WorldWideScience

Sample records for canadian fuel cell

  1. Canadian fuel cell commercialization roadmap update : progress of Canada's hydrogen and fuel cell industry

    International Nuclear Information System (INIS)

    Filbee, S.; Karlsson, T.

    2009-01-01

    Hydrogen and fuel cells are considered an essential part of future low-carbon energy systems for transportation and stationary power. In recognition of this, Industry Canada has worked in partnership with public and private stakeholders to provide an update to the 2003 Canadian Fuel Cell Commercialization Roadmap to determine infrastructure requirements for near-term markets. The update includes technology and market developments in terms of cost and performance. This presentation included an overview of global hydrogen and fuel cell markets as background and context for the activities of the Canadian industry. Approaches toward commercial viability and mass market success were also discussed along with possible scenarios and processes by which these mass markets could develop. Hydrogen and fuel cell industry priorities were outlined along with recommendations for building a hydrogen infrastructure

  2. Transition to a hydrogen fuel cell transit bus fleet for Canadian urban transit system

    International Nuclear Information System (INIS)

    Ducharme, P.

    2004-01-01

    'Full text:' The Canadian Transportation Fuel Cell Alliance (CTFCA), created by the Canadian Government as part of its 2000 Climate Change Action Plan, has commissioned MARCON-DDM's Hydrogen Intervention Team (HIT) to provide a roadmap for urban transit systems that wish to move to hydrogen fuel cell-powered bus fleets. HIT is currently in the process of gathering information from hydrogen technology providers, bus manufacturers, fuelling system providers and urban transit systems in Canada, the US and Europe. In September, HIT will be in a position to provide a preview of its report to the CTFCA, due for October 2004. The planned table of contents includes: TOMORROW'S FUEL CELL (FC) URBAN TRANSIT BUS - Powertrain, on-board fuel technologies - FC engine system manufacturers - Bus technical specifications, performances, operating characteristics - FC bus manufacturers TOMORROW'S FC TRANSIT PROPERTY - Added maintenance, facilities and fuelling infrastructure requirements - Supply chain implications - Environmental and safety issues - Alternative operational concepts PATHWAYS TO THE FUTURE - Choosing the future operational concept - 'Gap' assessment - how long from here to there? - Facilities and fleet adjustments, including fuelling infrastructure - Risk mitigation, code compliance measures TRANSITIONAL CONSIDERATIONS - Cost implications - Transition schedule (author)

  3. A study of fuel cell patenting activity in Canada

    International Nuclear Information System (INIS)

    Lee, B.Y.; Sajewycz, M.

    2004-01-01

    'Full text:' A patent application is generally filed shortly after completion of research and development; therefore, patent filing statistics provide insight into the state of innovation of a technology. A study has been conducted on fuel cell patenting activity in Canada. This study examines fuel cell patenting trends between 1989-2003 and specific activity in 2001, identifies the major players in the Canadian fuel cell industry, and examines the patent landscape by fuel cell technology. Our results show that historically, Canadians have been leaders at home and abroad in fuel cell innovation. However, Canadians have recently fallen behind in protecting their patent rights at home, and now rank fourth behind German, American and Japanese fuel cell patent filers in the Canadian patent office. However, our data also shows that a significant number of new Canadian entities have emerged and have been very active filing new patent applications. These new entities as well as established Canadian companies are examined in detail. (author)

  4. Canadian CANDU fuel development program and recent fuel operating experience

    International Nuclear Information System (INIS)

    Lau, J.H.K.; Inch, W.W.R.; Cox, D.S.; Steed, R.G.; Kohn, E.; Macici, N.N.

    1999-01-01

    This paper reviews the performance of the CANDU fuel in the Canadian CANDU reactors in 1997 and 1998. The operating experience demonstrates that the CANDU fuel has performed very well. Over the 2-year period, the fuel-bundle defect rate for all bundles irradiated in the Canadian CANDU reactors has remained very low, at between 0.006% to 0.016%. On a fuel element basis, this represents an element defect rate of less than about 0.0005%. One of the reasons for the good fuel performance is the support provided by the Canadian fuel research and development programs. These programs address operational issues and provide evolutionary improvements to the fuel products. The programs consist of the Fuel Technology Program, funded by the CANDU Owners Group, and the Advanced Fuel and Fuel Cycles Technology Program, funded by Atomic Energy of Canada Ltd. These 2 programs, which have been in place for many years, complement each other by sharing expert resources and experimental facilities. This paper describes the programs in 1999/2000, to provide an overview of the scope of the programs and the issues that these programs address. (author)

  5. The Canadian CANDU fuel development program and recent fuel operating experience

    International Nuclear Information System (INIS)

    Lau, J.H.K.; Inch, W.W.R.; Cox, D.S.; Steed, R.G.; Kohn, E.; Macici, N.N.

    1999-01-01

    This paper reviews the performance of the CANDU fuel in the Canadian CANDU reactors in 1997 and 1998. The operating experience demonstrates that the CANDU fuel has performed very well. Over the two-year period, the fuel-bundle defect rate for all bundles irradiated in the Canadian CANDU reactors has remained very low, at between 0.006% to 0.016%. On a fuel element basis, this represents an element defect rate of less than about 0.0005%. One of the reasons for the good fuel performance is the support provided by the Canadian fuel research and development programs. These programs address operational issues and provide evolutionary improvements to the fuel products. The programs consist of the Fuel Technology Program, funded by the CANDU Owners Group, and the Advanced Fuel and Fuel Cycles Technology Program, funded by Atomic Energy of Canada Ltd. These two programs, which have been in place for many years, complement each other by sharing expert resources and experimental facilities. This paper describes the programs in 1999/2000, to provide an overview of the scope of the programs and the issues that these programs address. (author)

  6. Fuel cells : a viable fossil fuel alternative

    Energy Technology Data Exchange (ETDEWEB)

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  7. Canadian fusion fuels technology project

    International Nuclear Information System (INIS)

    1986-01-01

    The Canadian Fusion Fuels Technology Project was launched in 1982 to coordinate Canada's provision of fusion fuels technology to international fusion power development programs. The project has a mandate to extend and adapt existing Canadian tritium technologies for use in international fusion power development programs. 1985-86 represents the fourth year of the first five-year term of the Canadian Fusion Fuels Technology Project (CFFTP). This reporting period coincides with an increasing trend in global fusion R and D to direct more effort towards the management of tritium. This has resulted in an increased linking of CFFTP activities and objectives with those of facilities abroad. In this way there has been a continuing achievement resulting from CFFTP efforts to have cooperative R and D and service activities with organizations abroad. All of this is aided by the cooperative international atmosphere within the fusion community. This report summarizes our past year and provides some highlights of the upcoming year 1986/87, which is the final year of the first five-year phase of the program. AECL (representing the Federal Government), the Ministry of Energy (representing Ontario) and Ontario Hydro, have given formal indication of their intent to continue with a second five-year program. Plans for the second phase will continue to emphasize tritium technology and remote handling

  8. Canadian capabilities in fusion fuels technology and remote handling

    International Nuclear Information System (INIS)

    1987-10-01

    This report describes Canadian expertise in fusion fuels technology and remote handling. The Canadian Fusion Fuels Technology Project (CFFTP) was established and is funded by the Canadian government, the province of Ontario and Ontario Hydro to focus on the technology necessary to produce and manage the tritium and deuterium fuels to be used in fusion power reactors. Its activities are divided amongst three responsibility areas, namely, the development of blanket, first wall, reactor exhaust and fuel processing systems, the development of safe and reliable operating procedures for fusion facilities, and, finally, the application of these developments to specific projects such as tritium laboratories. CFFTP also hopes to utilize and adapt Canadian developments in an international sense, by, for instance, offering training courses to the international tritium community. Tritium management expertise is widely available in Canada because tritium is a byproduct of the routine operation of CANDU reactors. Expertise in remote handling is another byproduct of research and development of of CANDU facilities. In addition to describing the remote handling technology developed in Canada, this report contains a brief description of the Canadian tritium laboratories, storage beds and extraction plants as well as a discussion of tritium monitors and equipment developed in support of the CANDU reactor and fusion programs. Appendix A lists Canadian manufacturers of tritium equipment and Appendix B describes some of the projects performed by CFFTP for offshore clients

  9. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Rummery, T.E.; Rosinger, E.L.J.

    1983-05-01

    The Canadian Nuclear Fuel Waste Management Program is now well established. This report outlines the generic research and technological development underway in this program to assess the concept of immobilization and subsequent disposal of nuclear fuel waste deep in a stable plutonic rock in the Canadian Shield. The program participants, funding, schedule and associated external review processes are briefly outlined. The major scientific and engineering components of the program, namely, immobilization studies, geoscience research and environmental and safety assessment, are described in more detail

  10. Fuels for Canadian research reactors

    International Nuclear Information System (INIS)

    Feraday, M.A.

    1993-01-01

    This paper includes some statements and remarks concerning the uranium silicide fuels for which there is significant fabrication in AECL, irradiation and defect performance experience; description of two Canadian high flux research reactors which use high enrichment uranium (HEU) and the fuels currently used in these reactors; limited fabrication work done on Al-U alloys to uranium contents as high as 40 wt%. The latter concerns work aimed at AECL fast neutron program. This experience in general terms is applied to the NRX and NRU designs of fuel

  11. Fuel isolation research for the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    1982-06-01

    This document is intended to give a broad outline of the Fuel Isolatikn program and to indicate how this program fits into the overall framework of the Canadian Nuclear Fuel Waste Management Program. Similar activities in other countries are described, and the differences in philosophy behind these and the Canadian program are highlighted. A program plan is presented that outlines the development of research programs that contribute to the safety assessment of the disposal concept and the development of technology required for selection and optimization of a feasible fuel isolation system. Some indication of the work that might take place beyond concept assessment, at the end of the decade, is also given. The current program is described in some detail, with emphasis on what the prkgram has achieved to date and hopes to achieve in the future for the concept assessment phase of the waste management program. Finally, some major capital facilities associated with the fuel isolation program are described

  12. Canadian fuel development program and recent operational experience

    International Nuclear Information System (INIS)

    Cox, D.S.; Kohn, E.; Lau, J.H.K.; Dicke, G.J.; Macici, N.N.; Sancton, R.W.

    1995-01-01

    This paper provides an overview of the current Canadian CANDU fuel R and D programs and operational experience. The details of operational experience for fuel in Canadian reactors are summarized for the period 1991-1994; excellent fuel performance has been sustained, with steady-state bundle defect rates currently as low as 0.02%. The status of introducing long 37-element bundles, and bundles with rounded bearing pads is reviewed. These minor changes in fuel design have been selectively introduced in response to operational constraints (end-plate cracking and pressure-tube fretting) at Ontario Hydro's Bruce-B and Darlington stations. The R and D programs are generating a more complete understanding of CANDU fuel behaviour, while the CANDU Owners Group (COG) Fuel Technology Program is being re-aligned to a more exclusive focus on the needs of operating stations. Technical highlights and realized benefits from the COG program are summarized. Re-organization of AECL to provide a one-company focus, with an outward looking view to new CANDU markets, has strengthened R and D in advanced fuel cycles. Progress in AECL's key fuel cycle programs is also summarized. (author)

  13. Estimates of Canadian fuel fabrication costs for alternative fuel cycles and systems

    International Nuclear Information System (INIS)

    Blahnik, C.

    1979-04-01

    Unit fuel fabrication costs are estimated for alternate fuel cycles and systems that may be of interest in Ontario Hydro's strategy analyses. A method is proposed for deriving the unit fuel fabrication price to be paid by a Canadian utility as a function of time (i.e. the price that reflects the changing demand/supply situation in the particular scenario considered). (auth)

  14. Canadian fuel development program in 1997/98

    International Nuclear Information System (INIS)

    Lau, J.H.; Kohn, E.; Sejnoha, R.; Cox, D.S.; Macici, N.N.; Steed, R.G.

    1997-01-01

    This paper describes the CANDU fuel development activities in Canada during 1997 through 1998. The activities include those of the Fuel Technology Program sponsored by the CANDU Owners Group. The goal of the Fuel Technology Program is to maintain and improve the reliability, economics and safety of CANDU fuel in operating reactors. These activities, therefore, concentrate on the present designs of 28-element and 37-element fuel bundles. The Canadian fuel development activities also include those of the Advanced Fuel and Fuel Cycle Technology Program at AECL. These activities concentrate on the development of advanced fuel designs and advanced fuel cycles, which among other advantages, can reduce the capital and fuelling costs, maintain operating margins in aging reactors, improve natural-uranium utilization, and reduce the amount of spent fuel. (author)

  15. Canadian fuel development program

    International Nuclear Information System (INIS)

    Gacesa, M.; Young, E.G.

    1992-11-01

    CANDU power reactor fuel has demonstrated an enviable operational record. More than 99.9% of the bundles irradiated have provided defect-free service. Defect excursions are responsible for the majority of reported defects. In some cases research and development effort is necessary to resolve these problems. In addition, development initiatives are also directed at improvements of the current design or reduction of fueling cost. The majority of the funding for this effort has been provided by COG (CANDU Owners' Group) over the past 10 to 15 years. This paper contains an overview of some key fuel technology programs within COG. The CANDU reactor is unique among the world's power reactors in its flexibility and its ability to use a number of different fuel cycles. An active program of analysis and development, to demonstrate the viability of different fuel cycles in CANDU, has been funded by AECL in parallel with the work on the natural uranium cycle. Market forces and advances in technology have obliged us to reassess and refocus some parts of our effort in this area, and significant success has been achieved in integrating all the Canadian efforts in this area. This paper contains a brief summary of some key components of the advanced fuel cycle program. (Author) 4 figs., tab., 18 refs

  16. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.

    1984-12-01

    The Canadian Nuclear Fuel Waste Management Program involves research into the storage and transportation of used nuclear fuel, immobilization of fuel waste, and deep geological disposal of the immobilized waste. The program is now in the fourth year of a ten-year generic research and development phase. The objective of this phase of the program is to assess the safety and environmental aspects of the deep underground disposal of immobilized fuel waste in plutonic rock. The objectives of the research for each component of the program and the progress made to the end of 1983 are described in this report

  17. The Canadian long-term experimental used fuel storage program

    International Nuclear Information System (INIS)

    Wasywich, K.M.; Taylor, P.

    1993-01-01

    The Canadian experimental fuel storage program consists of four components: (1) storage of used CANDU (CANadian Deuterium Uranium, registered trademark of AECL) fuel under water, with periodic examination; (2) storage of used CANDU fuel in dry air at seasonally varying temperatures, and in both dry and moisture-saturated air at 150 C, also with periodic examination; (3) underlying research on the oxidation of unused and used UO 2 in dry and moist air at temperatures up to 300 C; and (4) modeling of UO 2 oxidation in dry air. The primary objective of the fuel-storage experiments is to investigate the stability of used CANDU fuel during long-term storage. Burnup of the fuel in these experiments ranges from ∼43 to 582 MW h/kg U, while the outer-element linear power ratings range from 22 to 79 kW/m. The storage behavior of intact and intentionally defected fuel, and fuel that defected in-reactor, is being investigated in the above experiments. Since differences in UO 2 oxidation behavior were observed between dry-air, moisture-saturated air and wet storage of intentionally defected used CANDU fuel, underlying research was initiated on oxidation of unused and used fuel to develop a better understanding of the different mechanisms. Modeling of UO 2 oxidation based on the results of the dry-storage experiments is also under way

  18. Liquid fuels from Canadian coals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. W.

    1979-06-15

    In Canadian energy planning, the central issue of security of supply must be addressed by developing flexible energy systems that make the best possible use of available resources. For liquid fuel production, oil sands and heavy oil currently appear more attractive than coal or biomass as alternatives to conventional crude oil, but the magnitude of their economic advantage is uncertain. The existence of large resources of oil sands, heavy oils, natural gas and low-sulfur coals in Western Canada creates a unique opportunity for Canadians to optimize the yield from these resources and develop new technology. Many variations on the three basic liquefaction routes - hydroliquefaction, pyrolysis and synthesis - are under investigation around the world, and the technology is advancing rapidly. Each process has merit under certain circumstances. Surface-mineable subbituminous and lignite coals of Alberta and Saskatchewan appear to offer the best combination of favorable properties, deposit size and mining cost, but other deposits in Alberta, Nova Scotia and British Columbia should not be ruled out. The research effort in Canada is small by world standards, but it is unlikely that technology could be imported that is ideally suited to Canadian conditions. Importing technology is undesirable: innovation or process modification to suit Canadian coals and markets is preferred; coprocessing of coal liquids with bitumen or heavy oils would be a uniquely Canadian, exportable technology. The cost of synthetic crude from coal in Canada is uncertain, estimates ranging from $113 to $220/m/sup 3/ ($18 to $35/bbl). Existing economic evaluations vary widely depending on assumptions, and can be misleading. Product quality is an important consideration.

  19. The Canadian Fusion Fuels Technology Project

    International Nuclear Information System (INIS)

    Dautovich, D.P.; Gierszewski, P.J.; Wong, K.Y.; Stasko, R.R.; Burnham, C.D.

    1987-04-01

    The Canadian Fusion Fuels Technology Project (CFFTP) is a national project whose aim is to develop capability in tritium and robotics technologies for application to international fusion development programs. Activities over the first five years have brought substantial interaction with the world's leading projects such as Tokamak Fusion Test Reactor (TFTR), the Joint European Torus (JET), and the Next European Torus (NET), Canadian R and D and engineering services, and hardware are in demand as these major projects prepare for tritium operation leading to the demonstration of energy breakeven around 1990. Global planning is underway for the next generation ignition experiment. It is anticipated this will provide increased opportunity for CFFTP and its contractors among industry, universities and governmental laboratories

  20. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Rummery, T.E.; Rosinger, E.L.J.

    1984-12-01

    The Canadian Nuclear Fuel Waste Management Program is in the fourth year of a ten-year generic research and development phase. The objective of this phase of the program is to assess the basic safety and environmental aspects of the concept of isolating immobilized fuel waste by deep underground disposal in plutonic rock. The major scientific and engineering components of the program, namely immobilization studies, geoscience research, and environmental and safety assessment, are described. Program funding, scheduling and associated external review processes are briefly outlined

  1. Canadian Fusion Fuels Technology Project activities report

    International Nuclear Information System (INIS)

    1985-01-01

    The Canadian Fusion Fuels Technology Project was formally established in 1982. The project is directed toward the further development of Canadian capabilities in five major areas: tritium technology, breeder technology, materials technology, equipment development and safety and the environment. The project is funded by three partners - Government of Canada (50%), Ontario Provincial Government (25%) and Ontario Hydro (25%). The fiscal year 1984/85 represents the third year of operation of the project. In 1984/85, 108 contracts were awarded totalling $4 million. Supplementary funding by subcontractors added approximately $1.9 million to the total project value. More than 200 people participated in the technical work involved in the project. Sixteen people were on attachment to foreign facilities for terms ranging from 1 month to 2.5 years. Five patents were applied for including a tritium discrimination monitor, a new radio-chemical tritium separation method, a new variation of fuel cleanup by gas chromatography, a passive tritium permeation system using bimetallic membranes, and a new breeder process using lithium salts dissolved in heavy water

  2. Canadian Fusion Fuels Technology Project annual report 93/94

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today`s advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report.

  3. Canadian Fusion Fuels Technology Project annual report 93/94

    International Nuclear Information System (INIS)

    1994-01-01

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today's advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report

  4. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Nuttall, K.

    1987-01-01

    Canada has established an extensive research program to develop and demonstrate the technology for safely disposing of nuclear fuel waste from Canadian nuclear electric generating stations. The program focuses on the concept of disposal deep in plutonic rock, which is abundant in the province of Ontario, Canada's major producer of nuclear electricity. Research is carried out at field research areas in the Canadian Precambrian Shield, and in government and university laboratories. The schedule calls for a document assessing the disposal concept to be submitted to regulatory and environmental agencies in late 1988. This document will form the basis for a review of the concept by these agencies and by the public. No site selection will be carried out before this review is completed. 10 refs.; 2 figs

  5. A benchmark comparison of the Canadian Supercritical Water-Cooled Reactor (SCWR) 64-element fuel lattice cell parameters using various computer codes

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, J.; Salaun, F.; Hummel, D.; Moghrabi, A., E-mail: sharpejr@mcmaster.ca [McMaster University, Hamilton, ON (Canada); Nowak, M. [McMaster University, Hamilton, ON (Canada); Institut National Polytechnique de Grenoble, Phelma, Grenoble (France); Pencer, J. [McMaster University, Hamilton, ON (Canada); Canadian Nuclear Laboratories, Chalk River, ON, (Canada); Novog, D.; Buijs, A. [McMaster University, Hamilton, ON (Canada)

    2015-07-01

    Discrepancies in key lattice physics parameters have been observed between various deterministic (e.g. DRAGON and WIMS-AECL) and stochastic (MCNP, KENO) neutron transport codes in modeling previous versions of the Canadian SCWR lattice cell. Further, inconsistencies in these parameters have also been observed when using different nuclear data libraries. In this work, the predictions of k∞, various reactivity coefficients, and relative ring-averaged pin powers have been re-evaluated using these codes and libraries with the most recent 64-element fuel assembly geometry. A benchmark problem has been defined to quantify the dissimilarities between code results for a number of responses along the fuel channel under prescribed hot full power (HFP), hot zero power (HZP) and cold zero power (CZP) conditions and at several fuel burnups (0, 25 and 50 MW·d·kg{sup -1} [HM]). Results from deterministic (TRITON, DRAGON) and stochastic codes (MCNP6, KENO V.a and KENO-VI) are presented. (author)

  6. A benchmark comparison of the Canadian Supercritical Water-Cooled Reactor (SCWR) 64-element fuel lattice cell parameters using various computer codes

    International Nuclear Information System (INIS)

    Sharpe, J.; Salaun, F.; Hummel, D.; Moghrabi, A.; Nowak, M.; Pencer, J.; Novog, D.; Buijs, A.

    2015-01-01

    Discrepancies in key lattice physics parameters have been observed between various deterministic (e.g. DRAGON and WIMS-AECL) and stochastic (MCNP, KENO) neutron transport codes in modeling previous versions of the Canadian SCWR lattice cell. Further, inconsistencies in these parameters have also been observed when using different nuclear data libraries. In this work, the predictions of k∞, various reactivity coefficients, and relative ring-averaged pin powers have been re-evaluated using these codes and libraries with the most recent 64-element fuel assembly geometry. A benchmark problem has been defined to quantify the dissimilarities between code results for a number of responses along the fuel channel under prescribed hot full power (HFP), hot zero power (HZP) and cold zero power (CZP) conditions and at several fuel burnups (0, 25 and 50 MW·d·kg"-"1 [HM]). Results from deterministic (TRITON, DRAGON) and stochastic codes (MCNP6, KENO V.a and KENO-VI) are presented. (author)

  7. Hydrogen fuel injection - the bridge to fuel cells

    International Nuclear Information System (INIS)

    Gilchrist, J.S.

    2004-01-01

    'Full text:' For over a century, industry has embraced a wide variety of applications for hydrogen. Since the mid-1970's, the focus of the bulk of hydrogen research has been in the area of fuel cells. Unfortunately, there is limited awareness of more immediate applications for hydrogen as a catalyst designed to improve the performance of existing hydro-carbon fuelled internal combustion engines. Canadian Hydrogen Energy Company manufactures a patented Hydrogen Fuel Injection System (HFI) that produces hydrogen and oxygen from distilled water and injects them, in measured amounts, into the air intake system on any heavy-duty diesel or gasoline application including trucks, buses, stationary generators, etc. In use on over 30 fleets, research is supported by over 40 million miles of field data. The hydrogen acts as a catalyst to promote more complete combustion, with remarkable results. Dramatically reduce emissions, particularly Carbon Monoxide and Particulate Matter. Increase horsepower and torque. Improved fuel efficiency (a minimum 10% improvement is guaranteed). Reduced oil degradation The HFI system offers the first large-scale application of the use of hydrogen and an excellent bridge to the fuel-cell technologies of the future. (author)

  8. Towards a greener world : hydrogen and fuel cells 2004 conference and trade show. Conference proceedings

    International Nuclear Information System (INIS)

    2004-01-01

    Fuel Cells Canada and the Canadian Hydrogen Association hosted the Hydrogen and Fuel Cells 2004 Conference and Tradeshow in Toronto, Ontario, Canada on September 25-28, 2004. Industry leaders from around the world showcased the latest developments in fuel cell and hydrogen technology, and shared research breakthroughs. The conference focussed on many aspects of hydrogen and fuel cell technology, specifically: hydrogen technology progress, including storage, infrastructure and production; fuel cells, including quality, cost and applications; economics and policy, including government and industry strategies; fuel cell demonstrations, including transportation, micro-fuel cells, and portable power; and, impact on climate change, including health and the Kyoto Accord

  9. Safeguards and security aspects of a potential Canadian used-fuel disposal facility

    International Nuclear Information System (INIS)

    Smith, R.M.; Wuschke, D.; Baumgartner, P.

    1994-09-01

    Large quantities of highly radioactive used fuel have been produced by Canadian nuclear generating stations. Conceptual design and development is under way to assess a means of disposing of this used fuel within a vault located 500 to 1000 m deep in plutonic rock in the Canadian Shield. In parallel with this work, the safeguards and physical security measures that will be required for this used fuel during transportation, packaging, and containment in a disposal vault are being studied in Canada, in several other countries that have similar requirements and by the International Atomic Energy Agency. Canadian commitments and regulations applicable to used-fuel transportation and disposal are described. The experience gained from applying safeguards and physical security measures at similar facilities is considered together with the availability of equipment that might be used in applying these measures. Possible safeguards and physical security measures are outlined and considered. These measures are based on the conceptual design studies for a reference Used-Fuel Disposal Centre and associated transportation systems undertaken by Atomic Energy of Canada Limited and Ontario Hydro. These studies show that effective and practical safeguards, which meet present IAEA objectives, can be applied to the used fuel in transportation and at a disposal facility. They also show that physical security measures can be employed that have a high probability of preventing theft or sabotage. 27 refs., 8 figs., 3 tabs., glossary, 2 appendices

  10. Safeguards and security aspects of a potential Canadian used-fuel disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R M; Wuschke, D; Baumgartner, P

    1994-09-01

    Large quantities of highly radioactive used fuel have been produced by Canadian nuclear generating stations. Conceptual design and development is under way to assess a means of disposing of this used fuel within a vault located 500 to 1000 m deep in plutonic rock in the Canadian Shield. In parallel with this work, the safeguards and physical security measures that will be required for this used fuel during transportation, packaging, and containment in a disposal vault are being studied in Canada, in several other countries that have similar requirements and by the International Atomic Energy Agency. Canadian commitments and regulations applicable to used-fuel transportation and disposal are described. The experience gained from applying safeguards and physical security measures at similar facilities is considered together with the availability of equipment that might be used in applying these measures. Possible safeguards and physical security measures are outlined and considered. These measures are based on the conceptual design studies for a reference Used-Fuel Disposal Centre and associated transportation systems undertaken by Atomic Energy of Canada Limited and Ontario Hydro. These studies show that effective and practical safeguards, which meet present IAEA objectives, can be applied to the used fuel in transportation and at a disposal facility. They also show that physical security measures can be employed that have a high probability of preventing theft or sabotage. 27 refs., 8 figs., 3 tabs., glossary, 2 appendices.

  11. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    MacIntyre, I.; Tchouvelev, A.V.; Hay, D.R.; Wong, J.; Grant, J.; Benard, P.

    2007-01-01

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  12. Status of the Canadian Nuclear Fuel Waste Management Program

    International Nuclear Information System (INIS)

    Lyon, R.B.

    1985-10-01

    The Canadian Nuclear Fuel Waste Management Program is in the fifth year of a ten-year generic research and development phase. The major objective of this phase of the program is to assess the basic safety and environmental aspects of the concept of isolating immobilized fuel waste by deep underground disposal in plutonic rock. The major scientific and engineering components of the program, namely immobilization studies, geoscience research, and environmental and safety assessment, are well established

  13. Developments in the Canadian program for geological disposal of nuclear fuel waste

    International Nuclear Information System (INIS)

    Allan, C.J.; Nuttall, K.

    1996-01-01

    The Canadian Nuclear Fuel Waste Management Program is at the end of disposal concept and technology development and is now undergoing a comprehensive environmental review. This paper will review: the history of the Canadian program; the disposal concept and the associated technologies; the program achievements and the lessons learned; and the status of the environmental review. (author)

  14. Long distance relationships : the secret for fuel cell success? fuel cell developers and integrators form trans-oceanic partnerships to crash through cultural barriers

    International Nuclear Information System (INIS)

    Horwitz, J.

    2009-01-01

    The varieties of viable fuel cell applications and widely varying regional market conditions have created global partnerships among entities with complementary attributes. Although it may appear that domestic liaisons among culturally similar players spawned from industry clusters should provide the clearest route to success in this industry, it is the intercontinental groupings which are demonstrating the most potential. This paper discussed the global fuel cell challenge and the vertical integration of multi-national partnerships. The paper also discussed the current global stationary market in perspective. Fuel cells require unique maintenance, support, and refueling including operator instruction and a new supply infrastructure. The paper addressed the fact that fuel cells represent a disruptive technology. A telecom backup status report was also presented. Other topics that were discussed included developing markets as well as specific examples of global organizations such as Canadian Ballard and Danish Dantherm Power and their fuel cell application solutions. It was concluded that after an inconsistent history, fuel cells have finally achieved viability in the real world. However, there is significant cultural resistance to their implementation in the United States. 4 figs

  15. Status of the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Allan, C.J.; Stephens, M.E.

    1992-01-01

    The Canadian Concept for the permanent disposal of nuclear fuel waste has been developed extensively over the past several years, and is now well-advanced. The Concept, which involves the construction of a waste vault 500 to 1000 metres deep in plutonic rock located in the Canadian Precambrian Shield, is supported by an R ampersand D program with the following objectives: (1) to develop and demonstrate technology to site, design, build and operate a disposal facility; (2) to develop and demonstrate a methodology to evaluate the performance of the disposal system; and (3) to demonstrate that sites are likely to exist in the Canadian Precambrian Shield that would meet the regulatory requirements. A combination of engineered and natural barriers will be used to ensure that the vault design will meet rigorous safety standards. Experimental work is being carried out to elucidate all the important phenomena associated with the safety of the vault, including the performance of engineered barriers, natural geological barriers, and the biosphere

  16. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies

    International Nuclear Information System (INIS)

    Li, Xue; Mupondwa, Edmund

    2014-01-01

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO 2 equivalent and 3.06 to 31.01 kg CO 2 /MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from − 0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. - Highlights: • LCA of camelina-derived biodiesel and jet fuel was based on the Canadian Prairies. • Overall, camelina-derived biodiesel had lower GHG emissions than is biojet fuel. • Camelina jet fuel had lower non-renewable energy (NRE) use than its biodiesel. • Camelina biofuels reduced GHG emissions and NRE use

  17. Second interim assessment of the Canadian concept for nuclear fuel waste disposal. Volume 2

    International Nuclear Information System (INIS)

    Gillespie, P.A.; Wuschke, D.M.; Guvanasen, V.M.; Mehta, K.K.; McConnell, D.B.; Tamm, J.A.; Lyon, R.B.

    1985-12-01

    The nuclear fuel waste disposal concept chosen for development and assessment in Canada involves the burial of corrosion-resistant containers of waste in a vault located deep in plutonic rock in the Canadian Shield. As the concept and the assessment tools are developed, periodic assessments are performed to permit evaluatin of the methodology and provide feedback to those developing the concept. The ultimate goal of these assessments is to predict what impact the disposal system would have if the concept were implemented. The second assessment was performed in 1984 and is documented in Second Interim Assessment of the Canadian Concept for Nuclear Fuel Waste Disposal - Volumes 1 to 4. This volume, entitled Background, discusses Canadian nuclear fuel wastes and the desirable features of a waste disposal method. It outlines several disposal options being considered by a number of countries, including the option chosen for development and assessment in Canada. The reference disposal systems assumed for the second assessment are described, and the approach used for concept assessment is discussed briefly. 79 refs

  18. Canadian experience with wet and dry fuel storage concepts

    International Nuclear Information System (INIS)

    Mayman, S.A.

    1978-07-01

    Canada has been storing fuel in water-filled pools for 30 years. There have been no significant problems, but until recently little effort has been invested in quantitative assessment of fuel performance under storage conditions. Work is now in progress to provide such information. Storage pools at nuclear generating stations have operated satisfactorily. The Canadian nuclear industry has nevertheless been studying methods for reducing storage costs and/or increasing reliability. Various concepts, using both water and air cooling, have been suggested. One such concept - the air-cooled concrete canister - is presently under test at the Whiteshell Nuclear Research Establishment. (author)

  19. Guide to the Canadian nuclear fuel waste management program. 2.ed

    International Nuclear Information System (INIS)

    Rosinger, E.L.J.; Lyon, R.B.; Gillespie, P.; Tamm, J.

    1983-02-01

    This document describes the administrative structure and major research and development components of the Canadian Nuclear Fuel Waste Management Program. It outlines the participating organizations, summarizes the program statistics, and describes the international cooperation and external review aspects of the program

  20. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Mupondwa, Edmund, E-mail: Edmund.Mupondwa@agr.gc.ca

    2014-05-01

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO{sub 2} equivalent and 3.06 to 31.01 kg CO{sub 2}/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from − 0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. - Highlights: • LCA of camelina-derived biodiesel and jet fuel was based on the Canadian Prairies. • Overall, camelina-derived biodiesel had lower GHG emissions than is biojet fuel. • Camelina jet fuel had lower non-renewable energy (NRE) use than its biodiesel. • Camelina biofuels reduced GHG emissions and NRE

  1. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    Science.gov (United States)

    Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  2. Second interim assessment of the Canadian concept for nuclear fuel waste disposal. Volume 1

    International Nuclear Information System (INIS)

    Wuschke, D.M.; Gillespie, P.A.; Main, D.E.

    1985-07-01

    The nuclear fuel waste disposal concept chosen for development and assessment in Canada involves the isolation of corrosion-resistant containers of waste in a vault located deep in plutonic rock. As the concept and the assessment tools are developed, periodic assessments are performed to permit evaluation of the methodology and provide feedback to those developing the concept. The ultimate goal of these assessments is to predict what impact the disposal system would have on man and the environment if the concept were implemented. The second assessment was performed in 1984 and is documented in the Second Interim assessment of the Canadian Concept for Nuclear Fuel Waste Disposal Volumes 1 to 4. This volume, entitled Summary, is a condensation of Volumes 2, 3 and 4. It briefly describes the Canadian nuclear fuel waste disposal concept, and the methods and results of the second interim pre-closure and post-closure assessments of that concept. 46 refs

  3. Optimization of the fuel assembly for the Canadian Supercritical Water-cooled Reactor (SCWR)

    Energy Technology Data Exchange (ETDEWEB)

    French, C.; Bonin, H.; Chan, P., E-mail: Corey.French@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    A parametric optimization of the Canadian Supercritical Water-cooled Reactor (SCWR) lattice geometry and fresh fuel content is performed in this work. With the potential to improve core physics and performance, significant gains to operating and safety margins could be achieved through slight progressions. The fuel performance codes WIMS-AECL and SERPENT are used to calculate performance factors, and use them as inputs to an optimization algorithm. (author)

  4. Management of radioactive fuel wastes: the Canadian disposal program

    International Nuclear Information System (INIS)

    Boulton, J.

    1978-10-01

    This report describes the research and development program to verify and demonstrate the concepts for the safe, permanent disposal of radioactive fuel wastes from Canadian nuclear reactors. The program is concentrating on deep underground disposal in hard-rock formations. The nature of the radioactive wastes is described, and the options for storing, processing, packaging and disposing of them are outlined. The program to verify the proposed concept, select a suitable site and to build and operate a demonstration facility is described. (author)

  5. Life cycle comparison of fuel cell vehicles and internal combustion engine vehicles for Canada and the United States

    Science.gov (United States)

    Zamel, Nada; Li, Xianguo

    The objective of this study is to put forward a full analysis of the impact of the difference between the Canadian and American energy realities on the life cycle of fuel cell vehicles and internal combustion engine vehicles. Electricity is a major type of energy used in the transportation sector. Electricity is needed in the production of feedstock of fuel, the production of the fuel, the production of the vehicle material and the assembly of the vehicles. Therefore, it is necessary to investigate the impact of the electricity mix difference between Canada and the United States. In the analysis, the life cycle of the fuel consists of obtaining the raw material, extracting the fuel from the raw material, transporting and storing the fuel as well as using the fuel in the vehicle. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extract hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station. It is found that fuel cell vehicle fuelled by hydrogen has lower energy consumption and greenhouse gas emissions than internal combustion engine vehicle fuelled by conventional gasoline except for hydrogen production using coal as the primary energy source in Canada and the United States. Using the Canadian electricity mix will result in lower carbon dioxide emissions and energy consumption than using the American electricity mix. For the present vehicles, using the Canadian electricity mix will save up to 215.18 GJ of energy and 20.87 t of CO 2 on a per capita basis and 26.53 GJ of energy and 6.8 t of CO 2 on a per vehicle basis. Similarly, for the future vehicles, using the Canadian electricity mix will lower the total carbon dioxide emissions by 21.15 t and the energy consumed is reduced by 218.49 GJ on a per capita basis and 26.53 GJ of energy and 7.22 t of CO 2 on a per vehicle basis. The well-to-tank efficiencies are higher with the

  6. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  7. Vault submodel for the second interim assessment of the Canadian concept for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    LeNeveu, D.M.

    1986-02-01

    The consequences to man and the environment of the disposal of nuclear fuel waste are being studied within the Canadian Nuclear Fuel Waste Management Program. The concept being assessed is that of a sealed disposal vault at a depth of 1000 m in plutonic rock in the Canadian Shield. To determine the consequences, the vault and its environment are simulated using a SYstem Variability Analysis Code (SYVAC), a stochastic model of the disposal system. SYVAC contains three submodels that represent the three major parts of the disposal system: the vault, the geosphere and the biosphere. This report documents the conceptual and mathematical framework of the vault submodel

  8. Canadian Hydrogen Association workshop on building Canadian strength with hydrogen systems. Proceedings

    International Nuclear Information System (INIS)

    2006-01-01

    The Canadian Hydrogen Association workshop on 'Building Canadian Strength with Hydrogen Systems' was held in Montreal, Quebec, Canada on October 19-20, 2006. Over 100 delegates attended the workshop and there were over 50 presentations made. The Canadian Hydrogen Association (CHA) promotes the development of a hydrogen infrastructure and the commercialization of new, efficient and economic methods that accelerate the adoption of hydrogen technologies that will eventually replace fossil-based energy systems to reduce greenhouse gas emissions. This workshop focused on defining the strategic direction of research and development that will define the future of hydrogen related energy developments across Canada. It provided a forum to strengthen the research, development and innovation linkages among government, industry and academia to build Canadian strength with hydrogen systems. The presentations described new technologies and the companies that are making small scale hydrogen and hydrogen powered vehicles. Other topics of discussion included storage issues, hydrogen safety, competition in the hydrogen market, hydrogen fuel cell opportunities, nuclear-based hydrogen production, and environmental impacts

  9. Human health considerations in the assessment of Canadian concept for the disposal of nuclear fuel wastes

    International Nuclear Information System (INIS)

    Baweja, A.S.; Tracy, B.L.; Ahier, B.; Bartlett, S.

    1996-01-01

    In 1978, AECL was mandated by the government of Ontario and the federal government to find a permanent disposal solution for spent nuclear fuels. Canada opted for disposal in plutonic rocks of the Canadian shield. The Canadian concept calls for disposal in crystalline rocks at a depth of 500 to 1000 m below the surface. The spent fuel would be contained in a canister, the canister would be emplaced in a vault containing clay-based buffer materials, and the cavity would be backfilled and sealed with natural materials. A Federal Environmental Assessment Review Panel was formed in 1992 to assess the concept for disposal of the spent fuel. In this paper a brief discussion of the human health impacts of the proposed concept is presented. Our assessment is based on the information provided by AECL, namely, the main EIS document, a summary and nine other supporting documents

  10. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  11. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies.

    Science.gov (United States)

    Li, Xue; Mupondwa, Edmund

    2014-05-15

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO2 equivalent and 3.06 to 31.01 kg CO2/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from -0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  12. Environmental and ventilation benefits for underground mining operations using fuel cell powered production equipment

    International Nuclear Information System (INIS)

    Kocsis, C.; Hardcastle, S.

