WorldWideScience

Sample records for calcineurin phosphatase inhibition

  1. Correlations between calcineurin phosphatase inhibition and cyclosporine metabolites concentrations in kidney transplant recipients: Implications for immunoassays

    DEFF Research Database (Denmark)

    Jørgensen, Kaj Anker; Karamperis, Nikolaos; Koefoed-Nielsen, Pernille Bundgaard

    2006-01-01

    by inhibiting the enzyme calcineurin phosphatase. Determination of the enzyme's activity is one of the most promising pharmacodynamic markers. It is unknown how calcineurin phosphatase inhibition correlates with various cyclosporine monitoring assays and what is the potential impact of metabolites...... by the enzyme multiplied immunoassay technique (EMIT) and by the polyclonal fluorescence polarization immunoassay (pFPIA). Calcineurin phosphatase activity was measured by its ability to dephosphorylate a previously phosphorylated 19-amino acid peptide. We found that calcineurin phosphatase inhibition...

  2. Correlations between calcineurin phosphatase inhibition and cyclosporine metabolites concentrations in kidney transplant recipients: implications for immunoassays

    DEFF Research Database (Denmark)

    Karamperis, N; Koefoed-Nielsen, PB; Brahe, P

    2006-01-01

    by inhibiting the enzyme calcineurin phosphatase. Determination of the enzyme's activity is one of the most promising pharmacodynamic markers. It is unknown how calcineurin phosphatase inhibition correlates with various cyclosporine monitoring assays and what is the potential impact of metabolites...... by the enzyme multiplied immunoassay technique (EMIT) and by the polyclonal fluorescence polarization immunoassay (pFPIA). Calcineurin phosphatase activity was measured by its ability to dephosphorylate a previously phosphorylated 19-amino acid peptide. We found that calcineurin phosphatase inhibition...

  3. A new calcineurin inhibition domain in Cabin1

    International Nuclear Information System (INIS)

    Jang, Hyonchol; Cho, Eun-Jung; Youn, Hong-Duk

    2007-01-01

    Calcineurin (CN), a calcium-activated phosphatase, plays a critical role in various biological processes including T cell activation. Cabin1, a calcineurin binding protein 1, has been shown to bind directly to CN using its C-terminal region and inhibit CN activity. However, no increase in CN activity has been found in Cabin1ΔC T cells, which produce a truncated Cabin1 lacking the C-terminal CN binding region. Here, we report that Cabin1 has additional CN binding domain in its 701-900 amino acid residues. Cabin1 (701-900) blocked both CN-mediated dephosphorylation and nuclear import of NFAT and thus inhibited IL-2 production in response to PMA/ionomycin stimulation. This fact may explain why Cabin1ΔC mice previously showed no significant defect in CN-mediated signaling pathway

  4. Calcineurin Inhibition Blocks Within-, but Not Between-Session Fear Extinction in Mice

    Science.gov (United States)

    Almeida-Corrêa, Suellen; Moulin, Thiago C.; Carneiro, Clarissa F. D.; Gonçalves, Marina M. C.; Junqueira, Lara S.; Amaral, Olavo B.

    2015-01-01

    Memory extinction involves the formation of a new associative memory that inhibits a previously conditioned association. Nonetheless, it could also depend on weakening of the original memory trace if extinction is assumed to have multiple components. The phosphatase calcineurin (CaN) has been described as being involved in extinction but not in…

  5. Direct evidence that FK506 inhibition of FcepsilonRI-mediated exocytosis from RBL mast cells involves calcineurin.

    Science.gov (United States)

    Hultsch, T; Brand, P; Lohmann, S; Saloga, J; Kincaid, R L; Knop, J

    1998-05-01

    FcepsilonRI-mediated exocytosis of preformed mediators from mast cells and basophils (e.g. histamine, serotonin, beta-hexosaminidase) is sensitive to the immunosuppressants cyclosporin A and FK506 (IC50 200 and 4 nM, respectively) but not rapamycin. The mechanism of inhibition does not appear to involve tyrosine phosphorylation, hydrolysis of inositol phosphates or calcium flux. Here we report experiments using a molecular approach to assess the role of calcineurin, a serine/threonine phosphatase thought to be the primary pharmacological target of these drugs. Calcineurin's activity requires association of its catalytic (A) subunit with an intrinsic regulatory (B) subunit. We hypothesized that calcineurin-sensitive signalling events should be affected by the depletion of calcineurin B subunits, thereby reducing the number of active A:B complexes. We therefore transfected rat basophilic leukemia (RBL) cells with an inhibitory (dominant negative) form of the calcineurin A subunit, which binds the calcineurin B subunit with high affinity but does not possess catalytic activity (B subunit knock-out, BKO). In these transfected cells, the dose-response curve for the inhibition of FcepsilonRI-mediated exocytosis by FK506 was shifted to the left, indicating an increased drug sensitivity of BKO-transfected cells. We conclude that FK506 inhibition of FcepsilonRI-mediated exocytosis in mast cells specifically targets calcineurin activity.

