YouTube presentations can be easily adapted into nursing courses at any level, be it a fundamentals course for undergraduate students or a theoretical foundations course for graduate students. In this article I will provide information to help educators effectively integrate YouTube into their course offerings. I will start by reviewing the phenomenon of social networking. Next I will discuss challenges and strategies related to YouTube learning experiences, after which I will share some of the legal considerations in using YouTube. I will conclude by describing how to engage students via YouTube and current research related to YouTube.

  9. Tests of compressed geometry NEC acceleration tubes

    International Nuclear Information System (INIS)

    Raatz, J.E.; Rathmell, R.D.; Stelson, P.H.; Ziegler, N.F.

    1985-01-01

    Tests have been performed in the 3 MV Pelletron test machine at NEC on a compressed geometry tube which increases the insulating length of the tube by eliminating the heated electrode assemblies (approx.2.5 cm thick) at the end of each tube section. Some insert electrodes are changed to provide some trapping of secondary ions. The geometry tested provided an 18% increase in live ceramic in the tube. The compressed geometry tube allowed a terminal voltage of 3.55 MV on the 3 MV column at normal gradients of 30.3 kv/tube gap. The tube was also conditioned to more than 4 MV and remained stable in voltage with few sparks and with low x-ray levels for days at about 4 MV. This same performance could be achieved with or without arc discharge cleaning. 4 refs., 4 figs

  10. Tensile properties of quadruple melted Zr-2.5Nb pressure tubes evaluated from pressure tube offcuts

    International Nuclear Information System (INIS)

    Shah, Priti Kotak; Dubey, J.S.; Anantharaman, S.

    2013-12-01

    Rajasthan Atomic Power Station-2 (RAPS-2) is the first Pressurised Heavy Water Reactor (PHWR) in India having quadruple melted Zr-2.5Nb pressure tubes. Front-end and back-end off-cuts of sixteen pressure tubes were selected for studying the mechanical properties in axial and transverse directions of the tube. Tension tests were carried out at room temperature and at 300℃ using miniature tensile test specimens. The report presents the experimental details and discusses the base line tensile property data for the quadruple melted pressure tubes of RAPS-2. This data will be useful for the reactor life management. (author)

  11. Caring for Your Percutaneous Nephrostomy Tube

    Science.gov (United States)

    ... to the nephrostomy tube for 15 seconds. 5. Disconnect the drainage bag from the tube. 6. Put the used bag aside. 7. With a new alcohol pad, swab the open end of the nephrostomy tube for 15 seconds. 8. Connect a new bag. 9. Secure the drainage bag ...

  12. The Fuge Tube Diode Array Spectrophotometer

    Science.gov (United States)

    Arneson, B. T.; Long, S. R.; Stewart, K. K.; Lagowski, J. J.

    2008-01-01

    We present the details for adapting a diode array UV-vis spectrophotometer to incorporate the use of polypropylene microcentrifuge tubes--fuge tubes--as cuvettes. Optical data are presented validating that the polyethylene fuge tubes are equivalent to the standard square cross section polystyrene or glass cuvettes generally used in…

  13. 21 CFR 872.6570 - Impression tube.

    Science.gov (United States)

    2010-04-01

    ... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6570 Impression tube. (a) Identification. An impression tube is a device consisting of a hollow copper tube intended to take an impression of a single tooth...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures in...

  14. Preparation of metallic uranium tubes; Elaboration des tubes d'uranium metallique

    Energy Technology Data Exchange (ETDEWEB)

