WorldWideScience

Sample records for calculations 3-dimensional

  1. Three-dimensional calculations of charge neutralization by neutral gas release

    International Nuclear Information System (INIS)

    Mandell, M.J.; Jongeward, G.A.; Katz, I.

    1993-01-01

    There have been numerous observations of high rocket or spacecraft potentials, both positive and negative, and both naturally and artificially induced, being neutralized during thruster firings. Two current studies, CHARGE-2B (positive polarity) and SPEAR3 (negative polarity), attempt a more systematic exploration of this phenomenon. The authors present here calculations performed in support of the SPEAR-3 program. (1) Conventional phenomenology of breakdown is applied to the three-dimensional system formed by the electrostatic potential and plume density fields. Using real cross sections, they calculate the paths along which the nozzle plume can support breakdown. This leads to a recommendation that the higher flow rate on SPEAR-3 be 2 g/s of argon, equal to the CHARGE-2B flow rate. (2) In a laboratory chamber, conditions (pressure of ∼ 2 x 10 - 5 torr) favor breakdown of the positive (electron-collecting) sheath for SPEAR-3 geometry. Three-dimensional calculations illustrate the evolution of the space charge and potential structure during the breakdown process. These calculations demonstrate the ability to apply accepted phenomenology to real systems with three dimensional electrostatic potential fields, space charge fields, and neutral density fields, including magnetic field effects and real cross-section data

  2. Two-dimensional sensitivity calculation code: SENSETWO

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.

    1979-05-01

    A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)

  3. Prospects in deterministic three dimensional whole-core transport calculations

    International Nuclear Information System (INIS)

    Sanchez, Richard

    2012-01-01

    The point we made in this paper is that, although detailed and precise three-dimensional (3D) whole-core transport calculations may be obtained in the future with massively parallel computers, they would have an application to only some of the problems of the nuclear industry, more precisely those regarding multiphysics or for methodology validation or nuclear safety calculations. On the other hand, typical design reactor cycle calculations comprising many one-point core calculations can have very strict constraints in computing time and will not directly benefit from the advances in computations in large scale computers. Consequently, in this paper we review some of the deterministic 3D transport methods which in the very near future may have potential for industrial applications and, even with low-order approximations such as a low resolution in energy, might represent an advantage as compared with present industrial methodology, for which one of the main approximations is due to power reconstruction. These methods comprise the response-matrix method and methods based on the two-dimensional (2D) method of characteristics, such as the fusion method.

  4. Evaluation on activation activity of reactor in JRR-2 applied 3 dimensional model to neutron flux calculation

    International Nuclear Information System (INIS)

    Kishimoto, Katsumi; Arigane, Kenji

    2005-03-01

    Revaluation to activation activity of reactor evaluated at the notification of dismantling submitted in 1997 was carried out in JRR-2 where decommissioning was advanced now. In the revaluation, estimation accuracy on neutron streaming at various horizontal experimental tubes was improved by applying 3 dimensional model to neutron transport calculation that had been carried out by 2 dimensional model, and calculating with TORT. As the result, excessive overestimations on horizontal experimental tubes and biological shield that had greatly contributed to total activation activity in evaluation at the notification of dismantling was revised, sum of their activation activities in the revaluation decreased to 1/18 (case after 1 year from the permanent shutdown of reactor) of evaluation at the notification of dismantling, and the structural materials that had large activation activity were changed. By the above, it was shown that introducing 3 dimensional model was effective in evaluation on activation activity of the research reactor that had a lot of various experimental tubes. Total activation activity of reactor by the revaluation depended on control rods, thermal shield plates and horizontal experimental tubes, and the value after 1 year from the permanent shutdown of reactor was 1.9x10 14 Bq. (author)

  5. Comparison of 'system thermal-hydraulics-3 dimensional reactor kinetics' coupled calculations using the MARS 1D and 3D modules and the MASTER code

    International Nuclear Information System (INIS)

    Jung, J. J.; Joo, H. K.; Lee, W. J.; Ji, S. K.; Jung, B. D.

    2002-01-01

    KAERI has developed the coupled 'system thermal-hydraulics - 3 dimensional reactor kinetics' code, MARS/MASTER since 1998. However, there is a limitation in the existing MARS/MASTER code; that is, to perform the coupled calculations using MARS/MASTER, we have to utilize the hydrodynamic model and the heat structure model of the MARS '3D module'. In some transients, reactor kinetics behavior is strongly multi-dimensional, but core thermal-hydraulic behavior remains in one-dimensional manner. For efficient analysis of such transients, we coupled the MARS 1D module with MASTER. The new feature has been assessed by the 'OECD NEA Main Steam Line Break (MSLB) benchmark exercise III' simulations

  6. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    Caspo, N.

    1981-07-01

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  7. A finite element method for calculating the 3-dimensional magnetic fields of cyclotron

    International Nuclear Information System (INIS)

    Zhao Xiaofeng

    1986-01-01

    A series of formula of the finite element method (scalar potential) for calculating the three-dimensional magnetic field of the main magnet of a sector focused cyclotron, and the realization method of the periodic boundary conditions in the code are given

  8. Preliminary results of the seventh three-dimensional AER dynamic benchmark problem calculation. Solution with DYN3D and RELAP5-3D codes

    International Nuclear Information System (INIS)

    Bencik, M.; Hadek, J.

    2011-01-01

    The paper gives a brief survey of the seventh three-dimensional AER dynamic benchmark calculation results received with the codes DYN3D and RELAP5-3D at Nuclear Research Institute Rez. This benchmark was defined at the twentieth AER Symposium in Hanassari (Finland). It is focused on investigation of transient behaviour in a WWER-440 nuclear power plant. Its initiating event is opening of the main isolation valve and re-connection of the loop with its main circulation pump in operation. The WWER-440 plant is at the end of the first fuel cycle and in hot full power conditions. Stationary and burnup calculations were performed with the code DYN3D. Transient calculation was made with the system code RELAP5-3D. The two-group homogenized cross sections library HELGD05 created by HELIOS code was used for the generation of reactor core neutronic parameters. The detailed six loops model of NPP Dukovany was adopted for the seventh AER dynamic benchmark purposes. The RELAP5-3D full core neutronic model was coupled with 49 core thermal-hydraulic channels and 8 reflector channels connected with the three-dimensional model of the reactor vessel. The detailed nodalization of reactor downcomer, lower and upper plenum was used. Mixing in lower and upper plenum was simulated. The first part of paper contains a brief characteristic of RELAP5-3D system code and a short description of NPP input deck and reactor core model. The second part shows the time dependencies of important global and local parameters. (Authors)

  9. SNAP-3D: a three-dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1975-10-01

    A preliminary report is presented describing the data requirements of a one- two- or three-dimensional multi-group diffusion code, SNAP-3D. This code is primarily intended for neutron diffusion calculations but it can also carry out gamma calculations if the diffuse approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. It is assumed the reader is familiar with the older, two-dimensional code SNAP and can refer to the report [TRG-Report-1990], describing it. The present report concentrates on the enhancements to SNAP that have been made to produce the three-dimensional version, SNAP-3D, and is intended to act a a guide on data preparation until a single, comprehensive report can be published. (author)

  10. Interim results of the sixth three-dimensional AER dynamic benchmark problem calculation. Solution of problem with DYN3D and RELAP5-3D codes

    International Nuclear Information System (INIS)

    Hadek, J.; Kral, P.; Macek, J.

    2001-01-01

    The paper gives a brief survey of the 6 th three-dimensional AER dynamic benchmark calculation results received with the codes DYN3D and RELAPS-3D at NRI Rez. This benchmark was defined at the 10 th AER Symposium. Its initiating event is a double ended break in the steam line of steam generator No. I in a WWER-440/213 plant at the end of the first fuel cycle and in hot full power conditions. Stationary and burnup calculations as well as tuning of initial state before the transient were performed with the code DYN3D. Transient calculations were made with the system code RELAPS-3D.The KASSETA library was used for the generation of reactor core neutronic parameters. The detailed six loops model of NPP Dukovany was adopted for the 6 th AER dynamic benchmark purposes. The RELAPS-3D full core neutronic model was connected with seven coolant channels thermal-hydraulic model of the core (Authors)

  11. The analysis of RPV fast neutron flux calculation for PWR with three-dimensional SN method

    International Nuclear Information System (INIS)

    Yang Shouhai; Chen Yixue; Wang Weijin; Shi Shengchun; Lu Daogang

    2011-01-01

    Discrete ordinates (S N ) method is one of the most widely used method for reactor pressure vessel (RPV) design. As the fast development of computer CPU speed and memory capacity and consummation of three-dimensional discrete-ordinates method, it is mature for 3-D S N method to be used to engineering design for nuclear facilities. This work was done specifically for PWR model, with the results of 3-D core neutron transport calculation by 3-D core calculation, 3-D RPV fast neutron flux distribution obtain by 3-D S N method were compared with gained by 1-D and 2-D S N method and the 3-D Monte Carlo (MC) method. In this paper, the application of three-dimensional S N method in calculating RPV fast neutron flux distribution for pressurized water reactor (PWR) is presented and discussed. (authors)

  12. Appropriateness of one-dimensional calculations for repository analysis

    International Nuclear Information System (INIS)

    Eaton, R.R.

    1994-01-01

    This paper brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. It is shown that in many cases, one-dimensional modeling is more rigorous than previously assumed

  13. 3D calculations of the Superconducting Super Collider (SSC) 3 Tesla magnet

    International Nuclear Information System (INIS)

    Lari, R.J.

    1984-01-01

    A 20 TeV Superconducting Super Collider (SSC) proton accelerator is being proposed by the High Energy Physics Community. One proposal would consist of a ring of magnets 164 km in circumference with a field strength of 3 Tesla and would cost 2.7 billion dollars. The magnet consists of stacked steel laminations with superconducting coils. The desired field uniformity is obtained for all fields from 0.2 to 3 Tesla by using three (or more) different pole shapes. These three different laminations are stacked in the order 1-2-3-1-2-3-... creating a truly three dimensional geometry. A three laminated stack 1-2-3 with periodic boundary conditions at 1 and 3 was assigned about 5000 finite elements per lamination and solved using the computer program TOSCA. To check the TOSCA results, the field of each of the three different shaped laminations was calculated separately using periodic boundary conditions and compared to the two dimensional field calculations using TRIM. This was done for a constant permeability of 2000 and using the B-H table for fully annealed 1010 steel. The difference of the field calculations in the region of interest was always less than +-.2%

  14. Development of a 3-dimensional calculation model of the Danish research reactor DR3 to analyse a proposal to a new core design called ring-core

    Energy Technology Data Exchange (ETDEWEB)

    Nonboel, E

    1985-07-01

    A 3-dimensional calculation model of the Danish research reactor DR3 has been developed. Demands of a more effective utilization of the reactor and its facilities has required a more detailed calculation tool than applied so far. A great deal of attention has been devoted to the treatment of the coarse control arms. The model has been tested against measurements with satisfying results. Furthermore the model has been used to analyse a proposal to a new core design called ring-core where 4 central fuel elements are replaced by 4 dummy elements to increase the thermal flux in the center of the reactor. (author)

  15. 3-dimensional Charge Collection Efficiency

    CERN Document Server

    Kodak, Umut

    2013-01-01

    In this project, we designed a simulation program to create the efficiency map of a 3 dimensional rectangular detector. Efficiency is calculated by observing the collected charge at the output. Using this simulation program, one can observe the inefficient regions at not only on the surface of detector but at the depths of detector.

  16. An axial calculation method for accurate two-dimensional PWR core simulation

    International Nuclear Information System (INIS)

    Grimm, P.

    1985-02-01

    An axial calculation method, which improves the agreement of the multiplication factors determined by two- and three-dimensional PWR neutronic calculations, is presented. The axial buckling is determined at each time point so as to reproduce the increase of the leakage due to the flattening of the axial power distribution and the effect of the axial variation of the group constants of the fuel on the reactivity is taken into account. The results of a test example show that the differences of k-eff and cycle length between two- and three-dimensional calculations, which are unsatisfactorily large if a constant buckling is used, become negligible if the results of the axial calculation are used in the two-dimensional core simulation. (Auth.)

  17. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  18. Advanced numerical methods for three dimensional two-phase flow calculations

    International Nuclear Information System (INIS)

    Toumi, I.; Caruge, D.

    1997-01-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe's method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations

  19. Best-estimated multi-dimensional calculation during LB LOCA for APR1400

    International Nuclear Information System (INIS)

    Oh, D. Y.; Bang, Y. S.; Cheong, A. J.; Woong, S.; Korea, W.

    2010-01-01

    Best-estimated (BE) calculation with uncertainty quantification for the emergency core cooling system (ECCS) performance analysis during Loss of Coolant Accident (LOCA) is more broadly used in nuclear industries and regulations. In Korea, demand on regulatory audit calculation is continuously increasing to support the safety review for life extension, power up-rating and advanced nuclear reactor design. The thermal-hydraulic system code, MARS (Multi-dimensional Analysis of Reactor Safety), with multi-dimensional capability is used for audit calculation. It achieves to describe the complicated phenomena in reactor coolant system by very effectively consolidating the one dimensional RELAP5/MOD3 with the multidimensional COBRA-TF codes. The advanced power reactors (APR1400) to be evaluated has four separated hydraulic trains of the high pressure injection system (HPSI) with direct vessel injection (DVI) which is different from the existing commercial PWRs. Also, the therma-hydraulic behavior of DVI plant would be considerably different from that of a cold-leg safety injection since the low pressure safety injection system are eliminated and the high pressure safety flow are injected into the specific elevation of reactor vessel downcomer. The ECCS bypass induced by the downcomer boiling due to hot wall heating of reactor vessel during reflooding phase is one of the important phenomena which should be considered in DVI plants. Therefore, in this study, BE calculation with one-dimensional (1-D) and multi-dimensional (multi-D) MARS models during LBLOCA are performed for APR1400 plant. In the multi-D evaluation, the reactor vessel is modeled by multi-D components and the specific treatment of flow path inside reactor vessel, e.g., upper guide structure, is essential. The concept of hot zone is adopted to simulate the limiting thermal-hydraulic conditions surrounding hot rod, which is similar to hot channel in 1-D. Also, alternative treatment of the hot rods in multi-D is

  20. Parallel processing of two-dimensional Sn transport calculations

    International Nuclear Information System (INIS)

    Uematsu, M.

    1997-01-01

    A parallel processing method for the two-dimensional S n transport code DOT3.5 has been developed to achieve a drastic reduction in computation time. In the proposed method, parallelization is achieved with angular domain decomposition and/or space domain decomposition. The calculational speed of parallel processing by angular domain decomposition is largely influenced by frequent communications between processing elements. To assess parallelization efficiency, sample problems with up to 32 x 32 spatial meshes were solved with a Sun workstation using the PVM message-passing library. As a result, parallel calculation using 16 processing elements, for example, was found to be nine times as fast as that with one processing element. As for parallel processing by geometry segmentation, the influence of processing element communications on computation time is small; however, discontinuity at the segment boundary degrades convergence speed. To accelerate the convergence, an alternate sweep of angular flux in conjunction with space domain decomposition and a two-step rescaling method consisting of segmentwise rescaling and ordinary pointwise rescaling have been developed. By applying the developed method, the number of iterations needed to obtain a converged flux solution was reduced by a factor of 2. As a result, parallel calculation using 16 processing elements was found to be 5.98 times as fast as the original DOT3.5 calculation

  1. The appropriateness of one-dimensional Yucca Mountain hydrologic calculations

    International Nuclear Information System (INIS)

    Eaton, R.R.

    1993-07-01

    This report brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. it is shown that, in many cases, one-dimensional modeling is more rigorous than previously assumed

  2. Graphic system for the analysis of representation of a complex three-dimensional configuration for radiation shield calculation

    International Nuclear Information System (INIS)

    Berezhkov, A.B.; Gordeeva, E.K.; Mazanov, V.L.; Solov'ev, V.Yu.; Ryabov, A.V.; Khokhlov, V.F.; Shejno, I.N.

    1987-01-01

    Programs for obtaining phantom images when calculating the radiation shield structure for nuclear-engineering plants, using computer graphics, are developed. Programs are designed to accompany calculational investigations using the SUPER2/RRI3-PICSCH program and ZAMOK-TOMOGRAF program comutering complexes. Design geometry techniques, allowing to present three-dimensional object in the form of two-dimensional perspective projection to the screen plane, are realized in the programs

  3. Advanced 3-dimensional electron kinetic calculations for the current drive problem in magnetically confined thermonuclear plasmas

    International Nuclear Information System (INIS)

    Peysson, Y.; Decker, J.; Bers, A.; Ram, A.; Harvey, R.

    2004-01-01

    Accurate and fast electron kinetic calculations is a challenging issue for realistic simulations of thermonuclear tokamak plasmas. Relativistic corrections and electron trajectory effects must be fully taken into account for high temperature burning plasmas, while codes should also consistently describe wave-particle resonant interactions in presence of locally large gradients close to internal transport barrier. In that case, neoclassical effects may come into play and self-consistent evaluation of both the radio-frequency and bootstrap currents must be performed. In addition, a complex interplay between momentum and radial electron dynamics may take place, in presence of a possible energy dependent radial transport. Besides the physics needs, there are considerable numerical issues to solve, in order to reduce computer time consumption and memory requirements at an acceptable level, so that kinetic calculations may be valuably incorporated in a chain of codes which determines plasma equilibrium and wave propagation. So far, fully implicit 3-dimensional calculations based on a finite difference scheme and an incomplete L and U matrices factorization have been found to be so most effective method to reach this goal. A review of the present status in this active field of physics is presented, with an emphasis on possible future improvements. (authors)

  4. Calculation of three-dimensional groundwater transport using second-order moments

    International Nuclear Information System (INIS)

    Pepper, D.W.; Stephenson, D.E.

    1987-01-01

    Groundwater transport of contaminants from the F-Area seepage basin at the Savannah River Plant (SRP) was calculated using a three-dimensional, second-order moment technique. The numerical method calculates the zero, first, and second moment distributions of concentration within a cell volume. By summing the moments over the entire solution domain, and using a Lagrangian advection scheme, concentrations are transported without numerical dispersion errors. Velocities obtained from field tests are extrapolated and interpolated to all nodal points; a variational analysis is performed over the three-dimensional velocity field to ensure mass consistency. Transport predictions are calculated out to 12,000 days. 28 refs., 9 figs

  5. OPT-TWO: Calculation code for two-dimensional MOX fuel models in the optimum concentration distribution

    International Nuclear Information System (INIS)

    Sato, Shohei; Okuno, Hiroshi; Sakai, Tomohiro

    2007-08-01

    OPT-TWO is a calculation code which calculates the optimum concentration distribution, i.e., the most conservative concentration distribution in the aspect of nuclear criticality safety, of MOX (mixed uranium and plutonium oxide) fuels in the two-dimensional system. To achieve the optimum concentration distribution, we apply the principle of flattened fuel importance distribution with which the fuel system has the highest reactivity. Based on this principle, OPT-TWO takes the following 3 calculation steps iteratively to achieve the optimum concentration distribution with flattened fuel importance: (1) the forward and adjoint neutron fluxes, and the neutron multiplication factor, with TWOTRAN code which is a two-dimensional neutron transport code based on the SN method, (2) the fuel importance, and (3) the quantity of the transferring fuel. In OPT-TWO, the components of MOX fuel are MOX powder, uranium dioxide powder and additive. This report describes the content of the calculation, the computational method, and the installation method of the OPT-TWO, and also describes the application method of the criticality calculation of OPT-TWO. (author)

  6. Two-dimensional core calculation research for fuel management optimization based on CPACT code

    International Nuclear Information System (INIS)

    Chen Xiaosong; Peng Lianghui; Gang Zhi

    2013-01-01

    Fuel management optimization process requires rapid assessment for the core layout program, and the commonly used methods include two-dimensional diffusion nodal method, perturbation method, neural network method and etc. A two-dimensional loading patterns evaluation code was developed based on the three-dimensional LWR diffusion calculation program CPACT. Axial buckling introduced to simulate the axial leakage was searched in sub-burnup sections to correct the two-dimensional core diffusion calculation results. Meanwhile, in order to get better accuracy, the weight equivalent volume method of the control rod assembly cross-section was improved. (authors)

  7. The nodal discrete-ordinate transport calculation of anisotropy scattering problem in three-dimensional cartesian geometry

    International Nuclear Information System (INIS)

    Wu Hongchun; Xie Zhongsheng; Zhu Xuehua

    1994-01-01

    The nodal discrete-ordinate transport calculating model of anisotropy scattering problem in three-dimensional cartesian geometry is given. The computing code NOTRAN/3D has been encoded and the satisfied conclusion is gained

  8. Two-dimensional nucleonics calculations for a ''FIRST STEP'' conceptual ICF reactor

    International Nuclear Information System (INIS)

    Davidson, J.W.; Battat, M.E.; Saylor, W.W.; Pendergrass, J.H.; Dudziak, D.J.

    1985-01-01

    A detailed two-dimensional nucleonic analysis has been performed for the FIRST STEP conceptual ICF reactor blanket design. The reactor concept incorporated in this design is a modified wetted-wall cavity with target illumination geometry left as a design variable. The 2-m radius spherical cavity is surrounded by a blanket containing lithium and 238 U as fertile species and also as energy multipliers. The blanket is configured as 0.6-m-thick cylindrical annuli containing modified LMFBR-type fuel elements with 0.5-m-thick fuel-bearing axial end plugs. Liquid lithium surrounds the inner blanket regions and serves as the coolant for both the blanket and the first wall. The two-dimensional analysis of the blanket performance was made using the 2-D discrete-ordinates code TRISM, and benchmarked with the 3-D Monte Carlo code MCNP. Integral responses including the tritium breeding ratio (TBR), plutonium breeding ratio (PUBR), and blanket energy multiplication were calculated for axial and radial blanket regions. Spatial distributions were calculated for steady-state rates of fission, neutron heating, prompt gamma-ray heating, and fuel breeding

  9. A retrospective and prospective survey of three-dimensional transport calculations

    International Nuclear Information System (INIS)

    Nakahara, Yasuaki

    1985-01-01

    A retrospective survey is made on the three-dimensional radiation transport calculations. Introduction is given to computer codes based on the distinctive numerical methods such as the Monte Carlo, Direct Integration, Ssub(n) and Finite Element Methods to solve the three-dimensional transport equations. Prospective discussions are made on pros and cons of these methods. (author)

  10. Numerical method for three dimensional steady-state two-phase flow calculations

    International Nuclear Information System (INIS)

    Raymond, P.; Toumi, I.

    1992-01-01

    This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers

  11. Advanced numerical methods for three dimensional two-phase flow calculations in PWR

    International Nuclear Information System (INIS)

    Toumi, I.; Gallo, D.; Royer, E.

    1997-01-01

    This paper is devoted to new numerical methods developed for three dimensional two-phase flow calculations. These methods are finite volume numerical methods. They are based on an extension of Roe's approximate Riemann solver to define convective fluxes versus mean cell quantities. To go forward in time, a linearized conservative implicit integrating step is used, together with a Newton iterative method. We also present here some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. This kind of numerical method, which is widely used for fluid dynamic calculations, is proved to be very efficient for the numerical solution to two-phase flow problems. This numerical method has been implemented for the three dimensional thermal-hydraulic code FLICA-4 which is mainly dedicated to core thermal-hydraulic transient and steady-state analysis. Hereafter, we will also find some results obtained for the EPR reactor running in a steady-state at 60% of nominal power with 3 pumps out of 4, and a thermal-hydraulic core analysis for a 1300 MW PWR at low flow steam-line-break conditions. (author)

  12. One-dimensional calculation of flow branching using the method of characteristics

    International Nuclear Information System (INIS)

    Meier, R.W.; Gido, R.G.

    1978-05-01

    In one-dimensional flow systems, the flow often branches, such as at a tee or manifold. The study develops a formulation for calculating the flow through branch points with one-dimensional method of characteristics equations. The resultant equations were verified by comparison with experimental measurements

  13. Method for coupling two-dimensional to three-dimensional discrete ordinates calculations

    International Nuclear Information System (INIS)

    Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.

    1985-01-01

    A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (a) the discretized 3-D problem is simply too big to fit on the computer or (b) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code

  14. Gas dynamics of H II regions. II. Two-dimensional axisymmetric calculations

    International Nuclear Information System (INIS)

    Bodenheimer, P.; Tenorio-Tagle, G.; Yorke, H.W.

    1979-01-01

    The evolution of H II regions is calculated with a two-dimensional hydrodynamic numerical procedure under the assumption that the exciting star is born within a cool molecular cloud whose density is about 10 3 particles cm -3 . As the ionization of the cloud's edge is completed, a large pressure gradient is set up and ionized cloud material expands into the ionized low-density (1 particle cm -3 ) intercloud medium, with velocities larger than 30 km s -1 .The calculations are made under the simplifying assumptions that (i) within the H II region, ionization equilibrium holds at all times, (ii) the ionization front is a discontinuity, thus its detailed structure is not calculated, (iii) the temperature of each region (H II region, neutral cloud, and intercloud medium) is constant in time, (iv) all ionizing photons come radially from the exciting star. Four cases are calculated and compared with observations: (1) the edge of the cloud is overrun by a supersonic ionization front, (2) the initial Stroemgren sphere surrounding the star lies deep inside the cloud, thus the cloud's edge is ionized by a subsonic ionization front, (3) the ionization front breaks through two opposite faces of the same cloud simultaneously, (4) the flow encounters an isolated globule of density 10 3 particles cm -3 shortly after emerging from the molecular cloud.The phenomena here considered show how evolving H II regions are an important input of kinetic energy to the interstellar medium

  15. CSRtrack Faster Calculation of 3-D CSR Effects

    CERN Document Server

    Dohlus, Martin

    2004-01-01

    CSRtrack is a new code for the simulation of Coherent Synchrotron radiation effects on the beam dynamics of linear accelerators. It incorporates the physics of our previous code, TraFiC4, and adds new algorithms for the calculation of the CSR fields. A one-dimensional projected method allows quick estimates and a greens function method allows 3D calculations about ten times faster than with the `direct' method. The tracking code is written in standard FORTRAN77 and has its own parser for comfortable input of calculation parameters and geometry. Phase space input and the analysis of the traced particle distribution is done with MATLAB interface programs.

  16. Development of 2-D/1-D fusion method for three-dimensional whole-core heterogeneous neutron transport calculations

    International Nuclear Information System (INIS)

    Lee, Gil Soo

    2006-02-01

    To describe power distribution and multiplication factor of a reactor core accurately, it is necessary to perform calculations based on neutron transport equation considering heterogeneous geometry and scattering angles. These calculations require very heavy calculations and were nearly impossible with computers of old days. From the limitation of computing power, traditional approach of reactor core design consists of heterogeneous transport calculation in fuel assembly level and whole core diffusion nodal calculation with assembly homogenized properties, resulting from fuel assembly transport calculation. This approach may be effective in computation time, but it gives less accurate results for highly heterogeneous problems. As potential for whole core heterogeneous transport calculation became more feasible owing to rapid development of computing power during last several years, the interests in two and three dimensional whole core heterogeneous transport calculations by deterministic method are increased. For two dimensional calculation, there were several successful approaches using even parity transport equation with triangular meshes, S N method with refined rectangular meshes, the method of characteristics (MOC) with unstructured meshes, and so on. The work in this thesis originally started from the two dimensional whole core heterogeneous transport calculation by using MOC. After successful achievement in two dimensional calculation, there were efforts in three-dimensional whole-core heterogeneous transport calculation using MOC. Since direct extension to three dimensional calculation of MOC requires too much computing power, indirect approach to three dimensional calculation was considered.Thus, 2D/1D fusion method for three dimensional heterogeneous transport calculation was developed and successfully implemented in a computer code. The 2D/1D fusion method is synergistic combination of the MOC for radial 2-D calculation and S N -like methods for axial 1

  17. The first principle calculation of two-dimensional Dirac materials

    Science.gov (United States)

    Lu, Jin

    2017-12-01

    As the size of integrated device becoming increasingly small, from the last century, semiconductor industry is facing the enormous challenge to break the Moore’s law. The development of calculation, communication and automatic control have emergent expectation of new materials at the aspect of semiconductor industrial technology and science. In spite of silicon device, searching the alternative material with outstanding electronic properties has always been a research point. As the discovery of graphene, the research of two-dimensional Dirac material starts to express new vitality. This essay studied the development calculation of 2D material’s mobility and introduce some detailed information of some approximation method of the first principle calculation.

  18. Analytical approach to (2+1)-dimensional Boussinesq equation and (3+1)-dimensional Kadomtsev-Petviashvili equation

    Energy Technology Data Exchange (ETDEWEB)

    Sariaydin, Selin; Yildirim, Ahmet [Ege Univ., Dept. of Mathematics, Bornova-Izmir (Turkey)

    2010-05-15

    In this paper, we studied the solitary wave solutions of the (2+1)-dimensional Boussinesq equation u{sub tt} - u{sub xx} - u{sub yy} - (u{sup 2}){sub xx} - u{sub xxxx} = 0 and the (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation u{sub xt} - 6u{sub x}{sup 2} + 6uu{sub xx} - u{sub xxxx} - u{sub yy} - u{sub zz} = 0. By using this method, an explicit numerical solution is calculated in the form of a convergent power series with easily computable components. To illustrate the application of this method numerical results are derived by using the calculated components of the homotopy perturbation series. The numerical solutions are compared with the known analytical solutions. Results derived from our method are shown graphically. (orig.)

  19. One-dimensional magnetohydrodynamic calculations of a hydrogen-gas puff

    International Nuclear Information System (INIS)

    Maxon, S.; Nielsen, P.D.

    1981-01-01

    A one-dimensional Lagrangian calculation of the implosion of a hydrogen gas puff is presented. At maximum compression, 60% of the mass is located in a density spike .5 mm off the axis with a half width of 40 μm. The temperature on axis reaches 200 eV

  20. A two-dimensional, semi-analytic expansion method for nodal calculations

    International Nuclear Information System (INIS)

    Palmtag, S.P.

    1995-08-01

    Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure

  1. 3D Monte-Carlo transport calculations of whole slab reactor cores: validation of deterministic neutronic calculation routes

    International Nuclear Information System (INIS)

    Palau, J.M.

    2005-01-01

    This paper presents how Monte-Carlo calculations (French TRIPOLI4 poly-kinetic code with an appropriate pre-processing and post-processing software called OVNI) are used in the case of 3-dimensional heterogeneous benchmarks (slab reactor cores) to reduce model biases and enable a thorough and detailed analysis of the performances of deterministic methods and their associated data libraries with respect to key neutron parameters (reactivity, local power). Outstanding examples of application of these tools are presented regarding the new numerical methods implemented in the French lattice code APOLLO2 (advanced self-shielding models, new IDT characteristics method implemented within the discrete-ordinates flux solver model) and the JEFF3.1 nuclear data library (checked against JEF2.2 previous file). In particular we have pointed out, by performing multigroup/point-wise TRIPOLI4 (assembly and core) calculations, the efficiency (in terms of accuracy and computation time) of the new IDT method developed in APOLLO2. In addition, by performing 3-dimensional TRIPOLI4 calculations of the whole slab core (few millions of elementary volumes), the high quality of the new JEFF3.1 nuclear data files and revised evaluations (U 235 , U 238 , Hf) for reactivity prediction of slab cores critical experiments has been stressed. As a feedback of the whole validation process, improvements in terms of nuclear data (mainly Hf capture cross-sections) and numerical methods (advanced quadrature formulas accounting validation results, validation of new self-shielding models, parallelization) are suggested to improve even more the APOLLO2-CRONOS2 standard calculation route. (author)

  2. 3D Monte-Carlo transport calculations of whole slab reactor cores: validation of deterministic neutronic calculation routes

    Energy Technology Data Exchange (ETDEWEB)

    Palau, J M [CEA Cadarache, Service de Physique des Reacteurs et du Cycle, Lab. de Projets Nucleaires, 13 - Saint-Paul-lez-Durance (France)

    2005-07-01

    This paper presents how Monte-Carlo calculations (French TRIPOLI4 poly-kinetic code with an appropriate pre-processing and post-processing software called OVNI) are used in the case of 3-dimensional heterogeneous benchmarks (slab reactor cores) to reduce model biases and enable a thorough and detailed analysis of the performances of deterministic methods and their associated data libraries with respect to key neutron parameters (reactivity, local power). Outstanding examples of application of these tools are presented regarding the new numerical methods implemented in the French lattice code APOLLO2 (advanced self-shielding models, new IDT characteristics method implemented within the discrete-ordinates flux solver model) and the JEFF3.1 nuclear data library (checked against JEF2.2 previous file). In particular we have pointed out, by performing multigroup/point-wise TRIPOLI4 (assembly and core) calculations, the efficiency (in terms of accuracy and computation time) of the new IDT method developed in APOLLO2. In addition, by performing 3-dimensional TRIPOLI4 calculations of the whole slab core (few millions of elementary volumes), the high quality of the new JEFF3.1 nuclear data files and revised evaluations (U{sup 235}, U{sup 238}, Hf) for reactivity prediction of slab cores critical experiments has been stressed. As a feedback of the whole validation process, improvements in terms of nuclear data (mainly Hf capture cross-sections) and numerical methods (advanced quadrature formulas accounting validation results, validation of new self-shielding models, parallelization) are suggested to improve even more the APOLLO2-CRONOS2 standard calculation route. (author)

  3. One dimensional benchmark calculations using diffusion theory

    International Nuclear Information System (INIS)

    Ustun, G.; Turgut, M.H.

    1986-01-01

    This is a comparative study by using different one dimensional diffusion codes which are available at our Nuclear Engineering Department. Some modifications have been made in the used codes to fit the problems. One of the codes, DIFFUSE, solves the neutron diffusion equation in slab, cylindrical and spherical geometries by using 'Forward elimination- Backward substitution' technique. DIFFUSE code calculates criticality, critical dimensions and critical material concentrations and adjoint fluxes as well. It is used for the space and energy dependent neutron flux distribution. The whole scattering matrix can be used if desired. Normalisation of the relative flux distributions to the reactor power, plotting of the flux distributions and leakage terms for the other two dimensions have been added. Some modifications also have been made for the code output. Two Benchmark problems have been calculated with the modified version and the results are compared with BBD code which is available at our department and uses same techniques of calculation. Agreements are quite good in results such as k-eff and the flux distributions for the two cases studies. (author)

  4. Peculiarities of cyclotron magnetic system calculation with the finite difference method using two-dimensional approximation

    International Nuclear Information System (INIS)

    Shtromberger, N.L.

    1989-01-01

    To design a cyclotron magnetic system the legitimacy of two-dimensional approximations application is discussed. In all the calculations the finite difference method is used, and the linearization method with further use of the gradient conjugation method is used to solve the set of finite-difference equations. 3 refs.; 5 figs

  5. Eight-dimensional quantum reaction rate calculations for the H+CH4 and H2+CH3 reactions on recent potential energy surfaces.

    Science.gov (United States)

    Zhou, Yong; Zhang, Dong H

    2014-11-21

    Eight-dimensional (8D) transition-state wave packet simulations have been performed on two latest potential energy surfaces (PES), the Zhou-Fu-Wang-Collins-Zhang (ZFWCZ) PES [Y. Zhou, B. Fu, C. Wang, M. A. Collins, and D. H. Zhang, J. Chem. Phys. 134, 064323 (2011)] and the Xu-Chen-Zhang (XCZ)-neural networks (NN) PES [X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014)]. Reaction rate constants for both the H+CH4 reaction and the H2+CH3 reaction are calculated. Simulations of the H+CH4 reaction based on the XCZ-NN PES show that the ZFWCZ PES predicts rate constants with reasonable high accuracy for low temperatures while leads to slightly lower results for high temperatures, in line with the distribution of interpolation error associated with the ZFWCZ PES. The 8D H+CH4 rate constants derived on the ZFWCZ PES compare well with full-dimensional 12D results based on the equivalent m-ZFWCZ PES, with a maximum relative difference of no more than 20%. Additionally, very good agreement is shown by comparing the 8D XCZ-NN rate constants with the 12D results obtained on the ZFWCZ-WM PES, after considering the difference in static barrier height between these two PESs. The reaction rate constants calculated for the H2+CH3 reaction are found to be in good consistency with experimental observations.

  6. Point kinetics improvements to evaluate three-dimensional effects in transients calculation

    International Nuclear Information System (INIS)

    Castellotti, U.

    1987-01-01

    A calculation method, which considers the flux axial perturbations in the parameters related to the reactivity within a point kinetics model, is described. The method considered uses axial factors of consideration which act on the thermohydraulic variables included in the reactivity calculation. The PUMA three-dimensional code as reference model for the comparisons, is used. The limitations inherent to the reactivity balance of the point models used in the transients calculation, are given. (Author)

  7. From Two- to Three-Dimensional Structures of a Supertetrahedral Boran Using Density Functional Calculations.

    Science.gov (United States)

    Getmanskii, Iliya V; Minyaev, Ruslan M; Steglenko, Dmitrii V; Koval, Vitaliy V; Zaitsev, Stanislav A; Minkin, Vladimir I

    2017-08-14

    With help of the DFT calculations and imposing of periodic boundary conditions the geometrical and electronic structures were investigated of two- and three-dimensional boron systems designed on the basis of graphane and diamond lattices in which carbons were replaced with boron tetrahedrons. The consequent studies of two- and three-layer systems resulted in the construction of a three-dimensional supertetrahedral borane crystal structure. The two-dimensional supertetrahedral borane structures with less than seven layers are dynamically unstable. At the same time the three-dimensional superborane systems were found to be dynamically stable. Lack of the forbidden electronic zone for the studied boron systems testifies that these structures can behave as good conductors. The low density of the supertetrahedral borane crystal structures (0.9 g cm -3 ) is close to that of water, which offers the perspective for their application as aerospace and cosmic materials. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. The application of a 3 dimensional image scanner to the strain measurement

    International Nuclear Information System (INIS)

    Mazda, Taiji; Ogawa, Hiroshi; Suzuki, Michiaki; Nakano, Yasuo.

    1993-01-01

    A large strain measuring method for a laminated seismic isolation rubber, which will be introduced to reactor buildings of the Demonstration Fast Breeder Reactor (DFBR), was developed. With using strain gages, it is difficult to measure the large strain under the large displacement condition. With using the optical instruments, it is also impossible to measure the strain of a 3 dimensional object. We developed a new measuring method in which strain is calculated from a 3 dimensional deformation with using a 3 dimensional image scanner. This method is noncontact measuring method, and it can measure the strain of a 3 dimensional object under the large deformation. This work is one part of 'The Development of FBR Seismic Isolation system' operated by Central Research Institute of Electric Power Industry. (author)

  9. JNC results of BFS-62-3A benchmark calculation (CRP: Phase 5)

    International Nuclear Information System (INIS)

    Ishikawa, M.

    2004-01-01

    The present work is the results of JNC, Japan, for the Phase 5 of IAEA CRP benchmark problem (BFS-62-3A critical experiment). Analytical Method of JNC is based on Nuclear Data Library JENDL-3.2; Group Constant Set JFS-3-J3.2R: 70-group, ABBN-type self-shielding factor table based on JENDL-3.2; Effective Cross-section - Current-weighted multigroup transport cross-section. Cell model for the BFS as-built tube and pellets was (Case 1) Homogeneous Model based on IPPE definition; (Case 2) Homogeneous atomic density equivalent to JNC's heterogeneous calculation only to cross-check the adjusted correction factors; (Case 3) Heterogeneous model based on JNC's evaluation, One-dimensional plate-stretch model with Tone's background cross-section method (CASUP code). Basic diffusion Calculation was done in 18-groups and three-dimensional Hex-Z model (by the CITATION code), with Isotropic diffusion coefficients (Case 1 and 2), and Benoist's anisotropic diffusion coefficients (Case 3). For sodium void reactivity, the exact perturbation theory was applied both to basic calculation and correction calculations, ultra-fine energy group correction - approx. 100,000 group constants below 50 keV, and ABBN-type 175 group constants with shielding factors above 50 keV. Transport theory and mesh size correction 18-group, was used for three-dimensional Hex-Z model (the MINIHEX code based on the S4-P0 transport method, which was developed by JNC. Effective delayed Neutron fraction in the reactivity scale was fixed at 0.00623 by IPPE evaluation. Analytical Results of criticality values and sodium void reactivity coefficient obtained by JNC are presented. JNC made a cross-check of the homogeneous model and the adjusted correction factors submitted by IPPE, and confirmed they are consistent. JNC standard system showed quite satisfactory analytical results for the criticality and the sodium void reactivity of BFS-62-3A experiment. JNC calculated the cross-section sensitivity coefficients of BFS

  10. Three-dimensional static and dynamic reactor calculations by the nodal expansion method

    International Nuclear Information System (INIS)

    Christensen, B.

    1985-05-01

    This report reviews various method for the calculation of the neutron-flux- and power distribution in an nuclear reactor. The nodal expansion method (NEM) is especially described in much detail. The nodal expansion method solves the diffusion equation. In this method the reactor core is divided into nodes, typically 10 to 20 cm in each direction, and the average flux in each node is calculated. To obtain the coupling between the nodes the local flux inside each node is expressed by use of a polynomial expansion. The expansion is one-dimensional, so inside each node such three expansions occur. To calculate the expansion coefficients it is necessary that the polynomial expansion is a solution to the one-dimensional diffusion equation. When the one-dimensional diffusion equation is established a term with the transversal leakage occur, and this term is expanded after the same polynomials. The resulting equation system with the expansion coefficients as the unknowns is solved with weigthed residual technique. The nodal expansion method is built into a computer program (also called NEM), which is divided into two parts, one part for steady-state calculations and one part for dynamic calculations. It is possible to take advantage of symmetry properties of the reactor core. The program is very flexible with regard to the number of energy groups, the node size, the flux expansion order and the transverse leakage expansion order. The boundary of the core is described by albedos. The program and input to it are described. The program is tested on a number of examples extending from small theoretical one up to realistic reactor cores. Many calculations are done on the wellknown IAEA benchmark case. The calculations have tested the accuracy and the computing time for various node sizes and polynomial expansions. In the dynamic examples various strategies for variation of the time step-length have been tested. (author)

  11. 3-D full core calculations for the long-term behaviour of PWR's

    International Nuclear Information System (INIS)

    Winter, H.J.; Koebke, K.; Wagner, M.R.

    1987-01-01

    Presently, the most realistic simulation of a PWR core is by means of three-dimensional (3-D) full core calculations. Only by such 3-D representations can the large scope of axial effects be treated in an accurate and direct way, without the need to perform various auxiliary calculations. Although the computationally efficient burnup-corrected nodal expansion method (NEM-BC) is used, the computing effort for 3-D reactor calculations becomes rather high, e.g. a storage of about 320000 words is required to describe a 1300 MWe PWR. NEM-BC was introduced (1979) into KWU's package of PWR design codes because of its high accuracy and the great reduction of computing time and storage requirements in comparison to other methods. The application of NEM-BC to 3-dimensional PWR design is strongly correlated with the progress achieved in the solution of the homogenization and dehomogenization problem. By means of suitable methods (equivalence theory) the transport-theoretical information of the pinwise power and burnup distribution for the heterogeneous fuel assemblies is transferred in a consistent manner to the full core reactor solution. The new methods and the corresponding code system are explained in some detail. (orig.)

  12. The 3-dimensional core model DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, U.; Mittag, S.; Rohde, U.

    1999-01-01

    Analyzing the safety margins in transients and accidents of nuclear reactors 3-dimensional models of the core were used to avoid conservative assumptions needed for point kinetics or 1-dimensional models. Therefore, the 3D code DYN3D has been developed for the analysis of reactivity initiated accidents (RIA) in thermal nuclear reactors. The power distributions are calculated with the help of nodal expansion methods (NEM) for hexagonal and Cartesian geometry. The fuel rod model and the thermohydraulic part provide fuel temperatures, coolant temperatures and densities as well as boron concentrations for the calculation of feedback effects on the basis of cross section libraries generated by cell codes. Safety relevant parameters like maximum fuel and cladding temperatures, critical heat flux and degree of cladding oxidation are estimated. DYN3D can analyze RIA initiated by moved control rods and/or perturbations of the coolant flow. Stationary and transient boundary conditions for the coolant flow, the core inlet temperatures and boron concentrations at the core inlet have to be given. For analyzing more complex transients the code DYN3D is coupled with the plant model ATHLET of the GRS. The extensive validation work accomplished for DYN3D is presented in several examples. Some applications of the code are described. (orig.) [Deutsch] Die Verwendung 3-dimensionaler Kernmodelle zur Untersuchung der Sicherheitsreserven bei Uebergangsprozessen und Stoerfaellen in Kernreaktoren vermeidet konservative Annahmen, die bei der Benutzung des Punktmodells oder 1-dimensionaler Modelle erforderlich sind. Aus diesen Gruenden wurde das 3-dimensionale Rechenprogramm DYN3D fuer die Untersuchung von Reaktivitaetsstoerfaellen in thermischen Reaktoren entwickelt. Die Leistungsverteilung wird mit nodalen Methoden fuer hexagonale oder kartesische Geometrie berechnet. Das Brennstabmodell und der thermohydraulische Teil von DYN3D liefert die Brennstofftemperaturen, Kuehlmitteltemperaturen

  13. Assessment of RELAP5-3D copyright using data from two-dimensional RPI flow tests

    International Nuclear Information System (INIS)

    Davis, C.B.

    1998-01-01

    The capability of the RELAP5-3D copyright computer code to perform multi-dimensional thermal-hydraulic analysis was assessed using data from steady-state flow tests conducted at Rensselaer Polytechnic Institute (RPI). The RPI data were taken in a two-dimensional test section in a low-pressure air/water loop. The test section consisted of a thin vertical channel that simulated a two-dimensional slice through the core of a pressurized water reactor. Single-phase and two-phase flows were supplied to the test section in an asymmetric manner to generate a two-dimensional flow field. A traversing gamma densitometer was used to measure void fraction at many locations in the test section. High speed photographs provided information on the flow patterns and flow regimes. The RPI test section was modeled using the multi-dimensional component in RELAP5-3D Version BF06. Calculations of three RPI experiments were performed. The flow regimes predicted by the base code were in poor agreement with those observed in the tests. The two-phase regions were observed to be in the bubbly and slug flow regimes in the test. However, nearly all of the junctions in the horizontal direction were calculated to be in the stratified flow regime because of the relatively low velocities in that direction. As a result, the void fraction predictions were also in poor agreement with the measured values. Significantly improved results were obtained in sensitivity calculations with a modified version of the code that prevented the horizontal junctions from entering the stratified flow regime. These results indicate that the code's logic in the determination of flow regimes in a multi-dimensional component must be improved. The results of the sensitivity calculations also indicate that RELAP5-3D will provide a significant multi-dimensional hydraulic analysis capability once the flow regime prediction is improved

  14. A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.

    Science.gov (United States)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2010-01-01

    Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.

  15. An alternative pseudo-harmonics methodology; application to the reactors two-dimensional calculations

    International Nuclear Information System (INIS)

    Abreu, M.P. de.

    1988-01-01

    An alternative pseudo-harmonics method for two-dimensional reactor calculations is presented together with some one-energy group results, namely, eigenvalue and flux reconstruction. A brief description of the Standard and Modified versions of the method is presented for critical purposes, i.e., it was intended to discuss the previously developed versions and in some sense to improve the solution of the K-th eigenvalue and flux terms of the corresponding expansions. Intense and localized perturbations, where a significant imbalance between neutron production and destruction rates exists, were simulated. Since convergence in flux and eigenvalue were achieved for all test-cases, there is a tendency to consider the alternative method to be very promising for two-dimensional calculations. (author)

  16. Three-Dimensional Navier-Stokes Calculations Using the Modified Space-Time CESE Method

    Science.gov (United States)

    Chang, Chau-lyan

    2007-01-01

    The space-time conservation element solution element (CESE) method is modified to address the robustness issues of high-aspect-ratio, viscous, near-wall meshes. In this new approach, the dependent variable gradients are evaluated using element edges and the corresponding neighboring solution elements while keeping the original flux integration procedure intact. As such, the excellent flux conservation property is retained and the new edge-based gradients evaluation significantly improves the robustness for high-aspect ratio meshes frequently encountered in three-dimensional, Navier-Stokes calculations. The order of accuracy of the proposed method is demonstrated for oblique acoustic wave propagation, shock-wave interaction, and hypersonic flows over a blunt body. The confirmed second-order convergence along with the enhanced robustness in handling hypersonic blunt body flow calculations makes the proposed approach a very competitive CFD framework for 3D Navier-Stokes simulations.

  17. First principles calculation of two dimensional antimony and antimony arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K. [Department. of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)

    2016-05-23

    This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.

  18. Two-dimensional discrete ordinates photon transport calculations for brachytherapy dosimetry applications

    International Nuclear Information System (INIS)

    Daskalov, G.M.; Baker, R.S.; Little, R.C.; Rogers, D.W.O.; Williamson, J.F.

    2000-01-01

    The DANTSYS discrete ordinates computer code system is applied to quantitative estimation of water kerma rate distributions in the vicinity of discrete photon sources with energies in the 20- to 800-keV range in two-dimensional cylindrical r-z geometry. Unencapsulated sources immersed in cylindrical water phantoms of 40-cm diameter and 40-cm height are modeled in either homogeneous phantoms or shielded by Ti, Fe, and Pb filters with thicknesses of 1 and 2 mean free paths. The obtained dose results are compared with corresponding photon Monte Carlo simulations. A 210-group photon cross-section library for applications in this energy range is developed and applied, together with a general-purpose 42-group library developed at Los Alamos National Laboratory, for DANTSYS calculations. The accuracy of DANTSYS with the 42-group library relative to Monte Carlo exhibits large pointwise fluctuations from -42 to +84%. The major cause for the observed discrepancies is determined to be the inadequacy of the weighting function used for the 42-group library derivation. DANTSYS simulations with a finer 210-group library show excellent accuracy on and off the source transverse plane relative to Monte Carlo kerma calculations, varying from minus4.9 to 3.7%. The P 3 Legendre polynomial expansion of the angular scattering function is shown to be sufficient for accurate calculations. The results demonstrate that DANTSYS is capable of calculating photon doses in very good agreement with Monte Carlo and that the multigroup cross-section library and efficient techniques for mitigation of ray effects are critical for accurate discrete ordinates implementation

  19. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  20. 3D optical measuring technologies for dimensional inspection

    International Nuclear Information System (INIS)

    Chugui, Yu V

    2005-01-01

    The results of the R and D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method, development of hole inspection method on the base of diffractive optical elements. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability takes a noncontact inspection of geometrical parameters of their components. For this tasks we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFILE, and technologies for non-contact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic system COMPLEX for noncontact inspection of geometrical parameters of running freight car wheel pairs. The performances of these systems and the results of the industrial testing at atomic and railway companies are presented

  1. K-FIX: a computer program for transient, two-dimensional, two-fluid flow. THREED: an extension of the K-FIX code for three-dimensional calculations

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1978-10-01

    The transient, two-dimensional, two-fluid code K-FIX has been extended to perform three-dimensional calculations. This capability is achieved by adding five modification sets of FORTRAN statements to the basic two-dimensional code. The modifications are listed and described, and a complete listing of the three-dimensional code is provided. Results of an example problem are provided for verification

  2. Three-dimensional TDHF calculation for reactions of unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ka-Hae; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Bonche, P.

    1998-07-01

    The fusion is studied for reactions between a stable and an unstable nuclei with neutron skin. The reactions {sup 16,28}O+{sup 40}Ca and {sup 16}O+{sup 16,28}O are taken as examples, and the three-dimensional time-dependent Hartree-Fock method with the full Skyrme interaction is used. It is confirmed that the fusion cross section in low-energy region is sensitive to the interaction used in the calculation. (author)

  3. DRAGON 3.05D, Reactor Cell Calculation System with Burnup

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: The computer code DRAGON contains a collection of models that can simulate the neutron behavior of a unit cell or a fuel assembly in a nuclear reactor. It includes all of the functions that characterize a lattice cell code, namely: the interpolation of microscopic cross sections supplied by means of standard libraries; resonance self-shielding calculations in multidimensional geometries; multigroup and multidimensional neutron flux calculations that can take into account neutron leakage; transport-transport or transport-diffusion equivalence calculations as well as editing of condensed and homogenized nuclear properties for reactor calculations; and finally isotopic depletion calculations. 2 - Methods: The code DRAGON contains a multigroup flux solver conceived that can use a various algorithms to solve the neutron transport equation for the spatial and angular distribution of the flux. Each of these algorithms is presented in the form of a one-group solution procedure where the contributions from other energy groups are considered as sources. The current release of DRAGON contains five such algorithms. The JPM option that solves the integral transport equation using the J+- method, (interface current method applied to homogeneous blocks); the SYBIL option that solves the integral transport equation using the collision probability method for simple one dimensional (1-D) or two dimensional (2-D) geometries and the interface current method for 2-D Cartesian or hexagonal assemblies; the EXCELL/NXT option to solve the integral transport equation using the collision probability method for more general 2-D geometries and for three dimensional (3-D) assemblies; the MOCC option to solve the transport equation using the method of cyclic characteristics in 2-D Cartesian, and finally the MCU option to solve the transport equation using the method of characteristics (non cyclic) for 3-D Cartesian geometries. The execution of DRAGON is

  4. COMPARING OF THE 2D-3D GRAVITY CALCULATIONS IN CARTESIAN COORDINATES AND 3D IN CARTESIAN-SPHERICAL COORDINATES

    OpenAIRE

    Çavşak, Hasan; Elmas, Ali

    2014-01-01

    In this study, various calculations comparisons are made to achieve the best results in gravity computation. In the three dimensional (3D) gravity study, mass surfaces are defined by dividing the triangle surfaces. The more triangle surface is taken, the more precise definition of mass are made. Triangular pyramids are taken into consideration as the 3D master model. This model is formed between each triangle surface and calculation point. This method can describe complex shaped formation per...

  5. 3-D ASE calculation for high power output XeCl excimer lasers

    International Nuclear Information System (INIS)

    Tu Qinfen; Zhang Jianquan; Wu Baosheng

    1996-01-01

    The 3-dimensional ASE calculation for electron beam pumping XeCl excimer laser is presented by M-C method. In the model wall-reflected ASE is included. This calculation also includes non-saturable absorption and mirror that reflect ASE flux back into the active gain medium. Results show optimum scaling of injected flux. It can provide theoretical basis and experimental references for experiments on excimer lasers, and be extrapolated to any other type of laser

  6. 3-D flux distribution and criticality calculation of TRIGA Mark-II

    International Nuclear Information System (INIS)

    Can, B.

    1982-01-01

    In this work, the static calculation of the (I.T.U. TRIGA Mark-II) flux distribution has been made. The three dimensional, r-θ-z, representation of the core has been used. In this representation, for different configuration, the flux distribution has been calculated depending on two group theory. The thermal-hydraulics, the poisoning effects have been ignored. The calculations have been made by using the three dimensional and multigroup code CAN. (author)

  7. Preparation of functions of computer code GENGTC and improvement for two-dimensional heat transfer calculations for irradiation capsules

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Someya, Hiroyuki; Ito, Haruhiko.

    1992-11-01

    Capsules for irradiation tests in the JMTR (Japan Materials Testing Reactor), consist of irradiation specimens surrounded by a cladding tube, holders, an inner tube and a container tube (from 30mm to 65mm in diameter). And the annular gaps between these structural materials in the capsule are filled with liquids or gases. Cooling of the capsule is done by reactor primary coolant flowing down outside the capsule. Most of the heat generated by fission in fuel specimens and gamma absorption in structural materials is directed radially to the capsule container outer surface. In thermal performance calculations for capsule design, an one(r)-dimensional heat transfer computer code entitled (Generalyzed Gap Temperature Calculation), GENGTC, originally developed in Oak Ridge National Laboratory, U.S.A., has been frequently used. In designing a capsule, are needed many cases of parametric calculations with respect to changes materials and gap sizes. And in some cases, two(r,z)-dimensional heat transfer calculations are needed for irradiation test capsules with short length fuel rods. Recently the authors improved the original one-dimensional code GENGTC, (1) to simplify preparation of input data, (2) to perform automatic calculations for parametric survey based on design temperatures, ect. Moreover, the computer code has been improved to perform r-z two-dimensional heat transfer calculation. This report describes contents of the preparation of the one-dimensional code GENGTC and the improvement for the two-dimensional code GENGTC-2, together with their code manuals. (author)

  8. Validation of the blurring of a small object on CT images calculated on the basis of three-dimensional spatial resolution

    International Nuclear Information System (INIS)

    Okubo, Masaki; Wada, Shinichi; Saito, Masatoshi

    2005-01-01

    We determine three-dimensional (3D) blurring of a small object on computed tomography (CT) images calculated on the basis of 3D spatial resolution. The images were characterized by point spread function (PSF), line spread function (LSF) and slice sensitivity profile (SSP). In advance, we systematically arranged expressions in the model for the imaging system to calculate 3D images under various conditions of spatial resolution. As a small object, we made a blood vessel phantom in which the direction of the vessel was not parallel to either the xy scan-plane or the z-axis perpendicular to the scan-plane. Therefore, when scanning the phantom, non-sharpness must be induced in all axes of the image. To predict the image blurring of the phantom, 3D spatial resolution is essential. The LSF and SSP were measured on our scanner, and two-dimensional (2D) PSF in the scan-plane was derived from the LSF by solving an integral equation. We obtained 3D images by convolving the 3D object-function of the phantom with both 2D PSF and SSP, corresponding to the 3D convolution. Calculated images showed good agreement with scanned images. Our technique of determining 3D blurring offers an accuracy advantage in 3D shape (size) and density measurements of small objects. (author)

  9. CT liver volumetry using three-dimensional image data in living donor liver transplantation: Effects of slice thickness on volume calculation

    Science.gov (United States)

    Hori, Masatoshi; Suzuki, Kenji; Epstein, Mark L.; Baron, Richard L.