    2007-01-01

    The benefits of replacing diesel engines with fuel cells in mine production equipment were discussed. The paper was part of a multi-year feasibility study conducted to evaluate the use of hydrogen fuel cell-powered equipment to replace diesel engine powered equipment in underground mining operations. The feasibility study demonstrated that fuel cells are capable of eliminating the unwanted by-products of combustion engines. However, the use of fuel cells also reduced the amount of ventilation that mines needed to supply, thereby further reducing energy consumption. This study examined the benefits of replacing diesel engines with fuel cells, and discussed the mitigating qualifiers that may limit ventilation energy savings. Solutions to retaining and maintaining additional ventilation in the event of hydrogen leaks from fuel cell stacks were also investigated. The analyses were conducted on 6 operating mines. Current operating costs were compared with future operating conditions using fuel cell powered production vehicles. Operating costs of the primary ventilation system were established with a mine ventilation simulator. The analysis considered exhaust shaft velocities, heating system air velocities, and levels of silica exposure. Canadian mine design criteria were reviewed. It was concluded that appropriate safeguards are needed along hydrogen distribution lines to lower the impacts of hydrogen leaks. Large financial commitments may also be required to ensure a spark-free environment. 20 refs., 6 tabs., 3 figs

  13. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  14. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  15. Fuel Cell Electric Bus Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Bus Evaluations Fuel Cell Electric Bus Evaluations NREL's technology validation team evaluates fuel cell electric buses (FCEBs) to provide comprehensive, unbiased evaluation results of fuel cell bus early transportation applications for fuel cell technology. Buses operate in congested areas where

  16. Fuel Cell Manufacturing Research and Development | Hydrogen and Fuel Cells

    Science.gov (United States)

    | NREL Fuel Cell Manufacturing Research and Development Fuel Cell Manufacturing Research and Development NREL's fuel cell manufacturing R&D focuses on improving quality-inspection practices for high costs. A researcher monitoring web-line equipment in the Manufacturing Laboratory Many fuel cell

  17. Optimization of the fuel assembly for the Canadian SuperCritical Water-cooled Reactor (SCWR)

    Energy Technology Data Exchange (ETDEWEB)

    French, C., E-mail: Corey.French@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada); Bonin, H.; Chan, P.K. [Royal Military College of Ontario, Kingston, Ontario (Canada)

    2013-07-01

    An approach to develop a parametric optimization tool to support the Canadian Supercritical Water-cooled Reactor (SCWR) fuel design is presented in this work. The 2D benchmark lattices for 78-pin and 64-pin fuel assemblies are used as the initial models from which fuel performance and subsequent optimization stem from. A tandem optimization procedure is integrated which employs the steepest descent method. The physics codes WIMS-AECL, MCNP6 and SERPENT are used to calculate and verify select performance factors. The results are used as inputs to an optimization algorithm that yield optimal fresh fuel isotopic composition and lattice geometry. Preliminary results on verifications of infinite lattice reactivity are demonstrated in this paper. (author)

  18. Fuel Cell Technology Status Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Technology Status Analysis Fuel Cell Technology Status Analysis Get Involved Fuel cell developers interested in collaborating with NREL on fuel cell technology status analysis should send an email to NREL's Technology Validation Team at techval@nrel.gov. NREL's analysis of fuel cell technology provides objective

  19. Fuel cells 101

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, B.

    2003-06-01

    A capsule history of fuel cells is given, beginning with the first discovery in 1839 by William Grove, a Welsh judge who, when experimenting with electrolysis discovered that by re-combining the two components of electrolysis (water and oxygen) an electric charge was produced. A century later, in 1958, Francis Thomas Bacon, a British scientist demonstrated the first working fuel cell stack, a technology which was licensed and used in the Apollo spacecraft. In Canada, early research on the development of fuel cells was carried out at the University of Toronto, the Defence Research Establishment and the National Research Council. Most of the early work concentrated on alkaline and phosphoric acid fuel cells. In 1983, Ballard Research began the development of the electrolyte membrane fuel cell, which marked the beginning of Canada becoming a world leader in fuel cell technology development. The paper provides a brief account of how fuel cells work, describes the distinguishing characteristics of the various types of fuel cells (alkaline, phosphoric acid, molten-carbonate, solid oxide, and proton exchange membrane types) and their principal benefits. The emphasis is on proton exchange membrane fuel cells because they are the only fuel cell technology that is appropriate for providing primary propulsion power onboard a vehicle. Since vehicles are by far the greatest consumers of fossil fuels, it follows that proton exchange membrane fuel cells will have the greatest potential impact on both environmental matters and on our reliance on oil as our primary fuel. Various on-going and planned fuel cell demonstration projects are also described. 1 fig.

  20. Towards a regional siting approach for canadian nuclear fuel waste

    International Nuclear Information System (INIS)

    Kuhn, R.G.

    1999-01-01

    The proposal to construct a nuclear fuel waste (NFW) disposal facility in Canada is fraught with difficulties, particularly with respect to gaining public acceptance and consent. Public perceptions of risk associated with a disposal facility are generally negative. Indeed, it was found that over 60% of residents in northern Ontario communities are opposed to the possibility of a disposal facility being constructed within 120 km of their community. Even after being offered the possibility of compensation and incentives, the majority of residents are strongly opposed. Canadian decision makers have generally endorsed a siting framework known as the open siting approach. The major characteristic of this approach is that it allows for substantial public participation in any siting process. It is premised on the notion that only communities where a majority of citizens favour the siting of a facility will be considered as potential hosts. However, given that the majority of residents on the Ontario portion of the Canadian Shield are strongly opposed to a NFW facility, the open approach will not be a panacea for a successful siting process. The major limitation of this approach is the fact that a single community cannot be isolated from its surrounding region and communities. The purpose of this paper is to work towards the development of a regional siting strategy for Canadian nuclear fuel waste management. There are no clear precedents of a regional siting approach to facility location in Canada. However, some analogous planning regimes and initiatives have been attempted. Common to these initiatives is the consideration of a large geographical region and attempts to integrate, at least formally, social, cultural, political and environmental concerns in a coherent and comprehensive manner. Under this type of 'siting strategy' NFW management would be considered within a broad array of resource management initiatives, social and cultural priorities, and institutional

  1. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been intensively developed in recent decades. Besides the fuel cell stack, air and fuel control and thermal and water management are major challenges in the development of the fuel cell for vehicle applications. The air supply system can have a major impact on overall system efficiency. In this paper a fuel cell system model for optimizing system operating conditions was developed wh...

  2. CERDEC Fuel Cell Team: Military Transitions for Soldier Fuel Cells

    Science.gov (United States)

    2008-10-27

    Fuel Cell (DMFC) (PEO Soldier) Samsung: 20W DMFC (CRADA) General Atomics & Jadoo: 50W Ammonia Borane Fueled PEMFC Current Fuel Cell Team Efforts...Continued Ardica: 20W Wearable PEMFC operating on Chemical Hydrides Spectrum Brands w/ Rayovac: Hydrogen Generators and Alkaline Fuel Cells for AA...100W Ammonia Borane fueled PEMFC Ultralife: 150W sodium borohydride fueled PEMFC Protonex: 250W RMFC and Power Manager (ARO) NanoDynamics: 250W SOFC

  3. Geoscience research for the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Whitaker, S.H.

    1987-01-01

    The Canadian Nuclear Fuel Waste Management Program is assessing the concept of deep disposal of nuclear fuel waste in plutonic rock. As part of that assessment, a broad program of geoscience and geotechnical work has been undertaken to develop methods for characterizing sites, incorporating geotechnical data into disposal facility design, and incorporating geotechnical data into environmental and safety assessment of the disposal system. General field investigations are conducted throughout the Precambrian Shield, subsurface investigations are conducted at designated field research areas, and in situ rock mass experiments are being conducted in an Underground Research Laboratory. Samples from the field research areas and elsewhere are subjected to a wide range of tests and experiments in the laboratory to develop an understanding of the physical and chemical processes involved in ground-water-rock-waste interactions. Mathematical models to simulate these processes are developed, verified and validated. 114 refs.; 13 figs

  4. Nanofluidic fuel cell

    Science.gov (United States)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  5. Bringing fuel cells to reality and reality to fuel cells: A systems perspective on the use of fuel cells

    International Nuclear Information System (INIS)

    Saxe, Maria

    2008-10-01

    The hopes and expectations on fuel cells are high and sometimes unrealistically positive. However, as an emerging technology, much remains to be proven and the proper use of the technology in terms of suitable applications, integration with society and extent of use is still under debate. This thesis is a contribution to the debate, presenting results from two fuel cell demonstration projects, looking into the introduction of fuel cells on the market, discussing the prospects and concerns for the near-term future and commenting on the potential use in a future sustainable energy system. Bringing fuel cells to reality implies finding near-term niche applications and markets where fuel cell systems may be competitive. In a sense fuel cells are already a reality as they have been demonstrated in various applications world-wide. However, in many of the envisioned applications fuel cells are far from being competitive and sometimes also the environmental benefit of using fuel cells in a given application may be questioned. Bringing reality to fuel cells implies emphasising the need for realistic expectations and pointing out that the first markets have to be based on the currently available technology and not the visions of what fuel cells could be in the future. The results from the demonstration projects show that further development and research on especially the durability for fuel cell systems is crucial and a general recommendation is to design the systems for high reliability and durability rather than striving towards higher energy efficiencies. When sufficient reliability and durability are achieved, fuel cell systems may be introduced in niche markets where the added values presented by the technology compensate for the initial high cost

  6. Solid Oxide Fuel Cells Canada (SOFCC)

    International Nuclear Information System (INIS)

    Birss, V.; Borglum, B.

    2006-01-01

    Vision: To enhance co-ordination and to ensure sustainable funding of research, development, and commercialization of solid oxide fuel cells and related technologies in Canada in order to create products that serve the world. Current Research Areas of Investigation: Mission: To provide cleaner air, reduce CO 2 emissions, better utilize fuel resources, increase economic prosperity, and enhance the quality of life in Canada and the world by enabling and accelerating development of the Canadian SOFC industry. To achieve this, we will: 1. Establish national priorities for the research, development, design, demonstration, and the innovation process; commercialization of SOFC and related technologies; 2. Develop a strategy to produce commercial products within 5 years; 3. Co-ordinate activities as one integrated Canada-wide initiative; 4. Facilitate effective access to funding by providing a venue for funders to directly participate in; 5. Provide an integrating and interdisciplinary function to maximize the collective knowledge, expertise, and capacity of the alliance partners; 6. Maintain strategic relevance within an ever changing global context by providing high-quality intelligence. (author)

  7. In situ liquid water visualization in polymer electrolyte membrane fuel cells with high resolution synchrotron x-ray radiography

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, S.; Banerjee, R.; Lee, J.; Ge, N.; Lee, C.; Bazylak, A., E-mail: abazylak@mie.utoronto.ca [Dept. of Mechanical & Industrial Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario (Canada); Wysokinski, T. W.; Belev, G.; Webb, A.; Miller, D.; Zhu, N. [Canadian Light Source, Saskatoon, Saskatchewan (Canada); Tabuchi, Y.; Kotaka, T. [EV System Laboratory, Research Division 2, Nissan Motor Co., Ltd., Yokosuka, Kanagawa (Japan)

    2016-07-27

    In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. From this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.

  8. In situ liquid water visualization in polymer electrolyte membrane fuel cells with high resolution synchrotron x-ray radiography

    International Nuclear Information System (INIS)

    Chevalier, S.; Banerjee, R.; Lee, J.; Ge, N.; Lee, C.; Bazylak, A.; Wysokinski, T. W.; Belev, G.; Webb, A.; Miller, D.; Zhu, N.; Tabuchi, Y.; Kotaka, T.

    2016-01-01

    In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. From this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.

  9. Fuel Cell Electric Vehicle Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Electric Vehicle Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the

  10. Development of the Canadian used fuel repository engineered barrier system

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, C., E-mail: chatton@nwmo.ca [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2015-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for the implementation of Adaptive Phased Management (APM), the federally-approved plan for the safe long-term management of Canada's used nuclear fuel. Under the APM plan, used nuclear fuel will ultimately be placed within a deep geological repository in a suitable rock formation. In implementing APM, the NWMO is committed to ensure consistency with international best practices in the development of its repository system, including any advances in technology. In 2012, the NWMO undertook an optimization study to look at both the design and manufacture of its engineered barriers. This study looked at current technologies for the design and manufacture of used fuel containers, placement technologies, repository design, and buffer and sealing systems, while taking into consideration the state of the art worldwide in repository design and acceptance. The result of that study is the current Canadian engineered barrier system, consisting of a 2.7 tonne used fuel container with a carbon-steel core, copper-coated surface and welded spherical heads. The used fuel container is encapsulated in a bentonite buffer box at the surface and then transferred underground. Once underground, the used fuel is placed into a repository room which is cut into the rock using traditional drill-and-blast technologies. This paper explains the logic for the selection of the container and sealing system design and the development of innovative technologies for their manufacture including the use of laser welding, cold spray and pulsed-electrodeposition copper coating for the manufacture of the used fuel container, isostatic presses for the production of the one-piece bentonite blocks, and slip-skid technologies for placement into the repository. (author)

  11. Development of the Canadian used fuel repository engineered barrier system

    International Nuclear Information System (INIS)

    Hatton, C.

    2015-01-01

    The Nuclear Waste Management Organization (NWMO) is responsible for the implementation of Adaptive Phased Management (APM), the federally-approved plan for the safe long-term management of Canada's used nuclear fuel. Under the APM plan, used nuclear fuel will ultimately be placed within a deep geological repository in a suitable rock formation. In implementing APM, the NWMO is committed to ensure consistency with international best practices in the development of its repository system, including any advances in technology. In 2012, the NWMO undertook an optimization study to look at both the design and manufacture of its engineered barriers. This study looked at current technologies for the design and manufacture of used fuel containers, placement technologies, repository design, and buffer and sealing systems, while taking into consideration the state of the art worldwide in repository design and acceptance. The result of that study is the current Canadian engineered barrier system, consisting of a 2.7 tonne used fuel container with a carbon-steel core, copper-coated surface and welded spherical heads. The used fuel container is encapsulated in a bentonite buffer box at the surface and then transferred underground. Once underground, the used fuel is placed into a repository room which is cut into the rock using traditional drill-and-blast technologies. This paper explains the logic for the selection of the container and sealing system design and the development of innovative technologies for their manufacture including the use of laser welding, cold spray and pulsed-electrodeposition copper coating for the manufacture of the used fuel container, isostatic presses for the production of the one-piece bentonite blocks, and slip-skid technologies for placement into the repository. (author)

  12. 2007 Canadian vehicle survey : summary report

    Energy Technology Data Exchange (ETDEWEB)

    Garcha, A.; Norup, S.; Kormylo, A.

    2009-09-15

    The Canadian vehicle survey is a quarterly survey of vehicle transportation activities in Canada that began in 1999. This report presented the results of the Canadian vehicle survey for 2007. The purpose of the survey is to encourage Canadians to make energy-efficient choices regarding their driving habits. The study shed light on Canadian fuel consumption behaviour, modes of transportation and consumer trends. This report examined the composition of Canada's vehicle fleet, the main characteristics of this fleet, and the patterns of vehicle use. Some behavioural characteristics of Canadian drivers were also discussed. Specific topics that were presented included Canada's on-road vehicle fleet; geographic analysis; light vehicles; heavy vehicles such as medium and heavy trucks; and trip analysis such as road types used by vehicles, rush hour and fuel consumption, and driver's age and gender. It was concluded that vehicles in Canada consumed 31 billion litres of gasoline and 11 billion litres of diesel. In addition, fuel efficiency for heavy trucks increased 21 percent between 2000 and 2007. 15 tabs., 39 figs., 4 appendices.

  13. Constant strength fuel-fuel cell

    International Nuclear Information System (INIS)

    Vaseen, V.A.

    1980-01-01

    A fuel cell is an electrochemical apparatus composed of both a nonconsumable anode and cathode; and electrolyte, fuel oxidant and controls. This invention guarantees the constant transfer of hydrogen atoms and their respective electrons, thus a constant flow of power by submergence of the negative electrode in a constant strength hydrogen furnishing fuel; when said fuel is an aqueous absorbed hydrocarbon, such as and similar to ethanol or methnol. The objective is accomplished by recirculation of the liquid fuel, as depleted in the cell through specific type membranes which pass water molecules and reject the fuel molecules; thus concentrating them for recycle use

  14. Fuels processing for transportation fuel cell systems

    Science.gov (United States)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  15. Fuel cells for electricity generation from carbonaceous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ledjeff-Hey, K; Formanski, V; Roes, J [Gerhard-Mercator- Universitaet - Gesamthochschule Duisburg, Fachbereich Maschinenbau/Fachgebiet Energietechnik, Duisburg (Germany); Heinzel, A [Fraunhofer Inst. for Solar Energy Systems (ISE), Freiburg (Germany)

    1998-09-01

    Fuel cells, which are electrochemical systems converting chemical energy directly into electrical energy with water and heat as by-products, are of interest as a means of generating electricity which is environmentally friendly, clean and highly efficient. They are classified according to the electrolyte used. The main types of cell in order of operating temperature are described. These are: alkaline fuel cells, the polymer electrolyte membrane fuel cell (PEMFC); the phosphoric acid fuel cell (PAFC); the molten carbonate fuel cell (MCFC); the solid oxide fuel cell (SOFC). Applications depend on the type of cell and may range from power generation on a large scale to mobile application in cars or portable systems. One of the most promising options is the PEM-fuel cell stack where there has been significant improvement in power density in recent years. The production from carbonaceous fuels and purification of the cell fuel, hydrogen, is considered. Of the purification methods available, hydrogen separation by means of palladium alloy membranes seems particular effective in reducing CO concentrations to the low levels required for PEM cells. (UK)

  16. Fuel cell opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Harris, K. [Hydrogenics Corporation, Mississauga, ON (Canada)

    2002-07-01

    The opportunities for fuel cell development are discussed. Fuel cells are highly efficient, reliable and require little maintenance. They also produce virtually zero emissions. The author stated that there are some complicated issues to resolve before fuel cells can be widely used. These include hydrogen availability and infrastructure. While the cost of fuel cells is currently very high, these costs are constantly coming down. The industry is still in the early stages of development. The driving forces for the development of fuel cells are: deregulation of energy markets, growing expectations for distributed power generation, discontinuity between energy supply and demand, and environmental concerns. 12 figs.

  17. Fuel cells

    International Nuclear Information System (INIS)

    Niederdoeckl, J.

    2001-01-01

    Europe has at present big hopes on the fuel cells technology, in comparison with other energy conversion technologies, this technology has important advantages, for example: high efficiency, very low pollution and parallel use of electric and thermal energy. Preliminary works for fuel cells developing and its commercial exploitation are at full speed; until now the European Union has invested approx. 1.7 billion Schillings, 60 relevant projects are being executed. The Austrian industry is interested in applying this technique to drives, thermal power stations and the miniature fuel cells as replacement of batteries in electronic products (Notebooks, mobile telephones, etc.). A general description of the historic development of fuel cells including the main types is given as well as what is the situation in Austria. (nevyjel)

  18. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance

  19. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  20. Handbook of fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

    1980-05-01

    The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

  1. Ammonia as a Suitable Fuel for Fuel Cells

    International Nuclear Information System (INIS)

    Lan, Rong; Tao, Shanwen

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  2. Methanol Fuel Cell

    Science.gov (United States)

    Voecks, G. E.

    1985-01-01

    In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.

  3. Fuel economy of hybrid fuel-cell vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  4. Safety issues in urban transit facilities for hydrogen-fueled buses

    International Nuclear Information System (INIS)

    Hay, R.H.; Ducharme, P.

    2004-01-01

    'Full text:' The Canadian Transportation Fuel Cell Alliance (CTFCA), created by the Canadian Government as part of its 2000 Climate Change Action Plan, has commissioned MARCON-DDM's Hydrogen Intervention Team (HIT) to provide a roadmap for urban transit systems that wish to move to hydrogen fuel cell-powered bus fleets. HIT is currently in the process of gathering information from hydrogen technology providers, bus manufacturers, fuelling system providers and urban transit systems in Canada, the US and Europe. In September, HIT will be in a position to provide a hands-on perspective of the introduction of fuel-cell buses in the Canadian environment. Part of the process of adding hydrogen-fueled busses to urban transit systems involves phasing in the new technology to minimize the economic cost. This involves substituting hydrogen buses into the normal bus procurement life cycle and maximizing the use of existing facilities for garaging, maintenance and fueling. Using a schematic outline of an urban transit system, this presentation will outline the safety issues specific to hydrogen in such systems, particularly for garaging, maintenance and fueling components. It will then outline how safety of these component is addressed in current and proposed codes, standards and recommended practices. Based on these requirements the impact of the introduction of hydrogen-fueled buses on each component of the transit system will be addressed in terms of the adaptations of current facilities and practices or the requirements for new facilities and practices. (author)

  5. Ammonia as a suitable fuel for fuel cells

    Directory of Open Access Journals (Sweden)

    Rong eLan

    2014-08-01

    Full Text Available Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  6. Conference summaries of the Canadian Nuclear Association 30. annual conference, and the Canadian Nuclear Society 11. annual conference

    International Nuclear Information System (INIS)

    1990-01-01

    This volume contains conference summaries for the 30. annual conference of the Canadian Nuclear Association, and the 11. annual conference of the Canadian Nuclear Society. Topics of discussion include: energy needs and challenges facing the Canadian nuclear industry; the environment and nuclear power; the problems of maintaining and developing industrial capacity; the challenges of the 1990's; programmes and issues for the 1990's; thermalhydraulics; reactor physics and fuel management; nuclear safety; small reactors; fuel behaviour; energy production and the environment; computer applications; nuclear systems; fusion; materials handling; and, reactor components

  7. A summary of the program and progress to 1984 December of the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.

    1986-08-01

    The Canadian Nuclear Fuel Waste Management Program involves research into the storage and transportation of used nuclear fuel, immobilization of fuel waste, and deep geological disposal of the immobilized waste. The program is now in the fifth year of a ten-year generic research and development phase. The objective of this phase of the program is to assess the safety and environmental aspects of the deep underground disposal of immobilized fuel waste in plutonic rock. The objectives of the research for each component of the program and the progress made to the end of 1984 are described in this report. 74 refs

  8. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  9. Fuel Cell Handbook, Fifth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  10. Canadian power reactor fuel

    International Nuclear Information System (INIS)

    Page, R.D.

    1976-03-01

    The following subjects are covered: the basic CANDU fuel design, the history of the bundle design, the significant differences between CANDU and LWR fuel, bundle manufacture, fissile and structural materials and coolants used in the CANDU fuel program, fuel and material behaviour, and performance under irradiation, fuel physics and management, booster rods and reactivity mechanisms, fuel procurement, organization and industry, and fuel costs. (author)

  11. 2009 Fuel Cell Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Bill [Breakthrough Technologies Inst., Washington, DC (United States); Gangi, Jennifer [Breakthrough Technologies Inst., Washington, DC (United States); Curtin, Sandra [Breakthrough Technologies Inst., Washington, DC (United States); Delmont, Elizabeth [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  12. An assessment of the feasibility of indefinite containment of Canadian nuclear fuel wastes

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; King, F.; Ikeda, B.M.

    1995-05-01

    This report presents an analysis of the expected corrosion behaviour of nuclear fuel waste containers in a conceptual Canadian disposal vault. The container materials considered are dilute Ti alloys (Grades-2, -12 and -16) and oxygen-free copper. The corrosive conditions within the disposal vault change with time as the initially trapped oxygen is consumed and as the heat and γ-radiation produced by the waste decays. This evolution of the vault environment is broadly classified into an early, warm and oxidizing period followed by a period of long-term, stable, cool and non-oxidizing conditions. The corrosion behaviour of both types of material during these two periods is discussed, and various models that have been developed to predict the lifetimes of the containers are presented. The conclusion is that indefinite containment of the waste is feasible with both copper and titanium alloys under Canadian disposal conditions. (author). refs., tabs., figs

  13. Fuel Cell Vehicle Basics | NREL

    Science.gov (United States)

    Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics Researchers are developing fuel cells that can be silver four-door sedan being driven on a roadway and containing the words "hydrogen fuel cell electric" across the front and rear doors. This prototype hydrogen fuel cell electric vehicle was

  14. Natural analogs in support of the Canadian concept for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Cramer, Jan.

    1994-08-01

    The assessment of the long-term safety and performance of the Canadian concept for disposal of nuclear fuel waste is a unique and challenging undertaking, because the predictions have to be made for time periods in the range of 10 4 to 10 6 a into the future. The data used for the assessment modelling is in large part based on observations from short-term laboratory and field experiments. Natural analogs can provide a reference for the safety assessment, providing both useful data and a qualitative illustration of the interaction of processes and materials in complex natural systems. This report reviews the available natural analog information used in support of the Canadian concept, with particular emphasis on the disposal of used CANDU (CANada Deuterium Uranium) fuel. The introduction gives a definition of natural analogs and an overview of the various types of analogs and analog studies. The review is broken down into sections pertaining to the major components of the disposal system: the vault, the geosphere and the biosphere. Specific examples are given for each. In addition, a section deals with several comprehensive natural systems that contain a number of features and processes similar to the disposal concept and that are under study by a number of countries as part of their waste management programs. (author). 224 refs., 11 tabs., 2 figs

  15. Natural analogs in support of the Canadian concept for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Jan

    1994-08-01

    The assessment of the long-term safety and performance of the Canadian concept for disposal of nuclear fuel waste is a unique and challenging undertaking, because the predictions have to be made for time periods in the range of 10{sup 4} to 10{sup 6} a into the future. The data used for the assessment modelling is in large part based on observations from short-term laboratory and field experiments. Natural analogs can provide a reference for the safety assessment, providing both useful data and a qualitative illustration of the interaction of processes and materials in complex natural systems. This report reviews the available natural analog information used in support of the Canadian concept, with particular emphasis on the disposal of used CANDU (CANada Deuterium Uranium) fuel. The introduction gives a definition of natural analogs and an overview of the various types of analogs and analog studies. The review is broken down into sections pertaining to the major components of the disposal system: the vault, the geosphere and the biosphere. Specific examples are given for each. In addition, a section deals with several comprehensive natural systems that contain a number of features and processes similar to the disposal concept and that are under study by a number of countries as part of their waste management programs. (author). 224 refs., 11 tabs., 2 figs.

  16. Fuel Cell Power Plants Renewable and Waste Fuels

    Science.gov (United States)

    2011-01-13

    logo, Direct FuelCell and “DFC” are all registered trademarks (®) of FuelCell Energy, Inc. Applications •On-site self generation of combined heat... of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency

  17. Fuel cells - a perspective

    International Nuclear Information System (INIS)

    Biegler, T.

    2005-01-01

    Unfortunately, fuel cell publicity conveys expectations and hopes that are often based on uncritical interpretations of the underlying science. The aim here is to use that science to analyse how the technology has developed and what can realistically be delivered by fuel cells. There have been great achievements in fuel cell technology over the past decade, with most types reaching an advanced stage of engineering development. But there has been some muddled thinking about one critical aspect, fuel cell energy efficiency. The 'Carnot cycle' argument, that fuel cells must be much more efficient than heat engines, is a red herring, of no help in predicting real efficiencies. In practice, fuel cells are not always particularly efficient and there are good scientific reasons for this. Cost reduction is a big issue for fuel cells. They are not in principle especially simple devices. Better engineering and mass production will presumably bring costs down, but because of their inherent complexity there is no reason to expect them to be cheap. It is fair to conclude that predictions of fuel cells as commonplace components of energy systems (including a hydrogen economy) need to be treated with caution, at least until major improvements eventuate. However, one type, the direct methanol fuel cell, is aimed at a clear existing market in consumer electronics

  18. Proceedings of the Canadian Nuclear Society 12. annual conference

    International Nuclear Information System (INIS)

    1991-01-01

    This volume contains the Proceedings of the seventeen Technical Sessions from the Twelfth Annual Conference of the Canadian Nuclear Society held in Saskatoon, Saskatchewan, June 9 to 12, 1991. As in previous years, the Annual Conference of the Canadian Nuclear Society was held in conjunction with the Annual Conference of the Canadian Nuclear Association. The major topics of discussion included: reactor physics; thermal hydraulics; industrial irradiation; computer applications; fuel channel analysis; small reactors; severe accidents; fuel behaviour under accident conditions; reactor components; safety related computer software; nuclear fuel management; nuclear waste management; and, uranium mining processing

  19. Fuel cells

    NARCIS (Netherlands)

    Veen, van J.A.R.; Janssen, F.J.J.G.; Santen, van R.A.

    1999-01-01

    The principles and present-day embodiments of fuel cells are discussed. Nearly all cells are hydrogen/oxygen ones, where the hydrogen fuel is usually obtained on-site from the reforming of methane or methanol. There exists a tension between the promise of high efficiency in the conversion of

  20. Fuel cell cassette with compliant seal

    Science.gov (United States)

    Karl, Haltiner, Jr. J.; Anthony, Derose J.; Klotzbach, Darasack C.; Schneider, Jonathan R.

    2017-11-07

    A fuel cell cassette for forming a fuel cell stack along a fuel cell axis includes a cell retainer, a plate positioned axially to the cell retainer and defining a space axially with the cell retainer, and a fuel cell having an anode layer and a cathode layer separated by an electrolyte layer. The outer perimeter of the fuel cell is positioned in the space between the plate and the cell retainer, thereby retaining the fuel cell and defining a cavity between the cell retainer, the fuel cell, and the plate. The fuel cell cassette also includes a seal disposed within the cavity for sealing the edge of the fuel cell. The seal is compliant at operational temperatures of the fuel cell, thereby allowing lateral expansion and contraction of the fuel cell within the cavity while maintaining sealing at the edge of the fuel cell.

  1. Thermoeconomic analysis of a fuel cell hybrid power system from the fuel cell experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Tomas [Endesa Generacion, Ribera del Loira, 60, 28042 Madrid (Spain)]. E-mail: talvarez@endesa.es; Valero, Antonio [Fundacion CIRCE, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain); Montes, Jose M. [ETSIMM-Universidad Politecnica de.Madrid, Rios Rosas, 21, 28003 Madrid (Spain)

    2006-08-15

    An innovative configuration of fuel cell technology is proposed based on a hybrid fuel cell system that integrates a turbogenerator to overcome the intrinsic limitations of fuel cells in conventional operation. An analysis is done of the application of molten carbonate fuel cell technology at the Guadalix Fuel Cell Test Facility, for the assessment of the performance of the fuel cell prototype to be integrated in the Hybrid Fuel Cell System. This is completed with a thermoeconomic analysis of the 100 kW cogeneration fuel cell power plant which was subsequently built. The operational results and design limitations are evaluated, together with the operational limits and thermodynamic inefficiencies (exergy destruction and losses) of the 100 kW fuel cell. This leads to the design of a hybrid system in order to demonstrate the possibilities and benefits of the new hybrid configuration. The results are quantified through a thermoeconomic analysis in order to get the most cost-effective plant configuration. One promising configuration is the MCFC topper where the fuel cell in the power plant behaves as a combustor for the turbogenerator. The latter behaves as the balance of plant for the fuel cell. The combined efficiency increased to 57% and NOx emissions are essentially eliminated. The synergy of the fuel cell/turbine hybrids lies mainly in the use of the rejected thermal energy and residual fuel from the fuel cell to drive the turbogenerator in a 500 kW hybrid system.

  2. Fuel cell systems

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Fuel cell systems are an entirely different approach to the production of electricity than traditional technologies. They are similar to the batteries in that both produce direct current through electrochemical process. There are six types of fuel cells each with a different type of electrolyte, but they all share certain important characteristics: high electrical efficiency, low environmental impact and fuel flexibility. Fuel cells serve a variety of applications: stationary power plants, transport vehicles and portable power. That is why world wide efforts are addressed to improvement of this technology. (Original)

  3. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  4. CANDU fuel deposits and chemistry optimizations. Recent regulatory experience in Canadian Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kameswaran, Ram

    2014-01-01

    Water chemistry of the Primary Heat Transport System (PHT) of CANDU – Pressurised Heavy Water Reactors profoundly influences the transport of corrosion products around the Heat Transport System (HTS), where they can be deposited as crud on steam generators, feeder pipes and on the fuel. Fuel cladding can be covered with deposits which have precipitated from the coolant as a result of temperature changes or non-optimal coolant pH. Precipitation of deposits in-core must be avoided as far as possible, as it leads to fouling of the fuel, loss of heat transfer efficiency, and increased radiation fields. In the recent years a Canadian NPP experienced increased instances of black deposits being observed on fuel bundles discharged from one of the units. The black deposits were initially observed in 2008 during in-bay fuel inspections. Since then it has been determined that all the discharged fuel bundles have black deposits on them and that observed deposits have been increasing in size (thickness and surface area). This negative trend has persisted through to 2012, when one of fuel bundles was observed with significantly larger deposit than previously seen. Initial analysis of the deposit indicated it to be iron oxide (magnetite). Flow Accelerated Corrosion (FAC) of carbon steel feeder pipes is the primary source of iron, which deposits as magnetite on HTS surfaces. The black deposits have predominantly been located immediately downstream of the bearing pads of the fuel bundle. Deposits have also tended to form on the bottom-downstream quadrant of the fuel bundles. The deposits were most prevalent in low power channels, but some deposits have been observed on high power channels. It was reported by the utility that the PHT system chemistry has been maintained in specification for most of the time during normal operation but the chemistry control during outages was inadequate. Due to design constraints, purification circuit was not available during outages and ion

  5. Fuel cells for commercial energy

    Science.gov (United States)

    Huppmann, Gerhard; Weisse, Eckart; Bischoff, Manfred

    1990-04-01

    The development of various types of fuel cells is described. Advantges and drawbacks are considered for alkaline fuel cells, phosphoric acid fuel cells, and molten carbonate fuel cells. It is shown that their modular construction is particularly adapted to power heat systems. A comparison which is largely in favor of fuel cells, is made between coal, oil, natural gas power stations, and fuel cells. Safety risks in operation are also compared with those of conventional power stations. Fuel cells are particularly suited for dwellings, shopping centers, swimming pools, other sporting installations, and research facilities, whose high current and heat requirements can be covered by power heat coupling.

  6. Chemistry research for the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Vikis, A.C.; Garisto, F.; Lemire, R.J.; Paquette, J.; Sagert, N.H.; Saluja, P.P.S.; Sunder, S.; Taylor, P.

    1988-01-01

    This publication reviews chemical research in support of the Canadian Nuclear Fuel Waste Management Program. The overall objective of this research is to develop the fundamental understanding required to demonstrate the suitability of waste immobilization media and processes, and to develop the chemical information required to predict the long-term behaviour of radionuclides in the geosphere after the waste form and the various engineered barriers containing it have failed. Key studies towards the above objective include experimental and theoretical studies of uranium dioxide oxidation/dissolution; compilation of thermodynamic databases and an experimental program to determine unavailable thermodynamic data; studies of hydrothermal alteration of minerals and radionuclide interactions with such minerals; and a study examining actinide colloid formation, as well as sorption of actinides on groundwater colloids

  7. Fuel cell sub-assembly

    Science.gov (United States)

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  8. Fuel cell hardware-in-loop

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.M.; Randolf, G.; Virji, M. [University of Hawaii, Hawaii Natural Energy Institute (United States); Hauer, K.H. [Xcellvision (Germany)

    2006-11-08

    Hardware-in-loop (HiL) methodology is well established in the automotive industry. One typical application is the development and validation of control algorithms for drive systems by simulating the vehicle plus the vehicle environment in combination with specific control hardware as the HiL component. This paper introduces the use of a fuel cell HiL methodology for fuel cell and fuel cell system design and evaluation-where the fuel cell (or stack) is the unique HiL component that requires evaluation and development within the context of a fuel cell system designed for a specific application (e.g., a fuel cell vehicle) in a typical use pattern (e.g., a standard drive cycle). Initial experimental results are presented for the example of a fuel cell within a fuel cell vehicle simulation under a dynamic drive cycle. (author)

  9. Seventh Edition Fuel Cell Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  10. Materials for fuel cells

    OpenAIRE

    Haile, Sossina M

    2003-01-01

    Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cell...

  11. Limitations of Commercializing Fuel Cell Technologies

    Science.gov (United States)

    Nordin, Normayati

    2010-06-01

    Fuel cell is the technology that, nowadays, is deemed having a great potential to be used in supplying energy. Basically, fuel cells can be categorized particularly by the kind of employed electrolyte. Several fuel cells types which are currently identified having huge potential to be utilized, namely, Solid Oxide Fuel Cells (SOFC), Molten Carbonate Fuel Cells (MCFC), Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC), Polymer Electron Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cells (DMFC) and Regenerative Fuel Cells (RFC). In general, each of these fuel cells types has their own characteristics and specifications which assign the capability and suitability of them to be utilized for any particular applications. Stationary power generations and transport applications are the two most significant applications currently aimed for the fuel cell market. It is generally accepted that there are lots of advantages if fuel cells can be excessively commercialized primarily in context of environmental concerns and energy security. Nevertheless, this is a demanding task to be accomplished, as there is some gap in fuel cells technology itself which needs a major enhancement. It can be concluded, from the previous study, cost, durability and performance are identified as the main limitations to be firstly overcome in enabling fuel cells technology become viable for the market.

  12. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  13. Fuel cell with internal flow control

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  14. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  15. Materials for low-temperature fuel cells

    CERN Document Server

    Ladewig, Bradley; Yan, Yushan; Lu, Max

    2014-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part

  16. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  17. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    As part of the process to create a fossil free Denmark by 2050, there is a need for the development of new energy technologies with higher efficiencies than the current technologies. Fuel cells, that can generate electricity at higher efficiencies than conventional combustion engines, can...... potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor....... This type of fuel cell operates at higher temperature than comparable fuel cell types and they distinguish themselves by high CO tolerance. Platinum based catalysts have their efficiency reduced by CO and the effect is more pronounced at low temperature. This Ph.D. Thesis investigates this type of fuel...

  18. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  19. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  20. Aircraft Fuel Cell Power Systems

    Science.gov (United States)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  1. Commercialization of fuel-cells

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.; Appleby, A.J.; Baker, B.S.; Bates, J.L.; Buss, L.B.; Dollard, W.J.; Farris, P.J.; Gillis, E.A.; Gunsher, J.A.; Khandkar, A.; Krumpelt, M.; O' Sullivan, J.B.; Runte, G.; Savinell, R.F.; Selman, J.R.; Shores, D.A.; Tarman, P.

    1995-03-01

    This report is an abbreviated version of the ''Report of the DOE Advanced Fuel Cell Commercialization Working Group (AFC2WG),'' released January 1995. We describe fuel-cell commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

  2. Progress in welding studies for Canadian nuclear fuel waste disposal containers

    International Nuclear Information System (INIS)

    Maak, P.Y.Y.

    1985-11-01

    This report describes the progress in the development of closure-welding technology for Canadian nuclear fuel waste disposal containers. Titanium, copper and Inconel 625 are being investigated as candidate materials for fabrication of these containers. Gas-tungsten-arc welding, gas metal-arc-welding, resistance-heated diffusion bonding and electron beam welding have been evaluated as candidate closure welding processes. Characteristic weldment properties, relative merits of welding techniques, suitable weld joint configurations and fit-up tolerances, and welding parameter control ranges have been identified for various container designs. Furthermore, the automation requirements for candidate welding processes have been assessed. Progress in the development of a computer-controlled remote gas-shielded arc welding system is described

  3. Fuel cells for naval aviation

    International Nuclear Information System (INIS)

    Satzberg, S.; Field, S.; Abu-Ali, M.

    2003-01-01

    Recent advances in fuel cell technology have occurred which make fuel cells increasingly attractive for electric power generation on future naval and commercial aircraft applications. These advances include significant increases in power density, the development of compact fuel reformers, and cost reductions due to commercialization efforts. The Navy's interest in aircraft fuel cells stems from their high energy efficiency (up to 40-60% for simple cycle; 60-70% for combined gas turbine/fuel cell hybrid cycles), and their negligible NOx and hydrocarbon emissions compared to conventional generators. While the U.S. Navy has been involved with fuel cell research and development as early as the 1960s, many of the early programs were for special warfare or undersea applications. In 1997, the Office of Naval Research (ONR) and Naval Sea Systems Command (NAVSEA) initiated a program to marinize commercial fuel cell technology for future Navy shipboard applications. The power density of fuel cell power systems is approaching the levels necessary for serious consideration for aircraft suitability. ONR and Naval Air Systems Command (NAVAIR) are initiating a program to develop a fuel cell power system suitable for future Navy aircraft applications, utilizing as much commercially-available technology as possible. (author)

  4. Fuel Cell Powered Lift Truck

    Energy Technology Data Exchange (ETDEWEB)

    Moulden, Steve [Sysco Food Service, Houston, TX (United States)

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  5. Issues related to the construction and operation of a geological disposal facility for nuclear fuel waste in crystalline rock - the Canadian experience

    Energy Technology Data Exchange (ETDEWEB)

    Allan, C.J.; Baumgartner, P.; Ohta, M.M.; Simmons, G.R.; Whitaker, S.H. [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs

    1997-12-31

    This paper covers the overview of the Canadian nuclear fuel waste management program, the general approach to the siting, design, construction, operation and closure of a geological disposal facility, the implementing disposal, and the public involvement in implementing geological disposal of nuclear fuel waste. And two appendices are included. 45 refs., 5 tabs., 10 figs.

  6. Issues related to the construction and operation of a geological disposal facility for nuclear fuel waste in crystalline rock - the Canadian experience

    International Nuclear Information System (INIS)

    Allan, C.J.; Baumgartner, P.; Ohta, M.M.; Simmons, G.R.; Whitaker, S.H.

    1997-01-01

    This paper covers the overview of the Canadian nuclear fuel waste management program, the general approach to the siting, design, construction, operation and closure of a geological disposal facility, the implementing disposal, and the public involvement in implementing geological disposal of nuclear fuel waste. And two appendices are included. 45 refs., 5 tabs., 10 figs

  7. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2010-06-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  8. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B. [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-06-30

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  9. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  10. The 2005 Canadian vehicle survey : summary report

    Energy Technology Data Exchange (ETDEWEB)

    Vallieres, S.

    2007-05-15

    This Canadian vehicle survey report provided an energy balance sheet for Canada as well as data on the production, trade, conversion rate and energy consumption of vehicle fleets per sector. Fuel consumption estimates were estimated based on fuel purchases and on-road vehicle use. The report highlighted the energy consumption of Canada's on-road vehicle fleet and examined the fleet composition characteristics. The data were compiled to enable government agencies to develop programs that help Canadians make energy efficient choices. Estimates were based on 2005 data from the Canadian Vehicle Survey (CVS). On-road vehicles consumed an estimated 29.5 billion litres of gasoline and 10 billion litres of diesel. Fuel consumption rates for light vehicles were 10.6 litres per 100 km. Rates for medium trucks were 10.6 litres per 100 km. The results of a quarterly analysis demonstrated that fuel efficiency improved during the warmest months of the year. Major increases in gasoline prices coincided with changes in driving habits. It was also noted that the number of light trucks has increased since 2000. Estimates also demonstrated that vehicles are more fuel efficient during long-distance trips, and that the age of drivers does not affect the fuel efficiency of gas-powered vehicles. 6 tabs., 6 figs.