    Lerouge, G.; Decours, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The production furnace is an induction heated vacuum furnace having a capacity at the moment of 250 kg. Previously the crucible was heated by the inductor, the mould being outside the inductor. The tubes thus produced contained cavities, the alloy structure was fine; this was cold-mould casting, At the moment the top of the moulds are pre-heated, this is the so called hot-mould casting. This method has the advantage of eliminating the cavities but leads to a less fine microstructure. The alloy used for the 18 x 40 mm and 23 x 43 mm tubes is U-Mo (1.1 per cent). Since the moulds are now heated at the top, the solidification of the metal is very slow in this zone leading to a pronounced {gamma} grain, whereas towards the base the faster cooling leads to a smaller {gamma} grain. The {gamma} structure depends essentially on the solidification rate and on the time spent in this zone. In order to obtain a fine and homogeneous grain along the whole length of the tube, a controlled cooling treatment is effected. It consists in heating the uranium tubes in the {gamma} place and then in cooling them at a rate of between 20 and 50 deg C/mm down to 400 deg C. The 77 x 95 mm and 54 x 70 mm annular elements are at the moment being produced for research purposes. Their preparation is similar to that of 18 x 40 mm and 23 x 43 mm elements. The 77 x 95 mm tubes are at the moment made from U-Cr alloy (0.1 per cent); because of their size, their preparation is carried out in 600 mm diameter furnaces. (authors) [French] Le four d'elaboration est un four sous vide chaufffe par induction, dont la capacite actuelle est de 250 kg. Anterieurement le creuset seul etait chauffe par l'inducteur, les moules etaient hors de l'inducteur. Les tubes obtenus presentaient des cavites, la structure de l'alliage etait fine, c'etait la coulee en moules froids. Actuellement on prechauffe le haut des moules, c'est la coulee dite en moules chauds. Cette facon de faire a l

  15. Researching YouTube

    OpenAIRE

    Arthurs, Jane; Drakopoulou, Sophia; Gandini, Alessandro

    2018-01-01

    ‘Researching YouTube’ introduces the special issue of Convergence which arose out of an international academic conference on YouTube that was held in London at Middlesex University in September 2016. The conference aimed to generate a robust overview of YouTube’s changing character and significance after its first ten years of development by creating a productive dialogue between speakers from different disciplines and cultures, and between YouTube-specific research and wider debates in media...

  16. Contribution to the heat transfer analysis of substitute refrigerants in evaporator tubes with smooth or enhanced tube surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kattan, N

    1997-12-31

    The substitution of CFC refrigerants in refrigeration systems, heat pumps and organic Rankine cycles for heat recovery, requests a good knowledge of heat transfer properties of substitute fluids. A new test facility has been built at the Laboratory for Industrial Energy Systems (LENI) to contribute to this international effort. It consists of two sets of concentric tubes allowing either annular or inside tube convective boiling with a counter current water flow heating to be studied. A new data base including heat transfer coefficients and pressure drop measurements for four new refrigerants (R123, R134A, R402A and R404A) and three older refrigerants (R11, R12 and R502) has been collected. Flow boiling measurements covered a broad range of mass velocities, vapor qualities and heat fluxes. Some of the tests included plain tubes and others enhanced surface tubes (microfilms from Wieland) in horizontal and vertical orientations. An improved Wilson plot technique, that covers both the transition and turbulent flow regimes of the water flowing in the annular channel for the inside tube boiling tests, is proposed to overcome the severe limitations of conventional Wilson plots, to improve accuracy and to facilitate data processing. Mean flow boiling heat transfer coefficients were measured for R12 and R134A evaporating inside a horizontal plain tube and for R11 and R123 evaporating inside a horizontal plain tube. Local flow boiling heat transfer coefficients were measured for : R134A, R123, R404A and R502 evaporating inside a horizontal plain tube, for R134A and R123 evaporating inside a horizontal microfin tube and for R134 evaporating inside a vertical microfin tube. In addition microfin heat transfer augmentation relative to plain tube test data was investigated. The measured heat transfer coefficients were compared to different existing inside tube flow boiling correlations. (author) figs., tabs., refs.

  17. Measurements of electrically exploded tubes

    International Nuclear Information System (INIS)

    Shearer, J.W.; Hartman, C.W.; Munger, R.H.; Gullickson, R.L.; Trimble, D.O.; Cheng, D.Y.

    1975-01-01

    The dynamics of electrically exploded tubes were investigated, principally by means of current measurements and flash x-ray pictures. The pinch effect was observed on the tube motion. Pileup of the imploding tube metal was seen on axis. An approximate analytical model can be roughly fitted to the data, but a more complete fit can be obtained with detailed numerical codes. Application of the results to the planning of future gas-embedded Z-pinch experiments is discussed. (U.S.)