  6. Calcineurin-inhibitor pain syndrome.

    Science.gov (United States)

    Prommer, Eric

    2012-07-01

    There has been increased recognition of calcineurin, a phosphoprotein serine/threonine phosphatase enzyme, in the regulation of many physiologic systems. Calcineurin mediates activation of lymphocytes, which play a role in immune response. Widely distributed in the central nervous system, calcinuerin also plays an important role in sensory neural function, via its role in the regulation of newly discovered 2-pore potassium channels, which greatly influence neuronal resting membrane potentials. Calcinuerin inhibition is the mechanism of action of immunomodulatory drugs such as cyclosporine and tacrolimus, which are widely used in transplantation medicine to prevent rejection. While important for immunosuppression, the use of calcineurin inhibitors has been associated with the development of a new pain syndrome called the calcineurin pain syndrome, which appears to be an untoward complication of the interruption of the physiologic function of calcineurin. This is a narrative review focusing on the epidemiology, pathophysiology, characterization of a newly recognized pain syndrome associated with the use of calcineurin inhibitors. The use of immunosuppressants however is associated with several well-known toxicities to which the calcineurin pain syndrome can be added. The development of this syndrome most likely involves altered nociceptive processing due to the effect of calcineurin inhibition on neuronal firing, as well as effects of calcineurin on vascular tone. The most striking aspect of the treatment of this syndrome is the response to calcium channel blockers, which suggest that the effects of calcineurin inhibition on vascular tone play an important role in the development of the calcineurin pain syndrome. The calcineurin syndrome is a newly recognized complication associated with the use of calcineurin inhibitors. There is no standard therapy at this time but anecdotal reports suggest the effectiveness of calcium channel blockers.

  7. Delineation of the calcineurin-interacting region of cyclophilin B.

    Science.gov (United States)

    Carpentier, M; Allain, F; Haendler, B; Slomianny, M C; Spik, G

    2000-12-01

    The immunosuppressant drug cyclosporin A (CsA) inhibits T-cell function by blocking the phosphatase activity of calcineurin. This effect is mediated by formation of a complex between the drug and cyclophilin (CyP), which creates a composite surface able to make high-affinity contacts with calcineurin. In vitro, the CyPB/CsA complex is more effective in inhibiting calcineurin than the CyPA/CsA and CyPC/CsA complexes, pointing to fine structural differences in the calcineurin-binding region. To delineate the calcineurin-binding region of CyPB, we mutated several amino acids, located in two loops corresponding to CyPA regions known to be involved, as follows: R76A, G77H, D155R, and D158R. Compared to wild-type CyPB, the G77H, D155R, and D158R mutants had intact isomerase and CsA-binding activities, indicating that no major conformational changes had taken place. When complexed to CsA, they all displayed only reduced affinity for calcineurin and much decreased inhibition of calcineurin phosphatase activity. These results strongly suggest that the three amino acids G77, D155, and D158 are directly involved in the interaction of CyPB/CsA with calcineurin, in agreement with their exposed position. The G77, D155, and D158 residues are not maintained in CyPA and might therefore account for the higher affinity of the CyPB/CsA complex for calcineurin.

  8. NMDA-induced potentiation of mGluR5 is mediated by activation of protein phosphatase 2B/calcineurin

    Science.gov (United States)

    Alagarsamy, Sudar; Saugstad, Julie; Warren, Lee; Mansuy, Isabelle M.; Gereau, Robert W.; Conn, P. Jeffrey

    2010-01-01

    Previous reports have shown that activation of N-methyl-D-aspartate (NMDA) receptors potentiates responses to activation of the group I metabotropic glutamate receptor mGluR5 by reversing PKC-mediated desensitization of this receptor. NMDA-induced reversal of mGluR5 desensitization is dependent on activation of protein phosphatases. However, the specific protein phosphatase involved and the precise mechanism by which NMDA receptor activation reduces mGluR desensitization are not known. We have performed a series of molecular, biochemical, and genetic studies to show that NMDA-induced regulation of mGluR5 is dependent on activation of calcium-dependent protein phosphatase 2B/calcineurin (PP2B/CaN). Furthermore, we report that purified calcineurin directly dephosphorylates the C-terminal tail of mGluR5 at sites that are phosphorylated by PKC. Finally, immunoprecipitation and GST fusion protein pull-down experiments reveal that calcineurin interacts with mGluR5, suggesting that these proteins could be colocalized in a signaling complex. Taken together with previous studies, these data suggest that activation of NMDA receptors leads to activation of calcineurin and that calcineurin modulates mGluR5 function by directly dephosphorylating mGluR5 at PKC sites that are involved in desensitization of this receptor. 2005 Elsevier Ltd. All rights reserved. PMID:16005030