    2011-01-01

    The purpose was to evaluate a relationship between slice thickness and calculated volume on CT liver volumetry by comparing the results for images with various slice thicknesses including three-dimensional images. Twenty adult potential liver donors (12 men, 8 women; mean age, 39 years; range, 24–64) underwent CT with a 64-section multi-detector row CT scanner after intra-venous injection of contrast material. Four image sets with slice thicknesses of 0.625 mm, 2.5 mm, 5 mm, and 10 mm were used. First, a program developed in our laboratory for automated liver extraction was applied to CT images, and the liver boundary was obtained automatically. Then, an abdominal radiologist reviewed all images on which automatically extracted boundaries were superimposed, and edited the boundary on each slice to enhance the accuracy. Liver volumes were determined by counting of the voxels within the liver boundary. Mean whole liver volumes estimated with CT were 1322.5 cm3 on 0.625-mm, 1313.3 cm3 on 2.5-mm, 1310.3 cm3 on 5-mm, and 1268.2 cm3 on 10-mm images. Volumes calculated for three-dimensional (0.625-mm-thick) images were significantly larger than those for thicker images (Pvolumetry. If not, three-dimensional images could be essential. PMID:21850689

  10. Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3

    Science.gov (United States)

    Sakuma, Tasuku; Nishino, Shunsuke; Miyata, Masanobu; Koyano, Mikio

    2018-06-01

    Transition-metal trichalcogenides MX3 (M = Ti, Zr, Nb, Ta; X = S, Se) are well-known inorganic quasi-one-dimensional conductors. Among them, we have investigated the thermoelectric properties of titanium trisulfide TiS3 microribbon. The electrical resistivity ρ, thermal conductivity κ, and thermoelectric power S were measured using 3 ω method. The weight mean values were found to be ρ = 5 mω m and κ = 10 W K-1 m-1 along the one-dimensional direction ( b-axis) of the TiS3 microribbon. Combined with the thermoelectric power S = -530 μV K-1, the figure of merit was calculated as ZT = 0.0023. This efficiency is the same as that of randomly oriented bulk TiS3. We also estimated the anisotropy of σ and κ using the present results and those for randomly oriented bulk material. The obtained weak anisotropy for TiS3 is attributable to strong coupling between triangular columns consisting of TiS3 units. These experimental results are consistent with theoretical results obtained using density functional theory (DFT) calculations.

  11. Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3

    Science.gov (United States)

    Sakuma, Tasuku; Nishino, Shunsuke; Miyata, Masanobu; Koyano, Mikio

    2018-02-01

    Transition-metal trichalcogenides MX3 (M = Ti, Zr, Nb, Ta; X = S, Se) are well-known inorganic quasi-one-dimensional conductors. Among them, we have investigated the thermoelectric properties of titanium trisulfide TiS3 microribbon. The electrical resistivity ρ, thermal conductivity κ, and thermoelectric power S were measured using 3ω method. The weight mean values were found to be ρ = 5 mω m and κ = 10 W K-1 m-1 along the one-dimensional direction (b-axis) of the TiS3 microribbon. Combined with the thermoelectric power S = -530 μV K-1, the figure of merit was calculated as ZT = 0.0023. This efficiency is the same as that of randomly oriented bulk TiS3. We also estimated the anisotropy of σ and κ using the present results and those for randomly oriented bulk material. The obtained weak anisotropy for TiS3 is attributable to strong coupling between triangular columns consisting of TiS3 units. These experimental results are consistent with theoretical results obtained using density functional theory (DFT) calculations.

  12. SU-F-T-381: Fast Calculation of Three-Dimensional Dose Considering MLC Leaf Positional Errors for VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, Y [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan); Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Kadoya, N; Jingu, K [Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Shimizu, E; Majima, K [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan)

    2016-06-15

    Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dose calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.

  13. Stationary PWR-calculations by means of LWRSIM at the NEACRP 3D-LWRCT benchmark

    International Nuclear Information System (INIS)

    Van de Wetering, T.F.H.

    1993-01-01

    Within the framework of participation in an international benchmark, calculations were executed by means of an adjusted version of the computer code Light Water Reactor SIMulation (LWRSIM) for three-dimensional reactor core calculations of pressurized water reactors. The 3-D LWR Core Transient Benchmark was set up aimed at the comparison of 3-D computer codes for transient calculations in LWRs. Participation in the benchmark provided more insight in the accuracy of the code when applied for other pressurized water reactors than applied for the nuclear power plant Borssele in the Netherlands, for which the code has been developed and used originally

  14. Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

    International Nuclear Information System (INIS)

    Downar, T.

    2009-01-01

    The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multidimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. Specifically, the methods here utilize the existing continuous energy SCALE5 module, CENTRM, and the multi-dimensional discrete ordinates solver, NEWT to develop a new code, CENTRM( ) NEWT. The work here addresses specific theoretical limitations in existing CENTRM resonance treatment, as well as investigates advanced numerical and parallel computing algorithms for CENTRM and NEWT in order to reduce the computational burden. The result of the work here will be a new computer code capable of performing problem dependent self-shielding analysis for both existing and proposed GENIV fuel designs. The objective of the work was to have an immediate impact on the safety analysis of existing reactors through improvements in the calculation of fuel temperature effects, as well as on the analysis of more sophisticated GENIV/NGNP systems through improvements in the depletion/transmutation of actinides for Advanced Fuel Cycle Initiatives.

  15. GITTAM program for numerical simulation of one-dimensional targets TIS. Part 3

    International Nuclear Information System (INIS)

    Basko, M.M.; Sokolovskij, M.V.

    1989-01-01

    Results of testing calculations according to GITTAM program, developed for numeric simulation of one-dimensional thermonuclear targets of heavy-ion synthesis are presented. Finite-difference method for solving a system of one-dimensional hydrodynamics equations with heat conductivity, radiation diffusion and thermonuclear combustion is used in the GITTAM program. In the tests presented, based on simple automodel solutions, adiabatic motion as well as distribution of shock, thermal and radial waves in gas with simple polytron state equation is investigated. 3 refs.; 6 figs

  16. Influence of cusps and intersections on the calculation of the Wilson loop in ν-dimensional space

    International Nuclear Information System (INIS)

    Bezerra, V.B.

    1984-01-01

    A discussion is given about the influence of cusps and intersections on the calculation of the Wilson Loop in ν-dimensional space. In particular, for the two-dimensional case, it is shown that there are no divergences. (Author) [pt

  17. Dimensional reduction for D3-brane moduli

    International Nuclear Information System (INIS)

    Cownden, Brad; Frey, Andrew R.; Marsh, M.C. David; Underwood, Bret

    2016-01-01

    Warped string compactifications are central to many attempts to stabilize moduli and connect string theory with cosmology and particle phenomenology. We present a first-principles derivation of the low-energy 4D effective theory from dimensional reduction of a D3-brane in a warped Calabi-Yau compactification of type IIB string theory with imaginary self-dual 3-form flux, including effects of D3-brane motion beyond the probe approximation, and find the metric on the moduli space of brane positions, the universal volume modulus, and axions descending from the 4-form potential. As D3-branes may be considered as carrying either electric or magnetic charges for the self-dual 5-form field strength, we present calculations in both duality frames. Our results are consistent with, but extend significantly, earlier results on the low-energy effective theory arising from D3-branes in string compactifications.

  18. HAMMER, 1-D Multigroup Neutron Transport Infinite System Cell Calculation for Few-Group Diffusion Calculation

    International Nuclear Information System (INIS)

    Honeck, H.C.

    1984-01-01

    1 - Description of problem or function: HAMMER performs infinite lattice, one-dimensional cell multigroup calculations, followed (optionally) by one-dimensional, few-group, multi-region reactor calculations with neutron balance edits. 2 - Method of solution: Infinite lattice parameters are calculated by means of multigroup transport theory, composite reactor parameters by few-group diffusion theory. 3 - Restrictions on the complexity of the problem: - Cell calculations - maxima of: 30 thermal groups; 54 epithermal groups; 20 space points; 20 regions; 18 isotopes; 10 mixtures; 3 thermal up-scattering mixtures; 200 resonances per group; no overlap or interference; single level only. - Reactor calculations - maxima of : 40 regions; 40 mixtures; 250 space points; 4 groups

  19. SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. H.

    1976-07-01

    This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center.

  20. SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations

    International Nuclear Information System (INIS)

    Adams, C.H.

    1976-07-01

    This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center

  1. A graphical user interface (GUI) toolkit for the calculation of three-dimensional (3D) multi-phase biological effective dose (BED) distributions including statistical analyses.

    Science.gov (United States)

    Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis

    2016-07-01

    A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Validation of One-Dimensional Module of MARS-KS1.2 Computer Code By Comparison with the RELAP5/MOD3.3/patch3 Developmental Assessment Results

    International Nuclear Information System (INIS)

    Bae, S. W.; Chung, B. D.

    2010-07-01

    This report records the results of the code validation for the one-dimensional module of the MARS-KS thermal hydraulics analysis code by means of result-comparison with the RELAP5/MOD3.3 computer code. For the validation calculations, simulations of the RELAP5 Code Developmental Assessment Problem, which consists of 22 simulation problems in 3 categories, have been selected. The results of the 3 categories of simulations demonstrate that the one-dimensional module of the MARS code and the RELAP5/MOD3.3 code are essentially the same code. This is expected as the two codes have basically the same set of field equations, constitutive equations and main thermal hydraulic models. The result suggests that the high level of code validity of the RELAP5/MOD3.3 can be directly applied to the MARS one-dimensional module

  3. Final results of the fifth three-dimensional dynamic Atomic Energy Research benchmark problem calculations

    International Nuclear Information System (INIS)

    Hadek, J.

    1999-01-01

    The paper gives a brief survey of the fifth three-dimensional dynamic Atomic Energy Research benchmark calculation results received with the code DYN3D/ATHLET at NRI Rez. This benchmark was defined at the seventh Atomic Energy Research Symposium (Hoernitz near Zittau, 1997). Its initiating event is a symmetrical break of the main steam header at the end of the first fuel cycle and hot shutdown conditions with one stuck out control rod group. The calculations were performed with the externally coupled codes ATHLET Mod.1.1 Cycle C and DYN3DH1.1/M3. The standard WWER-440/213 input deck of ATHLET code was adopted for benchmark purposes and for coupling with the code DYN3D. The first part of paper contains a brief characteristics of NPP input deck and reactor core model. The second part shows the time dependencies of important global and local parameters. In comparison with the results published at the eighth Atomic Energy Research Symposium (Bystrice nad Pernstejnem, 1998), the results published in this paper are based on improved ATHLET descriptions of control and safety systems. (Author)

  4. GRIMH3: A new reactor calculation code at Savannah River Site

    International Nuclear Information System (INIS)

    Le, T.T.; Pevey, R.E.

    1993-01-01

    The GRIMHX reactor code currently in use at the Savannah River Site (SRS) was written at a time when computer processing speed and memory storage were very limited. Recently, a new reactor code (GRIMH3) was written to take advantage of the hardware improvements (vectorization and higher memory capacities) as well as the range of available computers at SRS (workstations and supercomputers). The GRIMH3 code computes the solution of the static multigroup neutron diffusion equation in one-, two-, and three-dimensional hexagonal geometry. Either direct or adjoint solutions can be computed for k eff searches, buckling searches, external neutron sources, power flattening searches, or power normalization factor calculations with 1, 6, 24, 54, or 96 points per hex. The GRIMHX reactor code currently in use at the Savannah River Site (SRS) was written at a time when computer processing speed and memory storage were very limited. Recently, a new reactor code (GRIMH3) was written to take advantage of the hardware improvements (vectorization and higher memory capacities) as well as the range of available computers at SRS (workstations and supercomputers). The GRIMH3 code computes the solution of the static multigroup neutron diffusion equation in one-, two-, and three-dimensional hexagonal geometry. Either direct or adjoint solutions can be computed for k eff searches, buckling searches, external neutron sources, power flattening searches, or power normalization factor calculations with 1, 6, 24, 54, or 96 points per hex

  5. One-dimensional thermal evolution calculation based on a mixing length theory: Application to Saturnian icy satellites

    Science.gov (United States)

    Kamata, S.

    2017-12-01

    Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection. Adopting this new definition of l, I investigate the thermal evolution of Dione and Enceladus under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a 30-km-thick global subsurface ocean. Dynamical tides may be able to account for such an amount of heat, though their ices need to be highly viscous.

  6. Neutron spectra calculation in material in order to compute irradiation damage

    International Nuclear Information System (INIS)

    Dupont, C.; Gonnord, J.; Le Dieu de Ville, A.; Nimal, J.C.; Totth, B.

    1982-01-01

    This short presentation will be on neutron spectra calculation methods in order to compute the damage rate formation in irradiated structure. Three computation schemes are used in the French C.E.A.: (1) 3-dimensional calculations using the line of sight attenuation method (MERCURE IV code), the removal cross section being obtained from an adjustment on a 1-dimensional transport calculation with the discrete ordinate code ANISN; (2) 2-dimensional calculations using the discrete ordinates method (DOT 3.5 code), 20 to 30 group library obtained by collapsing the 100 group a library on fluxes computed by ANISN; (3) 3-dimensional calculations using the Monte Carlo method (TRIPOLI system). The cross sections which originally came from UKNDL 73 and ENDF/B3 are now processed from ENDF B IV. (author)

  7. Parallel Implementation of the Multi-Dimensional Spectral Code SPECT3D on large 3D grids.

    Science.gov (United States)

    Golovkin, Igor E.; Macfarlane, Joseph J.; Woodruff, Pamela R.; Pereyra, Nicolas A.

    2006-10-01

    The multi-dimensional collisional-radiative, spectral analysis code SPECT3D can be used to study radiation from complex plasmas. SPECT3D can generate instantaneous and time-gated images and spectra, space-resolved and streaked spectra, which makes it a valuable tool for post-processing hydrodynamics calculations and direct comparison between simulations and experimental data. On large three dimensional grids, transporting radiation along lines of sight (LOS) requires substantial memory and CPU resources. Currently, the parallel option in SPECT3D is based on parallelization over photon frequencies and allows for a nearly linear speed-up for a variety of problems. In addition, we are introducing a new parallel mechanism that will greatly reduce memory requirements. In the new implementation, spatial domain decomposition will be utilized allowing transport along a LOS to be performed only on the mesh cells the LOS crosses. The ability to operate on a fraction of the grid is crucial for post-processing the results of large-scale three-dimensional hydrodynamics simulations. We will present a parallel implementation of the code and provide a scalability study performed on a Linux cluster.

  8. Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation.

    Science.gov (United States)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2012-01-01

    Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.

  9. 3D and 1D calculation of hysteresis loops and energy products for anisotropic nanocomposite films with perpendicular anisotropy

    International Nuclear Information System (INIS)

    Yuan, X.H.; Zhao, G.P.; Yue, Ming; Ye, L.N.; Xia, J.; Zhang, X.C.; Chang, J.

    2013-01-01

    In this paper, the magnetic reversal process, hysteresis loops and energy products for exchange-coupled Nd 2 Fe 14 B/α-Fe bilayers are studied systematically by a three-dimensional (3D) model. The 3D calculations are numerically solved using the finite difference method, where the results are carefully compared with those calculated by one-dimensional (1D) model. It is found that the calculated hysteresis loops and energy products based on the two methods are consistent with each other. Both nucleation fields and coercivities decrease monotonically as the soft layer thickness L s increases. In addition, the calculated spatial distributions of magnetization orientations in the thickness direction at various applied fields based on both methods signify a three-step magnetic reversal process, which are nucleation, growth and displacement of the domain wall. The calculated magnetic orientations within the film plane, however, are totally different according to the two methods. The 3D calculation exhibits a process of vortex formation and annihilation. On the other hand, the 1D calculation gives a quasi-coherent one, where magnetization orientation is coherent in the film plane and varies in the thickness direction. This new reversal mechanism displayed in the film plane has a systematic influence on the nucleation fields, coercivity and energy products. - Highlights: • Consistent hysteresis loops and energy products for 3D and 1D calculation. • Domain wall formation, evolution and displacement perpendicular to the film plane. • Vortex formation, annihilation and better loop squareness in 3D calculation. • Larger nucleation fields, remanence and smaller coercivity in 3D calculation

  10. THEHYCO-3DT: Thermal hydrodynamic code for the 3 dimensional transient calculation of advanced LMFBR core

    Energy Technology Data Exchange (ETDEWEB)

    Vitruk, S.G.; Korsun, A.S. [Moscow Engineering Physics Institute (Russian Federation); Ushakov, P.A. [Institute of Physics and Power Engineering, Obninsk (R)] [and others

    1995-09-01

    The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors.

  11. THEHYCO-3DT: Thermal hydrodynamic code for the 3 dimensional transient calculation of advanced LMFBR core

    International Nuclear Information System (INIS)

    Vitruk, S.G.; Korsun, A.S.; Ushakov, P.A.

    1995-01-01

    The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors

  12. Neutron flux calculations for the Rossendorf research reactor in (hex)- and (hex,z)-geometry using SNAP-3D

    International Nuclear Information System (INIS)

    Koch, R.; Findeisen, A.

    1986-04-01

    The multigroup neutron diffusion theory code SNAP-3D has been used to perform time independent neutron flux and power calculations of the 10 MW Rossendorf research reactor of the type WWR-SM. The report describes these calculations, as well as the actual reactor configuration, some details of the code SNAP-3D, and two- and three-dimensional reactor models. For evaluating the calculations some flux values and control rod worths have been compared with those of measurements. (author)

  13. PASC-1, Petten AMPX-II/SCALE-3 Code System for Reactor Neutronics Calculation

    International Nuclear Information System (INIS)

    Yaoqing, W.; Oppe, J.; Haas, J.B.M. de; Gruppelaar, H.; Slobben, J.

    1995-01-01

    1 - Description of program or function: The Petten AMPX-II/SCALE-3 Code System PASC-1 is a reactor neutronics calculation programme system consisting of well known IBM-oriented codes, that have been translated into FORTRAN-77, for calculations on a CDC-CYBER computer. Thus, the portability of these codes has been increased. In this system, some AMPX-II and SCALE-3 modules, the one-dimensional transport code ANISN and the 1 to 3-dimensional diffusion code CITATION are linked together on the CDC-CYBER/855 computer. The new cell code XSDRNPM-S and the old XSDRN code are included in the system. Starting from an AMPX fine group library up to CITATION, calculations can be performed for each individual module. Existing AMPX master interface format libraries, such as CSRL-IV, JEF-1, IRI and SCALE-45, and the old XSDRN-formatted libraries such as the COBB library can be used for the calculations. The code system contains the following modules and codes at present: AIM, AJAX, MALOCS, NITAWL-S, REVERT-I, ICE-2, CONVERT, JUAN, OCTAGN, XSDRNPM-S, XSDRN, ANISN and CITATION. The system will be extended with other SCALE modules and transport codes. 2 - Method of solution: The PASC-1 system is based on AMPX-II/SCALE-3 modules. Except for some SCALE-3 modules taken from the SCALIAS package, the original AMPX-II modules were IBM versions written in FORTRAN IV. These modules have been translated into CDC FORTRAN V. In order to test these modules and link them with some codes, some of the sample problem calculations have been performed for the whole PASC-1 system. During these calculations, some FORTRAN-77 errors were found in MALOCS, REVERT, CONVERT and some subroutines of SUBLIB (FORTRAN-77 subroutine library). These errors have been corrected. Because many corrections were made for the REVERT module, it is renamed as REVERT-I (improved version of REVERT). After these corrections, the whole system is running on a CDC-CYBER Computer (NOS-BE operating system). 3 - Restrictions on the

  14. First-principles calculation of electronic transport in low-dimensional disordered superconductors

    Science.gov (United States)

    Conduit, G. J.; Meir, Y.

    2011-08-01

    We present a novel formulation to calculate transport through disordered superconductors connected between two metallic leads. An exact analytical expression for the current is derived and applied to a superconducting sample described by the negative-U Hubbard model. A Monte Carlo algorithm that includes thermal phase and amplitude fluctuations of the superconducting order parameter is employed, and a new efficient algorithm is described. This improved routine allows access to relatively large systems, which we demonstrate by applying it to several cases, including superconductor-normal interfaces and Josephson junctions. Moreover, we can link the phenomenological parameters describing these effects to the underlying microscopic variables. The effects of decoherence and dephasing are shown to be included in the formulation, which allows the unambiguous characterization of the Kosterlitz-Thouless transition in two-dimensional systems and the calculation of the finite resistance due to vortex excitations in quasi-one-dimensional systems. Effects of magnetic fields can be easily included in the formalism, and are demonstrated for the Little-Parks effect in superconducting cylinders. Furthermore, the formalism enables us to map the local super and normal currents, and the accompanying electrical potentials, which we use to pinpoint and visualize the emergence of resistance across the superconductor-insulator transition.

  15. Poster - 21: Verification of Monitor Unit Calculations for Breast Field-In-Field Three-Dimensional Conformal Radiotherapy Plans

    International Nuclear Information System (INIS)

    Kosztyla, Robert; Pierce, Greg; Ploquin, Nicolas; Roumeliotis, Michael; Schinkel, Colleen

    2016-01-01

    Purpose: To determine the source of systematic monitor unit (MU) calculation discrepancies between RadCalc and Eclipse treatment planning software for three-dimensional conformal radiotherapy field-in-field breast treatments. Methods: Data were reviewed for 28 patients treated with a field-in-field breast technique with MU calculations from RadCalc that were larger than MU calculations from Eclipse for at least one field. The distance of the calculation point from the jaws was measured in each field’s beam’s-eye-view and compared with the percentage difference in MU (%ΔMU) between RadCalc and Eclipse. 10×10, 17×13 and 20×20 cm 2 beam profiles were measured using the Profiler 2 diode array for 6-MV photon beams and compared with profiles calculated with Eclipse and RadCalc using a gamma analysis (3%, 3 mm). Results: The mean %ΔMU was 1.3%±0.3%. There was a statistically-significant correlation between %ΔMU and the distance of the calculation point from the Y jaw (r=−0.43, p<0.001). RadCalc profiles differed from measured profiles, especially near the jaws. The gamma pass rate for 6-MV fields of 17×13 cm 2 field size was 95%±1% for Eclipse-generated profiles and 53%±20% for RadCalc-generated profiles (p=0.01). Conclusions: Calculations using RadCalc for field-in-field breast plans resulted in MUs that were larger than expected from previous clinical experience with wedged plans with calculation points far from the jaws due to the position of the calculation point near the jaws in the beam’s-eye-view of each field.

  16. Poster - 21: Verification of Monitor Unit Calculations for Breast Field-In-Field Three-Dimensional Conformal Radiotherapy Plans

    Energy Technology Data Exchange (ETDEWEB)

    Kosztyla, Robert; Pierce, Greg; Ploquin, Nicolas; Roumeliotis, Michael; Schinkel, Colleen [Tom Baker Cancer Centre, Calgary, AB, Tom Baker Cancer Centre, Tom Baker Cancer Centre, Tom Baker Cancer Centre, Calgary, AB, Tom Baker Cancer Centre, Calgary, AB (Canada)

    2016-08-15

    Purpose: To determine the source of systematic monitor unit (MU) calculation discrepancies between RadCalc and Eclipse treatment planning software for three-dimensional conformal radiotherapy field-in-field breast treatments. Methods: Data were reviewed for 28 patients treated with a field-in-field breast technique with MU calculations from RadCalc that were larger than MU calculations from Eclipse for at least one field. The distance of the calculation point from the jaws was measured in each field’s beam’s-eye-view and compared with the percentage difference in MU (%ΔMU) between RadCalc and Eclipse. 10×10, 17×13 and 20×20 cm{sup 2} beam profiles were measured using the Profiler 2 diode array for 6-MV photon beams and compared with profiles calculated with Eclipse and RadCalc using a gamma analysis (3%, 3 mm). Results: The mean %ΔMU was 1.3%±0.3%. There was a statistically-significant correlation between %ΔMU and the distance of the calculation point from the Y jaw (r=−0.43, p<0.001). RadCalc profiles differed from measured profiles, especially near the jaws. The gamma pass rate for 6-MV fields of 17×13 cm{sup 2} field size was 95%±1% for Eclipse-generated profiles and 53%±20% for RadCalc-generated profiles (p=0.01). Conclusions: Calculations using RadCalc for field-in-field breast plans resulted in MUs that were larger than expected from previous clinical experience with wedged plans with calculation points far from the jaws due to the position of the calculation point near the jaws in the beam’s-eye-view of each field.

  17. Two dimensional magnetic field calculations for the SSC dipole magnets

    International Nuclear Information System (INIS)

    Krefta, M.P.; Pavlik, D.

    1991-01-01

    In this work two-dimensional methods are used to calculate the magnetic fields throughout the cross section of a SSC dipole magnet. Analytic techniques, which are based on closed form solutions to the defining field equations, are used to calculate the multipole content for any specified conductor positioning. The method is extended to investigate the effects of radial slots or keyways in the iron yoke. The multipole components of field, directly attributable to the slots or keyways, are examined as a function of size and location. It is shown that locating the slots or keyways at the magnet pole centers has a large effect on the multipole components; whereas, locating the keyways between the magnet poles has little effect on any of the multipoles. The investigation of nonlinear effects such as ferromagnetic saturation or superconductor magnetization relies on the use of numerical methods such as the finite element method. The errors associated with these codes are explained in terms of numerical round-off, spatial discretization error and the representation of distant boundaries. A method for increasing the accuracy of the multipole calculation from finite element solutions is set forth. It is shown that calculated multipole coefficients are sensitive to boundary conditions external to the cold mass during conditions of magnetic saturation

  18. Effect of local automatic control rods on three-dimensional calculations of the power distribution in an RBMK

    International Nuclear Information System (INIS)

    Pogosbekyan, L.R.; Lysov, D.A.; Bronitskii, L.L.

    1993-01-01

    Numerical simulators and information systems that support nuclear reactor operators must have fast models to estimate how fuel reloads and control rod displacement affect neutron and power distributions in the core. The consequences of reloads and control rod displacement cannot be evaluated correctly without considering local automatic control-rod operations in maintaining the radial power distribution. Fast three-dimensional models to estimate the effects of reloads and displacement of the control and safety rods have already been examined. I.V. Zonov et al. used the following assumptions in their calculational model: (1) the full-scale problem could be reduced a three-dimensional fragment of a locally perturbed core, and (2) the boundary conditions of the fragment and its total power were constant. The last assumption considers approximately how local automatic control rods stabilize the radial power distribution, but three dimensional calculations with these rods are not considered. These assumptions were introduced to obtain high computational speed. I.L. Bronitskii et al. considered in more detail how moving the local automatic control rods affect the power dimensional in the three-dimensional fragment, because, with on-line monitoring of the reload process, information on control rod positions is periodically renewed, and the calculations are done in real time. This model to predict the three-dimensional power distribution to (1) do a preliminary reload analysis, and (2) prepare the core for reloading did not consider the effect of perturbations from the local automatic control rods. Here we examine a model of a stationary neutron distribution. On one hand it gives results in an acceptable computation time; on the other it is a full-scale three-dimensional model and considers how local automatic control rods affect both the radial and axial power distribution

  19. Quantum Monte Carlo calculation of the Fermi-liquid parameters in the two-dimensional electron gas

    International Nuclear Information System (INIS)

    Kwon, Y.; Ceperley, D.M.; Martin, R.M.

    1994-01-01

    Excitations of the two-dimensional electron gas, including many-body effects, are calculated with a variational Monte Carlo method. Correlated sampling is introduced to calculate small energy differences between different excitations. The usual pair-product (Slater-Jastrow) trial wave function is found to lack certain correlations entirely so that backflow correlation is crucial. From the excitation energies calculated here, we determine Fermi-liquid parameters and related physical quantities such as the effective mass and the Lande g factor of the system. Our results for the effective mass are compared with previous analytic calculations

  20. Three dimensional model calculations of the global dispersion of high speed aircraft exhaust and implications for stratospheric ozone loss

    Science.gov (United States)

    Douglass, Anne R.; Rood, Richard B.; Jackman, Charles H.; Weaver, Clark J.

    1994-01-01

    Two-dimensional (zonally averaged) photochemical models are commonly used for calculations of ozone changes due to various perturbations. These include calculating the ozone change expected as a result of change in the lower stratospheric composition due to the exhaust of a fleet of supersonic aircraft flying in the lower stratosphere. However, zonal asymmetries are anticipated to be important to this sort of calculation. The aircraft are expected to be restricted from flying over land at supersonic speed due to sonic booms, thus the pollutant source will not be zonally symmetric. There is loss of pollutant through stratosphere/troposphere exchange, but these processes are spatially and temporally inhomogeneous. Asymmetry in the pollutant distribution contributes to the uncertainty in the ozone changes calculated with two dimensional models. Pollutant distributions for integrations of at least 1 year of continuous pollutant emissions along flight corridors are calculated using a three dimensional chemistry and transport model. These distributions indicate the importance of asymmetry in the pollutant distributions to evaluation of the impact of stratospheric aircraft on ozone. The implications of such pollutant asymmetries to assessment calculations are discussed, considering both homogeneous and heterogeneous reactions.

  1. 3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method

    International Nuclear Information System (INIS)

    Abella, V.; Miro, R.; Juste, B.; Verdu, G.

    2010-01-01

    The aim of this work is to provide the reconstruction of a real human voxelized phantom by means of a MatLab program and the simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) 60 Co radiotherapy unit, by using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project results in 3D dose mapping calculations inside the voxelized antropomorphic head phantom. The program provides the voxelization by first processing the CT slices; the process follows a two-dimensional pixel and material identification algorithm on each slice and three-dimensional interpolation in order to describe the phantom geometry via small cubic cells, resulting in an MCNP input deck format output. Dose rates are calculated by using the MCNP5 tool FMESH, superimposed mesh tally, which gives the track length estimation of the particle flux in units of particles/cm 2 . Furthermore, the particle flux is converted into dose by using the conversion coefficients extracted from the NIST Physical Reference Data. The voxelization using a three-dimensional interpolation technique in combination with the use of the FMESH tool of the MCNP Monte Carlo code offers an optimal simulation which results in 3D dose mapping calculations inside anthropomorphic phantoms. This tool is very useful in radiation treatment assessments, in which voxelized phantoms are widely utilized.

  2. Validation of one-dimensional module of MARS 2.1 computer code by comparison with the RELAP5/MOD3.3 developmental assessment results

    International Nuclear Information System (INIS)

    Lee, Y. J.; Bae, S. W.; Chung, B. D.

    2003-02-01

    This report records the results of the code validation for the one-dimensional module of the MARS 2.1 thermal hydraulics analysis code by means of result-comparison with the RELAP5/MOD3.3 computer code. For the validation calculations, simulations of the RELAP5 code development assessment problem, which consists of 22 simulation problems in 3 categories, have been selected. The results of the 3 categories of simulations demonstrate that the one-dimensional module of the MARS 2.1 code and the RELAP5/MOD3.3 code are essentially the same code. This is expected as the two codes have basically the same set of field equations, constitutive equations and main thermal hydraulic models. The results suggests that the high level of code validity of the RELAP5/MOD3.3 can be directly applied to the MARS one-dimensional module

  3. The reaction rate for dissociative adsorption of N-2 on stepped Ru(0001): Six-dimensional quantum calculations

    DEFF Research Database (Denmark)

    van Harrevelt, Rob; Honkala, Johanna Karoliina; Nørskov, Jens Kehlet

    2005-01-01

    Quantum-mechanical calculations of the reaction rate for dissociative adsorption of N-2 on stepped Ru(0001) are presented. Converged six-dimensional quantum calculations for this heavy-atom reaction have been performed using the multiconfiguration time-dependent Hartree method. A potential...

  4. Calculation of the electrical of induction heating coils in two dimensional axissymmetric geometry

    Energy Technology Data Exchange (ETDEWEB)

    Nerg, J.; Partanen, J. [Lappeenranta University of Technology (Finland). Department of Energy Technology, Laboratory of Electrical Engineering

    1997-12-31

    The effect of the workpiece temperature on the electrical parameters of a plane, spiral inductor is discussed. The effect of workpiece temperature on the electrical efficiency, power transfer to the workpiece and electromagnetic distortion are also presented. Calculation is performed in two dimensional axissymmetric geometry using a FEM program. (orig.) 5 refs.

  5. Fully-converged three-dimensional collision-induced dissociation calculations with Faddeev-AGS theory

    International Nuclear Information System (INIS)

    Haftel, M.I.; Lim, T.K.

    1981-09-01

    The first fully-converged quantum-mechanical calculation of the collision-induced dissociation cross section in a three-dimensional-model system of three helium-like atoms is reported. Faddeev-AGS theory is used. It yields as a bonus the elastic atom-diatom cross section. The obtained results resemble those from some collinear models but indicate clearly the futility of multiple-scattering approximations except at hyperthermal energies. (orig.)

  6. Torsional energy levels of CH3OH+/CH3OD+/CD3OD+ studied by zero-kinetic energy photoelectron spectroscopy and theoretical calculations

    International Nuclear Information System (INIS)

    Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang

    2014-01-01

    The torsional energy levels of CH 3 OH + , CH 3 OD + , and CD 3 OD + have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH 3 OH, CH 3 OD, and CD 3 OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm −1 , which is about half of that of the neutral (340 cm −1 ). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C–O stretch vibrational energy level for CD 3 OD + has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C–O stretch vibration indicate a strong torsion-vibration coupling

  7. Basic problems and solution methods for two-dimensional continuous 3 × 3 order hidden Markov model

    International Nuclear Information System (INIS)

    Wang, Guo-gang; Tang, Gui-jin; Gan, Zong-liang; Cui, Zi-guan; Zhu, Xiu-chang

    2016-01-01

    A novel model referred to as two-dimensional continuous 3 × 3 order hidden Markov model is put forward to avoid the disadvantages of the classical hypothesis of two-dimensional continuous hidden Markov model. This paper presents three equivalent definitions of the model, in which the state transition probability relies on not only immediate horizontal and vertical states but also immediate diagonal state, and in which the probability density of the observation relies on not only current state but also immediate horizontal and vertical states. The paper focuses on the three basic problems of the model, namely probability density calculation, parameters estimation and path backtracking. Some algorithms solving the questions are theoretically derived, by exploiting the idea that the sequences of states on rows or columns of the model can be viewed as states of a one-dimensional continuous 1 × 2 order hidden Markov model. Simulation results further demonstrate the performance of the algorithms. Because there are more statistical characteristics in the structure of the proposed new model, it can more accurately describe some practical problems, as compared to two-dimensional continuous hidden Markov model.

  8. Stability and carrier mobility of organic-inorganic hybrid perovskite CH3NH3PbI3 in two-dimensional limit

    Science.gov (United States)

    Huang, Kui; Lai, Kang; Yan, Chang-Lin; Zhang, Wei-Bing

    2017-10-01

    Recently, atomically thin organic-inorganic hybrid perovskites have been synthesized experimentally, which opens up new opportunities for exploring their novel properties in the 2D limit. Based on the comparative density functional theory calculation with and without spin-orbit coupling effects, the stability, electronic structure, and carrier mobility of the two-dimensional organic-inorganic hybrid perovskites MAPbI3 (MA = CH3NH3) have been investigated systemically. Two single-unit-cell-thick 2D MAPbI3 terminated by PbI2 and CH3NH3I are constructed, and their thermodynamic stabilities are also evaluated using the first-principles constrained thermodynamics method. Our results indicate that both 2D MAPbI3 with different terminations can be stable under certain conditions and have a suitable direct bandgap. Moreover, they are also found to have termination-dependent band edge and carrier mobility. The acoustic-phonon-limited carrier mobilities estimated using the deformation theory and effective mass approximation are on the order of thousands of square centimeters per volt per second and also highly anisotropic. These results indicate that 2D MAPbI3 are competitive candidates for low-dimensional photovoltaic applications.

  9. Calculation of three-dimensional fluid flow with multiple free surfaces

    International Nuclear Information System (INIS)

    Vander Vorst, M.J.; Chan, R.K.C.

    1978-01-01

    This paper presents a method for computing incompressible fluid flows with multiple free surfaces which are not restricted in their orientation. The method is presented in the context of the three-dimensional flow in a Mark I reactor pressure suppression system immediately following a postulated loss of coolant accident. The assumption of potential flow is made. The numerical method is a mixed Eulerian-Lagrangian formulation with the interior treated as Eulerian and the free surfaces as Lagrangian. The accuracy of solution hinges on the careful treatment of two important aspects. First, the Laplace equation for the potential is solved at interior points of the Eulerian finite difference mesh using a three-dimensional ''irregular star'' so that boundary conditions can be imposed at the exact position of the free surface. Second, the Lagrangian free surfaces are composed of triangular elements, upon each vertex of which is applied the fully nonlinear Bernoulli equation. One result of these calculations is the transient load on the suppression vessel during the vent clearing and bubble formation events of a loss of coolant accident

  10. Performance of a fine-grained parallel model for multi-group nodal-transport calculations in three-dimensional pin-by-pin reactor geometry

    International Nuclear Information System (INIS)

    Masahiro, Tatsumi; Akio, Yamamoto

    2003-01-01

    A production code SCOPE2 was developed based on the fine-grained parallel algorithm by the red/black iterative method targeting parallel computing environments such as a PC-cluster. It can perform a depletion calculation in a few hours using a PC-cluster with the model based on a 9-group nodal-SP3 transport method in 3-dimensional pin-by-pin geometry for in-core fuel management of commercial PWRs. The present algorithm guarantees the identical convergence process as that in serial execution, which is very important from the viewpoint of quality management. The fine-mesh geometry is constructed by hierarchical decomposition with introduction of intermediate management layer as a block that is a quarter piece of a fuel assembly in radial direction. A combination of a mesh division scheme forcing even meshes on each edge and a latency-hidden communication algorithm provided simplicity and efficiency to message passing to enhance parallel performance. Inter-processor communication and parallel I/O access were realized using the MPI functions. Parallel performance was measured for depletion calculations by the 9-group nodal-SP3 transport method in 3-dimensional pin-by-pin geometry with 340 x 340 x 26 meshes for full core geometry and 170 x 170 x 26 for quarter core geometry. A PC cluster that consists of 24 Pentium-4 processors connected by the Fast Ethernet was used for the performance measurement. Calculations in full core geometry gave better speedups compared to those in quarter core geometry because of larger granularity. Fine-mesh sweep and feedback calculation parts gave almost perfect scalability since granularity is large enough, while 1-group coarse-mesh diffusion acceleration gave only around 80%. The speedup and parallel efficiency for total computation time were 22.6 and 94%, respectively, for the calculation in full core geometry with 24 processors. (authors)

  11. Improvements in practical applicability of NSHEX: nodal transport calculation code for three-dimensional hexagonal-Z geometry

    International Nuclear Information System (INIS)

    Sugino, Kazuteru

    1998-07-01

    As a tool to perform a fast reactor core calculations with high accuracy, NSHEX the nodal transport calculation code for three-dimensional hexagonal-Z geometry is under development. To improve the practical applicability of NSHEX, for instance, in its application to safety analysis and commercial reactor core design studies, we investigated the basic theory used in it, improved the program performance, and evaluated its applicability to the analysis of commercial reactor cores. The current studies show the following: (1) An improvement in the treatment of radial leakage in the radial nodal coupling equation bettered calculational convergence for safety analysis calculation, so the applicability of NSHEX to safety analysis was improved. (2) As a result of comparison of results from NSHEX and the standard core calculation code, it was confirmed that there was consistency between them. (3) According to the evaluation of the effect due to the difference of calculational condition, it was found that the calculation under appropriate nodal expansion orders and Sn orders correspond to the one under most detailed condition. However further investigation is required to reduce the uncertainty in calculational results due to the treatment of high order flux moments. (4) A whole core version of NSHEX enabling calculation for any FBR core geometry has been developed, this improved general applicability of NSHEX. (5) An investigation of the applicability of the rebalance method to acceleration clarified that this improved calculational convergence and it was effective. (J.P.N.)

  12. Beam shape coefficients calculation for an elliptical Gaussian beam with 1-dimensional quadrature and localized approximation methods

    Science.gov (United States)

    Wang, Wei; Shen, Jianqi

    2018-06-01

    The use of a shaped beam for applications relying on light scattering depends much on the ability to evaluate the beam shape coefficients (BSC) effectively. Numerical techniques for evaluating the BSCs of a shaped beam, such as the quadrature, the localized approximation (LA), the integral localized approximation (ILA) methods, have been developed within the framework of generalized Lorenz-Mie theory (GLMT). The quadrature methods usually employ the 2-/3-dimensional integrations. In this work, the expressions of the BSCs for an elliptical Gaussian beam (EGB) are simplified into the 1-dimensional integral so as to speed up the numerical computation. Numerical results of BSCs are used to reconstruct the beam field and the fidelity of the reconstructed field to the given beam field is estimated. It is demonstrated that the proposed method is much faster than the 2-dimensional integrations and it can acquire more accurate results than the LA method. Limitations of the quadrature method and also the LA method in the numerical calculation are analyzed in detail.

  13. Semiclassical calculation for collision induced dissociation. III. Restricted two dimensional Morse oscillator model

    International Nuclear Information System (INIS)

    Rusinek, I.

    1980-01-01

    A semiclassical procedure previously used for collinear CID calculations is applied to the perpendicular collisions (2D, no rotation, zero impact parameter) of a Morse homonuclear diatomic molecule and an atom, interacting via an exponential repulsive potential. Values of the dissociation probability (P/sup diss/) are given as a function of total energy (E/sub t/) and initial vibrational state (n 1 =0,1,3,5) for a system with three identical masses. The results are compared with the P/sup diss/ previously reported for an identical one dimensional system. We find: (a) quasiclassical P/sup diss/ that are a good approximation to the semiclassical ones, if CID is classically allowed, (b) vibrational enhancement of CID, and (c) energetic thresholds for dissociation similar to the ones found in the collinear case

  14. Calculation of accurate albedo boundary conditions for three-dimensional nodal diffusion codes by the method of characteristics

    International Nuclear Information System (INIS)

    Petkov, Petko T.

    2000-01-01

    Most of the few-group three-dimensional nodal diffusion codes used for neutronics calculations of the WWER reactors use albedo type boundary conditions on the core-reflector boundary. The conventional albedo are group-to-group reflection probabilities, defined on each outer node face. The method of characteristics is used to calculate accurate albedo by the following procedure. A many-group two-dimensional heterogeneous core-reflector problem, including a sufficient part of the core and detailed description of the adjacent reflector, is solved first. From this solution the angular flux on the core-reflector boundary is calculated in all groups for all traced neutron directions. Accurate boundary conditions can be calculated for the radial, top and bottom reflectors as well as for the absorber part of the WWER-440 reactor control assemblies. The algorithm can be used to estimate also albedo, coupling outer node faces on the radial reflector in the axial direction. Numerical results for the WWER-440 reactor are presented. (Authors)

  15. A Quantitative Assessment of Lip Movements in Different Facial Expressions Through 3-Dimensional on 3-Dimensional Superimposition: A Cross-Sectional Study.

    Science.gov (United States)

    Gibelli, Daniele; Codari, Marina; Pucciarelli, Valentina; Dolci, Claudia; Sforza, Chiarella

    2017-11-23

    The quantitative assessment of facial modifications from mimicry is of relevant interest for the rehabilitation of patients who can no longer produce facial expressions. This study investigated a novel application of 3-dimensional on 3-dimensional superimposition for facial mimicry. This cross-sectional study was based on 10 men 30 to 40 years old who underwent stereophotogrammetry for neutral, happy, sad, and angry expressions. Registration of facial expressions on the neutral expression was performed. Root mean square (RMS) point-to-point distance in the labial area was calculated between each facial expression and the neutral one and was considered the main parameter for assessing facial modifications. In addition, effect size (Cohen d) was calculated to assess the effects of labial movements in relation to facial modifications. All participants were free from possible facial deformities, pathologies, or trauma that could affect facial mimicry. RMS values of facial areas differed significantly among facial expressions (P = .0004 by Friedman test). The widest modifications of the lips were observed in happy expressions (RMS, 4.06 mm; standard deviation [SD], 1.14 mm), with a statistically relevant difference compared with the sad (RMS, 1.42 mm; SD, 1.15 mm) and angry (RMS, 0.76 mm; SD, 0.45 mm) expressions. The effect size of labial versus total face movements was limited for happy and sad expressions and large for the angry expression. This study found that a happy expression provides wider modifications of the lips than the other facial expressions and suggests a novel procedure for assessing regional changes from mimicry. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Two-dimensional magnetohydrodynamic calculations for a 5 MJ plasma focus

    International Nuclear Information System (INIS)

    Maxon, S.

    1983-01-01

    This article describes the calculation of the performance of a 5 MJ plasma focus using a two-dimensional magnetohydrodynamic (2-D MHD) code. Discusses two configurations, a solid and a hollow anode. Finds an instability in the current sheath of the hollow anode which has the characteristics of the short wave length sausage instability. As the current sheath reaches the axis, the numerical solution is seen to break down. When the numerical solution breaks down, the code shows a splitting of the current sheath (from the axis to the anode) and the loss of a large amount of magnetic energy. Current-sheath stagnation is observed in the hollow anode configuration

  17. Solution of 3-dimensional diffusion equation by finite Fourier transformation

    International Nuclear Information System (INIS)

    Krishnani, P.D.

    1978-01-01

    Three dimensional diffusion equation in Cartesian co-ordinates is solved by using the finite Fourier transformation. This method is different from the usual Fourier transformation method in the sense that the solutions are obtained without performing the inverse Fourier transformation. The advantage has been taken of the fact that the flux is finite and integrable in the finite region. By applying this condition, a two-dimensional integral equation, involving flux and its normal derivative at the boundary, is obtained. By solving this equation with given boundary conditions, all of the boundary values are determined. In order to calculate the flux inside the region, flux is expanded into three-dimensional Fourier series. The Fourier coefficients of the flux in the region are calculated from the boundary values. The advantage of this method is that the integrated flux is obtained without knowing the fluxes inside the region as in the case of finite difference method. (author)

  18. The development of a collapsing method for the mixed group and point cross sections and its application on multi-dimensional deep penetration calculations

    International Nuclear Information System (INIS)

    Bor-Jing Chang; Yen-Wan H. Liu

    1992-01-01

    The HYBRID, or mixed group and point, method was developed to solve the neutron transport equation deterministically using detailed treatment at cross section minima for deep penetration calculations. Its application so far is limited to one-dimensional calculations due to the enormous computing time involved in multi-dimensional calculations. In this article, a collapsing method is developed for the mixed group and point cross section sets to provide a more direct and practical way of using the HYBRID method in the multi-dimensional calculations. A testing problem is run. The method is then applied to the calculation of a deep penetration benchmark experiment. It is observed that half of the window effect is smeared in the collapsing treatment, but it still provide a better cross section set than the VITAMIN-C cross sections for the deep penetrating calculations

  19. 3D electric field calculation with surface charge method

    International Nuclear Information System (INIS)

    Yamada, S.

    1992-01-01

    This paper describes an outline and some examples of three dimensional electric field calculations with a computer code developed at NIRS. In the code, a surface charge method is adopted because of it's simplicity in the mesh establishing procedure. The charge density in a triangular mesh is assumed to distribute with a linear function of the position. The electric field distribution is calculated for a pair of drift tubes with the focusing fingers on the opposing surfaces. The field distribution in an acceleration gap is analyzed with a Fourier-Bessel series expansion method. The calculated results excellently reproduces the measured data with a magnetic model. (author)

  20. Three-dimensional solution structure of a DNA duplex containing the BclI restriction sequence: Two-dimensional NMR studies, distance geometry calculations, and refinement by back-calculation of the NOESY spectrum

    International Nuclear Information System (INIS)

    Banks, K.M.; Hare, D.R.; Reid, B.R.

    1989-01-01

    A three-dimensional solution structure for the self-complementary dodecanucleotide [(d-GCCTGATCAGGC)] 2 has been determined by distance geometry with further refinements being performed after back-calculation of the NOESY spectrum. This DNA dodecamer contains the hexamer [d(TGATCA)] 2 recognized and cut by the restriction endonuclease BclI, and its structure was determined in hopes of obtaining a better understanding of the sequence-specific interactions which occur between proteins and DNA. Preliminary examination of the structure indicates the structure is underwound with respect to idealized B-form DNA though some of the local structural parameters (glycosyl torsion angle and pseudorotation angle) suggest a B-family type of structure is present. This research demonstrates the requirements (resonance assignments, interproton distance measurements, distance geometry calculations, and NOESY spectra back-calculation) to generate experimentally self-consistent solution structures for short DNA sequences

  1. NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surfaces

    Science.gov (United States)

    Torrey, M. D.; Mjolsness, R. C.; Stein, L. R.

    1987-07-01

    Presented is the NASA-VOF3D three-dimensional, transient, free-surface hydrodynamics program. This three-dimensional extension of NASA-VOF2D will, in principle, permit treatment in full three-dimensional generality of the wide variety of applications that could be treated by NASA-VOF2D only within the two-dimensional idealization. In particular, it, like NASA-VOF2D, is specifically designed to calculate confined flows in a low g environment. The code is presently restricted to cylindrical geometry. The code is based on the fractional volume-of-fluid method and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report provides a brief discussion of the numerical method, a code listing, and some sample problems.

  2. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: application to solvatochromic shift calculations.

    Science.gov (United States)

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-07

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.

  3. New dose-mortality data based on 3-D radiation shielding calculation for concrete buildings at Nagasaki

    International Nuclear Information System (INIS)

    Rhoades, W.A.; Childs, R.L.; Ingersoll, D.T.

    1988-01-01

    The analysis of radiation doses received during the World War II attack on Nagasaki provides an important source of biochemical information. More than 40 years after the war, it has been possible to make a satisfactory calculation of the doses to personnel inside reinforced concrete buildings by use of a 3-dimensional discrete ordinates code, TORT. The results were used to deduce a new value of the LD50 parameter that is in good agreement with traditional values. The new discrete ordinates software appears to have potential application to conventional radiation transport calculations as well. 9 refs., 3 figs., 2 tabs

  4. Applications of energy-release-rate techniques to part-through cracks in plates and cylinders. Volume 2. ORVIRT: a finite element program for energy release rate calculations for 2-dimensional and 3-dimensional crack models

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.

    1983-02-01

    Certain studies of fracture phenomena, such as pressurized-thermal-shock of cracked structures, require that crack tip parameters be determined for combined thermal and mechanical loads. A method is proposed here that modifies the isothermal formulation of deLorenzi to account for thermal strains in cracked bodies. The formulation has been implemented in the virtual-crack-extension program ORVIRT (Oak Ridge VIRTual-Crack-Extension). Program ORVIRT performs energy release rate calculations for both 2- and 3-dimensional nonlinear models of crack configurations in engineering structures. Two applications of the ORVIRT program are described. In the first, semielliptical surface cracks in an experimental test vessel are analyzed under elastic-plastic conditions using the finite element method. The second application is a thick-walled test vessel subjected to combined pressure and thermal shock loading

  5. BETHSY 9.1b Test Calculation with TRACE Using 3D Vessel Component

    International Nuclear Information System (INIS)

    Berar, O.; Prosek, A.

    2012-01-01

    Recently, several advanced multidimensional computational tools for simulating reactor system behaviour during real and hypothetical transient scenarios were developed. One of such advanced, best-estimate reactor systems codes is TRAC/RELAP Advanced Computational Engine (TRACE), developed by the U.S. Nuclear Regulatory Commission. The advanced TRACE comes with a graphical user interface called SNAP (Symbolic Nuclear Analysis Package). It is intended for pre- and post-processing, running codes, RELAP5 to TRACE input deck conversion, input deck database generation etc. The TRACE code is still not fully development and it will have all the capabilities of RELAP5. The purpose of the present study was therefore to assess the 3D capability of the TRACE on BETHSY 9.1b test. The TRACE input deck was semi-converted (using SNAP and manual corrections) from the RELAP5 input deck. The 3D fluid dynamics within reactor vessel was modelled and compared to 1D fluid dynamics. The 3D calculation was compared both to TRACE 1D calculation and RELAP5 calculation. Namely, the geometry used in TRACE is basically the same, what gives very good basis for the comparison of the codes. The only exception is 3D reactor vessel model in case of TRACE 3D calculation. The TRACE V5.0 Patch 1 and RELAP5/MOD3.3 Patch 4 were used for calculations. The BETHSY 9.1b test (International Standard Problem no. 27 or ISP-27) was 5.08 cm equivalent diameter cold leg break without high pressure safety injection and with delayed ultimate procedure. BETHSY facility was a 3-loop replica of a 900 MWe FRAMATOME pressurized water reactor. For better presentation of the calculated physical phenomena and processes, an animation model using SNAP was developed. In general, the TRACE 3D code calculation is in good agreement with the BETHSY 9.1b test. The TRACE 3D calculation results are as good as or better than the RELAP5 calculated results. Also, the TRACE 3D calculation is not significantly different from TRACE 1D

  6. Suppression of the two-dimensional electron gas in LaGaO3/SrTiO3 by cation intermixing

    KAUST Repository

    Nazir, S.

    2013-12-03

    Cation intermixing at the n-type polar LaGaO 3 /SrTiO 3 (001) interface is investigated by first principles calculations. Ti"Ga, Sr"La, and SrTi"LaGa intermixing are studied in comparison to each other, with a focus on the interface stability. We demonstrate in which cases intermixing is energetically favorable as compared to a clean interface. A depopulation of the Ti 3d xy orbitals under cation intermixing is found, reflecting a complete suppression of the two-dimensional electron gas present at the clean interface.

  7. Improvement of the efficiency of two-dimensional multigroup transport calculations assuming isotropic reflection with multilevel spatial discretisation

    International Nuclear Information System (INIS)

    Stankovski, Z.; Zmijarevic, I.

    1987-06-01

    This paper presents two approximations used in multigroup two-dimensional transport calculations in large, very homogeneous media: isotropic reflection together with recently proposed group-dependent spatial representations. These approximations are implemented as standard options in APOLLO 2 assembly transport code. Presented example calculations show that significant savings in computational costs are obtained while preserving the overall accuracy

  8. Evaluation tests of treatment planning systems concerning 3D dose calculation

    International Nuclear Information System (INIS)

    Simonian-Sauve, M.; Smart, C.

    1998-01-01

    The development of irradiation techniques in radiotherapy shows a clear tendency towards the systematic use of three-dimensional (3D) information. Great efforts are being made to set up 3D conformal radiotherapy. Consequently, in the aim of greater coherence and accuracy, 'the dosimetric tool' must also meet the requirements of 3D radiotherapy, as it plays a role in the treatment chain. To know if the treatment planning system is a '3D', '2D', or even '1D' system, one should not be satisfied with reading the technical documentation and the program algorithm description not entirely trust the constructor's assertions. It is essential to clearly and precisely evaluate the possibilities of the treatment planning system. Even if it is proved not to satisfy perfectly all the tests which would qualify it as a real 3D calculation system, the study of the test results helps to give clear explanations of the dosimetric results. Two series of test cases are proposed. The first series allows us to understand in which conditions the treatment planning system takes into account the scatter influence in a volume. The second series is designed to inform us about the capacity of the dose calculation algorithm when the medium encloses non-homogeneities. These test cases do not constitute an exhaustive 'check-list' able to tackle completely the question of 3D calculation. They are submitted as examples and should be considered as an evaluation methodology for the software implanted in the treatment planning system. (authors)

  9. Calculation of three-dimensional MHD equilibria with islands and stochastic regions

    International Nuclear Information System (INIS)

    Reiman, A.; Greenside, H.

    1986-08-01

    A three-dimensional MHD equilibrium code is described that does not assume the existence of good surfaces. Given an initial guess for the magnetic field, the code proceeds by calculating the pressure-driven current and then by updating the field using Ampere's law. The numerical algorithm to solve the magnetic differential equation for the pressure-driven current is described, and demonstrated for model fields having islands and stochastic regions. The numerical algorithm which solves Ampere's law in three dimensions is also described. Finally, the convergence of the code is illustrated for a particular stellarator equilibrium with no large islands

  10. Three-dimensional calculation analysis of ICRF heating in LHD

    International Nuclear Information System (INIS)

    Seki, Tetsuo; Kumazawa, Ryuhei; Mutoh, Takashi

    2004-01-01

    Ion cyclotron range of frequencies (ICRF) heating is one of the heating methods for the fusion plasma experiments and also effective for the helical plasmas. For the purpose of analysis of the ICRF heating in the helical plasmas, the three-dimensional full-wave code has been developed. The feature of the helical system compared with the tokamak device is the strong coupling of the toroidal harmonic modes. They cannot be treated independently. Dependence of the power absorption on the position of the ion cyclotron resonance layer is calculated including all toroidal modes. Strong power absorption was obtained when the position of the resonance layer is slightly different from the experimental results. Difference of the position of the resonance layer in different toroidal angle is thought to be important to achieve the good heating efficiency in the ICRF heating for the helical plasmas. (author)

  11. Three-dimensional calculations of neutron streaming in the beam tubes of the ORNL HFIR [High Flux Isotope Reactor] Reactor

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.; Williams, L.R.