  18. Photomultiplier tubes for Low Level Cerenkov Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O

    1965-03-15

    Tube backgrounds of several 2-inch photomultiplier types having S11, 'S' , S13 and S20 cathodes are compared by measuring signal and background pulse height distributions at pulse heights corresponding to a few photo-electrons. The reference signal is generated by means of a {beta}-source and a plexiglass radiator. It is found that comparatively good results are obtained with selected tubes of the EMI types 6097B and 9514B having equivalent dark current dc values down to 10{sup -12} input lumens. Special interest is devoted to the correlation between the measured tube backgrounds and the dark current dc values of the tubes, as a good correlation between these parameters simplifies the selection of photomultiplier tubes. The equivalent dark currents of the tested tubes extend over the range 10{sup -12} to 10{sup -9} input lumens. Although the investigation deals with photomultiplier tubes intended for use in low level Cerenkov detectors it is believed that the results could be valuable in other fields where photomultiplier tubes are utilized for the detection of weak light pulses.

  19. Confined Tube Crimp Using Portable Hand Tools

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Joseph James [Los Alamos National Laboratory; Pereyra, R. A. [LANL Retired; Archuleta, Jeffrey Christopher [Los Alamos National Laboratory; Martinez, Isaac P. [Los Alamos National Laboratory; Nelson, A. M. [MST-16 Summer Student (2007); Allen, Ronald Scott [Los Alamos National Laboratory; Page, R. L. [LANL Retired; Freer, Jerry Eugene [Los Alamos National Laboratory; Dozhier, Nathan Gus [Los Alamos National Laboratory

    2016-04-04

    The Lawrence Radiation Laboratory developed handheld tools that crimp a 1/16 inch OD tube, forming a leak tight seal1 (see Figure 1). The leak tight seal forms by confining the 1/16 inch OD tubing inside a die while applying crimp pressure. Under confined pressure, the tube walls weld at the crimp. The purpose of this study was to determine conditions for fabricating a leak tight tube weld. The equipment was used on a trial-and-error basis, changing the conditions after each attempt until successful welds were fabricated. To better confine the tube, the die faces were polished. Polishing removed a few thousandths of an inch from the die face, resulting in a tighter grip on the tubing wall. Using detergent in an ultrasonic bath, the tubing was cleaned. Also, the time under crimp pressure was increased to 30 seconds. With these modifications, acceptable cold welds were fabricated. After setting the conditions for an acceptable cold weld, the tube was TIG welded across the crimped face.

  20. Photomultiplier tubes for Low Level Cerenkov Detectors

    International Nuclear Information System (INIS)

    Strindehag, O.

    1965-03-01

    Tube backgrounds of several 2-inch photomultiplier types having S11, 'S' , S13 and S20 cathodes are compared by measuring signal and background pulse height distributions at pulse heights corresponding to a few photo-electrons. The reference signal is generated by means of a β-source and a plexiglass radiator. It is found that comparatively good results are obtained with selected tubes of the EMI types 6097B and 9514B having equivalent dark current dc values down to 10 -12 input lumens. Special interest is devoted to the correlation between the measured tube backgrounds and the dark current dc values of the tubes, as a good correlation between these parameters simplifies the selection of photomultiplier tubes. The equivalent dark currents of the tested tubes extend over the range 10 -12 to 10 -9 input lumens. Although the investigation deals with photomultiplier tubes intended for use in low level Cerenkov detectors it is believed that the results could be valuable in other fields where photomultiplier tubes are utilized for the detection of weak light pulses

  1. Ion Implantation Hampers Pollen Tube Growth and Disrupts Actin Cytoskeleton Organization in Pollen Tubes of Pinus thunbergii

    International Nuclear Information System (INIS)

    Li Guoping; Yang Lusheng; Huang Qunce; Qin Guangyong

    2008-01-01

    Pollen grains of Pinus thunbergii Parl. (Japanese black pine) were implanted with 30 keV nitrogen ion beams and the effects of nitrogen ion implantation on pollen tube growth in vitro and the organization of actin cytoskeleton in the pollen tube cell were investigated using a confocal laser scanning microscope after fluorescence labeling. Treatment with ion implantation significantly blocked pollen tube growth. Confocal microscopy showed that ion implantation disrupted actin filament cytoskeleton organization in the pollen tube. It was found that there was a distinct correlation between the inhibition of pollen tube growth and the disruption of actin cytoskeleton organization, indicating that an intact actin cytoskeleton is essential for continuous pollen tube elongation in Pinus thunbergii. Although the detailed mechanism for the ion-implantation-induced bioeffect still remains to be elucidated, the present study assumes that the cytoskeleton system in pollen grains may provide a key target in response to ion beam implantation and is involved in mediating certain subsequent cytological changes.