  11. Thorium-Based Fuels Preliminary Lattice Cell Studies for Candu Reactors

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Rizoiu, A.C.

    2009-01-01

    The choice of nuclear power as a major contributor to the future global energy needs must take into account acceptable risks of nuclear weapon proliferation, in addition to economic competitiveness, acceptable safety standards, and acceptable waste disposal options. Candu reactors offer a proven technology, safe and reliable reactor technology, with an interesting evolutionary potential for proliferation resistance, their versatility for various fuel cycles creating premises for a better utilization of global fuel resources. Candu reactors impressive degree of fuel cycle flexibility is a consequence of its channel design, excellent neutron economy, on-power refueling, and simple fuel bundle. These features facilitate the introduction and exploitation of various fuel cycles in Candu reactors in an evolutionary fashion. The main reasons for our interest in Thorium-based fuel cycles have been, globally, to extend the energy obtainable from natural Uranium and, locally, to provide a greater degree of energy self-reliance. Applying the once through Thorium (OTT) cycle in existing and advanced Candu reactors might be seen as an evaluative concept for the sustainable development both from the economic and waste management points of view. Two Candu fuel bundles project will be used for the proposed analysis, namely the Candu standard fuel bundle with 37 fuel elements and the CANFLEX fuel bundle with 43 fuel elements. Using the Canadian proposed scheme - loading mixed ThO 2 -SEU CANFLEX bundles in Candu 6 reactors - simulated at lattice cell level led to promising conclusions on operation at higher fuel burnups, reduction of the fissile content to the end of the cycle, minor actinide content reduction in the spent fuel, reduction of the spent fuel radiotoxicity, presence of radionuclides emitting strong gamma radiation for proliferation resistance benefit. The calculations were performed using the lattice codes WIMS and Dragon (together with the corresponding nuclear data

  12. Fuel cells: Trends in research and applications

    Science.gov (United States)

    Appleby, A. J.

    Various aspects of fuel cells are discussed. The subjects addressed include: fuel cells for electric power production; phosphoric acid fuel cells; long-term testing of an air-cooled 2.5 kW PAFC stack in Italy; status of fuel cell research and technology in the Netherlands, Bulgaria, PRC, UK, Sweden, India, Japan, and Brazil; fuel cells from the manufacturer's viewpoint; and fuel cells using biomass-derived fuels. Also examined are: solid oxide electrolye fuel cells; aluminum-air batteries with neutral chloride electrolyte; materials research for advanced solid-state fuel cells at the Energy Research Laboratory in Denmark; molten carbonate fuel cells; the impact of the Siemens program; fuel cells at Sorapec; impact of fuel cells on the electric power generation systems in industrial and developing countries; and application of fuel cells to large vehicles.

  13. NASA fuel cell applications for space: Endurance test results on alkaline fuel cell electrolyzer components

    International Nuclear Information System (INIS)

    Sheibley, D.W.

    1984-01-01

    Fuel cells continue to play a major role in manned spacecraft power generation. The Gemini and Apollo programs used fuel cell power plants as the primary source of mission electrical power, with batteries as the backup. The current NASA use for fuel cells is in the Orbiter program. Here, low temperature alkaline fuel cells provide all of the on-board power with no backup power source. Three power plants per shipset are utilized; the original power plant contained 32-cell substacks connected in parallel. For extended life and better power performance, each power plant now contains three 32-cell substacks connected in parallel. One of the possible future applications for fuel cells will be for the proposed manned Space Station in low earth orbit (LEO)(1, 2, 3). By integrating a water electrolysis capability with a fuel cell (a regenerative fuel cell system), a multikilowatt energy storage capability ranging from 35 kW to 250 kW can be achieved. Previous development work on fuel cell and electrolysis systems would tend to minimize the development cost of this energy storage system. Trade studies supporting initial Space Station concept development clearly show regenerative fuel cell (RFC) storage to be superior to nickel-cadmium and nickel-hydrogen batteries with regard to subsystem weight, flexibility in design, and integration with other spacecraft systems when compared for an initial station power level ranging from 60 kW to 75 kW. The possibility of scavenging residual O 2 and H 2 from the Shuttle external tank for use in fuel cells for producing power also exists

  14. Progress in hydrogen fueled busses

    International Nuclear Information System (INIS)

    Scott, P.B.; Mazaika, D.M.; Tyler, T.

    2004-01-01

    'Full text:' The Thor/ISE fuel cell bus has been in demonstration and revenue service during 2002-2003 at sites including SunLine Transit, Chula Vista Transit, Los Angeles County Metropolitan Transit Authority, and AC Transit in Oakland. By taking advantage of ISE's advanced hybrid-electric drive technology, this 30-foot bus operates with a much smaller fuel cell than those used in other buses of this class. Further, stress on the fuel cell is diminished. Based on the exceptional performance of this prototype bus, the transit agencies listed above have concluded that hybrid electric hydrogen fueled buses are attractive. Two types of hydrogen fueled hybrid electric buses will be described: - fuel cell powered, and - HICE (Hydrogen Internal Combustion Engine) This progress report will include: 1. Experience with the Thor/ISE fuel cell bus, including results from revenue service at two transit locations, 2. Design and fabrication status of the advanced fuel cell buses being built for AC Transit and SunLine Transit, 3. Design and fabrication status of the prototype HHICE (Hybrid electric Hydrogen fueled Internal Combustion Engine) bus that uses a Ford hydrogen burning engine, mated to a generator, rather than a fuel cell. Other than the engine, the drive train in the HHICE bus is nearly identical to that of a fuel cell hybrid-electric bus. Canadian participation in the HHICE bus is extensive, it is a New Flyer platform and will be winter tested in Winnipeg. (author)

  15. Supply and cost factors for metals in the Canadian nuclear fuel waste immobilization program

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1982-11-01

    Estimates have been made of the demand for immobilization containers to accommodate the irradiated fuel bundles arising from Canadian nuclear generating stations to the year 2020. The resulting estimates for container shells and container-filling alloys were compared to estimates for Canadian and Western World production of the candiate metals. The results indicate that, among the container shell metals, supply difficulties might arise only for Grade 7 titanium. Among the filling metals, only lead-antimony alloy might present supply problems. Current cost figures for plate made of each shell metal, and bulk quantities of filling metals, were compared. Materials costs would be least for a supported shell of stainless steel, followed by copper, titanium alloys Grades 2, 12 and 7, and Inconel 625. Aluminum-silicon is the lowest-cost filling matrix, followed by zinc, lead, and lead-antimony. Container durability, vault conditions, groundwater composition and other factors may play an overriding role in the final selection of materials for container construction

  16. Biological fuel cells and their applications

    OpenAIRE

    Shukla, AK; Suresh, P; Berchmans, S; Rajendran, A

    2004-01-01

    One type of genuine fuel cell that does hold promise in the long-term is the biological fuel cell. Unlike conventional fuel cells, which employ hydrogen, ethanol and methanol as fuel, biological fuel cells use organic products produced by metabolic processes or use organic electron donors utilized in the growth processes as fuels for current generation. A distinctive feature of biological fuel cells is that the electrode reactions are controlled by biocatalysts, i.e. the biological redox-reac...

  17. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    Science.gov (United States)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  18. Corrosion of copper under Canadian nuclear fuel waste disposal conditions

    International Nuclear Information System (INIS)

    King, F.; Litke, C.D.

    1990-01-01

    The corrosion of copper was studied under Canadian nuclear fuel waste disposal conditions. The groundwater in a Canadian waste vault is expected to be saline, with chloride concentrations from 0.1 to 1.0 mol/l. The container would be packed in a sand/clay buffer, and the maximum temperature on the copper surface would be 100C; tests were performed up to 150C. Radiation fields will initially be around 500 rad/h, and conditions will be oxidizing. Sulfides may be present. The minimum design lifetime for the container is 500 years. Most work has been done on uniform corrosion, although pitting has been considered. It was found that the rate of uniform corrosion in aerated NaCl at room temperature is limited by the rate of the anodic reaction, which is controlled mainly by the rate of transport of dissolved metal species away from the copper surface. The rate of corrosion should become controlled by the transport of oxygen to the copper surface only at very low oxygen concentrations. In the presence of gamma radiation the corrosion rate may never become cathodically transport limited. In compacted buffer material, the corrosion rate appears to be limited by the rate of transport of copper species away from the corroding surface. The authors recommend that long-term predictions of container lifetime should be based on the known rate-determining step for the overall corrosion process. 8 refs

  19. Fuel Cell Electric Vehicle Composite Data Products | Hydrogen and Fuel

    Science.gov (United States)

    Cells | NREL Vehicle Composite Data Products Fuel Cell Electric Vehicle Composite Data Products The following composite data products (CDPs) focus on current fuel cell electric vehicle evaluations Cell Operation Hour Groups CDP FCEV 39, 2/19/16 Comparison of Fuel Cell Stack Operation Hours and Miles

  20. Proceedings of the Canadian Nuclear Society 15. annual conference

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, H M [Hydro-Quebec, Montreal, PQ (Canada)

    1994-12-31

    The proceedings of the 15. annual conference of the Canadian Nuclear Society cover a wide range of nuclear topics, but the emphasis is on CANDU reactors and Canadian experience. The 89 papers are arranged in 17 sessions dealing with the following subjects: thermalhydraulics, fuel channels, operations, reactor physics, fuel, new technology, safety, training, waste management. The individual papers have been abstracted separately.

  1. Proceedings of the Canadian Nuclear Society 15. annual conference

    International Nuclear Information System (INIS)

    Huynh, H.M.

    1994-01-01

    The proceedings of the 15. annual conference of the Canadian Nuclear Society cover a wide range of nuclear topics, but the emphasis is on CANDU reactors and Canadian experience. The 89 papers are arranged in 17 sessions dealing with the following subjects: thermalhydraulics, fuel channels, operations, reactor physics, fuel, new technology, safety, training, waste management. The individual papers have been abstracted separately

  2. Uniqueness of magnetotomography for fuel cells and fuel cell stacks

    International Nuclear Information System (INIS)

    Lustfeld, H; Hirschfeld, J; Reissel, M; Steffen, B

    2009-01-01

    The criterion for the applicability of any tomographic method is its ability to construct the desired inner structure of a system from external measurements, i.e. to solve the inverse problem. Magnetotomography applied to fuel cells and fuel cell stacks aims at determining the inner current densities from measurements of the external magnetic field. This is an interesting idea since in those systems the inner electric current densities are large, several hundred mA per cm 2 and therefore relatively high external magnetic fields can be expected. Still the question remains how uniquely the inverse problem can be solved. Here we present a proof that by exploiting Maxwell's equations extensively the inverse problem of magnetotomography becomes unique under rather mild assumptions and we show that these assumptions are fulfilled in fuel cells and fuel cell stacks. Moreover, our proof holds true for any other device fulfilling the assumptions listed here. Admittedly, our proof has one caveat: it does not contain an estimate of the precision requirements the measurements need to fulfil for enabling reconstruction of the inner current densities from external magnetic fields.

  3. Commercializing fuel cells: managing risks

    Science.gov (United States)

    Bos, Peter B.

    Commercialization of fuel cells, like any other product, entails both financial and technical risks. Most of the fuel cell literature has focussed upon technical risks, however, the most significant risks during commercialization may well be associated with the financial funding requirements of this process. Successful commercialization requires an integrated management of these risks. Like any developing technology, fuel cells face the typical 'Catch-22' of commercialization: "to enter the market, the production costs must come down, however, to lower these costs, the cumulative production must be greatly increased, i.e. significant market penetration must occur". Unless explicit steps are taken to address this dilemma, fuel cell commercialization will remain slow and require large subsidies for market entry. To successfully address this commercialization dilemma, it is necessary to follow a market-driven commercialization strategy that identifies high-value entry markets while minimizing the financial and technical risks of market entry. The financial and technical risks of fuel cell commercialization are minimized, both for vendors and end-users, with the initial market entry of small-scale systems into high-value stationary applications. Small-scale systems, in the order of 1-40 kW, benefit from economies of production — as opposed to economies to scale — to attain rapid cost reductions from production learning and continuous technological innovation. These capital costs reductions will accelerate their commercialization through market pull as the fuel cell systems become progressively more viable, starting with various high-value stationary and, eventually, for high-volume mobile applications. To facilitate market penetration via market pull, fuel cell systems must meet market-derived economic and technical specifications and be compatible with existing market and fuels infrastructures. Compatibility with the fuels infrastructure is facilitated by a

  4. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  5. Low contaminant formic acid fuel for direct liquid fuel cell

    Science.gov (United States)

    Masel, Richard I [Champaign, IL; Zhu, Yimin [Urbana, IL; Kahn, Zakia [Palatine, IL; Man, Malcolm [Vancouver, CA

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  6. A French fuel cell prototype

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    A French prototype of a fuel cell based on the PEM (proton exchange membrane) technology has been designed by Helion, a branch of Technicatome, this fuel cell delivers 300 kW and will be used in naval applications and terrestrial transport. The main advantages of fuel cell are: 1) no contamination, even if the fuel used is natural gas the quantities of CO 2 and CO emitted are respectively 17 and 75 times as little as the maximal quantities allowed by European regulations, 2) efficiency, the electric yield is up to 60 % and can reach 80 % if we include the recovery of heat, 3) silent, the fuel cell itself does not make noise. The present price of fuel cell is the main reason that hampers its industrial development, this price is in fact strongly dependant on the cost of its different components: catalyzers, membranes, bipolar plates and the hydrogen supply. This article gives the technical characteristics of the Helion's fuel cell. (A.C.)

  7. Photoactivated Fuel Cells (PhotoFuelCells. An alternative source of renewable energy with environmental benefits

    Directory of Open Access Journals (Sweden)

    Stavroula Sfaelou

    2016-03-01

    Full Text Available This work is a short review of Photoactivated Fuel Cells, that is, photoelectrochemical cells which consume an organic or inorganic fuel to produce renewable electricity or hydrogen. The work presents the basic features of photoactivated fuel cells, their modes of operation, the materials, which are frequently used for their construction and some ideas of cell design both for electricity and solar hydrogen production. Water splitting is treated as a special case of photoactivated fuel cell operation.

  8. Opportunities for PEM fuel cell commercialization : fuel cell electric vehicle demonstration in Shanghai

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.F. [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Chemical Engineering

    2006-07-01

    The research and development activities devoted to the development of the proton exchange membrane fuel cell (PEMFC) were discussed with reference to its application in the fuel cell electric vehicle (FCEV). In the past decade, PEMFC technology has been successfully applied in both the automobile and residential sector worldwide. In China, more than one billion RMB yuan has been granted by the Chinese government to develop PEM fuel cell technology over the past 5 years, particularly for commercialization of the fuel cell electric vehicle (FCEV). The City of Shanghai has played a significant role in the FCEV demonstration with involvement by Shanghai Auto Industrial Company (SAIC), Tongji University, Shanghai Jiaotong University, and Shanghai Shenli High Tech Co. Ltd. These participants were involved in the development and integration of the following components into the FCEV: fuel cell engines, batteries, FCEV electric control systems, and primary materials for the fuel cell stack. During the course of the next five year-plan (2006-2010), Shanghai will promote the commercialization of FCEV. More than one thousand FCEVs will be manufactured and an FCEV fleet will be in operation throughout Shanghai City by 2010.

  9. Fuel cell cooler-humidifier plate

    Science.gov (United States)

    Vitale, Nicholas G.; Jones, Daniel O.

    2000-01-01

    A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.

  10. Liquid fuel cells

    Directory of Open Access Journals (Sweden)

    Grigorii L. Soloveichik

    2014-08-01

    Full Text Available The advantages of liquid fuel cells (LFCs over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  11. Modeling fuel cell stack systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J H [Los Alamos National Lab., Los Alamos, NM (United States); Lalk, T R [Dept. of Mech. Eng., Texas A and M Univ., College Station, TX (United States)

    1998-06-15

    A technique for modeling fuel cell stacks is presented along with the results from an investigation designed to test the validity of the technique. The technique was specifically designed so that models developed using it can be used to determine the fundamental thermal-physical behavior of a fuel cell stack for any operating and design configuration. Such models would be useful tools for investigating fuel cell power system parameters. The modeling technique can be applied to any type of fuel cell stack for which performance data is available for a laboratory scale single cell. Use of the technique is demonstrated by generating sample results for a model of a Proton Exchange Membrane Fuel Cell (PEMFC) stack consisting of 125 cells each with an active area of 150 cm{sup 2}. A PEMFC stack was also used in the verification investigation. This stack consisted of four cells, each with an active area of 50 cm{sup 2}. Results from the verification investigation indicate that models developed using the technique are capable of accurately predicting fuel cell stack performance. (orig.)

  12. The role of long-term geologic changes in the regulation of the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Flavelle, P.

    1996-01-01

    It is recognized that the geosphere is a dynamic system over the long time frames of nuclear fuel waste disposal. This paper describes how consideration of a dynamic geosphere has impacted upon the evolving regulatory environment in Canada, and how the approach taken to comply with the regulatory requirements can affect the evaluation of long-term geologic changes. AECB staff opinion is that if the maximum possible effect of geologic changes can be demonstrated to have negligible impact on the safety of a nuclear fuel waste repository, then further consideration of a dynamic geosphere is unnecessary for the current review of the Canadian Nuclear Fuel Waste Management Program. (authors). 7 refs., 4 figs

  13. Canadian contribution to the European Union Home Team program for ITER

    International Nuclear Information System (INIS)

    Murdoch, D.K.; Blevins, J.D.; Gierszewski, P.; Matsugu, R.

    1998-01-01

    Canadian participation in R and D and design tasks for the ITER project is predominantly in the fuel cycle, remote handling and safety fields. These tasks are carried out in Canada by Ontario Hydro, research institutes, industry and universities. In addition, Canada provides the services of a number of specialist engineers and scientists in key positions at the three ITER work sites and in the European Home Team. The Canadian contribution, which is coordinated by the Canadian Fusion Fuels Technology Project (CFFTP), forms an integral part of the European Union Home Team program. The key components of the Canadian contribution are described. (author)

  14. Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle

    Science.gov (United States)

    Jeong, Kwi Seong; Oh, Byeong Soo

    The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.

  15. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Established to investigate, integrate, testand verifyperformance and technology readiness offuel cell systems and fuel reformers for use with...

  16. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  17. Hybrid Fuel Cell Technology Overview

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  18. What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance

    KAUST Repository

    Brett, Daniel J. L.

    2010-08-20

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due to reactant consumption, water management and the design of fluid-flow plates. It is therefore unlikely that any bulk measurement made on a fuel cell will accurately represent performance at all parts of the cell. The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise performance. This Minireview explores a range of in situ techniques being used to study fuel cells and describes the use of novel experimental techniques that the authors have used to develop an \\'experimental functional map\\' of fuel cell performance. These techniques include the mapping of current density, electrochemical impedance, electrolyte conductivity, contact resistance and CO poisoning distribution within working PEFCs, as well as mapping the flow of reactant in gas channels using laser Doppler anemometry (LDA). For the high-temperature solid oxide fuel cell (SOFC), temperature mapping, reference electrode placement and the use of Raman spectroscopy are described along with methods to map the microstructural features of electrodes. The combination of these techniques, applied across a range of fuel cell operating conditions, allows a unique picture of the internal workings of fuel cells to be obtained and have been used to validate both numerical and analytical models. © 2010 Wiley-VCH Verlag GmbH& Co. KGaA, Weinheim.

  19. Power assisted fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, L P; Atwater, T B; Plichta, E J; Cygan, P J [US Army CECOM, Fort Monmouth, NJ (United States). Research Development and Engineering Center

    1998-02-01

    A hybrid fuel cell demonstrated pulse power capability at pulse power load simulations synonymous with electronics and communications equipment. The hybrid consisted of a 25.0 W Proton Exchange Membrane Fuel Cell (PEMFC) stack in parallel with a two-cell lead-acid battery. Performance of the hybrid PEMFC was superior to either the battery or fuel cell stack alone at the 18.0 W load. The hybrid delivered a flat discharge voltage profile of about 4.0 V over a 5 h radio continuous transmit mode of 18.0 W. (orig.)

  20. The next generation fuel cells: anion exchange membrane fuel cells (AEMFC)

    International Nuclear Information System (INIS)

    Tauqir, A.; Zahoor, S.

    2013-01-01

    Many environmentally friendly alternatives (solar, wind, hydroelectric, and geothermal power) can only be used in particular environments. In contrast, fuel cells can have near-zero emissions, are quiet and efficient, and can work in any environment where the temperature is lower than the cell's operating temperature. Among various types of fuel cells, the AEMFC is the most recent one and has advantages such as excellent performance compared to other candidate fuel cells due to its active O/sub 2/ electrode kinetics and flexibility to use a wide range of electro-catalysts such as silver and nickels contrary to expensive one (Platinum) required for proton exchange membrane fuel cell (PEMFC). Anion exchange membrane (AEM) is a crucial part in AEMFC, determining durability and electrochemical performances of membrane electrode assembly (MEA). The role of an AEM is to conduct hydroxyl ions from cathode to anode. If this conduction is not sufficiently high and selective, the corresponding fuel cell will not find any practical application. One of the major problems associated with AEMFC is much lower conductivities of anion compare to proton conductivity in PEMFCs, even upon similar working condition. Thus AEMs is only practical, if it is chemically and mechanically stable against severe basic operation conditions and highly hydroxyl ions conductive. The conventional AEMs based on animated aliphatic and aromatic hydrocarbon or even fluorinated polymers tend to be attacked by hydroxyl ions, causing the degradation during operation is strongly basic conditions. (author)

  1. Fuel economy and range estimates for fuel cell powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Steinbugler, M.; Ogden, J. [Princeton Univ., NJ (United States)

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  2. 1986 fuel cell seminar: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-10-01

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  3. Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the hydrogen and fuel cells. It presents the hydrogen technology from the production to the distribution and storage, the issues as motor fuel and fuel cells, the challenge for vehicles applications and the Total commitments in the domain. (A.L.B.)

  4. Ansaldo programs on fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Marcenaro, B.G.; Federici, F. [Ansaldo Ricerche Srl, Genova (Italy)

    1996-12-31

    The growth in traffic and the importance of maintaining a stable ecology at the global scale, particularly with regard to atmospheric pollution, raises the necessity to realize a new generation of vehicles which are more efficient, more economical and compatible with the environment. At European level, the Car of Tomorrow task force has identified fuel cells as a promising alternative propulsion system. Ansaldo Ricerche has been involved in the development of fuel cell vehicles since the early nineties. Current ongoing programs relates to: (1) Fuel cell bus demonstrator (EQHEPP BUS) Test in 1996 (2) Fuel cell boat demonstrator (EQHHPP BOAT) Test in 1997 (3) Fuel cell passenger car prototype (FEVER) Test in 1997 (4) 2nd generation Fuel cell bus (FCBUS) 1996-1999 (5) 2nd generation Fuel cell passenger car (HYDRO-GEN) 1996-1999.

  5. Radioactive waste disposal - ethical and environmental considerations - A Canadian perspective

    International Nuclear Information System (INIS)

    Roots, F.

    1994-01-01

    This work deals with ethical and environmental considerations of radioactive waste disposal in Canada. It begins with the canadian attitudes toward nature and environment. Then are given the canadian institutions which reflect an environmental ethic, the development of a canadian radioactive waste management policy, the establishment of formal assessment and review process for a nuclear fuel waste disposal facility, some studies of the ethical and risk dimensions of nuclear waste decisions, the canadian societal response to issues of radioactive wastes, the analysis of risks associated with fuel waste disposal, the influence of other energy related environmental assessments and some common ground and possible accommodation between the different views. (O.L.). 50 refs

  6. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ersoz, Atilla; Olgun, Hayati [TUBITAK Marmara Research Center, Institute of Energy, Gebze, 41470 Kocaeli (Turkey); Ozdogan, Sibel [Marmara University Faculty of Engineering, Goztepe, 81040 Istanbul (Turkey)

    2006-03-09

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies. (author)

  7. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Science.gov (United States)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  8. 2009 Fuel Cell Market Report, November 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  9. Orbiter fuel cell improvement assessment

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1981-08-01

    The history of fuel cells and the theory of fuel cells is given. Expressions for thermodynamic and electrical efficiencies are developed. The voltage losses due to electrode activation, ohmic resistance and ionic diffusion are discussed. Present limitations of the Orbiter Fuel Cell, as well as proposed enhancements, are given. These enhancements are then evaluated and recommendations are given for fuel cell enhancement both for short-range as well as long-range performance improvement. Estimates of reliability and cost savings are given for enhancements where possible

  10. Massachusetts Fuel Cell Bus Project: Demonstrating a Total Transit Solution for Fuel Cell Electric Buses in Boston

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-22

    The Federal Transit Administration's National Fuel Cell Bus Program focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solution for fuel cell electric buses that includes one bus and an on-site hydrogen generation station for the Massachusetts Bay Transportation Authority (MBTA). A team consisting of ElDorado National, BAE Systems, and Ballard Power Systems built the fuel cell electric bus, and Nuvera is providing its PowerTap on-site hydrogen generator to provide fuel for the bus.

  11. Source term for the bounding assessment of the Canadian nuclear fuel waste disposal concept

    International Nuclear Information System (INIS)

    Flavelle, P.

    1996-02-01

    This is the second in a series to derive the bounds of the post-closure hazard of the Canadian nuclear fuel waste disposal concept, based on the premise that it is unnecessary to predict accurately the real hazard if the bounding hazard can be shown to be acceptable. In this report a reference used (Bruce A fuel, 865 GJ/kgU average burnup) is used to derive the source term for contaminant releases from the emplacement canisters. This requires development of a container failure function which defines the age of the fuel when the canister is perforated and flooded. The source term is expressed as the time-dependent fractional release rate from the used fuel or as the time-dependent contaminant concentrations in the canister porewater. It is derived as the superposition of an instant release, comprising the upper bound of the gap and grain boundary inventory in the used fuel, and the long-term dissolution of the used fuel matrix. Several dissolution models (stoichiometric dissolution/preferential leaching) under different conditions (matrix solubility limited/ unlimited; oxidizing/ reducing solubility limits; groundwater flow/ no flow) are evaluated and the one resulting in the highest release rate/ highest porewater concentration is adopted as the bounding case. Comparisons between the models are made on the basis of the potential ingestion hazard of the canister porewater, to account for differences in the hazard of different radionuclides. (author) 20 refs., 4 tabs., 9 figs

  12. A comparison of sodium borohydride as a fuel for proton exchange membrane fuel cells and for direct borohydride fuel cells

    Science.gov (United States)

    Wee, Jung-Ho

    Two types of fuel cell systems using NaBH 4 aqueous solution as a fuel are possible: the hydrogen/air proton exchange membrane fuel cell (PEMFC) which uses onsite H 2 generated via the NaBH 4 hydrolysis reaction (B-PEMFC) at the anode and the direct borohydride fuel cell (DBFC) system which directly uses NaBH 4 aqueous solution at the anode and air at the cathode. Recently, research on these two types of fuel cells has begun to attract interest due to the various benefits of this liquid fuel for fuel cell systems for portable applications. It might therefore be relevant at this stage to evaluate the relative competitiveness of the two fuel cells. Considering their current technologies and the high price of NaBH 4, this paper evaluated and analyzed the factors influencing the relative favorability of each type of fuel cell. Their relative competitiveness was strongly dependent on the extent of the NaBH 4 crossover. When considering the crossover in DBFC systems, the total costs of the B-PEMFC system were the most competitive among the fuel cell systems. On the other hand, if the crossover problem were to be completely overcome, the total cost of the DBFC system generating six electrons (6e-DBFC) would be very similar to that of the B-PEMFC system. The DBFC system generating eight electrons (8e-DBFC) became even more competitive if the problem of crossover can be overcome. However, in this case, the volume of NaBH 4 aqueous solution consumed by the DBFC was larger than that consumed by the B-PEMFC.

  13. Third International Fuel Cell Conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-30

    The Third International Fuel Cell Conference was held on November 30 to December 3, 1999 in City of Nagoya. A total of 139 papers, including those for plenary, sectional and poster cessions, were presented. In the plenary session, US's DOE presented fuel cell power plant development in the United States, EC fuel cells in perspective and fifth European framework programme, and Japan overview of the New Sunshine Program. In the polymer electrolyte fuel cells sessions, 23 papers were presented, including current status of commercialization and PEMFC systems developed by Toshiba. In the phosphoric acid fuel cells session, 6 papers were presented, including field test results and market developments. In the molten carbonate fuel cells session, 24 papers were presented, including development of 1,000kW MCFC power plant. In the solid oxide fuel cells session, 20 papers were presented, including 100kW SOFC field test results. The other topics include market analysis and fuel processes. (NEDO)

  14. Third International Fuel Cell Conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-30

    The Third International Fuel Cell Conference was held on November 30 to December 3, 1999 in City of Nagoya. A total of 139 papers, including those for plenary, sectional and poster cessions, were presented. In the plenary session, US's DOE presented fuel cell power plant development in the United States, EC fuel cells in perspective and fifth European framework programme, and Japan overview of the New Sunshine Program. In the polymer electrolyte fuel cells sessions, 23 papers were presented, including current status of commercialization and PEMFC systems developed by Toshiba. In the phosphoric acid fuel cells session, 6 papers were presented, including field test results and market developments. In the molten carbonate fuel cells session, 24 papers were presented, including development of 1,000kW MCFC power plant. In the solid oxide fuel cells session, 20 papers were presented, including 100kW SOFC field test results. The other topics include market analysis and fuel processes. (NEDO)

  15. The birth of the fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Don

    2001-12-01

    Everyone knows that Thomas Alva Edison invented the light bulb, Alexander Graham Bell the telephone and that the Otto and Diesel engines were invented by two Germans bearing those names. But who invented the fuel cell? Fuel cells generate electricity with virtually zero pollution by combining gaseous fuels and air. There are different types generally described as high temperature or low temperature fuel cells. Here, Don Prohaska delves into a recently published book: The Birth of the Fuel Cell, by a descendant of one of the fathers of the fuel cell, and sheds new light on the early days of this technology. (Author)

  16. Fuel cell water transport

    Science.gov (United States)

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  17. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.

    Science.gov (United States)

    Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan

    2018-05-01

    Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

  18. Novel materials for fuel cells operating on liquid fuels

    Directory of Open Access Journals (Sweden)

    César A. C. Sequeira

    2017-05-01

    Full Text Available Towards commercialization of fuel cell products in the coming years, the fuel cell systems are being redefined by means of lowering costs of basic elements, such as electrolytes and membranes, electrode and catalyst materials, as well as of increasing power density and long-term stability. Among different kinds of fuel cells, low-temperature polymer electrolyte membrane fuel cells (PEMFCs are of major importance, but their problems related to hydrogen storage and distribution are forcing the development of liquid fuels such as methanol, ethanol, sodium borohydride and ammonia. In respect to hydrogen, methanol is cheaper, easier to handle, transport and store, and has a high theoretical energy density. The second most studied liquid fuel is ethanol, but it is necessary to note that the highest theoretically energy conversion efficiency should be reached in a cell operating on sodium borohydride alkaline solution. It is clear that proper solutions need to be developed, by using novel catalysts, namely nanostructured single phase and composite materials, oxidant enrichment technologies and catalytic activity increasing. In this paper these main directions will be considered.

  19. 14 CFR 31.45 - Fuel cells.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel cells. 31.45 Section 31.45 Aeronautics... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.45 Fuel cells. If fuel cells are used, the fuel cells, their attachments, and related supporting structure must be shown by tests to be capable of...

  20. Status and promise of fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [National Energy Technology Lab., Pittsburgh, PA (United States). Dept. of Energy

    2001-09-01

    The niche or early entry market penetration by ONSI and its phosphoric acid fuel cell technology has proven that fuel cells are reliable and suitable for premium power and other opportunity fuel niche market applications. Now, new fuel cell technologies - solid oxide fuel cells, molten carbonate fuel cells, and polymer electrolyte fuel cells - are being developed for near-term distributed generation shortly after 2003. Some of the evolving fuel cell systems are incorporating gas turbines in hybrid configurations. The combination of the gas turbine with the fuel cell promises to lower system costs and increase efficiency to enhance market penetration. Market estimates indicate that significant early entry markets exist to sustain the initially high cost of some distributed generation technologies. However, distributed generation technologies must have low introductory first cost, low installation cost, and high system reliability to be viable options in competitive commercial and industrial markets. In the long-term, solid state fuel cell technology with stack costs under $100/kilowatt (kW) promises deeper and wider market penetration in a range of applications including a residential, auxillary power, and the mature distributed generation markets. The solid state energy conversion alliance (SECA) with its vision for fuel cells in 2010 was recently formed to commercialize solid state fuel cells and realize the full potential of the fuel cell technology. Ultimately, the SECA concept could lead to megawatt-size fuel-cell systems for commercial and industrial applications and Vision 21 fuel cell turbine hybrid energy plants in 2015. (orig.)

  1. Fuel cells fuelled by Saccharides

    International Nuclear Information System (INIS)

    Schechner, P.; Mor, L.; Sabag, N.; Rubin, Z.; Bubis, E.

    2005-01-01

    Full Text:Saccharides, like glucose, fructose and lactose, are ideal renewable fuels. They have high energy content, are safe, transportable, easy to store, non-flammable, non poisonous, non-volatile, odorless, easy to produce anywhere and abundant. Fuel Cells are electro-chemical devices capable to convert chemical energy into electrical energy from fuels, with theoretical efficiencies higher than 0.8 at room temperatures and with low pollutant emissions. Fuel Cells that can produce electricity form saccharides will be able to replace batteries, power electrical plants from biomass wastes, and serve as engines for transportation. In spite of these advantages, saccharide fuelled fuel cells are no available yet. Two obstacles hinder the feasibility of this potentially revolutionary device. The first is the high stability of the saccharides, which requires a good catalyst to extract the electrons from the saccharide fuel. The second is related to the nature of the Fuel Cells: the physical process takes place at the interface surface between the fuel and the electrode. In order to obtain high densities, materials with high surface to volume ratio are needed. Efforts to overcome these obstacles will be described. The use of saccharides as a fuel was treated from the thermodynamic point of view and compared with other common fuels currently used in fuel cells. We summarize measurements performed in a membrane less Alkaline Fuel Cell, using glucose as a fuel and KOH as electrolyte. The anode has incorporated platinum particles and operated at room temperature. Measurements were done, at different concentrations of glucose, of the Open Circuit Voltage, Polarization Curves and Power Density as function of the Current Density. The maximum Power Density reached was 0.61 mW/cm 2 when the Current density was 2.13 mA/cm 2 and the measured Open Circuit Voltage was 0.771 V

  2. Solid electrolyte fuel cells

    Science.gov (United States)

    Isaacs, H. S.

    Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.

  3. Fuel choices for fuel-cell vehicles : well-to-wheel energy and emission impacts

    International Nuclear Information System (INIS)

    Wang, M.

    2002-01-01

    Because of their high energy efficiencies and low emissions, fuel-cell vehicles (FCVs) are undergoing extensive research and development. While hydrogen will likely be the ultimate fuel to power fuel-cell vehicles, because of current infrastructure constraints, hydrogen-carrying fuels are being investigated as transitional fuel-cell fuels. A complete well-to-wheels (WTW) evaluation of fuel-cell vehicle energy and emission effects that examines (1) energy feedstock recovery and transportation; (2) fuel production, transportation, and distribution; and (3) vehicle operation must be conducted to assist decision makers in selecting the fuel-cell fuels that achieve the greatest energy and emission benefits. A fuel-cycle model developed at Argonne National Laboratory--called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model--was used to evaluate well-to-wheels energy and emission impacts of various fuel-cell fuels. The results show that different fuel-cell fuels can have significantly different energy and greenhouse gas emission effects. Therefore, if fuel-cell vehicles are to achieve the envisioned energy and emission reduction benefits, pathways for producing the fuels that power them must be carefully examined.

  4. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    Science.gov (United States)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2013-02-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  5. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    Directory of Open Access Journals (Sweden)

    Milewski Jarosław

    2013-02-01

    Full Text Available Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC and molten carbonate fuel cell (MCFC have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV for projects was estimated and commented.

  6. Carbon fuel particles used in direct carbon conversion fuel cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  7. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  8. Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work

    Science.gov (United States)

    vehicles. Hydrogen car image Key Components of a Hydrogen Fuel Cell Electric Car Battery (auxiliary): In an Using Hydrogen? Fuel Cell Electric Vehicles Work Using Hydrogen? to someone by E-mail Share Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work Using Hydrogen? on Facebook Tweet about

  9. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  10. Arrangement of fuel cell system for TNRF

    International Nuclear Information System (INIS)

    Nojima, Takehiro; Yasuda, Ryo; Iikura, Hiroshi; Sakai, Takuro; Matsubayashi, Masahito; Takenaka, Nobuyuki; Hayashida, Hirotoshi

    2012-02-01

    Polymer electrolyte fuel cells (fuel cells) can be potentially employed as sources of clean energy because they discharge only water as by-products. Fuel cells generate electricity with supply of oxygen and hydrogen gases. However, the water produced by the fuel cells blocks the gas supply, thereby degrading their performances. Therefore, it is important to understand the behavior of the water produced by the fuel cells in order to facilitate their development. Neutron radiography is a useful tool for visualizing the distribution of water in fuel cells. We have designed fuel cell operation system for TNRF (Thermal Neutron Radiography Facility) at JRR-3. The fuel cell operation system consists of various components such as gas flow and humidification systems, hydrogen-diluting system, purge system, and safety system for hydrogen gas. We tested this system using a Japan Automobile Research Institute (JARI) standard cell. The system performed stably and efficiently. In addition, neutron radiography tests were carried out to visualize the water distribution. The water produced by the fuel cell was observed during the fuel cell operation. (author)

  11. Fuel Production from Seawater and Fuel Cells Using Seawater.

    Science.gov (United States)

    Fukuzumi, Shunichi; Lee, Yong-Min; Nam, Wonwoo

    2017-11-23

    Seawater is the most abundant resource on our planet and fuel production from seawater has the notable advantage that it would not compete with growing demands for pure water. This Review focuses on the production of fuels from seawater and their direct use in fuel cells. Electrolysis of seawater under appropriate conditions affords hydrogen and dioxygen with 100 % faradaic efficiency without oxidation of chloride. Photoelectrocatalytic production of hydrogen from seawater provides a promising way to produce hydrogen with low cost and high efficiency. Microbial solar cells (MSCs) that use biofilms produced in seawater can generate electricity from sunlight without additional fuel because the products of photosynthesis can be utilized as electrode reactants, whereas the electrode products can be utilized as photosynthetic reactants. Another important source for hydrogen is hydrogen sulfide, which is abundantly found in Black Sea deep water. Hydrogen produced by electrolysis of Black Sea deep water can also be used in hydrogen fuel cells. Production of a fuel and its direct use in a fuel cell has been made possible for the first time by a combination of photocatalytic production of hydrogen peroxide from seawater and dioxygen in the air and its direct use in one-compartment hydrogen peroxide fuel cells to obtain electric power. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fuel cells principles, design, and analysis

    CERN Document Server

    Revankar, Shripad T

    2014-01-01

    ""This book covers all essential themes of fuel cells ranging from fundamentals to applications. It includes key advanced topics important for understanding correctly the underlying multi-science phenomena of fuel cell processes. The book does not only cope with traditional fuel cells but also discusses the future concepts of fuel cells. The book is rich on examples and solutions important for applying the theory into practical use.""-Peter Lund, Aalto University, Helsinki""A good introduction to the range of disciplines needed to design, build and test fuel cells.""-Nigel Brandon, Imperial Co

  13. Methanol fuel processor and PEM fuel cell modeling for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Chrenko, Daniela [ISAT, University of Burgundy, Rue Mlle Bourgoise, 58000 Nevers (France); Gao, Fei; Blunier, Benjamin; Bouquain, David; Miraoui, Abdellatif [Transport and Systems Laboratory (SeT) - EA 3317/UTBM, Fuel cell Laboratory (FCLAB), University of Technology of Belfort-Montbeliard, Rue Thierry Mieg 90010, Belfort Cedex (France)

    2010-07-15

    The use of hydrocarbon fed fuel cell systems including a fuel processor can be an entry market for this emerging technology avoiding the problem of hydrogen infrastructure. This article presents a 1 kW low temperature PEM fuel cell system with fuel processor, the system is fueled by a mixture of methanol and water that is converted into hydrogen rich gas using a steam reformer. A complete system model including a fluidic fuel processor model containing evaporation, steam reformer, hydrogen filter, combustion, as well as a multi-domain fuel cell model is introduced. Experiments are performed with an IDATECH FCS1200 trademark fuel cell system. The results of modeling and experimentation show good results, namely with regard to fuel cell current and voltage as well as hydrogen production and pressure. The system is auto sufficient and shows an efficiency of 25.12%. The presented work is a step towards a complete system model, needed to develop a well adapted system control assuring optimized system efficiency. (author)

  14. Fuel cells: Project Volta

    Energy Technology Data Exchange (ETDEWEB)

    Vellone, R.; Di Mario, F.

    1987-09-01

    This paper discusses research and development in the field of fuel cell power plants. Reference is made to the Italian research Project Volta. Problems related to research program financing and fuel cell power plant marketing are discussed.