    1988-01-01

    The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs

  12. 3N scattering in a three-dimensional operator formulation

    International Nuclear Information System (INIS)

    Gloeckle, W.; Fachruddin, I.; Elster, C.; Golak, J.; Skibinski, R.; Witala, H.

    2010-01-01

    A recently developed formulation for a direct treatment of the equations for two- and three-nucleon bound states as set of coupled equations of scalar functions depending only on vector momenta is extended to three-nucleon scattering. Starting from the spin-momentum dependence occurring as scalar products in two- and three-nucleon forces together with other scalar functions, we present the Faddeev multiple scattering series in which order by order the spin degrees can be treated analytically leading to 3D integrations over scalar functions depending on momentum vectors only. Such formulation is especially important in view of awaiting extension of 3N Faddeev calculations to projectile energies above the pion production threshold and applications of chiral perturbation theory 3N forces, which are to be most efficiently treated directly in such three-dimensional formulation without having to expand these forces into a partial-wave basis. (orig.)

  13. Learning 2-Dimensional and 3-Dimensional Geometry with Geogebra: Which Would Students Do Better?

    Directory of Open Access Journals (Sweden)

    Zaleha Ismail

    2017-08-01

    Full Text Available The purpose of this study is to examine the geometric thinking of young children who worked with GeoGebra to learn two-dimensional (2-D and three-dimensional (3-D geometry. GeoGebra is an open sourced dynamic mathematics software which is applicable for learning mathematics from primary school to secondary school and to higher education. Thirty pupils studying in second grade (Year 2 at a school located in Pontian, a district in one of the Malaysian state participated in the study. They attended GeoGebra sessions to construct and analyze dynamics of two-dimensional and three-dimensional geometry after learning these topics in the conventional setting. Pretest and posttest on two-dimensional and three-dimensional spatial ability based on Van Hiele level of geometric thinking were administered to the pupils. The comparison between pretest and posttest results demonstrate significant enhancement in visualization and informal deduction for both 2-D and 3-D geometry. Moreover from the intervention, the students benefit most in analyzing 3-D and visualizing 2-D geometry. Interestingly, skills and knowledge acquired through activities using GeoGebra in student-centered learning environment could be successfully transferred to paper and pencil test.

  14. A simplified, coarse-mesh, three-dimensional diffusion scheme for calculating the gross power distribution in a boiling water reactor

    International Nuclear Information System (INIS)

    Borresen, S.

    1995-01-01

    A simplified, finite-difference diffusion scheme for a three-dimensional calculation of the gross power distribution in the core of a boiling water reactor (BWR) is presented. Results obtained in a series of one- and two-dimensional test cases indicate that this method may be of sufficient accuracy and simplicity for implementation in BWR-simulator computer programs. Computer requirements are very modest; thus, only 3N memory locations are required for in-core treatment of the inner iteration in the solution of a problem with N mesh points. The mesh width may be chosen equal to the fuel assembly pitch. Input data are in the form of conventional 2-group diffusion parameters. It is concluded that the method presented has definite advantages in comparison with the nodal coupling method. (author)

  15. Exotic ferromagnetism in the two-dimensional quantum material C3N

    Science.gov (United States)

    Huang, Wen-Cheng; Li, Wei; Liu, Xiaosong

    2018-04-01

    The search for and study of exotic quantum states in novel low-dimensional quantum materials have triggered extensive research in recent years. Here, we systematically study the electronic and magnetic structures in the newly discovered two-dimensional quantum material C3N within the framework of density functional theory. The calculations demonstrate that C3N is an indirect-band semiconductor with an energy gap of 0.38 eV, which is in good agreement with experimental observations. Interestingly, we find van Hove singularities located at energies near the Fermi level, which is half that of graphene. Thus, the Fermi energy easily approaches that of the singularities, driving the system to ferromagnetism, under charge carrier injection, such as electric field gating or hydrogen doping. These findings not only demonstrate that the emergence of magnetism stems from the itinerant electron mechanism rather than the effects of local magnetic impurities, but also open a new avenue to designing field-effect transistor devices for possible realization of an insulator-ferromagnet transition by tuning an external electric field.

  16. Magnetic susceptibility of one-dimensional ferromagnetic CsFeCl3 crystals

    International Nuclear Information System (INIS)

    Tsuboi, T.; Chiba, M.

    1989-01-01

    The parallel and perpendicular magnetic susceptibilities of one-dimensional ferromagnetic CsFeCl 3 crystals have been calculated from magnetization measured as a function of temperature in the range 0 to 70 K by means of a superconducting quantum interference device (SQUID). The experimental results have been compared with data from the literature for other Cs-and Rb-containing crystals with ferromagnetic or antiferromagnetic linear chains. Reliable values of the exchange and anisotropy energies can be estimated from experimental susceptibility data using theoretical g-values and the dynamical correlated-effective field approximation

  17. Calculation of multi-dimensional dose distribution in medium due to proton beam incidence

    International Nuclear Information System (INIS)

    Kawachi, Kiyomitsu; Inada, Tetsuo

    1978-01-01

    The method of analyzing the multi-dimensional dose distribution in a medium due to proton beam incidence is presented to obtain the reliable and simplified method from clinical viewpoint, especially for the medical treatment of cancer. The heavy ion beam being taken out of an accelerator has to be adjusted to fit cancer location and size, utilizing a modified range modulator, a ridge filter, a bolus and a special scanning apparatus. The precise calculation of multi-dimensional dose distribution of proton beam is needed to fit treatment to a limit part. The analytical formulas consist of those for the fluence distribution in a medium, the divergence of flying range, the energy distribution itself, the dose distribution in side direction and the two-dimensional dose distribution. The fluence distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV, the energy distribution of protons at the position of a Bragg peak for various values of incident energy, the depth dose distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV and average energy of 100 MeV, the proton fluence and dose distribution as functions of depth for the incident average energy of 250 MeV, the statistically estimated percentage errors in the proton fluence and dose distribution, the estimated minimum detectable tumor thickness as a function of the number of incident protons for the different incident spectra with average energy of 250 MeV, the isodose distribution in a plane containing the central axis in case of the incident proton beam of 3 mm diameter and 40 MeV and so on are presented as the analytical results, and they are evaluated. (Nakai, Y.)

  18. Three-dimensional equilibria and Mercier stability calculations

    International Nuclear Information System (INIS)

    Lynch, V.E.; Dominguez, N.; Carreras, B.A.; Varias, A.; Alejaldre, C.; Fraguas, A.L.

    1989-01-01

    It is well known that an equilibrium to be used for stability calculations must be extremely accurate. These high accuracy requirements, in a fixed boundary calculation, are translated into high accuracy in the representation of the boundary. These requirements are even stricter for stellarator configurations, for which all the information about the magnetic configuration is given externally through the boundary. Many Fourier components are required to accurately represent the boundary input from a realistic coil system. For torsatron-type configurations, as many as 50 components can be needed to describe the last closed magnetic surface for the vacuum field. For a heliac configuration, the number of components can go up to 200. For 3-D calculations, there is another question of accuracy that does not apply to stability calculations for axisymmetric systems. This is the role of resonant components in the calculation of the geodesic curvature or the Pfirsch-Schlueter current. As Boozer argues, local flattening of the pressure profile eliminates the singularities generated by the resonant components. However, to implement it in a numerical calculation and to eliminate the resonant components, it is necessary to work in a coordinate system with straight magnetic field lines. This creates another problem, since the equilibrium representation in a straight magnetic field lines coordinate system requires many more components than the optimal equilibrium representation developed by Hirshman and co-workers over the last decade and implemented in the VMEC equilibrium code. In this paper, we use the VMEC equilibrium code and tranform the results to the straight magnetic field line coordinate system to calculate the input for the stability analysis. The accuracy of the transformation and the convergence of the equilibrium in the new coordinate system are the major points discussed in this paper. 6 refs., 1 fig

  19. 3-dimensional analysis of FELIX brick with hole

    International Nuclear Information System (INIS)

    Lee, Taek-Kyung; Lee, Soo-Young; Ra, Jung-Woong

    1987-01-01

    Electromagnetic induction on FELIX brick with a hole has been analyzed with 3-Dimensional EDDYNET computer code. Incorporating loop currents on hexahedral meshes, the 3-Dimensional EDDYNET program solves eddy current problems by a network approach, and provides good accuracy even for coarse meshes. (author)

  20. Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

    Science.gov (United States)

    Parkhurst, David L.; Appelo, C.A.J.

    2013-01-01

    PHREEQC version 3 is a computer program written in the C and C++ programming languages that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC implements several types of aqueous models: two ion-association aqueous models (the Lawrence Livermore National Laboratory model and WATEQ4F), a Pitzer specific-ion-interaction aqueous model, and the SIT (Specific ion Interaction Theory) aqueous model. Using any of these aqueous models, PHREEQC has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations with reversible and irreversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and pressure and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters within specified compositional uncertainty limits. Many new modeling features were added to PHREEQC version 3 relative to version 2. The Pitzer aqueous model (pitzer.dat database, with keyword PITZER) can be used for high-salinity waters that are beyond the range of application for the Debye-Hückel theory. The Peng-Robinson equation of state has been implemented for calculating the solubility of gases at high pressure. Specific volumes of aqueous species are calculated as a function of the dielectric properties of water and the ionic strength of the solution, which allows calculation of pressure effects on chemical reactions and the density of a solution. The specific conductance and the density of a solution are calculated and printed in the output file. In addition to Runge-Kutta integration, a stiff ordinary differential equation solver (CVODE) has been included for kinetic calculations with multiple rates that occur at widely different time scales

  1. One-Dimensional Convective Thermal Evolution Calculation Using a Modified Mixing Length Theory: Application to Saturnian Icy Satellites

    Science.gov (United States)

    Kamata, Shunichi

    2018-01-01

    Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection, for a bottom-heated convective layer. Adopting this new definition of l, I investigate the thermal evolution of Saturnian icy satellites, Dione and Enceladus, under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a thick global subsurface ocean suggested from geophysical analyses. Dynamical tides may be able to account for such an amount of heat, though the reference viscosity of Dione's ice and the ammonia content of Dione's ocean need to be very high. Otherwise, a thick global ocean in Dione cannot be maintained, implying that its shell is not in a minimum stress state.

  2. Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters.

    Science.gov (United States)

    Ni, Chengsheng; Hedley, Gordon; Payne, Julia; Svrcek, Vladimir; McDonald, Calum; Jagadamma, Lethy Krishnan; Edwards, Paul; Martin, Robert; Jain, Gunisha; Carolan, Darragh; Mariotti, Davide; Maguire, Paul; Samuel, Ifor; Irvine, John

    2017-08-01

    A metal-organic hybrid perovskite (CH 3 NH 3 PbI 3 ) with three-dimensional framework of metal-halide octahedra has been reported as a low-cost, solution-processable absorber for a thin-film solar cell with a power-conversion efficiency over 20%. Low-dimensional layered perovskites with metal halide slabs separated by the insulating organic layers are reported to show higher stability, but the efficiencies of the solar cells are limited by the confinement of excitons. In order to explore the confinement and transport of excitons in zero-dimensional metal-organic hybrid materials, a highly orientated film of (CH 3 NH 3 ) 3 Bi 2 I 9 with nanometre-sized core clusters of Bi 2 I 9 3- surrounded by insulating CH 3 NH 3 + was prepared via solution processing. The (CH 3 NH 3 ) 3 Bi 2 I 9 film shows highly anisotropic photoluminescence emission and excitation due to the large proportion of localised excitons coupled with delocalised excitons from intercluster energy transfer. The abrupt increase in photoluminescence quantum yield at excitation energy above twice band gap could indicate a quantum cutting due to the low dimensionality.Understanding the confinement and transport of excitons in low dimensional systems will aid the development of next generation photovoltaics. Via photophysical studies Ni et al. observe 'quantum cutting' in 0D metal-organic hybrid materials based on methylammonium bismuth halide (CH 3 NH 3 )3Bi 2 I 9 .

  3. Polarization and sidewall effects in a coal fired MHD channel - three-dimensional calculation

    International Nuclear Information System (INIS)

    Ishikawa, M.; Scott, M.H.; Wu, Y.C.L.

    1981-01-01

    The effects of slag polarization of electrodes and the sidewall configuration on generator performance are studied experimentally and analytically. An analysis of the voltage-current characteristics between two generator frames measured during the operation of the TP40-07 experiment is given, along with an examination of nonuniformities of interframe voltage. Experimental data show that the polarization effect reduces about 3% of the overall electrical performance of the 60 deg diagonal conducting channel used in the study. Analytically, the effect of polarization on the local current and potential distributions is examined by solving the three-dimensional electrical potential using a finite element method. A moderate increase in conductivity in the vicinity of the cathode-side frame is found to give a calculated leakage resistance which approximates the value derived experimentally. The polarization effect results in a large change in the potential and current distributions near the frame but has a small effect on the overall electrical performance. Alternate sidewall/electrode configurations are treated analytically

  4. Three-Dimensional Temperature Field Calculation and Analysis of an Axial-Radial Flux-Type Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Dong Li

    2018-05-01

    Full Text Available This article concentrates on the steady-state thermal characteristics of the Axial-Radial Flux-Type Permanent Magnet Synchronous Motor (ARFTPMSM. Firstly, the three-dimensional mathematical models for electromagnetic calculation and analyses are established, and the machine loss, including the stator loss, armature winding loss, rotor loss, and axial structure loss is calculated by using time-step Finite Element Method (FEM. Then, the loss distribution is assigned as the heat source for the thermal calculation. Secondly, the mathematical model for thermal calculation is also established. The assumptions and the boundary conditions are proposed to simplify the calculation and to improve convergence. Thirdly, the three-dimensional electromagnetic and thermal calculations of the machine, of which the armature winding and axial field winding are developed by using copper wires, are solved, from which the temperature distributions of the machine components are obtained. The experiments are carried out on the prototype with copper wires to validate the accuracy of the established models. Then, the temperature distributions of machine components under different Axial Magnetic Motive Force (AMMF are investigated. Since the machine is finally developing by using HTS wires, the temperature distributions of machine developed by utilizing High Temperature Superconducting (HTS wires, are also studied. The temperature distribution differences of the machine developed by using copper wires and HTS wires are drawn. All of these above will provide a helpful reference for the thermal calculation of the ARFTPMSM, as well as the design of the HTS coils and the cryogenic cooling system.

  5. FEAST: a two-dimensional non-linear finite element code for calculating stresses

    International Nuclear Information System (INIS)

    Tayal, M.

    1986-06-01

    The computer code FEAST calculates stresses, strains, and displacements. The code is two-dimensional. That is, either plane or axisymmetric calculations can be done. The code models elastic, plastic, creep, and thermal strains and stresses. Cracking can also be simulated. The finite element method is used to solve equations describing the following fundamental laws of mechanics: equilibrium; compatibility; constitutive relations; yield criterion; and flow rule. FEAST combines several unique features that permit large time-steps in even severely non-linear situations. The features include a special formulation for permitting many finite elements to simultaneously cross the boundary from elastic to plastic behaviour; accomodation of large drops in yield-strength due to changes in local temperature and a three-step predictor-corrector method for plastic analyses. These features reduce computing costs. Comparisons against twenty analytical solutions and against experimental measurements show that predictions of FEAST are generally accurate to ± 5%

  6. Automatic segmentation and 3-dimensional display based on the knowledge of head MRI images

    International Nuclear Information System (INIS)

    Suzuki, Hidetomo; Toriwaki, Jun-ichiro.

    1987-01-01

    In this paper we present a procedure which automatically extracts soft tissues, such as subcutaneous fat, brain, and cerebral ventricle, from the multislice MRI images of head region, and displays their 3-dimensional images. Segmentation of soft tissues is done by use of an iterative thresholding. In order to select the optimum threshold value automatically, we introduce a measure to evaluate the goodness of segmentation into this procedure. When the measure satisfies given conditions, iteration of thresholding terminates, and the final result of segmentation is extracted by using the current threshold value. Since this procedure can execute segmentation and calculation of the goodness measure in each slice automatically, it remarkably decreases efforts of users. Moreover, the 3-dimensional display of the segmented tissues shows that this procedure can extract the shape of each soft tissue with reasonable precision for clinical use. (author)

  7. The discrete cones method for two-dimensional neutron transport calculations

    International Nuclear Information System (INIS)

    Watanabe, Y.; Maynard, C.W.

    1986-01-01

    A novel method, the discrete cones method (DC/sub N/), is proposed as an alternative to the discrete ordinates method (S/sub N/) for solutions of the two-dimensional neutron transport equation. The new method utilizes a new concept, discrete cones, which are made by partitioning a unit spherical surface that the direction vector of particles covers. In this method particles in a cone are simultaneously traced instead of those in discrete directions so that an anomaly of the S/sub N/ method, the ray effects, can be eliminated. The DC/sub N/ method has been formulated for X-Y geometry and a program has been creaed by modifying the standard S/sub N/ program TWOTRAN-II. Our sample calculations demonstrate a strong mitigation of the ray effects without a computing cost penalty

  8. Controlled teleportation of a 3-dimensional bipartite quantum state

    International Nuclear Information System (INIS)

    Cao Haijing; Chen Zhonghua; Song Heshan

    2008-01-01

    A controlled teleportation scheme of an unknown 3-dimensional (3D) two-particle quantum state is proposed, where a 3D Bell state and 3D GHZ state function as the quantum channel. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional bipartite quantum state

  9. Cohomological rigidity of manifolds defined by 3-dimensional polytopes

    Science.gov (United States)

    Buchstaber, V. M.; Erokhovets, N. Yu.; Masuda, M.; Panov, T. E.; Park, S.

    2017-04-01

    A family of closed manifolds is said to be cohomologically rigid if a cohomology ring isomorphism implies a diffeomorphism for any two manifolds in the family. Cohomological rigidity is established here for large families of 3-dimensional and 6-dimensional manifolds defined by 3-dimensional polytopes. The class \\mathscr{P} of 3-dimensional combinatorial simple polytopes P different from tetrahedra and without facets forming 3- and 4-belts is studied. This class includes mathematical fullerenes, that is, simple 3- polytopes with only 5-gonal and 6-gonal facets. By a theorem of Pogorelov, any polytope in \\mathscr{P} admits in Lobachevsky 3-space a right-angled realisation which is unique up to isometry. Our families of smooth manifolds are associated with polytopes in the class \\mathscr{P}. The first family consists of 3-dimensional small covers of polytopes in \\mathscr{P}, or equivalently, hyperbolic 3-manifolds of Löbell type. The second family consists of 6-dimensional quasitoric manifolds over polytopes in \\mathscr{P}. Our main result is that both families are cohomologically rigid, that is, two manifolds M and M' from either family are diffeomorphic if and only if their cohomology rings are isomorphic. It is also proved that if M and M' are diffeomorphic, then their corresponding polytopes P and P' are combinatorially equivalent. These results are intertwined with classical subjects in geometry and topology such as the combinatorics of 3-polytopes, the Four Colour Theorem, aspherical manifolds, a diffeomorphism classification of 6-manifolds, and invariance of Pontryagin classes. The proofs use techniques of toric topology. Bibliography: 69 titles.

  10. Calculation of 3D Coordinates of a Point on the Basis of a Stereoscopic System

    Science.gov (United States)

    Mussabayev, R. R.; Kalimoldayev, M. N.; Amirgaliyev, Ye. N.; Tairova, A. T.; Mussabayev, T. R.

    2018-05-01

    The solution of three-dimensional (3D) coordinate calculation task for a material point is considered. Two flat images (a stereopair) which correspond to the left and to the right viewpoints of a 3D scene are used for this purpose. The stereopair is obtained using two cameras with parallel optical axes. The analytical formulas for calculating 3D coordinates of a material point in the scene were obtained on the basis of analysis of the stereoscopic system optical and geometrical schemes. The detailed presentation of the algorithmic and hardware realization of the given method was discussed with the the practical. The practical module was recommended for the determination of the optical system unknown parameters. The series of experimental investigations were conducted for verification of theoretical results. During these experiments the minor inaccuracies were occurred by space distortions in the optical system and by it discrecity. While using the high quality stereoscopic system, the existing calculation inaccuracy enables to apply the given method for the wide range of practical tasks.

  11. Development of hybrid core calculation system using 2-D full-core heterogeneous transport calculation and 3-D advanced nodal calculation

    International Nuclear Information System (INIS)

    Sugimura, Naoki; Mori, Masaaki; Hijiya, Masayuki; Ushio, Tadashi; Arakawa, Yasushi

    2004-01-01

    This paper presents the Hybrid Core Calculation System which is a very rigorous but a practical calculation system applicable to best estimate core design calculations taking advantage of the recent remarkable progress of computers. The basic idea of this system is to generate the correction factors for assembly homogenized cross sections, discontinuity factors, etc. by comparing the CASMO-4 and SIMULATE-3 2-D core calculation results under the consistent calculation condition and then apply them for SIMULATE-3 3-D calculation. The CASMO-4 2-D heterogeneous core calculation is performed for each depletion step with the core conditions previously determined by ordinary SIMULATE-3 core calculation to avoid time consuming iterative calculations searching for the critical boron concentrations while treating the thermal hydraulic feedback. The final SIMULATE-3 3-D calculation using the correction factors is performed with iterative calculations searching for the critical boron concentrations while treating the thermal hydraulic feedback. (author)

  12. START-3 calculations of SUPER-RAMP (FUMEX-III) cases

    International Nuclear Information System (INIS)

    Chulkin, D.; Kuznetsov, V.; Krupkin, A.; Bogatyr, S.; Novikov, V.

    2011-01-01

    The Studsvik SUPER-RAMP Project, an internationally sponsored research project, investigated the failure propensity of typical LWR fuel in the form of test rods when subjected to power ramps, after base irradiation. The Project power ramped 28 individual PWR rods and 16 BWR rods. The PWR rods were all tested using high ramp rates. Due to different objectives for the BWR subprogram, one set of the BWR rods was tested using a high ramp rate, and another set were tested with a very slow ramp rate. The rods were base irradiated in a power reactor environment KK Obrigheim or BR-3 at time averaged heat ratings mainly in the range 14-26 kW/m to peak bum-ups in the range 33-45 MWd/kgU and were subsequently ramp tested in the research reactor R2 at Studsvik, Sweden. In this presentation some calculations are made on the PK2 group fuel rods. The rods were standard rods manufactured by Kraftwerk Union AG/Combustion Engineering (KWU/CE). Calculations have shown reasonable coincidence of calculated and experimental FGR and reasonable prediction of dimensional behavior of fuel rod. Following the lead taken in the original FUMEX CRP, a number of simplified cases were constructed in order to investigate mathematical stability and more easily compare model and code predictions without the vagaries of real power histories. In this presentation, each case is outlined together with the reason for its inclusion before presenting the results and comparing the predictions

  13. Calculation of three-dimensional MHD equilibria with magnetic islands and chaotic field line trajectories

    International Nuclear Information System (INIS)

    Reiman, A.; Monticello, D.; Pomphrey, N.

    1993-01-01

    The three-dimensional MHD equilibrium equation is a mixed elliptic-hyperbolic partial differential equation. Unlike more familiar equations of this sort, the source term in the elliptic part of the equation is dependent on the time-asymptotic solution of the hyperbolic part, because the pressure and the force-free part of the current are constant along magnetic field lines. The equations for the field line trajectories can be put in the form of Hamilton's equations for a one-dimensional time-dependent system. The authors require an accurate solution for the KAM surfaces of this nonintegrable Hamiltonian. They describe a new algorithm they have developed for this purpose, and discuss its relationship to previously developed algorithms for computing KAM surfaces. They also discuss the numerical issues that arise in self-consistently coupling the output of this algorithm to the elliptic piece of the equation to calculate the magnetic field driven by the current. For nominally axisymmetric devices, they describe how the code is used to directly calculate the saturated state of nonaxisymmetric instabilities by following the equilibrium solution through a bifurcation. They argue that this should be the method of choice for evaluating stability to tearing modes in toroidal magnetic confinement devices

  14. A new software for dimensional measurements in 3D endodontic root canal instrumentation

    Directory of Open Access Journals (Sweden)

    Raffaele Sinibaldi

    2012-01-01

    Full Text Available The main issue to be faced to get size estimates of 3D modification of the dental canal after endodontic treatment is the co-registration of the image stacks obtained through micro computed tomography (micro-CT scans before and after treatment. Here quantitative analysis of micro-CT images have been performed by means of new dedicated software targeted to the analysis of root canal after endodontic instrumentation. This software analytically calculates the best superposition between the pre and post structures using the inertia tensor of the tooth. This strategy avoid minimization procedures, which can be user dependent, and time consuming. Once the co-registration have been achieved dimensional measurements have then been performed by contemporary evaluation of quantitative parameters over the two superimposed stacks of micro-CT images. The software automatically calculated the changes of volume, surface and symmetry axes in 3D occurring after the instrumentation. The calculation is based on direct comparison of the canal and canal branches selected by the user on the pre treatment image stack.

  15. Calculating vibrational spectra with sum of product basis functions without storing full-dimensional vectors or matrices.

    Science.gov (United States)

    Leclerc, Arnaud; Carrington, Tucker

    2014-05-07

    We propose an iterative method for computing vibrational spectra that significantly reduces the memory cost of calculations. It uses a direct product primitive basis, but does not require storing vectors with as many components as there are product basis functions. Wavefunctions are represented in a basis each of whose functions is a sum of products (SOP) and the factorizable structure of the Hamiltonian is exploited. If the factors of the SOP basis functions are properly chosen, wavefunctions are linear combinations of a small number of SOP basis functions. The SOP basis functions are generated using a shifted block power method. The factors are refined with a rank reduction algorithm to cap the number of terms in a SOP basis function. The ideas are tested on a 20-D model Hamiltonian and a realistic CH3CN (12 dimensional) potential. For the 20-D problem, to use a standard direct product iterative approach one would need to store vectors with about 10(20) components and would hence require about 8 × 10(11) GB. With the approach of this paper only 1 GB of memory is necessary. Results for CH3CN agree well with those of a previous calculation on the same potential.

  16. Consistent calculation of the stopping power for slow ions in two-dimensional electron gases

    International Nuclear Information System (INIS)

    Wang, You-Nian; Ma, Teng-Gai

    1997-01-01

    Within the framework of quantum scattering theory, we present a consistent calculation of the stopping power for slow protons and antiprotons moving in two-dimensional electron gases. The Friedel sum rule is used to determine the screening constant in the scattering potential. For the stopping power our results are compared with that of the random-phase approximation dielectric theory and that predicted by the linear Thomas-Fermi potential. copyright 1997 The American Physical Society

  17. 3D-Ising model as a string theory in three-dimensional euclidean space

    International Nuclear Information System (INIS)

    Sedrakyan, A.

    1992-11-01

    A three-dimensional string model is analyzed in the strong coupling regime. The contribution of surfaces with different topology to the partition function is essential. A set of corresponding models is discovered. Their critical indices, which depend on two integers (m,n) are calculated analytically. The critical indices of the three-dimensional Ising model should belong to this set. A possible connection with the chain of three dimensional lattice Pott's models is pointed out. (author) 22 refs.; 2 figs

  18. An algorithm for the calculation of three-dimensional ICRF fields in tokamak geometry

    International Nuclear Information System (INIS)

    Smithe, D.N.; Kammash, T.

    1987-01-01

    A computational scheme is developed which permits tractable calculation of three-dimensional full-wave solutions to the Vlasov-Maxwell equations under typical ion cyclotron range of frequencies (ICRF) experimental conditions. The method is unique in that power deposition to the plasma is determined via the anti-Hermitian part of a truncated warm plasma dielectric operator, rather than as the result of an assumed phenomenological collision frequency. The resulting computer code allows arbitrary variation of density, temperature, magnetic field and minority concentration in the poloidal plane by performing a convolution of poloidal modes to produce a coupled system of differential equations in the radial variable. By assuming no inhomogeneity along the toroidal axis, an inverse transform over k parallel is performed, yielding the global three-dimensional fast wave field solutions. The application of the code to TFTR-like plasmas shows a mild resonance structure in antenna loading related to the changing number of wavelengths between the antenna and the resonance layer. (author)

  19. Wilson loops in 3-dimensional N = 6 supersymmetric Chern-Simons theory and their string theory duals

    International Nuclear Information System (INIS)

    Drukker, Nadav; Plefka, Jan; Young, Donovan

    2008-01-01

    We study Wilson loops in the three-dimensional N = 6 supersymmetric Chern-Simons theory recently constructed by Aharony, Bergman, Jafferis and Maldacena, that is conjectured to be dual to type IIA string theory on AdS 4 x CP 3 . We construct loop operators in the Chern-Simons theory which preserve 1/6 of the supercharges and calculate their expectation value up to 2-loop order at weak coupling. The expectation value at strong coupling is found by constructing the string theory duals of these operators. For low dimensional representations these are fundamental strings, for high dimensional representations these are D2-branes and D6-branes. In support of this identification we demonstrate that these string theory solutions match the symmetries, charges and the preserved supersymmetries of their Chern-Simons theory counterparts.

  20. Application of a parallel 3-dimensional hydrogeochemistry HPF code to a proposed waste disposal site at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Gwo, Jin-Ping; Yeh, Gour-Tsyh

    1997-01-01

    The objectives of this study are (1) to parallelize a 3-dimensional hydrogeochemistry code and (2) to apply the parallel code to a proposed waste disposal site at the Oak Ridge National Laboratory (ORNL). The 2-dimensional hydrogeochemistry code HYDROGEOCHEM, developed at the Pennsylvania State University for coupled subsurface solute transport and chemical equilibrium processes, was first modified to accommodate 3-dimensional problem domains. A bi-conjugate gradient stabilized linear matrix solver was then incorporated to solve the matrix equation. We chose to parallelize the 3-dimensional code on the Intel Paragons at ORNL by using an HPF (high performance FORTRAN) compiler developed at PGI. The data- and task-parallel algorithms available in the HPF compiler proved to be highly efficient for the geochemistry calculation. This calculation can be easily implemented in HPF formats and is perfectly parallel because the chemical speciation on one finite-element node is virtually independent of those on the others. The parallel code was applied to a subwatershed of the Melton Branch at ORNL. Chemical heterogeneity, in addition to physical heterogeneities of the geological formations, has been identified as one of the major factors that affect the fate and transport of contaminants at ORNL. This study demonstrated an application of the 3-dimensional hydrogeochemistry code on the Melton Branch site. A uranium tailing problem that involved in aqueous complexation and precipitation-dissolution was tested. Performance statistics was collected on the Intel Paragons at ORNL. Implications of these results on the further optimization of the code were discussed

  1. 3-dimensional interactive space (3DIS)

    International Nuclear Information System (INIS)

    Veitch, S.; Veitch, J.; West, S.J.

    1991-01-01

    This paper reports on the 3DIS security system which uses standard CCTV cameras to create 3-Dimensional detection zones around valuable assets within protected areas. An intrusion into a zone changes light values and triggers an alarm that is annunciated, while images from multiple cameras are recorded. 3DIS lowers nuisance alarm rates and provides superior automated surveillance capability. Performance is improved over 2-D systems because activity around, above or below the zone does to cause an alarm. Invisible 3-D zones protect assets as small as a pin or as large as a 747 jetliner. Detection zones are created by excising subspaces from the overlapping fields of view of two or more video cameras. Hundred of zones may co-exist, operating simultaneously. Intrusion into any 3-D zone will cause a coincidental change in light values, triggering an alarm specific to that space

  2. Three-dimensional electron-beam dose calculations

    International Nuclear Information System (INIS)

    Shiu, A.S.

    1988-01-01

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron-beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements were incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. A pencil-beam redefinition model was developed for the calculation of electron-beam dose distributions in three dimensions

  3. Development of Monte Carlo decay gamma-ray transport calculation system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Kawasaki, Nobuo [Fujitsu Ltd., Tokyo (Japan); Kume, Etsuo [Japan Atomic Energy Research Inst., Center for Promotion of Computational Science and Engineering, Tokai, Ibaraki (Japan)

    2001-06-01

    In the DT fusion reactor, it is critical concern to evaluate the decay gamma-ray biological dose rates after the reactor shutdown exactly. In order to evaluate the decay gamma-ray biological dose rates exactly, three dimensional Monte Carlo decay gamma-ray transport calculation system have been developed by connecting the three dimensional Monte Carlo particle transport calculation code and the induced activity calculation code. The developed calculation system consists of the following four functions. (1) The operational neutron flux distribution is calculated by the three dimensional Monte Carlo particle transport calculation code. (2) The induced activities are calculated by the induced activity calculation code. (3) The decay gamma-ray source distribution is obtained from the induced activities. (4) The decay gamma-rays are generated by using the decay gamma-ray source distribution, and the decay gamma-ray transport calculation is conducted by the three dimensional Monte Carlo particle transport calculation code. In order to reduce the calculation time drastically, a biasing system for the decay gamma-ray source distribution has been developed, and the function is also included in the present system. In this paper, the outline and the detail of the system, and the execution example are reported. The evaluation for the effect of the biasing system is also reported. (author)

  4. Accelerating the discovery of hidden two-dimensional magnets using machine learning and first principle calculations

    Science.gov (United States)

    Miyazato, Itsuki; Tanaka, Yuzuru; Takahashi, Keisuke

    2018-02-01

    Two-dimensional (2D) magnets are explored in terms of data science and first principle calculations. Machine learning determines four descriptors for predicting the magnetic moments of 2D materials within reported 216 2D materials data. With the trained machine, 254 2D materials are predicted to have high magnetic moments. First principle calculations are performed to evaluate the predicted 254 2D materials where eight undiscovered stable 2D materials with high magnetic moments are revealed. The approach taken in this work indicates that undiscovered materials can be surfaced by utilizing data science and materials data, leading to an innovative way of discovering hidden materials.

  5. Pyridine-induced Dimensionality Change in Hybrid Perovskite Nanocrystals

    KAUST Repository

    Ahmed, Ghada H.; Yin, Jun; Bose, Riya; Sinatra, Lutfan; Alarousu, Erkki; Yengel, Emre; AlYami, Noktan; Saidaminov, Makhsud I.; Zhang, Yuhai; Hedhili, Mohamed N.; Bakr, Osman; Bredas, Jean-Luc; Mohammed, Omar F.

    2017-01-01

    of pyridine during the synthesis of methylammonium lead bromide (MAPbBr) perovskite nanocrystals can transform three-dimensional (3D) cubes into two-dimensional (2D) nanostructures. Density functional theory (DFT) calculations show that pyridine preferentially

  6. JNC results of BN-600 benchmark calculation (phase 4)

    International Nuclear Information System (INIS)

    Ishikawa, Makoto

    2003-01-01

    The present work is the results of JNC, Japan, for the Phase 4 of the BN-600 core benchmark problem (Hex-Z fully MOX fuelled core model) organized by IAEA. The benchmark specification is based on 1) the RCM report of IAEA CRP on 'Updated Codes and Methods to Reduce the Calculational Uncertainties of LMFR Reactivity Effects, Action 3.12' (Calculations for BN-600 fully fuelled MOX core for subsequent transient analyses). JENDL-3.2 nuclear data library was used for calculating 70 group ABBN-type group constants. Cell models for fuel assembly and control rod calculations were applied: homogeneous and heterogeneous (cylindrical supercell) model. Basic diffusion calculation was three-dimensional Hex-Z model, 18 group (Citation code). Transport calculations were 18 group, three-dimensional (NSHEC code) based on Sn-transport nodal method developed at JNC. The generated thermal power per fission was based on Sher's data corrected on the basis of ENDF/B-IV data library. Calculation results are presented in Tables for intercomparison

  7. Recent Progress in GW-based Methods for Excited-State Calculations of Reduced Dimensional Systems

    Science.gov (United States)

    da Jornada, Felipe H.

    2015-03-01

    Ab initio calculations of excited-state phenomena within the GW and GW-Bethe-Salpeter equation (GW-BSE) approaches allow one to accurately study the electronic and optical properties of various materials, including systems with reduced dimensionality. However, several challenges arise when dealing with complicated nanostructures where the electronic screening is strongly spatially and directionally dependent. In this talk, we discuss some recent developments to address these issues. First, we turn to the slow convergence of quasiparticle energies and exciton binding energies with respect to k-point sampling. This is very effectively dealt with using a new hybrid sampling scheme, which results in savings of several orders of magnitude in computation time. A new ab initio method is also developed to incorporate substrate screening into GW and GW-BSE calculations. These two methods have been applied to mono- and few-layer MoSe2, and yielded strong environmental dependent behaviors in good agreement with experiment. Other issues that arise in confined systems and materials with reduced dimensionality, such as the effect of the Tamm-Dancoff approximation to GW-BSE, and the calculation of non-radiative exciton lifetime, are also addressed. These developments have been efficiently implemented and successfully applied to real systems in an ab initio framework using the BerkeleyGW package. I would like to acknowledge collaborations with Diana Y. Qiu, Steven G. Louie, Meiyue Shao, Chao Yang, and the experimental groups of M. Crommie and F. Wang. This work was supported by Department of Energy under Contract No. DE-AC02-05CH11231 and by National Science Foundation under Grant No. DMR10-1006184.

  8. Calculation of band alignments and quantum confinement effects in zero- and one-dimensional pseudomorphic structures

    International Nuclear Information System (INIS)

    Yang, M.; Sturm, J.C.; Prevost, J.

    1997-01-01

    The strain field distributions and band lineups of zero-dimensional and one-dimensional strained pseudomorphic semiconductor particles inside a three-dimensional matrix of another semiconductor have been studied. The resulting strain in the particle and the matrix leads to band alignments considerably different from that in the conventional two-dimensional (2D) pseudomorphic growth case. The models are first applied to an ideal spherical and cylindrical Si 1-x Ge x particle in a large Si matrix. In contrast to the 2D case, the band alignments for both structures are predicted to be strongly type II, where the conduction-band edge and the valence-band edge of the Si matrix are both significantly lower than those in the Si 1-x Ge x inclusion, respectively. Band lineups and the lowest electron endash heavy-hole transition energies of a pseudomorphic V-groove Si 1-x Ge x quantum wire inside a large Si matrix have been calculated numerically for different size structures. The photoluminescence energies of a large Si 1-x Ge x V-groove structure on Si will be lower than those of conventional 2D strained Si 1-x Ge x for similar Ge contents. copyright 1997 The American Physical Society

  9. Multigrid Finite Element Method in Calculation of 3D Homogeneous and Composite Solids

    Directory of Open Access Journals (Sweden)

    A.D. Matveev

    2016-12-01

    Full Text Available In the present paper, a method of multigrid finite elements to calculate elastic three-dimensional homogeneous and composite solids under static loading has been suggested. The method has been developed based on the finite element method algorithms using homogeneous and composite three-dimensional multigrid finite elements (MFE. The procedures for construction of MFE of both rectangular parallelepiped and complex shapes have been shown. The advantages of MFE are that they take into account, following the rules of the microapproach, heterogeneous and microhomogeneous structures of the bodies, describe the three-dimensional stress-strain state (without any simplifying hypotheses in homogeneous and composite solids, as well as generate small dimensional discrete models and numerical solutions with a high accuracy.

  10. The Interobserver Variability and Diagnostic Performance of 3-Dimensional Breast Ultrasound

    International Nuclear Information System (INIS)

    Lyou, Chae Yeon; Kim, Sun Mi; Jang, Mi Jung; Kim, Sung Won; Kang, Eun Young; Park, So Yeon; Moon, Woo Kyung

    2011-01-01

    We wanted to evaluate the interobserver variability and diagnostic performance of 3-dimensional (3D) breast ultrasound (US) as compared with that of 2- dimensional (2D) US. We included 150 patients who received US-guided core biopsy and 3D US between June 2009 and April 2010. Three breast imaging radiologists analyzed the 2D and 3D US images using the Breast Imaging Reporting and Data System (BI-RADS) lexicon. The intra-observer agreement and inter-observer agreement were calculated. The sensitivity and specificity of 2D and 3D US were evaluated. The intra-observer agreement between 2D and 3D US was mostly slight or fair agreement. However, in terms of the final category, there was substantial agreement for all three radiologists. The inter-observer agreement of 3D US was similar to that of 2D US (moderate agreement for shape, orientation, circumscribed margin and boundary: fair agreement for indistinct margin, angular margin, microlobulated margin, echo pattern and final category). The sensitivity of 3D US for breast cancer was higher than that of 2D US for two radiologists (2D vs. 3D for reader 2: 55.8% vs. 61.5%, 2D vs. 3D for reader 3: 59.6% vs. 63.5%), and the specificity of 3D US was lower than that of 2D US for all the readers (2D vs. 3D for reader 1: 90.8% vs. 86.7%, 2D vs. 3D for reader 2: 90.8% vs. 87.8%, 2D vs. 3D for reader 3: 94.9% vs. 90.8%), but the difference was not significant (p ≥ 0.05). The interobserver variability and diagnostic performance of 3D breast US were similar to those of 2D US

  11. Evaluation of applicability of lead damper to 3-dimensional isolation system based on loading tests

    International Nuclear Information System (INIS)

    Matsuda, Akihiro

    2003-01-01

    To develop a damper for 3-dimensional base isolation system, horizontal and vertical mechanical properties, effect of loading frequency on vertical mechanical properties, coupled properties between horizontal and vertical directions, stability performance due to cyclic deformation are evaluated experimentally using scale models of lead damper originally developed for horizontal base isolation system. Loading test results are summarized as follows; 1) The lead damper has good vertical damping performance, in that the vertical yield load of the lead damper is three times as large as that for the horizontal direction, and the lead damper shows plastic behavior in the small deformation region. 2) The lead damper shows enough stability for static vertical displacement of ±40 mm. 3) the lead damper shows high stability performance for dynamic cyclic loading test using motions of isolation layer calculated by earthquake response analysis of FBR building subjected to S2-earthquake motion. Thus, applicability of the lead damper to 3-dimensional isolation system is shown from these results. (author)

  12. Lattice stabilities, mechanical and thermodynamic properties of Al3Tm and Al3Lu intermetallics under high pressure from first-principles calculations

    Science.gov (United States)

    Xu-Dong, Zhang; Wei, Jiang

    2016-02-01

    The effects of high pressure on lattice stability, mechanical and thermodynamic properties of L12 structure Al3Tm and Al3Lu are studied by first-principles calculations within the VASP code. The phonon dispersion curves and density of phonon states are calculated by using the PHONONPY code. Our results agree well with the available experimental and theoretical values. The vibrational properties indicate that Al3Tm and Al3Lu keep their dynamical stabilities in L12 structure up to 100 GPa. The elastic properties and Debye temperatures for Al3Tm and Al3Lu increase with the increase of pressure. The mechanical anisotropic properties are discussed by using anisotropic indices AG, AU, AZ, and the three-dimensional (3D) curved surface of Young’s modulus. The calculated results show that Al3Tm and Al3Lu are both isotropic at 0 GPa and anisotropic under high pressure. In the present work, the sound velocities in different directions for Al3Tm and Al3Lu are also predicted under high pressure. We also calculate the thermodynamic properties and provide the relationships between thermal parameters and temperature/pressure. These results can provide theoretical support for further experimental work and industrial applications. Project supported by the Scientific Technology Plan of the Educational Department of Liaoning Province and Liaoning Innovative Research Team in University, China (Grant No. LT2014004) and the Program for the Young Teacher Cultivation Fund of Shenyang University of Technology, China (Grant No. 005612).

  13. CAPCAL, 3-D Capacitance Calculator for VLSI Purposes

    International Nuclear Information System (INIS)

    Seidl, Albert; Klose, Helmut; Svoboda, Mildos

    2004-01-01

    1 - Description of program or function: CAPCAL is devoted to the calculation of capacitances of three-dimensional wiring configurations are typically used in VLSI circuits. Due to analogies in the mathematical description also conductance and heat transport problems can be treated by CAPCAL. To handle the problem using CAPCAL same approximations have to be applied to the structure under investigation: - the overall geometry has to be confined to a finite domain by using symmetry-properties of the problem - Non-rectangular structures have to be simplified into an artwork of multiple boxes. 2 - Method of solution: The electrical field is described by the Laplace-equation. The differential equation is discretized by using the finite difference method. NEA-1327/01: The linear equation system is solved by using a combined ADI-multigrid method. NEA-1327/04: The linear equation system is solved by using a conjugate gradient method for CAPCAL V1.3. NEA-1327/05: The linear equation system is solved by using a conjugate gradient method for CAPCAL V1.3. 3 - Restrictions on the complexity of the problem: NEA-1327/01: Certain restrictions of use may arise from the dimensioning of arrays. Field lengths are defined via PARAMETER-statements which can easily by modified. If the geometry of the problem is defined such that Neumann boundaries are dominating the convergence of the iterative equation system solver is affected

  14. Implementation of the neutronics model of HEXTRAN/HEXBU-3D into APROS for WWER calculations

    International Nuclear Information System (INIS)

    Rintala, J.

    2008-01-01

    A new three-dimensional nodal model for neutronics calculation is currently under implementation into APROS - Advanced PROcess Simulation environment - to conform the increasing accuracy requirements. The new model is based on an advanced nodal code HEXTRAN and its static version HEXBU-3D by VTT, Technical Research Centre of Finland. Currently the new APROS is under a testing programme. Later a systematic validation will be performed. In the first phase, a goal is to obtain a fully validated model for VVER-440 calculations. Thus, all the current test calculations are performed by using Loviisa NPP's VVER-440 model of APROS. In future, the model is planned to be applied for the calculations of VVER-1000 type reactors as well as in rectangular fuel geometry. The paper outlines first the general aspects of the method, and then the current situation of the implementation. Because of the identical model with the models of HEXTRAN and HEXBU-3D, the results in the test calculations are compared to the results of those. In the paper, results of two static test calculations are shown. Currently the model works well already in static analyses. Only minor problems with the control assemblies of VVER-440 type reactor still exist but the reasons are known and will be corrected in near future. Dynamical characteristics of the model are up to now tested only by some empirical tests. (author)

  15. Efficient computer program EPAS-J1 for calculating stress intensity factors of three-dimensional surface cracks

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Watanabe, Takayuki; Yagawa, Genki.

    1982-03-01

    A finite element computer program EPAS-J1 was developed to calculate the stress intensity factors of three-dimensional cracks. In the program, the stress intensity factor is determined by the virtual crack extension method together with the distorted elements allocated along the crack front. This program also includes the connection elements based on the Lagrange multiplier concept to connect such different kinds of elements as the solid and shell elements, or the shell and beam elements. For the structure including three-dimensional surface cracks, the solid elements are employed only at the neighborhood of a surface crack, while the remainder of the structure is modeled by the shell or beam elements due to the reason that the crack singularity is very local. Computer storage and computational time can be highly reduced with the application of the above modeling technique for the calculation of the stress intensity factors of the three-dimensional surface cracks, because the three-dimensional solid elements are required only around the crack front. Several numerical analyses were performed by the EPAS-J1 program. At first, the accuracies of the connection element and the virtual crack extension method were confirmed using the simple structures. Compared with other techniques of connecting different kinds of elements such as the tying method or the method using anisotropic plate element, the present connection element is found to provide better results than the others. It is also found that the virtual crack extension method provides the accurate stress intensity factor. Furthermore, the results are also presented for the stress intensity factor analyses of cylinders with longitudinal or circumferential surface cracks using the combination of the various kinds of elements together with the connection elements. (author)

  16. Three-dimensional quantitation of pediatric tumor bulk

    International Nuclear Information System (INIS)

    Eggli, K.D.; Close, P.; Dillon, P.W.; Umlauf, M.; Hopper, K.D.

    1995-01-01

    Will 3-dimensional (3-D) volumetric determination improve our ability to assess tumor response to therapy? Forty-five CT scans of pediatric patients with unresectable thoracic or abdominal neoplasia were assessed for tumor bulk by the standard ''2-dimensional (2-D)'' volume formula (cross-sectional areaxlength) and by 3-D volumetric analysis. Thirty-two examinations were performed in follow-up, and percent change in tumor size was calculated. The 2-D volume calculation overestimated tumor volume by more than 50% on all but two examinations when the 2-D volume was compared with the 3-D volume. In 28% of follow-up examinations, the 2-D calculation of percent change differed by more than 10% from the 3-D volume. Fifteen percent differed by over 25%. This changed the response category of one patient from ''no response'' to ''partial response''. 3-D volumetric analysis, give more accurate assessment of the actual tumor bulk and its subsequent changes in size in response to therapy. (orig.)

  17. Contrast-enhanced Magnetic Resonance Imaging of Pelvic Bone Metastases at 3.0 T: Comparison Between 3-dimensional T1-weighted CAIPIRINHA-VIBE Sequence and 2-dimensional T1-weighted Turbo Spin-Echo Sequence.

    Science.gov (United States)

    Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee

    2018-06-12

    This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.

  18. Mode specificity in the OH + CHD3 reaction: Reduced-dimensional quantum and quasi-classical studies on an ab initio based full-dimensional potential energy surface

    International Nuclear Information System (INIS)

    Song, Hongwei; Yang, Minghui; Lu, Yunpeng; Li, Jun; Guo, Hua

    2016-01-01

    An initial state selected time-dependent wave packet method is applied to study the dynamics of the OH + CHD 3 reaction with a six-dimensional model on a newly developed full-dimensional ab initio potential energy surface (PES). This quantum dynamical (QD) study is complemented by full-dimensional quasi-classical trajectory (QCT) calculations on the same PES. The QD results indicate that both translational energy and the excitation of the CH stretching mode significantly promote the reaction while the excitation of the umbrella mode has a negligible effect on the reactivity. For this early barrier reaction, interestingly, the CH stretching mode is more effective than translational energy in promoting the reaction except at very low collision energies. These QD observations are supported by QCT results. The higher efficacy of the CH stretching model in promoting this early barrier reaction is inconsistent with the prediction of the naively extended Polanyi’s rules, but can be rationalized by the recently proposed sudden vector projection model.

  19. Calculation of large Reynolds number two-dimensional flow using discrete vortices with random walk

    International Nuclear Information System (INIS)

    Milinazzo, F.; Saffman, P.G.

    1977-01-01

    The numerical calculation of two-dimensional rotational flow at large Reynolds number is considered. The method of replacing a continuous distribution of vorticity by a finite number, N, of discrete vortices is examined, where the vortices move under their mutually induced velocities plus a random component to simulate effects of viscosity. The accuracy of the method is studied by comparison with the exact solution for the decay of a circular vortex. It is found, and analytical arguments are produced in support, that the quantitative error is significant unless N is large compared with a characteristic Reynolds number. The mutually induced velocities are calculated by both direct summation and by the ''cloud in cell'' technique. The latter method is found to produce comparable error and to be much faster

  20. Two-dimensional magnetohydrodynamic calculations for a 5 MJ plasma focus

    International Nuclear Information System (INIS)

    Maxon, S.

    1979-01-01

    The performance of a 5 MJ plasma focus is calculated using our two-dimensional magnetohydrodynamic (2-D MHD) code. Two configurations are discussed, a solid and a hollow anode. In the case of the hollow anode, we find an instability in the current sheath which has the characteristics of the short wave length sausage instability. As the current sheath reaches the axis, the numerical solution is seen to break down. Just before this time, plasma parameters take on the characteristic values rho/rho 0 = 143, kT/sup i/ = 7.4 keV, B/sub theta/ = 4.7 MG, and V/sub z/ = 60 cm/μs for a zone with r = 0.2 mm. When the numerical solution breaks down, the code shows a splitting of the current sheath (from the axis to the anode) and the loss of a large amount of magnetic energy. Current-sheath stagnation is observed in the hollow anode configuration, also

  1. Comparison of left ventricular outflow geometry and aortic valve area in patients with aortic stenosis by 2-dimensional versus 3-dimensional echocardiography.

    Science.gov (United States)

    Saitoh, Takeji; Shiota, Maiko; Izumo, Masaki; Gurudevan, Swaminatha V; Tolstrup, Kirsten; Siegel, Robert J; Shiota, Takahiro

    2012-06-01

    The present study sought to elucidate the geometry of the left ventricular outflow tract (LVOT) in patients with aortic stenosis and its effect on the accuracy of the continuity equation-based aortic valve area (AVA) estimation. Real-time 3-dimensional transesophageal echocardiography (RT3D-TEE) provides high-resolution images of LVOT in patients with aortic stenosis. Thus, AVA is derived reliably with the continuity equation. Forty patients with aortic stenosis who underwent 2-dimensional transthoracic echocardiography (2D-TTE), 2-dimensional transesophageal echocardiography (2D-TEE), and RT3D-TEE were studied. In 2D-TTE and 2D-TEE, the LVOT areas were calculated as π × (LVOT dimension/2)(2). In RT3D-TEE, the LVOT areas and ellipticity ([diameter of the anteroposterior axis]/[diameter of the medial-lateral axis]) were evaluated by planimetry. The AVA is then determined using planimetry and the continuity equation method. LVOT shape was found to be elliptical (ellipticity of 0.80 ± 0.08). Accordingly, the LVOT areas measured by 2D-TTE (median 3.7 cm(2), interquartile range 3.1 to 4.1) and 2D-TEE (median 3.7 cm(2), interquartile range 3.1 to 4.0) were smaller than those by 3D-TEE (median 4.6 cm(2), interquartile range 3.9 to 5.3; p interquartile range 0.79 to 1.3, p interquartile range 0.64 to 0.94) and 2D-TEE (median 0.76 cm(2), interquartile range 0.62 to 0.95). Additionally, the continuity equation-based AVA by RT3D-TEE was consistent with the planimetry method. In conclusion, RT3D-TEE might allow more accurate evaluation of the elliptical LVOT geometry and continuity equation-based AVA in patients with aortic stenosis than 2D-TTE and 2D-TEE. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Core burn-up calculation method of JRR-3

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Yamashita, Kiyonobu

    2007-01-01

    SRAC code system is utilized for core burn-up calculation of JRR-3. SRAC code system includes calculation modules such as PIJ, PIJBURN, ANISN and CITATION for making effective cross section and calculation modules such as COREBN and HIST for core burn-up calculation. As for calculation method for JRR-3, PIJBURN (Cell burn-up calculation module) is used for making effective cross section of fuel region at each burn-up step. PIJ, ANISN and CITATION are used for making effective cross section of non-fuel region. COREBN and HIST is used for core burn-up calculation and fuel management. This paper presents details of NRR-3 core burn-up calculation. FNCA Participating countries are expected to carry out core burn-up calculation of domestic research reactor by SRAC code system by utilizing the information of this paper. (author)

  3. Adaption, validation and application of advanced codes with 3-dimensional neutron kinetics for accident analysis calculations - STC with Bulgaria

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.; Mittag, S.; Rohde, U.; Seidel, A.; Panayotov, D.; Ilieva, B.

    2001-08-01

    In the frame of a project on scientific-technical co-operation funded by BMBF/BMWi, the program code DYN3D and the coupled code ATHLET-DYN3D have been transferred to the Institute for Nuclear Research and Nuclear Energy (INRNE) Sofia. The coupled code represents an implementation of the 3D core model DYN3D developed by FZR into the GRS thermal-hydraulics code system ATHLET. For the purpose of validation of these codes, a measurement data base about a start-up experiment obtained at the unit 6 of Kozloduy NPP (VVER-1000/V-320) has been generated. The results of performed validation calculations were compared with measurement values from the data base. A simplified model for estimation of cross flow mixing between fuel assemblies has been implemented into the program code DYN3D by Bulgarian experts. Using this cross flow model, transient processes with asymmetrical boundary conditions can be analysed more realistic. The validation of the implemented model were performed with help of comparison calculations between modified DYD3D code and thermal-hydraulics code COBRA-4I, and also on the base of the collected measurement data from Kozloduy NPP. (orig.) [de

  4. Three-dimensional portable document format: a simple way to present 3-dimensional data in an electronic publication

    NARCIS (Netherlands)

    Danz, J.C.; Katsaros, C.