  2. N Reactor pressure tube 2566 postirradiation examination

    International Nuclear Information System (INIS)

    Scott, K.V.

    1978-01-01

    Pressure tube 2566 was removed from N Reactor in July, 1977 to initiate the postirradiation examination program required by the Technical Specifications. Destructive examination of the pressure tube, after a maximum accumulated fluence of 4.6 x 10 21 n/cm 2 (E > 1 MeV), was conducted at the Hanford Engineering Development Laboratory to determine the effects of reactor service on the mechanical properties and hydrogen absorption and corrosion characteristics of the pressure tube. Tube 2566 is the sixth tube removed for destructive examination since the initial reactor startup. Evaluation of test results reveal that no significant detrimental changes have occurred in the parameters studied, since the last tube was removed in 1974

  3. Experimental study of micro-shock tube flow

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ouk; Kim, Gyu Wan; Rasel, Md. Alim Iftakhar [Dept. of Mechanical Engineering, Andong National University, Andong (Korea, Republic of); Kim, Heuy Dong [Fire Research Center, Korea Institute of Civil Engineering and Building Technology, Hwasung (Korea, Republic of)

    2015-03-15

    The flow characteristics in micro shock tube are investigated experimentally. Studies were carried out using a stainless steel micro shock tube. Shock and expansion wave was measured using 8 pressure sensors. The initial pressure ratio was varied from 4.3 to 30.5, and the diameter of tube was also changed from 3 mm to 6 mm. Diaphragm conditions were varied using two types of diaphragms. The results obtained show that the shock strength in the tube becomes stronger for an increase in the initial pressure ratio and diameter of tube. For the thinner diaphragm, the highest shock strength was found among varied diaphragm condition. Shock attenuation was highly influenced by the diameter of tube.

  4. Non-destructive controls in the steel tube industry

    International Nuclear Information System (INIS)

    Mondot, J.

    1978-01-01

    The main non-destructive control methods in the tube industry are reviewed: eddy currents, particularly well adapted to small tubes; magnetoscopic testing for weldless tubes; ultrasonic waves widely used for thick weldless tubes and weldings; radiography, to examine tube ends and the known questionable zones; measure of diameters by laser [fr

  5. Self-shielding flex-circuit drift tube, drift tube assembly and method of making

    Science.gov (United States)

    Jones, David Alexander

    2016-04-26

    The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.

  6. 21 CFR 868.5975 - Ventilator tubing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ventilator tubing. 868.5975 Section 868.5975 Food... DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5975 Ventilator tubing. (a) Identification. Ventilator tubing is a device intended for use as a conduit for gases between a ventilator and a patient...

  7. Fire-side corrosion in power-station boilers

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, A J.B.; Flatley, T; Hay, K A

    1978-10-01

    The steel tubing of a modern power-station boiler operates at up to 650/sup 0/C (a dull red heat) in the very corrosive environment produced by the combustion gases and ash particles. Within the tubes, whose walls are around 5mm thick, 2000 tons of steam are generated per hour at temperatures up to 565/sup 0/C and pressures up to 170 bar. Several forms of metal corrosion may occur on the fireside surface of these tubes and on other boiler components. The designed 20-year operating life of the stainless-steel superheater and reheater tubes can be much reduced at temperatures above 600/sup 0/C by attack from molten salts formed beneath the deposited ash on the upstream tube surfaces. Mild steel evaporator tubes lining the furnace wall may suffer similarly if flame impingement allows the local release of volatile chlorine compounds from coal particles on the tube surface. Uncooled metal components supporting and aligning the boiler tubes may reach 1000/sup 0/C and are particularly susceptible to corrosion. CEGB research effort has been applied to quantify the rate of corrosion and to obtain an understanding of the complex corrosion mechanisms, so that ways of minimizing or preventing their occurrence may be found. These include the optimization of the combustion chemistry, design modifications such as shielding certain vulnerable tubes, and the selection of improved alloys and the use of ''co-extruded'' tubing.

  8. Disc-Donut-Tube wear test report, Phase I

    International Nuclear Information System (INIS)

    Kowal, K.; Knaus, S.E.