  15. Fuel handling machine and auxiliary systems for a fuel handling cell

    International Nuclear Information System (INIS)

    Suikki, M.

    2013-10-01

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  16. Fuel handling machine and auxiliary systems for a fuel handling cell

    Energy Technology Data Exchange (ETDEWEB)

    Suikki, M. [Optimik Oy, Turku (Finland)

    2013-10-15

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  17. Strategies for fuel cell product development. Developing fuel cell products in the technology supply chain

    International Nuclear Information System (INIS)

    Hellman, H.L.

    2004-01-01

    Due to the high cost of research and development and the broad spectrum of knowledge and competences required to develop fuel cell products, many product-developing firms outsource fuel cell technology, either partly or completely. This article addresses the inter-firm process of fuel cell product development from an Industrial Design Engineering perspective. The fuel cell product development can currently be characterised by a high degree of economic and technical uncertainty. Regarding the technology uncertainty: product-developing firms are more often then not unfamiliar with fuel cell technology technology. Yet there is a high interface complexity between the technology supplied and the product in which it is to be incorporated. In this paper the information exchange in three current fuel cell product development projects is analysed to determine the information required by a product designer to develop a fuel cell product. Technology transfer literature suggests that transfer effectiveness is greatest when the type of technology (technology uncertainty) and the type of relationship between the technology supplier and the recipient are carefully matched. In this line of thinking this paper proposes that the information required by a designer, determined by the design strategy and product/system volume, should be met by an appropriate level of communication interactivity with a technology specialist. (author)

  18. Fuel Cell/Electrochemical Cell Voltage Monitor

    Science.gov (United States)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  19. Second interim assessment of the Canadian concept for nuclear fuel waste disposal. Volume 3

    International Nuclear Information System (INIS)

    Johansen, K.; Donnelly, K.J.; Gee, J.H.; Green, B.J.; Nathwani, J.S.; Quinn, A.M.; Rogers, B.G.; Stevenson, M.A.; Dunford, W.E.; Tamm, J.A.

    1985-12-01

    The nuclear fuel waste disposal concept chosen for development and assessment in Canada involves the isolation of corrosion-resistant containers of waste in a vault located deep in plutonic rock. As the concept and the assessment tools are developed, periodic assessments are performed to permit evaluation of the methodology and provide feedback to those developing the concept. The ultimate goal of these assessments is to predict what impact the disposal system would have on man and the environment if the concept were implemented. The second such assessment was completed in 1984 and is documented in the Second Interim Assessment of the Canadian Concept for Nuclear Fuel Waste Disposal - Volumes 1-4. This, the third volume of the report, summarizes the pre-closure environmental and safety assessments completed by Ontario Hydro for Atomic Energy of Canada Limited. The preliminary results and their sigificance are discussed. 85 refs

  20. Second interim assessment of the Canadian concept for nuclear fuel waste disposal. Volume 4

    International Nuclear Information System (INIS)

    Wuschke, D.M.; Gillespie, P.A.; Mehta, K.K.; Henrich, W.F.; LeNeveu, D.M.; Guvanasen, V.M.; Sherman, G.R.; Donahue, D.C.; Goodwin, B.W.; Andres, T.H.

    1985-12-01

    The nuclear fuel waste disposal concept chosen for development and assessment in Canada involves the isolation of corrosion-resistant containers of waste in a vault located deep in plutonic rock. As the concept and the assessment tools are developed, periodic assessments are performed to permit evaluation of the methodology and provide feedback to those developing the concept. The ultimate goal of these assessments is to predict what impact the disposal system would have on man and the environment if the concept were implemented. The second such assessment was performed in 1984 and is documented in the Second Interim Assessment of the Canadian Concept for Nuclear Fuel Waste Disposal - Volumes 1-4. This volume, entitled Post-Closure Assessment, describes the methods, models and data used to perform the second post-closure assessment. The results are presented and their significance is discussed. Conclusions and planned improvements are listed. 72 refs

  1. Canadian nuclear risk experience

    International Nuclear Information System (INIS)

    Hamel, P.E.

    1982-05-01

    Risk assessment in the Canadian nuclear fuel cycle is a very important and complex subject. Many levels of government are involved in deciding the acceptable limits for the risks, taking into account the benefits for society [fr

  2. Catalysis in high-temperature fuel cells.

    Science.gov (United States)

    Föger, K; Ahmed, K

    2005-02-17

    Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.

  3. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  4. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renzhu; Zhao, Chunhua; Li, Junliang; Zeng, Fanrong; Wang, Shaorong; Wen, Tinglian; Wen, Zhaoyin [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Inorganic Energy Materials and Power Source Engineering Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2010-01-15

    A direct carbon fuel cell based on a conventional anode-supported tubular solid oxide fuel cell, which consisted of a NiO-YSZ anode support tube, a NiO-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode, has been successfully achieved. It used the carbon black as fuel and oxygen as the oxidant, and a preliminary examination of the DCFC has been carried out. The cell generated an acceptable performance with the maximum power densities of 104, 75, and 47 mW cm{sup -2} at 850, 800, and 750 C, respectively. These results demonstrate the feasibility for carbon directly converting to electricity in tubular solid oxide fuel cells. (author)

  5. Climate Change Fuel Cell Program

    Energy Technology Data Exchange (ETDEWEB)

    Paul Belard

    2006-09-21

    Verizon is presently operating the largest Distributed Generation Fuel Cell project in the USA. Situated in Long Island, NY, the power plant is composed of seven (7) fuel cells operating in parallel with the Utility grid from the Long Island Power Authority (LIPA). Each fuel cell has an output of 200 kW, for a total of 1.4 mW generated from the on-site plant. The remaining power to meet the facility demand is purchased from LIPA. The fuel cell plant is utilized as a co-generation system. A by-product of the fuel cell electric generation process is high temperature water. The heat content of this water is recovered from the fuel cells and used to drive two absorption chillers in the summer and a steam generator in the winter. Cost savings from the operations of the fuel cells are forecasted to be in excess of $250,000 per year. Annual NOx emissions reductions are equivalent to removing 1020 motor vehicles from roadways. Further, approximately 5.45 million metric tons (5 millions tons) of CO2 per year will not be generated as a result of this clean power generation. The project was partially financed with grants from the New York State Energy R&D Authority (NYSERDA) and from Federal Government Departments of Defense and Energy.

  6. Portable power applications of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Weston, M.; Matcham, J.

    2002-07-01

    This report describes the state-of-the-art of fuel cell technology for portable power applications. The study involved a comprehensive literature review. Proton exchange membrane fuel cells (PEMFCs) have attracted much more interest than either direct methanol fuel cells (DMFCs) or solid oxide fuel cells (SOFCs). However, issues relating to fuel choice and catalyst design remain with PEMFCs; DMFCs have excellent potential provided issues relating to the conducting membrane can be resolved but the current high temperature of operation and low power density currently makes SOFCs less applicable to portable applications. Available products are listed and the obstacles to market penetration are discussed. The main barriers are cost and the size/weight of fuel cells compared with batteries. Another key problem is the lack of a suitable fuel infrastructure.

  7. Interconnection of bundled solid oxide fuel cells

    Science.gov (United States)

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  8. Carbon-based Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Steven S. C. Chuang

    2005-08-31

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

  9. Fuel cell report to congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-02-28

    This report describes the status of fuel cells for Congressional committees. It focuses on the technical and economic barriers to the use of fuel cells in transportation, portable power, stationary, and distributed power generation applications, and describes the need for public-private cooperative programs to demonstrate the use of fuel cells in commercial-scale applications by 2012. (Department of Energy, February 2003).

  10. The TMI regenerable solid oxide fuel cell

    Science.gov (United States)

    Cable, Thomas L.

    1995-04-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  11. Advances in fuel cell vehicle design

    Science.gov (United States)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  12. Cornell Fuel Cell Institute: Materials Discovery to Enable Fuel Cell Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Abruna, H.D.; DiSalvo, Francis J.

    2012-06-29

    The discovery and understanding of new, improved materials to advance fuel cell technology are the objectives of the Cornell Fuel Cell Institute (CFCI) research program. CFCI was initially formed in 2003. This report highlights the accomplishments from 2006-2009. Many of the grand challenges in energy science and technology are based on the need for materials with greatly improved or even revolutionary properties and performance. This is certainly true for fuel cells, which have the promise of being highly efficient in the conversion of chemical energy to electrical energy. Fuel cells offer the possibility of efficiencies perhaps up to 90 % based on the free energy of reaction. Here, the challenges are clearly in the materials used to construct the heart of the fuel cell: the membrane electrode assembly (MEA). The MEA consists of two electrodes separated by an ionically conducting membrane. Each electrode is a nanocomposite of electronically conducting catalyst support, ionic conductor and open porosity, that together form three percolation networks that must connect to each catalyst nanoparticle; otherwise the catalyst is inactive. This report highlights the findings of the three years completing the CFCI funding, and incudes developments in materials for electrocatalyts, catalyst supports, materials with structured and functional porosity for electrodes, and novel electrolyte membranes. The report also discusses developments at understanding electrocatalytic mechanisms, especially on novel catalyst surfaces, plus in situ characterization techniques and contributions from theory. Much of the research of the CFCI continues within the Energy Materials Center at Cornell (emc2), a DOE funded, Office of Science Energy Frontier Research Center (EFRC).

  13. National fuel cell bus program : proterra fuel cell hybrid bus report, Columbia demonstration.

    Science.gov (United States)

    2011-10-01

    This report summarizes the experience and early results from a fuel cell bus demonstration funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by the Center for Transportation and the Environment an...

  14. The TMI Regenerative Solid Oxide Fuel Cell

    Science.gov (United States)

    Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael

    1996-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.

  15. Proceedings of the 32. annual conference of the Canadian Nuclear Association

    International Nuclear Information System (INIS)

    1992-01-01

    The conference proceedings comprise 34 papers, arranged under the following sessions: Plenary; The international CANDU program; Canadian used fuel management program; Public information advocates; Fuel and electricity supply; In which direction should reactors advance?; Canadian advanced nuclear research programs; International cooperation in operations; Safety in design, operation, regulation; Renovation of operating stations; CNS/CNA luncheon addresses. The individual papers have been abstracted separately

  16. Fuel cell APU for commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Daggett, D.L. [Boeing Commercial Airplane, Seattle, WA (United States); Lowery, N. [Princeton Univ., Princeton, NJ (United States); Wittmann, J. [Technische Univ. Muenchen (Germany)

    2005-07-01

    The Boeing Company has always sought to improve fuel efficiency in commercial aircraft. An opportunity now exists to explore technology that will allow fuel efficiency improvements to be achieved while simultaneously reducing emissions. Replacing the current aircraft gas turbine-powered Auxiliary Power Unit with a hybrid Solid Oxide Fuel Cell is anticipated to greatly improve fuel efficiency, reduce emissions and noise as well as improve airplane performance. However, there are several technology hurdles that need to be overcome. If SOFC technology is to be matured for the betterment of the earth community, the fuel cell industry, aerospace manufacturers and other end users all need to work together to overcome these challenges. Aviation has many of the same needs in fuel cell technology as other sectors, such as reducing cost and improving reliability and fuel efficiency in order to commercialize the technology. However, there are other distinct aerospace needs that will not necessarily be addressed by the industrial sector. These include development of lightweight materials and small-volume fuel cell systems that can reform hydrocarbon fuels. Aviation also has higher levels of safety requirements. Other transportation modes share the same requirement for vibration and shock tolerant fuel cell stacks. Lastly, as fuel cells are anticipated to be operated in flight, they must be capable of operating over a wide range of atmospheric conditions. By itself, the aviation sector does not appear to offer enough of a potential market to justify the investment required by any one manufacturer to develop fuel cells for APU replacements. Therefore, means must be found to modularize components and make SOFC stacks sufficiently similar to industrial units so that manufacturing economy of scales can be brought to bear. Government R and D and industry support are required to advance the technology. Because aerospace fuel cells will be higher performing units, the benefits of

  17. Canadian Public and Stake holder Engagement Approach to a Spent Nuclear Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Soo; Kim, Youn Ok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Whang, Joo Ho [Kyunghee University, Yongin (Korea, Republic of)

    2008-09-15

    After Canada has struggled with a radioactive waste problem over for 20 years, the Canadian government finally found out that its approach by far has been lack of social acceptance, and needed a program such as public and stake holder engagement (PSE) which involves the public in decision-making process. Therefore, the government made a special law, called Nuclear Fuel Waste Act (NFWA), to search for an appropriate nuclear waste management approach. NFWA laid out three possible approaches which were already prepared in advance by a nuclear expert group, and required Nuclear Waste Management Organization (NWMO) to be established to report a recommendation as to which of the proposed approaches should be adopted. However, NFWA allowed NWMO to consider additional management approach if the other three were not acceptable enough. Thus, NWMO studied and created a fourth management approach after it had undertaken an comparison of the benefits, risks and costs of each management approach: Adaptive Phased Management. This approach was intended to enable the implementers to accept any technological advancement or changes even in the middle of the implementation of the plan. The Canadian PSE case well shows that technological R and D are deeply connected with social acceptance. Even though the developments and technological advancement are carried out by the scientists and experts, but it is important to collect the public opinion by involving them to the decision-making process in order to achieve objective validity on the R and D programs. Moreover, in an effort to ensure the principles such as fairness, public health and safety, security, and adoptability, NWMO tried to make those abstract ideas more specific and help the public understand the meaning of each concept more in detail. Also, they utilized a variety of communication methods from face-to-face meeting to e-dialogue to encourage people to participate in the program as much as possible. Given the fact that Korea

  18. Canadian Public and Stake holder Engagement Approach to a Spent Nuclear Fuel Management

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Kim, Youn Ok; Whang, Joo Ho

    2008-01-01

    After Canada has struggled with a radioactive waste problem over for 20 years, the Canadian government finally found out that its approach by far has been lack of social acceptance, and needed a program such as public and stake holder engagement (PSE) which involves the public in decision-making process. Therefore, the government made a special law, called Nuclear Fuel Waste Act (NFWA), to search for an appropriate nuclear waste management approach. NFWA laid out three possible approaches which were already prepared in advance by a nuclear expert group, and required Nuclear Waste Management Organization (NWMO) to be established to report a recommendation as to which of the proposed approaches should be adopted. However, NFWA allowed NWMO to consider additional management approach if the other three were not acceptable enough. Thus, NWMO studied and created a fourth management approach after it had undertaken an comparison of the benefits, risks and costs of each management approach: Adaptive Phased Management. This approach was intended to enable the implementers to accept any technological advancement or changes even in the middle of the implementation of the plan. The Canadian PSE case well shows that technological R and D are deeply connected with social acceptance. Even though the developments and technological advancement are carried out by the scientists and experts, but it is important to collect the public opinion by involving them to the decision-making process in order to achieve objective validity on the R and D programs. Moreover, in an effort to ensure the principles such as fairness, public health and safety, security, and adoptability, NWMO tried to make those abstract ideas more specific and help the public understand the meaning of each concept more in detail. Also, they utilized a variety of communication methods from face-to-face meeting to e-dialogue to encourage people to participate in the program as much as possible. Given the fact that Korea

  19. Electrolytes for solid oxide fuel cells

    Science.gov (United States)

    Fergus, Jeffrey W.

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.

  20. Electrolytes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2006-11-08

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed. (author)

  1. Simplified fuel cell system model identification

    Energy Technology Data Exchange (ETDEWEB)

    Caux, S.; Fadel, M. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, Toulouse (France); Hankache, W. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, Toulouse (France)]|[Laboratoire de recherche en Electronique, Electrotechnique et Systemes, Belfort (France); Hissel, D. [Laboratoire de recherche en Electronique, Electrotechnique et Systemes, Belfort (France)

    2006-07-01

    This paper discussed a simplified physical fuel cell model used to study fuel cell and supercap energy applications for vehicles. Anode, cathode, membrane, and electrode elements of the cell were modelled. A quasi-static Amphlett model was used to predict voltage responses of the fuel cell as a function of the current, temperature, and partial pressures of the reactive gases. The potential of each cell was multiplied by the number of cells in order to model a fuel cell stack. The model was used to describe the main phenomena associated with current voltage behaviour. Data were then compared with data from laboratory tests conducted on a 20 cell stack subjected to a current and time profile developed using speed data from a vehicle operating in an urban environment. The validated model was used to develop iterative optimization algorithms for an energy management strategy that linked 3 voltage sources with fuel cell parameters. It was concluded that classic state and dynamic measurements using a simple least square algorithm can be used to identify the most important parameters for optimal fuel cell operation. 9 refs., 1 tab., 6 figs.

  2. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  3. Response of a direct methanol fuel cell to fuel change

    Energy Technology Data Exchange (ETDEWEB)

    Leo, T.J. [Dpto de Sistemas Oceanicos y Navales- ETSI Navales, Univ. Politecnica de Madrid, Avda Arco de la Victoria s/n, 28040 Madrid (Spain); Raso, M.A.; de la Blanca, E. Sanchez [Dpto de Quimica Fisica I- Fac. CC. Quimicas, Univ. Complutense de Madrid, Avda Complutense s/n, 28040 Madrid (Spain); Navarro, E.; Villanueva, M. [Dpto de Motopropulsion y Termofluidodinamica, ETSI Aeronauticos, Univ. Politecnica de Madrid, Pza Cardenal Cisneros 3, 28040 Madrid (Spain); Moreno, B. [Instituto de Ceramica y Vidrio, Consejo Superior de Investigaciones Cientificas, C/Kelsen 5, Campus de la UAM, 28049 Cantoblanco, Madrid (Spain)

    2010-10-15

    Methanol and ethanol have recently received much attention as liquid fuels particularly as alternative 'energy-vectors' for the future. In this sense, to find a direct alcohol fuel cell that able to interchange the fuel without losing performances in an appreciable way would represent an evident advantage in the field of portable applications. In this work, the response of a in-house direct methanol fuel cell (DMFC) to the change of fuel from methanol to ethanol and its behaviour at different ambient temperature values have been investigated. A corrosion study on materials suitable to fabricate the bipolar plates has been carried out and either 316- or 2205-duplex stainless steels have proved to be adequate for using in direct alcohol fuel cells. Polarization curves have been measured at different ambient temperature values, controlled by an experimental setup devised for this purpose. Data have been fitted to a model taking into account the temperature effect. For both fuels, methanol and ethanol, a linear dependence of adjustable parameters with temperature is obtained. Fuel cell performance comparison in terms of open circuit voltage, kinetic and resistance is established. (author)

  4. Canadian gas supply : an update

    International Nuclear Information System (INIS)

    Rochefort, T.

    1998-01-01

    An overview of the daily production from the Western Canada Sedimentary Basin (WCSB) from 1986 to 1997 was presented. This presentation also outlined Canadian production trends, Canadian reserves and resources, and supply challenges. Ultimate conventional marketable gas from the WCSB, the Scotian Shelf, the Beaufort Sea and Canada's Arctic region was estimated at 591 TCF. Issues regarding supply and demand of natural gas such as the impact of electricity restructuring on pricing, generation fuel mix, the capacity of the U.S. market to absorb Canadian heavy oil production, and the influence of the rate of technological advances on supply and demand were outlined. The overall conclusion confirmed the health and competitiveness of the Canadian upstream sector and expressed confidence that the WCSB can support rising levels of production to meet the expected continued market growth. tabs., figs

  5. Direct methanol feed fuel cell and system

    Science.gov (United States)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  6. Waste management in Canadian nuclear programs

    International Nuclear Information System (INIS)

    Dyne, P.J.

    The objectives of the Canadian radioactive waste management program are described. Recycling actinides through reactors is being studied. Low and medium level waste treatments such as reverse osmosis concentration, immobilization in bitumen and plastics, and incineration are under study. Spent fuel can be stored dry in concrete canisters above ground and ultimate storage of wastes in salt deposits or hard rock is appropriate to Canadian conditions. (E.C.B.)

  7. Aerosol feed direct methanol fuel cell

    Science.gov (United States)

    Kindler, Andrew (Inventor); Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    Improvements to fuel cells include introduction of the fuel as an aerosol of liquid fuel droplets suspended in a gas. The particle size of the liquid fuel droplets may be controlled for optimal fuel cell performance by selection of different aerosol generators or by separating droplets based upon size using a particle size conditioner.

  8. 1990 fuel cell seminar: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  9. Metrology for Fuel Cell Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Stocker, Michael [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Stanfield, Eric [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  10. Platinum Porous Electrodes for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    Fuel cell energy bears the merits of renewability, cleanness and high efficiency. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising candidates as the power source in the near future. A fine management of different transports and electrochemical reactions in PEM fuel cells...... to a genuine picture of a working PEM fuel cell catalyst layer. These, in turn, enrich the knowledge of Three-Phase-Boundary, provide efficient tool for the electrode selection and eventually will contribute the advancement of PEMFC technology....

  11. Potential effects of climatic change on radiological doses from disposal of Canadian nuclear fuel waste

    International Nuclear Information System (INIS)

    Amiro, B.D.

    1997-01-01

    The environmental assessment of deep geologic disposal of Canadian nuclear fuel waste considers many processes that could affect radionuclide transport to humans over thousands of years. Climatic change is an important feature that will occur over these long times. Glaciation will likely occur within the next 100,000 years over much of Canada, and its impact on radiological doses has been assessed previously. In the present study, we investigate the potential effect of short- term climatic change, usually associated with global warming caused by increases in atmospheric trace gases. We study the main biosphere transport pathways causing a radiological dose to humans from 129 I, which is the most important radionuclide in disposal of Canadian used nuclear fuel. Irrigation of a garden with contaminated well water is the main pathway and it can be affected by changes in temperature and precipitation. A cold, wet climate decreases the need for irrigation, and this decreases the radiological dose. A drastic climatic change, such as an increase in temperature from 10 to 20 degrees C and decrease in precipitation from 0.3 to 0.2 m during the growing season, is estimated to increase the dose by a factor of four. This is a relatively small change compared to the range of doses that arise from the variability and uncertainty in many of the parameters used in the environmental assessment models. Therefore, it is likely that the results of probabilistic dose assessment models can include the consequences of short-term climatic change. 39 refs., 3 figs

  12. Accelerated testing of fuel cell components in 2 x 2 inch fuel cells

    International Nuclear Information System (INIS)

    Coleman, A.J.; Adams, A.A.; Joebstl, J.A.; Walker, G.W.

    1981-01-01

    A description is presented of diagnostic procedures which can be used to predict failure modes and assess the effects of these failures on fuel cell performance. Some straightforward diagnostic techniques have been used to evaluate fuel cells assembled with a variety of matrix and electrode combinations. These techniques included accelerated on-off cycling, thermal cycling with H2/CO mixtures, and automatic polarization measurements. Information has been obtained concerning the effects of electrolyte management and catalyst poisoning on performance and lifetime characteristics of 2 x 2 in. single cells. The use of on-off cycling has shown that short-term fuel cell performance is generally unaffected by load changes and cycle sequence in 2 x 2 in. cells when electrolyte management is adequate. Dynamic polarization curves can be used instead of point by point steady-state plots without any loss in accuracy

  13. World wide IFC phosphoric acid fuel cell implementation

    Energy Technology Data Exchange (ETDEWEB)

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  14. Stationary power fuel cell commercialization status worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [Dept. of Energy, Morgantown, WV (United States)

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  15. Fuel Cell Seminar, 1992: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

  16. Carbonate fuel cells: Milliwatts to megawatts

    Science.gov (United States)

    Farooque, M.; Maru, H. C.

    The carbonate fuel cell power plant is an emerging high efficiency, ultra-clean power generator utilizing a variety of gaseous, liquid, and solid carbonaceous fuels for commercial and industrial applications. The primary mover of this generator is a carbonate fuel cell. The fuel cell uses alkali metal carbonate mixtures as electrolyte and operates at ∼650 °C. Corrosion of the cell hardware and stability of the ceramic components have been important design considerations in the early stages of development. The material and electrolyte choices are founded on extensive fundamental research carried out around the world in the 60s and early 70s. The cell components were developed in the late 1970s and early 1980s. The present day carbonate fuel cell construction employs commonly available stainless steels. The electrodes are based on nickel and well-established manufacturing processes. Manufacturing process development, scale-up, stack tests, and pilot system tests dominated throughout the 1990s. Commercial product development efforts began in late 1990s leading to prototype field tests beginning in the current decade leading to commercial customer applications. Cost reduction has been an integral part of the product effort. Cost-competitive product designs have evolved as a result. Approximately half a dozen teams around the world are pursuing carbonate fuel cell product development. The power plant development efforts to date have mainly focused on several hundred kW (submegawatt) to megawatt-class plants. Almost 40 submegawatt units have been operating at customer sites in the US, Europe, and Asia. Several of these units are operating on renewable bio-fuels. A 1 MW unit is operating on the digester gas from a municipal wastewater treatment plant in Seattle, Washington (US). Presently, there are a total of approximately 10 MW capacity carbonate fuel cell power plants installed around the world. Carbonate fuel cell products are also being developed to operate on

  17. Toward sustainable fuel cells

    DEFF Research Database (Denmark)

    Stephens, Ifan; Rossmeisl, Jan; Chorkendorff, Ib

    2016-01-01

    to a regular gasoline car. However, current fuel cells require 0.25 g of platinum (Pt) per kilowatt of power (2) as catalysts to drive the electrode reactions. If the entire global annual production of Pt were devoted to fuel cell vehicles, fewer than 10 million vehicles could be produced each year, a mere 10...

  18. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang

    2013-01-01

    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power...

  19. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  20. Canadian petroleum industry review

    International Nuclear Information System (INIS)

    Feick, R. M.

    1997-01-01

    A wide ranging discussion about the factors that have influenced oil and natural gas prices, the differences of the Canadian market from international markets, the differences between eastern and western Canadian markets, and shareholders' perspectives on recent commodity price developments was presented. Developments in the OPEC countries were reviewed, noting that current OPEC production of 25 mmbbls is about 60 per cent higher than it was in 1985. It is expected that OPEC countries will continue to expand capacity to meet expected demand growth and the continuing need created by the UN embargo on Iraqi oil sales. Demand for natural gas is also likely to continue to rise especially in view of the deregulation of the electricity industry where natural gas may well become the favored fuel for incremental thermal generation capacity. Prices of both crude oil and natural gas are expected to hold owing to unusually low storage levels of both fuels. The inadequacy of infrastructure, particularly pipeline capacity as a key factor in the Canadian market was noted, along with the dynamic that will emerge in the next several years that may have potential consequences for Canadian production - namely the reversal of the Sarnia to Montreal pipeline. With regard to shareholders' expectations the main issues are (1) whether international markets reach back to the wellhead, hence the producer's positioning with respect to transportation capacity and contract portfolios, and (2) whether the proceeds from increased prices are invested in projects that are yielding more than the cost of capital. 28 figs

  1. Automated assembling of single fuel cell units for use in a fuel cell stack

    Science.gov (United States)

    Jalba, C. K.; Muminovic, A.; Barz, C.; Nasui, V.

    2017-05-01

    The manufacturing of PEMFC stacks (POLYMER ELEKTROLYT MEMBRAN Fuel Cell) is nowadays still done by hand. Over hundreds of identical single components have to be placed accurate together for the construction of a fuel cell stack. Beside logistic problems, higher total costs and disadvantages in weight the high number of components produce a higher statistic interference because of faulty erection or material defects and summation of manufacturing tolerances. The saving of costs is about 20 - 25 %. Furthermore, the total weight of the fuel cells will be reduced because of a new sealing technology. Overall a one minute cycle time has to be aimed per cell at the manufacturing of these single components. The change of the existing sealing concept to a bonded sealing is one of the important requisites to get an automated manufacturing of single cell units. One of the important steps for an automated gluing process is the checking of the glue application by using of an image processing system. After bonding the single fuel cell the sealing and electrical function can be checked, so that only functional and high qualitative cells can get into further manufacturing processes.

  2. Navy fuel cell demonstration project.

    Energy Technology Data Exchange (ETDEWEB)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  3. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  4. Environmental Technology Assessment of Introducing Fuel Cell City Buses. A Case Study of Fuel Cell Buses in Goeteborg

    Energy Technology Data Exchange (ETDEWEB)

    Karlstroem, Magnus

    2002-07-01

    Over the last several years, fuel cell systems have improved. These advancements have increased the expectations that fuel cells are a feasible option for several applications such as transportation and stationary use. There are several reasons why fuel cell buses in city centres appear to be the most beneficial market niche to begin introducing the technology in. The goal of the report is to compile information about fuel cell buses relevant for city administrators working with public transport and environmental issues. A literature review of the fuel cells in buses is included. This study also consists of an environmental assessment of using fuel cell buses with hydrogen produced in various ways for buses on bus route 60 in Goeteborg by 2006. The fuel cell buses are compared with other bus and fuel alternatives. There are two goals of the case study: 1. The first goal is to describe the technical system, the methodology, and the problem for the intended audience. In the future, this study could help frame future investment decisions. 2. The second goal is to present environmental performance results---emission, health, monetary---relative the alternative bus technologies. The model calculations showed that the social benefits were approximately SEK 910,000 each year if all buses were fuel cell buses compared with developed diesel buses. If the fuel cell buses were compared to natural gas buses, then the benefits were SEK 860,000 each year. The benefits were SEK 1.39/bus/km compared with diesel buses or SEK 1.30/bus/km compared with natural gas buses.

  5. Economic feasibility prediction of the commercial fuel cells

    International Nuclear Information System (INIS)

    Ma Yan; Karady, George G.; Winston, Anthony; Gilbert, Palomino; Hess, Robert; Pelley, Don

    2009-01-01

    This paper presents a prediction method and corresponding Visual Basic program to evaluate the economic feasibility of the commercial fuel cells in utility systems. The economic feasibility of a fuel cell is defined as having a net present value (NPV) greater than zero. The basic process of the method is to combine fuel cell specifications and real energy market data to calculate yearly earning and cost for obtaining the NPV of fuel cells. The Fuel Cell Analysis Software was developed using Visual Basic based on the proposed method. The investigation of a 250 kW molten carbonate fuel cell (FuelCell Energy DFC300A) predicted that, for application specifically in Arizona, United States, no profit would result from the installation of this fuel cell. The analysis results indicated that the efficiency, investment cost, and operation cost are three key factors affecting potential feasibility of the commercial fuel cells

  6. Fuel cell collaboration in the United States. Follow up report to the Danish Partnership for Hydrogen and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Fuel cell technology continues to grow in the United States, with strong sales in stationary applications and early markets such as data centers, materials handling equipment, and telecommunications sites. New fuel cell customers include Fortune 500 companies Apple, eBay, Coca-Cola, and Walmart, who will use fuel cells to provide reliable power to data centers, stores, and facilities. Some are purchasing multi-megawatt (MW) systems, including three of the largest non-utility purchases of stationary fuel cells in the world by AT and T, Apple and eBay - 17 MW, 10 MW and 6 MW respectively. Others are replacing fleets of battery forklifts with fuel cells. Sysco, the food distributor, has more than 700 fuel cell-powered forklifts operating at seven facilities, with more on order. Mega-retailer Walmart now operates more than 500 fuel cell forklifts at three warehouses, including a freezer facility. Although federal government budget reduction efforts are impacting a wide range of departments and programs, fuel cell and hydrogen technology continues to be funded, albeit at a lower level than in past years. The Department of Energy (DOE) is currently funding fuel cell and hydrogen R and D and has nearly 300 ongoing projects at companies, national labs, and universities/institutes universities. The American Recovery and Reinvestment Act (ARRA) of 2009 and DOE's Market Transformation efforts have acted as a government ''catalyst'' for market success of emerging technologies. Early market deployments of about 1,400 fuel cells under the ARRA have led to more than 5,000 additional fuel cell purchases by industry with no DOE funding. In addition, interest in Congress remains high. Senators Richard Blumenthal (D-CT), Chris Coons (D-DE), Lindsey Graham (R-SC) and John Hoeven (R-ND) re-launched the bipartisan Senate Fuel Cell and Hydrogen Caucus in August 2012 to promote the continued development and commercialization of hydrogen and fuel cell technologies

  7. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    Science.gov (United States)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  8. Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?

    International Nuclear Information System (INIS)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.; Kuhn, I.F. Jr.

    2000-01-01

    Fuel cell vehicles can be powered directly by hydrogen or, with an onboard chemical processor, other liquid fuels such as gasoline or methanol. Most analysts agree that hydrogen is the preferred fuel in terms of reducing vehicle complexity, but one common perception is that the cost of a hydrogen infrastructure would be excessive. According to this conventional wisdom, the automobile industry must therefore develop complex onboard fuel processors to convert methanol, ethanol or gasoline to hydrogen. We show here, however, that the total fuel infrastructure cost to society including onboard fuel processors may be less for hydrogen than for either gasoline or methanol, the primary initial candidates currently under consideration for fuel cell vehicles. We also present the local air pollution and greenhouse gas advantages of hydrogen fuel cell vehicles compared to those powered by gasoline or methanol. (Author)

  9. Cost reductions of fuel cells for transport applications: fuel processing options

    Energy Technology Data Exchange (ETDEWEB)

    Teagan, W P; Bentley, J; Barnett, B [Arthur D. Little, Inc., Cambridge, MA (United States)

    1998-03-15

    The highly favorable efficiency/environmental characteristics of fuel cell technologies have now been verified by virtue of recent and ongoing field experience. The key issue regarding the timing and extent of fuel cell commercialization is the ability to reduce costs to acceptable levels in both stationary and transport applications. It is increasingly recognized that the fuel processing subsystem can have a major impact on overall system costs, particularly as ongoing R and D efforts result in reduction of the basic cost structure of stacks which currently dominate system costs. The fuel processing subsystem for polymer electrolyte membrane fuel cell (PEMFC) technology, which is the focus of transport applications, includes the reformer, shift reactors, and means for CO reduction. In addition to low cost, transport applications require a fuel processor that is compact and can start rapidly. This paper describes the impact of factors such as fuel choice operating temperature, material selection, catalyst requirements, and controls on the cost of fuel processing systems. There are fuel processor technology paths which manufacturing cost analyses indicate are consistent with fuel processor subsystem costs of under $150/kW in stationary applications and $30/kW in transport applications. As such, the costs of mature fuel processing subsystem technologies should be consistent with their use in commercially viable fuel cell systems in both application categories. (orig.)

  10. European opportunities for fuel cell commercialisation

    Science.gov (United States)

    Gibbs, C. E.; Steel, M. C. F.

    1992-01-01

    The European electricity market is changing. This paper will look at the background to power generation in Europe and highlight the recent factors which have entered the market to promote change. The 1990s seem to offer great possibilities for fuel cell commercialisation. Awareness of environmental problems has never been greater and there is growing belief that fuel cell technology can contribute to solving some of these problems. Issues which have caused the power industry in Europe to re-think its methods of generation include: concern over increasing carbon dioxide emissions and their contribution to the greenhouse effect; increasing SO x and NO x emissions and the damage cause by acid rain; the possibility of adverse effects on health caused by high voltage transmission lines; environmental restrictions to the expansion of hydroelectric schemes; public disenchantment with nuclear power following the Chernobyl accident; avoidance of dependence on imported oil following the Gulf crisis and a desire for fuel flexibility. All these factors are hastening the search for clean, efficient, modular power generators which can be easily sited close to the electricity consumer and operated using a variety of fuels. It is not only the power industry which is changing. A tightening of the legislation concerning emissions from cars is encouraging European auto companies to develop electric vehicles, some of which may be powered by fuel cells. Political changes, such as the opening up of Eastern Europe will also expand the market for low-emission, efficient power plants as attempts are made to develop and clean up that region. Many Europeans organisations are re-awakening their interest, or strengthening their activities, in the area of fuel cells because of the increasing opportunities offered by the European market. While some companies have chosen to buy, test and demonstrate Japanese or American fuel cell stacks with the aim of gaining operational experience and

  11. Sliding-Mode Control of PEM Fuel Cells

    CERN Document Server

    Kunusch, Cristian; Mayosky, Miguel

    2012-01-01

    Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-Mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today’s energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation pr...

  12. DOE perspective on fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Kost, R.

    1996-04-01

    Fuel cells are one of the most promising technologies for meeting the rapidly growing demand for transportation services while minimizing adverse energy and environmental impacts. This paper reviews the benefits of introducing fuel cells into the transportation sector; in addition to dramatically reduced vehicle emissions, fuel cells offer the flexibility than use petroleum-based or alternative fuels, have significantly greater energy efficiency than internal combustion engines, and greatly reduce noise levels during operation. The rationale leading to the emphasis on proton-exchange-membrane fuel cells for transportation applications is reviewed as are the development issues requiring resolution to achieve adequate performance, packaging, and cost for use in automobiles. Technical targets for power density, specific power, platinum loading on the electrodes, cost, and other factors that become increasingly more demanding over time have been established. Fuel choice issues and pathways to reduced costs and to a renewable energy future are explored. One such path initially introduces fuel cell vehicles using reformed gasoline while-on-board hydrogen storage technology is developed to the point of allowing adequate range (350 miles) and refueling convenience. This scenario also allows time for renewable hydrogen production technologies and the required supply infrastructure to develop. Finally, the DOE Fuel Cells in Transportation program is described. The program, whose goal is to establish the technology for fuel cell vehicles as rapidly as possible, is being implemented by means of the United States Fuel Cell Alliance, a Government-industry alliance that includes Detroit`s Big Three automakers, fuel cell and other component suppliers, the national laboratories, and universities.

  13. Fuel cells make gains in power generation market

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The ultra-low emission, highly efficient natural gas-fueled fuel cell system is beginning to penetrate the electric power generation market in the US and abroad as the fuel cell industry lowers product costs. And, even as the current market continues to grow, fuel cell companies are developing new technology with even higher levels of energy efficiency. The paper discusses fuel cell efficiency, business opportunities, work to reduce costs, and evolving fuel cell technology

  14. Hydrogen fueling stations in Japan hydrogen and fuel cell demonstration project

    International Nuclear Information System (INIS)

    Koseki, K.; Tomuro, J.; Sato, H.; Maruyama, S.

    2004-01-01

    A new national demonstration project of fuel cell vehicles, which is called Japan Hydrogen and Fuel Cell Demonstration Project (JHFC Project), has started in FY2002 on a four-year plan. In this new project, ten hydrogen fueling stations have been constructed in Tokyo and Kanagawa area in FY2002-2003. The ten stations adopt the following different types of fuel and fueling methods: LPG reforming, methanol reforming, naphtha reforming, desulfurized-gasoline reforming, kerosene reforming, natural gas reforming, water electrolysis, liquid hydrogen, by-product hydrogen, and commercially available cylinder hydrogen. Approximately fifty fuel cell passenger cars and a fuel cell bus are running on public roads using these stations. In addition, two hydrogen stations will be constructed in FY2004 in Aichi prefecture where The 2005 World Exposition (EXPO 2005) will be held. The stations will service eight fuel cell buses used as pick-up buses for visitors. We, Engineering Advancement Association of Japan (ENAA), are commissioned to construct and operate a total of twelve stations by Ministry of Economy Trade and Industry (METI). We are executing to demonstrate or identify the energy-saving effect, reduction of the environmental footprint, and issues for facilitating the acceptance of hydrogen stations on the basis of the data obtained from the operation of the stations. (author)

  15. Development of fuel cell systems for aircraft applications based on synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pasel, J.; Samsun, R.C.; Doell, C.; Peters, R.; Stolten, D. [Forschungszentrum Juelich GmbH (Germany)

    2010-07-01

    At present, in the aviation sector considerable scientific project work deals with the development of fuel cell systems based on synthetic fuels to be integrated in future aircraft. The benefits of fuel cell systems in aircraft are various. They offer the possibility to simplify the aircraft layout. Important systems, i.e. the gas turbine powered auxiliary power unit (APU) for electricity supply, the fuel tank inserting system and the water tank, can be substituted by one single system, the fuel cell system. Additionally, the energy demand for ice protection can be covered assisted by fuel cell systems. These measures reduce the consumption of jet fuel, increase aircraft efficiency and allow the operation at low emissions. Additionally, the costs for aircraft related investments, for aircraft maintenance and operation can be reduced. On the background of regular discussions about environmental concerns (global warming) of kerosene Jet A-1 and its availability, which might be restricted in a few years, the aircraft industry is keen to employ synthetic, sulfur-free fuels such as Fischer-Tropsch fuels. These comprise Bio-To-Liquid and Gas-To-Liquid fuels. Within this field of research the Institute of Energy Research (IEF-3) in Juelich develops complete and compact fuel cell systems based on the autothermal reforming of these kinds of fuels in cooperation with industry. This paper reports about this work. (orig.)

  16. Alkaline fuel cell technology in the lead

    International Nuclear Information System (INIS)

    Nor, J.K.

    2004-01-01

    The Alkaline Fuel Cell (AFC) was the first fuel cell successfully put into practice, a century after William Grove patented his 'hydrogen battery' in 1839. The space program provided the necessary momentum, and alkaline fuel cells became the power source for both the U.S. and Russian manned space flight. Astris Energi's mission has been to bring this technology down to earth as inexpensive, rugged fuel cells for everyday applications. The early cells, LABCELL 50 and LABCELL 200 were aimed at deployment in research labs, colleges and universities. They served well in technology demonstration projects such as the 1998 Mini Jeep, 2001 Golf Car and a series of portable and stationary fuel cell generators. The present third generation POWERSTACK MC250 poised for commercialization is being offered to AFC system integrators as a building block of fuel cell systems in numerous portable, stationary and transportation applications. It is also used in Astris' own E7 and E8 alkaline fuel cell generators. Astris alkaline technology leads the way toward economical, plentiful fuel cells. The paper highlights the progress achieved at Astris, improvements of performance, durability and simplicity of use, as well as the current and future thrust in technology development and commercialization. (author)

  17. What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance

    KAUST Repository

    Brett, Daniel J. L.; Kucernak, Anthony R.; Aguiar, Patricia; Atkins, Stephen C.; Brandon, Nigel P.; Clague, Ralph; Cohen, Lesley F.; Hinds, Gareth; Kalyvas, Christos; Offer, Gregory J.; Ladewig, Bradley; Maher, Robert; Marquis, Andrew; Shearing, Paul; Vasileiadis, Nikos; Vesovic, Velisa

    2010-01-01

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due

  18. Prolonging fuel cell stack lifetime based on Pontryagin's Minimum Principle in fuel cell hybrid vehicles and its economic influence evaluation

    Science.gov (United States)

    Zheng, C. H.; Xu, G. Q.; Park, Y. I.; Lim, W. S.; Cha, S. W.