    2011-01-01

    Three-dimensional (3D) models of teeth and soft and hard tissues are tessellated surfaces used for diagnosis, treatment planning, appliance fabrication, outcome evaluation, and research. In scientific publications or communications with colleagues, these 3D data are often reduced to 2-dimensional

  5. Four-dimensional Hall mechanics as a particle on CP3

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Casteill, Pierre-Yves; Nersessian, Armen

    2003-01-01

    In order to establish an explicit connection between four-dimensional Hall effect on S 4 and six-dimensional Hall effect on CP 3 , we perform the Hamiltonian reduction of a particle moving on CP 3 in a constant magnetic field to the four-dimensional Hall mechanics (i.e., a-bar particle on S 4 in a SU(2) instanton field). This reduction corresponds to fixing the isospin of the latter system

  6. Efficient Sample Delay Calculation for 2-D and 3-D Ultrasound Imaging.

    Science.gov (United States)

    Ibrahim, Aya; Hager, Pascal A; Bartolini, Andrea; Angiolini, Federico; Arditi, Marcel; Thiran, Jean-Philippe; Benini, Luca; De Micheli, Giovanni

    2017-08-01

    Ultrasound imaging is a reference medical diagnostic technique, thanks to its blend of versatility, effectiveness, and moderate cost. The core computation of all ultrasound imaging methods is based on simple formulae, except for those required to calculate acoustic propagation delays with high precision and throughput. Unfortunately, advanced three-dimensional (3-D) systems require the calculation or storage of billions of such delay values per frame, which is a challenge. In 2-D systems, this requirement can be four orders of magnitude lower, but efficient computation is still crucial in view of low-power implementations that can be battery-operated, enabling usage in numerous additional scenarios. In this paper, we explore two smart designs of the delay generation function. To quantify their hardware cost, we implement them on FPGA and study their footprint and performance. We evaluate how these architectures scale to different ultrasound applications, from a low-power 2-D system to a next-generation 3-D machine. When using numerical approximations, we demonstrate the ability to generate delay values with sufficient throughput to support 10 000-channel 3-D imaging at up to 30 fps while using 63% of a Virtex 7 FPGA, requiring 24 MB of external memory accessed at about 32 GB/s bandwidth. Alternatively, with similar FPGA occupation, we show an exact calculation method that reaches 24 fps on 1225-channel 3-D imaging and does not require external memory at all. Both designs can be scaled to use a negligible amount of resources for 2-D imaging in low-power applications and for ultrafast 2-D imaging at hundreds of frames per second.

  7. Resolution of the multigroup scattering equation in a one-dimensional geometry and subsidiary calculations: the MUDE code; Resolution de l'equation multigroupe de la diffusion dans une geometrie a une dimension et calculs annexes: code MUDE

    Energy Technology Data Exchange (ETDEWEB)

    Bore, C; Dandeu, Y; Saint-Amand, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    MUDE is a nuclear code written in FORTRAN II for IBM 7090-7094. It resolves a system of difference equations approximating to the one-dimensional multigroup neutron scattering problem. More precisely, this code makes it possible to: 1. Calculate the critical condition of a reactor (k{sub eff}, critical radius, critical composition) and the corresponding fluxes; 2. Calculate the associated fluxes and various subsidiary results; 3. Carry out perturbation calculations; 4. Study the propagation of fluxes at a distance; 5. Estimate the relative contributions of the cross sections (macroscopic or microscopic); 6. Study the changes with time of the composition of the reactor. (authors) [French] MUDE est un code nucleaire ecrit en FORTRAN II pour IBM 7090-7094. Il resout un systeme d'equations aux differences approchant le probleme de diffusion neutronique multigroupe a une dimension. Plus precisement ce code permet de: 1. Calculer la condition critique d'un reacteur (k{sub eff}, rayon critique, composition critique) et les flux correspondants; 2. Calculer les flux adjoints et divers resultats connexes; 3. Effectuer des calculs de perturbation; 4. Etudier la propagation des flux a longue distance; 5. Ponderer des sections efficaces (macroscopiques ou microscopiques); 6. Etudier l'evolution de la composition du reacteur au cours du temps. (auteurs)

  8. Correlation between the 2-Dimensional Extent of Orbital Defects and the 3-Dimensional Volume of Herniated Orbital Content in Patients with Isolated Orbital Wall Fractures

    Directory of Open Access Journals (Sweden)

    Jong Hyun Cha

    2017-01-01

    Full Text Available BackgroundThe purpose of this study was to assess the correlation between the 2-dimensional (2D extent of orbital defects and the 3-dimensional (3D volume of herniated orbital content in patients with an orbital wall fracture.MethodsThis retrospective study was based on the medical records and radiologic data of 60 patients from January 2014 to June 2016 for a unilateral isolated orbital wall fracture. They were classified into 2 groups depending on whether the fracture involved the inferior wall (group I, n=30 or the medial wall (group M, n=30. The 2D area of the orbital defect was calculated using the conventional formula. The 2D extent of the orbital defect and the 3D volume of herniated orbital content were measured with 3D image processing software. Statistical analysis was performed to evaluate the correlations between the 2D and 3D parameters.ResultsVarying degrees of positive correlation were found between the 2D extent of the orbital defects and the 3D herniated orbital volume in both groups (Pearson correlation coefficient, 0.568−0.788; R2=32.2%−62.1%.ConclusionsBoth the calculated and measured 2D extent of the orbital defects showed a positive correlation with the 3D herniated orbital volume in orbital wall fractures. However, a relatively large volume of herniation (>0.9 cm3 occurred not infrequently despite the presence of a small orbital defect (<1.9 cm2. Therefore, estimating the 3D volume of the herniated content in addition to the 2D orbital defect would be helpful for determining whether surgery is indicated and ensuring adequate surgical outcomes.

  9. PWR core safety analysis with 3-dimensional methods

    International Nuclear Information System (INIS)

    Gensler, A.; Kühnel, K.; Kuch, S.

    2015-01-01

    Highlights: • An overview of AREVA’s safety analysis codes their coupling is provided. • The validation base and licensing applications of these codes are summarized. • Coupled codes and methods provide improved margins and non-conservative results. • Examples for REA and inadvertent opening of the pressurizer safety valve are given. - Abstract: The main focus of safety analysis is to demonstrate the required safety level of the reactor core. Because of the demanding requirements, the quality of the safety analysis strongly affects the confidence in the operational safety of a reactor. To ensure the highest quality, it is essential that the methodology consists of appropriate analysis tools, an extensive validation base, and last but not least highly educated engineers applying the methodology. The sophisticated 3-dimensional core models applied by AREVA ensure that all physical effects relevant for safety are treated and the results are reliable and conservative. Presently AREVA employs SCIENCE, CASMO/NEMO and CASCADE-3D for pressurized water reactors. These codes are currently being consolidated into the next generation 3D code system ARCADIA®. AREVA continuously extends the validation base, including measurement campaigns in test facilities and comparisons of the predictions of steady state and transient measured data gathered from plants during many years of operation. Thus, the core models provide reliable and comprehensive results for a wide range of applications. For the application of these powerful tools, AREVA is taking benefit of its interdisciplinary know-how and international teamwork. Experienced engineers of different technical backgrounds are working together to ensure an appropriate interpretation of the calculation results, uncertainty analysis, along with continuously maintaining and enhancing the quality of the analysis methodologies. In this paper, an overview of AREVA’s broad application experience as well as the broad validation

  10. DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry

    International Nuclear Information System (INIS)

    Lawrence, R.D.

    1983-03-01

    A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code

  11. Development of 6-axis portable manipulator which traces over 3-dimensional curved surface for ultrasonic inspection

    International Nuclear Information System (INIS)

    Hayashi, Tetsuji; Tsuzuki, Satoshi; Tsunewaki, Hiroshi.

    1993-01-01

    A 6-axis portable manipulator, weighing 120 N (12.3 kg) which traces over a 3-dimensional curved surface for ultrasonic testing has been developed. The manipulator body is made of carbon-fiber-reinforced plastic and magnesium alloy. A feature of the system is that deviation of the manipulator from its nominal path caused by arm bending due to its own weight can be corrected. The deviation is calculated by premeasuring spring coefficients and hysteresis characteristics of the arm structure. In a mock-up calibration performance test the accuracy was shown to be as high as that of a human inspector. The manipulator can be installed within 3 minutes by a single person. Joint angles are calculated with a direct memory access (DMA) handler using a poling method. Signals are transmitted to servo-controllers through an optical fiber of 2.5 Mbps. (author)

  12. Full-Dimensional Quantum Calculations of Vibrational Levels of NH4(+) and Isotopomers on An Accurate Ab Initio Potential Energy Surface.

    Science.gov (United States)

    Yu, Hua-Gen; Han, Huixian; Guo, Hua

    2016-04-14

    Vibrational energy levels of the ammonium cation (NH4(+)) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4(+) and ND4(+) exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. The low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm(-1).

  13. Mode specificity in the OH + CHD{sub 3} reaction: Reduced-dimensional quantum and quasi-classical studies on an ab initio based full-dimensional potential energy surface

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hongwei, E-mail: hwsong@wipm.ac.cn; Yang, Minghui [Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Lu, Yunpeng [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Li, Jun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2016-04-28

    An initial state selected time-dependent wave packet method is applied to study the dynamics of the OH + CHD{sub 3} reaction with a six-dimensional model on a newly developed full-dimensional ab initio potential energy surface (PES). This quantum dynamical (QD) study is complemented by full-dimensional quasi-classical trajectory (QCT) calculations on the same PES. The QD results indicate that both translational energy and the excitation of the CH stretching mode significantly promote the reaction while the excitation of the umbrella mode has a negligible effect on the reactivity. For this early barrier reaction, interestingly, the CH stretching mode is more effective than translational energy in promoting the reaction except at very low collision energies. These QD observations are supported by QCT results. The higher efficacy of the CH stretching model in promoting this early barrier reaction is inconsistent with the prediction of the naively extended Polanyi’s rules, but can be rationalized by the recently proposed sudden vector projection model.

  14. Direct Simulation of Transport Properties from Three-Dimensional (3D) Reconstructed Solid-Oxide Fuel-Cell (SOFC) Electrode Microstructures

    International Nuclear Information System (INIS)

    Gunda, Naga Siva Kumar; Mitra, Sushanta K

    2012-01-01

    A well-known approach to develop a high efficiency solid-oxide fuel-cell (SOFC) consists of extracting the microstructure and transport properties such as volume fractions, internal surface area, geometric connectivity, effective gas diffusivity, effective electronic conductivity and geometric tortuosities from three-dimensional (3D) microstructure of the SOFC electrodes; thereafter, performing the SOFC efficiency calculations using previously mentioned quantities. In the present work, dual-beam focused ion beam - scanning electron microscopy (FIB-SEM) is applied on one of the SOFC cathodes, a lanthanum strontium manganite (LSM) electrode, to estimate the aforementioned properties. A framework for calculating transport properties is presented in this work. 3D microstructures of LSM electrode are reconstructed from a series of two-dimensional (2D) cross-sectional FIB-SEM images. Volume percentages of connected, isolated and dead-ends networks of pore and LSM phases are estimated. Different networks of pore and LSM phases are discretized with tetrahedral elements. Finally, the finite element method (FEM) is applied to calculate effective gas diffusivity and electronic conductivity of pore and LSM phases, respectively. Geometric tortuosities are estimated from the porosity and effective transport properties. The results obtained using FEM are compared with the finite volume method (FVM) results obtained by Gunda et al. [J. Power Sources, 196(7), 35929(2011)] and other numerical results obtained on randomly generated porous medium. Effect of consideration of dead-ends and isolated-ends networks on calculation of effective transport properties is studied.

  15. Evaluation of aqueductal patency in patients with hydrocephalus: Three-dimensional high-sampling efficiency technique(SPACE) versus two-dimensional turbo spin echo at 3 Tesla

    International Nuclear Information System (INIS)

    Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut

    2014-01-01

    To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.

  16. Evaluation of aqueductal patency in patients with hydrocephalus: Three-dimensional high-sampling efficiency technique(SPACE) versus two-dimensional turbo spin echo at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut [School of Medicine, Gazi University, Ankara (Turkey)

    2014-12-15

    To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.

  17. Design of a rotational three-dimensional nonimaging device by a compensated two-dimensional design process.

    Science.gov (United States)

    Yang, Yi; Qian, Ke-Yuan; Luo, Yi

    2006-07-20

    A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.

  18. Development of calculation method for one-dimensional kinetic analysis in fission reactors, including feedback effects

    International Nuclear Information System (INIS)

    Paixao, S.B.; Marzo, M.A.S.; Alvim, A.C.M.

    1986-01-01

    The calculation method used in WIGLE code is studied. Because of the non availability of such a praiseworthy solution, expounding the method minutely has been tried. This developed method has been applied for the solution of the one-dimensional, two-group, diffusion equations in slab, axial analysis, including non-boiling heat transfer, accountig for feedback. A steady-state program (CITER-1D), written in FORTRAN 4, has been implemented, providing excellent results, ratifying the developed work quality. (Author) [pt

  19. Three-dimensional tokamak equilibria and stellarators with two-dimensional magnetic symmetry

    International Nuclear Information System (INIS)

    Garabedian, P.R.

    1997-01-01

    Three-dimensional computer codes have been developed to simulate equilibrium, stability and transport in tokamaks and stellarators. Bifurcated solutions of the tokamak problem suggest that three-dimensional effects may be more important than has generally been thought. Extensive calculations have led to the discovery of a stellarator configuration with just two field periods and with aspect ratio 3.2 that has a magnetic field spectrum B mn with toroidal symmetry. Numerical studies of equilibrium, stability and transport for this new device, called the Modular Helias-like Heliac 2 (MHH2), will be presented. (author)

  20. Low dimensionality semiconductors: modelling of excitons via a fractional-dimensional space

    Science.gov (United States)

    Christol, P.; Lefebvre, P.; Mathieu, H.

    1993-09-01

    An interaction space with a fractionnal dimension is used to calculate in a simple way the binding energies of excitons confined in quantum wells, superlattices and quantum well wires. A very simple formulation provides this energy versus the non-integer dimensionality of the physical environment of the electron-hole pair. The problem then comes to determining the dimensionality α. We show that the latter can be expressed from the characteristics of the microstructure. α continuously varies from 3 (bulk material) to 2 for quantum wells and superlattices, and from 3 to 1 for quantum well wires. Quite a fair agreement is obtained with other theoretical calculations and experimental data, and this model coherently describes both three-dimensional limiting cases for quantum wells (L_wrightarrow 0 and L_wrightarrow infty) and the whole range of periods of the superlattice. Such a simple model presents a great interest for spectroscopists though it does not aim to compete with accurate but often tedious variational calculations. Nous utilisons un espace des interactions doté d'une dimension fractionnaire pour calculer simplement l'énergie de liaison des excitons confinés dans les puits quantiques, superréseaux et fils quantiques. Une formulation très simple donne cette énergie en fonction de la dimensionalité non-entière de l'environnement physique de la paire électron-trou. Le problème revient alors à déterminer cette dimensionalité α, dont nous montrons qu'une expression peut être déduite des caractéristiques de la microstructure. α varie continûment de 3 (matériau massif) à 2 pour un puits quantique ou un superréseau, et de 3 à 1 pour un fil quantique, selon le confinement du mouvement des porteurs. Les comparaisons avec d'autres calculs théoriques et données expérimentales sont toujours très convenables, et cette théorie décrit d'une façon cohérente les limites tridimensionnelles du puits quantique (L_wrightarrow 0 et L

  1. Ultrahigh Resolution 3-Dimensional Imaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop innovative instrumentation for the rapid, 3-dimensional imaging of biological tissues with cellular resolution. Our approach...

  2. Mannheim Curves in Nonflat 3-Dimensional Space Forms

    Directory of Open Access Journals (Sweden)

    Wenjing Zhao

    2015-01-01

    Full Text Available We consider the Mannheim curves in nonflat 3-dimensional space forms (Riemannian or Lorentzian and we give the concept of Mannheim curves. In addition, we investigate the properties of nonnull Mannheim curves and their partner curves. We come to the conclusion that a necessary and sufficient condition is that a linear relationship with constant coefficients will exist between the curvature and the torsion of the given original curves. In the case of null curve, we reveal that there are no null Mannheim curves in the 3-dimensional de Sitter space.

  3. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    Energy Technology Data Exchange (ETDEWEB)

    Arinilhaq,; Widita, Rena [Department of Physics, Nuclear Physics and Biophysics Research Group, Institut Teknologi Bandung (Indonesia)

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.

  4. Three-dimensional calculations for a 4 kA, 3.5 MV, 2 microsecond injector with asymmetric power feed

    Directory of Open Access Journals (Sweden)

    Thomas P. Hughes

    1999-11-01

    Full Text Available The DARHT-2 accelerator under construction at Los Alamos National Laboratory requires a long flattop (2μs 2–4 kA, 3.5 MV, low-emittance electron beam source. The injector is being constructed at Lawrence Berkeley National Laboratory and consists of a large-area thermionic cathode mounted atop a vertical column. The 90° bend between the horizontally emitted beam and the column produces dipole and higher-pole fields which must be corrected. In addition, the fast rise of the current flowing into the vacuum tank excites rf modes which cause transverse oscillations of the beam centroid. We have modeled these effects with the 3D electromagnetic code LSP. The code has models for pulsed power transmission lines, space-charge-limited emission and transport of charged particles, externally applied magnetic fields, and frequency-dependent absorption of rf. We calculate the transverse displacement of the beam as a function of time during the current pulse, and the positioning and thickness of ferrite absorber needed to damp the rf modes. The numerical results are compared to analytic calculations.

  5. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Science.gov (United States)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  6. A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies

    Science.gov (United States)

    Shivakumar, K. N.; Tan, P. W.; Newman, J. C., Jr.

    1988-01-01

    A three-dimensional virtual crack-closure technique is presented which calculates the strain energy release rates and the stress intensity factors using only nodal forces and displacements from a standard finite element analysis. The technique is an extension of the Rybicki-Kanninen (1977) method, and it assumes that any continuous function can be approximated by a finite number of straight line segments. Results obtained by the method for surface cracked plates with and without notches agree favorably with previous results.

  7. Identification, Calculation Of The Three Dimensional Orbit, And Flux Of Asteroid 2007 TD14

    Science.gov (United States)

    Pereira, Vincent; Martin, E.; Millan, J.

    2012-01-01

    In recent years the rate of discovery of asteroids has improved dramatically and has far outstripped efforts to physically characterize them. In this work, we took part in the International Astronomical Search Campaign and confirmed the discovery of asteroid 2007 TD14. We then calculated the two and three dimensional orbit of the asteroid around the sun, given its six elements of orbit. Once the heliocentric and geocentric distances are known, and the visual magnitude of the asteroid obtained through photometry, its diameter can be calculated assuming a suitable value for the albedo. The diameter was 0.718 km and the albedo was 0.039. Using the Standard Thermal Model we calculated the temperature distribution on the surface of the asteroid and the flux of the asteroid in the thermal infrared (1.095 mJy at 22 microns on March 19, 2010). To the best of our knowledge there have been no previous reports of the diameter and flux of the asteroid. Our ultimate goal is to compare our flux values with newly released data from NASA Wide-field Infrared Survey Explorer Mission and thus obtain better estimates of the asteroid diameter and albedo.

  8. RHEIN, Modular System for Reactor Design Calculation

    International Nuclear Information System (INIS)

    Reiche, Christian; Barz, Hansulrich; Kunzmann, Bernd; Seifert, Eberhard; Wand, Hartmut

    1990-01-01

    1 - Description of program or function: RHEIN is a modular reactor code system for neutron physics calculations. It consists of a small number of system codes for execution control, data management, and handling support, as well as of the physical calculation routines. The execution is controlled by input data containing mathematical and physical parameters and simple commands for routine calls and data manipulations. The calculation routines are in tune with one another and the system takes care of the data transfer between them. Cross-section libraries with self shielding parameters are added to the system. 2 - Method of solution: The calculation routines can be used for solving the following physics problems: - Calculation of cross-section sets for infinite mediums, taking into account chord length. - Zero-dimensional spectrum calculation in diffusion, P1, or B1 approximation. - One-dimensional calculation in diffusion, P1, or collision probability approximation. - Two-dimensional diffusion calculation. - Cell calculation by THERMOS. - Zone-wise homogenized group collapsing within zero, one, or two-dimensional models. - Normalization, summarizing, etc. - Output of cross-section sets to off systems Sn and Monte-Carlo calculations

  9. Contributions to the validation of advanced codes for accident analysis calculations with 3-dimensional neutron kinetics. STC with the Ukraine. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.; Rohde, U.; Khalimonchuk, V.; Kuchin, A.; Seidel, A.

    2000-10-01

    In the frame of a project of scientific-technical cooperation funded by BMBF/BMWi, the coupled code ATHLET-DYN3D has been transferred to the Scientific and Technical Centre on Nuclear and Radiation Safety Kiev (Ukraine). This program code represents an implementation of the 3D core model DYN3D developed by FZR into the GRS thermohydraulics code system ATHLET. For the purpose of validation of this coupled code, a measurement data base has been generated. In the data base suitable experimental data for operational transients from NPPs are collected. The data collection and documentation was performed in accordance with a directive about requirements to measurement data for code validation, which has been elaborated within the project. The validation calculations have been performed for two selected transients. The results of these calculations were compared with measurement values from the data base. The function of the code DYN3D was expanded with a subroutine for reactivity coefficients calculation. Using this modification of the code DYN3D, investigations of reactivity contributions on different operational processes can be performed. (orig.) [de

  10. Computer calculation of Witten's 3-manifold invariant

    International Nuclear Information System (INIS)

    Freed, D.S.; Gompf, R.E.

    1991-01-01

    Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant. (orig.)

  11. Three-dimensional (3D α-Fe2O3/polypyrrole (PPy nanocomposite for effective electromagnetic absorption

    Directory of Open Access Journals (Sweden)

    Wanchun Jiang

    2016-06-01

    Full Text Available The lightweight and 3-dimensional reticulated α-Fe2O3/PPy hybrids were successfully fabricated via a facile one-pot polyreaction. The measured complex permittivity and microwave attenuation performance suggest that the dielectric properties of PPy can be regulated by the mass ratio of added α-Fe2O3. The two dielectric resonance peaks of complex permittivity can be ascribed to the interface capacitor-like structure. An equivalent circuit model was established to explain the nonlinear resonance behavior of the α-Fe2O3/PPy wax composites. The addition of α-Fe2O3 properly tuned the dielectric constant to endow the composites with highly efficient microwave absorption. The minimum reflection loss of α-Fe2O3/PPy wax composites were enhanced to nearly −29dB with an effective bandwidth (RL≤ − 10dB up to 5.0GHz. The numerical method was proposed to calculate the optimum thickness for minimum RL at expected frequency by detailed investigation on the transmission formula. Moreover, the required thickness for optimum absorption efficiency at expected frequency can be obtained directly.

  12. ERATO - a computer program for the calculation of induced eddy-currents in three-dimensional conductive structures

    International Nuclear Information System (INIS)

    Benner, J.

    1985-10-01

    The computer code ERATO is used for the calculation of eddy-currents in three-dimensional conductive structures and their secondary magnetic field. ERATO is a revised version of the code FEDIFF, developed at IPP Garching. For the calculation the Finite-Element-Network (FEN) method is used, where the structure is simulated by an equivalent electric network. In the ERATO-code, the calculation of the finite-element discretization, the eddy-current analysis, and the final evaluation of the results are done in separate programs. So the eddy-current analysis as the central step is perfectly independent of a special geometry. For the finite-element discretization there are two so called preprocessors, which treat a torus-segment and a rectangular, flat plate. For the final evaluation postprocessors are used, by which the current-distributions can be printed and plotted. In the report, the theoretical foundation of the FEN-Method is discussed, the structure and the application of the programs (preprocessors, analysis-program, postprocessors, supporting programs) are shown, and two examples for calculations are presented. (orig.) [de

  13. Equatorial spread F studies using SAMI3 with two-dimensional and three-dimensional electrostatics

    Directory of Open Access Journals (Sweden)

    H. C. Aveiro

    2013-12-01

    Full Text Available This letter presents a study of equatorial F region irregularities using the NRL SAMI3/ESF model, comparing results using a two-dimensional (2-D and a three-dimensional (3-D electrostatic potential solution. For the 3-D potential solution, two cases are considered for parallel plasma transport: (1 transport based on the parallel ambipolar field, and (2 transport based on the parallel electric field. The results show that the growth rate of the generalized Rayleigh–Taylor instability is not affected by the choice of the potential solution. However, differences are observed in the structures of the irregularities between the 2-D and 3-D solutions. Additionally, the plasma velocity along the geomagnetic field computed using the full 3-D solution shows complex structures that are not captured by the simplified model. This points out that only the full 3-D model is able to fully capture the complex physics of the equatorial F region.

  14. Iterative Two- and One-Dimensional Methods for Three-Dimensional Neutron Diffusion Calculations

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Deokjung; Downar, Thomas J.

    2005-01-01

    Two methods are proposed for solving the three-dimensional neutron diffusion equation by iterating between solutions of the two-dimensional (2-D) radial and one-dimensional (1-D) axial solutions. In the first method, the 2-D/1-D equations are coupled using a current correction factor (CCF) with the average fluxes of the lower and upper planes and the axial net currents at the plane interfaces. In the second method, an analytic expression for the axial net currents at the interface of the planes is used for planar coupling. A comparison of the new methods is made with two previously proposed methods, which use interface net currents and partial currents for planar coupling. A Fourier convergence analysis of the four methods was performed, and results indicate that the two new methods have at least three advantages over the previous methods. First, the new methods are unconditionally stable, whereas the net current method diverges for small axial mesh size. Second, the new methods provide better convergence performance than the other methods in the range of practical mesh sizes. Third, the spectral radii of the new methods asymptotically approach zero as the mesh size increases, while the spectral radius of the partial current method approaches a nonzero value as the mesh size increases. Of the two new methods proposed here, the analytic method provides a smaller spectral radius than the CCF method, but the CCF method has several advantages over the analytic method in practical applications

  15. Accuracy of both virtual and printed 3-dimensional models for volumetric measurement of alveolar clefts before grafting with alveolar bone compared with a validated algorithm: a preliminary investigation.

    Science.gov (United States)

    Kasaven, C P; McIntyre, G T; Mossey, P A

    2017-01-01

    Our objective was to assess the accuracy of virtual and printed 3-dimensional models derived from cone-beam computed tomographic (CT) scans to measure the volume of alveolar clefts before bone grafting. Fifteen subjects with unilateral cleft lip and palate had i-CAT cone-beam CT scans recorded at 0.2mm voxel and sectioned transversely into slices 0.2mm thick using i-CAT Vision. Volumes of alveolar clefts were calculated using first a validated algorithm; secondly, commercially-available virtual 3-dimensional model software; and finally 3-dimensional printed models, which were scanned with microCT and analysed using 3-dimensional software. For inter-observer reliability, a two-way mixed model intraclass correlation coefficient (ICC) was used to evaluate the reproducibility of identification of the cranial and caudal limits of the clefts among three observers. We used a Friedman test to assess the significance of differences among the methods, and probabilities of less than 0.05 were accepted as significant. Inter-observer reliability was almost perfect (ICC=0.987). There were no significant differences among the three methods. Virtual and printed 3-dimensional models were as precise as the validated computer algorithm in the calculation of volumes of the alveolar cleft before bone grafting, but virtual 3-dimensional models were the most accurate with the smallest 95% CI and, subject to further investigation, could be a useful adjunct in clinical practice. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Searching for quantum solitons in a (3+1)-dimensional chiral Yukawa model

    International Nuclear Information System (INIS)

    Farhi, E.; Graham, N.; Jaffe, R.L.; Weigel, H.

    2002-01-01

    We search for static solitons stabilized by heavy fermions in a (3+1)-dimensional Yukawa model. We compute the renormalized energy functional, including the exact one-loop quantum corrections, and perform a variational search for configurations that minimize the energy for a fixed fermion number. We compute the quantum corrections using a phase shift parameterization, in which we renormalize by identifying orders of the Born series with corresponding Feynman diagrams. For higher-order terms in the Born series, we develop a simplified calculational method. When applicable, we use the derivative expansion to check our results. We observe marginally bound configurations at large Yukawa coupling, and discuss their interpretation as soliton solutions subject to general limitations of the model

  17. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Suzuki, Osamu; Seo, Yuji [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Isohashi, Fumiaki [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan)

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  18. Calculation of nonstationary two-dimensional temperature field in a tube wall in burnout

    International Nuclear Information System (INIS)

    Kashcheev, V.M.; Pykhtina, T.V.; Yur'ev, Yu.S.

    1977-01-01

    Numerically solved is a nonstationary two-dimensional equation of heat conduction for a tube wall of fuel element simulator with arbitrary energy release. The tube is heat-insulated from the outside. The vapour-liquid mixture flows inside the tube. The burnout is realized, when the heat transfer coefficient corresponds to the developed boiling in one part of the tube, and to the deteriorated regime in the other part of it. The thermal losses are regarded on both ends of the tube. Given are the statement of the problem, the algorithm of the solution, the results of the test adjusting problem. Obtained is the satisfactory agreement of calculated fixed temperature with experimental one

  19. DenInv3D: a geophysical software for three-dimensional density inversion of gravity field data

    Science.gov (United States)

    Tian, Yu; Ke, Xiaoping; Wang, Yong

    2018-04-01

    This paper presents a three-dimensional density inversion software called DenInv3D that operates on gravity and gravity gradient data. The software performs inversion modelling, kernel function calculation, and inversion calculations using the improved preconditioned conjugate gradient (PCG) algorithm. In the PCG algorithm, due to the uncertainty of empirical parameters, such as the Lagrange multiplier, we use the inflection point of the L-curve as the regularisation parameter. The software can construct unequally spaced grids and perform inversions using such grids, which enables changing the resolution of the inversion results at different depths. Through inversion of airborne gradiometry data on the Australian Kauring test site, we discovered that anomalous blocks of different sizes are present within the study area in addition to the central anomalies. The software of DenInv3D can be downloaded from http://159.226.162.30.

  20. 10 CFR 474.3 - Petroleum-equivalent fuel economy calculation.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Petroleum-equivalent fuel economy calculation. 474.3..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.3 Petroleum-equivalent fuel economy calculation. (a) The petroleum-equivalent fuel economy for an electric vehicle is...

  1. Note on 3-dimensional Regge calculus

    International Nuclear Information System (INIS)

    Soda, Jiro

    1991-01-01

    We shall study 3-dimensional Regge calculus with concentrating the role of the Bianchi identity. As a result, the number of the physical variables is determined to be 12g - 12(g > 1). The reason why Rocek and Williams derived the exact result of Deser, Jackiw and 'tHooft is clarified. (author)

  2. Initialization bias suppression in iterative Monte Carlo calculations: benchmarks on criticality calculation

    International Nuclear Information System (INIS)

    Richet, Y.; Jacquet, O.; Bay, X.

    2005-01-01

    The accuracy of an Iterative Monte Carlo calculation requires the convergence of the simulation output process. The present paper deals with a post processing algorithm to suppress the transient due to initialization applied on criticality calculations. It should be noticed that this initial transient suppression aims only at obtaining a stationary output series, then the convergence of the calculation needs to be guaranteed independently. The transient suppression algorithm consists in a repeated truncation of the first observations of the output process. The truncation of the first observations is performed as long as a steadiness test based on Brownian bridge theory is negative. This transient suppression method was previously tuned for a simplified model of criticality calculations, although this paper focuses on the efficiency on real criticality calculations. The efficiency test is based on four benchmarks with strong source convergence problems: 1) a checkerboard storage of fuel assemblies, 2) a pin cell array with irradiated fuel, 3) 3 one-dimensional thick slabs, and 4) an array of interacting fuel spheres. It appears that the transient suppression method needs to be more widely validated on real criticality calculations before any blind using as a post processing in criticality codes

  3. 3D field calculation of the GEM prototype magnet and comparison with measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lari, R.J.

    1983-10-28

    The proposed 4 GeV Electron Microtron (GEM) is designed to fill the existing buildings left vacant by the demise of the Zero Gradient Synchrotron (ZGS) accelerator. One of the six large dipole magnets is shown as well as the first 10 electron orbits. A 3-orbit prototype magnet has been built. The stepped edge of the magnet is to keep the beam exiting perpendicular to the pole. The end guards that wrap around the main coils are joined together by the 3 shield plates. The auxiliary coils are needed to keep the end guards and shield plates from saturating. A 0.3 cm Purcell filter air gap exists between the pole and the yoke. Can anyone question this being a truly three-dimensional magnetostatic problem. The computer program TOSCA, developed at the Rutherford Appleton Laboratory by the Computing Applications Group, was used to calculate this magnet and the results have been compared with measurements.

  4. 3D field calculation of the GEM prototype magnet and comparison with measurements

    International Nuclear Information System (INIS)

    Lari, R.J.

    1983-01-01

    The proposed 4 GeV Electron Microtron (GEM) is designed to fill the existing buildings left vacant by the demise of the Zero Gradient Synchrotron (ZGS) accelerator. One of the six large dipole magnets is shown as well as the first 10 electron orbits. A 3-orbit prototype magnet has been built. The stepped edge of the magnet is to keep the beam exiting perpendicular to the pole. The end guards that wrap around the main coils are joined together by the 3 shield plates. The auxiliary coils are needed to keep the end guards and shield plates from saturating. A 0.3 cm Purcell filter air gap exists between the pole and the yoke. Can anyone question this being a truly three-dimensional magnetostatic problem. The computer program TOSCA, developed at the Rutherford Appleton Laboratory by the Computing Applications Group, was used to calculate this magnet and the results have been compared with measurements

  5. Fabrication, Characterization, Properties, and Applications of Low-Dimensional BiFeO3 Nanostructures

    Directory of Open Access Journals (Sweden)

    Heng Wu

    2014-01-01

    Full Text Available Low-dimensional BiFeO3 nanostructures (e.g., nanocrystals, nanowires, nanotubes, and nanoislands have received considerable attention due to their novel size-dependent properties and outstanding multiferroic properties at room temperature. In recent years, much progress has been made both in fabrications and (microstructural, electrical, and magnetic in characterizations of BiFeO3 low-dimensional nanostructures. An overview of the state of art in BiFeO3 low-dimensional nanostructures is presented. First, we review the fabrications of high-quality BiFeO3 low-dimensional nanostructures via a variety of techniques, and then the structural characterizations and physical properties of the BiFeO3 low-dimensional nanostructures are summarized. Their potential applications in the next-generation magnetoelectric random access memories and photovoltaic devices are also discussed. Finally, we conclude this review by providing our perspectives to the future researches of BiFeO3 low-dimensional nanostructures and some key problems are also outlined.

  6. Prediction of two-dimensional electron gas mediated magnetoelectric coupling at ferroelectric PbTiO3/SrTiO3 heterostructures

    Science.gov (United States)

    Wei, Lan-ying; Lian, Chao; Meng, Sheng

    2017-05-01

    First-principles calculations predict the emergence of magnetoelectric coupling mediated by two-dimensional electron gas (2DEG) at the ferroelectric PbTiO3/SrTiO3 heterostructure. Free electrons endowed by naturally existing oxygen vacancies in SrTiO3 are driven to the heterostructure interface under the polarizing field of ferroelectric PbTiO3 to form a 2DEG. The electrons are captured by interfacial Ti atoms, which surprisingly exhibits ferromagnetism even at room temperature with a small critical density of ˜15.5 μ C /cm2 . The ferroelectricity-controlled ferromagnetism mediated by interfacial 2DEG shows strong magnetoelectric coupling strength, enabling convenient control of magnetism by electric field and vice versa. The PbTiO3/SrTiO3 heterostructure is cheap, easily grown, and controllable, promising future applications in low-cost spintronics and information storage at ambient condition.

  7. DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, R.D.

    1983-03-01

    A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code.

  8. MAGNUS-3D: Accelerator magnet calculations in 3-dimensions

    Science.gov (United States)

    Pissanetzky, S.

    1988-12-01

    MAGNUS-3D is a professional finite element code for nonlinear magnetic engineering. MAGNUS-3D can solve numerically any general problem of linear or nonlinear magnetostatics in three dimensions. The problem is formulated in a domain with Dirichlet, Neumann or periodic boundary conditions, that can contain any combination of conductors of any shape in space, nonlinear magnetic materials with magnetic properties specified by magnetization tables, and nonlinear permanent magnets with any given demagnetization curve. MAGNUS-3D uses the two-scalar-potentials formulation of Magnetostatics and the finite element method, has an automatic 3D mesh generator, and advanced post-processing features that include graphics on a variety of supported devices, tabulation, and calculation of design quantities required in Magnetic Engineering. MAGNUS-3D is a general purpose 3D code, but it has been extensively used for accelerator work and many special features required for accelerator engineering have been incorporated into the code. One of such features is the calculation of field harmonic coefficients averaged in the direction of the beam, so important for the design of magnet ends. Another feature is its ability to calculate line integrals of any field component along the direction of the beam, or plot the field as a function of the z coordinate. MAGNUS-3D has found applications to the design of accelerator magnets and spectrometers, steering magnets, wigglers and undulators for free electron lasers, microtrons and magnets for synchrotron light sources, as well as magnets for NMR and medical applications, recording heads and various magnetic devices. There are three more programs closely associated with MAGNUS-3D. MAGNUS-GKS is the graphical postprocessor for the package; it supports a numer of output devices, including color vector or bit map devices. WIRE is an independent program that can calculate the field produced by any configuration of electric conductors in space, at any

  9. A Fortran program (RELAX3D) to solve the 3 dimensional Poisson (Laplace) equation

    International Nuclear Information System (INIS)

    Houtman, H.; Kost, C.J.

    1983-09-01

    RELAX3D is an efficient, user friendly, interactive FORTRAN program which solves the Poisson (Laplace) equation Λ 2 =p for a general 3 dimensional geometry consisting of Dirichlet and Neumann boundaries approximated to lie on a regular 3 dimensional mesh. The finite difference equations at these nodes are solved using a successive point-iterative over-relaxation method. A menu of commands, supplemented by HELP facility, controls the dynamic loading of the subroutine describing the problem case, the iterations to converge to a solution, and the contour plotting of any desired slices, etc

  10. Three-dimensional space-charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1980-09-01

    A method is presented for calculating space-charge forces on individual particles in a particle tracing simulation code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface. When the boundary condition is defined by an impressed radio-frequency field, the external electric fields as well as the space-charge fields are determined. A least squares fitting procedure is used to calculate the coefficients of expansion functions, which need not be orthogonal nor individually satisfy the boundary condition

  11. Methodology of calculation in one-dimensional kinetic

    International Nuclear Information System (INIS)

    Paixao, S.B.; Marzo, M.A.S.; Alvim, A.C.M.

    1986-01-01

    This paper resulted from a study of the WIGLE's program calculation method ]1], which is RESTRICTED to USA users. In view of this fact, a successful attempt was made to fully understand and reproduce the WIGLE methodology, thus providing support for national development on the subject. After finishing the theoretical study, CITER-1D, a program for search of control rod position in PWR slabs under steady-state conditions was written and is supposed to correctly reproduce WIGL3 ]4] version behavior. Program restriction to steady-state conditions was due to scarcity of examples, thought to be intentional, as well as to time limitations for conclusion of a M.Sc. Thesis ]2], which originated this work. Results obtained with CITER-1D agree very well with the ones found in the the available literature pertaining to WIGL3. Further work on CITER-1D is being pursued, in order to complete the program. (Author) [pt

  12. The FLUKA atmospheric neutrino flux calculation

    CERN Document Server

    Battistoni, G.; Montaruli, T.; Sala, P.R.

    2003-01-01

    The 3-dimensional (3-D) calculation of the atmospheric neutrino flux by means of the FLUKA Monte Carlo model is here described in all details, starting from the latest data on primary cosmic ray spectra. The importance of a 3-D calculation and of its consequences have been already debated in a previous paper. Here instead the focus is on the absolute flux. We stress the relevant aspects of the hadronic interaction model of FLUKA in the atmospheric neutrino flux calculation. This model is constructed and maintained so to provide a high degree of accuracy in the description of particle production. The accuracy achieved in the comparison with data from accelerators and cross checked with data on particle production in atmosphere certifies the reliability of shower calculation in atmosphere. The results presented here can be already used for analysis by current experiments on atmospheric neutrinos. However they represent an intermediate step towards a final release, since this calculation does not yet include the...

  13. Tunneling currents between carbon nanotubes inside the 3-dimensional potential of a dielectric matrix

    Directory of Open Access Journals (Sweden)

    M. S. Tsagarakis

    2017-07-01

    Full Text Available We have examined the tunneling currents between CNTs dispersed in a dielectric matrix as is normally the case in a tensile stress or toxic gas sensors. Due to the randomness of the immersion process the CNTs are at random angles and configurations between them, thus producing a 3-dimensional potential (3-D. We have produced a method that solves the Laplace equation for this type of problem and uses the WKB formulation to calculate the transmission coefficient between CNTs. We have then shown that the tunneling currents between a pair of CNTs depend critically on their relative angle and configuration. In particular we have shown that the tunneling currents do not occur only along a CNT tip to CNT tip configuration but other more efficient paths exist which give a current higher by two orders of magnitude from what a simple 1D theory would give. On the other hand the tunneling current between non-coplanar CNTs is negligible. We conclude that such phenomena cannot be analyzed by a simple 1-dimensional WKB theory and the percolation threshold necessary for conduction may be lower than the one such a theory would predict.

  14. Development of a reactivity worth correction scheme for the one-dimensional transient analysis

    International Nuclear Information System (INIS)

    Cho, J. Y.; Song, J. S.; Joo, H. G.; Kim, H. Y.; Kim, K. S.; Lee, C. C.; Zee, S. Q.

    2003-11-01

    This work is to develop a reactivity worth correction scheme for the MASTER one-dimensional (1-D) calculation model. The 1-D cross section variations according to the core state in the MASTER input file, which are produced for 1-D calculation performed by the MASTER code, are incorrect in most of all the core states except for exactly the same core state where the variations are produced. Therefore this scheme performs the reactivity worth correction factor calculations before the main 1-D transient calculation, and generates correction factors for boron worth, Doppler and moderator temperature coefficients, and control rod worth, respectively. These correction factors force the one dimensional calculation to generate the same reactivity worths with the 3-dimensional calculation. This scheme is applied to the control bank withdrawal accident of Yonggwang unit 1 cycle 14, and the performance is examined by comparing the 1-D results with the 3-D results. This problem is analyzed by the RETRAN-MASTER consolidated code system. Most of all results of 1-D calculation including the transient power behavior, the peak power and time are very similar with the 3-D results. In the MASTER neutronics computing time, the 1-D calculation including the correction factor calculation requires the negligible time comparing with the 3-D case. Therefore, the reactivity worth correction scheme is concluded to be very good in that it enables the 1-D calculation to produce the very accurate results in a few computing time

  15. 1D to 3D dimensional crossover in the superconducting transition of the quasi-one-dimensional carbide superconductor Sc3CoC4.

    Science.gov (United States)

    He, Mingquan; Wong, Chi Ho; Shi, Dian; Tse, Pok Lam; Scheidt, Ernst-Wilhelm; Eickerling, Georg; Scherer, Wolfgang; Sheng, Ping; Lortz, Rolf

    2015-02-25

    The transition metal carbide superconductor Sc(3)CoC(4) may represent a new benchmark system of quasi-one-dimensional (quasi-1D) superconducting behavior. We investigate the superconducting transition of a high-quality single crystalline sample by electrical transport experiments. Our data show that the superconductor goes through a complex dimensional crossover below the onset T(c) of 4.5 K. First, a quasi-1D fluctuating superconducting state with finite resistance forms in the [CoC(4)](∞) ribbons which are embedded in a Sc matrix in this material. At lower temperature, the transversal Josephson or proximity coupling of neighboring ribbons establishes a 3D bulk superconducting state. This dimensional crossover is very similar to Tl(2)Mo(6)Se(6), which for a long time has been regarded as the most appropriate model system of a quasi-1D superconductor. Sc(3)CoC(4) appears to be even more in the 1D limit than Tl(2)Mo(6)Se(6).

  16. Convergence acceleration of two-phase flow calculations in FLICA-4. A thermal-hydraulic 3D computer code

    International Nuclear Information System (INIS)

    Toumi, I.

    1995-01-01

    Time requirements for 3D two-phase flow steady state calculations are generally long. Usually, numerical methods for steady state problems are iterative methods consisting in time-like methods that are marched to a steady state. Based on the eigenvalue spectrum of the iteration matrix for various flow configuration, two convergence acceleration techniques are discussed; over-relaxation and eigenvalue annihilation. This methods were applied to accelerate the convergence of three dimensional steady state two-phase flow calculations within the FLICA-4 computer code. These acceleration methods are easy to implement and no extra computer memory is required. Successful results are presented for various test problems and a saving of 30 to 50 % in CPU time have been achieved. (author). 10 refs., 4 figs

  17. Hyperfine 3D neutronic calculations in CANDU supercells

    International Nuclear Information System (INIS)

    Balaceanu, V.; Aioanei, L.; Pavelescu, M.

    2010-01-01

    For an accurate evaluation of the fuel performances, it is very important to have capability to calculate the three dimensional spatial flux distributions in the fuel bundle. According this issue, in our Institute, a multigroup calculation methodology named WIMS-PIJXYZ was especially developed for estimating the local neutronic parameters in CANDU cell/supercells. The objective of this paper is to present this calculation methodology and to use it in performing some hyperfine neutronic calculations in CANDU type supercells. More exactly, after a short description for the WIMS-PIJXYZ methodology, the end effect for some CANDU fuel bundles is estimated. The WIMS-PIJXYZ methodology is based on WIMS and PIJXYZ transport codes. WIMS is a standard lattice-cell code and it is used for generating the multigroup macroscopic cross sections for the materials in the fuel cells. For obtaining the flux and power distributions in CANDU fuel bundles the PIJXYZ code is used. This code is consistent with WIMS lattice-cell calculations and allows a good geometrical representation of the CANDU bundle in three dimensions. The end effect consists in the increasing of the thermal neutron flux in the end region and the increasing of power in the end of the fuel rod. The region separating the CANDU fuel in two adjoining bundles in a channel is called the 'end region' and the end of the last pellet in the fuel stack adjacent to the end region is called the 'fuel end'. The end effect appears because the end region of the bundle is made up of coolant and Zircaloy-4, a very low neutron absorption material. To estimate the end effect, the flux peaking factors and the power peaking factors are calculated. It was taken in consideration CANDU Standard (Natural Uranium, with 37 elements) fuel bundles. In the end of the paper, the results obtained by WIMS-PIJXYZ methodology with the similar LEGENTR results are compared. The comparative analysis shows a good agreement. (authors)

  18. Dirac and Weyl fermion dynamics on two-dimensional surface

    International Nuclear Information System (INIS)

    Kavalov, A.R.; Sedrakyan, A.G.; Kostov, I.K.

    1986-01-01

    Fermions on 2-dimensional surface, embedded into a 3-dimensional space are investigated. The determinant of induced Dirac operator for the Dirac and Weyl fermions is calculated. The reparametrization-invariant effective action is determined by conformal anomaly (giving Liouville action) and also by Lorentz anomaly leading to Wess-Zumino term, the structure of which at d=3 is determined by the Hopf topological invariant of the S 3 → S 2 map

  19. Three-dimensional Monte Carlo calculations of the neutron and γ-ray fluences in the TFTR diagnostic basement and comparisons with measurements

    International Nuclear Information System (INIS)

    Liew, S.L.; Ku, L.P.; Kolibal, J.G.

    1985-10-01

    Realistic calculations of the neutron and γ-ray fluences in the TFTR diagnostic basement have been carried out with three-dimensional Monte Carlo models. Comparisons with measurements show that the results are well within the experimental uncertainties

  20. FINEDAN - an explicit finite-element calculation code for two-dimensional analyses of fast dynamic transients in nuclear reactor technology

    International Nuclear Information System (INIS)

    Adamik, V.; Matejovic, P.

    1989-01-01

    The problems are discussed of nonstationary, nonlinear dynamics of the continuum. A survey is presented of calculation methods in the given area with emphasis on the area of impact problems. A description is presented of the explicit finite elements method and its application to two-dimensional Cartesian and cylindrical configurations. Using the method the explicit calculation code FINEDAN was written which was tested in a series of verification calculations for different configurations and different types of continuum. The main characteristics are presented of the code and of some, of its practical applications. Envisaged trends of the development of the code and its possible applications in the technology of nuclear reactors are given. (author). 9 figs., 4 tabs., 10 refs

  1. Cluster expression in fission and fusion in high-dimensional macroscopic-microscopic calculations

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Ichikawa, Takatoshi; Moller, Peter; Sierk, Arnold J.

    2004-01-01

    We discuss the relation between the fission-fusion potential-energy surfaces of very heavy nuclei and the formation process of these nuclei in cold-fusion reactions. In the potential-energy surfaces, we find a pronounced valley structure, with one valley corresponding to the cold-fusion reaction, the other to fission. As the touching point is approached in the cold-fusion entrance channel, an instability towards dynamical deformation of the projectile occurs, which enhances the fusion cross section. These two 'cluster effects' enhance the production of superheavy nuclei in cold-fusion reactions, in addition to the effect of the low compound-system excitation energy in these reactions. Heavy-ion fusion reactions have been used extensively to synthesize heavy elements beyond actinide nuclei. In order to proceed further in this direction, we need to understand the formation process more precisely, not just the decay process. The dynamics of the formation process are considerably more complex than the dynamics necessary to interpret the spontaneous-fission decay of heavy elements. However, before implementing a full dynamical description it is useful to understand the basic properties of the potential-energy landscape encountered in the initial stages of the collision. The collision process and entrance-channel landscape can conveniently be separated into two parts, namely the early-stage separated system before touching and the late-stage composite system after touching. The transition between these two stages is particularly important, but not very well understood until now. To understand better the transition between the two stages we analyze here in detail the potential energy landscape or 'collision surface' of the system both outside and inside the touching configuration of the target and projectile. In Sec. 2, we discuss calculated five-dimensional potential-energy landscapes inside touching and identify major features. In Sec. 3, we present calculated

  2. Optimization of an algorithm for 3D calculation of radiation dose distribution in heterogeneous media for use in radiotherapy planning

    International Nuclear Information System (INIS)

    Perles, L.A.; Chinellato, C.D.; Rocha, J.R.O.

    2001-01-01

    In this paper has been presented a modification of a algorithm for three-dimensional (3D) radiation dose distribution in heterogeneous media by convolutions. This modification has maintained good accordance between calculated and simulated data in EGS4 code. The results of algorithm have been compared with commercial program PLATO, where have been noticed inconsistency for equivalent density regions in a muscle-lung-muscle interface system

  3. Observation of non-linear effects in a quasi-one-dimensional antiferromagnet: magnetic excitations in CsVCl sub 3

    CERN Document Server

    Inami, T; Tanaka, H

    1997-01-01

    The spin dynamics of the hexagonal ABX sub 3 -type quasi-one-dimensional antiferromagnet CsVCl sub 3 is investigated by means of an inelastic neutron scattering technique. In good qualitative agreement with a recent spin-wave calculation including higher-order terms, a large scattering cross-section arising from two-magnon excitations is observed at the one-dimensional antiferromagnetic zone centre. In addition, we measured spin-wave excitations between the chains precisely and revealed that the spin-wave dispersion curves are modified in energy and in intensity on account of the anticrossing between the one-magnon branches and two-magnon continuum. These results demonstrate that anharmonic terms are important in the spin dynamics of CsVCl sub 3 even at low temperatures. We also measured the temperature dependence of the magnetic excitations and found that far above the Neel temperature the two-magnon process gives a considerable contribution to the inelastic spectrum. (author)

  4. Calculation of fluences of fast neutrons hitting the pressure vessel of the Dukovany NPP WWER-440 reactor. Part I. Theory, calculations, comparison with the experiment

    International Nuclear Information System (INIS)

    Rataj, J.

    1993-10-01

    The method of calculating neutron spectra and integral flux densities of neutrons hitting the pressure vessel of the Dukovany NPP WWER-440 reactor is outlined. The one-dimensional and two-dimensional calculations were performed by means of the DORT code in R, R-Z, and R-Θ geometries using the cross sections from the ELXSIR library. In the R-Θ geometry, the coupled neutron flux densities were determined. The calculated values of the maximum activation of detectors differ less than 15% from the values measured in surveillance specimens, which is within the limit of uncertainty associated with the position of the detector in the casing. The differences between the calculated and observed data behind the pressure vessel were below 4%. 10 tabs., 3 figs., 41 refs

  5. Epitaxial engineering of polar ɛ-Ga2O3 for tunable two-dimensional electron gas at the heterointerface

    Science.gov (United States)

    Cho, Sung Beom; Mishra, Rohan

    2018-04-01

    We predict the formation of a polarization-induced two-dimensional electron gas (2DEG) at the interface of ɛ-Ga2O3 and CaCO3, wherein the density of the 2DEG can be tuned by reversing the spontaneous polarization in ɛ-Ga2O3, for example, with an applied electric field. ɛ-Ga2O3 is a polar and metastable ultra-wide band-gap semiconductor. We use density-functional theory (DFT) calculations and coincidence-site lattice model to predict the region of epitaxial strain under which ɛ-Ga2O3 can be stabilized over its other competing polymorphs and suggest promising substrates. Using group-theoretical methods and DFT calculations, we show that ɛ-Ga2O3 is a ferroelectric material where the spontaneous polarization can be reversed through a non-polar phase by using an electric field. Based on the calculated band alignment of ɛ-Ga2O3 with various substrates, we show the formation of a 2DEG with a high sheet charge density of 1014 cm-2 at the interface with CaCO3 due to the spontaneous and piezoelectric polarization in ɛ-Ga2O3, which makes the system attractive for high-power and high-frequency applications.

  6. The Origin of Chern-Simons Modified Gravity from an 11 + 3-Dimensional Manifold

    Directory of Open Access Journals (Sweden)

    J. A. Helayël-Neto

    2017-01-01

    Full Text Available It is our aim to show that the Chern-Simons terms of modified gravity can be understood as generated by the addition of a 3-dimensional algebraic manifold to an initial 11-dimensional space-time manifold; this builds up an 11+3-dimensional space-time. In this system, firstly, some fields living in the bulk join the fields that live on the 11-dimensional manifold, so that the rank of the gauge fields exceeds the dimension of the algebra; consequently, there emerges an anomaly. To solve this problem, another 11-dimensional manifold is included in the 11+3-dimensional space-time, and it interacts with the initial manifold by exchanging Chern-Simon fields. This mechanism is able to remove the anomaly. Chern-Simons terms actually produce an extra manifold in the pair of 11-dimensional manifolds of the 11+3-space-time. Summing up the topology of both the 11-dimensional manifolds and the topology of the exchanged Chern-Simons manifold in the bulk, we conclude that the total topology shrinks to one, which is in agreement with the main idea of the Big Bang theory.

  7. Development of a multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3 and its verification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    A multi-dimensional realistic thermal-hydraulic system analysis code, MARS version 1.3 has been developed. Main purpose of MARS 1.3 development is to have the realistic analysis capability of transient two-phase thermal-hydraulics of Pressurized Water Reactors (PWRs) especially during Large Break Loss of Coolant Accidents (LBLOCAs) where the multi-dimensional phenomena domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, three-dimensional (3D) reactor vessel analysis code, and RELAP5/MOD3.2.1.2, one-dimensional (1D) reactor system analysis code., Developmental requirements for MARS are chosen not only to best utilize the existing capability of the codes but also to have the enhanced capability in code maintenance, user accessibility, user friendliness, code portability, code readability, and code flexibility. For the maintenance of existing codes capability and the enhancement of code maintenance capability, user accessibility and user friendliness, MARS has been unified to be a single code consisting of 1D module (RELAP5) and 3D module (COBRA-TF). This is realized by implicitly integrating the system pressure matrix equations of hydrodynamic models and solving them simultaneously, by modifying the 1D/3D calculation sequence operable under a single Central Processor Unit (CPU) and by unifying the input structure and the light water property routines of both modules. In addition, the code structure of 1D module is completely restructured using the modular data structure of standard FORTRAN 90, which greatly improves the code maintenance capability, readability and portability. For the code flexibility, a dynamic memory management scheme is applied in both modules. MARS 1.3 now runs on PC/Windows and HP/UNIX platforms having a single CPU, and users have the options to select the 3D module to model the 3D thermal-hydraulics in the reactor vessel or other

  8. Dimensional accuracy of 3D printed vertebra

    Science.gov (United States)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  9. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ethan, E-mail: ethan.davis4@huskers.unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States); Liu, Ying; Jiang, Lijia; Lu, Yongfeng [Laser Assisted Nano Engineering Lab, Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE 68588-0511 (United States); Ndao, Sidy, E-mail: sndao2@unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States)

    2017-01-15

    Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  10. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    International Nuclear Information System (INIS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  11. New Three-Dimensional Neutron Transport Calculation Capability in STREAM Code

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Youqi [Xi' an Jiaotong University, Xi' an (China); Choi, Sooyoung; Lee, Deokjung [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    The method of characteristics (MOC) is one of the best choices for its powerful capability in the geometry modeling. To reduce the large computational burden in 3D MOC, the 2D/1D schemes were proposed and have achieved great success in the past 10 years. However, such methods have some instability problems during the iterations when the neutron leakage for axial direction is large. Therefore, full 3D MOC methods were developed. A lot of efforts have been devoted to reduce the computational costs. However, it still requires too much memory storage and computational time for the practical modeling of a commercial size reactor core. Recently, a new approach for the 3D MOC calculation without transverse integration has been implemented in the STREAM code. In this approach, the angular flux is expressed as a basis function expansion form of only axial variable z. A new approach based on the axial expansion and 2D MOC sweeping to solve the 3D neutron transport equation is implemented in the STREAM code. This approach avoids using the transverse integration in the traditional 2D/1D scheme of MOC calculation. By converting the 3D equation into the 2D form of angular flux expansion coefficients, it also avoids the complex 3D ray tracing. Current numerical tests using two benchmarks show good accuracy of the new method.