    1976-06-01

    The report describes a test program which simulated the wear-inducing conditions in the AI Prototype CRBR Steam Generator. This was accomplished by simulating the wear inducing loading and motion of a steam tube against ''disc-donut'' tube spacer plates. It was found that 2- 1 / 4 Cr-1 Mo tubes, wearing against 2- 1 / 4 Cr-l Mo tube spacer plates, seized and galled as deep as .017 inches. Inconel 718 tube spacer plates uniformly wore the tubes as deep as .012 in. Aluminum bronze inserts wore as deep as .003 inches into the tube

  9. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    2000-01-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source

  10. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    Energy Technology Data Exchange (ETDEWEB)

    Bucholz, J.A.

    2000-07-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

  11. Thermal conductivity measurement below 40 K of the CFRP tubes for the Mid-Intrared Instrument mounting struts

    DEFF Research Database (Denmark)

    Shaughnessy, B. M.; Eccleston, P.; Fereday, K. J.

    2007-01-01

    The Mid-Infrared Instrument (MIRI) is one of four instruments on the James Webb Space Telescope observatory, scheduled for launch in 2013. It must be cooled to about 7 K and is supported within the telescope’s 40 K instrument module by a hexapod of carbon fibre reinforced plastic (CFRP) tubing. T....... This article describes the measurement of cryogenic thermal conductivity of the candidate CFRP. Measured thermal conductivities were about 0.05 W/m K at a mean temperature of 10 K increasing to about 0.20 W/m K at a mean temperature of 40 K....

  12. Evaluation of steam generator tube integrity during earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Kusakabe, Takaya; Kodama, Toshio [Mitsubishi Heavy Industries Ltd., Kobe (Japan). Kobe Shipyard and Machinery Works; Takamatsu, Hiroshi; Matsunaga, Tomoya

    1999-07-01

    This report shows an experimental study on the strength of PWR steam generator (SG) tubes with various defects under cyclic loads which simulate earthquakes. The tests were done using same SG tubing as actual plants with axial and circumferential defects with various length and depth. In the tests, straight tubes were loaded with cyclic bending moments to simulate earthquake waves and number of load cycles at which tube leak started or tube burst was counted. The test results showed that even tubes with very long crack made by EDM more than 80% depth could stand the maximum earthquake, and tubes with corrosion crack were far stronger than those. Thus the integrity of SG tubes with minute potential defects was demonstrated. (author)

  13. Research on temperature control and influence of the vacuum tubes with inserted tubes solar heater

    Science.gov (United States)

    Xiao, L. X.; He, Y. T.; Hua, J. Q.

    2017-11-01

    A novel snake-shape vacuum tube with inserted tubes solar collector is designed in this paper, the heat transfer characteristics of the collector are analyzed according to its structural characteristics, and the influence of different working temperature on thermal characteristics of the collector is studied. The solar water heater prototype consisting of 14 vacuum tubes with inserted tubes is prepared, and the hot water storage control subsystem is designed by hysteresis comparison algorithm. The heat characteristic of the prototype was experimentally studied under hot water output temperature of 40-45°C, 50-55°C and 60-65°C. The daily thermal efficiency was 64%, 50% and 46%, respectively. The experimental results are basically consistent with the theoretical analysis.

  14. Inspection tool for butt-welded tubing

    Science.gov (United States)

    Horman, D. P.

    1977-01-01

    Inspection tool for tubing consists of metal casing housing elastic collar. Collar is clamped around weld site under test. Leakage through weld is contained within chamber and is bled to detector via tubing attached to fitting. Tool, originally designed to detect fluid leakage in tubing, can be used to detect gas leaks.

  15. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: Amblyopia ... *PDF files require the free Adobe® Reader® software for viewing. This website is maintained by the ...

  16. Cladding tube manufacturing technology

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report A lloy Development for High Burnup Cladding . Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs

  17. Cladding tube manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, B.J.; Kim, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report 'Alloy Development for High Burnup Cladding.' Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs.