    2014-02-01

    The lifetime of fuel cell stacks is a major issue currently, especially for automotive applications. In order to take into account the lifetime of fuel cell stacks while considering the fuel consumption minimization in fuel cell hybrid vehicles (FCHVs), a Pontryagin's Minimum Principle (PMP)-based power management strategy is proposed in this research. This strategy has the effect of prolonging the lifetime of fuel cell stacks. However, there is a tradeoff between the fuel cell stack lifetime and the fuel consumption when this strategy is applied to an FCHV. Verifying the positive economic influence of this strategy is necessary in order to demonstrate its superiority. In this research, the economic influence of the proposed strategy is assessed according to an evaluating cost which is dependent on the fuel cell stack cost, the hydrogen cost, the fuel cell stack lifetime, and the lifetime prolonging impact on the fuel cell stack. Simulation results derived from the proposed power management strategy are also used to evaluate the economic influence. As a result, the positive economic influence of the proposed PMP-based power management strategy is proved for both current and future FCHVs.

  19. Simulation of a 250 kW diesel fuel processor/PEM fuel cell system

    Science.gov (United States)

    Amphlett, J. C.; Mann, R. F.; Peppley, B. A.; Roberge, P. R.; Rodrigues, A.; Salvador, J. P.

    Polymer-electrolyte membrane (PEM) fuel cell systems offer a potential power source for utility and mobile applications. Practical fuel cell systems use fuel processors for the production of hydrogen-rich gas. Liquid fuels, such as diesel or other related fuels, are attractive options as feeds to a fuel processor. The generation of hydrogen gas for fuel cells, in most cases, becomes the crucial design issue with respect to weight and volume in these applications. Furthermore, these systems will require a gas clean-up system to insure that the fuel quality meets the demands of the cell anode. The endothermic nature of the reformer will have a significant affect on the overall system efficiency. The gas clean-up system may also significantly effect the overall heat balance. To optimize the performance of this integrated system, therefore, waste heat must be used effectively. Previously, we have concentrated on catalytic methanol-steam reforming. A model of a methanol steam reformer has been previously developed and has been used as the basis for a new, higher temperature model for liquid hydrocarbon fuels. Similarly, our fuel cell evaluation program previously led to the development of a steady-state electrochemical fuel cell model (SSEM). The hydrocarbon fuel processor model and the SSEM have now been incorporated in the development of a process simulation of a 250 kW diesel-fueled reformer/fuel cell system using a process simulator. The performance of this system has been investigated for a variety of operating conditions and a preliminary assessment of thermal integration issues has been carried out. This study demonstrates the application of a process simulation model as a design analysis tool for the development of a 250 kW fuel cell system.

  20. Lightweight Stacks of Direct Methanol Fuel Cells

    Science.gov (United States)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  1. An Overview of Stationary Fuel Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    DR Brown; R Jones

    1999-03-23

    Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle or rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.

  2. Development of a lightweight fuel cell vehicle

    Science.gov (United States)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  3. Cationic Polymers Developed for Alkaline Fuel Cell Applications

    Science.gov (United States)

    2015-01-20

    into five categories: proton exchange membrane fuel cell ( PEMFC ), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), solid oxide fuel...SOFC and PAFC belong to high temperature fuel cell, which can be applied in stationary power generation. PEMFC and AFC belong to low temperature fuel...function of the polymer electrolyte is to serve as electrolyte to transport ions between electrodes. PEMFC uses a polymer as electrolyte and works

  4. Hydrogen fuel cell engines and related technologies

    Science.gov (United States)

    2001-12-01

    The manual documents the first training course developed on the use of hydrogen fuel cells in transportation. The manual contains eleven modules covering hydrogen properties, use and safety; fuel cell technology and its systems, fuel cell engine desi...

  5. The Western Canada Fuel Cell Initiative (WCFCI)

    International Nuclear Information System (INIS)

    Birss, V.; Chuang, K.

    2006-01-01

    Vision: Western Canada will become an international centre for stationary power generation technology using high temperature fuel cells that use a wide variety of fossil and biomass fuels. Current research areas of investigation: 1. Clean efficient use of hydrocarbons 2. Large-scale electricity generation 3. CO2 sequestration 4. Direct alcohol fuel cells 5. Solid oxide fuel cells. (author)

  6. IAEA physical inventory verification procedures implemented at US and Canadian fuel fabrication plants

    International Nuclear Information System (INIS)

    Gough, J.; Wredberg, L.; Zobor, E.; Zuccaro-Labellarte, G.

    1988-01-01

    IAEA has implemented safeguards at three Low Enriched Uranium (LEU) fuel fabrication plants in the USA during the period 1982 to 1987, and it is in the process of safeguarding a fourth plant from 01 January 1988. In Canada IAEA safeguards inspections were implemented at all Natural Uranium (NU) fuel fabrication plants form 1972 onwards, and there are, at present, three plants under safeguards. The direct responsibility for the implementation of safeguards inspections in the USA and Canada lies with the Division of Operations B (SGOB) within the IAEA Department of Safeguards. The senior staff that is at present directly engaged in the implementation activities has accumulated supervising inspection experience at about 50 Physical Inventory Verification (PIV) inspections at the Canadian and US fabrication plants during the period 1978 to 1987. This experience has been gained in close cooperation with the facility operators and with the support of the state authorities. The paper describes the latest PIV inspections at the Westinghouse Columbia plant and the Zircatec Precision Industries Inc. Port Hope plant. Furthermore, the paper describes the initial activities for the 1988 PIV inspection at the General Electric Wilmington plant including computerized book audit activities

  7. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  8. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  9. Spent fuel management in Canada

    International Nuclear Information System (INIS)

    Khan, A.; Pattantyus, P.

    1999-01-01

    The current status of the Canadian spent fuel storage is presented. This includes wet and dry interim storage. Extension of wet interim storage facilities is nor planned, as dry technologies have found wide acceptance. The Canadian nuclear program is sustained by commercial Ontario Hydro CANDU type reactors, since 1971, representing 13600 MW(e) of installed capacity, able to produce 9200 spent fuel bundles (1800 tU) every year, and Hydro Quebec and New Brunswick CANDU reactors each producing 685 MW(e) and about 100 tU of spent fuel annually. The implementation of various interim (wt and dry) storage technologies resulted in simple, dense and low cost systems. Economical factors determined that the open cycle option be adopted for the CANDU type reactors rather that recycling the spent fuel. Research and development activities for immobilization and final disposal of nuclear waste are being undertaken in the Canadian Nuclear Fuel Waste Management Program

  10. Clean energy from a carbon fuel cell

    Science.gov (United States)

    Kacprzak, Andrzej; Kobyłecki, Rafał; Bis, Zbigniew

    2011-12-01

    The direct carbon fuel cell technology provides excellent conditions for conversion of chemical energy of carbon-containing solid fuels directly into electricity. The technology is very promising since it is relatively simple compared to other fuel cell technologies and accepts all carbon-reach substances as possible fuels. Furthermore, it makes possible to use atmospheric oxygen as the oxidizer. In this paper the results of authors' recent investigations focused on analysis of the performance of a direct carbon fuel cell supplied with graphite, granulated carbonized biomass (biocarbon), and granulated hard coal are presented. The comparison of the voltage-current characteristics indicated that the results obtained for the case when the cell was operated with carbonized biomass and hard coal were much more promising than those obtained for graphite. The effects of fuel type and the surface area of the cathode on operation performance of the fuel cell were also discussed.

  11. Prospects for UK fuel cells component suppliers

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, C.; Tunnicliffe, M.

    2002-07-01

    This report examines the capabilities of the UK fuel cell industry in meeting the expected increase in demand, and aims to identify all UK suppliers of fuel cell components, evaluate their products and match them to fuel cell markets, and identify components where the UK is in a competitive position. Component areas are addressed along with the need to reduce costs and ensure efficient production. The well established supplier base in the UK is noted, and the car engine manufacturing base and fuel supply companies are considered. The different strengths of UK suppliers of the various types of fuel cells are listed. The future industry structure, the opportunities and dangers for business posed by fuel cells, the investment in cleaner technologies by the large fuel companies, opportunities for catalyst suppliers, and the residential combined heat and power and portable electronics battery markets are discussed.

  12. Assessment of the feasibility of indefinite containment of canadian nuclear fuel wastes; Evaluation de la faisabilite du confinement illimite des dechets de combustible nucleaire canadiens

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D.W.; King, F.; Ikeda, B.M.

    1995-05-01

    This report presents an analysis of the expected corrosion behavior of nuclear fuel waste containers in a conceptual Canadian disposal vault. The container materials considered are dilute Ti alloys (Grades-2, -12 and -16) and oxygen-free copper.

  13. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel cell research and development projects through in-situ fuel cell testing. Photo of a researcher running

  14. Fuel cell development for transportation: Catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Doddapaneni, N. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  15. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  16. Preclosure probabilistic assessment of the Canadian concept for used fuel disposal focussing on key radionuclides and exposure pathways for routine emissions

    International Nuclear Information System (INIS)

    Russell, S.B.

    1996-01-01

    The Canadian Nuclear Fuel Waste Management Program was initiated in 1978 to develop a concept for safe disposal of nuclear fuel waste (intact used nuclear fuel or high-level waste from any future reprocessing of used fuel) from CANDU reactors. The concept includes the immobilization of nuclear fuel waste and emplacement of the waste in an engineered vault, deep underground in a stable rock formation within the Canadian Shield. In 1994, AECL submitted an environmental and safety assessment of the disposal concept in the form of an Environmental Impact Statement or EIS for regulatory, scientific and public reviews. Ontario Hydro's contribution to the EIS included the preclosure assessment consisting of the safety and environmental implications of the construction, operation and decommissioning (closure) of a conceptual used-fuel disposal centre (UFDC), plus transportation of used fuel from storage at reactor sites to the UFDC. In the EIS, the environmental impact from routine emissions from the UFDC during the operation phase was calculated in a deterministic mode using single-valued constants representing the geometric mean or the average value of the input parameters in the preclosure model PREAC (Preclosure Radiological Environmental Assessment Code). A qualitative estimate of the range of uncertainty associated with the preclosure model dose predictions was about an order of magnitude based on a review of the expected range of input parameter values. This paper examines the time-behaviour of the preclosure system and provides a quantitative estimate of the uncertainty, as determined through the use of probabilistic techniques, associated with the potential radiological impact from the same chronic UFDC radionuclide emissions during the preclosure phase. The individual dose to a member of the critical group assumed to be living near the UFDC has been assessed for selected key radionuclides and exposure pathways identified in the EIS. The purpose of this post

  17. Canola Oil Fuel Cell Demonstration: Volume 2 - Market Availability of Agricultural Crops for Fuel Cell Applications

    National Research Council Canada - National Science Library

    Adams, John W; Cassarino, Craig; Spangler, Lee; Johnson, Duane; Lindstrom, Joel; Binder, Michael J; Holcomb, Franklin H; Lux, Scott M

    2006-01-01

    .... The reformation of vegetable oil crops for fuel cell uses is not well known; yet vegetable oils such as canola oil represent a viable alternative and complement to traditional fuel cell feedstocks...

  18. Near-ambient solid polymer fuel cell

    Science.gov (United States)

    Holleck, G. L.

    1993-01-01

    Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as

  19. Durability of PEM Fuel Cell Membranes

    Science.gov (United States)

    Huang, Xinyu; Reifsnider, Ken

    Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

  20. Fuel cell added value for early market applications

    Science.gov (United States)

    Hardman, Scott; Chandan, Amrit; Steinberger-Wilckens, Robert

    2015-08-01

    Fuel Cells are often considered in the market place as just power providers. Whilst fuel cells do provide power, there are additional beneficial characteristics that should be highlighted to consumers. Due to the high price premiums associated with fuel cells, added value features need to be exploited in order to make them more appealing and increase unit sales and market penetration. This paper looks at the approach taken by two companies to sell high value fuel cells to niche markets. The first, SFC Energy, has a proven track record selling fuel cell power providers. The second, Bloom Energy, is making significant progress in the US by having sold its Energy Server to more than 40 corporations including Wal-Mart, Staples, Google, eBay and Apple. Further to these current markets, two prospective added value applications for fuel cells are discussed. These are fuel cells for aircraft APUs and fuel cells for fire prevention. These two existing markets and two future markets highlight that fuel cells are not just power providers. Rather, they can be used as solutions to many needs, thus being more cost effective by replacing a number of incumbent systems at the same time.

  1. Fuel cells for portable, mobile and hybrid applications

    International Nuclear Information System (INIS)

    Roberge, R.; Kaufman, A.

    2002-01-01

    The introduction of fuel cell systems for a variety of low-power applications (below 1000 watts) means they can be used for applications such as portable power sources and mobile power sources. The energy and power are separate elements in a fuel cell system. The power is provided by the fuel cell stack (output characteristics are dependent on the cell active area, number of cells, and operating conditions), and the energy is defined by the fuel (hydrogen) storage. The authors indicated that proton exchange membrane fuel cells are the most appropriate for small fuel cell systems, since they have a temperature range ambient to 90 Celsius, ambient air (non-humidified), and load following response. In addition, they possess a solid electrolyte, high power density and specific power, and low-pressure operation. Simplicity of operation is the key to the design of a fuel cell system. The parameters to be considered include hydrogen supply, air supply, water management, and thermal management. Some of the options available for fuels are: compressed hydrogen, metal hydrides, chemical hydrides, and carbon-based hydrogen storage. Some of the factors that will help in determining market penetration are: rapid cost reduction with volume, fuel infrastructure, proven reliability, and identification of applications where fuel cells provide superior performance. 2 figs

  2. Reactor core with rod-shaped fuel cells

    International Nuclear Information System (INIS)

    Dworak, A.

    1976-01-01

    The proposal refers to the optimization of the power distribution in a reactor core which is provided with several successive rod-shaped fuel cells. A uniform power output - especially in radial direction - is aimed at. This is achieved by variation of the dwelling periods of the fuel cells, which have, for this purpose, a fuel mixture changing from layer to layer. The fuel cells with the shortest dwelling period are arranged near the coolant inlet side of the reactor core. The dwelling periods of the fuel cells are adapted to the given power distribution. As neighboring cells have equal dwelling periods, the exchange can be performed much easier then with the composition currently known. (UWI) [de

  3. Stochastic sensitivity analysis of the biosphere model for Canadian nuclear fuel waste management

    International Nuclear Information System (INIS)

    Reid, J.A.K.; Corbett, B.J.

    1993-01-01

    The biosphere model, BIOTRAC, was constructed to assess Canada's concept for nuclear fuel waste disposal in a vault deep in crystalline rock at some as yet undetermined location in the Canadian Shield. The model is therefore very general and based on the shield as a whole. BIOTRAC is made up of four linked submodels for surface water, soil, atmosphere, and food chain and dose. The model simulates physical conditions and radionuclide flows from the discharge of a hypothetical nuclear fuel waste disposal vault through groundwater, a well, a lake, air, soil, and plants to a critical group of individuals, i.e., those who are most exposed and therefore receive the highest dose. This critical group is totally self-sufficient and is represented by the International Commission for Radiological Protection reference man for dose prediction. BIOTRAC is a dynamic model that assumes steady-state physical conditions for each simulation, and deals with variation and uncertainty through Monte Carlo simulation techniques. This paper describes SENSYV, a technique for analyzing pathway and parameter sensitivities for the BIOTRAC code run in stochastic mode. Results are presented for 129 I from the disposal of used fuel, and they confirm the importance of doses via the soil/plant/man and the air/plant/man ingestion pathways. The results also indicate that the lake/well water use switch, the aquatic iodine mass loading parameter, the iodine soil evasion rate, and the iodine plant/soil concentration ratio are important parameters

  4. Hydrogen fuel cells for cars and buses

    NARCIS (Netherlands)

    Janssen, L.J.J.

    2007-01-01

    The use of hydrogen fuel cells for cars is strongly promoted by the governments of many countries and by international organizations like the European Community. The electrochem. behavior of the most promising fuel cell (polymer electrolyte membrane fuel cell, PEMFC) is critically discussed, based

  5. Proceedings of the fuel cells `95 review meeting

    Energy Technology Data Exchange (ETDEWEB)

    George, T.J.

    1995-08-01

    This document contains papers presented at the Fuel Cells `95` Review Meeting. Topics included solid oxide fuel cells; DOE`s transportation program; ARPA advanced fuel cell development; molten carbonate fuel cells; and papers presented at a poster session. Individual papers have been processed separately for the U.S. DOE databases.

  6. Assessment of bio-fuel options for solid oxide fuel cell applications

    Science.gov (United States)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  7. Fuel Cells: Power System Option for Space Research

    Science.gov (United States)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power

  8. High Temperature PEM Fuel Cells and Organic Fuels

    DEFF Research Database (Denmark)

    Vassiliev, Anton

    of the products. The observation of internal reforming was indirectly confirmed by electrochemical impedance spectroscopy, where the best fits were obtained when a Gerischer element describing preceding chemical reaction and diffusion was included in the equivalent circuit of a methanol/air operated cell...... evaporated liquid stream supply to either of the electrodes. A large number of MEAs with different component compositions have been prepared and tested in different conditions using the constructed setups to obtain a basic understanding of the nature of direct DME HT-PEM FC, to map the processes occurring...... inside the cells and to determine the lifetime. Additionally, comparison was made with methanol as fuel, which is the main competitor to DME in direct oxidation of organic fuels in fuel cells. For the reference, measurements have also been done with conventional hydrogen/air operation. All...

  9. Modular fuel-cell stack assembly

    Science.gov (United States)

    Patel, Pinakin

    2010-07-13

    A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.

  10. The Canadian Petroleum Products Institute : position on ethanol

    International Nuclear Information System (INIS)

    2002-01-01

    A brief overview of the Canadian Petroleum Products Institute (CPPI), an industry association which represents Canadian Petroleum Refiners and Marketers is provided. It is not against nor for the use of ethanol as a fuel. Ethanol blends are marketed by some CPPI members. It is mentioned that consumers accept ethanol fuels when the price is competitive with the price of non-ethanol fuel. Mandating the use of ethanol in fuels is not an issue supported by the CPPI. A subsidy is required in order for ethanol to be an economically attractive option, and the consumers would be forced to bear subsidy costs if the use of ethanol in fuels were to be mandated. The technology is still some years away for ethanol from cellulose to be an attractive option. It is difficult to finance new plants, and 50 million of the 240 million litres of ethanol blended has to be imported. The advantages of ethanol as a fuel are marginal and not cost effective. Some changes to the gasoline distribution system would be required, as ethanol must be added near the consumer, and it may not be appropriate for some older vehicles and some off-road equipment. The gasoline industry's flexibility would be reduced by provincial mandates. Several questions have not yet been answered, such as what is the real purpose of mandating ethanol in motor fuels? when will new technology be available? The CPPI makes four recommendations: (1) the development of a clear understanding of and the articulation of the objectives of a new ethanol policy, (2) support the development of new cellulose based technology, (3) take a prudent and gradual approach to development of a new policy, and (4) CPPI does not believe that an ethanol mandate is in the best interests of all Canadians

  11. Fuel cell technology; Brennstoffzellen-Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Stimming, U; Friedrich, K A; Cappadonia, M; Vogel, R

    1999-12-31

    Hydrogen from fossil or renewable sources is an important fuel for low-emission power generation in fuel cells. Methanol and maybe also ethanol can also be produced by direct electrochemical processes in low-temperature fuel cells (PEMFC, PAFC). Fuel cell systems with high operating temperatures are highly flexible with regard to fuel but tend to have material problems. On the other hand, rapid developments in materials development and the possibility of production technology transfer from the electronics industry lead one to expect a breakthrough in the near future. But in spite of this, niche market applications will prevail. Since power stations have a longer life than motor vehicles and fuel cells in mobile applications, emission reductions from fuel cell applications in road vehicles are more probable on a medium-term basis than from applications in power stations. (orig.) [Deutsch] Wasserstoff, der sowohl aus fossilen wie auch aus regenerativen Quellen erschlossen werden kann, ist ein wesentlicher Brennstoff fuer die emissionsarme Elektrizitaetsproduktion in Brennstoffzellen. Methanol und eventuell Ethanol koennen auch direkt elektrochemisch in Niedertemperaturbrennstoffzellen (PEMFC, PAFC) umgesetzt werden. Brennstoffzellensysteme mit hohen Betriebstemperaturen erlauben eine hohe Flexibilitaet bezueglich der verwendeten Brennstoffe, sind aber nach wie vor durch starke Materialprobleme belastet. Die enormen Fortschritte in der Materialentwicklung einerseits sowie ein moeglicher Transfer von Fertigungstechnologien aus der Elektronikindustrie andererseits lassen eine zukuenftige grosstechnische Nutzung von Brennstoffzellen erwarten. Die technische Einfuehrung wird dennoch nur ueber Nischenmaerkte moeglich sein. Da die mittlere Lebensdauer eines Kraftwerks deutlich hoeher ist als die eines Strassenfahrzeugs, ausserdem Brennstoffzellen auch in staerkerem Masse in Fahrzeugen eingesetzt werden koennen, sind mittelfristig Emissionen eher durch

  12. Fuel Cells for Balancing Fluctuation Renewable Energy Sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    2007-01-01

    In the perspective of using fuel cells for integration of fluctuating renewable energy the SOFCs are the most promising. These cells have the advantage of significantly higher electricity efficiency than competing technologies and fuel flexibility. Fuel cells in general also have the advantage of...... with hydrogen production or electric cars, and on the other hand using biomass and bio fuels [11]. Fuel cells can have an important role in these future energy systems.......In the perspective of using fuel cells for integration of fluctuating renewable energy the SOFCs are the most promising. These cells have the advantage of significantly higher electricity efficiency than competing technologies and fuel flexibility. Fuel cells in general also have the advantage...... flexibility, such as SOFCs, heat pumps and heat storage technologies are more important than storing electricity as hydrogen via electrolysis in energy systems with high amounts of wind [12]. Unnecessary energy conversions should be avoided. However in future energy systems with wind providing more than 50...

  13. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Anton Francesch, Judit

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  14. Market penetration scenarios for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  15. Fuel cell mining vehicles: design, performance and advantages

    International Nuclear Information System (INIS)

    Betournay, M.C.; Miller, A.R.; Barnes, D.L.

    2003-01-01

    The potential for using fuel cell technology in underground mining equipment was discussed with reference to the risks associated with the operation of hydrogen vehicles, hydrogen production and hydrogen delivery systems. This paper presented some of the initiatives for mine locomotives and fuel cell stacks for underground environments. In particular, it presents the test results of the first applied industrial fuel cell vehicle in the world, a mining and tunneling locomotive. This study was part of an international initiative managed by the Fuel Cell Propulsion Institute which consists of several mining companies, mining equipment manufacturers, and fuel cell technology developers. Some of the obvious benefits of fuel cells for underground mining operations include no exhaust gases, lower electrical costs, significantly reduced maintenance, and lower ventilation costs. Another advantage is that the technology can be readily automated and computer-based for tele-remote operations. This study also quantified the cost and operational benefits associated with fuel cell vehicles compared to diesel vehicles. It is expected that higher vehicle productivity could render fuel cell underground vehicles cost-competitive. 6 refs., 1 tab

  16. INVESTIGATION OF PEM FUEL CELL FOR AUTOMOTIVE USE

    Directory of Open Access Journals (Sweden)

    A. K. M. Mohiuddin

    2015-11-01

    Full Text Available This paper provides a brief investigation on suitability of Proton-exchange  membrane fuel cells (PEMFCs as the source of power for transportation purposes. Hydrogen is an attractive alternative transportation fuel. It is the least polluting fuel that can be used in an internal combustion engine (ICE and it is widely available. If hydrogen is used in a fuel cell which converts the chemical energy of hydrogen into electricity, (NOx emissions are eliminated. The investigation was carried out on a  fuel cell car model by implementing polymer electrolyte membrane (PEM types of fuel cell as the source of power to propel the prototype car. This PEMFC has capability to propel the electric motor by converting chemical energy stored in hydrogen gas into useful electrical energy. PEM fuel cell alone is used as the power source for the electric motor without the aid of any other power source such as battery associated with it. Experimental investigations were carried out to investigate the characteristics of fuel cell used and the performance of the fuel cell car. Investigated papameters are the power it develops, voltage, current and speed it produces under different load conditions. KEYWORDS: fuel cell; automotive; proton exchange membrane; polymer electrolyte membrane; internal combustion engine

  17. Fuel Cell Equivalent Electric Circuit Parameter Mapping

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Zhou, Fan; Andreasen, Søren Juhl

    In this work a simple model for a fuel cell is investigated for diagnostic purpose. The fuel cell is characterized, with respect to the electrical impedance of the fuel cell at non-faulty conditions and under variations in load current. Based on this the equivalent electrical circuit parameters can...

  18. Solid Oxide Fuel Cell Experimental Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Solid Oxide Fuel Cell Experimental Laboratory in Morgantown, WV, gives researchers access to models and simulations that predict how solid oxide fuel cells...

  19. A Development of Ethanol/Percarbonate Membraneless Fuel Cell

    Directory of Open Access Journals (Sweden)

    M. Priya

    2014-01-01

    Full Text Available The electrocatalytic oxidation of ethanol on membraneless sodium percarbonate fuel cell using platinum electrodes in alkaline-acidic media is investigated. In this cell, ethanol is used as the fuel and sodium percarbonate is used as an oxidant for the first time in an alkaline-acidic media. Sodium percarbonate generates hydrogen peroxide in aqueous medium. At room temperature, the laminar-flow-based microfluidic membraneless fuel cell can reach a maximum power density of 18.96 mW cm−2 with a fuel mixture flow rate of 0.3 mL min−2. The developed fuel cell features no proton exchange membrane. The simple planar structured membraneless ethanol fuel cell presents with high design flexibility and enables easy integration of the microscale fuel cell into actual microfluidic systems and portable power applications.

  20. A vapor feed methanol microfluidic fuel cell with high fuel and energy efficiency

    International Nuclear Information System (INIS)

    Wang, Yifei; Leung, Dennis Y.C.; Xuan, Jin; Wang, Huizhi

    2015-01-01

    Highlights: • A microfluidic fuel cell with a vapor feed anode is investigated. • Its advantages include simpler design, direct usage of methanol and better performance. • The prototype achieves a peak power density of 55.4 mW cm −2 under room temperature. • The energy efficiency of 9.4% is much higher than its liquid feed counterpart. - Abstract: In this paper, a prototype of methanol microfluidic fuel cell with vapor feed anode configuration is proposed to improve the fuel and energy efficiency of the conventional liquid feed methanol microfluidic fuel cells. Peak power density of 55.4 mW cm −2 can be achieved with this prototype under room temperature, which is 30% higher than its conventional liquid feed counterpart. Moreover, an energy efficiency of 9.4% is achieved, which is 27.5 times higher than its liquid feed counterpart. This superiority on both cell performance and energy efficiency is directly benefitted from its vapor feed anode configuration, which alleviates the fuel crossover, eliminates the fuel depletion boundary layer, and avoids the bulk anolyte wastage. The tradeoff between cell performance and fuel utilization for conventional liquid feed microfluidic fuel cells is also evaded

  1. Nuclear fuel activities in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D S [Fuel Development Branch, Chalk River Labs., AECL (Canada)

    1997-12-01

    Nuclear fuel activities in Canada are considered in the presentation on the following directions: Canadian utility fuel performance; CANDU owner`s group fuel programs; AECL advanced fuel program (high burnup fuel behaviour and development); Pu dispositioning (MOX) activities. 1 tab.

  2. PORTABLE PEM FUEL CELL SYSTEM: WATER AND HEAT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    SITI NAJIBAH ABD RAHMAN

    2016-07-01

    Full Text Available Portable polymer electrolyte membrane (PEM fuel cell power generator is a PEM fuel cell application that is used as an external charger to supply the demand for high energy. Different environments at various ambient temperatures and humidity levels affect the performance of PEM fuel cell power generators. Thermal and water management in portable PEM fuel cells are a critical technical barrier for the commercialization of this technology. The size and weight of the portable PEM fuel cells used for thermal and water management systems that determine the performance of portable PEM fuel cells also need to be considered. The main objective of this paper review was to determine the importance of water and thermal management systems in portable PEM fuel cells. Additionally, this review investigated heat transfer and water transport in PEM fuel cells. Given that portable PEM fuel cells with different powers require different thermal and water management systems, this review also discussed and compared management systems for low-, medium-, and high-power portable PEM fuel cells.

  3. Fuel cell system with interconnect

    Science.gov (United States)

    Goettler, Richard; Liu, Zhien

    2017-12-12

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  4. Maritime Fuel Cell Generator Project.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    Fuel costs and emissions in maritime ports are an opportunity for transportation energy efficiency improvement and emissions reduction efforts. Ocean-going vessels, harbor craft, and cargo handling equipment are still major contributors to air pollution in and around ports. Diesel engine costs continually increase as tighter criteria pollutant regulations come into effect and will continue to do so with expected introduction of carbon emission regulations. Diesel fuel costs will also continue to rise as requirements for cleaner fuels are imposed. Both aspects will increase the cost of diesel-based power generation on the vessel and on shore. Although fuel cells have been used in many successful applications, they have not been technically or commercially validated in the port environment. One opportunity to do so was identified in Honolulu Harbor at the Young Brothers Ltd. wharf. At this facility, barges sail regularly to and from neighbor islands and containerized diesel generators provide power for the reefers while on the dock and on the barge during transport, nearly always at part load. Due to inherent efficiency characteristics of fuel cells and diesel generators, switching to a hydrogen fuel cell power generator was found to have potential emissions and cost savings.

  5. The back end of the fuel cycle and CANDU

    International Nuclear Information System (INIS)

    Allan, C.J.; Dormuth, K.W.

    2001-01-01

    CANDU reactor operators have benefited from several advantages of the CANDU system and from AECL's experience, with regard to spent fuel handling, storage and disposal. AECL has over 20 years experience in development and application of medium-term storage and research and development on the disposal of used fuel. As a result of AECL's experience, short-term and medium-term storage and the associated handling of spent CANDU fuel are well proven and economic, with an extremely high degree of public and environmental protection. In fact, both short-term (water-pool) and medium-term (dry canister) storage of CANDU fuel are comparable or lower in cost per unit of energy than for PWRs. Both pool storage and dry spent fuel storage are fully proven, with many years of successful, safe operating experience. AECL's extensive R and D on the permanent disposal of spent-fuel has resulted in a defined concept for Canadian fuel disposal in crystalline rock. This concept was recently confirmed as ''technically acceptable'' by an independent environmental review panel. Thus, the Canadian program represents an international demonstration of the feasibility and safety of geological disposal of nuclear fuel waste. Much of the technology behind the Canadian concept can be adapted to permanent land-based disposal strategies chosen by other countries. In addition, the Canadian development has established a baseline for CANDU fuel permanent disposal costs. Canadian and international work has shown that the cost of permanent CANDU fuel disposal is similar to the cost of LWR fuel disposal per unit of electricity produced. (author)

  6. Solid oxide fuel cells fueled with reducible oxides

    Science.gov (United States)

    Chuang, Steven S.; Fan, Liang Shih

    2018-01-09

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing the solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.

  7. Fuel cells and hydrogen : implications for the future automobile

    Energy Technology Data Exchange (ETDEWEB)

    Frise, P.R. [Auto 21 Network of Centres of Excellence, Windsor, ON (Canada)

    2006-07-01

    This presentation outlined the organization of the auto industry, with reference to the tier levels of the supply chain. Automakers or original equipment manufacturers (OEMs) such as Daimler Chrysler, Ford Motor Company, General Motors, Honda, Toyota and Nissan are at the top of the structure, followed by tier 1 suppliers, tier 2 suppliers and tier 3 companies. In recent years, the auto industry has experienced an explosion of new products, building more vehicle types with fewer plants. It was shown that since 1990, auto parts supply companies have consolidated. Currently, Canada's automotive sector is the world's eighth largest producer of motor vehicles. The 6 OEMs operate 12 active assembly plants in Canada plus several engine and drivetrain part plants and support facilities. More than 500,000 Canadians work directly and indirectly in the auto industry, which generates 12 to 13 per cent of Canada's gross domestic product. It was noted that automotive design is driven, in large part, by energy prices. The industry strives to make vehicles safer; improve fuel economy and reduce environmental impacts; and, re-tool the business model by improving supplier relationship and making assembly more efficient and safer in order to control cost and improve profitability. The challenges for the new automobile include new powertrains that use alternate fuels or have electric drive and control systems; new structures and materials; and, new systems and capabilities. The future of fuel cell powertrains was also discussed with reference to prototypes or products already in the market. tabs., figs.

  8. Extending EV Range with Direct Methanol Fuel Cells

    OpenAIRE

    Steckmann, Kai

    2009-01-01

    Electric cars are the vehicles of the future, and there is a proven hybrid system for extending their mileage. Direct methanol fuel cells (DMFCs) provide safe, lightweight, onboard battery charging that can free car owners from worry about running out of power. The hybrid system includes a DMFC fuel cell, fuel cell cartridge and electric vehicle batteries. The fuel cell operates almost silently with virtually no exhaust, it is immune to extreme weather and the convenient fuel cartridges featu...

  9. The fuel cell yesterday, today and tomorrow

    Directory of Open Access Journals (Sweden)

    Stanojević Dušan D.

    2005-01-01

    Full Text Available The fuel cell has some characteristics of a battery carrying out direct chemical conversion into electric energy. In relation to classical systems used for chemical energy conversion into electric power, through heat energy and mechanical operation, the fuel cell has considerably higher efficiency. The thermo-mechanical conversion of chemical into electric energy, in thermal power plants is carried out with 30% efficiency, while the efficiency of chemical conversion into electric energy, using a fuel cell is up to 60%. With the exception of the space programme, the commercial usage of the fuel cell did not exist up to 1990, when the most developed countries started extensive financial support of this source of energy. By 1995, more than a hundred fuel cells were installed in the process of electricity generation in Europe, USA and Japan, while nowadays there are thousands of installations, of efficient energetic capacity. Because of its superior characteristics, the fuel cell compared to other commercial electric energy producers, fulfills the most important condition - it does not pollute or if it does, the level is minimal. With such characteristics the fuel cell can help solve the growing conflict between the further economic development of mankind and the preservation of a clean and healthy natural environment.

  10. Diesel fueled ship propulsion fuel cell demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  11. On-site fuel cell field test support program

    Science.gov (United States)

    Staniunas, J. W.; Merten, G. P.

    1982-01-01

    In order to assess the impact of grid connection on the potential market for fuel cell service, applications studies were conducted to identify the fuel cell operating modes and corresponding fuel cell sizing criteria which offer the most potential for initial commercial service. The market for grid-connected fuel cell service was quantified using United's market analysis program and computerized building data base. Electric and gas consumption data for 268 buildings was added to our surveyed building data file, bringing the total to 407 buildings. These buildings were analyzed for grid-isolated and grid-connected fuel cell service. The results of the analyses indicated that the nursing home, restaurant and health club building sectors offer significant potential for fuel cell service.

  12. Waste management in Canadian nuclear programs

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1975-08-01

    The report describes the wide-ranging program of engineering developments and applications to provide the Canadian nuclear industry with the knowledge and expertise it needs to conduct its waste management program. The need for interim dry storage of spent fuel, and the storage and ultimate disposal of waste from fuel reprocessing are examined. The role of geologic storage in AECL's current waste management program is also considered. (R.A.)

  13. Fuel cell propulsion for urban duty vehicles: Bavarian fuel cell bus project

    International Nuclear Information System (INIS)

    Wurster, R.; Altmann, M.; Sillat, D.; Kalk, K. W.; Hammerschmidt, A.; Stuehler, W.; Holl, E.

    1998-01-01

    Following a feasibility study and a detailed specification phase, the realization of a fuel cell city bus prototype was started in autumn 1996. The project is a joint development effort of Siemens, MAN and Linde, which receives a 50 % funding by the Bavarian State Ministry for Economic Affairs, Transport and Technology (BStMWVT) in the context of the Hydrogen Initiative Bavaria. An MAN low-floor bus will be equipped with the components for a fuel cell drive system. The PEM fuel cell is developed by the power generation division of Siemens. Four fuel cell modules deliver a total electrical output of 120 kW to the two electric motors, which are linked by a summation gearbox by the Siemens Transportation Systems Division. MAN Technologie AG is responsible for the compressed hydrogen storage system allowing for a driving range of more than 250 km, while Linde AG takes care of the hydrogen periphery and delivers the hydrogen for the test operation scheduled for the beginning of the year 2000. Project coordination is done by Ludwig-Boelkow System-technik GmbH. The project is divided into four phases. The conceptual design phase is scheduled to last until the end of 1997. The partly overlapping system integration phase will end in the first quarter of 1999. The subsequent test and commissioning phase will prepare the test operation at the beginning of 2000 with a bus operator yet to be defined. (author)

  14. Non-platinum electrocatalysts for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Zhang, L.; Shi, Z.; Hui, R.; Zhang, J. [National Research Council of Canada, Vancouver, BC (Canada). Inst. For Fuel Cell Innovation

    2008-07-01

    High cost, low reliability and durability are the main barriers preventing widespread commercialization of fuel cells. In particular, the platinum (Pt)-based electrocatalysts used in proton exchange membrane (PEM) fuel cells, including direct methanol fuel cells (DMFCs) are major contributors to the high cost of PEM fuel cells. The Institute for Fuel Cell Innovation at the National Research Council of Canada has developed several new non-Pt electrocatalysts for PEM fuel cell applications. This paper presented the research results on these catalysts, including transition metal macrocycles, chalcogenides, and Ir- or Pd-based alloys. It also described catalyst structure modes via theoretical density functional theory (DFT) calculations. Research activities on these electrocatalysts was summarized in terms of catalytic activity and the oxygen reduction reaction (ORR). Typical catalysts such as cobalt(Co)-polypyrrole (PPy) and the chalcogenides show promising results in terms of catalytic activity and a 4-electron reaction mechanism. Efforts are underway to modify both catalyst structure and synthesis methods in order to further improve catalyst performance. 4 refs., 2 figs.

  15. Fuel cell research: Towards efficient energy

    CSIR Research Space (South Africa)

    Rohwer, MB

    2008-11-01

    Full Text Available fuel cells by optimising the loading of catalyst (being expensive noble metals) and ionomer; 2) Improving conventional acidic direct alcohol fuel cells by developing more efficient catalysts and by investigating other fuels than methanol; 3... these components add significantly to the overall cost of a PEMFC. 1 We focused our research activities on: 1) The effect of the loading of catalytic ink on cell performance; 2) The effect of the ionomer content in the catalytic ink; 3) Testing...

  16. Fuel cells. Pt. 1; Celle a combustibile. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Campanari, S; Macchi, E [Milan Politecnico (Italy). Dip. di Energetica

    1999-01-01

    Direct conversion of chemical energy into electricity (without intermediate heat generation) is a long-established method to improve the efficiency of power generation, as well as to reduce polluting emissions from thermal plants. The origins of fuel cells, as well as their operating principles, are dealt with. Then, various types of cells are taken into consideration, on the basis of both their characteristics and the operating principles of electrolytes. Finally, structure and operation of Polymer Electrolyte Membrane Fuel Cells (PEMFC), Alkaline Fuel Cells (AFC) and Phosphoric Acid Fuel Cells (PAFC) are described. [Italiano] La conversione diretta dell`energia chimica del combustibile in energia elettrica, senza passare attraverso la produzione di calore, rappresenta una via ormai ampiamente collaudata per migliorare l`efficienza della produzione di energia elettrica e per contenere le emissioni generate dagli impianti termoelettrici. L`articolo, dopo una breve presentazione della storia dello sviluppo nel tempo delle celle a combustibile, espone i principi di funzionamento delle stesse. Si esaminano quindi i vari tipi di cella a partire dalle caratteristiche e dalle modalita` di funzionamento degli elettroliti che ne definiscono la classificazione. Successivamente vengono illustrate le caratteristiche costruttive e funzionali delle celle ad elettrolita polimerico (PEMFC), delle celle alcaline (AFC) e delle celle ad acido fosforico (PAFC).

  17. Modular, High-Volume Fuel Cell Leak-Test Suite and Process

    Energy Technology Data Exchange (ETDEWEB)

    Ru Chen; Ian Kaye

    2012-03-12

    Fuel cell stacks are typically hand-assembled and tested. As a result the manufacturing process is labor-intensive and time-consuming. The fluid leakage in fuel cell stacks may reduce fuel cell performance, damage fuel cell stack, or even cause fire and become a safety hazard. Leak check is a critical step in the fuel cell stack manufacturing. The fuel cell industry is in need of fuel cell leak-test processes and equipment that is automatic, robust, and high throughput. The equipment should reduce fuel cell manufacturing cost.

  18. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Viktor Johánek

    2016-01-01

    Full Text Available The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc. on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed subjected to a wide range of conditions.