  12. SOME PROBLEMS ON JUMP CONDITIONS OF SHOCK WAVES IN 3-DIMENSIONAL SOLIDS

    Institute of Scientific and Technical Information of China (English)

    LI Yong-chi; YAO Lei; HU Xiu-zhang; CAO Jie-dong; DONG Jie

    2006-01-01

    Based on the general conservation laws in continuum mechanics, the Eulerian and Lagrangian descriptions of the jump conditions of shock waves in 3-dimensional solids were presented respectively. The implication of the jump conditions and their relations between each other, particularly the relation between the mass conservation and the displacement continuity, were discussed. Meanwhile the shock wave response curves in 3-dimensional solids, i.e. the Hugoniot curves were analysed, which provide the foundation for studying the coupling effects of shock waves in 3-dimensional solids.

  13. Whole core pin-by-pin coupled neutronic-thermal-hydraulic steady state and transient calculations using COBAYA3 code

    International Nuclear Information System (INIS)

    Jimenez, J.; Herrero, J. J.; Cuervo, D.; Aragones, J. M.

    2010-10-01

    Nowadays coupled 3-dimensional neutron kinetics and thermal-hydraulic core calculations are performed by applying a radial average channel approach using a meshing of one quarter of assembly in the best case. This approach does not take into account the subchannels effects due to the averaging of the physical fields and the loose of heterogeneity in the thermal-hydraulic model. Therefore the models do not have enough resolution to predict those subchannels effects which are important for the fuel design safety margins, because it is in the local scale, where we can search the hottest pellet or the maximum heat flux. The Polytechnic University of Madrid advanced multi-scale neutron-kinetics and thermal-hydraulics methodologies being implemented in COBAYA3 include domain decomposition by alternate core dissections for the local 3-dimensional fine-mesh scale problems (pin cells/subchannels) and an analytical nodal diffusion solver for the coarse mesh scale coupled with the thermal-hydraulic using a model of one channel per assembly or per quarter of assembly. In this work, we address the domain decomposition by the alternate core dissections methodology applied to solve coupled 3-dimensional neutronic-thermal-hydraulic problems at the fine-mesh scale. The neutronic-thermal-hydraulic coupling at the cell-subchannel scale allows the treatment of the effects of the detailed thermal-hydraulic feedbacks on cross-sections, thus resulting in better estimates of the local safety margins at the pin level. (Author)

  14. Efficient Finite Element Models for Calculation of the No-load losses of the Transformer

    Directory of Open Access Journals (Sweden)

    Kamran Dawood

    2017-10-01

    Full Text Available Different transformer models are examined for the calculation of the no-load losses using finite element analysis. Two-dimensional and three-dimensional finite element analyses are used for the simulation of the transformer. Results of the finite element method are also compared with the experimental results. The Result shows that 3-dimensional provide high accuracy as compared to the 2 dimensional full and half model. However, the 2-dimensional half model is the less time-consuming method as compared to the 3 and 2-dimensional full model. Simulation time duration taken by the different models of the transformer is also compared. The difference between the 3-dimensional finite element method and experimental results are less than 3%. These numerical methods can help transformer designers to minimize the development of the prototype transformers.

  15. FLUST-2D - A computer code for the calculation of the two-dimensional flow of a compressible medium in coupled retangular areas

    International Nuclear Information System (INIS)

    Enderle, G.

    1979-01-01

    The computer-code FLUST-2D is able to calculate the two-dimensional flow of a compressible fluid in arbitrary coupled rectangular areas. In a finite-difference scheme the program computes pressure, density, internal energy and velocity. Starting with a basic set of equations, the difference equations in a rectangular grid are developed. The computational cycle for coupled fluid areas is described. Results of test calculations are compared to analytical solutions and the influence of time step and mesh size are investigated. The program was used to precalculate the blowdown experiments of the HDR experimental program. Downcomer, plena, internal vessel region, blowdown pipe and a containment area have been modelled two-dimensionally. The major results of the precalculations are presented. This report also contains a description of the code structure and user information. (orig.) [de

  16. Three-dimensional imaging using computer-generated holograms synthesized from 3-D Fourier spectra

    International Nuclear Information System (INIS)

    Yatagai, Toyohiko; Miura, Ken-ichi; Sando, Yusuke; Itoh, Masahide

    2008-01-01

    Computer-generated holograms(CGHs) synthesized from projection images of real existing objects are considered. A series of projection images are recorded both vertically and horizontally with an incoherent light source and a color CCD. According to the principles of computer tomography(CT), the 3-D Fourier spectrum is calculated from several projection images of objects and the Fresnel CGH is synthesized using a part of the 3-D Fourier spectrum. This method has following advantages. At first, no-blur reconstructed images in any direction are obtained owing to two-dimensionally scanning in recording. Secondarily, since not interference fringes but simple projection images of objects are recorded, a coherent light source is not necessary. Moreover, when a color CCD is used in recording, it is easily possible to record and reconstruct colorful objects. Finally, we demonstrate reconstruction of biological objects.

  17. Three-dimensional imaging using computer-generated holograms synthesized from 3-D Fourier spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yatagai, Toyohiko; Miura, Ken-ichi; Sando, Yusuke; Itoh, Masahide [University of Tsukba, Institute of Applied Physics, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan)], E-mail: yatagai@cc.utsunomiya-u.ac.jp

    2008-11-01

    Computer-generated holograms(CGHs) synthesized from projection images of real existing objects are considered. A series of projection images are recorded both vertically and horizontally with an incoherent light source and a color CCD. According to the principles of computer tomography(CT), the 3-D Fourier spectrum is calculated from several projection images of objects and the Fresnel CGH is synthesized using a part of the 3-D Fourier spectrum. This method has following advantages. At first, no-blur reconstructed images in any direction are obtained owing to two-dimensionally scanning in recording. Secondarily, since not interference fringes but simple projection images of objects are recorded, a coherent light source is not necessary. Moreover, when a color CCD is used in recording, it is easily possible to record and reconstruct colorful objects. Finally, we demonstrate reconstruction of biological objects.

  18. Aorta cross-section calculation and 3D visualization from CT or MRT data using VRML

    Science.gov (United States)

    Grabner, Guenther; Modritsch, Robert; Stiegmaier, Wolfgang; Grasser, Simon; Klinger, Thomas

    2005-04-01

    Quantification of vessel diameters of artherosclerotic or congenital stenosis is very important for the diagnosis of vascular diseases. The aorta extraction and cross-section calculation is a software-based application that offers a three-dimensional, platform-independent, colorized visualization of the extracted aorta with augmented reality information of MRT or CT datasets. This project is based on different types of specialized image processing algorithms, dynamical particle filtering and complex mathematical equations. From this three-dimensional model a calculation of minimal cross sections is performed. In user specified distances, the aorta is cut in differently defined directions which are created through vectors with varying length. The extracted aorta and the derived minimal cross-sections are then rendered with the marching cube algorithm and represented together in a three-dimensional virtual reality with a very high degree of immersion. The aim of this study was to develop an imaging software that delivers cardiologists the possibility of (i) furnishing fast vascular diagnosis, (ii) getting precise diameter information, (iii) being able to process exact, local stenosis detection (iv) having permanent data storing and easy access to former datasets, and (v) reliable documentation of results in form of tables and graphical printouts.

  19. Two dimensional burn-up calculation of TRIGA core

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Slavic, S.

    1996-01-01

    TRIGLAV is a new computer program for burn-up calculation of mixed core of research reactors. The code is based on diffusion model in two dimensions and iterative procedure is applied for its solution. The material data used in the model are calculated with the transport program WIMS. In regard to fission density distribution and energy produced by the reactor the burn-up increment of fuel elements is determined. In this paper the calculation model of diffusion constants and burn-up calculation are described and some results of calculations for TRIGA MARK II reactor are presented. (author)

  20. Use of dynamic 3-dimensional transvaginal and transrectal ultrasonography to assess posterior pelvic floor dysfunction related to obstructed defecation.

    Science.gov (United States)

    Murad-Regadas, Sthela M; Regadas Filho, Francisco Sergio Pinheiro; Regadas, Francisco Sergio Pinheiro; Rodrigues, Lusmar Veras; de J R Pereira, Jacyara; da S Fernandes, Graziela Olivia; Dealcanfreitas, Iris Daiana; Mendonca Filho, Jose Jader

    2014-02-01

    New ultrasound techniques may complement current diagnostic tools, and combined techniques may help to overcome the limitations of individual techniques for the diagnosis of anorectal dysfunction. A high degree of agreement has been demonstrated between echodefecography (dynamic 3-dimensional anorectal ultrasonography) and conventional defecography. Our aim was to evaluate the ability of a combined approach consisting of dynamic 3-dimensional transvaginal and transrectal ultrasonography by using a 3-dimensional biplane endoprobe to assess posterior pelvic floor dysfunctions related to obstructed defecation syndrome in comparison with echodefecography. This was a prospective, observational cohort study conducted at a tertiary-care hospital. Consecutive female patients with symptoms of obstructed defecation were eligible. Each patient underwent assessment of posterior pelvic floor dysfunctions with a combination of dynamic 3-dimensional transvaginal and transrectal ultrasonography by using a biplane transducer and with echodefecography. Kappa (κ) was calculated as an index of agreement between the techniques. Diagnostic accuracy (sensitivity, specificity, and positive and negative predictive values) of the combined technique in detection of posterior dysfunctions was assessed with echodefecography as the standard for comparison. A total of 33 women were evaluated. Substantial agreement was observed regarding normal relaxation and anismus. In detecting the absence or presence of rectocele, the 2 methods agreed in all cases. Near-perfect agreement was found for rectocele grade I, grade II, and grade III. Perfect agreement was found for entero/sigmoidocele, with near-perfect agreement for rectal intussusception. Using echodefecography as the standard for comparison, we found high diagnostic accuracy of transvaginal and transrectal ultrasonography in the detection of posterior dysfunctions. This combined technique should be compared with other dynamic techniques and

  1. HLW Canister and Can-In-Canister Drop Calculation

    International Nuclear Information System (INIS)

    H. Marr

    1999-01-01

    The purpose of this calculation is to evaluate the structural response of the standard high-level waste (HLW) canister and the HLW canister containing the cans of immobilized plutonium (''can-in-canister'' throughout this document) to the drop event during the handling operation. The objective of the calculation is to provide the structure parameter information to support the canister design and the waste handling facility design. Finite element solution is performed using the commercially available ANSYS Version (V) 5.4 finite element code. Two-dimensional (2-D) axisymmetric and three-dimensional (3-D) finite element representations for the standard HLW canister and the can-in-canister are developed and analyzed using the dynamic solver

  2. Dimensional Reduction of N=1, E_8 SYM over SU(3)/U(1) x U(1) x Z_3 and its four-dimensional effective action

    CERN Document Server

    Irges, Nikos; Zoupanos, George

    2011-01-01

    We present an extension of the Standard Model inspired by the E_8 x E_8 Heterotic String. In order that a reasonable effective Lagrangian is presented we neglect everything else other than the ten-dimensional N=1 supersymmetric Yang-Mills sector associated with one of the gauge factors and certain couplings necessary for anomaly cancellation. We consider a compactified space-time M_4 x B_0 / Z_3, where B_0 is the nearly-Kaehler manifold SU(3)/U(1) x U(1) and Z_3 is a freely acting discrete group on B_0. Then we reduce dimensionally the E_8 on this manifold and we employ the Wilson flux mechanism leading in four dimensions to an SU(3)^3 gauge theory with the spectrum of a N=1 supersymmetric theory. We compute the effective four-dimensional Lagrangian and demonstrate that an extension of the Standard Model is obtained with interesting features including a conserved baryon number and fixed tree level Yukawa couplings and scalar potential. The spectrum contains new states such as right handed neutrinos and heavy ...

  3. Numerical and computational aspects of the coupled three-dimensional core/ plant simulations: organization for economic cooperation and development/ U.S. nuclear regulatory commission pressurized water reactor main-steam-line-break benchmark-II. 2. TRAB-3D/SMABRE Calculation of the OECD/ NRC PWR MSLB Benchmark

    International Nuclear Information System (INIS)

    Daavittila, A.; Haemaelaeinen, A.; Kyrki-Rajamaki, R.

    2001-01-01

    All three exercises of the OECD/NRC Pressurized Water Reactor (PWR) Main-Steam-Line-Break (MSLB) Benchmark were calculated at VTT Energy. The SMABRE thermal-hydraulics code was used for the first exercise, the plant simulation with point-kinetics neutronics. The second exercise was calculated with the TRAB-3D three-dimensional reactor dynamics code. The third exercise was calculated with the combination TRAB-3D/SMABRE. Both codes have been developed at VTT Energy. The results of all the exercises agree reasonably well with those of the other participants; thus, instead of reporting the results, this paper concentrates on describing the computational aspects of the calculation with the foregoing codes and on some observations of the sensitivity of the results. In the TRAB-3D neutron kinetics, the two-group diffusion equations are solved in homogenized fuel assembly geometry with an efficient two-level nodal method. The point of the two-level iteration scheme is that only one unknown variable per node, the average neutron flux, is calculated during the inner iteration. The nodal flux shapes and cross sections are recalculated only once in the outer iteration loop. The TRAB-3D core model includes also parallel one-dimensional channel hydraulics with detailed fuel models. Advanced implicit time discretization methods are used in all submodels. SMABRE is a fast-running five-equation model completed by a drift-flux model, with a time discretization based on a non-iterative semi-implicit algorithm. For the third exercise of the benchmark, the TMI-1 models of TRAB-3D and SMABRE were coupled. This was the first time these codes were coupled together. However, similar coupling of the HEXTRAN and SMABRE codes has been shown to be stable and efficient, when used in safety analyses of Finnish and foreign VVER-type reactors. The coupling used between the two codes is called a parallel coupling. SMABRE solves the thermal hydraulics both in the cooling circuit and in the core

  4. Properties of 3-dimensional line location models

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2002-01-01

    We consider the problem of locating a line with respect to some existing facilities in 3-dimensional space, such that the sum of weighted distances between the line and the facilities is minimized. Measuring distance using the l\\_p norm is discussed, along with the special cases of Euclidean...

  5. Neutron transport assembly calculation with non-zero net current boundary condition

    International Nuclear Information System (INIS)

    Jo, Chang Keun

    1993-02-01

    Fuel assembly calculation for the homogenized group constants is one of the most important parts in the reactor core analysis. The homogenized group constants of one a quarter assembly are usually generated for the nodal calculation of the reactor core. In the current nodal calculation, one or a quarter of the fuel assembly corresponds to a unit node. The homogenized group constant calculation for a fuel assembly proceeds through cell spectrum calculations, group condensation and cell homogenization calculations, two dimensional fuel assembly calculation, and then depletion calculations of fuel rods. To obtain the assembly wise homogenized group constants, the two dimensional transport calculation is usually performed. Most codes for the assembly wise homogenized group constants employ a zero net current boundary condition. CASMO-3 is such a code that is in wide use. The zero net current boundary condition is plausible and valid in an infinite reactor composed of the same kind of assemblies. However, the reactor is finite and the core is constructed by different kinds of assemblies. Hence, the assumption of the zero net current boundary condition is not valid in the actual reactor. The objective of this study is to develop a homogenization methodology that can treat any actual boundary condition, i.e. non-zero net current boundary condition. In order to treat the non-zero net current boundary condition, we modify CASMO-3. For the two-dimensional treatment in CASMO-3, a multigroup integral transport routine based on the method of transmission probability is used. The code performs assembly calculation with zero net current boundary condition. CASMO-3 is modified to consider the inhomogeneous source at the assembly boundary surface due to the non-zero net current. The modified version of CASMO-3 is called CASMO-3M. CASMO-3M is applied to several benchmark problems. In order to obtain the inhomogeneous source, the global calculation is performed. The local calculation

  6. 3-Dimensional printing guide template assisted percutaneous vertebroplasty: Technical note.

    Science.gov (United States)

    Li, Jian; Lin, JiSheng; Yang, Yong; Xu, JunChuan; Fei, Qi

    2018-06-01

    Percutaneous vertebroplasty (PVP) is currently considered as an effective treatment for pain caused by acute osteoporotic vertebral compression fracture. Recently, puncture-related complications are increasingly reported. It's important to find a precise technique to reduce the puncture-related complications. We report a case and discussed the novel surgical technique with step-by-step operating procedures, to introduce the precise PVP assisted by a 3-dimensional printing guide template. Based on the preoperative CT scan and infrared scan data, a well-designed individual guide template could be established in a 3-dimensional reconstruction software and printed out by a 3-dimensional printer. In real operation, by matching the guide template to patient's back skin, cement needles' insertion orientation and depth were easily established. Only 14 times C-arm fluoroscopy with HDF mode (total exposure dose was 4.5 mSv) were required during the procedure. The operation took only 17 min. Cement distribution in the vertebral body was very good without any puncture-related complications. Pain was significantly relieved after surgery. In conclusion, the novel precise 3-dimensional printing guide template system may allow (1) comprehensive visualization of the fractured vertebral body and the individual surgical planning, (2) the perfect fitting between skin and guide template to ensure the puncture stability and accuracy, and (3) increased puncture precision and decreased puncture-related complications, surgical time and radiation exposure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Morphometric analysis of the femur in cerebral palsy: 3-dimensional CT study.

    Science.gov (United States)

    Gose, Shinichi; Sakai, Takashi; Shibata, Toru; Murase, Tsuyoshi; Yoshikawa, Hideki; Sugamoto, Kazuomi

    2010-09-01

    The cause of hip disorder in cerebral palsy (CP) has been thought to involve muscle imbalance, flexion, and adduction contracture of the hip joint, acetabular dysplasia, and femoral growth abnormalities. The aim of this study was to quantitatively evaluate the 3-dimensional femoral geometry and subluxation/dislocation of the hip in spastic CP using 3D-CT reconstructed images of the pelvis and the femur, focusing on the femoral growth abnormalities in CP. Between June 2006 and September 2009, 186 hips in 93 bilateral spastic CP patients, including spastic diplegia (SD) in 73 patients and spastic quadriplegia (SQ) in 20 patients, who had not received any surgical treatment, were investigated using 3D-CT at our hospital. There were 59 boys and 34 girls with an average age of 5.3 years (range: 2.6 to 6.8 y). As an index for the femoral geometry, the neck-shaft angle, the femoral anteversion, and the femoral offset were 3-dimensionally measured. The center of the acetabulum and the femoral head were determined to calculate the CT migration percentage as the distance between these centers divided by the femoral head diameter. To elucidate the factors related to hip subluxation/dislocation, the relationships between the neck-shaft angle, the femoral anteversion, the femoral offset, and the CT migration percentage were investigated. The mean neck-shaft angle was 150.4+/-9.4 degrees (range: 129.4 to 173.2 degrees). The mean femoral anteversion was 44.4+/-13.6 degrees (range: 5.8 to 84.0 degrees). The mean CT migration percentage was 22.4+/-22.7% (range: 3 to 129%). There was positive correlation between the CT migration percentage and the neck-shaft angle (r=0.49). Hips with large CT migration percentage tended to show coxa valga. There was an inverse correlation between the neck-shaft angle and the femoral offset (r=-0.90), but no correlation between the CT migration percentage and the femoral anteversion (r=0.26), between the femoral offset and the femoral anteversion (r

  8. Uncertainty Evaluation with Multi-Dimensional Model of LBLOCA in OPR1000 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jieun; Oh, Deog Yeon; Seul, Kwang-Won; Lee, Jin Ho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    KINS has used KINS-REM (KINS-Realistic Evaluation Methodology) which developed for Best- Estimate (BE) calculation and uncertainty quantification for regulatory audit. This methodology has been improved continuously by numerous studies, such as uncertainty parameters and uncertainty ranges. In this study, to evaluate the applicability of improved KINS-REM for OPR1000 plant, uncertainty evaluation with multi-dimensional model for confirming multi-dimensional phenomena was conducted with MARS-KS code. In this study, the uncertainty evaluation with multi- dimensional model of OPR1000 plant was conducted for confirming the applicability of improved KINS- REM The reactor vessel modeled using MULTID component of MARS-KS code, and total 29 uncertainty parameters were considered by 124 sampled calculations. Through 124 calculations using Mosaique program with MARS-KS code, peak cladding temperature was calculated and final PCT was determined by the 3rd order Wilks' formula. The uncertainty parameters which has strong influence were investigated by Pearson coefficient analysis. They were mostly related with plant operation and fuel material properties. Evaluation results through the 124 calculations and sensitivity analysis show that improved KINS-REM could be reasonably applicable for uncertainty evaluation with multi-dimensional model calculations of OPR1000 plants.

  9. Baicklund transformation and multiple soliton solutions for the (3+1)-dimensional Jimbo-Miwa equation

    Institute of Scientific and Technical Information of China (English)

    张解放; 吴锋民

    2002-01-01

    We study an approach to constructing multiple soliton solutions of the (3+1)-dimensional nonlinear evolution equation. We take the (3+1)-dimensional Jimbo-Miwa (JM) equation as an example. Using the extended homogeneous balance method, one can find a Backlund transformation to decompose the (3+1)-dimensional JM equation into a linear partial differential equation and two bilinear partial differential equations. Starting from these linear and bilinear partial differential equations, some multiple soliton solutions for the (3+1)-dimensional JM equation are obtained by introducing a class of formal solutions.

  10. On 3-Dimensional Stability of Reshaping Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Frigaard, Peter

    1989-01-01

    The paper deals with the 3-dimensional stability of the type of rubble mound breakwaters where reshaping of the mound due to wave action is foreseen in the design. Such breakwaters are commonly named sacrificial types and berm types. The latter is due to the relatively large volume of armour stones...

  11. 3-D calculations for comparison with the experiments

    Energy Technology Data Exchange (ETDEWEB)

    Alrsen, A M; Bosser, R

    1973-09-27

    In order to analyse the axial power profile measurements an attempt has been made to do full 3-D calculations for the Dragon reactor. The calculations are still at a very early stage, but the methods used will be outlined here together with the plans for investigations to be carried out in the near future. Some preliminary-results are reported as no final results have yet been obtained. 3-D calculations are rather expensive because of the computer time consumption. It is therefore essential, before too many big computer jobs are spent, to find approximations which can save calculation time. On the other hand some savings, for instance in the number of mesh points, may cause totally wrong results. The ''proper'' calculations have therefore to be proceeded by a number of preliminary investigations, to ensure optimum accuracy and computer expenses. This report contains some of these preliminary studies.

  12. A case study of forward calculations of the gravity anomaly by spectral method for a three-dimensional parameterised fault model

    Science.gov (United States)

    Xu, Weimin; Chen, Shi

    2018-02-01

    Spectral methods provide many advantages for calculating gravity anomalies. In this paper, we derive a kernel function for a three-dimensional (3D) fault model in the wave number domain, and present the full Fortran source code developed for the forward computation of the gravity anomalies and related derivatives obtained from the model. The numerical error and computing speed obtained using the proposed spectral method are compared with those obtained using a 3D rectangular prism model solved in the space domain. The error obtained using the spectral method is shown to be dependent on the sequence length employed in the fast Fourier transform. The spectral method is applied to some examples of 3D fault models, and is demonstrated to be a straightforward and alternative computational approach to enhance computational speed and simplify the procedures for solving many gravitational potential forward problems involving complicated geological models. The proposed method can generate a great number of feasible geophysical interpretations based on a 3D model with only a few variables, and can thereby improve the efficiency of inversion.

  13. Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

    International Nuclear Information System (INIS)

    Tasanapanont, Jintana; Apisariyakul, Janya; Wattanachai, Tanapan; Jotikasthira, Dhirawat; Sriwilas, Patiyut; Midtboe, Marit

    2017-01-01

    The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient (ICC) was used to assess intraobserver reliability. The root surface area measurements (230.11±41.97 mm"2) obtained using CBCT were slightly greater than those (229.31±42.46 mm2) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth

  14. Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tasanapanont, Jintana; Apisariyakul, Janya; Wattanachai, Tanapan; Jotikasthira, Dhirawat [Dept. of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai (Thailand); Sriwilas, Patiyut [Dept. of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Midtboe, Marit [Dept. of Clinical Dentistry - Orthodontics, Faculty of Medicine and Dentistry, University of Bergen, Bergen (Norway)

    2017-06-15

    The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient (ICC) was used to assess intraobserver reliability. The root surface area measurements (230.11±41.97 mm{sup 2}) obtained using CBCT were slightly greater than those (229.31±42.46 mm2) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth.

  15. Application of the three-dimensional transport code to analysis of the neutron streaming experiment

    International Nuclear Information System (INIS)

    Chatani, K.; Slater, C.O.

    1990-01-01

    The neutron streaming through an experimental mock-up of a Clinch River Breeder Reactor (CRBR) prototypic coolant pipe chaseway was recalculated with a three-dimensional discrete ordinates code. The experiment was conducted at the Tower Shielding Facility at Oak Ridge National Laboratory in 1976 and 1977. The measurement of the neutron flux, using Bonner ball detectors, indicated nine orders of attenuation in the empty pipeway, which contained two 90-deg bends and was surrounded by concrete walls. The measurement data were originally analyzed using the DOT3.5 two-dimensional discrete ordinates radiation transport code. However, the results did not agree with measurement data at the bend because of the difficulties in modeling the three-dimensional configurations using two-dimensional methods. The two-dimensional calculations used a three-step procedure in which each of the three legs making the two 90-deg bends was a separate calculation. The experiment was recently analyzed with the TORT three-dimensional discrete ordinates radiation transport code, not only to compare the calculational results with the experimental results, but also to compare with results obtained from analyses in Japan using DOT3.5, MORSE, and ENSEMBLE, which is a three-dimensional discrete ordinates radiation transport code developed in Japan

  16. Raman spectrum, quantum mechanical calculations and vibrational assignments of (95% alpha-TeO2/5% Sm2O3) glass.

    Science.gov (United States)

    Shaltout, I; Mohamed, Tarek A

    2007-06-01

    Chozen system of tellurite glasses doped with rare earth oxides (95% alpha-TeO(2)+5% Sm2O3) was prepared by melt quenching. Consequently, the Raman spectrum (150-1250 cm(-1)) of the modified tellurite have been recorded. As a continuation to our normal coordinate analysis, force constants and quantum mechanical (QM) calculations for tbp TeO4(4-) (triagonal bipyramid, C(2v)) and TeO(3+1); Te2O7(6-) (bridged tetrahedral), we have carried out ab initio frequency calculations for tpy TeO3(2-) (triagonal pyramidal, C(3v) and C(s)) and tp TeO3(2-) (triagonal planar, D(3h)) ions. The quantum mechanical calculations at the levels of RHF, B3LYP and MP2 allow confident vibrational assignments and structural identification in the binary oxide glass (95% alpha-TeO2 +5% Sm2O3). The dominant three-dimensional network structures in the modified glass are triagonal pyramidal TeO3 with minor features of short range distorted tbp TeO4 and bridged tetrahedral unit of TeO(3+1), leading to a structure of infinite chain. Therefore, alpha-TeO2/Sm2O3 (95/5%) glass experience structural changes from TeO4 (tbp); Te2O7 (TeO(3+1))-->TeO3 (tpy).

  17. 3-Dimensional numerical simulation of sodium spray fire accidents in LMFBRs

    International Nuclear Information System (INIS)

    Zhang Bin; Zhu Jizhou; Han Lang

    2005-01-01

    In order to estimate and foresee the sequence of sodium spray fires that may occur in the liquid metal cooled fast breeder reactors (LMFBRs), this paper develops a program to analyze such sodium fire accidents. The present study gives a 3-dimensional numerical analysis code for sodium spray fires. The spatial distributions of gas temperature and chemical species concentrations in the cell that sodium spray fires happened are given. This paper gives detailed explanation of combustion models and heat transfer models that applied in the program. And the calculation procedure and method in solving the fluid field are narrated in detail. Good agreements of an overall transient behavior are obtained in a sodium spray combustion test analysis. The comparison between the analytical and experimental results shows that the program presented in this paper is creditable and reasonable for simulating the sodium spray fires. (author)

  18. Three-dimensional spin-3 theories based on general kinematical algebras

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Grumiller, Daniel; Prohazka, Stefan [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna (Austria); Rosseel, Jan [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria)

    2017-01-25

    We initiate the study of non- and ultra-relativistic higher spin theories. For sake of simplicity we focus on the spin-3 case in three dimensions. We classify all kinematical algebras that can be obtained by all possible Inönü-Wigner contraction procedures of the kinematical algebra of spin-3 theory in three dimensional (anti-) de Sitter space-time. We demonstrate how to construct associated actions of Chern-Simons type, directly in the ultra-relativistic case and by suitable algebraic extensions in the non-relativistic case. We show how to give these kinematical algebras an infinite-dimensional lift by imposing suitable boundary conditions in a theory we call “Carroll Gravity”, whose asymptotic symmetry algebra turns out to be an infinite-dimensional extension of the Carroll algebra.

  19. Implementation of a 3-D nonlinear MHD [magnetohydrodynamics] calculation on the Intel hypercube

    International Nuclear Information System (INIS)

    Lynch, V.E.; Carreras, B.A.; Drake, J.B.; Hicks, H.R.; Lawkins, W.F.

    1987-01-01

    The optimization of numerical schemes and increasing computer capabilities in the last ten years have improved the efficiency of 3-D nonlinear resistive MHD calculations by about two to three orders of magnitude. However, we are still very limited in performing these types of calculations. Hypercubes have a large number of processors with only local memory and bidirectional links among neighbors. The Intel Hypercube at Oak Ridge has 64 processors with 0.5 megabytes of memory per processor. The multiplicity of processors opens new possibilities for the treatment of such computations. The constraint on time and resources favored the approach of using the existing RSF code which solves as an initial value problem the reduced set of MHD equations for a periodic cylindrical geometry. This code includes minimal physics and geometry, but contains the basic three dimensionality and nonlinear structure of the equations. The code solves the reduced set of MHD equations by Fourier expansion in two angular coordinates and finite differences in the radial one. Due to the continuing interest in these calculations and the likelihood that future supercomputers will take greater advantage of parallelism, the present study was initiated by the ORNL Exploratory Studies Committee and funded entirely by Laboratory Discretionary Funds. The objectives of the study were: to ascertain the suitability of MHD calculation for parallel computation, to design and implement a parallel algorithm to perform the computations, and to evaluate the hypercube, and in particular, ORNL's Intel iPSC, for use in MHD computations

  20. Intra-operative navigation of a 3-dimensional needle localization system for precision of irreversible electroporation needles in locally advanced pancreatic cancer.

    Science.gov (United States)

    Bond, L; Schulz, B; VanMeter, T; Martin, R C G

    2017-02-01

    Irreversible electroporation (IRE) uses multiple needles and a series of electrical pulses to create pores in cell membranes and cause cell apoptosis. One of the demands of IRE is the precise needle spacing required. Two-dimensional intraoperative ultrasound (2-D iUS) is currently used to measure inter-needle distances but requires significant expertise. This study evaluates the potential of three-dimensional (3-D) image guidance for placing IRE needles and calculating needle spacing. A prospective clinical evaluation of a 3-D needle localization system (Explorer™) was evaluated in consecutive patients from April 2012 through June 2013 for unresectable pancreatic adenocarcinoma. 3-D reconstructions of patients' anatomy were generated from preoperative CT images, which were aligned to the intraoperative space. Thirty consecutive patients with locally advanced pancreatic cancer were treated with IRE. The needle localization system setup added an average of 6.5 min to each procedure. The 3-D needle localization system increased surgeon confidence and ultimately reduced needle placement time. IRE treatment efficacy is highly dependent on accurate needle spacing. The needle localization system evaluated in this study aims to mitigate these issues by providing the surgeon with additional visualization and data in 3-D. The Explorer™ system provides valuable guidance information and inter-needle distance calculations. Copyright © 2016 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  1. Pellet by pellet neutron flux calculations coupled with nodal expansion method

    International Nuclear Information System (INIS)

    Aldo, Dall'Osso

    2003-01-01

    We present a technique whose aim is to replace 2-dimensional pin by pin de-homogenization, currently done in core reactor calculations with the nodal expansion method (NEM), by a 3-dimensional finite difference diffusion calculation. This fine calculation is performed as a zoom in each node taking as boundary conditions the results of the NEM calculations. The size of fine mesh is of the order of a fuel pellet. The coupling between fine and NEM calculations is realised by an albedo like boundary condition. Some examples are presented showing fine neutron flux shape near control rods or assembly grids. Other fine flux behaviour as the thermal flux rise in the fuel near the reflector is emphasised. In general the results show the interest of the method in conditions where the separability of radial and axial directions is not granted. (author)

  2. Interactive three-dimensional visualization and creation of geometries for Monte Carlo calculations

    International Nuclear Information System (INIS)

    Theis, C.; Buchegger, K.H.; Brugger, M.; Forkel-Wirth, D.; Roesler, S.; Vincke, H.

    2006-01-01

    The implementation of three-dimensional geometries for the simulation of radiation transport problems is a very time-consuming task. Each particle transport code supplies its own scripting language and syntax for creating the geometries. All of them are based on the Constructive Solid Geometry scheme requiring textual description. This makes the creation a tedious and error-prone task, which is especially hard to master for novice users. The Monte Carlo code FLUKA comes with built-in support for creating two-dimensional cross-sections through the geometry and FLUKACAD, a custom-built converter to the commercial Computer Aided Design package AutoCAD, exists for 3D visualization. For other codes, like MCNPX, a couple of different tools are available, but they are often specifically tailored to the particle transport code and its approach used for implementing geometries. Complex constructive solid modeling usually requires very fast and expensive special purpose hardware, which is not widely available. In this paper SimpleGeo is presented, which is an implementation of a generic versatile interactive geometry modeler using off-the-shelf hardware. It is running on Windows, with a Linux version currently under preparation. This paper describes its functionality, which allows for rapid interactive visualization as well as generation of three-dimensional geometries, and also discusses critical issues regarding common CAD systems

  3. Quantum interest in (3+1)-dimensional Minkowski space

    International Nuclear Information System (INIS)

    Abreu, Gabriel; Visser, Matt

    2009-01-01

    The so-called 'quantum inequalities', and the 'quantum interest conjecture', use quantum field theory to impose significant restrictions on the temporal distribution of the energy density measured by a timelike observer, potentially preventing the existence of exotic phenomena such as 'Alcubierre warp drives' or 'traversable wormholes'. Both the quantum inequalities and the quantum interest conjecture can be reduced to statements concerning the existence or nonexistence of bound states for a certain one-dimensional quantum mechanical pseudo-Hamiltonian. Using this approach, we shall provide a simple variational proof of one version of the quantum interest conjecture in (3+1)-dimensional Minkowski space.

  4. Spin-zero sound in one- and quasi-one-dimensional 3He

    International Nuclear Information System (INIS)

    Hernandez, E.S.

    2002-01-01

    The zero sound spectrum of fluid 3 He confined to a cylindrical shell is examined for configurations characterizing strictly one-dimensional and quasi-one-dimensional regimes. It is shown that the restricted dimensionality makes room to the possibility of spin-zero sound for the attractive particle-hole interaction of liquid helium. This fact can be related to the suppression of phase instabilities and thermodynamic phase transitions in one dimension

  5. HEXBU-3D, a three-dimensional PWR-simulator program for hexagonal fuel assemblies

    International Nuclear Information System (INIS)

    Karvinen, E.

    1981-06-01

    HEXBU-3D is a three-dimensional nodal simulator program for PWR reactors. It is designed for a reactor core that consists of hexagonal fuel assemblies and of big follower-type control assemblies. The program solves two-group diffusion equations in homogenized fuel assembly geometry by a sophisticated nodal method. The treatment of feedback effects from xenon-poisoning, fuel temperature, moderator temperature and density and soluble boron concentration are included in the program. The nodal equations are solved by a fast two-level iteration technique and the eigenvalue can be either the effective multiplication factor or the boron concentration of the moderator. Burnup calculations are performed by tabulated sets of burnup-dependent cross sections evaluated by a cell burnup program. HEXBY-3D has been originally programmed in FORTRAN V for the UNIVAC 1108 computer, but there is also another version which is operable on the CDC CYBER 170 computer. (author)

  6. Advances in supercell calculation methods and comparison with measurements

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, B [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Baril, R; Hotte, G [Hydro-Quebec, Central Nucleaire Gentilly, Montreal, Quebec (Canada)

    1996-07-01

    In the last few years, modelling techniques have been developed in new supercell computer codes. These techniques have been used to model the CANDU reactivity devices. One technique is based on one- and two-dimensional transport calculations with the WIMS-AECL lattice code followed by super homogenization and three-dimensional flux calculations in a modified version of the MULTICELL code. The second technique is based on two- and three-dimensional transport calculations in DRAGON. The code calculates the lattice properties by solving the transport equation in a two-dimensional geometry followed by supercell calculations in three dimensions. These two calculation schemes have been used to calculate the incremental macroscopic properties of CANDU reactivity devices. The supercell size has also been modified to define incremental properties over a larger region. The results show improved agreement between the reactivity worth of zone controllers and adjusters. However, at the same time the agreement between measured and simulated flux distributions deteriorated somewhat. (author)

  7. Comparison between Radiographic (2-dimensional and 3-dimensional) and Histologic Findings of Periapical Lesions Treated with Apical Surgery.

    Science.gov (United States)

    Bornstein, Michael M; Bingisser, Andreas C; Reichart, Peter A; Sendi, Pedram; Bosshardt, Dieter D; von Arx, Thomas

    2015-06-01

    The aim of this study was to evaluate the concordance of 2- and 3-dimensional radiography and histopathology in the diagnosis of periapical lesions. Patients were consecutively enrolled in this study provided that preoperative periapical radiography (PR) and cone-beam computed tomographic imaging of the tooth to be treated with apical surgery were performed. The periapical lesional tissue was histologically analyzed by 2 blinded examiners. The final histologic diagnosis was compared with the radiographic assessments of 4 blinded observers. The initial study material included 62 teeth in the same number of patients. Four lesions had to be excluded during processing, resulting in a final number of 58 evaluated cases (31 women and 27 men, mean age = 55 years). The final histologic diagnosis of the periapical lesions included 55 granulomas (94.8%) and 3 cysts (5.2%). Histologic analysis of the tissue samples from the apical lesions exhibited an almost perfect agreement between the 2 experienced investigators with an overall agreement of 94.83% (kappa = 0.8011). Radiographic assessment overestimated cysts by 28.4% (cone-beam computed tomographic imaging) and 20.7% (periapical radiography), respectively. Comparing the correlation of the radiographic diagnosis of 4 observers with the final histologic diagnosis, 2-dimensional (kappa = 0.104) and 3-dimensional imaging (kappa = 0.111) provided only minimum agreement. To establish a final diagnosis of an apical radiolucency, the tissue specimen should be evaluated histologically and specified as a granuloma (with/without epithelium) or a cyst. Analysis of 2-dimensional and 3-dimensional radiographic images alike results only in a tentative diagnosis that should be confirmed with biopsy. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Neutron data error estimate of criticality calculations for lattice in shielding containers with metal fissionable materials

    International Nuclear Information System (INIS)

    Vasil'ev, A.P.; Krepkij, A.S.; Lukin, A.V.; Mikhal'kova, A.G.; Orlov, A.I.; Perezhogin, V.D.; Samojlova, L.Yu.; Sokolov, Yu.A.; Terekhin, V.A.; Chernukhin, Yu.I.

    1991-01-01

    Critical mass experiments were performed using assemblies which simulated one-dimensional lattice consisting of shielding containers with metal fissile materials. Calculations of the criticality of the above assemblies were carried out using the KLAN program with the BAS neutron constants. Errors in the calculations of the criticality for one-, two-, and three-dimensional lattices are estimated. 3 refs.; 1 tab

  9. Independent calculation-based verification of IMRT plans using a 3D dose-calculation engine

    International Nuclear Information System (INIS)

    Arumugam, Sankar; Xing, Aitang; Goozee, Gary; Holloway, Lois

    2013-01-01

    Independent monitor unit verification of intensity-modulated radiation therapy (IMRT) plans requires detailed 3-dimensional (3D) dose verification. The aim of this study was to investigate using a 3D dose engine in a second commercial treatment planning system (TPS) for this task, facilitated by in-house software. Our department has XiO and Pinnacle TPSs, both with IMRT planning capability and modeled for an Elekta-Synergy 6 MV photon beam. These systems allow the transfer of computed tomography (CT) data and RT structures between them but do not allow IMRT plans to be transferred. To provide this connectivity, an in-house computer programme was developed to convert radiation therapy prescription (RTP) files as generated by many planning systems into either XiO or Pinnacle IMRT file formats. Utilization of the technique and software was assessed by transferring 14 IMRT plans from XiO and Pinnacle onto the other system and performing 3D dose verification. The accuracy of the conversion process was checked by comparing the 3D dose matrices and dose volume histograms (DVHs) of structures for the recalculated plan on the same system. The developed software successfully transferred IMRT plans generated by 1 planning system into the other. Comparison of planning target volume (TV) DVHs for the original and recalculated plans showed good agreement; a maximum difference of 2% in mean dose, − 2.5% in D95, and 2.9% in V95 was observed. Similarly, a DVH comparison of organs at risk showed a maximum difference of +7.7% between the original and recalculated plans for structures in both high- and medium-dose regions. However, for structures in low-dose regions (less than 15% of prescription dose) a difference in mean dose up to +21.1% was observed between XiO and Pinnacle calculations. A dose matrix comparison of original and recalculated plans in XiO and Pinnacle TPSs was performed using gamma analysis with 3%/3 mm criteria. The mean and standard deviation of pixels passing

  10. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1993-02-01

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  11. A finite element evaluation of mechanical function for 3 distal extension partial dental prosthesis designs with a 3-dimensional nonlinear method for modeling soft tissue.

    Science.gov (United States)

    Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu

    2014-10-01

    The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. SCRAM reactivity calculations with the KIKO3D code

    International Nuclear Information System (INIS)

    Hordosy, G.; Kerszturi, A.; Maraczy, Cs.; Temesvari, E.

    1999-01-01

    Discrepancies between calculated static reactivities and measured reactivities evaluated with reactivity meters led to investigating SCRAM with the KIKO3D dynamic code, The time and space dependent neutron flux in the reactor core during the rod drop measurement was calculated by the KIKO3D nodal diffusion code. For calculating the ionisation chamber signals the Green function technique was applied. The Green functions of ionisation chambers were evaluated via solving the neutron transport equation in the reflector regions with the MCNP Monte Carlo code. The detector signals during asymmetric SCRAM measurements were calculated and compared with measured data using the inverse point kinetics transformation. The sufficient agreement validates the KIKO3D code to determine the reactivities after SCRAM. (Authors)

  13. Spin—Dependent Scattering Effects and Dimensional Crossover in a Quasi—Two—Dimensional Disordered Electron System

    Institute of Scientific and Technical Information of China (English)

    YANGYong-Hong; WANGYong-Gang; 等

    2002-01-01

    Two kinds of spin-dependent scattering effects (magnetic-impurity and spin-orbit scatterings) are investigated theoretically in a quasi-tow-dimensional (quasi-2D) disordered electron system.By making use of the diagrammatic techniques in perturbation theory,we have calculated the dc conductivity and magnetoresistance due to weak-localization effects,the analytical expressions of them are obtained as functions of the interlayer hopping energy and the characteristic times:elastic,inelastic,magnetic and spin-orbit scattering times.The relevant dimensional crossover behavior from 3D to 2D with decreasing the interlayer coupling is discussed,and the condition for the crossover is shown to be dependent on the aforementioned scattering times.At low temperature there exists a spin-dependent-scattering-induced dimensional crossover in this system.

  14. Interactive multimedia-based teaching material for 3-dimensional geometry

    Science.gov (United States)

    Prabowo, A.; Anggoro, R. P.; Astuti, D.; Fahmi, S.

    2017-12-01

    This study aims to develop the interactive multimedia-based teaching material for 3-dimensional geometry in junior high school. The product was produced through the stages of define, design, develop, and disseminate. Two media experts and two teaching experts had validated it. They judged that the product developed was valid. It had been revised based on their advice. It has been disseminated to 15 mathematics teachers and tried to 30 students of junior high school. Teachers stated that this product gives a new form of teaching material in 3-dimensional geometry. According to the student, the product is interesting. It can motivate them to study mathematics, help them to master the material and increase their interest in mathematics.

  15. Direct calculation of current drive efficiency in FISIC code

    International Nuclear Information System (INIS)

    Wright, J.C.; Phillips, C.K.; Bonoli, P.T.

    1996-01-01

    Two-dimensional RF modeling codes use a parameterization (1) of current drive efficiencies to calculate fast wave driven currents. This parameterization assumes a uniform quasi-linear diffusion coefficient and requires a priori knowledge of the wave polarizations. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient from the Kennel-Englemann form with the field polarizations calculated by the full wave code, FISIC (2). Current profiles are calculated using the adjoint formulation (3). Comparisons between the two formulations are presented. copyright 1996 American Institute of Physics

  16. Finite difference time domain calculation of three-dimensional phononic band structures using a postprocessing method based on the filter diagonalization

    International Nuclear Information System (INIS)

    Su Xiaoxing; Ma Tianxue; Wang Yuesheng

    2011-01-01

    If the band structure of a three-dimensional (3D) phononic crystal (PNC) is calculated by using the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT)-based postprocessing method, good results can only be ensured by a sufficiently large number of FDTD iterations. On a common computer platform, the total computation time will be very long. To overcome this difficulty, an excellent harmonic inversion algorithm called the filter diagonalization method (FDM) can be used in the postprocessing to reduce the number of FDTD iterations. However, the low efficiency of the FDM, which occurs when a relatively long time series is given, does not necessarily ensure an effective reduction of the total computation time. In this paper, a postprocessing method based on the FDM is proposed. The main procedure of the method is designed considering the aim to make the time spent on the method itself far less than the corresponding time spent on the FDTD iterations. To this end, the FDTD time series is preprocessed to be shortened significantly before the FDM frequency extraction. The preprocessing procedure is performed with the filter and decimation operations, which are widely used in narrow-band signal processing. Numerical results for a typical 3D solid PNC system show that the proposed postprocessing method can be used to effectively reduce the total computation time of the FDTD calculation of 3D phononic band structures.

  17. Finite difference time domain calculation of three-dimensional phononic band structures using a postprocessing method based on the filter diagonalization

    Energy Technology Data Exchange (ETDEWEB)

    Su Xiaoxing [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Ma Tianxue; Wang Yuesheng, E-mail: xxsu@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)

    2011-10-15

    If the band structure of a three-dimensional (3D) phononic crystal (PNC) is calculated by using the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT)-based postprocessing method, good results can only be ensured by a sufficiently large number of FDTD iterations. On a common computer platform, the total computation time will be very long. To overcome this difficulty, an excellent harmonic inversion algorithm called the filter diagonalization method (FDM) can be used in the postprocessing to reduce the number of FDTD iterations. However, the low efficiency of the FDM, which occurs when a relatively long time series is given, does not necessarily ensure an effective reduction of the total computation time. In this paper, a postprocessing method based on the FDM is proposed. The main procedure of the method is designed considering the aim to make the time spent on the method itself far less than the corresponding time spent on the FDTD iterations. To this end, the FDTD time series is preprocessed to be shortened significantly before the FDM frequency extraction. The preprocessing procedure is performed with the filter and decimation operations, which are widely used in narrow-band signal processing. Numerical results for a typical 3D solid PNC system show that the proposed postprocessing method can be used to effectively reduce the total computation time of the FDTD calculation of 3D phononic band structures.

  18. Two-dimensional collapse calculations of cylindrical clouds

    International Nuclear Information System (INIS)

    Bastien, P.; Mitalas, R.

    1979-01-01

    A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)

  19. Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.

    Science.gov (United States)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2011-01-01

    Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.

  20. Real-time 3-dimensional contrast-enhanced ultrasound in detecting hemorrhage of blunt renal trauma.

    Science.gov (United States)

    Xu, Rui-Xue; Li, Ye-Kuo; Li, Ting; Wang, Sha-Sha; Yuan, Gui-Zhong; Zhou, Qun-Fang; Zheng, Hai-Rong; Yan, Fei

    2013-10-01

    The objective of this study is to evaluate the diagnostic value of real-time 3-dimensional contrast-enhanced ultrasound in the hemorrhage of blunt renal trauma. Eighteen healthy New Zealand white rabbits were randomly divided into 3 groups. Blunt renal trauma was performed on each group by using minitype striker. Ultrasonography, color Doppler flow imaging, and contrast-enhanced 2-dimensional and real-time 3-dimensional ultrasound were applied before and after the strike. The time to shock and blood pressure were subjected to statistical analysis. Then, a comparative study of ultrasound and pathology was carried out. All the struck kidneys were traumatic. In the ultrasonography, free fluid was found under the renal capsule. In the color Doppler flow imaging, active hemorrhage was not identified. In 2-dimensional contrast-enhanced ultrasound, active hemorrhage of the damaged kidney was characterized. Real-time 3-dimensional contrast-enhanced ultrasound showed a real-time and stereoscopic ongoing bleeding of the injured kidney. The wider the hemorrhage area in 4-dimensional contrast-enhanced ultrasound was, the faster the blood pressure decreased. Real-time 3-dimensional contrast-enhanced ultrasound is a promising noninvasive tool for stereoscopically and vividly detecting ongoing hemorrhage of blunt renal trauma in real time. © 2013.

  1. The application of 3-dimensional CAT scan reconstruction for maxillofacial deformities

    International Nuclear Information System (INIS)

    Shimbashi, Takeshi; Tomonari, Hiroshi; Ishii, Masahiro; Sakurai, Nobuaki; Kodachi, Ken; Kubo, Eiichi; Tsuchida, Yoshitaka; Takagi, Hiroshi.

    1987-01-01

    It has been found very useful to recognize craniofacial deformities 3-dimensionally, and to observe 3-D Cat scan reconstructions that have been performed by others. Thus, starting in 1985, we have developed a 3-D CT system that combines conventional X-ray CAT scan hardware to a 3-Dimensional display software. In this paper we report on our 3-CT system, its basic algorithm, and its basic processes, i.e., the threshold process, the perspective process, the shading process and the display. The mixture shading which we have developed makes 3-D displays clearer and more natural. Also, we have applied our 3-D display to 39 cases of maxillofacial diformities. (author)

  2. DRAGON, Reactor Cell Calculation System with Burnup

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: DRAGON is a collection of models to simulate the neutronic behavior of a unit cell or a fuel assembly in a nuclear reactor. It includes all of the functions that characterize a lattice cell code, namely: interpolation of microscopic cross sections supplied by means of standard libraries; resonance self-shielding calculations in multidimensional geometries; multigroup and multidimensional neutron flux calculations which can take into account neutron leakage; transport-transport or transport-diffusion equivalence calculations as well as editing of condensed and homogenized nuclear properties for reactor calculations; and finally isotopic depletion calculations. The user must supply cross sections. DRAGON can access directly standard microscopic cross-section libraries in the following formats: DRAGON, MATXS (TRANSX-CTR), WIMSD4, WIMS-AECL, and APOLLO. It has the capability of exchanging macroscopic and microscopic cross-section libraries with a code such as PSR-0206/TRANSX-CTR or PSR-0317/TRANSX-2 by the use of the GOXS and ISOTXS format files. Macroscopic cross sections can also be read in DRAGON via the input data stream. 2 - Method of solution: DRAGON contains a multigroup iterator conceived to control a number of different algorithms for the solution of the neutron transport equation. Each of these algorithms is presented in the form of a one-group solution procedure where the contributions from other energy groups are included in a source term. The current version, DRAGON 9 71124 (Release 3.02), which was released in January 1998, contains three such algorithms. The JPM option solves the integral transport equation using the interface current method applied to homogeneous blocks; the SYBIL option solves the integral transport equation using the collision probability method for simple one-dimensional (1-D) or two-dimensional (2-D) geometries and the interface current method for 2-D Cartesian or hexagonal assemblies; and the

  3. Development of approximate shielding calculation method for high energy cosmic radiation on LEO satellites

    International Nuclear Information System (INIS)

    Sin, M. W.; Kim, M. H.

    2002-01-01

    To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values

  4. Development of approximate shielding calculation method for high energy cosmic radiation on LEO satellites

    Energy Technology Data Exchange (ETDEWEB)

    Sin, M. W.; Kim, M. H. [Kyunghee Univ., Yongin (Korea, Republic of)

    2002-10-01

    To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values.

  5. Time-dependent Flow and Transport Calculations for Project Opalinus Clay (Entsorgungsnachweis)

    International Nuclear Information System (INIS)

    Kosakowski, G.

    2004-07-01

    This report describes two specific assessment cases used in the safety assessment for a proposed deep geological repository for spent fuel, high level waste and long-lived intermediate-level waste, sited in the Opalinus Clay of the Zuercher Weinland in northern Switzerland (Project Entsorgungsnachweis, NAG RA, 2002d). In this study the influence of time dependent flow processes on the radionuclide transport in the geosphere is investigated. In the Opalinus Clay diffusion dominates the transport of radionuclides, but processes exist that can locally increase the importance of the advective transport for some time. Two important cases were investigated: (1) glaciation-induced flow due to an additional overburden in the form of an ice shield of up to 400 m thickness and (2) fluid flow driven by tunnel convergence. For the calculations the code FRAC3DVS (Therrien and Sudicky, 1996) was used. FRAC3DVS solves the three-dimensional flow and transport equation in porous and fractured media. For the case of glaciation-induced flow (1) a two-dimensional reference model without glaciations was calculated. During the glaciations the geosphere release-rates are up to a factor of about 1.7 higher compared to the reference model. The influence of glaciations on the transport of cations or neutral species is less than for anions, since the importance of the advective transport for anions is higher due to the lower accessible porosity for anions. The increase in the release rates during glaciations is lower for sorbing compared to non-sorbing radionuclides. The influence of the tunnel convergence (2) on the transport of radionuclides in the geosphere is very small. Due to the higher source term the geosphere release rates are slightly higher if tunnel convergence is considered. In addition to the two assessment cases this report investigates the applicability of the one-dimensional approximation for modelling transport through the Opalinus Clay. For the reference case of the safety

  6. A dimensional comparison between embedded 3D-printed and silicon microchannels

    International Nuclear Information System (INIS)

    O'Connor, J; Punch, J; Jeffers, N; Stafford, J

    2014-01-01

    The subject of this paper is the dimensional characterization of embedded microchannel arrays created using contemporary 3D-printing fabrication techniques. Conventional microchannel arrays, fabricated using deep reactive ion etching techniques (DRIE) and wet-etching (KOH), are used as a benchmark for comparison. Rectangular and trapezoidal cross-sectional shapes were investigated. The channel arrays were 3D-printed in vertical and horizontal directions, to examine the influence of print orientation on channel characteristics. The 3D-printed channels were benchmarked against Silicon channels in terms of the following dimensional characteristics: cross-sectional area (CSA), perimeter, and surface profiles. The 3D-printed microchannel arrays demonstrated variances in CSA of 6.6-20% with the vertical printing approach yielding greater dimensional conformity than the horizontal approach. The measured CSA and perimeter of the vertical channels were smaller than the nominal dimensions, while the horizontal channels were larger in both CSA and perimeter due to additional side-wall roughness present throughout the channel length. This side-wall roughness caused significant shape distortion. Surface profile measurements revealed that the base wall roughness was approximately the resolution of current 3D-printers. A spatial periodicity was found along the channel length which appeared at different frequencies for each channel array. This paper concludes that vertical 3D-printing is superior to the horizontal printing approach, in terms of both dimensional fidelity and shape conformity and can be applied in microfluidic device applications.

  7. A dimensional comparison between embedded 3D-printed and silicon microchannels

    Science.gov (United States)

    O'Connor, J.; Punch, J.; Jeffers, N.; Stafford, J.

    2014-07-01

    The subject of this paper is the dimensional characterization of embedded microchannel arrays created using contemporary 3D-printing fabrication techniques. Conventional microchannel arrays, fabricated using deep reactive ion etching techniques (DRIE) and wet-etching (KOH), are used as a benchmark for comparison. Rectangular and trapezoidal cross-sectional shapes were investigated. The channel arrays were 3D-printed in vertical and horizontal directions, to examine the influence of print orientation on channel characteristics. The 3D-printed channels were benchmarked against Silicon channels in terms of the following dimensional characteristics: cross-sectional area (CSA), perimeter, and surface profiles. The 3D-printed microchannel arrays demonstrated variances in CSA of 6.6-20% with the vertical printing approach yielding greater dimensional conformity than the horizontal approach. The measured CSA and perimeter of the vertical channels were smaller than the nominal dimensions, while the horizontal channels were larger in both CSA and perimeter due to additional side-wall roughness present throughout the channel length. This side-wall roughness caused significant shape distortion. Surface profile measurements revealed that the base wall roughness was approximately the resolution of current 3D-printers. A spatial periodicity was found along the channel length which appeared at different frequencies for each channel array. This paper concludes that vertical 3D-printing is superior to the horizontal printing approach, in terms of both dimensional fidelity and shape conformity and can be applied in microfluidic device applications.