  18. Clinical tube weaning supported by hunger provocation in fully-tube-fed children.

    Science.gov (United States)

    Hartdorff, Caroline M; Kneepkens, C M Frank; Stok-Akerboom, Anita M; van Dijk-Lokkart, Elisabeth M; Engels, Michelle A H; Kindermann, Angelika

    2015-04-01

    Children with congenital malformations, mental retardation, and complex early medical history frequently have feeding problems. Although tube feeding is effective in providing the necessary energy and nutrients, it decreases the child's motivation to eat and may lead to oral aversion. In this study, we sought to confirm our previous results, showing that a multidisciplinary clinical hunger provocation program may lead to quick resumption of oral feeding. In a crossover study, 22 children of 9 to 24 months of age who were fully dependent on tube feeding were randomly assigned to one of two groups: group A, intervention group (2-week multidisciplinary clinical hunger provocation program); and group B, control group (4-week outpatient treatment by the same multidisciplinary team). Patients failing one treatment were reassigned to the other treatment group. Primary outcome measures were at least 75% orally fed at the conclusion of the intervention and fully orally fed and gaining weight 6 months after the intervention. In group A, 9/11 patients were successfully weaned from tube feeding (2 failures: 1 developed ulcerative colitis, 1 drop-out). In group B, only 1 patient was weaned successfully; 10/11 were reassigned to the clinical hunger provocation program, all being weaned successfully. Six months after the intervention, 1 patient had to resume tube feeding. In total, in the control group, 1/11 (9%) was weaned successfully as compared with 18/21 (86%) in the hunger provocation group (P hunger provocation is an effective short-term intervention for weaning young children from tube feeding.

  19. A continuous acceleration tube of ions under 200 KV; Un tube d'acceleration continue d'ions sous 200 KV

    Energy Technology Data Exchange (ETDEWEB)

    Mongodin, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1954-07-01

    The realization of an Van de Graaff accelerator required, for the preliminary studies, the construction of a small proton accelerator, functioning at 200 kV in order to resolve some parasitic effects inherent to the accelerators tubes. The aim of this report is to describe the different organs of the accelerator tube, to explain the operating system and to encode their characteristics. The report first presents the ion source and the beam buncher permitting to inject in the accelerator tube particles of about 9 kV and very batched in a thin beam of circular section. Then the study explain the tube characteristics considered like optic system. A method to obtain precise calculation of particle trajectories is exposed. Aberrations of the system were discussed and balance of the currents on all electrodes inside the tube for different regimes of working were provided. The influence of the residual pressure in the tube were explained. The report finally ends on a part of the fundamental problem of the straining occurring inside the tubes accelerators under high tension. (M.B.) [French] La realisation d n accelerateur du type Van de Graaff a necessite, entre autres etudes preliminaires, la construction d'un petit accelerateur de protons, fonctionnant sous 200 kV afin d'eclaircir certains effets parasites propres aux tubes accelerateurs. L'objet de ce rapport est de decrire les differents organes du tube accelerateur, d'en expliquer le fonctionnement et de chiffrer leurs caracteristiques. Le memoire presente d'abord la source d'ions et le canon permettant d'injecter dans le tube accelerateur des particules de 9 kV environ et bien groupees dans un faisceau fin de section circulaire. Puis il passe a l'etude du tube considere comme systeme optique. Une methode utilisee pour le calcul precis des trajectoires des particules y est exposee. Il aborde le probleme des aberrations de ce systeme et fournit par la suite le bilan des courants sur toutes les electrodes a l

  20. Structural integrity assessment of steam generator tubes deteriorated through primary water stress corrosion cracking in transition region of tube expansion

    International Nuclear Information System (INIS)

    Silveira, Helvecio Carlos Klinke da

    2002-01-01

    In PWR plants, steam generator tube degradation has been one of the most important economical concerns, besides causing operational safety problems. In this work, a survey of steam generator tube degradation modes is done. Degradation mechanisms and influence factors are introduced and discussed. The importance of stress corrosion cracking, especially in transition region of tube expansion zone, is underlined. The actual steam generator tube plugging criteria are conservative. Proposed alternative criteria are introduced and discussed. Distinction is done to structural integrity assessment of defective tubes. Real data of tube defect indications of axial cracks in expansion transition zone due to primary water stress corrosion cracking are used in analysis. Results allow discussing application aspects of deterministic and probabilistic criteria on structural integrity assessment of tubes with defect indications. Applied models are specifics, but the application of concept may be extended to other steam generator tube degradation modes. (author)