  19. State of the States: Fuel Cells in America

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-06-15

    This 2011 report, written by Fuel Cells 2000 and partially funded by the U.S. Department of Energy's Fuel Cell Technologies Program, provides an update of fuel cell and hydrogen activity in the 50 states and District of Columbia. State activities reported include new policies and funding, recent and planned fuel cell and hydrogen installations, and recent activities by state industries and universities.

  20. Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Ivanov

    2010-04-01

    Full Text Available Enzymatic fuel cells convert the chemical energy of biofuels into electrical energy. Unlike traditional fuel cell types, which are mainly based on metal catalysts, the enzymatic fuel cells employ enzymes as catalysts. This fuel cell type can be used as an implantable power source for a variety of medical devices used in modern medicine to administer drugs, treat ailments and monitor bodily functions. Some advantages in comparison to conventional fuel cells include a simple fuel cell design and lower cost of the main fuel cell components, however they suffer from severe kinetic limitations mainly due to inefficiency in electron transfer between the enzyme and the electrode surface. In this review article, the major research activities concerned with the enzymatic fuel cells (anode and cathode development, system design, modeling by highlighting the current problems (low cell voltage, low current density, stability will be presented.

  1. Review of Fuel Cell Technologies for Military Land Vehicles

    Science.gov (United States)

    2014-09-01

    2 3. FUELLING FUEL CELLS ...OEM Original Equipment Manufacturer PEM Proton Exchange Membrane PEMFC Proton Exchange Membrane Fuel Cell SOFC Solid Oxide Fuel Cell TRL Technical...UNCLASSIFIED DSTO-TN-1360 UNCLASSIFIED 4 3. Fuelling Fuel Cells 3.1 Hydrogen Hydrogen, either in its pure form or as reformate from another fuel is

  2. Fuel cells show promise as vehicle power source

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Fuel-cell-powered vehicles appear to offer great promise for energy-saving, high-efficiency transportation. Fuel cells are both highly efficient (50% thermal efficiency has been demonstrated by some) and non-polluting (water being the main by-product). Dramatic improvements in performance have occurred recently due to aerospace and utility RandD efforts. The primary vehicle considered at workshops of laboratory and industrial investigators was a fuel cell/battery hybrid, in which fuel cells are paralleled by batteries. Fuel cells are used for cruising power and battery recharge, while batteries supply transient power for acceleration and starting

  3. Compact Fuel-Cell System Would Consume Neat Methanol

    Science.gov (United States)

    Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas

    2007-01-01

    In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.

  4. Conductive polymer layers to limit transfer of fuel reactants to catalysts of fuel cells to reduce reactant crossover

    Science.gov (United States)

    Stanis, Ronald J.; Lambert, Timothy N.

    2016-12-06

    An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.

  5. Fuel cells and electrolysers in future energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    be considered which fuels such technologies can utilise and how these fuels can be distributed. Natural gas is not an option in future renewable energy systems and the de‐ mand for gaseous fuels, such as biogas or syngas, will increase significantly. Hence, fuel cell CHP plants represent a more fuel...... of transport, battery electric vehicles are more suitable than hydrogen fuel cell vehicles in future energy system. Battery electric ve‐ hicles may, for a part of the transport demand, have limitations in their range. Hybrid tech‐ nologies may provide a good option, which can combine the high fuel efficiency......Efficient fuel cells and electrolysers are still at the development stage. In this dissertation, future developed fuel cells and electrolysers are analysed in future renewable energy sys‐ tems. Today, most electricity, heat and transport demands are met by combustion tech‐ nologies. Compared...

  6. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology is one of the most attractive candidates for transportation applications due to its inherently high efficiency and high power density. However, the fuel cell system efficiency can suffer because of the need for forced air supply and water-cooling systems. Hence the operating strategy of the fuel cell system can have a significant impact on the fuel cell system efficiency and thus vehicle fuel economy. The key issues are how the fuel cell b...

  7. Fuel Cells in the Waste-to-Energy Chain Distributed Generation Through Non-Conventional Fuels and Fuel Cells

    CERN Document Server

    McPhail, Stephen J; Moreno, Angelo

    2012-01-01

    As the availability of fossils fuels becomes more limited, the negative impact of their consumption becomes an increasingly relevant factor in our choices with regards to primary energy sources. The exponentially increasing demand for energy is reflected in the mass generation of by-products and waste flows which characterize current society’s development and use of fossil sources. The potential for recoverable material and energy in these ever-increasing refuse flows is huge, even after the separation of hazardous constituent elements, allowing safe and sustainable further exploitation of an otherwise 'wasted' resource.  Fuel Cells in the Waste-to-Energy Chain explores the concept of waste-to-energy through a 5 step process which reflects the stages during the transformation of  refuse flows to a valuable commodity such as clean energy. By providing selected, integrated alternatives to the current centralized, wasteful, fossil-fuel based infrastructure, Fuel Cells in the Waste-to-Energy Chain explores ho...

  8. Block Copolymers for Alkaline Fuel Cell Membrane Materials

    Science.gov (United States)

    2014-07-30

    temperature fuel cells including proton exchange membrane fuel cell ( PEMFC ) and alkaline fuel cell (AFC) with operation temperature usually lower than 120...advantages over proton exchange membrane fuel cells ( PEMFCs ) resulting in the popularity of AFCs in the US space program.[8-11] The primary benefit AFC...offered over PEMFC is better electrochemical kinetics on the anode and cathode under the alkaline environment, which results in the ability to use

  9. Performance optimization of a PEM hydrogen-oxygen fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate the influence of process variables for design optimization of fuel cells, stacks, and complete fuel cell power system. The possible mechanisms of the parameter effects and their interrelationships are discussed. In order to assess the validity of the developed model a real PEM fuel cell system has been used to generate experimental data. The comparison shows good agreements between the modelling results and the experimental data. The model is shown a very useful for estimating the performance of PEM fuel cell stacks and optimization of fuel cell system integration and operation.

  10. Fuel cell catholyte regenerating apparatus

    International Nuclear Information System (INIS)

    Struthers, R. C.

    1985-01-01

    A catholyte regenerating apparatus for a fuel cell having a cathode section containing a catholyte solution and wherein fuel cell reaction reduces the catholyte to gas and water. The apparatus includes means to conduct partically reduced water diluted catholyte from the fuel cell and means to conduct the gas from the fuel cell to a mixing means. An absorption tower containing a volume of gas absorbing liquid solvent receives the mixed together gas and diluted catholyte from the mixing means within the absorption column, the gas is absorbed by the solvent and the gas ladened solvent and diluted catholyte are commingled. A liquid transfer means conducts gas ladened commingled. A liquid transfer means conducts gas ladened commingled solvent and electrolyte from the absorption column to an air supply means wherein air is added and commingled therewith and a stoichiometric volume of oxygen from the air is absorbed thereby. A second liquid transfer means conducts the gas ladened commingled solvent and diluted catholyte into a catalyst column wherein the oxygen and gas react to reconstitute the catholyte from which the gas was generated wna wherein the reconstituted diluted catholyte is separated from the solvent. Recirculating means conducts the solvent from the catalyst column back into the absorption column and liquid conducting means conducts the reconstituted catholyte to a holding tank preparatory for catholyte to a holding tank preparatory for recirculation through the cathode section of the fuel cell

  11. Direct fuel cell product design improvement

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Farooque, M. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Significant milestones have been attained towards the technology development field testing and commercialization of direct fuel cell power plant since the 1994 Fuel Cell Seminar. Under a 5-year cooperative agreement with the Department of Energy signed in December 1994, Energy Research Corporation (ERC) has been developing the design for a MW-scale direct fuel cell power plant with input from previous technology efforts and the Santa Clara Demonstration Project. The effort encompasses product definition in consultation with the Fuel Cell Commercialization Group, potential customers, as well as extensive system design and packaging. Manufacturing process improvements, test facility construction, cell component scale up, performance and endurance improvements, stack engineering, and critical balance-of-plant development are also addressed. Major emphasis of this product design improvement project is on increased efficiency, compactness and cost reduction to establish a competitive place in the market. A 2.85 MW power plant with an efficiency of 58% and a footprint of 420 m{sup 2} has been designed. Component and subsystem testing is being conducted at various levels. Planning and preparation for verification of a full size prototype unit are in progress. This paper presents the results obtained since the last fuel cell seminar.

  12. Canadian Petroleum Products Institute 1996 annual review

    International Nuclear Information System (INIS)

    1996-01-01

    The Canadian Petroleum Products Institute (CPPI) is an association of Canadian companies involved in the downstream sector of the petroleum industry which includes refining, distributing and marketing of petroleum products. CPPI's mandate includes: (1) establishing environmental policies, (2) establishing working relationships with governments to develop public policy, (3) developing guidelines for the safe handling of petroleum products, and (4) providing information about the petroleum industry to the public. Canada's 19 refineries processed an average of 1.5 million barrels of crude oil per day in 1996. Domestic sources of crude made up 61 per cent of crude oil processed in 1996. Total exports during the year amounted to 105 million barrels. Some of the issues that the CPPI focused on during 1996 included the controversy over the future of the octane enhancing fuel additive MMT, fuel quality standards for transportation fuels and reformulated fuels, gasoline pricing, air quality and workplace safety. CPPI members' participation in the Voluntary Challenge and Registry (VCR) program towards reducing greenhouse gas emissions was also discussed. The industry was also actively involved in seeking to improve its refinery wastewater discharges

  13. Fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, G [Technische Univ., Berlin (Germany); Hoehlein, B [Research Center Juelich (Germany)

    1996-12-01

    A promising new power source for electric drive systems is the fuel cell technology with hydrogen as energy input. The worldwide fuel cell development concentrates on basic research efforts aiming at improving this new technology and at developing applications that might reach market maturity in the very near future. Due to the progress achieved, the interest is now steadily turning to the development of overall systems such as demonstration plants for different purposes: electricity generation, drive systems for road vehicles, ships and railroads. This paper does not present results concerning the market potential of fuel cells in transportation but rather addresses some questions and reflections that are subject to further research of both engineers and economists. Some joint effort of this research will be conducted under the umbrella of the IEA Implementing Agreement 026 - Annex X, but there is a lot more to be done in this challenging but also promising fields. (EG) 18 refs.

  14. Proceedings of the Fuel Cells `97 Review Meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    The Federal Energy Technology Center (FETC) sponsored the Fuel Cells '97 Review Meeting on August 26-28, 1997, in Morgantown, West Virginia. The purpose of the meeting was to provide an annual forum for the exchange of ideas and discussion of results and plans related to the research on fuel cell power systems. The total of almost 250 conference participants included engineers and scientists representing utilities, academia, and government from the U.S. and eleven other countries: Canada, China, India, Iran, Italy, Japan, Korea, Netherlands, Russia, Taiwan, and the United Kingdom. On first day, the conference covered the perspectives of sponsors and end users, and the progress reports of fuel-cell developers. Papers covered phosphoric, carbonate, and solid oxide fuel cells for stationary power applications. On the second day, the conference covered advanced research in solid oxide and other fuel cell developments. On the third day, the conference sponsored a workshop on advanced research and technology development. A panel presentation was given on fuel cell opportunities. Breakout sessions with group discussions followed this with fuel cell developers, gas turbine vendors, and consultants.

  15. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  16. Business Case for Fuel Cells 2016

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra [Fuel Cell and Hydrogen Energy Association, Washington, DC (United States); Gangi, Jennifer [Fuel Cell and Hydrogen Energy Association, Washington, DC (United States); Benjamin, Thomas G. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The report provides an overview of recent private sector fuel cell installations at U.S. businesses as of December 31, 2016. This list is by no means exhaustive. Over the past few decades, hundreds of thousands of fuel cells have been installed around the world, for primary or backup power, as well as in various other applications including portable and emergency backup power. Fuel cells have also been deployed in other applications such as heat and electricity for homes and apartments, material handling, passenger vehicles, buses, and remote, off-grid sites.

  17. Micro & nano-engineering of fuel cells

    CERN Document Server

    Leung, Dennis YC

    2015-01-01

    Fuel cells are clean and efficient energy conversion devices expected to be the next generation power source. During more than 17 decades of research and development, various types of fuel cells have been developed with a view to meet the different energy demands and application requirements. Scientists have devoted a great deal of time and effort to the development and commercialization of fuel cells important for our daily lives. However, abundant issues, ranging from mechanistic study to system integration, still need to be figured out before massive applications can be used. Miniaturizatio

  18. Review of cell performance in anion exchange membrane fuel cells

    Science.gov (United States)

    Dekel, Dario R.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) have recently received increasing attention since in principle they allow for the use of non-precious metal catalysts, which dramatically reduces the cost per kilowatt of power in fuel cell devices. Until not long ago, the main barrier in the development of AEMFCs was the availability of highly conductive anion exchange membranes (AEMs); however, improvements on this front in the past decade show that newly developed AEMs have already reached high levels of conductivity, leading to satisfactory cell performance. In recent years, a growing number of research studies have reported AEMFC performance results. In the last three years, new records in performance were achieved. Most of the literature reporting cell performance is based on hydrogen-AEMFCs, although an increasing number of studies have also reported the use of fuels others than hydrogen - such as alcohols, non-alcohol C-based fuels, as well as N-based fuels. This article reviews the cell performance and performance stability achieved in AEMFCs through the years since the first reports in the early 2000s.

  19. Electrochemical power sources batteries, fuel cells, and supercapacitors

    CERN Document Server

    Bagotsky, Vladimir S; Volfkovich, Yurij M

    2015-01-01

    Electrochemical Power Sources (EPS) provides in a concise way theoperational features, major types, and applications of batteries,fuel cells, and supercapacitors Details the design, operational features, andapplications of batteries, fuel cells, and supercapacitors Covers improvements of existing EPSs and thedevelopment of new kinds of EPS as the results of intense R&Dwork Provides outlook for future trends in fuel cells andbatteries Covers the most typical battery types, fuel cells andsupercapacitors; such as zinc-carbon batteries, alkaline manganesedioxide batteries, mercury-zinc cells, lead

  20. Testing system for a fuel cells stack

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Stefanescu, Ioan; Raceanu, Mircea; Enache, Adrian; Lazar, Roxana Elena

    2006-01-01

    Hydrogen and electricity together represent one of the most promising ways to realize sustainable energy, whilst fuel cells provide the most efficient conversion devices for converting hydrogen and possibly other fuels into electricity. Thus, the development of fuel cell technology is currently being actively pursued worldwide. Due to its simple operation and other fair characteristics, the Proton Exchange Membrane Fuel Cell (PEMFC) is especially suitable as a replacement for the internal combustion engine. The PEMFC is also being developed for decentralized electricity and heat generation in buildings and mobile applications. Starting with 2001 the Institute of Research - Development for Cryogenics and Isotopic Technologies - ICIT - Rm. Valcea developed research activities supported by the Romanian Ministry of Education and Research within the National Research Program in order to bridge the gap to European competencies in the area of hydrogen and fuel cells. The paper deals with the testing system designed and developed in ICIT Rm. Valcea as a flexible and versatile tool allowing a large scale of parameter settings and measurements on a single cell or on a fuel cells stack onto a wind range of output power values. (authors)

  1. Fuel cells as renewable energy sources

    International Nuclear Information System (INIS)

    Cacciola, G.; Passalacqua, E.

    2001-01-01

    The technology level achieved in fuel cell (FC) systems in the last years has significantly increased the interest of various manufacturing industries engaged in energy production and distribution even under the perspectives that this technology could provide. Today, the fuel cells (FCs) can supply both electrical and thermal energy without using moving parts and with a high level of affordability with respect to the conventional systems. FCs can utilise every kind of fuel such as hydrocarbons, hydrogen available from the water through renewable sources (wind, solar energy), alcohol etc. Thus, they may find application in many field ranging from energy production in large or small plants to the cogeneration systems for specific needs such as for residential applications, hospitals, industries, electric vehicles and portable power sources. Low temperature polymer electrolyte fuel cells (PEFC, DMFC) are preferred for application in the field of transportation and portable systems. The CNR-ITAE research activity in this field concerns the development of technologies, materials and components for the entire system: electrocatalysts, conducting supports, electrolytes, manufacturing technologies for the electrodes-electrolyte assemblies and the attainment of fuel cells with high power densities. Furthermore, some activities have been devoted to the design and realisation of PEFC fuel cell prototypes with rated power lower than I kW for stationary and mobile applications [it

  2. American fuel cell bus project : first analysis report.

    Science.gov (United States)

    2013-06-01

    This report summarizes the experience and early results from the American Fuel Cell Bus Project, a fuel cell electric bus demonstration : funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by CALST...

  3. FFTF/IEM cell fuel pin weighing system

    International Nuclear Information System (INIS)

    Gibbons, P.W.

    1987-01-01

    The Interim Examination and Maintenance (IEM) cell in the Fast Flux Test Facility (FFTF) is used for remote disassembly of irradiated fuel and materials experiments. For those fuel experiments where the FFTF tag-gas detection system has indicated a fuel pin cladding breach, a weighing system is used in identifying that fuel pin with a reduced weight due to the escape of gaseous and volatile fission products. A fuel pin weighing machine, originally purchased for use in the Fuels and Materials Examination Facility (FMEF), was the basis for the IEM cell system. Design modifications to the original equipment were centered around adapting the machine to the differences between the two facilities and correcting deficiencies discovered during functional testing in the IEM cell mock-up

  4. National fuel cell seminar. Program and abstracts. [Abstracts of 40 papers

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    Abstracts of 40 papers are presented. Topics include fuel cell systems, phosphoric acid fuel cells, molten carbonate fuel cells, solid fuel and solid electrolyte fuel cells, low temperature fuel cells, and fuel utilization. (WHK)

  5. Fuel cells (part 2)

    International Nuclear Information System (INIS)

    Campanari, S.; Macchi, E.

    1999-01-01

    The article, following and completing the issues dealt with in part 1 (CH4 Energia Metano, 1/99, p. 7), describe the operating characteristic and construction features of molten carbonate and solid oxide fuel cells (MCFC and SOFC). For the latter type, construction cost are evaluated by various authors and research institutes. The article ends by presenting some tables showing the classification and the main characteristics of various fuel cells, and well as the effect of some gases on the behaviour of some of them [it

  6. Fuel Cell Stations Automate Processes, Catalyst Testing

    Science.gov (United States)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  7. Risk and investment in the fuel cell industry

    International Nuclear Information System (INIS)

    Henriques, I.; Sadorsky, P.

    2004-01-01

    The energy industry is one of the building blocks of the new economy. Currently, the global energy industry is going through a transformation from high carbon content fuels like crude oil to less carbon content fuels like natural gas and hydrogen. Fuel cells are the backbone of the hydrogen economy. Advances in fuel cell technology have the potential to improve the living standards of people in all countries. New sources of financial capital, however, remain a problem. In the fuel cell industry, the future of a firm often depends upon the success or failure of a few key products. This tends to make these firms very risky to invest in and, as a result, makes it difficult for these firms to secure financial investment capital. Oil price movements remain one very important source of risk to fuel cell companies. Conventional wisdom suggests that higher oil prices stimulate interest in alternative energy sources like fuel cells and the stock prices of publicly traded fuel cell companies tend to perform well when oil prices are high. Lower oil prices, however, have the opposite effect. Consequently, oil price movements may affect the rates of return of the companies currently in the fuel cell industry. In this paper, we empirically analyze the stock price sensitivity of a sample of fuel cell companies to oil price risk. In particular, we look at both the impact and magnitude of oil price changes on fuel cell stock prices. Both symmetric and asymmetric oil price changes are considered. Our results indicate that oil price risk is not an important source of risk that impacts the equity returns of fuel cell companies. We find that market risk factors are much more important. We then offer suggestions on how to manage this risk. These results are useful for managers, investors, policy makers, and others who are interested in the strategic management, financing and risk management of firms building the hydrogen economy. (author)

  8. Robust and reliable fuel cells; Robusta och tillfoerlitliga braensleceller

    Energy Technology Data Exchange (ETDEWEB)

    Nordlund, Joakim [Cellkraft AB, Stockholm (Sweden)

    2012-03-15

    For fuel cells to be a viable alternative for backup power in applications, where reliability is a critical factor, the reliability of fuel cells has to be high and documented. Based on intrinsic properties of fuel cells, it is safe to argue that it is possible to make them highly reliable, but to unleash the full reliability potential of fuel cells, some great engineering work has to be performed. Cellkraft has since many years been addressing this issue and this project is an important piece of this puzzle. The project included both a large number of laboratory testing of fuel cells and long experiments in field environment to verify the results from the laboratory work. The development work performed within this project is a solid base for the continuous work to fulfil Cellkraft's own, tough, technical reliability targets. The project targets below were achieved within this project: 1. The fuel cell start with 100 % reliability. 2. The fuel cell provides nominal power within 30 seconds in 100 % of the cases. 3. The fuel cell keeps providing nominal power as long as there is a demand in 100 % of the cases. 4. No cell in the fuel cell deviates from the mean cell potential with more than 0,1 V at full power.

  9. Carbon-based Fuel Cell. Final report

    International Nuclear Information System (INIS)

    Steven S. C. Chuang

    2005-01-01

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO 2 , and (3) the production of a nearly pure CO 2 exhaust stream for the direct CO 2 sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts

  10. High Temperature PEM Fuel Cells - Degradation and Durability

    DEFF Research Database (Denmark)

    Araya, Samuel Simon

    for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich...... be stored in liquid alcohols such as methanol, which can be sources of hydrogen for fuel cell applications. In addition, fuel cells unlike other technologies can use a variety of other fuels that can provide a source of hydrogen, such as biogas, methane, butane, etc. More fuel flexibility combined....... On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed...

  11. R&D on fuel cells in Japan and possible contributions of fuel cells to the Global Reduction of CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Hiroyasu [Government Industrial Research Inst., Osaka (Japan)

    1993-12-31

    Fuel cells can generate electricity equivalent to 40-60% of the energy contained In the fuel consumed, and an overall efficiency as high as 80% is not impossible to achieve through utilization of the exhaust heat. In addition, emissions of pollutants such as NOx and SOx from fuel cells are low. Since various reformed gases derived from natural gas, methanol and coal can be used as fuel for fuel cells, the wide range of applications for fuel cells is expected to contribute to the reduction of petroleum dependence in Japan.

  12. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities within the EERE Fuel Cell Technologies Program and the DOE offices of Nuclear Energy, Fossil Energy, and Science.

  13. Proton exchange membrane fuel cell technology for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Swathirajan, S. [General Motors R& D Center, Warren, MI (United States)

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  14. Fuel cell design using a new heuristic method

    International Nuclear Information System (INIS)

    Perusquia, R.; Montes T, J. L.; Ortiz S, J. J.; Castillo M, A.

    2014-10-01

    In this paper a new method for the pre-design of a typical fuel cell with a structural array of 10 x 10 fuel elements for a BWR is presented. The method is based on principles of maximum dispersion and minimum peaks of local power within the array of fuel elements. The pre-design of the fuel cells is made by simulation in two dimensions (2-D) through the cells physics code CASMO-4. For this purpose of pre-design the search process is guided by an objective function which is a combination of the main neutronic parameters of the fuel cell. The results show that the method is a promising tool that could be used for the design of fuel cells for use in a nuclear plant BWR. (Author)

  15. The Canadian fuel waste management program

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1986-04-01

    This report is the sixth in the series of annual reports on the research and development program for the safe management and disposal of Canada's nuclear fuel waste. The report summarizes progress in 1984 for the following activities: storage and transportation of used fuel, immobilization of nuclear fuel waste, geotechnical research, environmental research, and environmental and safety assessment. 186 refs

  16. A fuel cell city bus with three drivetrain configurations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junping [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Yong [School of Automobile and Transporting Engineering, Liaoning Institute of Technology, Jinzhou, Liaoning 121001 (China); Chen, Quanshi [State Key Laboratory of Automobile Safety and Energy Conservation, Tsinghua University, Beijing 100084 (China)

    2006-09-22

    Three fuel cell city buses of the energy hybrid- and power hybrid-type were re-engineered with three types of drivetrain configuration to optimize the structure and improve the performance. The energy distribution, hydrogen consumption, state of charge (SOC) and the power variation rate were analyzed when different drivetrain configurations and parameters were used. When powered only by a fuel cell, the bus cannot recover the energy through regenerative braking. The variation of the fuel cell power is large and frequent, which is not good for the fuel cell. When the fuel cell is linked to a battery pack in parallel, the bus can recover the energy through regenerative braking. The energy distribution is determined by the parameters of the fuel cell and the battery pack in the design stage to reduce the power variation rate of the fuel cell. When the fuel cell and DC/DC converter connected in series links the battery pack in parallel, energy can be recovered and the energy distribution can be adjusted online. The power variation rate of both the fuel cell and the battery pack are reduced. (author)

  17. State of the States: Fuel Cells in America, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra; Delmont, Elizabeth; Gangi, Jennifer

    2010-04-01

    This report, written by Fuel Cells 2000 and partially funded by the U.S. Department of Energy's Fuel Cell Technologies Program, provides a snapshot of fuel cell and hydrogen activity in the 50 states and District of Columbia. It features the top five fuel cell states (in alphabetical order): California, Connecticut, New York, Ohio, and South Carolina. State activities reported include supportive fuel cell and hydrogen policies, installations and demonstrations, road maps, and level of activism.

  18. 3-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Fuel Cell Using Different Fuels

    Science.gov (United States)

    2011-01-01

    major types of fuel cells in practice are listed below: Polymer Electrolyte Membrane Fuel Cell ( PEMFC ) Alkaline Fuel cell (AFC) Phosphoric Acid...Material Operating Temperature (oC) Efficiency (%) PEMFC H2, Methanol, Formic Acid Hydrated Organic Polymer < 90 40-50 AFC Pure H2 Aqueous

  19. Materials testing for molten carbonate fuel cells

    International Nuclear Information System (INIS)

    Di Mario, F.; Frangini, S.

    1995-01-01

    Unlike conventional generation systems fuel cells use an electrochemical reaction between a fossil fuel and an oxidant to produce electricity through a flame less combustion process. As a result, fuel cells offer interesting technical and operating advantages in terms of conversion efficiencies and environmental benefits due to very low pollutant emissions. Among the different kinds of fuel cells the molten carbonate fuel cells are currently being developed for building compact power generation plants to serve mainly in congested urban areas in virtue of their higher efficiency capabilities at either partial and full loads, good response to power peak loads, fuel flexibility, modularity and, potentially, cost-effectiveness. Starting from an analysis of the most important degradative aspects of the corrosion of the separator plate, the main purpose of this communication is to present the state of the technology in the field of corrosion control of the separator plate in order to extend the useful lifetime of the construction materials to the project goal of 40,000 hours

  20. Low hydrostatic head electrolyte addition to fuel cell stacks

    International Nuclear Information System (INIS)

    Kothmann, R.E.

    1983-01-01

    A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces

  1. International cooperation on methanol-based fuel cells

    International Nuclear Information System (INIS)

    2000-01-01

    An international agreement on co-operation to study the use of cars powered by methanol-based fuel cells was signed in September 2000. This indicates that gas will have to compete on the future fuel market. According to the agreement, measures will be taken to ease the introduction of such cars when they are commercialized. Methanol represents a fuel that can be distributed throughout most of the world within realistic economical bounds by means of the existing infrastructure. A global market analysis based on the assumption that there will be a billion cars in the world by 2020 shows the great potential for the use of fuel cells. In addition, they are environmentally sound. Technological developments of fuel cells during the latest decade may render traditional combustion engines obsolete. Methanol is a liquid at room temperature and can be stored in the fuel tank just like ordinary fuels. Petrol, liquefied petroleum gas, natural gas, ethanol and methanol can all be used in a fuel cell engine, but since the technology is based on chemical energy conversion, the most suitable fuel is one that is hydrogen-rich and easily stored. Many experts favour liquid hydrogen. However, liquid hydrogen has many problems in common with liquefied natural gas or cooled liquid natural gas: about 25% of the energy is used in keeping the fuel in the liquid state

  2. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    Science.gov (United States)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  3. Exergy analysis of an integrated fuel processor and fuel cell (FP-FC) system

    NARCIS (Netherlands)

    Delsman, E.R.; Uju, C.U.; Croon, de M.H.J.M.; Schouten, J.C.; Ptasinski, K.J.

    2006-01-01

    Fuel cells have great application potential as stationary power plants, as power sources in transportation, and as portable power generators for electronic devices. Most fuel cells currently being developed for use in vehicles and as portable power generators require hydrogen as a fuel. Chemical

  4. PEM fuel cells thermal and water management fundamentals

    CERN Document Server

    Wang, Yun; Cho, Sung Chan

    2014-01-01

    Polymer Electrolyte Membrane (PEM) fuel cells convert chemical energy in hydrogen into electrical energy with water as the only by-product. Thus, PEM fuel cells hold great promise to reduce both pollutant emissions and dependency on fossil fuels, especially for transportation-passenger cars, utility vehicles, and buses-and small-scale stationary and portable power generators. But one of the greatest challenges to realizing the high efficiency and zero emissions potential of PEM fuel cells technology is heat and water management. This book provides an introduction to the essential concepts for effective thermal and water management in PEM fuel cells and an assessment on the current status of fundamental research in this field. The book offers you: An overview of current energy and environmental challenges and their imperatives for the development of renewable energy resources, including discussion of the role of PEM fuel cells in addressing these issues; Reviews of basic principles pertaining to PEM fuel cel...

  5. HANARO Neutron Radiography Facility and Fuel Cell Research

    International Nuclear Information System (INIS)

    Kim, Taejoo

    2013-01-01

    Fuel cell which generates electric energy from hydrogen and oxygen is one of noticed renewable energy system because this has high efficiency and free from CO 2 . Especially, PEMFC (Polymer Electrolyte Membrane Fuel Cell) is focused by automotive companies because PEMFC, which has high power rate per volume and low operating temperature (60∼80), is suited due to the compact design and short start-up time. The water management is one of the most critical issues for fuel cell commercialization. In order to make a proper scheme for water management, thein formation of water distribution and behavior is very important. Neutron imaging is the best method to visualize the water at fuel cell and has been applied worldwide with qualitative and quantitative results. Because the NRF has large beam size (350Χ450mm 2 ) and relatively high neutron flux (2Χ107 n/cm 2 sec), it is suitable for large scale fuel cell research. Neutron imaging technique was used to investigate the water distribution and behavior in PEMFC under different operating conditions. The NRF has contributed the improvement of fuel cell performance and is one of the best choices for fuel cell study

  6. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    Science.gov (United States)

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  7. Fuel cells - An option for the future

    International Nuclear Information System (INIS)

    Vielstich, W.

    1984-01-01

    The direct conversion of the energy of a fuel into electrical energy in fuel cells avoids the losses inseparable from the indirect conversion via heat and mechanical energy. The idea to use this concept of energy conversion for the application in power stations would offer the following advantages: a slightly better total energy efficiency; no environmental problems; and flexibility in size according to the construction in the battery stacks. The use of acid and alkaline H 2 /O 2 fuel cells in the U.S. space program has demonstrated the high energy per weight data possible with a fuel cell device including tankage. Therefore, the application of fuel cells in electric vehicles seems to be suitable at least from the technical point of view. Kordesch has converted an Austin A-40 to electric propulsion by replacing the gasoline engine by an 8-kW truck motor powered by a 6-kW alkaline hydrogen-air fuel cell/4-kW lead-acid hybrid system. Two severe handicaps that occurred were the use of gas cylinders for the storage of the hydrogen and the voluminous CO 2 scrubber to prevent carbonization of the alkaline electrolyte. The direct conversion of a liquid fuel like methanol would be advantageous

  8. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Steven S. C. [Univ. of Akron, OH (United States)

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels

  9. Dynamic behavior of gasoline fuel cell electric vehicles

    Science.gov (United States)

    Mitchell, William; Bowers, Brian J.; Garnier, Christophe; Boudjemaa, Fabien

    As we begin the 21st century, society is continuing efforts towards finding clean power sources and alternative forms of energy. In the automotive sector, reduction of pollutants and greenhouse gas emissions from the power plant is one of the main objectives of car manufacturers and innovative technologies are under active consideration to achieve this goal. One technology that has been proposed and vigorously pursued in the past decade is the proton exchange membrane (PEM) fuel cell, an electrochemical device that reacts hydrogen with oxygen to produce water, electricity and heat. Since today there is no existing extensive hydrogen infrastructure and no commercially viable hydrogen storage technology for vehicles, there is a continuing debate as to how the hydrogen for these advanced vehicles will be supplied. In order to circumvent the above issues, power systems based on PEM fuel cells can employ an on-board fuel processor that has the ability to convert conventional fuels such as gasoline into hydrogen for the fuel cell. This option could thereby remove the fuel infrastructure and storage issues. However, for these fuel processor/fuel cell vehicles to be commercially successful, issues such as start time and transient response must be addressed. This paper discusses the role of transient response of the fuel processor power plant and how it relates to the battery sizing for a gasoline fuel cell vehicle. In addition, results of fuel processor testing from a current Renault/Nuvera Fuel Cells project are presented to show the progress in transient performance.

  10. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in

  11. Technology Validation: Fuel Cell Bus Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-02

    This presentation describing the FY 2016 accomplishments for the National Renewable Energy Laboratory's Fuel Cell Bus Evaluations project was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, June 7, 2016.

  12. Reactor core with rod-shaped fuel cells

    International Nuclear Information System (INIS)

    Dworak, A.

    1975-01-01

    Power distribution in a high-temperature gas-cooled reactor is optimized. Especially the axial as well as the radial power distribution is kept constant, the core consisting of several consecutive rod-shaped fuel cells. To this end, the dwell times of the fuel cells are fitted to the given power distribution. Fuel cells with equal dwell times, seen in flow direction, are arranged side by side, and those with the shortest dwell times are placed in areas with the greatest power release. These areas ly on the coolant inlet side. To keep the power distribution constant, fuel cells with neutron poison or absorber rods with absorbing rates decreasing in flow direction can also be inserted. (RW/PB) [de

  13. Operating a fuel cell using landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  14. A fuel cell driven aircraft baggage tractor

    Energy Technology Data Exchange (ETDEWEB)

    Sterkenburg, Stefan van [HAN Univ. of Applied Sciences (Netherlands); Rijs, Aart van; Hupkens, Huib [Silent Motor Company, Arnhem (Netherlands)

    2010-07-01

    Silent Motor Company and the HAN University of Applied Science collaborate in the development of an aircraft baggage tractor. The baggage tractor is equipped with an 8kW fuel cell stack connected to a 26kWh battery-pack. The control system implemented minimizes the start-up time of the fuel cell system, protects the fuel cell against overload and underload and controls the State of Charge (SOC) of the battery to its optimum value. A practical SOC-determination method is implemented which does not need detailed knowledge about the batteries applied. This paper presents a description of the fuel cell system, its energy management system and SOC-determination method and the results of first test measurements. (orig.)

  15. Hydrogen Village : creating hydrogen and fuel cell communities

    International Nuclear Information System (INIS)

    Smith, G.R.

    2009-01-01

    The Hydrogen Village (H2V) is a collaborative public-private partnership administered through Hydrogen and Fuel Cells Canada and funded by the Governments of Canada and Ontario. This end user-driven, market development program accelerates the commercialization of hydrogen and fuel cell (FC) technologies throughout the Greater Toronto Area (GTA). The program targets 3 specific aspects of market development, notably deployment of near market technologies in community based stationary and mobile applications; development of a coordinated hydrogen delivery and equipment service infrastructure; and societal factors involving corporate policy and public education. This presentation focused on lessons learned through outreach programs and the deployment of solid oxide fuel cell (SOFC) heat and power generation; indoor and outdoor fuel cell back up power systems; fuel cell-powered forklifts, delivery vehicles, and utility vehicles; hydrogen internal combustion engine powered shuttle buses, sedans, parade float; hydrogen production/refueling stations in the downtown core; and temporary fuel cell power systems

  16. Update on the Vancouver Fuel Cell Vehicle Program

    International Nuclear Information System (INIS)

    Rothwell, B.

    2004-01-01

    'Full text:' The Vancouver Fuel Cell Vehicle Program (VFCVP) is a $5.8 million initiative designed to test four Ford Focus Fuel Cell Vehicles for three years in the Lower Mainland of British Columbia. The project is the first of its kind in Canada and is led by Fuel Cells Canada (FCC), the Ford Motor Company (Ford), and the Governments of Canada and British Columbia. This presentation will provide program details and an update on activities leading up to currently planned delivery to Vancouver in November 2004. The VFCVP will test the performance, durability and reliability of the Ford fuel cell vehicle cars in real-world conditions and will examine fuelling issues and solutions, the reduction of greenhouse gas emissions and public acceptance of hydrogen fuel cell vehicles. The program will generate data to help evolve the technology and develop international codes and standards E cents Epnd the implementation and adoption of fuel cell technology. (author)

  17. Controlled shutdown of a fuel cell

    Science.gov (United States)

    Clingerman, Bruce J.; Keskula, Donald H.

    2002-01-01

    A method is provided for the shutdown of a fuel cell system to relieve system overpressure while maintaining air compressor operation, and corresponding vent valving and control arrangement. The method and venting arrangement are employed in a fuel cell system, for instance a vehicle propulsion system, comprising, in fluid communication, an air compressor having an outlet for providing air to the system, a combustor operative to provide combustor exhaust to the fuel processor.

  18. Fuel behavior modeling using the MARS computer code

    International Nuclear Information System (INIS)

    Faya, S.C.S.; Faya, A.J.G.

    1983-01-01

    The fuel behaviour modeling code MARS against experimental data, was evaluated. Two cases were selected: an early comercial PWR rod (Maine Yankee rod) and an experimental rod from the Canadian BWR program (Canadian rod). The MARS predictions are compared with experimental data and predictions made by other fuel modeling codes. Improvements are suggested for some fuel behaviour models. Mars results are satisfactory based on the data available. (Author) [pt

  19. Cathode-supported hybrid direct carbon fuel cells

    DEFF Research Database (Denmark)

    Gil, Vanesa; Gurauskis, Jonas; Deleebeeck, Lisa

    2017-01-01

    The direct conversion of coal to heat and electricity by a hybrid direct carbon fuel cell (HDCFC) is a highly efficient and cleaner technology than the conventional combustion power plants. HDCFC is defined as a combination of solid oxide fuel cell and molten carbonate fuel cell. This work...... investigates cathode-supported cells as an alternative configuration for HDCFC, with better catalytic activity and performance. This study aims to define the best processing route to manufacture highly efficient cathode-supported cells based on La0.75Sr0.25MnO3/yttria-stabilized zirconia infiltrated backbones...

  20. The battle of the fuel cell. De slag om de brandstofcel

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijkum, P H [Nederlandse Organisatie voor Energie en Milieu BV (NOVEM), Sittard (Netherlands)

    1992-03-01

    An overview is given of several types of fuel cells and for each type the international state of the art in the development and technology. The fuel cells discussed are: the alkaline fuel cell (AFC), the proton exchange membrane fuel cell (PEMFC), the phosphoric acid fuel cell (PAFC), the external reforming molten carbonate fuel cell (ER-MCFC), the internal reforming molten carbonate fuel cell (IR-MCFC) and the solid oxide fuel cell (SOFC). 1 figs., 3 ills., 5 tabs., 7 refs.

  1. Proceedings of the fourth annual fuel cells contractors review meeting

    International Nuclear Information System (INIS)

    Huber, W.J.

    1992-07-01

    Objective of the program was to develop the essential technology for private sector commercialization of various fuel cell electrical generation systems, which promise high fuel efficiencies (40--60%), possibilities for cogeneration, modularity, possible urban siting, and low emissions. Purpose of this meeting was to provide the R and D participants in the DOE/Fossil Energy-sponsored Fuel Cells Program with a forum. With the near commercialization of phosphoric acid fuel cells, major emphasis was on molten carbonate and solid oxide fuel cells. 22 papers were given in 3 formal sessions: molten carbonate fuel cells; solid oxide fuel cells; and systems and phosphoric acid. In addition, the proceedings also include a welcome to METC address and comments on the Fuel Cells program from the viewpoint of EPRI and DOE's vehicular fuel cell program. Separate abstracts have been prepared

  2. Canadian fusion program

    International Nuclear Information System (INIS)

    Brown, T.S.

    1982-06-01

    The National Research Council of Canada is establishing a coordinated national program of fusion research and development that is planned to grow to a total annual operating level of about $20 million in 1985. The long-term objective of the program is to put Canadian industry in a position to manufacture sub-systems and components of fusion power reactors. In the near term the program is designed to establish a minimum base of scientific and technical expertise sufficient to make recognized contributions and thereby gain access to the international effort. The Canadian program must be narrowly focussed on a few specializations where Canada has special indigenous skills or technologies. The programs being funded are the Tokamak de Varennes, the Fusion Fuels Technology Project centered on tritium management, and high-power gas laser technology and associated diagnostic instrumentation

  3. Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems

    International Nuclear Information System (INIS)

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2004-01-01

    This investigation examines the economics of producing electricity from proton-exchange membrane (PEM) fuel cell systems under various conditions, including the possibility of using fuel cell vehicles (FCVs) to produce power when they are parked at office buildings and residences. The analysis shows that the economics of both stationary fuel cell and FCV-based power vary significantly with variations in key input variables such as the price of natural gas, electricity prices, fuel cell and reformer system costs, and fuel cell system durability levels. The 'central case' results show that stationary PEM fuel cell systems can supply electricity for offices and homes in California at a net savings when fuel cell system costs reach about $6000 for a 5 kW home system ($1200/kW) and $175,000 for a 250 kW commercial system ($700/kW) and assuming somewhat favorable natural gas costs of $6/GJ at residences and $4/GJ at commercial buildings. Grid-connected FCVs in commercial settings can also potentially supply electricity at competitive rates, in some cases producing significant annual benefits. Particularly attractive is the combination of net metering along with time-of-use electricity rates that allow power to be supplied to the utility grid at the avoided cost of central power plant generation. FCV-based power at individual residences does not appear to be as attractive, at least where FCV power can only be used directly or banked with the utility for net metering and not sold in greater quantity, due to the low load levels at these locations that provide a poor match to automotive fuel cell operation, higher natural gas prices than are available at commercial settings, and other factors

  4. Demand for Canadian gas in the U.S. market

    International Nuclear Information System (INIS)

    Larson, L.H.