  8. Remarks on the development of a multiblock three-dimensional Euler code for out of core and multiprocessor calculations

    International Nuclear Information System (INIS)

    Jameson, A.; Leicher, S.; Dawson, J.; Tel Aviv Univ., Israel)

    1985-01-01

    A multiblock modification of the FLO57 code for three-dimensional wing calculations is described and demonstrated. The theoretical basis of the multistage time-stepping algorithm is reviewed; the multiblock grid structure is explained; and results from a computation of vortical flow past a delta wing, using 2.5 x 10 to the 6th grid points and performed on a Cray X/MP computer with a 128-Mword solid-state storage device, are presented graphically. 6 references

  9. Perfect 3-dimensional lattice actions for 4-dimensional quantum field theories at finite temperature

    International Nuclear Information System (INIS)

    Kerres, U.; Mack, G.; Palma, G.

    1994-12-01

    We propose a two-step procedure to study the order of phase transitions at finite temperature in electroweak theory and in simplified models thereof. In a first step a coarse grained free energy is computed by perturbative methods. It is obtained in the form of a 3-dimensional perfect lattice action by a block spin transformation. It has finite temperature dependent coefficients. In this way the UV-problem and the infrared problem is separated in a clean way. In the second step the effective 3-dimensional lattice theory is treated in a nonperturbative way, either by the Feynman-Bololiubov method (solution of a gap equation), by real space renormalization group methods, or by computer simulations. In this paper we outline the principles for φ 4 -theory and scalar electrodynamics. The Balaban-Jaffe block spin transformation for the gauge field is used. It is known how to extend this transformation to the nonabelian case, but this will not be discussed here. (orig.)

  10. Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi from angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Liang Aiji; Chen Chaoyu; Wang Zhijun; Shi Youguo; Feng Ya; Yi Hemian; Xie Zhuojin; He Shaolong; He Junfeng; Peng Yingying; Liu Yan; Liu Defa; Hu Cheng; Zhao Lin; Liu Guodong; Dong Xiaoli; Zhang Jun; Nakatake, M; Iwasawa, H; Shimada, K

    2016-01-01

    The three-dimensional (3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A 3 Bi ( A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission (ARPES) measurements on the two cleaved surfaces, (001) and (100), of Na 3 Bi. On the (001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the k x – k y plane and by varying the photon energy to get access to different out-of-plane k z s. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the (100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the (100) plane. We directly observe two isolated 3D Dirac nodes on the (100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ∼150 meV before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na 3 Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the 3D Dirac cones, on the possible formation of surface reconstruction of the (001) surface, and on the issue of basic Brillouin zone selection for the (100) surface. (rapid communication)

  11. 3D accelerator magnet calculations using MAGNUS-3D

    International Nuclear Information System (INIS)

    Pissanetzky, S.; Miao, Y.

    1989-01-01

    The steady trend towards increased magnetic and geometric complexity in the design of accelerator magnets has caused a need for reliable 3D computer models and a better understanding of the behavior of magnetic system in three dimensions. The capabilities of the MAGNUS-3D family of programs are ideally suited to solve this class of problems and provide insight into 3D effects. MAGNUS-3D can solve any problem of magnetostatics involving permanent magnets, nonlinear ferromagnetic materials and electric conductors. MAGNUS-3D uses the finite element method and the two-scalar-potentials formulation of Maxwell's equations to obtain the solution, which can then be used interactively to obtain tables of field components at specific points or lines, plots of field lines, function graphs representing a field component plotted against a coordinate along any line in space (such as the beam line), and views of the conductors, the mesh and the magnetic bodies. The magnetic quantities that can be calculated include the force or torque on conductors or magnetic parts, the energy, the flux through a specified surface, line integrals of any field component along any line in space, and the average field or potential harmonic coefficients. We describe the programs with emphasis placed on their use for accelerator magnet design, and present an advanced example of actual calculations. (orig.)

  12. Symmetries, Traveling Wave Solutions, and Conservation Laws of a (3+1-Dimensional Boussinesq Equation

    Directory of Open Access Journals (Sweden)

    Letlhogonolo Daddy Moleleki

    2014-01-01

    Full Text Available We analyze the (3+1-dimensional Boussinesq equation, which has applications in fluid mechanics. We find exact solutions of the (3+1-dimensional Boussinesq equation by utilizing the Lie symmetry method along with the simplest equation method. The solutions obtained are traveling wave solutions. Moreover, we construct the conservation laws of the (3+1-dimensional Boussinesq equation using the new conservation theorem, which is due to Ibragimov.

  13. Three-dimensional space-time kinetic analysis with CORETRAN and RETRAN-3D of the NEACRP PWR rod ejection benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ferroukhi, H.; Coddington, P

    2001-03-01

    One of the activities within the STARS project, in the Laboratory for Reactor Physics and System Behaviour; is the development of a coupling methodology between the three-dimensional, space-time kinetics codes CORETRAN and RETRAN-3D in order to perform core and plant transient analyses of the Swiss LWRs. The CORETRAN code is a 3-D full-core simulator, intended to be used for core-related analyses, while RETRAN-3D is the three-dimensional kinetics version of the plant system code RETRAN, and can therefore be used for best-estimate analyses of a wide range of transients in both PWRs and BWRs. Because the neutronics solver in both codes is based on the same kinetics model, one important advantage is that the codes can be coupled so that the initial conditions for a RETRAN-3D plant analysis are generated by a detailed-core, steady-state calculation using CORETRAN. As a first step towards using CORETRAN and RETRAN-3D for kinetic applications, the NEACRP PWR rod ejection benchmark has been analyzed with both codes, and is presented in this paper. The first objective is to verify the consistency between the static and kinetic solutions of the two codes, and so gain confidence in the coupling methodology. The second objective is to assess the CORETRAN and RETRAN-3D solutions for a well-defined RIA transient, comparing with previously published results. In parallel, several sensitivity studies have been performed in an attempt to identify models and calculational options important for a correct analysis of an RIA event in a LWR using these two codes. (author)

  14. Two-dimensional versus three-dimensional treatment planning of tangential breast irradiation

    International Nuclear Information System (INIS)

    Damen, E.M.F.; Bruinvis, I.A.D.; Mijnheer, B.J.

    1995-01-01

    Purpose: Full three-dimensional (3-D) treatment planning requires 3-D patient contours and density information, derived either from CT scanning or from other 3-D contouring methods. These contouring techniques are time consuming, and are often not available or cannot be used. Two-dimensional (2-D) treatment planning can be performed using only a few patient contours, made with much simpler techniques, in combination with simulator images for estimating the lung position. In order to investigate the need for full 3-D planning, we compared the performance of both a 2-D and a 3-D planning system in calculating absolute dose values and relative dose distributions in tangential breast irradiation. Methods: Two breast-shaped phantoms were used in this study. The first phantom consists of a polyethylene mould, filled with water and cork to mimic the lung. An ionization chamber can be inserted in the phantom at fixed positions. The second phantom is made of 25 transverse slices of polystyrene and cork, made with a computerized milling machine from CT information. In this phantom, films can be inserted in three sagittal planes. Both phantoms have been irradiated with two tangential 8 MV photon beams. The measured dose distribution has been compared with the dose distribution predicted by the two planning systems. Results: In the central plane, the 3-D planning system predicts the absolute dose with an accuracy of 0.5 - 4%. The dose at the isocentre of the beams agrees within 0.5% with the measured dose. The 2-D system predicts the dose with an accuracy of 0.9 - 3%. The dose calculated at the isocentre is 2.6% higher than the measured dose, because missing lateral scatter is not taken into account in this planning system. In off-axis planes, the calculated absolute dose agrees with the measured dose within 4% for the 2-D system and within 6% for the 3-D system. However, the relative dose distribution is predicted better by the 3-D planning system. Conclusions: This study

  15. The value of preoperative 3-dimensional over 2-dimensional valve analysis in predicting recurrent ischemic mitral regurgitation after mitral annuloplasty

    NARCIS (Netherlands)

    Wijdh-den Hamer, Inez J.; Bouma, Wobbe; Lai, Eric K.; Levack, Melissa M.; Shang, Eric K.; Pouch, Alison M.; Eperjesi, Thomas J.; Plappert, Theodore J.; Yushkevich, Paul A.; Hung, Judy; Mariani, Massimo A.; Khabbaz, Kamal R.; Gleason, Thomas G.; Mahmood, Feroze; Acker, Michael A.; Woo, Y. Joseph; Cheung, Albert T.; Gillespie, Matthew J.; Jackson, Benjamin M.; Gorman, Joseph H.; Gorman, Robert C.

    Objectives: Repair for ischemic mitral regurgitation with undersized annuloplasty is characterized by high recurrence rates. We sought to determine the value of pre-repair 3-dimensional echocardiography over 2-dimensional echocardiography in predicting recurrence at 6 months. Methods: Intraoperative

  16. The linearly scaling 3D fragment method for large scale electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Zhengji [National Energy Research Scientific Computing Center (NERSC) (United States); Meza, Juan; Shan Hongzhang; Strohmaier, Erich; Bailey, David; Wang Linwang [Computational Research Division, Lawrence Berkeley National Laboratory (United States); Lee, Byounghak, E-mail: ZZhao@lbl.go [Physics Department, Texas State University (United States)

    2009-07-01

    The linearly scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  17. Peak clustering in two-dimensional gas chromatography with mass spectrometric detection based on theoretical calculation of two-dimensional peak shapes: the 2DAid approach.

    Science.gov (United States)

    van Stee, Leo L P; Brinkman, Udo A Th

    2011-10-28

    A method is presented to facilitate the non-target analysis of data obtained in temperature-programmed comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-ToF-MS). One main difficulty of GC×GC data analysis is that each peak is usually modulated several times and therefore appears as a series of peaks (or peaklets) in the one-dimensionally recorded data. The proposed method, 2DAid, uses basic chromatographic laws to calculate the theoretical shape of a 2D peak (a cluster of peaklets originating from the same analyte) in order to define the area in which the peaklets of each individual compound can be expected to show up. Based on analyte-identity information obtained by means of mass spectral library searching, the individual peaklets are then combined into a single 2D peak. The method is applied, amongst others, to a complex mixture containing 362 analytes. It is demonstrated that the 2D peak shapes can be accurately predicted and that clustering and further processing can reduce the final peak list to a manageable size. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. In vitro three-dimensional coculturing poly3-hydroxybutyrate-co-3-hydroxyhexanoate with mouse-induced pluripotent stem cells for myocardial patch application.

    Science.gov (United States)

    Shijun, Xu; Junsheng, Mu; Jianqun, Zhang; Ping, Bo

    2016-03-01

    Identifying a suitable polymeric biomaterial for myocardial patch repair following myocardial infarction, cerebral infarction, and cartilage injury is essential. This study aimed to investigate the effect of the novel polymer material, poly3-hydroxybutyrate-co-3-hydroxyhexanoate, on the adhesion, proliferation, and differentiation of mouse-induced pluripotent stem cells in vitro. Mouse-induced pluripotent stem cells were isolated, expanded, and cultured on either two-dimensional or three-dimensional poly3-hydroxybutyrate-co-3-hydroxyhexanoate films (membranes were perforated to imitate three-dimensional space). Following attachment onto the films, mouse-induced pluripotent stem cell morphology was visualized using scanning electron microscopy. Cell vitality was detected using the Cell Counting Kit-8 assay and cell proliferation was observed using fluorescent 4',6-diamidino-2-phenylindole (DAPI) staining. Mouse-induced pluripotent stem cells were induced into cardiomyocytes by differentiation medium containing vitamin C. A control group in the absence of an inducer was included. Mouse-induced pluripotent stem cell survival and differentiation were observed using immunofluorescence and flow cytometry, respectively. Mouse-induced pluripotent stem cells growth, proliferation, and differentiation were observed on both two-dimensional and three-dimensional poly3-hydroxybutyrate-co-3-hydroxyhexanoate films. Vitamin C markedly improved the efficiency of mouse-induced pluripotent stem cells differentiation into cardiomyocytes on poly3-hydroxybutyrate-co-3-hydroxyhexanoate films. Three-dimensional culture was better at promoting mouse-induced pluripotent stem cell proliferation and differentiation compared with two-dimensional culture. © The Author(s) 2016.

  19. Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms

    International Nuclear Information System (INIS)

    Ablinger, Jakob; Schneider, Carsten; Bluemlein, Johannes; Raab, Clemens; Wissbrock, Fabian

    2014-02-01

    We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version to the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∝30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N element of C. Integrals with a power-like divergence in N-space∝a N , a element of R, a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.

  20. Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Reserach Inst. for Symbolic Computation (RISC); Bluemlein, Johannes; Raab, Clemens [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Wissbrock, Fabian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Reserach Inst. for Symbolic Computation (RISC)

    2014-02-15

    We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version to the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∝30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N element of C. Integrals with a power-like divergence in N-space∝a{sup N}, a element of R, a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.

  1. Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Blümlein, Johannes; Raab, Clemens [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Schneider, Carsten [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Wißbrock, Fabian [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2014-08-15

    We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version of the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators, new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∼30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N∈C. Integrals with a power-like divergence in N-space ∝a{sup N},a∈R,a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.

  2. Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms

    International Nuclear Information System (INIS)

    Ablinger, Jakob; Blümlein, Johannes; Raab, Clemens; Schneider, Carsten; Wißbrock, Fabian

    2014-01-01

    We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version of the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators, new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∼30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N∈C. Integrals with a power-like divergence in N-space ∝a N ,a∈R,a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions

  3. A New Optimization Method for Centrifugal Compressors Based on 1D Calculations and Analyses

    Directory of Open Access Journals (Sweden)

    Pei-Yuan Li

    2015-05-01

    Full Text Available This paper presents an optimization design method for centrifugal compressors based on one-dimensional calculations and analyses. It consists of two parts: (1 centrifugal compressor geometry optimization based on one-dimensional calculations and (2 matching optimization of the vaned diffuser with an impeller based on the required throat area. A low pressure stage centrifugal compressor in a MW level gas turbine is optimized by this method. One-dimensional calculation results show that D3/D2 is too large in the original design, resulting in the low efficiency of the entire stage. Based on the one-dimensional optimization results, the geometry of the diffuser has been redesigned. The outlet diameter of the vaneless diffuser has been reduced, and the original single stage diffuser has been replaced by a tandem vaned diffuser. After optimization, the entire stage pressure ratio is increased by approximately 4%, and the efficiency is increased by approximately 2%.

  4. A postprocessing method based on chirp Z transform for FDTD calculation of point defect states in two-dimensional phononic crystals

    International Nuclear Information System (INIS)

    Su Xiaoxing; Wang Yuesheng

    2010-01-01

    In this paper, a new postprocessing method for the finite difference time domain (FDTD) calculation of the point defect states in two-dimensional (2D) phononic crystals (PNCs) is developed based on the chirp Z transform (CZT), one of the frequency zooming techniques. The numerical results for the defect states in 2D solid/liquid PNCs with single or double point defects show that compared with the fast Fourier transform (FFT)-based postprocessing method, the method can improve the estimation accuracy of the eigenfrequencies of the point defect states significantly when the FDTD calculation is run with relatively few iterations; and furthermore it can yield the point defect bands without calculating all eigenfrequencies outside the band gaps. The efficiency and accuracy of the FDTD method can be improved significantly with this new postprocessing method.

  5. A postprocessing method based on chirp Z transform for FDTD calculation of point defect states in two-dimensional phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Su Xiaoxing, E-mail: xxsu@bjtu.edu.c [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-09-01

    In this paper, a new postprocessing method for the finite difference time domain (FDTD) calculation of the point defect states in two-dimensional (2D) phononic crystals (PNCs) is developed based on the chirp Z transform (CZT), one of the frequency zooming techniques. The numerical results for the defect states in 2D solid/liquid PNCs with single or double point defects show that compared with the fast Fourier transform (FFT)-based postprocessing method, the method can improve the estimation accuracy of the eigenfrequencies of the point defect states significantly when the FDTD calculation is run with relatively few iterations; and furthermore it can yield the point defect bands without calculating all eigenfrequencies outside the band gaps. The efficiency and accuracy of the FDTD method can be improved significantly with this new postprocessing method.

  6. Development of a BWR core burn-up calculation code COREBN-BWR

    International Nuclear Information System (INIS)

    Morimoto, Yuichi; Okumura, Keisuke

    1992-05-01

    In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)

  7. MARS14 deep-penetration calculation for the ISIS target station shielding

    International Nuclear Information System (INIS)

    Nakao, Noriaki; Nunomiya, Tomoya; Iwase, Hiroshi; Nakamura, Takashi

    2004-01-01

    The calculation of neutron penetration through a thick shield was performed with a three-dimensional multi-layer technique using the MARS14(02) Monte Carlo code to compare with the experimental shielding data in 1998 at the ISIS spallation neutron source facility of Rutherford Appleton Laboratory. In this calculation, secondary particles from a tantalum target bombarded by 800-MeV protons were transmitted through a bulk shield of approximately 3-m-thick iron and 1-m-thick concrete. To accomplish this deep-penetration calculation, a three-dimensional multi-layer technique and energy cut-off method were used considering a spatial statistical balance. Finally, the energy spectra of neutrons behind the very thick shield could be calculated down to the thermal energy with good statistics, and the calculated results typically agree well within a factor of two with the experimental data over a broad energy range. The 12 C(n,2n) 11 C reaction rates behind the bulk shield were also calculated, which agree with the experimental data typically within 60%. These results are quite impressive in calculation accuracy for deep-penetration problem

  8. Optical Conductivity in a Two-Dimensional Extended Hubbard Model for an Organic Dirac Electron System α-(BEDT-TTF2I3

    Directory of Open Access Journals (Sweden)

    Daigo Ohki

    2018-03-01

    Full Text Available The optical conductivity in the charge order phase is calculated in the two-dimensional extended Hubbard model describing an organic Dirac electron system α -(BEDT-TTF 2 I 3 using the mean field theory and the Nakano-Kubo formula. Because the interband excitation is characteristic in a two-dimensional Dirac electron system, a peak structure is found above the charge order gap. It is shown that the peak structure originates from the Van Hove singularities of the conduction and valence bands, where those singularities are located at a saddle point between two Dirac cones in momentum space. The frequency of the peak structure exhibits drastic change in the vicinity of the charge order transition.

  9. GRUNCLE, 1. Collision Source Calculation for Program DOT. DOT-3.5, 2-D Neutron Transport, Gamma Transport Program DOT with New Space-Scaling

    International Nuclear Information System (INIS)

    1996-01-01

    A - Nature of problem or function: DOT solves the Boltzmann transport equation in two-dimensional geometries. Principal applications are to neutron and/or photon transport, although the code can be applied to transport problems for any particles not subject to external force fields. Both homogeneous and external-source problems can be solved. Searches on multiplication factor, time absorption, nuclide concentration, and zone thickness are available for reactor problems. Numerous edits and output data sets for subsequent use are available. DOT-3.5 improves the space-scaling algorithm. DOT-3.5/CAB contains group by group UPSCATTER scaling method. DUCT calculates perturbations to the scalar flux caused by the presence of ducts filled with coolant. VIP is a program for cross section sensitivity analysis using two- dimensional discrete ordinates transport calculations. DGRAD calculates the directional flux gradients from DOT-3 diffusion theory flux tapes. In conjunction with VIP and TPERT, it allows the use of diffusion theory fluxes to obtain exact and first-order perturbation reactivity changes. In order to calculate the reactivity associated with changes in reactor compositions using diffusion theory, it is necessary to fold not only the scalar fluxes with the appropriate cross sections, but also the average flux gradients with the diffusion coefficients. Since DOT diffusion theory does not directly calculate these gradients, it was necessary to calculate the needed quantities external to the DOT code. TPERT is a perturbation code to obtain exact and first-order reactivity changes. TPERT is coupled to VIP which generates adjoint forward flux tables using DOT-3 scalar flux tape information. GRTUNCL calculates an analytical first-collision source for subsequent use in DOT. B - Method of solution: The method of discrete ordinates is used. Balance equations are solved for the density of particles moving along discrete directions in each cell of a two-dimensional spatial

  10. Multi-dimensional fission-barrier calculations from Se to the SHE; from the proton to the neutron drip lines

    International Nuclear Information System (INIS)

    Moeller, Peter; Sierk, Arnold J.; Bengtsson, Ragnar; Iwamoto, Akira

    2003-01-01

    We present fission-barrier-height calculations for nuclei throughout the periodic system based on a realistic theoretical model of the multi-dimensional potential-energy surface of a fissioning nucleus. This surface guides the nuclear shape evolution from the ground state, over inner and outer saddle points, to the final configurations of separated fission fragments. We have previously shown that our macroscopic-microscopic nuclear potential-energy model yields calculated 'outer' fission-barrier heights (E B ) for even-even nuclei throughout the periodic system that agree with experimental data to within about 1.0 MeV. We present final results of this work. Just recently we have enhanced our macroscopic-microscopic nuclear potential-energy model to also allow the consideration of axially asymmetric shapes. This shape degree of freedom has a substantial effect on the calculated height (E A ) of the inner peak of some actinide fission barriers. We present examples of fission-barrier calculations by use of this model with its redetermined constants. Finally we discuss what the model now tells us about fission barriers at the end of the r-process nucleosynthesis path. (author)

  11. Analysis of time-of-flight experiment on lithium-oxide assemblies by a two-dimensional transport code DOT3.5

    International Nuclear Information System (INIS)

    Oyama, Yukio; Yamaguchi, Seiya; Maekawa, Hiroshi

    1985-03-01

    Calculational analyses were made on the time-of-flight experiment of neutron leakage spectra from lithium-oxide slabs. The uncertainties in the calculation due to modelling were examined and it was estimated to be 1-2 %. The calculational results were compared with the experimental ones. The calculations were carried out by a two-dimensional transport code DOT3.5 using ENDF/B-4 nuclear data file. The comparison of energy-integrated fluxes in C/E from made it clear that the tendency of discrepancy between both results depended on the thickness of assembly and leaking angle. The discrepancy of C/E was about 40 % at the maximum. The effect due to the cross section change to a new data of 7 Li(n,n't) 4 He was also examined. This type of comparison is useful for the systematic assesments. From the comparison, it was suggested that the angular distribution of secondary neutron should be improved in the calculation, and the correct differential data of cross section are required. (author)

  12. Verification of the three-dimensional FLAME code

    International Nuclear Information System (INIS)

    Mays, C.W.

    1976-08-01

    FLAME calculations are compared with operating data from Oconee Unit 1 and with two independent three-dimensional PDQ07 calculations for a feed-and-bleed plant containing lumped burnable poison. The Oconee 1 comparisons consider both steady-state and transient data. The steady-state calculations are compared with operating data from two cycles of operation. The comparisons with PDQ07 calculations are for a design transient. Direct comparisons are made between calculations and measurements for the Oconee 1 analyses. No uncertainty is applied to measured power densities. The difference in measured and calculated total peak for 95% of the assemblies considered in these comparisons is less than 5.3%. Based on these analyses, it is concluded that FLAME can calculate the total peak to within 5.3% for both steady-state and transient plant conditions. The maximum deviation in the total peak calculated by FLAME and one of the PDQ07 calculations is 5.6%. The maximum deviation with the other PDQ07 calculation is 2.5%. It is concluded that the FLAME calculations gave the most conservative results of the three

  13. Determination of Scaled Wind Turbine Rotor Characteristics from Three Dimensional RANS Calculations

    International Nuclear Information System (INIS)

    Burmester, S; Gueydon, S; Make, M

    2016-01-01

    Previous studies have shown the importance of 3D effects when calculating the performance characteristics of a scaled down turbine rotor [1-4]. In this paper the results of 3D RANS (Reynolds-Averaged Navier-Stokes) computations by Make and Vaz [1] are taken to calculate 2D lift and drag coefficients. These coefficients are assigned to FAST (Blade Element Momentum Theory (BEMT) tool from NREL) as input parameters. Then, the rotor characteristics (power and thrust coefficients) are calculated using BEMT. This coupling of RANS and BEMT was previously applied by other parties and is termed here the RANS-BEMT coupled approach. Here the approach is compared to measurements carried out in a wave basin at MARIN applying Froude scaled wind, and the direct 3D RANS computation. The data of both a model and full scale wind turbine are used for the validation and verification. The flow around a turbine blade at full scale has a more 2D character than the flow properties around a turbine blade at model scale (Make and Vaz [1]). Since BEMT assumes 2D flow behaviour, the results of the RANS-BEMT coupled approach agree better with the results of the CFD (Computational Fluid Dynamics) simulation at full- than at model-scale. (paper)

  14. Comparison of calculational methods for EBT reactor nucleonics

    International Nuclear Information System (INIS)

    Henninger, R.J.; Seed, T.J.; Soran, P.D.; Dudziak, D.J.

    1980-01-01

    Nucleonic calculations for a preliminary conceptual design of the first wall/blanket/shield/coil assembly for an EBT reactor are described. Two-dimensional Monte Carlo, and one- and two-dimensional discrete-ordinates calculations are compared. Good agreement for the calculated values of tritium breeding and nuclear heating is seen. We find that the three methods are all useful and complementary as a design of this type evolves

  15. A point-kernel shielding code for calculations of neutron and secondary gamma-ray 1cm dose equivalents: PKN

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Tanaka, Shun-ichi

    1991-09-01

    A point-kernel integral technique code, PKN, and the related data library have been developed to calculate neutron and secondary gamma-ray dose equivalents in water, concrete and iron shields for neutron sources in 3-dimensional geometry. The comparison between calculational results of the present code and those of the 1-dimensional transport code ANISN = JR, and the 2-dimensional transport code DOT4.2 showed a sufficient accuracy, and the availability of the PKN code has been confirmed. (author)

  16. Complex reactor cell calculation by means of consecutive use of the one-dimensional algorithms based on the DSsub(n)-method

    International Nuclear Information System (INIS)

    Kalashnikov, A.G.; Elovskaya, L.F.; Glebov, A.P.; Kuznetsova, L.I.

    1981-01-01

    The technique for approximate calculation of the water cooled and moderated reactor cell based on using the DSn-method and the TESI-2S program for the BESM-6 computer in which the proposed technique is realized are described. The calculational technique is based on division of the reactor complex cell into simple one-dimensional cylindrical cells. Series of cells obtained that way is calculated beginning from the first one. After each cell calculation the macrocross sections are averaged over the cell vomome using the neutron spatial and energy distribution. The possibility of approximate account for neutron transport between the cells of the same rank by equating neutron fluxes on the cell boundary is supposed. The spatially and energy neutron flux distribution over cells is performed using the conditions of isotropic neutron reflection on the cell boundary. The results of the proposed technique approbation on the example of the ABV-1.5 reactor fuel assembly high accuracy and reliability of the employed algorithm [ru

  17. Calculation of two-dimensional thermal transients by the finite element method

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da; Barcellos, C.S. de

    1981-01-01

    The linear heat conduction through anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is analysed. It only accepts time-independent boundary conditions and it is possible to have internal heat generation. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. (Author) [pt

  18. Application of DYNA3D in large scale crashworthiness calculations

    International Nuclear Information System (INIS)

    Benson, D.J.; Hallquist, J.O.; Igarashi, M.; Shimomaki, K.; Mizuno, M.

    1986-01-01

    This paper presents an example of an automobile crashworthiness calculation. Based on our experiences with the example calculation, we make recommendations to those interested in performing crashworthiness calculations. The example presented in this paper was supplied by Suzuki Motor Co., Ltd., and provided a significant shakedown for the new large deformation shell capability of the DYNA3D code. 15 refs., 3 figs

  19. Non-perturbative background field calculations

    International Nuclear Information System (INIS)

    Stephens, C.R.; Department of Physics, University of Utah, Salt Lake City, Utah 84112)

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation: perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation. copyright 1988 Academic Press, Inc

  20. 3-Dimensional Methodology for the Control Rod Ejection Accident Analysis Using UNICORNTM

    International Nuclear Information System (INIS)

    Jang, Chan-su; Um, Kil-sup; Ahn, Dawk-hwan; Kim, Yo-han; Sung, Chang-kyung; Song, Jae-seung

    2006-01-01

    The control rod ejection accident has been analyzed with STRIKIN-II code using the point kinetics model coupled with conservative factors to address the three dimensional aspects. This may result in a severe transient with very high fuel enthalpy deposition. KNFC, under the support of KEPRI and KAERI, is developing 3-dimensional methodology for the rod ejection accident analysis using UNICORNTM (Unified Code of RETRAN, TORC and MASTER). For this purpose, 3-dimensional MASTER-TORC codes, which have been combined with the dynamic-link library by KAERI, are used in the transient analysis of the core and RETRAN code is used to estimate the enthalpy deposition in the hot rod

  1. Program for TI programmable 59 calculator for calculation of 3H concentration of water samples

    International Nuclear Information System (INIS)

    Hussain, S.D.; Asghar, G.

    1982-09-01

    A program has been developed for TI Programmable 59 Calculator of Texas Instruments Inc. to calculate from the observed parameters such as count rate etc. the 3 H (tritium) concentration of water samples processed with/without prior electrolytic enrichment. Procedure to use the program has been described in detail. A brief description of the laboratory treatment of samples and the mathematical equations used in the calculations have been given. (orig./A.B.)

  2. Magnetoresistance calculations for a two-dimensional electron gas with unilateral short-period strong modulation

    Czech Academy of Sciences Publication Activity Database

    Výborný, Karel; Smrčka, Ludvík

    2002-01-01

    Roč. 66, č. 20 (2002), s. 205318-1 - 205318-8 ISSN 0163-1829 R&D Projects: GA ČR GA202/01/0754 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetoresistance * short-period superlattices * two-dimensional electron gas Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  3. Phase-only stereoscopic hologram calculation based on Gerchberg–Saxton iterative algorithm

    International Nuclear Information System (INIS)

    Xia Xinyi; Xia Jun

    2016-01-01

    A phase-only computer-generated holography (CGH) calculation method for stereoscopic holography is proposed in this paper. The two-dimensional (2D) perspective projection views of the three-dimensional (3D) object are generated by the computer graphics rendering techniques. Based on these views, a phase-only hologram is calculated by using the Gerchberg–Saxton (GS) iterative algorithm. Comparing with the non-iterative algorithm in the conventional stereoscopic holography, the proposed method improves the holographic image quality, especially for the phase-only hologram encoded from the complex distribution. Both simulation and optical experiment results demonstrate that our proposed method can give higher quality reconstruction comparing with the traditional method. (special topic)

  4. Chiral anomaly, fermionic determinant and two dimensional models

    International Nuclear Information System (INIS)

    Rego Monteiro, M.A. do.

    1985-01-01

    The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt

  5. A novel and efficient analytical method for calculation of the transient temperature field in a multi-dimensional composite slab

    International Nuclear Information System (INIS)

    Lu, X; Tervola, P; Viljanen, M

    2005-01-01

    This paper provides an efficient analytical tool for solving the heat conduction equation in a multi-dimensional composite slab subject to generally time-dependent boundary conditions. A temporal Laplace transformation and novel separation of variables are applied to the heat equation. The time-dependent boundary conditions are approximated with Fourier series. Taking advantage of the periodic properties of Fourier series, the corresponding analytical solution is obtained and expressed explicitly through employing variable transformations. For such conduction problems, nearly all the published works necessitate numerical work such as computing residues or searching for eigenvalues even for a one-dimensional composite slab. In this paper, the proposed method involves no numerical iteration. The final closed form solution is straightforward; hence, the physical parameters are clearly shown in the formula. The accuracy of the developed analytical method is demonstrated by comparison with numerical calculations

  6. Calculations with ANSYS/FLOTRAN to a core catcher benchmark

    International Nuclear Information System (INIS)

    Willschuetz, H.G.

    1999-01-01

    There are numerous experiments for the exploration of the corium spreading behaviour, but comparable data have not been available up to now in the field of the long-term behaviour of a corium expanded in a core catcher. For the calculations a pure liquid oxidic melt with a homogeneous internal heat source was assumed. The melt was distributed uniformly over the spreading area of the EPR core catcher. All codes applied the well known k-ε-turbulence-model to simulate the turbulent flow regime of this melt configuration. While the FVM-code calculations were performed with three dimensional models using a simple symmetry, the problem was modelled two-dimensionally with ANSYS due to limited CPU performance. In addition, the 2D results of ANSYS should allow a comparison for the planned second stage of the calculations. In this second stage, the behaviour of a segregated metal oxide melt should be examined. However, first estimates and pre-calculations showed that a 3D simulation of the problem is not possible with any of the codes due to lacking computer performance. (orig.)

  7. Spiral correlations in frustrated one-dimensional spin-1/2 Heisenberg J1-J2-J3 ferromagnets

    International Nuclear Information System (INIS)

    Zinke, R; Richter, J; Drechsler, S-L

    2010-01-01

    We use the coupled cluster method for infinite chains complemented by exact diagonalization of finite periodic chains to discuss the influence of a third-neighbor exchange J 3 on the ground state of the spin- 1/2 Heisenberg chain with ferromagnetic nearest-neighbor interaction J 1 and frustrating antiferromagnetic next-nearest-neighbor interaction J 2 . A third-neighbor exchange J 3 might be relevant to describe the magnetic properties of the quasi-one-dimensional edge-shared cuprates, such as LiVCuO 4 or LiCu 2 O 2 . In particular, we calculate the critical point J 2 c as a function of J 3 , where the ferromagnetic ground state gives way for a ground state with incommensurate spiral correlations. For antiferromagnetic J 3 the ferro-spiral transition is always continuous and the critical values J 2 c of the classical and the quantum model coincide. On the other hand, for ferromagnetic J 3 ∼ 1 | the critical value J 2 c of the quantum model is smaller than that of the classical model. Moreover, the transition becomes discontinuous, i.e. the model exhibits a quantum tricritical point. We also calculate the height of the jump of the spiral pitch angle at the discontinuous ferro-spiral transition.

  8. KOBRA 3 - a code for the calculation of space-charge-influenced trajectories in 3-dimensions

    International Nuclear Information System (INIS)

    Spaedtke, P.; Wipf, S.

    1989-06-01

    KOBRA3 is a three-dimensional multi-purpose program, written in standard FORTRAN77. The main purpose of the program is to calculate the trajectories of charged particles through a static electro-magnetic field in three dimensions. If space charge is not negligible its influence is taken into account by an iterative process. The Laplace equation is solved for the scalar potential. During the ray tracing, in which the equations of motion for charged particles are solved, the space charge term in the Poisson equation is distributed onto the mesh. By repeating this procedure the steady-state Vlasov equation is solved: ∇ 2 φ+∫∫∫f p dxdydz = 0, where φ is the electro-static potential and f p (r vector, v vector) describes the distribution of the charged particles in space. KOBRA3 can handle finite plasma boundaries, which are found by the program automatically. Special features are included within the program to investigate the beam quality (emittance, transverse energy), and to display the geometry, the trajectories and the potential and magnetic fields graphically. The modular structure of the program enables the user to create his (her) own diagnostic programs or interfaces to the main program. This report is intended to facilitate the use of KOBRA3 by describing the theory, structure and numerical methods used. At GSI (Gesellschaft fuer Schwerionenforschung) the program runs on an IBM 3090-40E. The program has been installed on other machines e.g. CRAY XM-P, CRAY II, VAX 8600, IBM 3090-200, IBM 3033, ATARI ST, IBM-AT. (orig./HSI)

  9. 3-dimensional orthodontics visualization system with dental study models and orthopantomograms

    Science.gov (United States)

    Zhang, Hua; Ong, S. H.; Foong, K. W. C.; Dhar, T.

    2005-04-01

    The aim of this study is to develop a system that provides 3-dimensional visualization of orthodontic treatments. Dental plaster models and corresponding orthopantomogram (dental panoramic tomogram) are first digitized and fed into the system. A semi-auto segmentation technique is applied to the plaster models to detect the dental arches, tooth interstices and gum margins, which are used to extract individual crown models. 3-dimensional representation of roots, generated by deforming generic tooth models with orthopantomogram using radial basis functions, is attached to corresponding crowns to enable visualization of complete teeth. An optional algorithm to close the gaps between deformed roots and actual crowns by using multi-quadratic radial basis functions is also presented, which is capable of generating smooth mesh representation of complete 3-dimensional teeth. User interface is carefully designed to achieve a flexible system with as much user friendliness as possible. Manual calibration and correction is possible throughout the data processing steps to compensate occasional misbehaviors of automatic procedures. By allowing the users to move and re-arrange individual teeth (with their roots) on a full dentition, this orthodontic visualization system provides an easy and accurate way of simulation and planning of orthodontic treatment. Its capability of presenting 3-dimensional root information with only study models and orthopantomogram is especially useful for patients who do not undergo CT scanning, which is not a routine procedure in most orthodontic cases.

  10. A novel three dimensional semimetallic MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhen-Kun [Beijing Computational Science Research Center, Beijing 100084 (China); Departments of Physics and Electronics, Hengyang Normal University, Hengyang 421008 (China); Zhang, Hui; Liu, Li-Min, E-mail: limin.liu@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100084 (China); Liu, Hao [Chengdu Green Energy and Green Manufacturing Technology R and D Center, Chengdu, Sichuan 610207 (China); Lau, Woon-Ming [Beijing Computational Science Research Center, Beijing 100084 (China); Chengdu Green Energy and Green Manufacturing Technology R and D Center, Chengdu, Sichuan 610207 (China)

    2014-05-28

    Transition metal dichalcogenides (TMDs) have many potential applications, while the performances of TMDs are generally limited by the less surface active sites and the poor electron transport efficiency. Here, a novel three-dimensional (3D) structure of molybdenum disulfide (MoS{sub 2}) with larger surface area was proposed based on first-principle calculations. 3D layered MoS{sub 2} structure contains the basal surface and joint zone between the different nanoribbons, which is thermodynamically stable at room temperature, as confirmed by first principles molecular dynamics calculations. Compared the two-dimensional layered structures, the 3D MoS{sub 2} not only owns the large surface areas but also can effectively avoid the aggregation. Interestingly, although the basal surface remains the property of the intrinsic semiconductor as the bulk MoS{sub 2}, the joint zone of 3D MoS{sub 2} exhibits semimetallic, which is derived from degenerate 3d orbitals of the Mo atoms. The high stability, large surface area, and high conductivity make 3D MoS{sub 2} have great potentials as high performance catalyst.

  11. Mode specific dynamics of the H2 + CH3 → H + CH4 reaction studied using quasi-classical trajectory and eight-dimensional quantum dynamics methods

    International Nuclear Information System (INIS)

    Wang, Yan; Li, Jun; Guo, Hua; Chen, Liuyang; Yang, Minghui; Lu, Yunpeng

    2015-01-01

    An eight-dimensional quantum dynamical model is proposed and applied to the title reaction. The reaction probabilities and integral cross sections have been determined for both the ground and excited vibrational states of the two reactants. The results indicate that the H 2 stretching and CH 3 umbrella modes, along with the translational energy, strongly promote the reactivity, while the CH 3 symmetric stretching mode has a negligible effect. The observed mode specificity is confirmed by full-dimensional quasi-classical trajectory calculations. The mode specificity can be interpreted by the recently proposed sudden vector projection model, which attributes the enhancement effects of the reactant modes to their strong couplings with the reaction coordinate at the transition state

  12. Electronic structure engineering in silicene via atom substitution and a new two-dimensional Dirac structure Si3C

    Science.gov (United States)

    Yin, Na; Dai, Ying; Wei, Wei; Huang, Baibiao

    2018-04-01

    A lot of efforts have been made towards the band gap opening in two-dimensional silicene, the silicon version of graphene. In the present work, the electronic structures of single atom doped (B, N, Al and P) and codoped (B/N and Al/P) silicene monolayers are systematically examined on the base of density functional electronic calculations. Our results demonstrate that single atom doping can realize electron or hole doping in the silicene; while codoping, due to the syergistic effects, results in finite band gap in silicene at the Dirac point without significantly degrading the electronic properties. In addition, the characteristic of band gap shows dependence on the doping concentration. Importantly, we predict a new two-dimensional Dirac structure, the graphene-like Si3C, which also shows linear band dispersion relation around the Fermi level. Our results demonstrates an important perspective to engineer the electronic and optical properties of silicene.

  13. Two-dimensional analytic weighting functions for limb scattering

    Science.gov (United States)

    Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.

    2017-10-01

    Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.

  14. Three-Dimensional Elasto-Plastic Calculations Using Yield Surfaces with Corner Discontinuities

    DEFF Research Database (Denmark)

    Clausen, Johan; Andersen, Lars; Damkilde, Lars

    2009-01-01

    This paper presents a simple and efficient way of dealing with the corners found in many yield surfaces, especially in geotechnical engineering. The efficiency of the method is demonstrated through three-dimensional computational examples.......This paper presents a simple and efficient way of dealing with the corners found in many yield surfaces, especially in geotechnical engineering. The efficiency of the method is demonstrated through three-dimensional computational examples....

  15. Two-Dimensional (2D Slices Encryption-Based Security Solution for Three-Dimensional (3D Printing Industry

    Directory of Open Access Journals (Sweden)

    Giao N. Pham

    2018-05-01

    Full Text Available Nowadays, three-dimensional (3D printing technology is applied to many areas of life and changes the world based on the creation of complex structures and shapes that were not feasible in the past. But, the data of 3D printing is often attacked in the storage and transmission processes. Therefore, 3D printing must be ensured security in the manufacturing process, especially the data of 3D printing to prevent attacks from hackers. This paper presents a security solution for 3D printing based on two-dimensional (2D slices encryption. The 2D slices of 3D printing data is encrypted in the frequency domain or in the spatial domain by the secret key to generate the encrypted data of 3D printing. We implemented the proposed solution in both the frequency domain based on the Discrete Cosine Transform and the spatial domain based on geometric transform. The entire 2D slices of 3D printing data is altered and secured after the encryption process. The proposed solution is responsive to the security requirements for the secured storage and transmission. Experimental results also verified that the proposed solution is effective to 3D printing data and is independent on the format of 3D printing models. When compared to the conventional works, the security and performance of the proposed solution is also better.

  16. One-Dimensional Photonic Crystal Superprisms

    Science.gov (United States)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  17. Three-dimensional supramolecular architecture in imidazolium hydrogen 2,3,5,6-tetrafluoroterephthalate.

    Science.gov (United States)

    Yu, Li-Li; Cheng, Mei-Ling; Liu, Qi; Zhang, Zhi-Hui; Chen, Qun

    2010-04-01

    The asymmetric unit of the title salt formed between 2,3,5,6-tetrafluoroterephthalic acid (H(2)tfbdc) and imidazolium (ImH), C(3)H(5)N(2)(+).C(8)HF(4)O(4)(-), contains one Htfbdc(-) anion and one ImH(2)(+) cation, joined by a classical N-H...O hydrogen bond. The acid and base subunits are further linked by N-H...O and O-H...O hydrogen bonds into infinite two-dimensional layers with R(6)(5)(32) hydrogen-bond motifs. The resulting (4,4) network layers interpenetrate to produce an interlocked three-dimensional structure. The final three-dimensional supramolecular architecture is further stabilized by the linkages of two C-H...O interactions.

  18. Three-Dimensional FIB/EBSD Characterization of Irradiated HfAl3-Al Composite

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Zilong; Guillen, Donna Post; Harris, William; Ban, Heng

    2016-09-01

    A thermal neutron absorbing material, comprised of 28.4 vol% HfAl3 in an Al matrix, was developed to serve as a conductively cooled thermal neutron filter to enable fast flux materials and fuels testing in a pressurized water reactor. In order to observe the microstructural change of the HfAl3-Al composite due to neutron irradiation, an EBSD-FIB characterization approach is developed and presented in this paper. Using the focused ion beam (FIB), the sample was fabricated to 25µm × 25µm × 20 µm and mounted on the grid. A series of operations were carried out repetitively on the sample top surface to prepare it for scanning electron microscopy (SEM). First, a ~100-nm layer was removed by high voltage FIB milling. Then, several cleaning passes were performed on the newly exposed surface using low voltage FIB milling to improve the SEM image quality. Last, the surface was scanned by Electron Backscattering Diffraction (EBSD) to obtain the two-dimensional image. After 50 to 100 two-dimensional images were collected, the images were stacked to reconstruct a three-dimensional model using DREAM.3D software. Two such reconstructed three-dimensional models were obtained from samples of the original and post-irradiation HfAl3-Al composite respectively, from which the most significant microstructural change caused by neutron irradiation apparently is the size reduction of both HfAl3 and Al grains. The possible reason is the thermal expansion and related thermal strain from the thermal neutron absorption. This technique can be applied to three-dimensional microstructure characterization of irradiated materials.

  19. HEU benchmark calculations and LEU preliminary calculations for IRR-1

    International Nuclear Information System (INIS)

    Caner, M.; Shapira, M.; Bettan, M.; Nagler, A.; Gilat, J.

    2004-01-01

    We performed neutronics calculations for the Soreq Research Reactor, IRR-1. The calculations were done for the purpose of upgrading and benchmarking our codes and methods. The codes used were mainly WIMS-D/4 for cell calculations and the three dimensional diffusion code CITATION for full core calculations. The experimental flux was obtained by gold wire activation methods and compared with our calculated flux profile. The IRR-1 is loaded with highly enriched uranium fuel assemblies, of the plate type. In the framework of preparation for conversion to low enrichment fuel, additional calculations were done assuming the presence of LEU fresh fuel. In these preliminary calculations we investigated the effect on the criticality and flux distributions of the increase of U-238 loading, and the corresponding uranium density.(author)

  20. QSL Squasher: A Fast Quasi-separatrix Layer Map Calculator

    Energy Technology Data Exchange (ETDEWEB)

    Tassev, Svetlin; Savcheva, Antonia, E-mail: svetlin.tassev@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-05-10

    Quasi-Separatrix Layers (QSLs) are a useful proxy for the locations where current sheets can develop in the solar corona, and give valuable information about the connectivity in complicated magnetic field configurations. However, calculating QSL maps, even for two-dimensional slices through three-dimensional models of coronal magnetic fields, is a non-trivial task, as it usually involves tracing out millions of magnetic field lines with immense precision. Thus, extending QSL calculations to three dimensions has rarely been done until now. In order to address this challenge, we present QSL Squasher—a public, open-source code, which is optimized for calculating QSL maps in both two and three dimensions on graphics processing units. The code achieves large processing speeds for three reasons, each of which results in an order-of-magnitude speed-up. (1) The code is parallelized using OpenCL. (2) The precision requirements for the QSL calculation are drastically reduced by using perturbation theory. (3) A new boundary detection criterion between quasi-connectivity domains is used, which quickly identifies possible QSL locations that need to be finely sampled by the code. That boundary detection criterion relies on finding the locations of abrupt field-line length changes, which we do by introducing a new Field-line Length Edge (FLEDGE) map. We find FLEDGE maps useful on their own as a quick-and-dirty substitute for QSL maps. QSL Squasher allows construction of high-resolution 3D FLEDGE maps in a matter of minutes, which is two orders of magnitude faster than calculating the corresponding 3D QSL maps. We include a sample of calculations done using QSL Squasher to demonstrate its capabilities as a QSL calculator, as well as to compare QSL and FLEDGE maps.

  1. D-dimensional moments of inertia

    International Nuclear Information System (INIS)

    Bender, C.M.; Mead, L.R.

    1995-01-01

    We calculate the moments of inertia of D-dimensional spheres and spherical shells, where D is a complex number. We also examine the moments of inertia of fractional-dimensional geometrical objects such as the Cantor set and the Sierpinski carpet and their D-dimensional analogs. copyright 1995 American Association of Physics Teachers

  2. Accurate correlation energies in one-dimensional systems from small system-adapted basis functions

    Science.gov (United States)

    Baker, Thomas E.; Burke, Kieron; White, Steven R.

    2018-02-01

    We propose a general method for constructing system-dependent basis functions for correlated quantum calculations. Our construction combines features from several traditional approaches: plane waves, localized basis functions, and wavelets. In a one-dimensional mimic of Coulomb systems, it requires only 2-3 basis functions per electron to achieve high accuracy, and reproduces the natural orbitals. We illustrate its effectiveness for molecular energy curves and chains of many one-dimensional atoms. We discuss the promise and challenges for realistic quantum chemical calculations.

  3. Experiments and calculations on neutron streaming through bent ducts

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L.; Hoogenboom, J.E. (Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.); Zsolnay, E.M.

    1993-07-01

    Neutron spectra in a cylindrical straight duct and in bent ducts with angles of 30deg, 60deg and 90deg have been measured by the multiple foil activation and thermoluminescence dosimetry methods. Two-dimensional discrete ordinates and three-dimensional Monte Carlo calculations are executed, and the results are compared with the measurements. The flow rate at the duct entrance calculated by the DOT3.5 code is underestimated by approximately 30 %, due to a conversion of the core and reflector geometry from XY to RZ geometry. The fast neutron flux in the ducts is underestimated by 20 % by the MORSE-SGC/S code due to a too coarse angular mesh of the source, which does not properly represent the actual angular distribution of the fast flux, which is highly peaked forwardly into the ducts. The thermal neutron flux was over-estimated by the Monte Carlo calculation. A method is proposed to calculate the angular distribution of the flow rate at the duct entrance and to calculate the source strength and the angular distribution of the flow rate at the entrance of the second leg of the duct. The results are compared with those of the transport calculations. Generally, the agreement is quite satisfactory. (author).

  4. Three-dimensional Monte Carlo calculation of some nuclear parameters

    Science.gov (United States)

    Günay, Mehtap; Şeker, Gökmen

    2017-09-01

    In this study, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa Ferritic steel structural material and the molten salt-heavy metal mixtures 99-95% Li20Sn80 + 1-5% RG-Pu, 99-95% Li20Sn80 + 1-5% RG-PuF4, and 99-95% Li20Sn80 + 1-5% RG-PuO2, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion-fission hybrid reactor system. Beryllium (Be) zone with the width of 3 cm was used for the neutron multiplication between the liquid first wall and blanket. This study analyzes the nuclear parameters such as tritium breeding ratio (TBR), energy multiplication factor (M), heat deposition rate, fission reaction rate in liquid first wall, blanket and shield zones and investigates effects of reactor grade Pu content in the designed system on these nuclear parameters. Three-dimensional analyses were performed by using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.

  5. Three-dimensional Monte Carlo calculation of some nuclear parameters

    Directory of Open Access Journals (Sweden)

    Günay Mehtap

    2017-01-01

    Full Text Available In this study, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa Ferritic steel structural material and the molten salt-heavy metal mixtures 99–95% Li20Sn80 + 1-5% RG-Pu, 99–95% Li20Sn80 + 1-5% RG-PuF4, and 99–95% Li20Sn80 + 1-5% RG-PuO2, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion–fission hybrid reactor system. Beryllium (Be zone with the width of 3 cm was used for the neutron multiplication between the liquid first wall and blanket. This study analyzes the nuclear parameters such as tritium breeding ratio (TBR, energy multiplication factor (M, heat deposition rate, fission reaction rate in liquid first wall, blanket and shield zones and investigates effects of reactor grade Pu content in the designed system on these nuclear parameters. Three-dimensional analyses were performed by using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.

  6. Prenatal 3- and 4-dimensional Ultrasonographic Findings of Giant Fetal Nuchal Hemangioma

    Directory of Open Access Journals (Sweden)

    Jenn-Jhy Tseng

    2007-10-01

    Full Text Available A precise prenatal diagnosis of hemangioma may be uncertain although a variety of the antenatal appearances on 2-dimensional sonography have been reported. A 27-year-old primigravida was referred at 32 weeks of gestation for evaluation of a fetal nuchal mass. Two-dimensional sonography showed an extracranial mixed echogenic mass (65 × 54 × 59 mm occupying the posterior neck. Color Doppler imaging revealed intense hypervascularization. Three-dimensional (3D and 4-dimensional (4D sonography showed that the mass was lobulated, with a lumpy internal structure. Nuchal hemangioma was further confirmed by clinical examination and postnatal magnetic resonance imaging. The tumor began to regress in size when the infant was 7 months old. Prenatal 3D/4D ultrasound techniques could be considered as complementary diagnostic tools for such a tumor. They have the advantages of providing accurate and inexpensive virtual reality images through more realistic interactions with the virtualized in utero condition.

  7. Development of a 3-dimensional seismic isolation floor for computer systems

    International Nuclear Information System (INIS)

    Kurihara, M.; Shigeta, M.; Nino, T.; Matsuki, T.

    1991-01-01

    In this paper, we investigated the applicability of a seismic isolation floor as a method for protecting computer systems from strong earthquakes, such as computer systems in nuclear power plants. Assuming that the computer system is guaranteed for 250 cm/s 2 of input acceleration in the horizontal and vertical directions as the seismic performance, the basic design specification of the seismic isolation floor is considered as follows. Against S 1 level earthquakes, the maximum acceleration response of the seismic isolation floor in the horizontal and vertical directions is kept less than 250 cm/s 2 to maintain continuous computer operation. Against S 2 level earthquakes, the isolation floor allows large horizontal movement and large displacement of the isolation devices to reduce the acceleration response, although it is not guaranteed to be less than 250 cm/s 2 . By reducing the acceleration response, however, serious damage to the computer systems is reduced, so that they can be restarted after an earthquake. Usually, seismic isolation floor systems permit 2-dimensional (horizontal) isolation. However, in the case of just-under-seated earthquakes, which have large vertical components, the vertical acceleration response of this system is amplified by the lateral vibration of the frame of the isolation floor. Therefore, in this study a 3-dimensional seismic isolation floor, including vertical isolation, was developed. This paper describes 1) the experimental results of the response characteristics of the 3-dimensional seismic isolation floor built as a trial using a 3-dimensional shaking table, and 2) comparison of a 2-dimensional analytical model, for motion in one horizontal direction and the vertical direction, to experimental results. (J.P.N.)

  8. Convergent-beam electron diffraction study of incommensurately modulated crystals. Pt. 2. (3 + 1)-dimensional space groups

    International Nuclear Information System (INIS)

    Terauchi, Masami; Takahashi, Mariko; Tanaka, Michiyoshi

    1994-01-01

    The convergent-beam electron diffraction (CBED) method for determining three-dimensional space groups is extended to the determination of the (3 + 1)-dimensional space groups for one-dimensional incommensurately modulated crystals. It is clarified than an approximate dynamical extinction line appears in the CBED discs of the reflections caused by an incommensurate modulation. The extinction enables the space-group determination of the (3 + 1)-dimensional crystals or the one-dimensional incommensurately modulated crystals. An example of the dynamical extinction line is shown using an incommensurately modulated crystal of Sr 2 Nb 2 O 7 . Tables of the dynamical extinction lines appearing in CBED patterns are given for all the (3 + 1)-dimensional space groups of the incommensurately modulated crystal. (orig.)

  9. Monte Carlo calculations of electron transport on microcomputers

    International Nuclear Information System (INIS)

    Chung, Manho; Jester, W.A.; Levine, S.H.; Foderaro, A.H.

    1990-01-01

    In the work described in this paper, the Monte Carlo program ZEBRA, developed by Berber and Buxton, was converted to run on the Macintosh computer using Microsoft BASIC to reduce the cost of Monte Carlo calculations using microcomputers. Then the Eltran2 program was transferred to an IBM-compatible computer. Turbo BASIC and Microsoft Quick BASIC have been used on the IBM-compatible Tandy 4000SX computer. The paper shows the running speed of the Monte Carlo programs on the different computers, normalized to one for Eltran2 on the Macintosh-SE or Macintosh-Plus computer. Higher values refer to faster running times proportionally. Since Eltran2 is a one-dimensional program, it calculates energy deposited in a semi-infinite multilayer slab. Eltran2 has been modified to a two-dimensional program called Eltran3 to computer more accurately the case with a point source, a small detector, and a short source-to-detector distance. The running time of Eltran3 is about twice as long as that of Eltran2 for a similar case

  10. Analytic calculation of the dynamical aperture for the two dimensional betatron motion in storage rings

    International Nuclear Information System (INIS)

    Hagel, J.; Moshammer, H.

    1988-01-01

    In this paper the authors study the on- momentum nonlinear equations of motion for the coupled transverse motion of a single charged particle in a storage ring. The authors seek for the maximum initial linear amplitudes in the two transverse directions x and y which lead to bounded particle motion as t tends to infinity. Although the authors restrict themselves to sextupole fields in this paper, the authors may easily extend the method to any order multipole. The aim of this work is to derive an analytic approximate expression for the dynamical aperture. The authors approach the solutions of x and y by use of a classical secular perturbation theory. Every coefficient of the perturbation series can be expressed as an analytic function of all the lower order coefficients. Although perturbation theory if it is evaluated to certain specific order leads only to an approximation in terms of bounded (trigonometric) functions the authors may derive information about the stability limit by considering the convergency radius of the general perturbation. This is done in the present paper by deriving an approximate analytic expression for the n-th order perturbation contribution of the whole series using only results up to second order. The actual calculations have been performed for the fully two dimensional case but for simplicity the authors shall explain only the one dimensional case of the pure horizontal motion

  11. TP1 - A computer program for the calculation of reactivity and kinetic parameters by one-dimensional neutron transport perturbation theory

    International Nuclear Information System (INIS)

    Kobayashi, K.