    1991-01-01

    This paper reports that Canadian natural gas exports to the United States commenced in 1957 and have now reached 1.3 Tcf per year. Natural gas consumption in the united States is currently 25% of the total energy consumption, which is expected t grow considerably by the year 2000. National security and environmental concerns will make natural gas an increasingly desirable fuel, and U.S. domestic gas reserves will be insufficient to supply the demand growth. Consequently, there is a growing opportunity for increased sales of Canadian natural gas to the united States provided economic, regulatory and political situations do not deprive U.S. consumers of the opportunity to utilize this source of the world's cleanest fuel

  5. Proceedings of the Canadian Nuclear Society sixth annual conference

    International Nuclear Information System (INIS)

    French, P.M.; Phillips, G.J.

    1985-01-01

    The proceedings of the Sixth Annual Conference of the Canadian Nuclear Society comprise 103 papers on the following subjects: fuel technology, nuclear plant safety, instrumentation, public and regulatory matters, fusion, fuel behaviour under normal and accident conditions, nuclear plant design and operations, thermal hydraulics, reactor physics, accelerators, waste management, new reactor concepts

  6. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  7. FCTESTNET - Testing fuel cells for transportation

    NARCIS (Netherlands)

    Winkel, R.G.; Foster, D.L.; Smokers, R.T.M.

    2006-01-01

    FCTESTNET (Fuel Cell Testing and Standardization Network) is an ongoing European network project within Framework Program 5. It is a three-year project that commenced January 2003, with 55 partners from European research centers, universities, and industry, working in the field of fuel cell R and D.

  8. Reduced size fuel cell for portable applications

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor); Frank, Harvey A. (Inventor)

    2004-01-01

    A flat pack type fuel cell includes a plurality of membrane electrode assemblies. Each membrane electrode assembly is formed of an anode, an electrolyte, and an cathode with appropriate catalysts thereon. The anode is directly into contact with fuel via a wicking element. The fuel reservoir may extend along the same axis as the membrane electrode assemblies, so that fuel can be applied to each of the anodes. Each of the fuel cell elements is interconnected together to provide the voltage outputs in series.

  9. Gas transport in solid oxide fuel cells

    CERN Document Server

    He, Weidong; Dickerson, James

    2014-01-01

    This book provides a comprehensive overview of contemporary research and emerging measurement technologies associated with gas transport in solid oxide fuel cells. Within these pages, an introduction to the concept of gas diffusion in solid oxide fuel cells is presented. This book also discusses the history and underlying fundamental mechanisms of gas diffusion in solid oxide fuel cells, general theoretical mathematical models for gas diffusion, and traditional and advanced techniques for gas diffusivity measurement.

  10. Well-to-wheels analysis of fuel-cell vehicle/fuel systems

    International Nuclear Information System (INIS)

    Wang, M.

    2002-01-01

    Major automobile companies worldwide are undertaking vigorous research and development efforts aimed at developing fuel-cell vehicles (FCVs). Proton membrane exchange (PEM)-based FCVs require hydrogen (H(sub 2)) as the fuel-cell (FC) fuel. Because production and distribution infrastructure for H(sub 2) off board FCVs as a transportation fuel does not exist yet, researchers are developing FCVs that can use hydrocarbon fuels, such as methanol (MeOH) and gasoline, for onboard production of H(sub 2) via fuel processors. Direct H(sub 2) FCVs have no vehicular emissions, while FCVs powered by hydrocarbon fuels have near-zero emissions of criteria pollutants and some carbon dioxide (CO(sub 2)) emissions. However, production of H(sub 2) can generate a large amount of emissions and suffer significant energy losses. A complete evaluation of the energy and emission impacts of FCVs requires an analysis of energy use and emissions during all stages, from energy feedstock wells to vehicle wheels-a so-called ''well-to-wheels'' (WTW) analysis. This paper focuses on FCVs powered by several transportation fuels. Gasoline vehicles (GVs) equipped with internal combustion engines (ICEs) are the baseline technology to which FCVs are compared. Table 1 lists the 13 fuel pathways included in this study. Petroleum-to-gasoline (with 30-ppm sulfur[S] content) is the baseline fuel pathway for GVs

  11. Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications [PEM fuel cells

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2001-01-01

    A polymer electrolyte membrane fuel cell operational at temperatures around 150-200 degrees C is desirable for fast electrode kinetics and high tolerance to fuel impurities. For this purpose polybenzimidazole (PBI) membranes have been prepared and H/sub 3/PO/sub 4/-doped in a doping range from 300...... doping level. At 160 degrees C a conductivity as high as 0.13 S cm/sup -1/ is obtained for membranes of high doping levels. Mechanical strength measurements show, however, that a high acid doping level results in poor mechanical properties. At operational temperatures up to 190 degrees C, fuel cells...... based on this polymer membrane have been tested with both hydrogen and hydrogen containing carbon monoxide....

  12. A life-cycle perspective on automotive fuel cells

    International Nuclear Information System (INIS)

    Simons, Andrew; Bauer, Christian

    2015-01-01

    Highlights: • Individual inventories for each fuel cell system component, current and future. • Environmental and human health burdens from fuel cell production and end-of-life. • Comparison passenger transport in fuel cell and conventional vehicles. • Fuel cell can be more critical to overall burdens than hydrogen production. • Fuel cell developments require radical but possible changes to reduce burdens. - Abstract: The production and end-of-life (EoL) processes for current and future proton exchange membrane fuel cell (PEMFC) systems for road passenger vehicle applications were analysed and quantified in the form of life cycle inventories. The current PEMFC technology is characterised by highly sensitive operating conditions and a high system mass. For each core component of PEMFC there are a range of materials under development and the research aimed to identify those considered realistic for a 2020 future scenario and according to commercial goals of achieving higher performance, increased power density, greater stability and a marked reduction of costs. End-of-life scenarios were developed in consideration of the materials at the focus of recovery efforts. The life cycle impact assessment (LCIA) addressed the production and EoL of the fuel cell systems with inclusion of a sensitivity analysis to assess influences on the results from the key fuel cell parameters. The second part to the LCIA assessed the environmental and human health burdens from passenger transport in a fuel cell vehicle (FCV) with comparison between the 2012 and 2020 fuel cell scenarios and referenced to an internal combustion engine vehicle (ICEV) of Euro5 emission standard. It was seen that whilst the drivetrain (and therefore the fuel cell system) is a major contributor to the emissions in all the indicators shown, the hydrogen use (and therefore the efficiency of the fuel cell system and the method of hydrogen production) can have a far greater influence on the environmental

  13. Viability of fuel cells for car production

    Energy Technology Data Exchange (ETDEWEB)

    Buchel, J.-P. [Renault, Trappes (France); Lisse, J.-P. [P.S.A., Trappes (France); Bernard, S. [Alten, Trappes (France)

    2000-07-01

    The two French car manufacturers PSA Peugeot Citroen and Renault both sell pure electric cars in an effort to reduce pollutants and carbon dioxide emissions. In addition, they have each studied fuel cell car prototypes in relation to the FEVER program for Renault and the HYDRO-GEN program for PSA. In 1999, the two manufacturers joined forces in a common program to evaluate the technical, economical and environmental viability of the fuel cell vehicle potential. The joint program has active contributions by Air Liquid, the French Atomic Energy Agency, De Nora Fuel Cells, Elf-Antar-France, Totalfina and Valeo. This paper highlighted many of the components of this program and the suitability of this new technology for industrial production at a cost competitive price. Certain automotive constraints have to be considered to propose vehicles which could provide good performance in varying temperature and operating conditions. Safety is also an important concern given that the vehicles are powered by hydrogen and a high voltage power source. Another challenges is the choice of the fuel and the economic cost of a new refueling infrastructure. Recycling was suggested as a means to recover expensive fuel cell system components such as precious catalysts, bipolar plates, membranes and other main specific parts of the fuel cell vehicle. This paper also discussed issues regarding the thermal management of the fuel cell power plant and air conditioning of the vehicles. figs.

  14. Speeding the transition: Designing a fuel-cell hypercar

    Energy Technology Data Exchange (ETDEWEB)

    Williams, B.D.; Moore, T.C.; Lovins, A.B. [Rocky Mountain Inst., Snowmass, CO (United States). Hypercar Center

    1997-12-31

    A rapid transformation now underway in automotive technology could accelerate the transition to transportation powered by fuel cells. Ultralight, advanced-composite, low-drag, hybrid-electric hypercars--using combustion engines--could be three- to fourfold more efficient and one or two orders of magnitude cleaner than today`s cars, yet equally safe, sporty, desirable, and (probably) affordable. Further, important manufacturing advantages--including low tooling and equipment costs, greater mechanical simplicity, autobody parts consolidation, shorter product cycles, and reduced assembly effort and space--permit a free-market commercialization strategy. This paper discusses a conceptual hypercar powered by a proton-exchange-membrane fuel cell (PEMFC). It outlines the implications of platform physics and component selection for the vehicle`s mass budget and performance. The high fuel-to-traction conversion efficiency of the hypercar platform could help automakers overcome the Achilles` heel of hydrogen-powered vehicles: onboard storage. Moreover, because hypercars would require significantly less tractive power, and even less fuel-cell power, they could adopt fuel cells earlier, before fuel cells` specific cost, mass, and volume have fully matured. In the meantime, commercialization in buildings can help prepare fuel cells for hypercars. The promising performance of hydrogen-fueled PEMFC hypercars suggests important opportunities in infrastructure development for direct-hydrogen vehicles.

  15. 2000 Annual Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S.

    2000-12-11

    The Department of Energy's Office of Transportation Technologies Fiscal Year (FY) 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000 and comprises 22 summaries of industry and National Laboratory projects that were conducted. The report provides an overview of the exciting work being conducted to tackle the tough technical challenges associated with developing clean burning fuels that will enable meeting the performance goals of the Emission Control R and D for Advanced CIDI Engines and the Transportation Fuel Cell Power Systems Programs. The summaries cover the effects of CIDI engine emissions and fuel cell power system performance, the effects of lubricants on engine emissions, the effects of fuel and consumed lubricants on exhaust emission control devices and the health and safety, materials compatibility, and economics of advanced petroleum-based fuels.

  16. Microbial fuel cell: A green technology

    International Nuclear Information System (INIS)

    Jong Bor Chyan; Liew Pauline Woan Ying; Muhamad Lebai Juri; Ahmad Zainuri Mohd Dzomir; Leo Kwee Wah; Mat Rasol Awang

    2010-01-01

    Microbial Fuel Cell (MFC) was developed which was able to generate bio energy continuously while consuming wastewater containing organic matters. Even though the bio energy generated is not as high as hydrogen fuel cell, the MFC demonstrated great potential in bio-treating wastewater while using it as fuel source. Thus far, the dual-ability of the MFC to generate bio energy and bio-treating organic wastewater has been examined successfully using synthetic acetate and POME wastewaters. (author)

  17. Experience in the manufacture and performance of CANDU fuel for KANUPP

    International Nuclear Information System (INIS)

    Salim, M.; Ahmed, I.; Butt, P.

    1995-01-01

    Karachi Nuclear Power Plant (KANUPP) a 137 MWe CANDU unit is In operation since 1971. Initially, it was fueled with Canadian fuel bundles. In July 1980 Pakistani manufactured fuel was introduced in the reactor core, irradiated to a burnup of about 7500 MWd-teU -1 and successfully discharged in May 1984. The core was progressively fuelled with Pakistani fuel and in August 1990 the reactor core contained all Pakistani made fuel. As of the present, 3 core equivalent Pakistani fuel bundles have been successfully discharged at an average bumup of 6500 MWd-teU -1 . with a maximum burnup of ∼ 10,200 MWd-teU -1 . No fuel failure of Pakistani bundles has been observed so far. This paper presents the indigenous efforts towards manufacture and operational aspects of KANUPP fuel and compares its behaviour with that of Canadian supplied fuel. The Pakistani fuel has performed well and is as good as the Canadian fuel. (author)

  18. Stress-life interrelationships associated with alkaline fuel cells

    Science.gov (United States)

    Thaller, Lawrence H.; Martin, Ronald E.; Stedman, James K.

    1987-01-01

    A review is presented concerning the interrelationships between applied stress and the expected service life of alkaline fuel cells. Only the physical, chemical, and electrochemical phenomena that take place within the fuel cell stack portion of an overall fuel cell system will be discussed. A brief review will be given covering the significant improvements in performance and life over the past two decades as well as summarizing the more recent advances in understanding which can be used to predict the performance and life characteristics of fuel cell systems that have yet to be built.

  19. Fuel Cell Demonstration Project - 200 kW - Phosphoric Acid Fuel Cell Power Plant Located at the National Transportation Research Center: FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Berry, JB

    2005-05-06

    Oak Ridge National Laboratory (ORNL) researches and develops distributed generation technology for the Department of Energy, Energy Efficiency and Renewable Energy Distributed Energy Program. This report describes installation and operation of one such distributed generation system, a United Technology Corporation fuel cell located at the National Transportation Research Center in Knoxville, Tennessee. Data collected from June 2003 to June of 2004, provides valuable insight regarding fuel cell-grid compatibility and the cost-benefit of the fuel cell operation. The NTRC fuel cell included a high-heat recovery option so that use of thermal energy improves project economics and improves system efficiency to 59% year round. During the year the fuel cell supplied a total of 834MWh to the NTRC and provided 300MBtu of hot water. Installation of the NTRC fuel cell was funded by the Distributed Energy Program with partial funding from the Department of Defense's Climate Change Fuel Cell Buy Down Program, administered by the National Energy Technology Laboratory. On-going operational expenses are funded by ORNL's utility budget and are paid from operational cost savings. Technical information and the benefit-cost of the fuel cell are both evaluated in this report and sister reports.

  20. Hydrogen Fuel Cells: Part of the Solution

    Science.gov (United States)

    Busby, Joe R.; Altork, Linh Nguyen

    2010-01-01

    With the decreasing availability of oil and the perpetual dependence on foreign-controlled resources, many people around the world are beginning to insist on alternative fuel sources. Hydrogen fuel cell technology is one answer to this demand. Although modern fuel cell technology has existed for over a century, the technology is only now becoming…

  1. Method of forming a package for MEMS-based fuel cell

    Science.gov (United States)

    Morse, Jeffrey D; Jankowski, Alan F

    2013-05-21

    A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.

  2. Hydrogen storage and integrated fuel cell assembly

    Science.gov (United States)

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  3. LG Solid Oxide Fuel Cell (SOFC) Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Haberman, Ben [LG Fuel Cell Systems Inc., North Canton, OH (United States); Martinez-Baca, Carlos [LG Fuel Cell Systems Inc., North Canton, OH (United States); Rush, Greg [LG Fuel Cell Systems Inc., North Canton, OH (United States)

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  4. Environmental aspects of battery and fuel cell technologies

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The PA Consulting Group was commissioned by the Longer Term Studies Unit, Research and Technology Policy Division and Information and Manufacturing Technologies Division, Dept. of Trade and Industry to investigate possible environmental initiatives which might be driven by the European Commission and which could promote interest in alternative energy sources, particularly batteries and fuel cells. Findings confirmed that there is a role for fuel cells in power generation, the most commercially advanced technology being the phosphoric acid fuel cell (PAFC). Development of other systems such as Proton Exchange Membrane technology (PEMFC) and solid oxide fuel cells (SOFC) should also continue. Emissions from fuel cells are lower than those of gas turbines, their main competitors for power generation applications below 100 MW. The study concluded that there is a role for both batteries or fuel cells in powering electric vehicles. Battery powered retrofitted vehicles have an environmental impact comparable to that of internal combustion engine powered vehicles and they could become commercially viable in the context of a carbon tax scenario. Purpose built electric vehicles would be even more attractive. From an environmental viewpoint, fuels cells based on proton membrane membrane technology seemed the best option for powering vehicles if the technical targets could be met.

  5. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  6. Mechanical behaviour of PEM fuel cell catalyst layers during regular cell operation

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2010-01-01

    Damage mechanisms in a proton exchange membrane fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the mechanical behaviour of the catalyst layers during regular cell operation, mechanical response under steady-state hygro-thermal stresses s...

  7. Demonstration of Passive Fuel Cell Thermal Management Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  8. Improved Direct Methanol Fuel Cell Stack

    Science.gov (United States)

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  9. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  10. Strategic Partnerships in Fuel Cell Development

    Science.gov (United States)

    Diab, Dorey

    2006-01-01

    This article describes how forming strategic alliances with universities, emerging technology companies, the state of Ohio, the federal government, and the National Science Foundation, has enabled Stark State College to develop a $5.5 million Fuel Cell Prototyping Center and establish a Fuel Cell Technology program to promote economic development…

  11. Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tao; Wang, Qing-Ming [Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, PA 15261 (United States)

    2005-01-10

    Fuel cells are being considered as an important technology that can be used for various power applications. For portable electronic devices such as laptops, digital cameras, cell phone, etc., the direct methanol fuel cell (DMFC) is a very promising candidate as a power source. Compared with conventional batteries, DMFC can provide a higher power density with a long-lasting life and recharging which is almost instant. However, many issues related to the design, fabrication and operation of miniaturized DMFC power systems still remain unsolved. Fuel delivery is one of the key issues that will determine the performance of the DMFC. To maintain a desired performance, an efficient fuel delivery system is required to provide an adequate amount of fuel for consumption and remove carbon dioxide generated from fuel cell devices at the same time. In this paper, a novel fuel delivery system combined with a miniaturized DMFC is presented. The core component of this system is a piezoelectric valveless micropump that can convert the reciprocating movement of a diaphragm activated by a piezoelectric actuator into a pumping effect. Nozzle/diffuser elements are used to direct the flow from inlet to outlet. As for DMFC devices, the micropump system needs to meet some specific requirements: low energy consumption but a sufficient fuel flow rate. Based on theoretical analysis, the effect of piezoelectric materials properties, driving voltage, driving frequency, nozzle/diffuser dimension, and other factors on the performance of the whole fuel cell system will be discussed. As a result, a viable design of a micropump system for fuel delivery can be achieved and some simulation results will be presented as well. (author)

  12. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  13. Canadian Forces Experience with Turbofan HCF - Case Study

    National Research Council Canada - National Science Library

    Kinart, Corey; Theriault, Pierre

    2005-01-01

    High Cycle Fatigue (HCF) cracking of a Canadian Forces (CF) turbofan engine fuel tube resulted in a six year, multinational effort to identify the root cause and to ultimately develop and implement a solution...

  14. Fuel cell electrode interconnect contact material encapsulation and method

    Science.gov (United States)

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  15. Fuel Cell Balance-of-Plant Reliability Testbed Project

    Energy Technology Data Exchange (ETDEWEB)

    Sproat, Vern [Stark State College of Technology, North Canton, OH (United States); LaHurd, Debbie [Lockheed Martin Corp., Oak Ridge, TN (United States)

    2016-10-29

    Reliability of the fuel cell system balance-of-plant (BoP) components is a critical factor that needs to be addressed prior to fuel cells becoming fully commercialized. Failure or performance degradation of BoP components has been identified as a life-limiting factor in fuel cell systems.1 The goal of this project is to develop a series of test beds that will test system components such as pumps, valves, sensors, fittings, etc., under operating conditions anticipated in real Polymer Electrolyte Membrane (PEM) fuel cell systems. Results will be made generally available to begin removing reliability as a roadblock to the growth of the PEM fuel cell industry. Stark State College students participating in the project, in conjunction with their coursework, have been exposed to technical knowledge and training in the handling and maintenance of hydrogen, fuel cells and system components as well as component failure modes and mechanisms. Three test beds were constructed. Testing was completed on gas flow pumps, tubing, and pressure and temperature sensors and valves.

  16. Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance

    Science.gov (United States)

    Atwan, Mohammed H.; Macdonald, Charles L. B.; Northwood, Derek O.; Gyenge, Elod L.

    Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20 wt% metal load) were prepared by the Bönneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH 4 -, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH 4 - oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5 mg cm -2 colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47 V at 100 mA cm -2 and 333 K, while under identical conditions the cell voltage using colloidal Au was 0.17 V.

  17. Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Atwan, Mohammed H.; Northwood, Derek O. [Department of Mechanical, Auto and Materials Engineering, University of Windsor, Windsor (Canada N9B 3P4); Macdonald, Charles L.B. [Department of Chemistry and Biochemistry, University of Windsor, Windsor (Canada N9B 3P4); Gyenge, Elod L. [Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC (Canada V6T 1Z4)

    2006-07-14

    Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20wt% metal load) were prepared by the Bonneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH{sub 4}{sup -}, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH{sub 4}{sup -} oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5mgcm{sup -2} colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47V at 100mAcm{sup -2} and 333K, while under identical conditions the cell voltage using colloidal Au was 0.17V. (author)

  18. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  19. Study of catalysis for solid oxide fuel cells and direct methanol fuel cells

    Science.gov (United States)

    Jiang, Xirong

    Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading. For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a

  20. Fuel Cell System for Transportation -- 2005 Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.

    2006-10-01

    Independent review report of the methodology used by TIAX to estimate the cost of producing PEM fuel cells using 2005 cell stack technology. The U.S. Department of Energy (DOE) Hydrogen, Fuel Cells and Infrastructure Technologies Program Manager asked the National Renewable Energy Laboratory (NREL) to commission an independent review of the 2005 TIAX cost analysis for fuel cell production. The NREL Systems Integrator is responsible for conducting independent reviews of progress toward meeting the DOE Hydrogen Program (the Program) technical targets. An important technical target of the Program is the proton exchange membrane (PEM) fuel cell cost in terms of dollars per kilowatt ($/kW). The Program's Multi-Year Program Research, Development, and Demonstration Plan established $125/kW as the 2005 technical target. Over the last several years, the Program has contracted with TIAX, LLC (TIAX) to produce estimates of the high volume cost of PEM fuel cell production for transportation use. Since no manufacturer is yet producing PEM fuel cells in the quantities needed for an initial hydrogen-based transportation economy, these estimates are necessary for DOE to gauge progress toward meeting its targets. For a PEM fuel cell system configuration developed by Argonne National Laboratory, TIAX estimated the total cost to be $108/kW, based on assumptions of 500,000 units per year produced with 2005 cell stack technology, vertical integration of cell stack manufacturing, and balance-of-plant (BOP) components purchased from a supplier network. Furthermore, TIAX conducted a Monte Carlo analysis by varying ten key parameters over a wide range of values and estimated with 98% certainty that the mean PEM fuel cell system cost would be below DOE's 2005 target of $125/kW. NREL commissioned DJW TECHNOLOGY, LLC to form an Independent Review Team (the Team) of industry fuel cell experts and to evaluate the cost estimation process and the results reported by TIAX. The results of

  1. Mathematical modeling of solid oxide fuel cells

    Science.gov (United States)

    Lu, Cheng-Yi; Maloney, Thomas M.

    1988-01-01

    Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.

  2. The prospects for Canadian uranium

    International Nuclear Information System (INIS)

    Salaff, S.

    1983-07-01

    The 1980s have seen a decline in markets for uranium concentrate, largely as a result of falling estimates for reactor fuel requirements and rising inventories. Spot market prices fell to $44 in September 1982, but have since risen back to $60. World production also fell in 1982 and is not expected to increase significantly before 1990. Some opportunities exist for Canadian producers with new low-cost deposits to replace high-cost producers in Canada and other countries, particularly the United States. There will be strong competition between Canadian producers as well as from Australia. Australia's reserves are somewhat larger than Canada's, although the reported ore grades tend to be lower than those of Saskatchewan

  3. Fuel cell energy service Enron`s commerical program

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, M.W.

    1996-04-01

    Enron, the premier provider of clean fuels worldwide, has launched a unique energy service based on fuel cell technology. The goal of this program is to bring the benefits of fuel cell power to the broad commercial marketplace. Enron`s Energy Service is currently based on a 200 kilowatt phosphoric acid power plant manufactured by ONSI Corporation. This plant is fueled by natural gas or propane, and exhibits superior performance. Enron offers a `no hassle` package that provides customers with immediate benefits with no upfront capital or technical risks. This paper describes Enron`s fuel cell commercial program.

  4. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and

  5. CO tolerance of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gubler, L; Scherer, G G; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Reformed methanol can be used as a fuel for polymer electrolyte fuel cells instead of pure hydrogen. The reformate gas contains mainly H{sub 2}, CO{sub 2} in the order of 20% and low levels of CO in the order of 100 ppm. CO causes severe voltage losses due to poisoning of the anode catalyst. The effect of CO on cell performance was investigated at different CO levels up to 100 ppm. Various options to improve the CO tolerance of the fuel cell were assessed thereafter, of which the injection of a few percents of oxygen into the fuel feed stream proved to be most effective. By mixing 1% of oxygen with hydrogen containing 100 ppm CO, complete recovery of the cell performance could be attained. (author) 2 figs., 2 tabs., 3 refs.

  6. Advances in direct oxidation methanol fuel cells

    Science.gov (United States)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  7. Molten carbonate fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yasuhiko; Kinoshita, Mamoru; Murakami, Shuzo; Furukawa, Nobuhiro

    1987-09-26

    Reformed gas or coal gasification gas, etc. is used as the fuel gas for fused carbonate fuel cells, however sulfuric compounds are contained in these gases and even after these gases have been treated beforehand through a desulfurizer, a trace quantity of H/sub 2/S is sent to a fuel electrode. Sulfur oxide which is formed at the time of burning and oxidating the exhaust gas from the fuel electrode is supplied together with the air to an oxygen electrode and becomes sulfate after substituting carbonate, which is the electrolyte of the electrode, causing deterioration of the cell characteristics and durability. With regard to a system that hydrogen rich gas which was reformed from the raw fuel is supplied to a fuel electrode, and its exhaust gas is oxidated through a burner to form carbon dioxide which is supplied together with the air to an oxygen electrode, this invention proposes the prevention of the aforementioned defects by providing at the down stream of the above burner a remover to trap with fused carbonate such sulfur compounds as SO/sub 2/ and SO/sub 3/ in the gas after being oxidated as above. (3 figs)

  8. Romanian-Canadian joint program for qualification of FCN as a CANDU fuel supplier

    International Nuclear Information System (INIS)

    Galeriu, C.A.; Andrei, G.; Bailescu, A.

    1995-01-01

    RENEL (Romania Power Authority), the co-ordinator of Romanian Nuclear Program, have decided to improve, starting 1990 the existing capability to produce CANDU nuclear fuel at FCN Pitesti. The objective of the program was defined with AAC (AECL - ANSALDO Consortium) for the qualification of FCN fuel plant according to Canadian Z299.2 standard. The Qualification Program was performed under AAC Work Order C-003. The co-ordination was assumed by AECL, as overall Design Authority. ZPI (Zircatec Precision Industries Inc., Canada), were designated to supply technical assistance, equipments and know how where necessary. After a preliminary verification of the FCN fuel plant, including the processes and system investigation, performed under AECL and ZPI assistance, the Qualification Program was defined in all details. The upgrading of documentation on all aspects required by Z299.2 was performed. Few processes needed to be reconsidered and equipment was delivered by ZPI or other suppliers. This includes mainly welding equipments and special inspection equipments. Health Physics was practically fully reconsidered. New equipment and practice were adapted to provide adequate control on health conditions. Every manufacturing and inspection process was checked to determine their performance during a Qualification Run based on acceptance criteria which have been established in the Qualification Plan. Manufacturing Demonstration Run was an important step to prove that all plant functions have been accomplished during the fabrication of 200 fuel bundles. These bundles have been fully accepted and 66 of them have been loaded in the first charge of Unit 1 Cemavoda NPS. The surveillance and audit actions made by AECL and ZPI during this period confirmed the FCN capability to operate an adequate system meeting the to required quality assurance standard. The very open attitude of AECL, Zircatec and FCN staff have stimulated the progress of the project and a successful achievement of the

  9. Proceedings -- US Russian workshop on fuel cell technologies

    Energy Technology Data Exchange (ETDEWEB)

    Baker, B.; Sylwester, A. [comps.

    1996-04-01

    On September 26--28, 1995, Sandia National Laboratories sponsored the first Joint US/Russian Workshop on Fuel Cell Technology at the Marriott Hotel in Albuquerque, New Mexico. This workshop brought together the US and Russian fuel cell communities as represented by users, producers, R and D establishments and government agencies. Customer needs and potential markets in both countries were discussed to establish a customer focus for the workshop. Parallel technical sessions defined research needs and opportunities for collaboration to advance fuel cell technology. A desired outcome of the workshop was the formation of a Russian/American Fuel Cell Consortium to advance fuel cell technology for application in emerging markets in both countries. This consortium is envisioned to involve industry and national labs in both countries. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. Proceedings of the fuel cells 1994 contractors review meeting

    Science.gov (United States)

    Carpenter, C. P., II; Mayfield, M. J.

    1994-08-01

    METC annually sponsors this conference to provide a forum for energy executives, engineers, etc. to discuss advances in fuel cell research and development projects, to exchange ideas with private sector attendees, and to review relevant results in fuel cell technology programs. Two hundred and three people from industry, academia, and Government attended. The conference attempts to showcase the partnerships with the Government and with industry, by seeking activity participation and involvement from the Office of Energy Efficiency and Renewable Energy, EPRI, GRI, and APRA. In addition to sessions on fuel cells (solid oxide, molten carbonate, etc.) for stationary electric power generation, sessions on US DOE's Fuel Cell Transportation Program and on DOD/APRA's fuel cell logistic fuel program were presented. In addition to the 29 technical papers, an abstract of an overview of international fuel cell development and commercialization plans in Europe and Japan is included. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  11. Proceedings of the fuel cells `94 contractors review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, C.P. II; Mayfield, M.J. [eds.] [USDOE Morgantown Energy Technology Center, WV (United States)

    1994-08-01

    METC annually sponsors this conference to provide a forum for energy executives, engineers, etc. to discuss advances in fuel cell research and development projects, to exchange ideas with private sector attendees, and to review relevant results in fuel cell technology programs. Two hundred and three people from industry, academia, and Government attended. The conference attempts to showcase the partnerships with the Government and with industry, by seeking activity participation and involvement from the Office of Energy Efficiency and Renewable Energy, EPRI, GRI, and APRA. In addition to sessions on fuel cells (solid oxide, molten carbonate, etc.) for stationary electric power generation, sessions on US DOE`s Fuel Cell Transporation Program and on DOD/APRA`s fuel cell logistic fuel program were presented. In addition to the 29 technical papers, an abstract of an overview of international fuel cell development and commercialization plans in Europe and Japan is included. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  12. The development of microfabricated biocatalytic fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi; Karube, Isao [University of Tokyo (Japan). Research Center for Advanced Science and Technology

    1999-02-01

    The production of electricity by biocatalytic fuel cells has been feasible for almost two decades and can produce electric power at a practical level. These fuel cells use immobilized microorganisms or enzymes as catalysts, and glucose as a fuel. A microfabricated enzyme battery has recently been made that is designed to function as a power supply for microsurgery robots or artificial organs. (author)

  13. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  14. Micro-Solid Oxide Fuel Cell: A multi-fuel approach for portable applications

    International Nuclear Information System (INIS)

    Patil, Tarkeshwar C.; Duttagupta, Siddhartha P.

    2016-01-01

    Highlights: • We report the oxygen ion transport properties at the electrode–electrolyte interface (EEI) of the SOFC for the first time. • This ion transport plays a key role in the overall performance of SOFCs with different fuels. • The GIIB mechanism is also studied for the first time. • GIIB is assumed to be the prime reason for low power density and ion conductivity at the EEI when using hydrocarbon fuels. • Due to its scalability, a fuel cell can serve as a power source for on-chip applications and all portable equipment. - Abstract: The impact of oxygen ion transport at the electrolyte–electrode interface of a micro-solid oxide fuel cell using different fuels is investigated. Model validation is performed to verify the results versus the reported values. Furthermore, as the hydrogen-to-carbon ratio decreases, the diffusivity of the oxygen ion increases. This increase in diffusivity is observed because the number of hydrogen atoms available as the reacting species increases in fuels with lower hydrogen-to-carbon ratios. The oxygen ion conductivity and output power density decrease as the hydrogen-to-carbon ratio of the fuels decreases. The reason behind this impact is the formation of a gas-induced ion barrier at the electrode–electrolyte interface by the CO_2 molecules formed during the reaction at the interface, thus blocking the flow of oxygen ions. As the oxygen ions become blocked, the output current contribution from the reaction also decreases and thereby affects the overall performance of the micro-solid oxide fuel cell. The experimental verification confirms this because of a significant decrease in the output power density. Furthermore, as per the application in portable devices, the appropriate choice of fuel can be chosen so that the micro-solid oxide fuel cell operates at the maximum power density.

  15. Development of portable fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakatou, K.; Sumi, S.; Nishizawa, N. [Sanyo Electric Co., Ltd., Osaka (Japan)

    1996-12-31

    Sanyo Electric has been concentrating on developing a marketable portable fuel cell using phosphoric acid fuel cells (PAFC). Due to the fact that this power source uses PAFC that operate at low temperature around 100{degrees} C, they are easier to handle compared to conventional fuel cells that operate at around 200{degrees} C , they can also be expected to provide extended reliable operation because corrosion of the electrode material and deterioration of the electrode catalyst are almost completely nonexistent. This power source is meant to be used independently and stored at room temperature. When it is started up, it generates electricity itself using its internal load to raise the temperature. As a result, the phosphoric acid (the electolyte) absorbs the reaction water when the temperature starts to be raised (around room temperature). At the same time the concentration and volume of the phosphoric acid changes, which may adversely affect the life time of the cell. We have studied means for starting, operating PAFC stack using methods that can simply evaluate changes in the concentration of the electrolyte in the stack with the aim of improving and extending cell life and report on them in this paper.

  16. Hydrogen storage and fuel cells

    Science.gov (United States)

    Liu, Di-Jia

    2018-01-01

    Global warming and future energy supply are two major challenges facing American public today. To overcome such challenges, it is imperative to maximize the existing fuel utilization with new conversion technologies while exploring alternative energy sources with minimal environmental impact. Hydrogen fuel cell represents a next-generation energy-efficient technology in transportation and stationary power productions. In this presentation, a brief overview of the current technology status of on-board hydrogen storage and polymer electrolyte membrane fuel cell in transportation will be provided. The directions of the future researches in these technological fields, including a recent "big idea" of "H2@Scale" currently developed at the U. S. Department of Energy, will also be discussed.

  17. Analysis and Design of Fuel Cell Systems for Aviation

    Directory of Open Access Journals (Sweden)

    Thomas Kadyk

    2018-02-01

    Full Text Available In this paper, the design of fuel cells for the main energy supply of passenger transportation aircraft is discussed. Using a physical model of a fuel cell, general design considerations are derived. Considering different possible design objectives, the trade-off between power density and efficiency is discussed. A universal cost–benefit curve is derived to aid the design process. A weight factor w P is introduced, which allows incorporating technical (e.g., system mass and efficiency as well as non-technical design objectives (e.g., operating cost, emission goals, social acceptance or technology affinity, political factors. The optimal fuel cell design is not determined by the characteristics of the fuel cell alone, but also by the characteristics of the other system components. The fuel cell needs to be designed in the context of the whole energy system. This is demonstrated by combining the fuel cell model with simple and detailed design models of a liquid hydrogen tank. The presented methodology and models allows assessing the potential of fuel cell systems for mass reduction of future passenger aircraft.

  18. Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

  19. The Business Case for Fuel Cells: Delivering Sustainable Value

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra [Fuel Cell and Hydrogen Energy Association (FCHEA), Washington, DC (United States); Gangi, Jennifer [Fuel Cell and Hydrogen Energy Association (FCHEA), Washington, DC (United States)

    2017-09-11

    This report, written and compiled by Argonne National Laboratory and the Fuel Cell and Hydrogen Energy Association with support from the Fuel Cell Technologies Office, provides an overview of private sector fuel cell installations at U.S. businesses as of December 31, 2016. Over the past few decades, hundreds of thousands of fuel cells have been installed around the world, for primary or backup power, as well as in various other applications including portable and emergency backup power. Fuel cells have also been deployed in other applications such as heat and electricity for homes and apartments, material handling, passenger vehicles, buses, and remote, off-grid sites.

  20. Implantable biochemical fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Richter, G; Rao, J R

    1978-01-05

    Implantable biochemical fuel cells for the operation of heart pacemakers or artificial hearts convert oxidisable body substances such as glucose on the anode side and reduce the oxygen contained in body fluids at the cathode. The anode and cathode are separated by membranes which are impermeable to albumen and blood corpuscles in body fluids. A chemical shortcircuit cannot occur in practice if, according to the invention, one or more selective oxygen electrodes with carbon as catalyst are arranged so that the mixture which diffuses into the cell from body fluids during operation reaches the fuel cell electrode through the porous oxygen electrode. The membranes used must be permeable to water. Cellulose, polymerised polyvinyl alcohol or an ion exchanger with a buffering capacity between pH5 and 8 act as permeable materials.

  1. Hierarchical control of vehicular fuel cell / battery hybrid powertrain

    OpenAIRE

    Xu, Liangfei; Ouyang, Minggao; Li, Jianqiu; Hua, Jianfeng

    2010-01-01

    In a proton exchange membrane (PEM) fuel cell/battery hybrid vehicle, a fuel cell system fulfills the stationary power demand, and a traction battery provides the accelerating power and recycles braking energy. The entire system is coordinated by a distributed control system, incorporating three key strategies: 1) vehicle control, 2) fuel cell control and 3) battery management. They make up a hierarchical control system. This paper introduces a hierarchical control strategy for a fuel cell / ...

  2. Natural Resource Canada`s fuel cell R and D program

    Energy Technology Data Exchange (ETDEWEB)

    Hammerli, M; Beck, N R [Natural Resources Canada, Ottawa, ON (Canada)

    1998-05-01

    The rationale for focusing fuel cell technology on the Ballard Proton exchange Membrane (PEM) system is provided. As well, research into other fuel cell types supported by Natural Resources Canada are discussed. Fuel cells are electrochemical devices that convert a fuel and an oxidant directly into electricity. Five fuel cell technologies use hydrogen as the fuel: (1) the alkaline fuel cell (AFC), (2) the proton exchange membrane fuel cell (PEMFC), (3) the phosphoric acid fuel cell (PAFC), (4) the molten carbonate fuel cell (MCFC), and (5) the solid oxide fuel cell (SOFC). The PEMFC is suitable for transportation applications because it does not contain a liquid electrolyte and it operates at about 80 degrees C. Trials on municipal bus systems are currently underway in Vancouver and Chicago. PEMFC stacks are supplied by Ballard Power Systems of Burnaby, BC, a recognized world leader in PEMFC technology. Daimler-Benz is demonstrating the methanol reformer on its NECAR-3, powered with a Ballard PEMFC. Ballard is also designing and producing two prototype fuel cell engines for the Ford Motor Company which will integrate them into its P2000 prototype vehicle platform. The Ballard technology is also suitable for distributed power generation up to about five MW, as well as for cogeneration, when fuelled with natural gas. Stuart Energy Systems (SES) has developed an advanced UNICELL-CLUSTER{sup T}M, which permits a direct coupling of the PV array to the electrolyser, a project which demonstrates the use of solar-electrolytic hydrogen production. SES is also designing a refuelling system for the BC Transit System in Vancouver for refuelling their three Zero Emission urban transit buses powered by Ballard fuel cell engines.

  3. Advanced PEFC development for fuel cell powered vehicles

    Science.gov (United States)

    Kawatsu, Shigeyuki

    Vehicles equipped with fuel cells have been developed with much progress. Outcomes of such development efforts include a Toyota fuel cell electric vehicle (FCEV) using hydrogen as the fuel which was developed and introduced in 1996, followed by another Toyota FCEV using methanol as the fuel, developed and introduced in 1997. In those Toyota FCEVs, a fuel cell system is installed under the floor of each RAV4L, to sports utility vehicle. It has been found that the CO concentration in the reformed gas of methanol reformer can be reduced to 100 ppm in wide ranges of catalyst temperature and gas flow rate, by using the ruthenium (Ru) catalyst as the CO selective oxidizer, instead of the platinum (Pt) catalyst known from some time ago. It has been also found that a fuel cell performance equivalent to that with pure hydrogen can be ensured even in the reformed gas with the carbon monoxide (CO) concentration of 100 ppm, by using the Pt-Ru (platinum ruthenium alloy) electrocatalyst as the anode electrocatalyst of a polymer electrolyte fuel cell (PEFC), instead of the Pt electrocatalyst known from some time ago.

  4. Design and Control of High Temperature PEM Fuel Cell System

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    E-cient fuel cell systems have started to appear in many dierent commercial applications and large scale production facilities are already operating to supply fuel cells to support an ever growing market. Fuel cells are typically considered to replace leadacid batteries in applications where...... to conventional PEM fuel cells, that use liquid water as a proton conductor and thus operate at temperatures below 100oC. The HTPEM fuel cell membrane in focus in this work is the BASF Celtec-P polybenzimidazole (PBI) membrane that uses phosphoric acid as a proton conductor. The absence of water in the fuel cells...... enables the use of designing cathode air cooled stacks greatly simplifying the fuel cell system and lowering the parasitic losses. Furthermore, the fuel impurity tolerance is signicantly improved because of the higher temperatures, and much higher concentrations of CO can be endured without performance...

  5. High temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven [Institute for Fuel Cell Innovation, National Research Council Canada, Vancouver, BC (Canada V6T 1W5)

    2006-10-06

    There are several compelling technological and commercial reasons for operating H{sub 2}/air PEM fuel cells at temperatures above 100{sup o}C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for {approx}90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation. (author)

  6. Hydrogen fuel cell power system

    International Nuclear Information System (INIS)

    Lam, A.W.

    2004-01-01

    'Full text:' Batteries are typically a necessary and prime component of any DC power system, providing a source of on-demand stored energy with proven reliability. The integration of batteries and basic fuel cells for mobile and stationary utility applications poses a new challenge. For high value applications, the specification and operating requirements for this hybrid module differ from conventional requirements as the module must withstand extreme weather conditions and provide extreme reliability. As an electric utility company, BCHydro has embarked in the development and application of a Hydrogen Fuel Cell Power Supply (HFCPS) for field trial. A Proton Exchange Membrane (PEM)- type fuel cell including power electronic modules are mounted in a standard 19-inch rack that provides 48V, 24V, 12V DC and 120V AC outputs. The hydrogen supply consists of hydrogen bottles and regulating devices to provide a continuous fuel source to the power modules. Many tests and evaluations have been done to ensure the HFCPS package is robust and suitable for electric utility grade operation. A field trial demonstrating this standalone system addressed reliability, durability, and installation concerns as well as developed the overall system operating procedures. (author)

  7. The fuel cell; development and possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Van Rijnsoever, J.W.M.

    Activities on fuel cells and fuel cell development in the USA and Japan are surveyed. Possibilities for large scale application are mentioned. Attention is given to efficiency and environmental aspects. There are no problems about hazardous emissions. Besides electric power some heat is generated, which is not always a disadvantage. In many cases both are useful products. (A.V.)

  8. Fuels for Canadian research reactors

    International Nuclear Information System (INIS)

    Feraday, M.A.

    1993-01-01

    For a period of about 10 years AECL had a significant program looking into the possibility of developing U 3 Si as a high density replacement for the UO 2 pellet fuel in use in CANDU power reactors. The element design consisted of a Zircaloy-clad U 3 Si rod containing suitable voidage to accommodate swelling. We found that the binary U 3 Si could not meet the defect criterion for our power reactors, i.e., one month in 300 degree C water with a defect in the sheath and no significant damage to the element. Since U 3 Si could not do the job, a new corrosion resistant ternary U-Si-Al alloy was developed and patented. Fuel elements containing this alloy came close to meeting the defect criterion and showed slightly better irradiation stability than U 3 Si. Shortly after this, the program was terminated for other reasons. We have made much of this experience available to the Low Enrichment Fuel Development Program and will be glad to supply further data to assist this program

  9. Assessment of Research Needs for Advanced Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1985-11-01

    The DOE Advanced Fuel Cell Working Group (AFCWG) was formed and asked to perform a scientific evaluation of the current status of fuel cells, with emphasis on identification of long-range research that may have a significant impact on the practical utilization of fuel cells in a variety of applications. The AFCWG held six meetings at locations throughout the country where fuel cell research and development are in progress, for presentations by experts on the status of fuel cell research and development efforts, as well as for inputs on research needs. Subsequent discussions by the AFCWG have resulted in the identification of priority research areas that should be explored over the long term in order to advance the design and performance of fuel cells of all types. Surveys describing the salient features of individual fuel cell types are presented in Chapters 2 to 6 and include elaborations of long-term research needs relating to the expeditious introduction of improved fuel cells. The Introduction and the Summary (Chapter 1) were prepared by AFCWG. They were repeatedly revised in response to comments and criticism. The present version represents the closest approach to a consensus that we were able to reach, which should not be interpreted to mean that each member of AFCWG endorses every statement and every unexpressed deletion. The Introduction and Summary always represent a majority view and, occasionally, a unanimous judgment. Chapters 2 to 6 provide background information and carry the names of identified authors. The identified authors of Chapters 2 to 6, rather than AFCWG as a whole, bear full responsibility for the scientific and technical contents of these chapters.

  10. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.; Rosinger, E.L.J.

    1984-04-01

    This report, the fifth of a series of annual reports, reviews the progress that has been made in the research and development program for the safe management and disposal of Canada's nuclear fuel waste. The report summarizes activities over the past year in the following areas: public interaction; used fuel storage and transportation; immobilization of used fuel and fuel recycle waste; geoscience research related to deep underground disposal; environmental research; and environmental and safety assessment

  11. Swiss fuel cell passenger and pleasure boats

    Energy Technology Data Exchange (ETDEWEB)

    Affolter, J.-F.

    2000-07-01

    This paper published by the University of Applied Science in Yverdon-les-Bains, Switzerland, looks at the development of electrically driven small boats that are powered by fuel cells. The various implementations of the test boats are described. Starting with a 100-watt PEM fuel cell built by the Paul Scherrer Institute (PSI) and the University of Applied Science in Solothurn, Switzerland, for educational purposes, a small pedal-boat was electrified. The paper describes the development of four further prototypes and introduces a new project for a 6-passenger leisure boat powered by a 2 kW PEFC fuel cell. Apart from the fuel cells, various other components such as propellers and control electronics are discussed as are the remaining problems still to be solved before the cells and boats can be marketed. Since they were carried out at a technical university, these projects are said to have provided an excellent way of teaching new technologies to students.

  12. Advanced anodes for high-temperature fuel cells

    DEFF Research Database (Denmark)

    Atkinson, A.; Barnett, S.; Gorte, R.J.

    2004-01-01

    Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting...... of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000degreesC. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high......-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode...

  13. The Direct Methanol Liquid-Feed Fuel Cell

    Science.gov (United States)

    Halpert, Gerald

    1997-01-01

    Until the early 1990's the idea of a practical direct methanol fuel cell from transportation and other applications was just that, an idea. Several types of fuel cells that operate under near ambient conditions were under development.

  14. Hot topics in alkaline exchange membrane fuel cells

    Science.gov (United States)

    Serov, Alexey; Zenyuk, Iryna V.; Arges, Christopher G.; Chatenet, Marian

    2018-01-01

    The tremendous progress from the first discovery of fuel cell principles by Sir William Robert Grove in 1839 [1] and independent observation of electricity generated in electrochemical reaction of hydrogen and air by a Swiss scientist Christian F. Shoenbein [2] to the recent breakthroughs in the fuel cell field resulted in the appearance of this clean energy technology around us. Indeed, fuel cell technology undoubtedly has entered into our life with the first introduction of Toyota Mirai Fuel Cell Vehicle (FCV) by Toyota Motor Co. in December of 2014 [3,4]. This FCV is commercially available and can be purchased in several countries. However, its sticker price of 57,500 substantially limits the number of customers that can purchase it. There are numerous factors that contribute to the high cost of fuel cell stack, however the price of platinum and platinum alloys is the main contributor [5].

  15. Grove Medal Address - investing in the fuel cell business

    Science.gov (United States)

    Rasul, Firoz

    Successful commercialization of fuel cells will require significant investment. To attract this funding, the objective must be commercially driven and the financing will have to be viewed as an investment in the business of fuel cells rather than just the funding of technology development. With the recent advancements in fuel cells and demonstrations of fuel cell power systems in stationary and transport applications, an industry has begun to emerge and it is attracting the attention of institutional and corporate investors, in addition to the traditional government funding. Although, the strategic importance of fuel cells as a versatile, efficient and cleaner power source of the future as well as an `engine' for economic growth and job creation has now been understood by several governments, major corporations have just begun to recognize the enormous potential of the fuel cell for it to become as ubiquitous for electrical power as the microprocessor has become for computing power. Viewed as a business, fuel cells must meet the commercial requirements of price competitiveness, productivity enhancement, performance and reliability, in addition to environmental friendliness. As fuel cell-based products exhibit commercial advantages over conventional power sources, the potential for higher profits and superior returns will attract the magnitude of investment needed to finance the development of products for the varied applications, the establishment of high volume manufacturing capabilities, and the creation of appropriate fuel and service infrastructures for these new products based on a revolutionary technology. Today, the fuel cell industry is well-positioned to offer the investing public opportunities to reap substantial returns through their participation at this early stage of growth of the industry.

  16. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...... at potentials, which approach the usual cathode potentials of HTPEM-FCs. Therefore, it seems that H3PO4-based fuel cells are not much suited to efficiently convert ethanol in accordance with findings in earlier research papers. Given that HTPEM-FCs can tolerate CO containing reformate gas, focusing research...

  17. The fuel cell; La pile a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Boursin, P.

    2005-07-01

    This document is an exhaustive review of the history of fuel cells from 1802 to 2004. It focusses mainly on the automotive applications and supplies many technical details about each prototype of fuel cell and/or vehicle. (J.S.)

  18. Study of fuel cell powerplant with heat recovery

    Science.gov (United States)

    King, J. M.; Grasso, A. P.; Clausi, J. V.

    1975-01-01

    It was shown that heat can be recovered from fuel cell power plants by replacing the air-cooled heat exchangers in present designs with units which transfer the heat to the integrated utility system. Energy availability for a 40-kW power plant was studied and showed that the total usable energy at rated power represents 84 percent of the fuel lower heating value. The effects of design variables on heat availability proved to be small. Design requirements were established for the heat recovery heat exchangers, including measurement of the characteristics of two candidate fuel cell coolants after exposure to fuel cell operating conditions. A heat exchanger test program was defined to assess fouling and other characteristics of fuel cell heat exchangers needed to confirm heat exchanger designs for heat recovery.

  19. Microfluidic fuel cells and batteries

    CERN Document Server

    Kjeang, Erik

    2014-01-01

    Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is

  20. The US Army Foreign Comparative Test fuel cell program

    Science.gov (United States)

    Bostic, Elizabeth; Sifer, Nicholas; Bolton, Christopher; Ritter, Uli; Dubois, Terry

    The US Army RDECOM initiated a Foreign Comparative Test (FCT) Program to acquire lightweight, high-energy dense fuel cell systems from across the globe for evaluation as portable power sources in military applications. Five foreign companies, including NovArs, Smart Fuel Cell, Intelligent Energy, Ballard Power Systems, and Hydrogenics, Inc., were awarded competitive contracts under the RDECOM effort. This paper will report on the status of the program as well as the experimental results obtained from one of the units. The US Army has interests in evaluating and deploying a variety of fuel cell systems, where these systems show added value when compared to current power sources in use. For low-power applications, fuel cells utilizing high-energy dense fuels offer significant weight savings over current battery technologies. This helps reduce the load a solider must carry for longer missions. For high-power applications, the low operating signatures (acoustic and thermal) of fuel cell systems make them ideal power generators in stealth operations. Recent testing has been completed on the Smart Fuel Cell A25 system that was procured through the FCT program. The "A-25" is a direct methanol fuel cell hybrid and was evaluated as a potential candidate for soldier and sensor power applications.

  1. Control structure design of a solid oxide fuel cell and a molten carbonate fuel cell integrated system: Top-down analysis

    International Nuclear Information System (INIS)

    Jienkulsawad, Prathak; Skogestad, Sigurd; Arpornwichanop, Amornchai

    2017-01-01

    Highlights: • Control structure of the combined fuel cell system is designed. • The design target is trade-off between power generation and carbon dioxide emission. • Constraints are considered according to fuel cell safe operation. • Eight variables have to be controlled to maximize profit. • Two control structures are purposed for three active constraint regions. - Abstract: The integrated system of a solid oxide fuel cell and molten carbonate fuel cell theoretically has very good potential for power generation with carbon dioxide utilization. However, the control strategy of such a system needs to be considered for efficient operation. In this paper, a control structure design for an integrated fuel cell system is performed based on economic optimization to select manipulated variables, controlled variables and control configurations. The objective (cost) function includes a carbon tax to get an optimal trade-off between power generation and carbon dioxide emission, and constraints include safe operation. This study focuses on the top-down economic analysis which is the first part of the design procedure. Three actively constrained regions as a function of the main disturbances, namely, the fuel and steam feed rates, are identified; each region represents different sets of active constraints. Under nominal operating conditions, the system operates in region I. However, operating the fuel cell system in region I and II can use the same structure, but in region III, a different control structure is required.

  2. Techno-economic assessment of fuel cell vehicles for India

    International Nuclear Information System (INIS)

    Manish S; Rangan Banerjee

    2006-01-01

    This paper compares four alternative vehicle technologies for a typical small family car in India (Maruti 800) - two conventional i) Petrol driven internal combustion (IC) engine, ii) Compressed natural gas (CNG) driven IC engine and two based on proton exchange membrane (PEM) fuel cells with different storage iii) Compressed hydrogen storage and iv) Metal hydride (FeTi) storage. Each technology option is simulated in MATLAB using a backward facing algorithm to calculate the force and power requirement for the Indian urban drive cycle. The storage for the CNG and the fuel cell vehicles is designed to have driving range of 50% of the existing petrol vehicle. The simulation considers the part load efficiency vs. load characteristics for the computed ratings of the IC engine and the fuel cell. The analysis includes the transmission efficiency, motor efficiency and storage efficiencies. The comparison criteria used are the primary energy consumption (MJ/km), the cost (Rs./km) obtained by computing the annualized life cycle cost and dividing this by the annual vehicle travel and carbon dioxide emissions (g/km). For the primary energy analysis the energy required for extraction, processing of the fuel is also included. For the fuel cell vehicles, it is assumed that hydrogen is produced from natural gas through steam methane reforming. It is found that the fuel cell vehicles have the lowest primary energy consumption (1.3 MJ/km) as compared to the petrol and CNG vehicles (2.3 and 2.5 MJ/km respectively). The cost analysis is done based on existing prices in India and reveals that the CNG vehicle has the lowest cost (2.3 Rs./km) as compared to petrol (4.5 Rs./km). The fuel cell vehicles have a higher cost of 26 Rs./km mainly due to the higher fuel cell system cost (93% of the total cost). The CO 2 emissions are lowest for the fuel cell vehicle with compressed hydrogen storage (98 g/km) as compared to the petrol vehicle (162 g/km). If the incremental annual cost of the fuel

  3. Multivariable control system for dynamic PEM fuel cell model

    International Nuclear Information System (INIS)

    Tanislav, Vasile; Carcadea, Elena; Capris, Catalin; Culcer, Mihai; Raceanu, Mircea

    2010-01-01

    Full text: The main objective of this work was to develop a multivariable control system of robust type for a PEM fuel cells assembly. The system will be used in static and mobile applications for different values of power, generated by a fuel cell assembly of up to 10 kW. Intermediate steps were accomplished: a study of a multivariable control strategy for a PEM fuel cell assembly; a mathematic modeling of mass and heat transfer inside of fuel cell assembly, defining the response function to hydrogen and oxygen/air mass flow and inlet pressure changes; a testing stand for fuel cell assembly; experimental determinations of transient response for PEM fuel cell assembly, and more others. To define the multivariable control system for a PEM fuel cell assembly the parameters describing the system were established. Also, there were defined the generic mass and energy balance equations as functions of derivative of m i , in and m i , out , representing the mass going into and out from the fuel cell, while Q in is the enthalpy and Q out is the enthalpy of the unused reactant gases and heat produced by the product, Q dis is the heat dissipated to the surroundings, Q c is the heat taken away from the stack by active cooling and W el is the electricity generated. (authors)

  4. Energy management in the Canadian airline industry

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    The purpose of this report was to outline the current status of the Canadian airline industry's energy performance and to outline energy management programs undertaken within the industry. The study also provides an aviation energy management information base developed through a comprehensive computer bibliographical review. A survey of the industry was undertaken, the results of which are incorporated in this report. The Canadian airline industry has recognized the importance of energy management and considerable measures have been introduced to become more energy efficient. The largest single contributor to improved productivity is the acquisition of energy efficient aircraft. Larger airlines in particular have implemented a number of conservation techniques to reduce fuel consumption. However, both large and small airlines would further benefit through incorporating techniques and programs described in the annotated bibliography in this study. Rising fuel prices and economic uncertainties will be contributing factors to a smaller average annual growth in fuel consumption during the 1980s. The lower consumption levels will also be a result of continuing energy conservation awareness, new technology improvements, and improvements in air traffic control. 98 refs., 4 figs., 6 tabs.

  5. Future economics of the fuel cell housing market

    International Nuclear Information System (INIS)

    Erdmann, G.

    2003-01-01

    This paper examines how a market of small-scale stationary fuel cells of up to 20 kW could look like, if costs of stationary fuel cell systems allow market entry. This paper analyses what the market potential for this technology would be, what types of residential buildings might be most attractive, and what would be the quantitative changes in the fuel and the power market. Finally, does the perspective of stationary fuel cells offer a business opportunity for power and gas distribution companies? The methodology of this paper differs from that of other studies in that we model the operation of stationary fuel cells on the basis of 15 min power load profiles of individual buildings. From these we draw synthetic functions describing the fuel cell power output/natural gas input, as a function of a number of specific properties of individual buildings. We then develop a statistical distribution of these properties of the residential building stock in Germany (15 million units), finally using a Monte Carlo simulation the relevant market shares are calculated. The methodology that is developed here has an advantage in that it is flexible and can be applied for different population of buildings. We know, for example, that the results would differ between rural and urban areas. The model may reflect these differences thus allowing deeper insights into future fuel cell housing markets. (author)

  6. Performance optimization of a PEM hydrogen-oxygen fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate t...

  7. Canadian Gas Association response to the Voluntary Challenge and Registry

    International Nuclear Information System (INIS)

    1996-11-01

    Since the inception of Canada's Voluntary Challenge and Registry (VCR) program in 1994, the Canadian Gas Association (CGA) and its members have been active in promoting emissions reductions. Natural gas is considered to be one of the cleanest fossil fuels. However, the industry faces several challenges. Over 50 per cent of Canadian production is exported to the US, but no credits are being received to offset emission reduction in the US from fuel switching to natural gas. Also, more than 80 per cent of the emissions from the natural gas cycle occur at the burner tip, therefore users of natural gas must share the responsibility for reducing emissions through conservation practices and greater use of high-efficiency equipment. The activities undertaken by the CGA in response to the VCR program, including research and technology development were reviewed, and a forecast of future activities was presented. It was predicted that the demand for Canadian natural gas will exceed the historic rate of emissions reductions accomplished through energy conservation and efficiency improvements, hence there is likely to be an increase in net emissions. An argument was made to establish proxy indicators of success for the gas industry for VCR, such as emissions on a unit basis (unit of energy, production, throughput, etc.) to take into account the fact that the increase in natural gas demand is, in part, the result of fuel switching from more polluting fuels

  8. Fuel-cycle analysis of early market applications of fuel cells: Forklift propulsion systems and distributed power generation

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad; Gaines, Linda; Wang, Michael [Center for Transportation Research, Argonne National Laboratory, 9700 South Cass Ave, Argonne, IL 60439 (United States)

    2009-05-15

    Forklift propulsion systems and distributed power generation are identified as potential fuel cell applications for near-term markets. This analysis examines fuel cell forklifts and distributed power generators, and addresses the potential energy and environmental implications of substituting fuel-cell systems for existing technologies based on fossil fuels and grid electricity. Performance data and the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources. The greenhouse gas (GHG) impacts of fuel-cell forklifts using hydrogen from steam reforming of natural gas are considerably lower than those using electricity from the average U.S. grid. Fuel cell generators produce lower GHG emissions than those associated with the U.S. grid electricity and alternative distributed combustion technologies. If fuel-cell generation technologies approach or exceed the target efficiency of 40%, they offer significant reduction in energy use and GHG emissions compared to alternative combustion technologies. (author)

  9. Hybrid fuel cell/diesel generation total energy system, part 2

    Science.gov (United States)

    Blazek, C. F.

    1982-11-01

    Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.

  10. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  11. Graphene-supported platinum catalysts for fuel cells

    DEFF Research Database (Denmark)

    Seselj, Nedjeljko; Engelbrekt, Christian; Zhang, Jingdong

    2015-01-01

    Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. This review summarizes recent development of catalysts used for fuel cells over the...

  12. The Canadian research reactor spent fuel situation

    International Nuclear Information System (INIS)

    Ernst, P.C.

    1996-01-01

    This paper summarizes the present research reactor spent fuel situation in Canada. The research reactors currently operating are listed along with the types of fuel that they utilize. Other shut down research reactors contributing to the storage volume are included for completeness. The spent fuel storage facilities associated with these reactors and the methods used to determine criticality safety are described. Finally the current inventory of spent fuel and where it is stored is presented along with concerns for future storage. (author). 3 figs

  13. The quiet revolution: decentralisation and fuel cells

    International Nuclear Information System (INIS)

    Aschenbrenner, N.

    2003-01-01

    This article discusses how major changes in the electricity supply industry can take place in the next few years due to market liberalisation and efforts to reduce the emission of greenhouse gasses. Decentralisation is discussed as being a 'mega-trend' and fuel cells in particular are emphasised as being a suitable means of generating heat and power locally, i.e. where they are needed. Also, the ecological advantages of using natural gas to 'fire' the fuel cell units that are to complement or replace coal-fired or gas-fired combined gas and steam-turbine power stations is discussed. Various types of fuel cell are briefly described. Market developments in the USA, where the power grid is extensive and little reserve capacity is available, are noted. New designs of fuel cell are briefly examined and it is noted that electricity utilities, originally against decentralisation, are now beginning to promote this 'quiet revolution'

  14. Methods of conditioning direct methanol fuel cells

    Science.gov (United States)

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  15. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    Science.gov (United States)

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Martinez, CA; Upadhye, Ravindra S [Pleasanton, CA; Havstad, Mark A [Davis, CA

    2011-08-09

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  16. Solid Oxide Fuel Cell Systems PVL Line

    International Nuclear Information System (INIS)

    Shearer, Susan; Rush, Gregory

    2012-01-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to

  17. Proton Exchange Membrane Fuel Cells Applied for Transport Sector

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2010-01-01

    A thermodynamic analysis of a PEMFC (proton exchange membrane fuel cell) is investigated. PEMFC may be the most promising technology for fuel cell automotive systems, which is operating at quite low temperatures, (between 60 to 80℃). In this study the fuel cell motive power part of a lift truck has...... been investigated. The fuel cell stack used in this model is developed using a Ballard PEMFC [1], so that the equations used in the stack modeling are derived from the experimental data. The stack can produce 3 to 15 kilowatt electricity depending on the number of cells used in the stack. Some...

  18. Hydrogen peroxide as sustainable fuel: electrocatalysts for production with a solar cell and decomposition with a fuel cell.

    Science.gov (United States)

    Yamada, Yusuke; Fukunishi, Yurie; Yamazaki, Shin-ichi; Fukuzumi, Shunichi

    2010-10-21

    Hydrogen peroxide was electrochemically produced by reducing oxygen in an aqueous solution with [Co(TCPP)] as a catalyst and photovoltaic solar cell operating at 0.5 V. Hydrogen peroxide thus produced is utilized as a fuel for a one-compartment fuel cell with Ag-Pb alloy nanoparticles as the cathode.

  19. Steam reforming of fuel to hydrogen in fuel cells

    Science.gov (United States)

    Fraioli, Anthony V.; Young, John E.

    1984-01-01

    A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  20. The Ovonic regenerative fuel cell, a fundamentally new approach

    International Nuclear Information System (INIS)

    Ovshinsky, S.R.; Venkatesan, S.; Corrigan, D.A.

    2004-01-01

    The Ovonic Regenerative Fuel Cell utilizes Ovonic metal hydride materials in place of traditional noble metal catalysts in the hydrogen fuel electrode. This provides unique features including the ability to capture and utilize regenerative braking energy at high efficiency and the ability to operate for a significant period upon interruption of the hydrogen fuel supply. Additionally, this novel fuel cell does not use high price components, such as platinum catalysts, microporous membranes, and graphite bipolar plates, used in PEM fuel cells. Proof of concept has been demonstrated in full-size multicell prototypes delivering about 100 W power. The Ovonic Regenerative Fuel Cell is yet another component of ECD Ovonic technology contributing to the emerging hydrogen economy which already includes Uni-Solar PV solar cells, Ovonic solid-state hydrogen storage devices, and Ovonic nickel-metal hydride batteries from Cobasys, a joint venture between ECD Ovonics and ChevronTexaco. (author)

  1. Perspective on renewable fuels policy April 2002

    International Nuclear Information System (INIS)

    2002-04-01

    Natural Resources Canada (NRCan) has initiated a constructive dialogue on its ethanol policy, and the Canadian Petroleum Products Institute (CPPI) is supportive of the government's efforts in that regard and encourages this dialogue to continue. CPPI believes that it is important to provide sound information to policy makers. Before policy decisions are made, all stakeholders must be fully involved in the process and aware of the implications of the various options open for discussion. In this document, it is stated that significant additional government intervention in the form of higher subsidies and/or mandate is required to increase Canadian demand and push market penetration of fuel ethanol. One of the benefits from the utilization of ethanol fuel resides in the reduction of greenhouse gas emissions. However, the cost effectiveness of ethanol in terms of greenhouse gas emissions reductions indicates that other strategies are less expensive. It was mentioned that ethanol production technology requires a thorough evaluation. The situation in the United States is reviewed. Negotiations recently took place that produced a comprehensive proposal on renewable fuels, and includes: a renewable fuels mandate, funding for leaking underground storage tanks programs, maintenance of the toxic air pollution reductions, and a study of harmonization of Federal, state and local fuel requirements, among others. It was indicated that the Canadian situation is not reflected in this proposal, since most of the policy drivers for the American proposal are not relevant to the Canadian situation. The considerations for Canadian policy makers include two options: investment in production facilities that are widely distributed throughout the country, or transporting ethanol across vast distances at a higher cost. The conclusion calls for further federal and provincial intervention

  2. Manufacturing technologies for direct methanol fuel cells (DMFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Gluesen, Andreas; Mueller, Martin; Kimiaie, Nicola; Konradi, Irene; Mergel, Juergen; Stolten, Detlef [Forschungszentrum Juelich (Germany). Inst. of Energy Research - IEF-3: Fuel Cells

    2010-07-01

    Fuel cell research is focussing on increasing power density and lifetime and reducing costs of the whole fuel cell system. In order to reach these aims, it is necessary to develop appropriately designed components outgoing from high quality materials, a suitable manufacturing process and a well balanced system. To make use of the advantages that can be obtained by developing production technology, we are mainly improving the coating and assembling techniques for polymer electrolyte fuel cells, especially Direct Methanol Fuel Cells (DMFCs). Coating is used for making fuel cell electrodes as well as highly conductive contacts. Assembling is used to join larger components like membrane electrode assemblies (MEAs) and bipolar units consisting of flow fields and the separator plate, as well as entire stacks. On the one hand a reproducible manufacturing process is required to study fine differences in fuel cell performance affected by new materials or new designs. On the other hand a change in each parameter of the manufacturing process itself can change product properties and therefore affect fuel cell performance. As a result, gas diffusion electrodes (GDEs) are now produced automatically in square-meter batches, the hot-pressing of MEAs is a fully automated process and by pre-assembling the number of parts that have to be assembled in a stack was reduced by a factor of 10. These achievements make DMFC manufacturing more reproducible and less error-prone. All these and further developments of manufacturing technology are necessary to make DMFCs ready for the market. (orig.)

  3. Transport equations in an enzymatic glucose fuel cell

    Science.gov (United States)

    Jariwala, Soham; Krishnamurthy, Balaji

    2018-01-01

    A mathematical model is developed to study the effects of convective flux and operating temperature on the performance of an enzymatic glucose fuel cell with a membrane. The model assumes isothermal operating conditions and constant feed rate of glucose. The glucose fuel cell domain is divided into five sections, with governing equations describing transport characteristics in each region, namely - anode diffusion layer, anode catalyst layer (enzyme layer), membrane, cathode catalyst layer and cathode diffusion layer. The mass transport is assumed to be one-dimensional and the governing equations are solved numerically. The effects flow rate of glucose feed on the performance of the fuel cell are studied as it contributes significantly to the convective flux. The effects of operating temperature on the performance of a glucose fuel cell are also modeled. The cell performances are compared using cell polarization curves, which were found compliant with experimental observations.

  4. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  5. Hydrogen Fuel Cell development in Columbia (SC)

    Energy Technology Data Exchange (ETDEWEB)

    Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States); Chen, Fanglin [Univ. of South Carolina, Columbia, SC (United States); Popov, Branko [Univ. of South Carolina, Columbia, SC (United States); Chao, Yuh [Univ. of South Carolina, Columbia, SC (United States); Xue, Xingjian [Univ. of South Carolina, Columbia, SC (United States)

    2012-09-15

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  6. Strategic alliances for the development of fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Maruo, Kanehira [Goeteborg Univ. (Sweden). Section of Science and Technology Studies

    1998-12-01

    The aim of this paper is to explore and describe the current stage of fuel cell vehicle development in the world. One can write three possible future scenarios - an optimistic, a realistic, and a pessimistic scenario: - The optimistic scenario -- The Daimler/Ballard/Ford alliance continues to develop fuel cell stacks and fuel cell vehicle systems as eagerly as they have been doing in recent years. Daimler(/Chrysler)-Benz continues to present its Necar 4, Necar 5, and so on, as planned, and thus keeps Toyota and Honda under severe pressure. Toyota`s and Honda`s real motivation seems to be not to allow Daimler-Benz to be the first to market. Their investment in fuel cell technology will be very large. At the same time, governments and other stake-holders will quickly and in a timely fashion build up infrastructures. We will then see many fuel cell vehicles by 2004. A paradigm shift in automotive technology will have taken place. - The realistic scenario -- Fuel cell vehicles will reach the same level of development by 2004/2005 as pure electric vehicles were at in 1997/1998. This means that fuel cell vehicles will be produced at the rate of several hundred vehicles per year per manufacturer and cost about $40,000 or more, which is still considerably more expensive than ordinary gasoline cars. These fuel cell vehicles will have a performance similar to today`s advanced electric vehicles, e.g., Toyota`s RAV4/EV and Honda`s EV Plus. To go further from this stage to the mass-production stage strong government incentives will be needed. - The pessimistic scenario -- It turns out that fuel cells are not as pure or efficient as in theory and in laboratory experiments. Prices of gasoline and diesel gas continue to be very low. The Californian 10% ZEV Requirement that has been meant to be valid at least ten years from 2003 through 2012 will be suspended or greatly modified. Daimler-Benz, Toyota, and Honda slow down their fuel cell vehicle development activities. No one is

  7. Development and experimental characterization of a fuel cell powered aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Thomas H.; Moffitt, Blake A.; Mavris, Dimitri N.; Parekh, David E. [Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2007-09-27

    This paper describes the characteristics and performance of a fuel cell powered unmanned aircraft. The aircraft is novel as it is the largest compressed hydrogen fuel cell powered airplane built to date and is currently the only fuel cell aircraft whose design and test results are in the public domain. The aircraft features a 500 W polymer electrolyte membrane fuel cell with full balance of plant and compressed hydrogen storage incorporated into a custom airframe. Details regarding the design requirements, implementation and control of the aircraft are presented for each major aircraft system. The performances of the aircraft and powerplant are analyzed using data from flights and laboratory tests. The efficiency and component power consumption of the fuel cell propulsion system are measured at a variety of flight conditions. The performance of the aircraft powerplant is compared to other 0.5-1 kW-scale fuel cell powerplants in the literature and means of performance improvement for this aircraft are proposed. This work represents one of the first studies of fuel cell powered aircraft to result in a demonstration aircraft. As such, the results of this study are of practical interest to fuel cell powerplant and aircraft designers. (author)

  8. Energy management of fuel cell/solar cell/supercapacitor hybrid power source

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat; Sethakul, Panarit [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Chunkag, Viboon [Department of Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Sikkabut, Suwat [Thai-French Innovation Institute, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Pierfederici, Serge; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), Nancy Universite, INPL-ENSEM, 2, Avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2011-01-01

    This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles. (author)

  9. Increasing the lifetime of fuel cell catalysts

    NARCIS (Netherlands)

    Latsuzbaia, R.

    2015-01-01

    In this thesis, I discuss a novel idea of fuel cell catalyst regeneration to increase lifetime of the PEM fuel cell electrode/catalyst operation and, therefore, reduce the catalyst costs. As many of the catalyst degradation mechanisms are difficult to avoid, the regeneration is alternative option to

  10. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  11. Progress in Electrolyte-Free Fuel Cells

    International Nuclear Information System (INIS)

    Lu, Yuzheng; Zhu, Bin; Cai, Yixiao; Kim, Jung-Sik; Wang, Baoyuan; Wang, Jun; Zhang, Yaoming; Li, Junjiao

    2016-01-01

    Solid oxide fuel cell (SOFC) represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable, and challenges still hinder commercialization. Recently, a novel type of electrolyte-free fuel cell (EFFC) with single component was invented, which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance, and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed, and future opportunities and challenges are discussed.

  12. Progress in Electrolyte-Free Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuzheng [Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing (China); Zhu, Bin, E-mail: binzhu@kth.se [Faculty of Physics and Electronic Technology, Hubei Collaborative Innovation Center for Advanced Organic Materials, Hubei University, Wuhan (China); Department of Energy Technology, Royal Institute of Technology KTH, Stockholm (Sweden); Cai, Yixiao [Ångström Laboratory, Department of Engineering Sciences, Uppsala University, Uppsala (Sweden); Kim, Jung-Sik [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough (United Kingdom); Wang, Baoyuan [Faculty of Physics and Electronic Technology, Hubei Collaborative Innovation Center for Advanced Organic Materials, Hubei University, Wuhan (China); Department of Energy Technology, Royal Institute of Technology KTH, Stockholm (Sweden); Wang, Jun, E-mail: binzhu@kth.se; Zhang, Yaoming [Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing (China); Li, Junjiao [Nanjing Yunna Nano Technology Co., Ltd., Nanjing (China)

    2016-05-02

    Solid oxide fuel cell (SOFC) represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable, and challenges still hinder commercialization. Recently, a novel type of electrolyte-free fuel cell (EFFC) with single component was invented, which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance, and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed, and future opportunities and challenges are discussed.

  13. A regenerative zinc-air fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, Stuart I. [Electrochemical Technology Development Ltd., Lower Hutt (New Zealand); Zhang, X. Gregory [Teck Cominco Metals Ltd., 2380 Speakman Drive, Mississauga, Ontario (Canada)

    2007-03-20

    The zinc regenerative fuel cell (ZRFC) developed by the former Metallic Power Inc. over the period from 1998 to 2004 is described. The component technologies and engineering solutions for various technical issues are discussed in relation to their functionality in the system. The system was designed to serve as a source of backup emergency power for remote or difficult to access cell phone towers during periods when the main power was interrupted. It contained a 12 cell stack providing 1.8 kW, a separate fuel tank containing zinc pellet fuel and electrolyte, and a zinc electrolyzer to regenerate the zinc pellets during standby periods. Offsite commissioning and testing of the system was successfully performed. The intellectual property of the ZRFC technology is now owned by Teck Cominco Metals Ltd. (author)

  14. Direct sorbitol proton exchange membrane fuel cell using moderate catalyst loadings

    International Nuclear Information System (INIS)

    Oyarce, Alejandro; Gonzalez, Carlos; Lima, Raquel Bohn; Lindström, Rakel Wreland; Lagergren, Carina; Lindbergh, Göran

    2014-01-01

    Highlights: •The performance of a direct sorbitol fuel cell was evaluated at different temperatures. •The performance was compared to the performance of a direct glucose fuel cell. •The mass specific peak power density of the direct sorbitol fuel cell was 3.6 mW mg −1 totalcatalystloading at 80 °C. •Both sorbitol and glucose fuel cell suffer from deactivation. -- Abstract: Recent progress in biomass hydrolysis has made it interesting to study the use of sorbitol for electricity generation. In this study, sorbitol and glucose are used as fuels in proton exchange membrane fuel cells having 0.9 mg cm −2 PtRu/C at the anode and 0.3 mg cm −2 Pt/C at the cathode. The sorbitol oxidation was found to have slower kinetics than glucose oxidation. However, at low temperatures the direct sorbitol fuel cell shows higher performance than the direct glucose fuel cell, attributed to a lower degree of catalyst poisoning. The performance of both fuel cells is considerably improved at higher temperatures. High temperatures lower the poisoning, allowing the direct glucose fuel cell to reach a higher performance than the direct sorbitol fuel cell. The mass specific peak power densities of the direct sorbitol and direct glucose fuel cells at 65 °C was 3.2 mW mg −1 catalyst and 3.5 mW mg −1 catalyst , respectively. Both of these values are one order of magnitude larger than mass specific peak power densities of earlier reported direct glucose fuel cells using proton exchange membranes. Furthermore, both the fuel cells showed a considerably decrease in performance with time, which is partially attributed to sorbitol and glucose crossover poisoning the Pt/C cathode

  15. Hydrogen utilization efficiency in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Metkemeyer, R; Achard, P; Rouveyre, L; Picot, D [Ecole des Mines de Paris, Centre D' energrtique, Sophia Antipolis (France)

    1998-07-01

    In this paper, we present the work carried out within the framework of the FEVER project (Fuel cell Electric Vehicle for Efficiency and Range), an European project coordinated by Renault, joining Ecole des Mines de Paris, Ansaldo, De Nora, Air Liquide and Volvo. For the FEVER project, where an electrical air compressor is used for oxidant supply, there is no need for hydrogen spill over, meaning that the hydrogen stoichiometry has to be as close to one as possible. To determine the optimum hydrogen utilization efficiency for a 10 kW Proton Exchange Membrane Fuel Cell (PEMFC) fed with pure hydrogen, a 4 kW prototype fuel cell was tested with and without a hydrogen recirculator at the test facility of Ecole des Mines de Paris. Nitrogen cross over from the cathodic compartment to the anodic compartment limits the hydrogen utilization of the fuel cell without recirculator to 97.4 % whereas 100% is feasible when a recirculator is used. 5 refs.

  16. Fuel cells - from the laboratory to the road

    Energy Technology Data Exchange (ETDEWEB)

    Fronk, M.H. [Delphi Energy and Engine Management Systems, Rochester, NY (United States)

    1996-12-31

    The polymer electrolyte membrane (PEM) Fuel Cell faces stiff competition from existing automotive powerplants and other Hybrid APUs. To be successful, the Fuel Cell will have to demonstrate real customer advantages such as fuel economy and emissions. The PEM technology has an inherent advantage over other powerplants in both thermal efficiency and emission performance, and as such fits in very well with the future regulations that strive to clean up the environment. In addition, it will need to be cost competitive and provide acceptable performance. The majority of development activity on PEM Fuel Cells to date has concentrated primarily in the area of Stack refinement and optimization with improvements coming in higher power densities and higher specific power. To make the Fuel Cell compatible with an automotive environment the entire system will need to be analyzed, understood, and then engineered to work together in an efficient manner.

  17. Innovative Fuel Cell Health Monitoring IC, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Energy storage devices, including fuel cells, are needed to enable future robotic and human exploration missions. Historically, the reliability of the fuel cells has...

  18. Carbon fuel cells with carbon corrosion suppression

    Science.gov (United States)

    Cooper, John F [Oakland, CA

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  19. The development of fuel cell systems for mobile applications

    Energy Technology Data Exchange (ETDEWEB)

    Van den Oosterkamp, P.F.; Kraaij, G.J.; Van der Laag, P.C.; Stobbe, E.R.; Wouters, D.A.J.

    2006-09-15

    The ECN fuel cell related R and D program on fuel cells is linked to the stationary market and the automotive market. This paper will summarize our R and D activities for the automotive market. The role of fuels cells in two transport application area's will be described: the development of dedicated hydrogen based platforms in combination with advanced electricity storage for special logistic applications and the APU (auxiliary power unit) market for passenger cars and trucks, as well as for ships and airplanes. The associated aspects of hydrogen transport and storage, as well as the reforming of logistic fuels and bio-fuels to hydrogen will be described with some illustrative examples. These examples show that an integrated approach using applied catalysis, chemical reactor design and engineering, process simulation, control modelling and electrical engineering is required to address all aspects of the development of fuel cell technology for automotive applications. The paper concludes with a summary of the important environmental and economic drivers that influence the fuel cell market application.

  20. Effects of ambient conditions on fuel cell vehicle performance

    Science.gov (United States)

    Haraldsson, K.; Alvfors, P.

    Ambient conditions have considerable impact on the performance of fuel cell hybrid vehicles. Here, the vehicle fuel consumption, the air compressor power demand, the water management system and the heat loads of a fuel cell hybrid sport utility vehicle (SUV) were studied. The simulation results show that the vehicle fuel consumption increases with 10% when the altitude increases from 0 m up to 3000 m to 4.1 L gasoline equivalents/100 km over the New European Drive Cycle (NEDC). The increase is 19% on the more power demanding highway US06 cycle. The air compressor is the major contributor to this fuel consumption increase. Its load-following strategy makes its power demand increase with increasing altitude. Almost 40% of the net power output of the fuel cell system is consumed by the air compressor at the altitude of 3000 m with this load-following strategy and is thus more apparent in the high-power US06 cycle. Changes in ambient air temperature and relative humidity effect on the fuel cell system performance in terms of the water management rather in vehicle fuel consumption. Ambient air temperature and relative humidity have some impact on the vehicle performance mostly seen in the heat and water management of the fuel cell system. While the heat loads of the fuel cell system components vary significantly with increasing ambient temperature, the relative humidity did not have a great impact on the water balance. Overall, dimensioning the compressor and other system components to meet the fuel cell system requirements at the minimum and maximum expected ambient temperatures, in this case 5 and 40 °C, and high altitude, while simultaneously choosing a correct control strategy are important parameters for efficient vehicle power train management.