    1979-03-01

    TP1, a FORTRAN-IV program based on transport theory, has been developed to determine reactivity effects and kinetic parameters such as effective delayed neutron fractions and mean generation time by applying the usual perturbation formalism for one-dimensional geometry. Direct and adjoint angular dependent neutron fluxes are read from an interface file prepared by using the one-dimensional Ssub(n)-code DTK which provides options for slab, cylindrical and spherical geometry. Multigroup cross sections which are equivalent to those of the DTK-calculations are supplied in the SIGM-block which is also read from an interface file. This block which is usually produced by the code GRUCAL should contain the necessary delayed neutron data, which can be added to the original SIGMN-block by using the code SIGMUT. Two perturbation options are included in TP1: a) the usual first oder perturbation theory can be applied to determine probe reactivities, b) assuming that there are available direct fluxes for the unperturbed reactor system and adjoint fluxes for the perturbed system, the exact reactivity effect induced by the perturbation can be determined by an exact perturbation calculation. According to the input specifications, the output lists the reactivity contributions for each neutron reaction process in the desired detailed spatial and energy group resolution. (orig./RW) [de

  12. Three-dimensional space charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1981-01-01

    A method is presented for calculating space-charge forces suitable for use in a particle tracing code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface by using a weighted residual method. Using a discrete particle distribution as our source input, examples are shown of off-axis, bunched beams of noncircular crosssection in radio-frequency quadrupole (RFQ) and drift-tube linac geometries

  13. Verification of the three-dimensional FLAME code

    International Nuclear Information System (INIS)

    Mays, C.W.

    1976-04-01

    FLAME calculations are compared with operating data from Oconee Unit 1 and with two independent three-dimensional PDQ07 calculations for a feed-and-bleed plant containing lumped burnable poison. The Oconee 1 comparisons consider both steady-state and transient data.The steady-state calculations are compared with operating data from two cycles of operation. The comparisons with PDQ07 calculations are for a design transient. Direct comparisons are made between calculations and measurements for the Oconee 1 analyses. No uncertainty is applied to measured power densities. The difference in measured and calculated total peak for 95 percent of the assemblies considered in these comparisons is less than 5.3 percent. Based on these analyses, it is concluded that FLAME can calculate the total peak to within 5.3 percent for both steady-state and transient plant conditions. The maximum deviation in the total peak calculated by FLAME and one of the PDQ07 calculations is 5.6 percent. The maximum deviation with the other PDQ07 calculation is 2.5 percent. It is concluded that the FLAME calculations gave the most conservative results of the three

  14. Two-dimensional benchmark calculations for PNL-30 through PNL-35

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1997-01-01

    Interest in critical experiments with lattices of mixed-oxide (MOX) fuel pins has been revived by the possibility that light water reactors will be used for disposition of weapons-grade plutonium. A series of six experiments with MOX lattices, designated PNL-30 through PNL-35, was performed at Pacific Northwest Laboratories in 1975 and 1976, and a set of benchmark specifications for these experiments subsequently was adopted by the Cross Section Evaluation Working Group (CSEWG). Although there appear to be some problems with these experiments, they remain the only CSEWG benchmarks for MOX lattices. The number of fuel pins in these experiments is relatively low, corresponding to fewer than 4 typical pressurized-water-reactor fuel assemblies. Accordingly, they are more appropriate as benchmarks for lattice-physics codes than for reactor-core simulator codes. Unfortunately, the CSEWG specifications retain the full three-dimensional (3D) detail of the experiments, while lattice-physics codes almost universally are limited to two dimensions (2D). This paper proposes an extension of the benchmark specifications to include a 2D model, and it justifies that extension by comparing results from the MCNP Monte Carlo code for the 2D and 3D specifications

  15. ROBOT3: a computer program to calculate the in-pile three-dimensional bowing of cylindrical fuel rods (AWBA Development Program)

    International Nuclear Information System (INIS)

    Kovscek, S.E.; Martin, S.E.

    1982-10-01

    ROBOT3 is a FORTRAN computer program which is used in conjunction with the CYGRO5 computer program to calculate the time-dependent inelastic bowing of a fuel rod using an incremental finite element method. The fuel rod is modeled as a viscoelastic beam whose material properties are derived as perturbations of the CYGRO5 axisymmetric model. Fuel rod supports are modeled as displacement, force, or spring-type nodal boundary conditions. The program input is described and a sample problem is given

  16. Influence of White-Coat Hypertension on Left Ventricular Deformation 2- and 3-Dimensional Speckle Tracking Study.

    Science.gov (United States)

    Tadic, Marijana; Cuspidi, Cesare; Ivanovic, Branislava; Ilic, Irena; Celic, Vera; Kocijancic, Vesna

    2016-03-01

    We sought to compare left ventricular deformation in subjects with white-coat hypertension to normotensive and sustained hypertensive patients. This cross-sectional study included 139 untreated subjects who underwent 24-hour ambulatory blood pressure monitoring and completed 2- and 3-dimensional examination. Two-dimensional left ventricular multilayer strain analysis was also performed. White-coat hypertension was diagnosed if clinical blood pressure was elevated and 24-hour blood pressure was normal. Our results showed that left ventricular longitudinal and circumferential strains gradually decreased from normotensive controls across subjects with white-coat hypertension to sustained hypertensive group. Two- and 3-dimensional left ventricular radial strain, as well as 3-dimensional area strain, was not different between groups. Two-dimensional left ventricular longitudinal and circumferential strains of subendocardial and mid-myocardial layers gradually decreased from normotensive control to sustained hypertensive group. Longitudinal and circumferential strains of subepicardial layer did not differ between the observed groups. We concluded that white-coat hypertension significantly affects left ventricular deformation assessed by 2-dimensional traditional strain, multilayer strain, and 3-dimensional strain. © 2016 American Heart Association, Inc.

  17. Uniform electron gases. III. Low-density gases on three-dimensional spheres

    Energy Technology Data Exchange (ETDEWEB)

    Agboola, Davids; Knol, Anneke L.; Gill, Peter M. W., E-mail: peter.gill@anu.edu.au; Loos, Pierre-François, E-mail: pf.loos@anu.edu.au [Research School of Chemistry, Australian National University, Canberra ACT 2601 (Australia)

    2015-08-28

    By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) — and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.

  18. Observations and calculations of two-dimensional angular optical scattering (TAOS) patterns of a single levitated cluster of two and four microspheres

    International Nuclear Information System (INIS)

    Krieger, U.K.; Meier, P.

    2011-01-01

    We use single bi-sphere particles levitated in an electrodynamic balance to record two-dimensional angular scattering patterns at different angles of the coordinate system of the aggregate relative to the incident laser beam. Due to Brownian motion the particle covers the whole set of possible angles with time and allows to select patterns with high symmetry for analysis. These are qualitatively compared to numerical calculations. A small cluster of four spheres shows complex scattering patterns, comparison with computations suggest a low compactness for these clusters. An experimental procedure is proposed for studying restructuring effects occurring in mixed particles upon evaporation. - Research highlights: → Single levitated bi-sphere particle. → Two-dimensional angular scattering pattern. → Comparison experiment with computations.

  19. Field calculations. Part I: Choice of variables and methods

    International Nuclear Information System (INIS)

    Turner, L.R.

    1981-01-01

    Magnetostatic calculations can involve (in order of increasing complexity) conductors only, material with constant or infinite permeability, or material with variable permeability. We consider here only the most general case, calculations involving ferritic material with variable permeability. Variables suitable for magnetostatic calculations are the magnetic field, the magnetic vector potential, and the magnetic scalar potential. For two-dimensional calculations the potentials, which each have only one component, have advantages over the field, which has two components. Because it is a single-valued variable, the vector potential is perhaps the best variable for two-dimensional calculations. In three dimensions, both the field and the vector potential have three components; the scalar potential, with only one component,provides a much smaller system of equations to be solved. However the scalar potential is not single-valued. To circumvent this problem, a calculation with two scalar potentials can be performed. The scalar potential whose source is the conductors can be calculated directly by the Biot-Savart law, and the scalar potential whose source is the magnetized material is single valued. However in some situations, the fields from the two potentials nearly cancel; and the numerical accuracy is lost. The 3-D magnetostatic program TOSCA employs a single total scalar potential; the program GFUN uses the magnetic field as its variable

  20. 3-Dimensional Agent Representations Increase Generosity in a Naturalistic Setting

    DEFF Research Database (Denmark)

    Krátký, Jan; McGraw, John J.; Xygalatas, Dimitris

    do not always act as deliberative, rational actors. Various studies have investigated the effects of both material cues and complex environmental settings on behavioral choices. One particularly common and salient aspect of the environment involves cues related to intentional agents, whether...... they be our conspecifics, non-human species or supernatural beings. A number of studies have found that exposing participants to cues of agency increase prosocial or cooperative behavior. In two separate studies, we investigated the role dimensionality plays in priming inferences of agency. In contrast...... to previous studies utilizing 2-dimensional images, 3-dimensional representations share morphological elements with real life agents which may enhance the salience of the cues. Higher activation of agency detection, in turn, ought to trigger stronger reputational concerns and thus further amplify prosocial...

  1. Non-perturbative background field calculations

    Science.gov (United States)

    Stephens, C. R.

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.

  2. A mathematical method to calculate efficiency of BF3 detectors

    International Nuclear Information System (INIS)

    Si Fenni; Hu Qingyuan; Peng Taiping

    2009-01-01

    In order to calculate absolute efficiency of the BF 3 detector, MCNP/4C code is applied to calculate relative efficiency of the BF 3 detector first, and then absolute efficiency is figured out through mathematical techniques. Finally an energy response curve of the BF 3 detector for 1-20 MeV neutrons is derived. It turns out that efficiency of BF 3 detector are relatively uniform for 2-16 MeV neutrons. (authors)

  3. I-125 ROPES eye plaque dosimetry: validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic® EBT3 films.

    Science.gov (United States)

    Poder, Joel; Corde, Stéphanie

    2013-12-01

    The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic(®) EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC(®) was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution. Using GafChromic(®) EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC(®). The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC(®) to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC(®) was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T = 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately modeled in the planning system. Off-axis profiles

  4. Sensitivity of trajectory calculations to the temporal frequency of wind data

    Science.gov (United States)

    Doty, Kevin G.; Perkey, Donald J.

    1993-01-01

    A mesoscale primitive equation model is used to create a 36-h simulation of the three-dimensional wind field of an intense maritime extratropical cyclone. The control experiment uses the simulated wind field every 15 min in a trajectory model to calculate back trajectories from various horizontal and vertical positions of interest relative to synoptic features of the storm. The latter trajectories are compared to trajectories that were calculated with the simulated wind data degraded in time to 30 min, 1 h, 3 h, 6h, and 12 h. Various error statistics reveal significant deterioration in trajectory accuracy between trajectories calculated with 1- and 3-h data frequencies. Trajectories calculated with 15-min, 30-min, and 1-h data frequencies yielded similar results, while trajectories calculated with data time frequencies 3 h and greater yielded results with unacceptably large errors.

  5. Axes of resistance for tooth movement: does the center of resistance exist in 3-dimensional space?

    Science.gov (United States)

    Viecilli, Rodrigo F; Budiman, Amanda; Burstone, Charles J

    2013-02-01

    The center of resistance is considered the most important reference point for tooth movement. It is often stated that forces through this point will result in tooth translation. The purpose of this article is to report the results of numeric experiments testing the hypothesis that centers of resistance do not exist in space as 3-dimensional points, primarily because of the geometric asymmetry of the periodontal ligament. As an alternative theory, we propose that, for an arbitrary tooth, translation references can be determined by 2-dimensional projection intersections of 3-dimensional axes of resistance. Finite element analyses were conducted on a maxillary first molar model to determine the position of the axes of rotation generated by 3-dimensional couples. Translation tests were performed to compare tooth movement by using different combinations of axes of resistance as references. The couple-generated axes of rotation did not intersect in 3 dimensions; therefore, they do not determine a 3-dimensional center of resistance. Translation was obtained by using projection intersections of the 2 axes of resistance perpendicular to the force direction. Three-dimensional axes of resistance, or their 2-dimensional projection intersections, should be used to plan movement of an arbitrary tooth. Clinical approximations to a small 3-dimensional "center of resistance volume" might be adequate in nearly symmetric periodontal ligament cases. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  6. Four-dimensional dose evaluation using deformable image registration in radiotherapy for liver cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hoon Jung, Sang; Min Yoon, Sang; Ho Park, Sung; Cho, Byungchul; Won Park, Jae; Jung, Jinhong; Park, Jin-hong; Hoon Kim, Jong; Do Ahn, Seung [Departments of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736 (Korea, Republic of)

    2013-01-15

    Purpose: In order to evaluate the dosimetric impact of respiratory motion on the dose delivered to the target volume and critical organs during free-breathing radiotherapy, a four-dimensional dose was evaluated using deformable image registration (DIR). Methods: Four-dimensional computed tomography (4DCT) images were acquired for 11 patients who were treated for liver cancer. Internal target volume-based treatment planning and dose calculation (3D dose) were performed using the end-exhalation phase images. The four-dimensional dose (4D dose) was calculated based on DIR of all phase images from 4DCT to the planned image. Dosimetric parameters from the 4D dose, were calculated and compared with those from the 3D dose. Results: There was no significant change of the dosimetric parameters for gross tumor volume (p > 0.05). The increase D{sub mean} and generalized equivalent uniform dose (gEUD) for liver were by 3.1%{+-} 3.3% (p= 0.003) and 2.8%{+-} 3.3% (p= 0.008), respectively, and for duodenum, they were decreased by 15.7%{+-} 11.2% (p= 0.003) and 15.1%{+-} 11.0% (p= 0.003), respectively. The D{sub max} and gEUD for stomach was decreased by 5.3%{+-} 5.8% (p= 0.003) and 9.7%{+-} 8.7% (p= 0.003), respectively. The D{sub max} and gEUD for right kidney was decreased by 11.2%{+-} 16.2% (p= 0.003) and 14.9%{+-} 16.8% (p= 0.005), respectively. For left kidney, D{sub max} and gEUD were decreased by 11.4%{+-} 11.0% (p= 0.003) and 12.8%{+-} 12.1% (p= 0.005), respectively. The NTCP values for duodenum and stomach were decreased by 8.4%{+-} 5.8% (p= 0.003) and 17.2%{+-} 13.7% (p= 0.003), respectively. Conclusions: The four-dimensional dose with a more realistic dose calculation accounting for respiratory motion revealed no significant difference in target coverage and potentially significant change in the physical and biological dosimetric parameters in normal organs during free-breathing treatment.

  7. 3D CT modeling of hepatic vessel architecture and volume calculation in living donated liver transplantation

    International Nuclear Information System (INIS)

    Frericks, Bernd B.; Caldarone, Franco C.; Savellano, Dagmar Hoegemann; Stamm, Georg; Kirchhoff, Timm D.; Shin, Hoen-Oh; Galanski, Michael; Nashan, Bjoern; Klempnauer, Juergen; Schenk, Andrea; Selle, Dirk; Spindler, Wolf; Peitgen, Heinz-Otto

    2004-01-01

    The aim of this study was to evaluate a software tool for non-invasive preoperative volumetric assessment of potential donors in living donated liver transplantation (LDLT). Biphasic helical CT was performed in 56 potential donors. Data sets were post-processed using a non-commercial software tool for segmentation, volumetric analysis and visualisation of liver segments. Semi-automatic definition of liver margins allowed the segmentation of parenchyma. Hepatic vessels were delineated using a region-growing algorithm with automatically determined thresholds. Volumes and shapes of liver segments were calculated automatically based on individual portal-venous branches. Results were visualised three-dimensionally and statistically compared with conventional volumetry and the intraoperative findings in 27 transplanted cases. Image processing was easy to perform within 23 min. Of the 56 potential donors, 27 were excluded from LDLT because of inappropriate liver parenchyma or vascular architecture. Two recipients were not transplanted due to poor clinical conditions. In the 27 transplanted cases, preoperatively visualised vessels were confirmed, and only one undetected accessory hepatic vein was revealed. Calculated graft volumes were 1110±180 ml for right lobes, 820 ml for the left lobe and 270±30 ml for segments II+III. The calculated volumes and intraoperatively measured graft volumes correlated significantly. No significant differences between the presented automatic volumetry and the conventional volumetry were observed. A novel image processing technique was evaluated which allows a semi-automatic volume calculation and 3D visualisation of the different liver segments. (orig.)

  8. Low dimensional equivalence of core neutronics model and its application to transient analysis

    International Nuclear Information System (INIS)

    Song Hongbing; Zhao Fuyu

    2015-01-01

    Three-dimensional coupled neutronics thermal-hydraulics reactor analysis is time consuming and occupies huge memory. A one-dimensional model is preferable than the three one in nuclear system analysis, control system design and load following. In this paper, a corewide three dimensional to one dimensional equivalent method has been developed. On the basis of this method 1D axial few groups constants were obtained. The equivalent cross sections were calculated by general spatial homogenization while the transverse buckling was computed through an equivalence based on the 3D flux conservation. Three steady test cases were performed on one dimensional finite difference code ODTAC and the results were compared with TRIVAC-5. The comparison shows that the one dimensional axial power distribution computed by ODTAC correlates well with the three dimensional results calculated by TRIVAC-5. In this study, DRAGON-4 was used to generate the few-group constants of fuel assemblies and the reflector few-group parameters were calculated by WIMS-D4. These collapsed few-group constants were tabulated in a database sorted in ascending order of fuel temperature, coolant temperature and concentration of boric acid. Trilinear interpolation was adopted in cross sections feedback during the transient analysis. In this paper, G1 rod drop accident (RDA) and G1 rod ejection accident (REA) were performed on ODTAC and the computation results were consistent of the physical rules. (author)

  9. Transport calculation of neutron flux distribution in reflector of PW reactor

    International Nuclear Information System (INIS)

    Remec, I.

    1982-01-01

    Two-dimensional transport calculation of the neutron flux and spectrum in the equatorial plain of PW reactor, using computer program DOT 3, is presented. Results show significant differences between neutron fields in which test samples and reactor vessel are exposed. (author)

  10. Quantitative one-dimensional thermal-wave cavity measurements of fluid thermophysical properties through equivalence studies with three-dimensional geometries

    International Nuclear Information System (INIS)

    Matvienko, Anna; Mandelis, Andreas

    2006-01-01

    The thermal-wave field in a photopyroelectric thermal-wave cavity was calculated with two theoretical approaches: a computationally straightforward, conventional, one-dimensional approach and a three-dimensional experimentally more realistic approach. The calculations show that the dimensionality of the thermal-wave field in the cavity depends on the lateral heat transfer boundary conditions and the relation between the beam size of the laser impinging on the thermal-wave generating metallic film and the diameter of the film itself. The theoretical calculations and the experimental data on the photopyroelectric signal in the cavity were compared. The study resulted in identifying ranges of heat transfer rates, beam sizes, and cavity radii for which accurate quantitative measurements of the thermal diffusivity of intracavity fluids can be made within the far simpler, but only approximate, one-dimensional approach conventionally adopted by users of thermal-wave cavities. It was shown that the major parameters affecting the dimensionality of thermal-wave cavities are the laser beam spot size and the Biot number of the medium comprising the sidewalls of the (cylindrical) cavity

  11. Measurement of the buccolingual inclination of teeth: manual technique vs 3-dimensional software.

    Science.gov (United States)

    Nouri, Mahtab; Abdi, Amir Hossein; Farzan, Arash; Mokhtarpour, Faraneh; Baghban, AliReza Akbarzadeh

    2014-10-01

    In this study, we aimed to measure the inclination of teeth on dental casts by a manual technique with the tooth inclination protractor (TIP; MBI, Newport, United Kingdom) and a newly designed 3-dimensional (3D) software program. The correlation of the 2 techniques was evaluated, and the reliability of each technique was assessed separately. This study was conducted on 36 dental casts of normal, well-aligned Class I occlusions; we assessed 432 teeth. All casts had a normal Class I occlusion. After determining the facial axis of the clinical crown and the facial axis points on the dental casts, we measured the inclinations of the incisors and posterior teeth up to the first molars in each dental arch relative to Andrews' occlusal plane and the posterior occlusal plane using the TIP. Moreover, the casts were scanned by a structured-light 3D scanner. The inclination of teeth relative to the occlusal plane was determined using the new software. To assess the reliability, measurements of all teeth from 15 casts were repeated twice by the 2 methods. Intraclass correlation coefficient and Dahlberg's formula were used for calculation of correlation and reliability. Overall, the 2 techniques were not significantly different in the measurements of the inclinations of the teeth in both jaws. The ranges of Dahlberg's formula were 3.1° to 5.8° for the maxilla and 3.3° to 5.9° for the mandible. The overall correlation of the 2 techniques according to the intraclass correlation coefficient was 0.91. For calculation of reliability, the intraclass correlation coefficients for the TIP and the 3D method were 0.73 and 0.82, respectively. The TIP and the 3D software showed a high correlation for measurement of the inclinations of maxillary and mandibular teeth relative to the occlusal plane. Also, the reproducibility of the measurements in each method was high. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  12. Two-dimensional impurity transport calculations for a high recycling divertor

    International Nuclear Information System (INIS)

    Brooks, J.N.

    1986-04-01

    Two dimensional analysis of impurity transport in a high recycling divertor shows asymmetric particle fluxes to the divertor plate, low helium pumping efficiency, and high scrapeoff zone shielding for sputtered impurities

  13. Calculation using MVP and MVP-BURN in JRR-3

    International Nuclear Information System (INIS)

    Komeda, Masao; Kato, Tomoaki; Murayama, Yoji; Yamashita, Kiyonobu

    2007-01-01

    MVP is the particle-transport Monte Carlo code that has been developed in JAEA. MVP-BURN is an added function to do burn-up calculation. It is easy to built complex structure like core for MVP. And it is easy to do calculations of keff, any reaction rate, flux, burn-up and so on. In this report, it is introduced MVP and MVP-BURN. And some sample calculations of JRR-3 are shown. (author)

  14. Serial 3-dimensional computed tomography and a novel method of volumetric analysis for the evaluation of the osteo-odonto-keratoprosthesis.

    Science.gov (United States)

    Sipkova, Zuzana; Lam, Fook Chang; Francis, Ian; Herold, Jim; Liu, Christopher

    2013-04-01

    To assess the use of serial computed tomography (CT) in the detection of osteo-odonto-lamina resorption in osteo-odonto-keratoprosthesis (OOKP) and to investigate the use of new volumetric software, Advanced Lung Analysis software (3D-ALA; GE Healthcare), for detecting changes in OOKP laminar volume. A retrospective assessment of the radiological databases and hospital records was performed for 22 OOKP patients treated at the National OOKP referral center in Brighton, United Kingdom. Three-dimensional surface reconstructions of the OOKP laminae were performed using stored CT data. For the 2-dimensional linear analysis, the linear dimensions of the reconstructed laminae were measured, compared with original measurements taken at the time of surgery, and then assigned a CT grade based on a predetermined resorption grading scale. The volumetric analysis involved calculating the laminar volumes using 3D-ALA. The effectiveness of 2-dimensional linear analysis, volumetric analysis, and clinical examination in detecting laminar resorption was compared. The mean change in laminar volume between the first and second scans was -6.67% (range, +10.13% to -24.86%). CT grades assigned to patients based on laminar dimension measurements remained the same, despite significant changes in laminar volumes. Clinical examination failed to identify 60% of patients who were found to have resorption on volumetric analysis. Currently, the detection of laminar resorption relies on clinical examination and the measurement of laminar dimensions on the 2- and 3-dimensional radiological images. Laminar volume measurement is a useful new addition to the armamentarium. It provides an objective tool that allows for a precise and reproducible assessment of laminar resorption.

  15. (3+1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Bianca [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)

    2017-05-22

    We apply the recently suggested strategy to lift state spaces and operators for (2+1)-dimensional topological quantum field theories to state spaces and operators for a (3+1)-dimensional TQFT with defects. We start from the (2+1)-dimensional Turaev-Viro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects. This work has important applications for quantum gravity as well as the theory of topological phases in (3+1) dimensions. It provides a self-dual quantum geometry realization based on a vacuum state peaked on a homogeneously curved geometry. The state spaces and operators we construct here provide also an improved version of the Walker-Wang model, and simplify its analysis considerably. We in particular show that the fusion bases of the (2+1)-dimensional theory lead to a rich set of bases for the (3+1)-dimensional theory. This includes a quantum deformed spin network basis, which in a loop quantum gravity context diagonalizes spatial geometry operators. We also obtain a dual curvature basis, that diagonalizes the Walker-Wang Hamiltonian. Furthermore, the construction presented here can be generalized to provide state spaces for the recently introduced dichromatic four-dimensional manifold invariants.

  16. A two-dimensional, finite-element methods for calculating TF coil response to out-of-plane Lorentz forces

    International Nuclear Information System (INIS)

    Witt, R.J.

    1989-01-01

    Toroidal field (TF) coils in fusion systems are routinely operated at very high magnetic fields. While obtaining the response of the coil to in-plane loads is relatively straightforward, the same is not true for the out-of-plane loads. Previous treatments of the out-of-plane problem have involved large, three-dimensional finite element idealizations. A new treatment of the out-of-plane problem is presented here; the model is two-dimensional in nature, and consumes far less CPU-time than three-dimensional methods. The approach assumes there exists a region of torsional deformation in the inboard leg and a bending region in the outboard leg. It also assumes the outboard part of the coil is attached to a torque frame/cylinder, which experiences primarily torsional deformation. Three-dimensional transition regions exist between the inboard and outboard legs and between the outboard leg and the torque frame. By considering several idealized problems of cylindrical shells subjected to moment distributions, it is shown that the size of these three-dimensional regions is quite small, and that the interaction between the torsional and bending regions can be treated in an equivalent two-dimensional fashion. Equivalent stiffnesses are derived to model penetration into and twist along the cylinders. These stiffnesses are then used in a special substructuring analysis to couple the three regions together. Results from the new method are compared to results from a 3D continuum model. (orig.)

  17. TORT application in reactor pressure vessel neutron flux calculations

    International Nuclear Information System (INIS)

    Belousov, S.I.; Ilieva, K.D.; Antonov, S.Y.

    1994-01-01

    The neutron flux values onto reactor pressure vessel for WWER-1000 and WWER-440 reactors, at the places important for metal embrittlement surveillance have been calculated by 3 dimensional code TORT and synthesis method. The comparison of the results received by both methods confirms their good consistency. (authors). 13 refs., 4 tabs

  18. Finite-dimensional effects and critical indices of one-dimensional quantum models

    International Nuclear Information System (INIS)

    Bogolyubov, N.M.; Izergin, A.G.; Reshetikhin, N.Yu.

    1986-01-01

    Critical indices, depending on continuous parameters in Bose-gas quantum models and Heisenberg 1/2 spin antiferromagnetic in two-dimensional space-time at zero temperature, have been calculated by means of finite-dimensional effects. In this case the long-wave asymptotics of the correlation functions is of a power character. Derivation of man asymptotics terms is reduced to the determination of a central charge in the appropriate Virassoro algebra representation and the anomalous dimension-operator spectrum in this representation. The finite-dimensional effects allow to find these values

  19. Information Gain Based Dimensionality Selection for Classifying Text Documents

    Energy Technology Data Exchange (ETDEWEB)

    Dumidu Wijayasekara; Milos Manic; Miles McQueen

    2013-06-01

    Selecting the optimal dimensions for various knowledge extraction applications is an essential component of data mining. Dimensionality selection techniques are utilized in classification applications to increase the classification accuracy and reduce the computational complexity. In text classification, where the dimensionality of the dataset is extremely high, dimensionality selection is even more important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection in text mining applications that utilizes information gain. The presented methodology uses information gain of each dimension to change the mutation probability of chromosomes dynamically. Since the information gain is calculated a priori, the computational complexity is not affected. The presented method was tested on a specific text classification problem and compared with conventional genetic algorithm based dimensionality selection. The results show an improvement of 3% in the true positives and 1.6% in the true negatives over conventional dimensionality selection methods.

  20. The Albedo method for tri-dimensional calculations of fast reactors, with application to PEC

    International Nuclear Information System (INIS)

    Bianchini, G.; Loizzo, P.

    1983-01-01

    The Pec core simulator computer code, being now defined at Enea, is a relatively simple and inexpensive calculational model used by the reactor operator to derive the core life and the single subassemblies power and sodium flow. The diffusion module of this code will be based on the neutronic design code Citation. Here are outlined the theoretical foundations and the procedures to reduce the tri-dimensional diffusion computer time by the use of the following approximations: 1) the reactor zones far from the core are substituted by boundary conditions (albedo method); suitable flux logarithmic derivates are defined; 2) the fuel elements are represented by exagonal meshes; appropriate normalization factors are defined. With respect to the standard design procedures the computer cpu time is reduced from 90 minutes to 2 minutes (Ibm 4341/2). The errors amount to a few mk on the multiplication factor and to a few percent on the power distribution. The approximations (1) and (2) are equally important with respect to the time reduction

  1. Virtual 3-dimensional preoperative planning with the dextroscope for excision of a 4th ventricular ependymoma.

    Science.gov (United States)

    Anil, S M; Kato, Y; Hayakawa, M; Yoshida, K; Nagahisha, S; Kanno, T

    2007-04-01

    Advances in computer imaging and technology have facilitated enhancement in surgical planning with a 3-dimensional model of the surgical plan of action utilizing advanced visualization tools in order to plan individual interactive operations with the aid of the dextroscope. This provides a proper 3-dimensional imaging insight to the pathological anatomy and sets a new dimension in collaboration for training and education. The case of a seventeen-year-old female, being operated with the aid of a preoperative 3-dimensional virtual reality planning and the practical application of the neurosurgical operation, is presented. This young lady presented with a two-year history of recurrent episodes of severe, global, throbbing headache with episodes of projectile vomiting associated with shoulder pain which progressively worsened. She had no obvious neurological deficits on clinical examination. CT and MRI showed a contrast-enhancing midline posterior fossa space-occupying lesion. Utilizing virtual imaging technology with the aid of a dextroscope which generates stereoscopic images, a 3-dimensional image was produced with the CT and MRI images. A preoperative planning for excision of the lesion was made and a real-time 3-dimensional volume was produced and surgical planning with the dextroscope was made and the lesion excised. Virtual reality has brought new proportions in 3-dimensional planning and management of various complex neuroanatomical problems that are faced during various operations. Integration of 3-dimensional imaging with stereoscopic vision makes understanding the complex anatomy easier and helps improve decision making in patient management.

  2. Three-dimensional neutron kinetics-thermal-hydraulics VVER 1000 main steam line break analysis by RELAP5-3D code

    International Nuclear Information System (INIS)

    Frisani, A.; Parisi, C.; D'Auria, F.

    2007-01-01

    After the development and the assessment of Three-Dimensional (3D) Neutron Kinetics (NK) - 1D Thermal-Hydraulics (TH) coupled codes analyses methods, deterministic nuclear safety technology is nowadays producing noticeable efforts for the validation of 3D NK - 3D TH coupled codes analyses methods too. Thus, the purpose of this work was to address the capability of the RELAP5-3D 3D NK-3D TH code to reproduce VVER 1000 Nuclear Power Plant (NPP) core dynamic in simulating the mixing effects that could happen in the vessel downcomer and lower plenum during some scenarios. The work was developed in three steps. The first step dealt with the 3D TH modeling of the Kozloduy-6 VVER 1000 reactor pressure vessel. Then this model was validated following a Steam Generator Isolation transient. The second step has been the development of a 3D NK nodalization for the reactor core region. Then the 3D NK model was directly coupled with the previously developed 3D TH model. The third step was the calculation of a Main Steam Line Break (MSLB) transient. The 3D NK global nuclear parameters were then compared with the 0-D results showing a good agreement; nevertheless only the 3D NK- 3D TH model allowed the calculation of each single assembly power trend for this strong NK-TH asymmetric transient. (author)

  3. Low dimensional neutron moderators for enhanced source brightness

    DEFF Research Database (Denmark)

    Mezei, Ferenc; Zanini, Luca; Takibayev, Alan

    2014-01-01

    In a recent numerical optimization study we have found that liquid para-hydrogen coupled cold neutron moderators deliver 3–5 times higher cold neutron brightness at a spallation neutron source if they take the form of a flat, quasi 2-dimensional disc, in contrast to the conventional more voluminous...... for cold neutrons. This model leads to the conclusions that the optimal shape for high brightness para-hydrogen neutron moderators is the quasi 1-dimensional tube and these low dimensional moderators can also deliver much enhanced cold neutron brightness in fission reactor neutron sources, compared...... to the much more voluminous liquid D2 or H2 moderators currently used. Neutronic simulation calculations confirm both of these theoretical conclusions....

  4. Two dimensional neutron transport calculation system for plate-reactors: experimental design and qualification with SILOE

    International Nuclear Information System (INIS)

    Roussos, N.

    1982-01-01

    The main objective of this work is to create a neutronic calculations system for the SILOE-SILOETTE reactors, adaptable to other types of plate reactors. The author presents the methodology and the development of the APOLLO 1D (99 gr.) calculations for the creation of cross sections libraries. After a recall of the Discrete Ordinate Method (DOT), the method accuracy is studied in order to optimize the spatial discretization of the calculations; calculations of DOT 3.5 and of SILOETTE core are conducted and their convergence and costs are examined. DOT calculations of SILOETTE and experimental tests results are then compared [fr

  5. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Algan, O; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [University of Central Oklahoma, Edmond, OK (United States)

    2016-06-15

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for the stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management

  6. Development and assessment of Multi-dimensional flow models in the thermal-hydraulic system analysis code MARS

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Bae, S. W.; Jeong, J. J.; Lee, S. M

    2005-04-15

    A new multi-dimensional component has been developed to allow for more flexible 3D capabilities in the system code, MARS. This component can be applied in the Cartesian and cylindrical coordinates. For the development of this model, the 3D convection and diffusion terms are implemented in the momentum and energy equation. And a simple Prandtl's mixing length model is applied for the turbulent viscosity. The developed multi-dimensional component was assessed against five conceptual problems with analytic solution. And some SETs are calculated and compared with experimental data. With this newly developed multi-dimensional flow module, the MARS code can realistic calculate the flow fields in pools such as those occurring in the core, steam generators and IRWST.

  7. Development and assessment of Multi-dimensional flow models in the thermal-hydraulic system analysis code MARS

    International Nuclear Information System (INIS)

    Chung, B. D.; Bae, S. W.; Jeong, J. J.; Lee, S. M.

    2005-04-01

    A new multi-dimensional component has been developed to allow for more flexible 3D capabilities in the system code, MARS. This component can be applied in the Cartesian and cylindrical coordinates. For the development of this model, the 3D convection and diffusion terms are implemented in the momentum and energy equation. And a simple Prandtl's mixing length model is applied for the turbulent viscosity. The developed multi-dimensional component was assessed against five conceptual problems with analytic solution. And some SETs are calculated and compared with experimental data. With this newly developed multi-dimensional flow module, the MARS code can realistic calculate the flow fields in pools such as those occurring in the core, steam generators and IRWST

  8. Interbasis expansion and SO(3) symmetry in the two-dimensional hydrogen atom.

    Energy Technology Data Exchange (ETDEWEB)

    Torres del Castillo, G.F.; Lopez Villanueva, A. [Universidad Autonoma de Puebla, Puebla (Mexico)

    2001-04-01

    Making use of the SO(3) symmetry of the two-dimensional hydrogen atom, each of the bases for the bound states formed by the separable solutions of the Schroedinger equation in polar and parabolic coordinates are expressed in terms of the other. [Spanish] Usando la simetria SO(3) del atomo de hidrogeno en dos dimensiones, cada una de las bases para los estados ligados formadas por las soluciones separables de la ecuacion de Schroedinger en coordenadas polares y parabolicas se expresan en terminos de la otra.

  9. An experience in the use the Sn method for 1D/2D/3D spallation target neutronics and shielding calculations

    International Nuclear Information System (INIS)

    Kryuchkov, V.P.; Chang, J.; Young-Sik, Cho; Voloschenko, A.M.; Sumaneev, O.V.

    2005-01-01

    A discrete ordinate algorithm for coupled charged/neutral particle transport calculations of the pencil beam problems in 3-dimensional r, θ, z and x,y,z geometries is developed. It is based on the use of the second order of accuracy adaptive WDD (AWDD) scheme for approximation both the continuous slowing down and streaming terms of the charged particle transport equation, and a suitable algorithm for treatment of the extended un collided flux from an initially mono directional beam of charged particles with given spatial distribution in the perpendicular section of the beam. The developed algorithm is an extension to the 3D geometry case of a similar approach, previously implemented for plane mono directional beam in 1D transport code ROZ-6 and for pencil beam r,z geometry problems in 2D transport code KASKAD-S. It is implemented in the 3D transport code KATRIN-2.0 and is applied to the high-energy coupled proton-pion-neutron-photon transport calculations. The updated version of multigroup cross section library SADCO-2.4 for nucleon-meson cascade calculations, coupled with standard neutron and gamma-ray cross-section libraries (CONSYST/ABBN-93 and BUGLE96, for example) below 20 MeV, is used. Some numerical examples are given. (authors)

  10. OCA-II, a code for calculating the behavior of 2-D and 3-D surface flaws in a pressure vessel subjected to temperature and pressure transients

    International Nuclear Information System (INIS)

    Ball, D.G.; Drake, J.B.; Cheverton, R.D.; Iskander, S.K.

    1984-02-01

    The OCA-II computer code, like its predecessor OCA-I, performs the thermal, stress, and linear elastic fracture-mechanics analysis for long flaws on the surface of a cylinder that is subjected to thermal and pressure transients. OCA-II represents a revised and expanded version of OCA-I and includes as new features (1) cladding as a discrete region, (2) a finite-element subroutine for calculating the stresses, and (3) the ability to calculate stress intensity factors for certain three-dimensional flaws, for two-dimensional circumferential flaws on the inner surface, and for both axial and circumferential flaws on the outer surface. OCA-I considered only inner-surface flaws. An option is included in OCA-II that permits a search for critical values of fluence or nil-ductility reference temperature corresponding to a specified failure criterion. These and other features of OCA-II are described in the report, which also includes user instructions for the code

  11. Three-dimensional plasma equilibrium near a separatrix

    International Nuclear Information System (INIS)

    Reiman, A.H.; Pomphrey, N.; Boozer, A.H.

    1988-08-01

    The limiting behavior of a general three-dimensional MHD equilibrium near a separatrix is calculated explicitly. No expansions in β or assumptions about island widths are made. Implications of the results for the numerical calculation of such equilibria, are discussed, as well as for issues concerning the existence of three-dimensional MHD equilibria. 16 refs., 2 figs

  12. Application of 3-dimensional CAD modeling system in nuclear plants

    International Nuclear Information System (INIS)

    Suwa, Minoru; Saito, Shunji; Nobuhiro, Minoru

    1990-01-01

    Until now, the preliminary work for mutual components in nuclear plant were readied by using plastic models. Recently with the development of computer graphic techniques, we can display the components on the graphics terminal, better than with use of plastic model and actual plants. The computer model can be handled, both telescopically and microscopically. A computer technique called 3-dimensional CAD modeling system was used as the preliminary work and design system. Through application of this system, database for nuclear plants was completed in arrangement step. The data can be used for piping design, stress analysis, shop production, testing and site construction, in all steps. In addition, the data can be used for various planning works, even after starting operation of plant. This paper describes the outline of the 3-dimensional CAD modeling system. (author)

  13. Radiative forcing calculations for CH3Cl

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1994-06-01

    Methyl chloride, CH 3 Cl, is the major natural source of chlorine to the stratosphere. The production of CH 3 Cl is dominated by biological sources from the oceans and biomass burning. Production has a seasonal cycle which couples with the short lifetime of tropospheric CH 3 Cl to produce nonuniform global mixing. As an absorber of infrared radiation, CH 3 Cl is of interest for its potential affect on the tropospheric energy balance as well as for its chemical interactions. In this study, we estimate the radiative forcing and global warming potential (GWP) of CH 3 Cl. Our calculations use an infrared radiative transfer model based on the correlated k-distribution algorithm for band absorption. Global and annual average vertical profiles of temperature and trace gas concentration were assumed. The effects of clouds are modeled using three layers of global and annual average cloud optical properties. A radiative forcing value of 0.0053 W/m 2 ppbv was obtained for CH 3 Cl and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 300 times the forcing of CO 2 , on a per molecule basis. The radiative forcing calculation for CH 3 Cl is used to estimate the global warming potential (GWP) of CH 3 Cl. The results give GWPs for CH 3 Cl of the order of 25 at a time of 20 years(CO 2 = 1). This result indicates that CH 3 Cl has the potential to be a major greenhouse gas if significant human related emissions were introduced into the atmosphere

  14. Aspects of cell calculations in deterministic reactor core analysis

    International Nuclear Information System (INIS)

    Varvayanni, M.; Savva, P.; Catsaros, N.

    2011-01-01

    comparison. For this purpose, corresponding reactivity results obtained by detailed geometry/high statistics Monte Carlo calculations, performed by the well documented neutronic code TRIPOLI, were utilized. It was concluded that the assumptions made for the transverse leakages in the one-dimensional cell calculations affect significantly the core reactivity computation. Small modifications in the parameters which determine the transverse cell leakages can induce k eff modifications of the order of 10 3 pcm. Significant factors for the suitability of the adopted assumptions were also shown to be the core size and the inclusion of several components, such as reflector or internal irradiation channels.

  15. 3-D Whole-Core Transport Calculation with 3D/2D Rotational Plane Slicing Method

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Han Jong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Use of the method of characteristics (MOC) is very popular due to its capability of heterogeneous geometry treatment and widely used for 2-D core calculation, but direct extension of MOC to 3-D core is not so attractive due to huge calculational cost. 2-D/1-D fusion method was very successful for 3-D calculation of current generation reactor types (highly heterogeneous in radial direction but piece-wise homogeneous in axial direction). In this paper, 2-D MOC concept is extended to 3-D core calculation with little modification of an existing 2-D MOC code. The key idea is to suppose 3-D geometry as a set of many 2-D planes like a phone-directory book. Dividing 3-D structure into a large number of 2-D planes and solving each plane with a simple 2-D SN transport method would give the solution of a 3-D structure. This method was developed independently at KAIST but it is found that this concept is similar with that of 'plane tracing' in the MCCG-3D code. The method developed was tested on the 3-D C5G7 OECD/NEA benchmark problem and compared with the 2-D/1-D fusion method. Results show that the proposed method is worth investigating further. A new approach to 3-D whole-core transport calculation is described and tested. By slicing 3-D structure along characteristic planes and solving each 2-D plane problem, we can get 3-D solution. The numerical test results indicate that the new method is comparable with the 2D/1D fusion method and outperforms other existing methods. But more fair comparison should be done in similar discretization level.

  16. I-125 ROPES eye plaque dosimetry: Validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic{sup ®} EBT3 films

    Energy Technology Data Exchange (ETDEWEB)

    Poder, Joel; Corde, Stéphanie [Department of Radiation Oncology, Prince of Wales Hospital, Randwick, NSW 2031 (Australia)

    2013-12-15

    Purpose: The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic{sup ®} EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC{sup ®} was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution.Methods: Using GafChromic{sup ®} EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC{sup ®}.Results: The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC{sup ®} to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC{sup ®} was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T= 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was

  17. Evaluation of left ventricular volumes in patients with congenital heart disease and abnormal left ventricular geometry. Comparison of MRI and transthoracic 3-dimensional echocardiography

    International Nuclear Information System (INIS)

    Gutberlet, M.; Grothoff, M.; Roettgen, R.; Lange, P.; Felix, R.; Abdul-Khaliq, H.; Schroeter, J.; Schmitt, B.; Vogel, M.

    2003-01-01

    Purpose: To assess the new method of 3-dimensional echocardiography in comparison to the 'gold standard' MRI as to its ability to calculate left ventricular volumes in patients with congenital heart disease. Materials and methods: Eighteen patients between the ages of 3.9 to 37.3 years (mean: 12.8±9.7) with a geometrically abnormal left ventricle were examined using a 1.5 T scanner with a fast gradient-echo sequence (TR=14 ms, TE=2.6-2.9 ms, FOV=300-400 mm, flip angle=20 , matrix=128:256, slice thickness=5 mm, retrospective gating) in multislice-multiphase technique. Transthoracic 3D-echocardiography was performed with a 3.5 MHz transducer and a Tomtec trademark (Munich, Germany) system for 3D reconstruction. Results: Volume calculation was possible in all patients with 3D-echocardiography, but the muscle mass calculation only succeeded in 11 to 18 patients (61%) due to inadequate visualization of the entire myocardium. Comparing MRI and 3D-echocardiography, the correlation was r=0.97 for the end-systolic volumes, r=0.98 for the end-diastolic volumes, r=0.79 for the end-systolic muscle mass and r=0.77 for the end-diastolic muscle mass. The agreement between both methods was considered good for the calculated end-diastolic volumes and sufficient for the calculated end-systolic volumes. The muscle mass calculations showed larger differences especially for the end-systolic mass. Mean intraobserver variability was 18.6% for end-systolic and 8.3% for end-diastolic volumes. Conclusion: In patients with an abnormal left ventricular configuration due to congenital heart disease, the new method of 3D-echocardiography is sufficient for volume calculations in preselected patients. The high intraobserver variability is still a limitation of transthoracic 3D-echocardiography in comparison to MRI. (orig.) [de

  18. Two-dimensional over-all neutronics analysis of the ITER device

    Science.gov (United States)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi

    1993-07-01

    The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR), and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li2O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No. 5, and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design.

  19. Two-dimensional over-all neutronics analysis of the ITER device

    International Nuclear Information System (INIS)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi.

    1993-07-01

    The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR) and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li 2 O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No.5 and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design. (author)

  20. Maxwellian-averaged cross sections calculated from JENDL-3.2

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ohsaka, Toshiro; Igashira, Masayuki [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan)

    2000-02-01

    Maxwellian-averaged cross sections of neutron capture, fission, (n,p) and (n,{alpha}) reactions are calculated from the Japanese Evaluated Nuclear Data Library, JENDL-3.2, for applications in the astrophysics. The calculation was made in the temperature (kT) range from 1 keV to 1 MeV. Results are listed in tables. The Maxwellian-averaged capture cross sections were compared with recommendations of other authors and recent experimental data. Large discrepancies were found among them especially in the light mass nuclides. Since JENDL-3.2 reproduces relatively well the recent experimental data, we conclude that JENDL-3.2 is superior to the others in such a mass region. (author)

  1. Benchmark calculations for VENUS-2 MOX -fueled reactor dosimetry

    International Nuclear Information System (INIS)

    Kim, Jong Kung; Kim, Hong Chul; Shin, Chang Ho; Han, Chi Young; Na, Byung Chan

    2004-01-01

    As a part of a Nuclear Energy Agency (NEA) Project, it was pursued the benchmark for dosimetry calculation of the VENUS-2 MOX-fueled reactor. In this benchmark, the goal is to test the current state-of-the-art computational methods of calculating neutron flux to reactor components against the measured data of the VENUS-2 MOX-fuelled critical experiments. The measured data to be used for this benchmark are the equivalent fission fluxes which are the reaction rates divided by the U 235 fission spectrum averaged cross-section of the corresponding dosimeter. The present benchmark is, therefore, defined to calculate reaction rates and corresponding equivalent fission fluxes measured on the core-mid plane at specific positions outside the core of the VENUS-2 MOX-fuelled reactor. This is a follow-up exercise to the previously completed UO 2 -fuelled VENUS-1 two-dimensional and VENUS-3 three-dimensional exercises. The use of MOX fuel in LWRs presents different neutron characteristics and this is the main interest of the current benchmark compared to the previous ones

  2. IMPETUS: Consistent SPH calculations of 3D spherical Bondi accretion onto a black hole

    Science.gov (United States)

    Ramírez-Velasquez, J. M.; Sigalotti, L. Di G.; Gabbasov, R.; Cruz, F.; Klapp, J.

    2018-04-01

    We present three-dimensional calculations of spherically symmetric Bondi accretion onto a stationary supermassive black hole (SMBH) of mass 108M⊙ within a radial range of 0.02 - 10 pc, using a modified version of the smoothed particle hydrodynamics (SPH) GADGET-2 code, which ensures approximate first-order consistency (i.e., second-order accuracy) for the particle approximation. First-order consistency is restored by allowing the number of neighbours, nneigh, and the smoothing length, h, to vary with the total number of particles, N, such that the asymptotic limits nneigh → ∞ and h → 0 hold as N → ∞. The ability of the method to reproduce the isothermal (γ = 1) and adiabatic (γ = 5/3) Bondi accretion is investigated with increased spatial resolution. In particular, for the isothermal models the numerical radial profiles closely match the Bondi solution, except near the accretor, where the density and radial velocity are slightly underestimated. However, as nneigh is increased and h is decreased, the calculations approach first-order consistency and the deviations from the Bondi solution decrease. The density and radial velocity profiles for the adiabatic models are qualitatively similar to those for the isothermal Bondi accretion. Steady-state Bondi accretion is reproduced by the highly resolved consistent models with a percent relative error of ≲ 1% for γ = 1 and ˜9% for γ = 5/3, with the adiabatic accretion taking longer than the isothermal case to reach steady flow. The performance of the method is assessed by comparing the results with those obtained using the standard GADGET-2 and the GIZMO codes.

  3. Full-dimensional quantum calculations of the dissociation energy, zero-point, and 10 K properties of H7+/D7+ clusters using an ab initio potential energy surface.

    Science.gov (United States)

    Barragán, Patricia; Pérez de Tudela, Ricardo; Qu, Chen; Prosmiti, Rita; Bowman, Joel M

    2013-07-14

    Diffusion Monte Carlo (DMC) and path-integral Monte Carlo computations of the vibrational ground state and 10 K equilibrium state properties of the H7 (+)/D7 (+) cations are presented, using an ab initio full-dimensional potential energy surface. The DMC zero-point energies of dissociated fragments H5 (+)(D5 (+))+H2(D2) are also calculated and from these results and the electronic dissociation energy, dissociation energies, D0, of 752 ± 15 and 980 ± 14 cm(-1) are reported for H7 (+) and D7 (+), respectively. Due to the known error in the electronic dissociation energy of the potential surface, these quantities are underestimated by roughly 65 cm(-1). These values are rigorously determined for first time, and compared with previous theoretical estimates from electronic structure calculations using standard harmonic analysis, and available experimental measurements. Probability density distributions are also computed for the ground vibrational and 10 K state of H7 (+) and D7 (+). These are qualitatively described as a central H3 (+)/D3 (+) core surrounded by "solvent" H2/D2 molecules that nearly freely rotate.

  4. Super-BMS{sub 3} invariant boundary theory from three-dimensional flat supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Barnich, Glenn; Donnay, Laura [Physique Théorique et Mathématique, Université Libre de Bruxelles andInternational Solvay Institutes,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Matulich, Javier; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Casilla 1469, Valdivia (Chile)

    2017-01-09

    The two-dimensional super-BMS{sub 3} invariant theory dual to three-dimensional asymptotically flat N=1 supergravity is constructed. It is described by a constrained or gauged chiral Wess-Zumino-Witten action based on the super-Poincaré algebra in the Hamiltonian, respectively the Lagrangian formulation, whose reduced phase space description corresponds to a supersymmetric extension of flat Liouville theory.

  5. DFT LCAO and plane wave calculations of SrZrO3

    International Nuclear Information System (INIS)

    Evarestov, R.A.; Bandura, A.V.; Alexandrov, V.E.; Kotomin, E.A.

    2005-01-01

    The results of the density functional (DFT) LCAO and plane wave (PW) calculations of the electronic and structural properties of four known SrZrO 3 phases (Pm3m, I4/mcm, Cmcm and Pbnm) are presented and discussed. The calculated unit cell energies and relative stability of these phases agree well with the experimental sequence of SrZrO 3 phases as the temperature increases. The lattice structure parameters optimized in the PW calculations for all four phases are in good agreement with the experimental neutron diffraction data. The LCAO and PW results for the electronic structure, density of states and chemical bonding in the cubic phase (Pm3m) are discussed in detail and compared with the results of previous PW calculations. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. DIF3D: a code to solve one-, two-, and three-dimensional finite-difference diffusion theory problems

    International Nuclear Information System (INIS)

    Derstine, K.L.

    1984-04-01

    The mathematical development and numerical solution of the finite-difference equations are summarized. The report provides a guide for user application and details the programming structure of DIF3D. Guidelines are included for implementing the DIF3D export package on several large scale computers. Optimized iteration methods for the solution of large-scale fast-reactor finite-difference diffusion theory calculations are presented, along with their theoretical basis. The computational and data management considerations that went into their formulation are discussed. The methods utilized include a variant of the Chebyshev acceleration technique applied to the outer fission source iterations and an optimized block successive overrelaxation method for the within-group iterations. A nodal solution option intended for analysis of LMFBR designs in two- and three-dimensional hexagonal geometries is incorporated in the DIF3D package and is documented in a companion report, ANL-83-1

  7. Real-time interpolation for true 3-dimensional ultrasound image volumes.

    Science.gov (United States)

    Ji, Songbai; Roberts, David W; Hartov, Alex; Paulsen, Keith D

    2011-02-01

    We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1-2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm(3) voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery.

  8. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    International Nuclear Information System (INIS)

    Xiong, Kecai; Liu, Wei; Teat, Simon J.; An, Litao; Wang, Hao; Emge, Thomas J.; Li, Jing

    2015-01-01

    Two new hybrid lead halides (H 2 BDA)[PbI 4 ] (1) (H 2 BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI 3 ] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations

  9. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kecai; Liu, Wei [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Teat, Simon J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); An, Litao; Wang, Hao; Emge, Thomas J. [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Li, Jing, E-mail: jingli@rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States)

    2015-10-15

    Two new hybrid lead halides (H{sub 2}BDA)[PbI{sub 4}] (1) (H{sub 2}BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI{sub 3}] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations.

  10. Ab initio calculations of 3H(d,n)4He fusion

    International Nuclear Information System (INIS)

    Navratil, Petr; Quaglioni, Sofia

    2012-01-01

    We build a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the ab initio no-core shell model. In this way, we complement a microscopic-cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. We will present the first results of the d- 3 H and d- 3 He fusion calculation obtained within our ab initio approach. We will also discuss our d- 4 He, 3 H- 4 He and 3 H- 3 H scattering calculations and the outline of the extension of the formalism to include three-cluster final states with the goal to calculate the 3 H( 3 H,2n) 4 He cross section

  11. Spin-Dependent Scattering Effects and Dimensional Crossover in a Quasi-Two-Dimensional Disordered Electron System

    Institute of Scientific and Technical Information of China (English)

    YANG YongHong; WANG YongGang; LIU Mei; WANG Jin

    2002-01-01

    Two kinds of spin-depcndcnt scattering effects (magnetic-iinpurity and spin-orbit scatterings) axe investi-gated theoretically in a quasi-two-dimensional (quasi-2D) disordered electron system. By making use of the diagrammatictechniques in perturbation theory, we have calculated the dc conductivity and magnetoresistance due to weak-localizationeffects, the analytical expressions of them are obtained as functions of the interlayer hopping energy and the charac-teristic times: elastic, inelastic, magnetic and spin-orbit scattering times. The relevant dimensional crossover behaviorfrom 3D to 2D with decreasing the interlayer coupling is discussed, and the condition for the crossover is shown to bedependent on the aforementioned scattering times. At low temperature there exists a spin-dcpendent-scattering-induccddimensional crossover in this system.

  12. Application of optimal interation strategies to diffusion theory calculations

    International Nuclear Information System (INIS)

    Jones, R.B.

    1978-01-01

    The geometric interpretation of optimal (minimum computational time) iteration strategies is applied to one- and two-group, two-dimensional diffusion-theory calculations. The method is a ''spectral/time balance'' technique which weighs the convergence enhancement of the inner iteration procedure with that of the outer iteration loop and the time required to reconstruct the source. The diffusion-theory option of the discrete-ordinates transport code DOT3.5 was altered to incorporate the theoretical inner/outer decision logic. For the two-dimensional configuration considered, the optimal strategies reduced the total number of iterations performed for a given error criterion

  13. Basic problems solving for two-dimensional discrete 3 × 4 order hidden markov model

    International Nuclear Information System (INIS)

    Wang, Guo-gang; Gan, Zong-liang; Tang, Gui-jin; Cui, Zi-guan; Zhu, Xiu-chang

    2016-01-01

    A novel model is proposed to overcome the shortages of the classical hypothesis of the two-dimensional discrete hidden Markov model. In the proposed model, the state transition probability depends on not only immediate horizontal and vertical states but also on immediate diagonal state, and the observation symbol probability depends on not only current state but also on immediate horizontal, vertical and diagonal states. This paper defines the structure of the model, and studies the three basic problems of the model, including probability calculation, path backtracking and parameters estimation. By exploiting the idea that the sequences of states on rows or columns of the model can be seen as states of a one-dimensional discrete 1 × 2 order hidden Markov model, several algorithms solving the three questions are theoretically derived. Simulation results further demonstrate the performance of the algorithms. Compared with the two-dimensional discrete hidden Markov model, there are more statistical characteristics in the structure of the proposed model, therefore the proposed model theoretically can more accurately describe some practical problems.

  14. JNC results of BN-600 benchmark calculation (phase 3)

    International Nuclear Information System (INIS)

    Ishikawa, M.

    2002-01-01

    The present work is the result of phase 3 BN-600 core benchmark problem, meaning burnup and heterogeneity. Analytical method applied consisted of: JENDL-3.2 nuclear data library, group constants (70 group, ABBN type self shielding transport factors), heterogeneous cell model for fuel and control rod, basic diffusion calculation (CITATION code), transport theory and mesh size correction (NSHEX code based on SN transport nodal method developed by JNC). Burnup and heterogeneity calculation results are presented obtained by applying both diffusion and transport approach for beginning and end of cycle

  15. First-principles calculations of two cubic fluoropervskite compounds: RbFeF3 and RbNiF3

    International Nuclear Information System (INIS)

    Mubarak, A.A.; Al-Omari, Saleh

    2015-01-01

    We present first-principles calculations of the structural, elastic, electronic, magnetic and optical properties for RbFeF 3 and RbNiF 3 . The full-potential linear augmented plan wave (FP-LAPW) method within the density functional theory was utilized to perform the present calculations. We employed the generalized gradient approximation as exchange-correlation potential. It was found that the calculated analytical lattice parameters agree with previous studies. The analysis of elastic constants showed that the present compounds are elastically stable and anisotropic. Moreover, both compounds are classified as a ductile compound. The calculations of the band structure and density functional theory revealed that the RbFeF 3 compound has a half-metallic behavior while the RbNiF 3 compound has a semiconductor behavior with indirect (M–Γ) band gap. The ferromagnetic behavior was studied for both compounds. The optical properties were calculated for the radiation of up to 40 eV. A beneficial optics technology is predicted as revealed from the optical spectra. - Highlights: • RbFeF 3 and RbNiCl 3 compounds are elastically stable. • RbFeF 3 and RbNiCl 3 compounds are classified as a ductile compound. • The RbFeF 3 compound has a half-metallic behavior while the RbNiF 3 compound has a semiconductor behavior. • The optical properties were calculated for the radiation of up to 40 eV

  16. Improvement of multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok

    1998-09-01

    The MARS (Multi-dimensional Analysis of Reactor Safety) code is a multi-dimensional, best-estimate thermal-hydraulic system analysis code. This report describes the new features that have been improved in the MARS 1.3 code since the release of MARS 1.3 in July 1998. The new features include: - implementation of point kinetics model into the 3D module - unification of the heat structure model - extension of the control function to the 3D module variables - improvement of the 3D module input check function. Each of the items has been implemented in the developmental version of the MARS 1.3.1 code and, then, independently verified and assessed. The effectiveness of the new features is well verified and it is shown that these improvements greatly extend the code capability and enhance the user friendliness. Relevant input data changes are also described. In addition to the improvements, this report briefly summarizes the future code developmental activities that are being carried out or planned, such as coupling of MARS 1.3 with the containment code CONTEMPT and the three-dimensional reactor kinetics code MASTER 2.0. (author). 8 refs

  17. Improvement of multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok

    1998-09-01

    The MARS (Multi-dimensional Analysis of Reactor Safety) code is a multi-dimensional, best-estimate thermal-hydraulic system analysis code. This report describes the new features that have been improved in the MARS 1.3 code since the release of MARS 1.3 in July 1998. The new features include: - implementation of point kinetics model into the 3D module - unification of the heat structure model - extension of the control function to the 3D module variables - improvement of the 3D module input check function. Each of the items has been implemented in the developmental version of the MARS 1.3.1 code and, then, independently verified and assessed. The effectiveness of the new features is well verified and it is shown that these improvements greatly extend the code capability and enhance the user friendliness. Relevant input data changes are also described. In addition to the improvements, this report briefly summarizes the future code developmental activities that are being carried out or planned, such as coupling of MARS 1.3 with the containment code CONTEMPT and the three-dimensional reactor kinetics code MASTER 2.0. (author). 8 refs.

  18. Three dimensional δf simulations of beams in the SSC

    International Nuclear Information System (INIS)

    Koga, J.; Tajima, T.; Machida, S.

    1993-01-01

    A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3 dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6 dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3 dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense with finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed

  19. Three dimensional [delta]f simulations of beams in the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Koga, J.; Tajima, T. (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies); Machida, S. (Superconducting Super Collider Lab., Dallas, TX (United States))

    1993-02-01

    A three dimensional [delta]f strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3-dimensional space charge effects and a [delta]f code. The [delta]f method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6-dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3-dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense where finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.

  20. Three dimensional {delta}f simulations of beams in the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Koga, J.; Tajima, T. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Machida, S. [Superconducting Super Collider Lab., Dallas, TX (United States)

    1993-02-01

    A three dimensional {delta}f strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3-dimensional space charge effects and a {delta}f code. The {delta}f method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6-dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3-dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense where finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.

  1. Three dimensional δf simulations of beams in the SSC

    International Nuclear Information System (INIS)

    Koga, J.; Tajima, T.

    1993-02-01

    A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3-dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6-dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3-dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense where finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed

  2. Dimensional Crossover in a Charge Density Wave Material Probed by Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Nicholson, C. W.; Berthod, C.; Puppin, M.; Berger, H.; Wolf, M.; Hoesch, M.; Monney, C.

    2017-05-01

    High-resolution angle-resolved photoemission spectroscopy data reveal evidence of a crossover from one-dimensional (1D) to three-dimensional (3D) behavior in the prototypical charge density wave (CDW) material NbSe3 . In the low-temperature 3D regime, gaps in the electronic structure are observed due to two incommensurate CDWs, in agreement with x-ray diffraction and electronic-structure calculations. At higher temperatures we observe a spectral weight depletion that approaches the power-law behavior expected in one dimension. From the warping of the quasi-1D Fermi surface at low temperatures, we extract the energy scale of the dimensional crossover. This is corroborated by a detailed analysis of the density of states, which reveals a change in dimensional behavior dependent on binding energy. Our results offer an important insight into the dimensionality of excitations in quasi-1D materials.

  3. 3-DIMENSIONAL Numerical Modeling on the Combustion and Emission Characteristics of Biodiesel in Diesel Engines

    Science.gov (United States)

    Yang, Wenming; An, Hui; Amin, Maghbouli; Li, Jing

    2014-11-01

    A 3-dimensional computational fluid dynamics modeling is conducted on a direct injection diesel engine fueled by biodiesel using multi-dimensional software KIVA4 coupled with CHEMKIN. To accurately predict the oxidation of saturated and unsaturated agents of the biodiesel fuel, a multicomponent advanced combustion model consisting of 69 species and 204 reactions combined with detailed oxidation pathways of methyl decenoate (C11H22O2), methyl-9-decenoate (C11H20O2) and n-heptane (C7H16) is employed in this work. In order to better represent the real fuel properties, the detailed chemical and thermo-physical properties of biodiesel such as vapor pressure, latent heat of vaporization, liquid viscosity and surface tension were calculated and compiled into the KIVA4 fuel library. The nitrogen monoxide (NO) and carbon monoxide (CO) formation mechanisms were also embedded. After validating the numerical simulation model by comparing the in-cylinder pressure and heat release rate curves with experimental results, further studies have been carried out to investigate the effect of combustion chamber design on flow field, subsequently on the combustion process and performance of diesel engine fueled by biodiesel. Research has also been done to investigate the impact of fuel injector location on the performance and emissions formation of diesel engine.

  4. Comparison of inverse dynamics calculated by two- and three-dimensional models during walking

    DEFF Research Database (Denmark)

    Alkjaer, T; Simonsen, E B; Dyhre-Poulsen, P

    2001-01-01

    recorded the subjects as they walked across two force plates. The subjects were invited to approach a walking speed of 4.5 km/h. The ankle, knee and hip joint moments in the sagittal plane were calculated by 2D and 3D inverse dynamics analysis and compared. Despite the uniform walking speed (4.53 km....../h) and similar footwear, relatively large inter-individual variations were found in the joint moment patterns during the stance phase. The differences between individuals were present in both the 2D and 3D analysis. For the entire sample of subjects the overall time course pattern of the ankle, knee and hip...... the magnitude of the joint moments calculated by 2D and 3D inverse dynamics but the inter-individual variation was not affected by the different models. The simpler 2D model seems therefore appropriate for human gait analysis. However, comparisons of gait data from different studies are problematic...

  5. First principles calculations for interaction of tyrosine with (ZnO)3 cluster

    Science.gov (United States)

    Singh, Satvinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    First Principles Calculations have been performed to study interactions of Phenol ring of Tyrosine (C6H5OH) with (ZnO)3 atomic cluster. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/C6H5OH have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations. The compatibility of the results with previous studies has been presented here.

  6. A three-dimensional transient calculation for the reactor model RAMONA using the COMMIX-2(V) code

    International Nuclear Information System (INIS)

    Weinberg, D.; Frey, H.H.; Tschoeke, H.

    1993-01-01

    The safety graded decay heat removal system of the European Fast Reactor needs a high availability. This system operates entirely under natural convection. To guarantee a proper design, experiments are carried out to verify thermal-hydraulic computer codes able to predict precisely local temperature loadings of the components and the reactor tank in the transition region from nominal operation under forced convection to the decay heat removal operation. - With the COMMIX-2 (V) code three-dimensional transient calculations have been performed to simulate experiments in the 360 deg. reactor model RAMONA, scaled 1:20 to the reality with water as simulant fluid for sodium. The computed average and local temperatures as well as the velocity distributions show a good agreement with the experimental results. Further efforts are necessary to reduce the computation time. (orig.)

  7. Calculation of Voltages in Electric Power Transmission Lines During Historic Geomagnetic Storms: An Investigation Using Realistic Earth Impedances

    Science.gov (United States)

    Lucas, Greg M.; Love, Jeffrey J.; Kelbert, Anna

    2018-02-01

    Commonly, one-dimensional (1-D) Earth impedances have been used to calculate the voltages induced across electric power transmission lines during geomagnetic storms under the assumption that much of the three-dimensional structure of the Earth gets smoothed when integrating along power transmission lines. We calculate the voltage across power transmission lines in the mid-Atlantic region with both regional 1-D impedances and 64 empirical 3-D impedances obtained from a magnetotelluric survey. The use of 3-D impedances produces substantially more spatial variance in the calculated voltages, with the voltages being more than an order of magnitude different, both higher and lower, than the voltages calculated utilizing regional 1-D impedances. During the March 1989 geomagnetic storm 62 transmission lines exceed 100 V when utilizing empirical 3-D impedances, whereas 16 transmission lines exceed 100 V when utilizing regional 1-D impedances. This demonstrates the importance of using realistic impedances to understand and quantify the impact that a geomagnetic storm has on power grids.

  8. Exact and variational calculations of eigenmodes for three-dimensional free electron laser interaction with a warm electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Xie, M. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    I present an exact calculation of free-electron-laser (FEL) eigenmodes (fundamental as well as higher order modes) in the exponential-gain regime. These eigenmodes specify transverse profiles and exponential growth rates of the laser field, and they are self-consistent solutions of the coupled Maxwell-Vlasov equations describing the FEL interaction taking into account the effects due to energy spread, emittance and betatron oscillations of the electron beam, and diffraction and guiding of the laser field. The unperturbed electron distribution is assumed to be of Gaussian shape in four dimensional transverse phase space and in the energy variable, but uniform in longitudinal coordinate. The focusing of the electron beam is assumed to be matched to the natural wiggler focusing in both transverse planes. With these assumptions the eigenvalue problem can be reduced to a numerically manageable integral equation and solved exactly with a kernel iteration method. An approximate, but more efficient solution of the integral equation is also obtained for the fundamental mode by a variational technique, which is shown to agree well with the exact results. Furthermore, I present a handy formula, obtained from interpolating the numerical results, for a quick calculation of FEL exponential growth rate. Comparisons with simulation code TDA will also be presented. Application of these solutions to the design and multi-dimensional parameter space optimization for an X-ray free electron laser driven by SLAC linac will be demonstrated. In addition, a rigorous analysis of transverse mode degeneracy and hence the transverse coherence of the X-ray FEL will be presented based on the exact solutions of the higher order guided modes.

  9. Numerical calculation of three-dimensional flow field of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    Servo-piston hydraulic control rod driving mechanism is a new type built-in driving mechanism which is suitable for integrated reactor and it can be moved continuously. The numerical calculation and analysis of the internal three-dimensional flow field inside the driving mechanism were carried out by the computational fluid dynamics software FLUENT. The result shows that the unique pressure mutation area of flow field inside the driving mechanism is at the place of the servo variable throttle orifice. The differential pressure of the piston can be effectively controlled by changing the gap of variable throttle orifice. When the gap changes within 0.5 mm, the differential pressure can be greatly changed, and then the driving mechanism motion state would be changed too. When the working pressure is 0.1 MPa, the hoisting capacity of the driving mechanism can meet the design requirements, and the flow rate is small. (authors)

  10. Serial Changes in 3-Dimensional Supraspinatus Muscle Volume After Rotator Cuff Repair.

    Science.gov (United States)

    Chung, Seok Won; Oh, Kyung-Soo; Moon, Sung Gyu; Kim, Na Ra; Lee, Ji Whan; Shim, Eungjune; Park, Sehyung; Kim, Youngjun

    2017-08-01

    There is considerable debate on the recovery of rotator cuff muscle atrophy after rotator cuff repair. To evaluate the serial changes in supraspinatus muscle volume after rotator cuff repair by using semiautomatic segmentation software and to determine the relationship with functional outcomes. Case series; Level of evidence, 4. Seventy-four patients (mean age, 62.8 ± 8.8 years) who underwent arthroscopic rotator cuff repair and obtained 3 consecutive (preoperatively, immediately postoperatively, and later postoperatively [≥1 year postoperatively]) magnetic resonance imaging (MRI) scans having complete Y-views were included. We generated a 3-dimensional (3D) reconstructed model of the supraspinatus muscle by using in-house semiautomatic segmentation software (ITK-SNAP) and calculated both the 2-dimensional (2D) cross-sectional area and 3D volume of the muscle in 3 different views (Y-view, 1 cm medial to the Y-view [Y+1 view], and 2 cm medial to the Y-view [Y+2 view]) at the 3 time points. The area and volume changes at each time point were evaluated according to repair integrity. Later postoperative volumes were compared with immediately postoperative volumes, and their relationship with various clinical factors and the effect of higher volume increases on range of motion, muscle power, and visual analog scale pain and American Shoulder and Elbow Surgeons scores were evaluated. The interrater reliabilities were excellent for all measurements. Areas and volumes increased immediately postoperatively as compared with preoperatively; however, only volumes on the Y+1 view and Y+2 view significantly increased later postoperatively as compared with immediately postoperatively ( P < .05). There were 9 patients with healing failure, and area and volume changes were significantly less later postoperatively compared with immediately postoperatively at all measurement points in these patients ( P < .05). After omitting the patients with healing failure, volume increases

  11. Individualized Physical 3-dimensional Kidney Tumor Models Constructed From 3-dimensional Printers Result in Improved Trainee Anatomic Understanding.

    Science.gov (United States)

    Knoedler, Margaret; Feibus, Allison H; Lange, Andrew; Maddox, Michael M; Ledet, Elisa; Thomas, Raju; Silberstein, Jonathan L

    2015-06-01

    To evaluate the effect of 3-dimensionally (3D) printed physical renal models with enhancing masses on medical trainee characterization, localization, and understanding of renal malignancy. Proprietary software was used to import standard computed tomography (CT) cross-sectional imaging into 3D printers to create physical models of renal units with enhancing renal lesions in situ. Six different models were printed from a transparent plastic resin; the normal parenchyma was printed in a clear, translucent plastic, with a red hue delineating the suspicious renal lesion. Medical students, who had completed their first year of training, were given an overview and tasked with completion of RENAL nephrometry scores, separately using CT imaging and 3D models. Trainees were also asked to complete a questionnaire about their experience. Variability between trainees was assessed by intraclass correlation coefficients (ICCs), and kappa statistics were used to compare the trainee to experts. Overall trainee nephrometry score accuracy was significantly improved with the 3D model vs CT scan (P renal mass. Physical 3D models using readily available printing techniques improve trainees' understanding and characterization of individual patients' enhancing renal lesions. Published by Elsevier Inc.

  12. Inductance calculation of 3D superconducting structures with ground plane

    International Nuclear Information System (INIS)

    Teh, C.H.; Kitagawa, M.; Okabe, Y.

    1999-01-01

    An inductance calculation method, which is based on calculating the current distribution of a fluxoid-trapped superconducting loop by using the expression of momentum and the Maxwell equations, is reconstructed to enable calculation of arbitrary 3D structures which have a ground plane (GP). Calculation of the mutual inductances of the superconductor system is also incorporated into the algorithm. The method of images is used to save computational resources, and the mirror plane is demonstrated to be just at the effective penetration depth below the upper boundary of the GP. The algorithm offers accurate results with reasonable calculation time. (author)

  13. Pyridine-induced Dimensionality Change in Hybrid Perovskite Nanocrystals

    KAUST Repository

    Ahmed, Ghada H.

    2017-05-02

    Engineering the surface energy through careful manipulation of the surface chemistry is a convenient approach to control quantum confinement and structure dimensionality during nanocrystal growth. Here, we demonstrate that the introduction of pyridine during the synthesis of methylammonium lead bromide (MAPbBr) perovskite nanocrystals can transform three-dimensional (3D) cubes into two-dimensional (2D) nanostructures. Density functional theory (DFT) calculations show that pyridine preferentially binds to Pb atoms terminating the surface, driving the selective 2D growth of the nanostructures. These 2D nanostructures exhibit strong quantum confinement effects, high photoluminescence quantum yields in the visible spectral range, and efficient charge transfer to molecular acceptors. These qualities indicate the suitability of the synthesized 2D nanostructures for a wide range of optoelectronic applications.

  14. Three dimensional wavefield modeling using the pseudospectral method; Pseudospectral ho ni yoru sanjigen hadoba modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Saeki, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-05-27

    Discussed in this report is a wavefield simulation in the 3-dimensional seismic survey. With the level of the object of exploration growing deeper and the object more complicated in structure, the survey method is now turning 3-dimensional. There are several modelling methods for numerical calculation of 3-dimensional wavefields, such as the difference method, pseudospectral method, and the like, all of which demand an exorbitantly large memory and long calculation time, and are costly. Such methods have of late become feasible, however, thanks to the advent of the parallel computer. As compared with the difference method, the pseudospectral method requires a smaller computer memory and shorter computation time, and is more flexible in accepting models. It outputs the result in fullwave just like the difference method, and does not cause wavefield numerical variance. As the computation platform, the parallel computer nCUBE-2S is used. The object domain is divided into the number of the processors, and each of the processors takes care only of its share so that parallel computation as a whole may realize a very high-speed computation. By the use of the pseudospectral method, a 3-dimensional simulation is completed within a tolerable computation time length. 7 refs., 3 figs., 1 tab.

  15. Supplementary neutron flux calculations for the ORNL pool critical assembly pressure vessel facility

    Energy Technology Data Exchange (ETDEWEB)

    Maerker, R.E.; Maudlin, P.J.

    1981-02-01

    A three-dimensional Monte Carlo calculation was performed to estimate the neutron flux in the 8/7 configuration of the ORNL Pool Critical Assembly Pressure Vessel Facility. The calculational tool was the multigroup transport code MORSE operated in the adjoint mode. The MORSE flux results compared well with those using a previously adopted procedure for constructing a three-dimensional flux from one- and two-dimensional discrete ordinates calculations using the DOT-IV code. This study concluded that use of these discrete ordinates constructions in previous calculations is sufficiently accurate and does not account for the existing discrepancies between calculation and experiment.

  16. Supplementary neutron flux calculations for the ORNL pool critical assembly pressure vessel facility

    International Nuclear Information System (INIS)

    Maerker, R.E.; Maudlin, P.J.

    1981-02-01

    A three-dimensional Monte Carlo calculation was performed to estimate the neutron flux in the 8/7 configuration of the ORNL Pool Critical Assembly Pressure Vessel Facility. The calculational tool was the multigroup transport code MORSE operated in the adjoint mode. The MORSE flux results compared well with those using a previously adopted procedure for constructing a three-dimensional flux from one- and two-dimensional discrete ordinates calculations using the DOT-IV code. This study concluded that use of these discrete ordinates constructions in previous calculations is sufficiently accurate and does not account for the existing discrepancies between calculation and experiment

  17. Three-dimensional coupled Monte Carlo-discrete ordinates computational scheme for shielding calculations of large and complex nuclear facilities

    International Nuclear Information System (INIS)

    Chen, Y.; Fischer, U.

    2005-01-01

    Shielding calculations of advanced nuclear facilities such as accelerator based neutron sources or fusion devices of the tokamak type are complicated due to their complex geometries and their large dimensions, including bulk shields of several meters thickness. While the complexity of the geometry in the shielding calculation can be hardly handled by the discrete ordinates method, the deep penetration of radiation through bulk shields is a severe challenge for the Monte Carlo particle transport technique. This work proposes a dedicated computational scheme for coupled Monte Carlo-Discrete Ordinates transport calculations to handle this kind of shielding problems. The Monte Carlo technique is used to simulate the particle generation and transport in the target region with both complex geometry and reaction physics, and the discrete ordinates method is used to treat the deep penetration problem in the bulk shield. The coupling scheme has been implemented in a program system by loosely integrating the Monte Carlo transport code MCNP, the three-dimensional discrete ordinates code TORT and a newly developed coupling interface program for mapping process. Test calculations were performed with comparison to MCNP solutions. Satisfactory agreements were obtained between these two approaches. The program system has been chosen to treat the complicated shielding problem of the accelerator-based IFMIF neutron source. The successful application demonstrates that coupling scheme with the program system is a useful computational tool for the shielding analysis of complex and large nuclear facilities. (authors)

  18. Various approaches to the modelling of large scale 3-dimensional circulation in the Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Rao, A.D.; Dube, S.K.

    In this paper, the three different approaches to the modelling of large scale 3-dimensional flow in the ocean such as the diagnostic, semi-diagnostic (adaptation) and the prognostic are discussed in detail. Three-dimensional solutions are obtained...

  19. Three-dimensional viewing and dosimetric calculations of Au-198 implants of the prostate

    International Nuclear Information System (INIS)

    Avizonis, V.N.; Anderson, K.M.; Jani, S.K.; Hussey, D.H.

    1991-01-01

    Dose gradients for brachytherapy vary considerably in three dimensions, which complicates conventional two-dimensional dosimetry. Recent developments in computer graphics technology have enabled visualization of anatomy and radiation doses in three dimensions. The objective of this paper is to develop a three-dimensional viewing and dosimetry program for brachytherapy and to test this system in phantoms and in patients undergoing Au-198 implants in the prostate. Three-dimensional computer algorithms for the author's Silicon Graphics supercomputing workstation were developed, tested, and modified on the basis of studies in phantoms and patients. Studies were performed on phantoms of known dimensions and gold seeds in known locations to assess the accuracy of volume reconstruction, seed placement, and isodose distribution. Isodose curves generated with the three-dimensional system were compared with those generated by a Theratronics Treatment Planning Computer using conventional methods. Twenty patients with permanent Au-198 interstitial implants in the prostate were similarly studied

  20. Quantification of Cardiomyocyte Alignment from Three-Dimensional (3D) Confocal Microscopy of Engineered Tissue.

    Science.gov (United States)

    Kowalski, William J; Yuan, Fangping; Nakane, Takeichiro; Masumoto, Hidetoshi; Dwenger, Marc; Ye, Fei; Tinney, Joseph P; Keller, Bradley B

    2017-08-01

    Biological tissues have complex, three-dimensional (3D) organizations of cells and matrix factors that provide the architecture necessary to meet morphogenic and functional demands. Disordered cell alignment is associated with congenital heart disease, cardiomyopathy, and neurodegenerative diseases and repairing or replacing these tissues using engineered constructs may improve regenerative capacity. However, optimizing cell alignment within engineered tissues requires quantitative 3D data on cell orientations and both efficient and validated processing algorithms. We developed an automated method to measure local 3D orientations based on structure tensor analysis and incorporated an adaptive subregion size to account for multiple scales. Our method calculates the statistical concentration parameter, κ, to quantify alignment, as well as the traditional orientational order parameter. We validated our method using synthetic images and accurately measured principal axis and concentration. We then applied our method to confocal stacks of cleared, whole-mount engineered cardiac tissues generated from human-induced pluripotent stem cells or embryonic chick cardiac cells and quantified cardiomyocyte alignment. We found significant differences in alignment based on cellular composition and tissue geometry. These results from our synthetic images and confocal data demonstrate the efficiency and accuracy of our method to measure alignment in 3D tissues.

  1. 3-Dimensional Methodology for the Control Rod Ejection Accident Analysis Using UNICORN{sup TM}

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Chan-su; Um, Kil-sup; Ahn, Dawk-hwan [Korea Nuclear Fuel Company, Taejon (Korea, Republic of); Kim, Yo-han; Sung, Chang-kyung [KEPRI, Taejon (Korea, Republic of); Song, Jae-seung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    The control rod ejection accident has been analyzed with STRIKIN-II code using the point kinetics model coupled with conservative factors to address the three dimensional aspects. This may result in a severe transient with very high fuel enthalpy deposition. KNFC, under the support of KEPRI and KAERI, is developing 3-dimensional methodology for the rod ejection accident analysis using UNICORNTM (Unified Code of RETRAN, TORC and MASTER). For this purpose, 3-dimensional MASTER-TORC codes, which have been combined with the dynamic-link library by KAERI, are used in the transient analysis of the core and RETRAN code is used to estimate the enthalpy deposition in the hot rod.

  2. Three-dimensional porous graphene-Co{sub 3}O{sub 4} nanocomposites for high performance photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bin, Zeng, E-mail: 21467855@qq.com [College of Mechanical Engineering, Hunan University of Arts and Science, Changde 415000 (China); Hui, Long [Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2015-12-01

    Highlights: • The three-dimensional porous graphene-Co{sub 3}O{sub 4} nanocomposites were synthesized. • Excellent photocatalytic performance. • Separated from the reaction medium by magnetic decantation. - Abstract: Novel three-dimensional porous graphene-Co{sub 3}O{sub 4} nanocomposites were synthesized by freeze-drying methods. Scanning and transmission electron microscopy revealed that the graphene formed a three-dimensional porous structure with Co{sub 3}O{sub 4} nanoparticles decorated surfaces. The as-obtained product showed high photocatalytic efficiency and could be easily separated from the reaction medium by magnetic decantation. This nanocomposite may be expected to have potential in water purification applications.

  3. Overview of 3-year experience with large-scale electronic portal imaging device-based 3-dimensional transit dosimetry

    NARCIS (Netherlands)

    Mijnheer, Ben J.; González, Patrick; Olaciregui-Ruiz, Igor; Rozendaal, Roel A.; van Herk, Marcel; Mans, Anton

    2015-01-01

    To assess the usefulness of electronic portal imaging device (EPID)-based 3-dimensional (3D) transit dosimetry in a radiation therapy department by analyzing a large set of dose verification results. In our institution, routine in vivo dose verification of all treatments is performed by means of 3D

  4. Some computer realizations of the REDUCE-3 calculations for exclusive processes

    International Nuclear Information System (INIS)

    Darbaidze, Ya.Z.; Merebashvili, Z.V.; Rostovtsev, V.A.

    1990-01-01

    The REDUCE-3 algorithm for the calculation of the squared gauge invariant set of tree diagrams is given in the α 3 order of the perturbation theory. The necessity of using such program packages as factorizator, 'COLOR'-factor and so on is shown. The correctness of calculation for the infrared radiation corrections as compared with manual calculations is discussed. An example of applying the programs is given for the matrix and noncommutative algebras when the well-known supersymmetric commutative relation is proved. (author)

  5. First-principles calculations of two cubic fluoropervskite compounds: RbFeF3 and RbNiF3

    Science.gov (United States)

    Mubarak, A. A.; Al-Omari, Saleh

    2015-05-01

    We present first-principles calculations of the structural, elastic, electronic, magnetic and optical properties for RbFeF3 and RbNiF3. The full-potential linear augmented plan wave (FP-LAPW) method within the density functional theory was utilized to perform the present calculations. We employed the generalized gradient approximation as exchange-correlation potential. It was found that the calculated analytical lattice parameters agree with previous studies. The analysis of elastic constants showed that the present compounds are elastically stable and anisotropic. Moreover, both compounds are classified as a ductile compound. The calculations of the band structure and density functional theory revealed that the RbFeF3 compound has a half-metallic behavior while the RbNiF3 compound has a semiconductor behavior with indirect (M-Γ) band gap. The ferromagnetic behavior was studied for both compounds. The optical properties were calculated for the radiation of up to 40 eV. A beneficial optics technology is predicted as revealed from the optical spectra.

  6. Exact travelling wave solutions of the (3+1)-dimensional mKdV-ZK ...

    Indian Academy of Sciences (India)

    In this paper, the new generalized (′/)-expansion method is executed to find the travelling wave solutions of the (3+1)-dimensional mKdV-ZK equation and the (1+1)-dimensional compound KdVB equation. The efficiency of this method for finding exact and travelling wave solutions has been demonstrated. It is shown ...

  7. Axial SPN and radial MOC coupled whole core transport calculation

    International Nuclear Information System (INIS)

    Cho, Jin-Young; Kim, Kang-Seog; Lee, Chung-Chan; Zee, Sung-Quun; Joo, Han-Gyu

    2007-01-01

    The Simplified P N (SP N ) method is applied to the axial solution of the two-dimensional (2-D) method of characteristics (MOC) solution based whole core transport calculation. A sub-plane scheme and the nodal expansion method (NEM) are employed for the solution of the one-dimensional (1-D) SP N equations involving a radial transverse leakage. The SP N solver replaces the axial diffusion solver of the DeCART direct whole core transport code to provide more accurate, transport theory based axial solutions. In the sub-plane scheme, the radial equivalent homogenization parameters generated by the local MOC for a thick plane are assigned to the multiple finer planes in the subsequent global three-dimensional (3-D) coarse mesh finite difference (CMFD) calculation in which the NEM is employed for the axial solution. The sub-plane scheme induces a much less nodal error while having little impact on the axial leakage representation of the radial MOC calculation. The performance of the sub-plane scheme and SP N nodal transport solver is examined by solving a set of demonstrative problems and the C5G7MOX 3-D extension benchmark problems. It is shown in the demonstrative problems that the nodal error reaching upto 1,400 pcm in a rodded case is reduced to 10 pcm by introducing 10 sub-planes per MOC plane and the transport error is reduced from about 150 pcm to 10 pcm by using SP 3 . Also it is observed, in the C5G7MOX rodded configuration B problem, that the eigenvalues and pin power errors of 180 pcm and 2.2% of the 10 sub-planes diffusion case are reduced to 40 pcm and 1.4%, respectively, for SP 3 with only about a 15% increase in the computing time. It is shown that the SP 5 case gives very similar results to the SP 3 case. (author)

  8. Double ionization in Helium. Ab initio calculations beyond the one dimensional approximation

    International Nuclear Information System (INIS)

    Camilo Ruiz; Luis Plaja; Luis Roso; Andreas Becker

    2006-01-01

    Complete test of publication follows. We present ab-initio computations of the ionization of two-electron atoms by short pulses of coherent radiation beyond the one-dimensional approximation. In the model the electron correlation is included in its full dimensionality, while the center-of-mass motion is restricted along the polarization axis. We show some result for Non Sequential Double Ionization (NSDI) as well as for SDI for high intensity low IR frequency. Some recent applications for this correlated system is also presented.

  9. Calculation of two-dimensional thermal transients by the method of finite elements

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da.

    1980-08-01

    The unsteady linear heat conduction analysis throught anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is presented. The boundary conditions and the internal heat generation are supposed time - independent. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. Optionally, it can be used with a reduced resolution method called Stoker Economizing Method wich allows a decrease on the program processing costs. (Author) [pt

  10. Three dimensions transport calculations for PWR core; Calcul de coeur R.E.P. en transport 3D

    Energy Technology Data Exchange (ETDEWEB)

    Richebois, E

    2000-07-01

    The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)

  11. Three dimensions transport calculations for PWR core; Calcul de coeur R.E.P. en transport 3D

    Energy Technology Data Exchange (ETDEWEB)

    Richebois, E

    2000-07-01

    The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)

  12. Value of 3-dimensional (3D) imaging in rheumatology

    International Nuclear Information System (INIS)

    Fredy, D.

    1990-01-01

    The whole body scanner (Exel 2.400) of the Centre Hospitalier Sainte-Anne enables the three-dimensional reconstruction, with visualization, of the object in its real volume in less than 10 minutes after taking 20 to 40 radiological sections. The exploration can be complete at all levels. Bone lesions can be perfectly shown, the study of osteoarticular or intraspinal abnormalities is facilitated, all solution of continuity can be detected. A soft parts program as well as a colour program enable a clear and rapid visualization of organic lesions. Three-dimensional imaging can be of great value in rheumatology [fr

  13. Efficient many-body calculations for two-dimensional materials using exact limits for the screened potential: Band gaps of MoS2, h-BN, and phosphorene

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm; Schmidt, Per Simmendefeldt; Winther, Kirsten Trøstrup

    2016-01-01

    Calculating the quasiparticle (QP) band structure of two-dimensional (2D) materials within the GW self-energy approximation has proven to be a rather demanding computational task. The main reason is the strong q dependence of the 2D dielectric function around q = 0 that calls for a much denser...

  14. Three-dimensional discrete ordinates reactor assembly calculations on GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Thomas M [ORNL; Joubert, Wayne [ORNL; Hamilton, Steven P [ORNL; Johnson, Seth R [ORNL; Turner, John A [ORNL; Davidson, Gregory G [ORNL; Pandya, Tara M [ORNL

    2015-01-01

    In this paper we describe and demonstrate a discrete ordinates sweep algorithm on GPUs. This sweep algorithm is nested within a multilevel comunication-based decomposition based on energy. We demonstrated the effectiveness of this algorithm on detailed three-dimensional critical experiments and PWR lattice problems. For these problems we show improvement factors of 4 6 over conventional communication-based, CPU-only sweeps. These sweep kernel speedups resulted in a factor of 2 total time-to-solution improvement.

  15. Quasiparticle GW calculations for solids, molecules, and two-dimensional materials

    DEFF Research Database (Denmark)

    Hüser, Falco; Olsen, Thomas; Thygesen, Kristian Sommer

    2013-01-01

    band gap is around 1eV too low. Similar relative deviations are found for the ionization potentials of a test set of 32 small molecules. The importance of substrate screening for a correct description of quasiparticle energies and Fermi velocities in supported two-dimensional (2D) materials...... of quasiparticle states....

  16. 3D Analytical Calculation of the Interactions between Permanent Magnets

    OpenAIRE

    Allag , Hicham; Yonnet , Jean-Paul

    2008-01-01

    International audience; Up to now, the analytical calculation has been made only when the magnets own parallel magnetization directions. We have succeeded in two new results of first importance for the analytical calculation: the torque between two magnets, and the force components and torque when the magnetization directions are perpendicular. The last result allows the analytical calculation of the interactions when the magnetizations are in all the directions. The 3D analytical expressions...

  17. SRAC2006: A comprehensive neutronics calculation code system

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Kugo, Teruhiko; Kaneko, Kunio; Tsuchihashi, Keichiro

    2007-02-01

    The SRAC is a code system applicable to neutronics analysis of a variety of reactor types. Since the publication of the second version of the users manual (JAERI-1302) in 1986 for the SRAC system, a number of additions and modifications to the functions and the library data have been made to establish a comprehensive neutronics code system. The current system includes major neutron data libraries (JENDL-3.3, JENDL-3.2, ENDF/B-VII, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, etc.), and integrates five elementary codes for neutron transport and diffusion calculation; PIJ based on the collision probability method applicable to 16 kind of lattice models, S N transport codes ANISN(1D) and TWOTRN(2D), diffusion codes TUD(1D) and CITATION(multi-D). The system also includes an auxiliary code COREBN for multi-dimensional core burn-up calculation. (author)

  18. Three Dimensional Fast Exact Euclidean Distance (3D-FEED) Maps

    NARCIS (Netherlands)

    Latecki, L.J.; Schouten, Theo E.; Mount, D.M.; Kuppens, Harco C.; Wu, A.Y.; van den Broek, Egon

    2006-01-01

    In image and video analysis, distance maps are frequently used. They provide the (Euclidean) distance (ED) of background pixels to the nearest object pixel. Recently, the Fast Exact Euclidean Distance (FEED) transformation was launched. In this paper, we present the three dimensional (3D) version of

  19. Structure and thermodynamic properties of (C5H12N)CuBr3: a new weakly coupled antiferromagnetic spin-1/2 chain complex lying in the 1D-3D dimensional cross-over regime.

    Science.gov (United States)

    Pan, Bingying; Wang, Yang; Zhang, Lijuan; Li, Shiyan

    2014-04-07

    Single crystals of a metal organic complex (C5H12N)CuBr3 (C5H12N = piperidinium, pipH for short) have been synthesized, and the structure was determined by single-crystal X-ray diffraction. (pipH)CuBr3 crystallizes in the monoclinic group C2/c. Edging-sharing CuBr5 units link to form zigzag chains along the c axis, and the neighboring Cu(II) ions with spin-1/2 are bridged by bibromide ions. Magnetic susceptibility data down to 1.8 K can be well fitted by the Bonner-Fisher formula for the antiferromagnetic spin-1/2 chain, giving the intrachain magnetic coupling constant J ≈ -17 K. At zero field, (pipH)CuBr3 shows three-dimensional (3D) order below TN = 1.68 K. Calculated by the mean-field theory, the interchain coupling constant J' = -0.91 K is obtained and the ordered magnetic moment m0 is about 0.23 μB. This value of m0 makes (pipH)CuBr3 a rare compound suitable to study the 1D-3D dimensional cross-over problem in magnetism, since both 3D order and one-dimensional (1D) quantum fluctuations are prominent. In addition, specific heat measurements reveal two successive magnetic transitions with lowering temperature when external field μ0H ≥ 3 T is applied along the a' axis. The μ0H-T phase diagram of (pipH)CuBr3 is roughly constructed.

  20. Gravitational anomalies and one-dimensional behavior of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Bibhas Ranjan [Indian Institute of Technology Guwahati, Department of Physics, Guwahati, Assam (India)

    2015-12-15

    It has been pointed out by Bekenstein and Mayo that the behavior of the black hole's entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S on the power is S ∝ P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry's formula, while in the latter situation its value decreases. (orig.)

  1. Dimensional reduction in Bose-Einstein-condensed alkali-metal vapors

    International Nuclear Information System (INIS)

    Salasnich, L.; Reatto, L.; Parola, A.

    2004-01-01

    We investigate the effects of dimensional reduction in atomic Bose-Einstein condensates (BECs) induced by a strong harmonic confinement in the cylindric radial direction or in the cylindric axial direction. The former case corresponds to a transition from three dimensions (3D) to 1D in cigar-shaped BECs, while the latter case corresponds to a transition from 3D to 2D in disk-shaped BECs. We analyze the first sound velocity in axially homogeneous cigar-shaped BECs and in radially homogeneous disk-shaped BECs. We consider also the dimensional reduction in a BEC confined by a harmonic potential both in the radial direction and in the axial direction. By using a variational approach, we calculate monopole and quadrupole collective oscillations of the BEC. We find that the frequencies of these collective oscillations are related to the dimensionality and to the repulsive or attractive interatomic interaction

  2. A three-dimensional correlation method for registration of medical images in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, Michalakis; Sfakianakis, George N [Department of Radiology, University of Miami, Jackson Memorial Hospital, Miami, FL 33136 (United States); Nagel, Joachim H [Institute of Biomedical Engineering, University of Stuttgart, Stuttgart 70174 (Germany)

    1999-12-31

    The availability of methods to register multi-modality images in order to `fuse` them to correlate their information is increasingly becoming an important requirement for various diagnostic and therapeutic procedures. A variety of image registration methods have been developed but they remain limited to specific clinical applications. Assuming rigid body transformation, two images can be registered if their differences are calculated in terms of translation, rotation and scaling. This paper describes the development and testing of a new correlation based approach for three-dimensional image registration. First, the scaling factors introduced by the imaging devices are calculated and compensated for. Then, the two images become translation invariant by computing their three-dimensional Fourier magnitude spectra. Subsequently, spherical coordinate transformation is performed and then the three-dimensional rotation is computed using a novice approach referred to as {sup p}olar Shells{sup .} The method of polar shells maps the three angles of rotation into one rotation and two translations of a two-dimensional function and then proceeds to calculate them using appropriate transformations based on the Fourier invariance properties. A basic assumption in the method is that the three-dimensional rotation is constrained to one large and two relatively small angles. This assumption is generally satisfied in normal clinical settings. The new three-dimensional image registration method was tested with simulations using computer generated phantom data as well as actual clinical data. Performance analysis and accuracy evaluation of the method using computer simulations yielded errors in the sub-pixel range. (authors) 6 refs., 3 figs.

  3. Implementation of three dimensional treatment planning system for external radiotherapy

    International Nuclear Information System (INIS)

    Major, Tibor; Kurup, P.G.G.; Stumpf, Janos

    1997-01-01

    A three dimensional (3D) treatment planning system was installed at Apollo Cancer Hospital, Chennai, India in 1995. This paper gives a short description of the system including hardware components, calculation algorithm, measured data requirements and specific three dimensional features. The concept and the structure of the system are shortly described. The first impressions along with critical opinions and the experiences are gained during the data acquisition are mentioned. Some improvements in the user interface are suggested. It is emphasized that although a 3D system offers more detailed and accurate dose distributions compared to a 2D system, it also introduces a greatly increased workload for the planning staff. (author)

  4. Polarizable atomistic calculation of site energy disorder in amorphous Alq3.

    Science.gov (United States)

    Nagata, Yuki

    2010-02-01

    A polarizable molecular dynamics simulation and calculation scheme for site energy disorder is presented in amorphous tris(8-hydroxyquinolinato)aluminum (Alq(3)) by means of the charge response kernel (CRK) method. The CRK fit to the electrostatic potential and the tight-binding approximation are introduced, which enables modeling of the polarizable electrostatic interaction for a large molecule systematically from an ab initio calculation. The site energy disorder for electron and hole transfers is calculated in amorphous Alq(3) and the effect of the polarization on the site energy disorder is discussed.

  5. Development of a 3-dimensional flow analysis procedure for axial pump impellers

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Kim, Jong In; Park, Jin Seok; Huh, Houng Huh; Chang, Moon Hee

    1999-06-01

    A fluid dynamic analysis procedure was developed using the three-dimensional solid model of an axial pump impeller which was theoretically designed using I-DEAS CAD/CAM/CAE software. The CFD software FLUENT was used in the flow field analysis. The steady-state flow regime in the MCP impeller and diffuser was simulated using the developed procedure. The results of calculation were analyzed to confirm whether the design requirements were properly implemented in the impeller model. The validity of the developed procedure was demonstrated by comparing the calculation results with the experimental data available. The pump performance at the design point could be effectively predicted using the developed procedure. The computed velocity distributions have shown a good agreement with the experimental data except for the regions near the wall. The computed head, however, was over-predicted than the experiment. The design period and cost required for the development of an axial pump impeller can be significantly reduced by applying the proposed methodology. (author). 7 refs., 2 tabs

  6. A three dimensional model of a vane rheometer

    International Nuclear Information System (INIS)

    Nazari, Behzad; Moghaddam, Ramin Heidari; Bousfield, Douglas

    2013-01-01

    Highlights: • FEM was used to calculate the isothermal flow parameters in a vane geometry. • Velocity, pressure and then stress fields were obtained. • Using total stress, shaft torque was calculated to compare with experimental data. • A modified cell Reynolds number and power number were used to study flow pattern. • A comparison between 2D and 3D modeling was done based on calculated torques. -- Abstract: Vane type geometries are often used in rheometers to avoid slippage between the sample and the fixtures. While yield stress and other rheological properties can be obtained with this geometry, a complete analysis of this complex flow field is lacking in the literature. In this work, a finite element method is used to calculate the isothermal flow parameters in a vane geometry. The method solves the mass and momentum continuity equations to obtain velocity, pressure and then stress fields. Using the total stress numerical data, we calculated the torque applied on solid surfaces. The validity of the computational model was established by comparing the results to experimental results of shaft torque at different angular velocities. The conditions where inertial terms become important and the linear relationship between torque and stress are quantified with dimensionless groups. The accuracy of a two dimensional analysis is compared to the three dimensional results

  7. Development of monograph titled "augmented chemistry aldehida & keton" with 3 dimensional (3D) illustration as a supplement book on chemistry learning

    Science.gov (United States)

    Damayanti, Latifah Adelina; Ikhsan, Jaslin

    2017-05-01

    Integration of information technology in education more rapidly performed in a medium of learning. Three-dimensional (3D) molecular modeling was performed in Augmented Reality as a tangible manifestation of increasingly modern technology utilization. Based on augmented reality, three-dimensional virtual object is projected in real time and the exact environment. This paper reviewed the uses of chemical learning supplement book of aldehydes and ketones which are equipped with three-dimensional molecular modeling by which students can inspect molecules from various viewpoints. To plays the 3D illustration printed on the book, smartphones with the open-source software of the technology based integrated Augmented Reality can be used. The aims of this research were to develop the monograph of aldehydes and ketones with 3 dimensional (3D) illustrations, to determine the specification of the monograph, and to determine the quality of the monograph. The quality of the monograph is evaluated by experiencing chemistry teachers on the five aspects of contents/materials, presentations, language and images, graphs, and software engineering, resulted in the result that the book has a very good quality to be used as a chemistry learning supplement book.

  8. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    International Nuclear Information System (INIS)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility

  9. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    Energy Technology Data Exchange (ETDEWEB)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility.

  10. 3D computer model of the VINCY cyclotron magnet

    International Nuclear Information System (INIS)

    Vorozhtsov, S.B.

    1996-01-01

    The VINCY Cyclotron magnetic field simulation was performed with the help of the three-dimensional (3D) software. The following aspects of the system were considered: 3D calculation of the magnetic field in the median plane, 3D calculation of the magnetic field in the extraction region, 3D calculation of the stray magnetic field. 8 refs., 17 figs., 3 tabs

  11. SSI 2D/3D soil structure interaction: A program system for the calculation of structure-soil interactions using the boundary element method. Project C1

    International Nuclear Information System (INIS)

    Schmid, G.; Willms, G.; Huh, Y.; Gibhardt, M.

    1988-12-01

    SSI 2D/3D is a computer programm to calculate dynamic stiffness matrices for soil-structure-interaction problems in frequency domain. It is applicable to two- or three-dimensional situations. The present report is a detailed manual for the use of the computer code written in FORTRAN 77. In addition it gives a survey of the possibilities of the Boundary Element Method applied to dynamic problems in infinite domains. (orig.) [de

  12. Dimensional Changes of Nb$_{3}$Sn Rutherford Cables During Heat Treatment

    CERN Document Server

    Rochepault, E; Ambrosio, G; Anerella, M; Ballarino, A; Bonasia, A; Bordini, B; Cheng, D; Dietderich, D R; Felice, H; Garcia Fajardo, L; Ghosh, A; Holik, E F; Izquierdo Bermudez, S; Perez, J C; Pong, I; Schmalzle, J; Yu, M

    2016-01-01

    In high field magnet applications, Nb$_{3}$Sn coils undergo a heat treatment step after winding. During this stage, coils radially expand and longitudinally contract due to the Nb$_{3}$Sn phase change. In order to prevent residual strain from altering superconducting performances, the tooling must provide the adequate space for these dimensional changes. The aim of this paper is to understand the behavior of cable dimensions during heat treatment and to provide estimates of the space to be accommodated in the tooling for coil expansion and contraction. This paper summarizes measurements of dimensional changes on strands, single Rutherford cables, cable stacks, and coils performed between 2013 and 2015. These samples and coils have been performed within a collaboration between CERN and the U.S. LHC Accelerator Research Program to develop Nb$_{3}$Sn quadrupole magnets for the HiLumi LHC. The results are also compared with other high field magnet projects.

  13. 3-D volume rendering visualization for calculated distributions of diesel spray; Diesel funmu kyodo suchi keisan kekka no sanjigen volume rendering hyoji

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizaki, T; Imanishi, H; Nishida, K; Yamashita, H; Hiroyasu, H; Kaneda, K [Hiroshima University, Hiroshima (Japan)

    1997-10-01

    Three dimensional visualization technique based on volume rendering method has been developed in order to translate calculated results of diesel combustion simulation into realistically spray and flame images. This paper presents an overview of diesel combustion model which has been developed at Hiroshima University, a description of the three dimensional visualization technique, and some examples of spray and flame image generated by this visualization technique. 8 refs., 8 figs., 1 tab.

  14. An active 3-dimensional localization scheme for femtocell subscribers using E-UTRAN

    KAUST Repository

    Mohammed, Aquil Mirza; Muhammad, Zeeshan Shakir; Alouini, Mohamed-Slim

    2012-01-01

    Femtocells provide an efficient solution to overcome the indoor coverage problems and also to deal with the traffic within Macro cells. The possibility of localizing femtocell subscriber stations based on the timing ranging advance parameter (TRAP), obtained from E-UTRAN (Evolved UMTS Terrestrial Radio Access Network), within the network signal internals is challenging and is studied throughout in this paper. The principle approach to localization based on Euclidean distances from multiple base stations is outlined.We investigate the specifications of the timing parameters or TRAP used for air interface of 4G network as they relate to calculating the subscriber distances. Computer simulation is used to demonstrate the localization accuracy using multiple base station networks when estimating likely locations of femtocell subscribers stations on a twodimensional coordinate mapping system. However, we further extend our simulations to demonstrate expected location accuracy of subscriber stations, for multiple base station networks, on a three dimensional coordinate mapping scheme. The possibility of of error-fixes shows eight times greater accuracy than in previous results is expected to achieve by applying timing advance techniques to Global System for Mobile communications networks, by using a two-dimensional coordinate mapping scheme. We later compare our study with the effect of global positioning system (GPS) by using a three-dimensional coordinate mapping scheme, which is predicted to give an 72.4 cms accuracy of subscriber station location. © 2012 IEEE.

  15. An active 3-dimensional localization scheme for femtocell subscribers using E-UTRAN

    KAUST Repository

    Mohammed, Aquil Mirza

    2012-05-01

    Femtocells provide an efficient solution to overcome the indoor coverage problems and also to deal with the traffic within Macro cells. The possibility of localizing femtocell subscriber stations based on the timing ranging advance parameter (TRAP), obtained from E-UTRAN (Evolved UMTS Terrestrial Radio Access Network), within the network signal internals is challenging and is studied throughout in this paper. The principle approach to localization based on Euclidean distances from multiple base stations is outlined.We investigate the specifications of the timing parameters or TRAP used for air interface of 4G network as they relate to calculating the subscriber distances. Computer simulation is used to demonstrate the localization accuracy using multiple base station networks when estimating likely locations of femtocell subscribers stations on a twodimensional coordinate mapping system. However, we further extend our simulations to demonstrate expected location accuracy of subscriber stations, for multiple base station networks, on a three dimensional coordinate mapping scheme. The possibility of of error-fixes shows eight times greater accuracy than in previous results is expected to achieve by applying timing advance techniques to Global System for Mobile communications networks, by using a two-dimensional coordinate mapping scheme. We later compare our study with the effect of global positioning system (GPS) by using a three-dimensional coordinate mapping scheme, which is predicted to give an 72.4 cms accuracy of subscriber station location. © 2012 IEEE.

  16. Supersymmetric dimensional regularization

    International Nuclear Information System (INIS)

    Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.

    1980-01-01

    There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed

  17. Prediction of optimal deployment projection for transcatheter aortic valve replacement: angiographic 3-dimensional reconstruction of the aortic root versus multidetector computed tomography.

    Science.gov (United States)

    Binder, Ronald K; Leipsic, Jonathon; Wood, David; Moore, Teri; Toggweiler, Stefan; Willson, Alex; Gurvitch, Ronen; Freeman, Melanie; Webb, John G

    2012-04-01

    Identifying the optimal fluoroscopic projection of the aortic valve is important for successful transcatheter aortic valve replacement (TAVR). Various imaging modalities, including multidetector computed tomography (MDCT), have been proposed for prediction of the optimal deployment projection. We evaluated a method that provides 3-dimensional angiographic reconstructions (3DA) of the aortic root for prediction of the optimal deployment angle and compared it with MDCT. Forty patients undergoing transfemoral TAVR at St Paul's Hospital, Vancouver, Canada, were evaluated. All underwent preimplant 3DA and 68% underwent preimplant MDCT. Three-dimensional angiographic reconstructions were generated from images of a C-arm rotational aortic root angiogram during breath-hold, rapid ventricular pacing, and injection of 32 mL contrast medium at 8 mL/s. Two independent operators prospectively predicted perpendicular valve projections. The implant angle was chosen at the discretion of the physician performing TAVR. The angles from 3DA, from MDCT, the implant angle, and the postdeployment perpendicular prosthesis view were compared. The shortest distance from the postdeployment perpendicular prosthesis projection to the regression line of predicted perpendicular projections was calculated. All but 1 patient had adequate image quality for reproducible angle predictions. There was a significant correlation between 3DA and MDCT for prediction of perpendicular valve projections (r=0.682, Pregression line of predicted angles to the postdeployment prosthesis view was 5.1±4.6° for 3DA and 7.9±4.9° for MDCT (P=0.01). Three-dimensional angiographic reconstructions and MDCT are safe, practical, and accurate imaging modalities for identifying the optimal perpendicular valve deployment projection during TAVR.

  18. Multi-dimensional medical images compressed and filtered with wavelets

    International Nuclear Information System (INIS)

    Boyen, H.; Reeth, F. van; Flerackers, E.

    2002-01-01

    Full text: Using the standard wavelet decomposition methods, multi-dimensional medical images can be compressed and filtered by repeating the wavelet-algorithm on 1D-signals in an extra loop per extra dimension. In the non-standard decomposition for multi-dimensional images the areas that must be zero-filled in case of band- or notch-filters are more complex than geometric areas such as rectangles or cubes. Adding an additional dimension in this algorithm until 4D (e.g. a 3D beating heart) increases the geometric complexity of those areas even more. The aim of our study was to calculate the boundaries of the formed complex geometric areas, so we can use the faster non-standard decomposition to compress and filter multi-dimensional medical images. Because a lot of 3D medical images taken by PET- or SPECT-cameras have only a few layers in the Z-dimension and compressing images in a dimension with a few voxels is usually not worthwhile, we provided a solution in which one can choose which dimensions will be compressed or filtered. With the proposal of non-standard decomposition on Daubechies' wavelets D2 to D20 by Steven Gollmer in 1992, 1D data can be compressed and filtered. Each additional level works only on the smoothed data, so the transformation-time halves per extra level. Zero-filling a well-defined area alter the wavelet-transform and then performing the inverse transform will do the filtering. To be capable to compress and filter up to 4D-Images with the faster non-standard wavelet decomposition method, we have investigated a new method for calculating the boundaries of the areas which must be zero-filled in case of filtering. This is especially true for band- and notch filtering. Contrary to the standard decomposition method, the areas are no longer rectangles in 2D or cubes in 3D or a row of cubes in 4D: they are rectangles expanded with a half-sized rectangle in the other direction for 2D, cubes expanded with half cubes in one and quarter cubes in the

  19. Jeff-3 and decay heat calculations

    International Nuclear Information System (INIS)

    Huynh, T.D.

    2009-07-01

    The decay heat power, i.e. the residual heat generated by irradiated nuclear fuels, is a significant parameter to define the power of a reactor. A good evaluation of this power depends both on the accuracy of the processing algorithm and on the quality of the physical data used. This report describes the steps carried out, ranging from tests of consistency to the validation by calculations - experiments comparisons, allowing to choose the validated nuclear data. We have compared the Jeff-3 evaluation (only the file 8 containing decay data) with the Jeff-2.2 and Endf/B7.O evaluations through the computation of residual power. It appears that the residual powers computed by the DARWIN code from Jeff-3.1.1 data for short times agree more with experimental data. There is a slight discrepancy (∼ 2%) between Jeff-3.1 and Jeff-3.1.1 on the total residual power computed for PWR UO 2 fuel. For long decay times the discrepancy is more significant between Jeff-3.1.1 and Jeff-2 on the computation of detailed residual powers because some prevailing isotopes have more formation channels taken into account in Jeff-3 and Jeff-3.1.1 than in Jeff-2

  20. Dimensional transitions in thermodynamic properties of ideal Maxwell–Boltzmann gases

    International Nuclear Information System (INIS)

    Aydin, Alhun; Sisman, Altug

    2015-01-01

    An ideal Maxwell–Boltzmann gas confined in various rectangular nanodomains is considered under quantum size effects. Thermodynamic quantities are calculated from their relations with the partition function, which consists of triple infinite summations over momentum states in each direction. To obtain analytical expressions, summations are converted to integrals for macrosystems by a continuum approximation, which fails at the nanoscale. To avoid both the numerical calculation of summations and the failure of their integral approximations at the nanoscale, a method which gives an analytical expression for a single particle partition function (SPPF) is proposed. It is shown that a dimensional transition in momentum space occurs at a certain magnitude of confinement. Therefore, to represent the SPPF by lower-dimensional analytical expressions becomes possible, rather than numerical calculation of summations. Considering rectangular domains with different aspect ratios, a comparison of the results of derived expressions with those of summation forms of the SPPF is made. It is shown that analytical expressions for the SPPF give very precise results with maximum relative errors of around 1%, 2% and 3% at exactly the transition point for single, double and triple transitions, respectively. Based on dimensional transitions, expressions for free energy, entropy, internal energy, chemical potential, heat capacity and pressure are given analytically valid for any scale. (paper)