  9. Molecular Cloning and Characterization of the Calcineurin Subunit A from Plutella xylostella

    Directory of Open Access Journals (Sweden)

    Xi'en Chen

    2013-10-01

    Full Text Available Calcineurin (or PP2B has been reported to be involved in an array of physiological process in insects, and the calcineurin subunit A (CNA plays a central role in calcineurin activity. We cloned the CNA gene from Plutella xylostella (PxCNA. This gene contains an ORF of 1488 bp that encodes a 495 amino acid protein, showing 98%, and 80% identities to the CNA of Bombyx mori, and humans respectively. The full-length of PxCNA and its catalytic domain (CNA1–341, defined as PxCNα were both expressed in Escherichia coli. Purified recombinant PxCNA displayed no phosphatase activity, whereas recombinant PxCNα showed high phosphatase activity with a Km of 4.6 mM and a kcat of 0.66 S−1 against pNPP. It could be activated at different degrees by Mn2+, Ni2+, Mg2+, and Ca2+. The optimum reaction pH was about 7.5 and the optimum reaction temperature was around 45 °C. An in vitro inhibition assay showed that okadaic acid (OA and cantharidin (CTD competitively inhibited recombinant PxCNα activity with the IC50 values of 8.95 μM and 77.64 μM, respectively. However, unlike previous reports, pyrethroid insecticides were unable to inhibit recombinant PxCNα, indicating that the P. xylostella calcineurin appears not to be sensitive to class II pyrethroid insecticides.

  10. E2/ER β Enhances Calcineurin Protein Degradation and PI3K/Akt/MDM2 Signal Transduction to Inhibit ISO-Induced Myocardial Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Kuan-Ho Lin

    2017-04-01

    Full Text Available Secretion of multifunctional estrogen and its receptor has been widely considered as the reason for markedly higher frequency of heart disease in men than in women. 17β-Estradiol (E2, for instance, has been reported to prevent development of cardiac apoptosis via activation of estrogen receptors (ERs. In addition, protein phosphatase such as protein phosphatase 1 (PP1 and calcineurin (PP2B are also involved in cardiac hypertrophy and cell apoptosis signaling. However, the mechanism by which E2/ERβ suppresses apoptosis is not fully understood, and the role of protein phosphatase in E2/ERβ action also needs further investigation. In this study, we observed that E2/ERβ inhibited isoproterenol (ISO-induced myocardial cell apoptosis, cytochrome c release and downstream apoptotic markers. Moreover, we found that E2/ERβ blocks ISO-induced apoptosis in H9c2 cells through the enhancement of calcineurin protein degradation through PI3K/Akt/MDM2 signaling pathway. Our results suggest that supplementation with estrogen and/or overexpression of estrogen receptor β gene may prove to be effective means to treat stress-induced myocardial damage.

  11. Targeted Inhibition of Pancreatic Acinar Cell Calcineurin Is a Novel Strategy to Prevent Post-ERCP PancreatitisSummary

    Directory of Open Access Journals (Sweden)

    Abrahim I. Orabi

    2017-01-01

    Full Text Available Background & Aims: There is a pressing need to develop effective preventative therapies for post–endoscopic retrograde cholangiopancreatography pancreatitis (PEP. We showed that early PEP events are induced through the calcium-activated phosphatase calcineurin and that global calcineurin deletion abolishes PEP in mice. A crucial question is whether acinar cell calcineurin controls the initiation of PEP in vivo. Methods: We used a mouse model of PEP and examined the effects of in vivo acinar cell-specific calcineurin deletion by either generating a conditional knockout line or infusing a novel adeno-associated virus–pancreatic elastase improved Cre (I–iCre into the pancreatic duct of a calcineurin floxed line. Results: We found that PEP is dependent on acinar cell calcineurin in vivo, and this led us to determine that calcineurin inhibitors, infused within the radiocontrast, largely can prevent PEP. Conclusions: These results provide the impetus for launching clinical trials to test the efficacy of intraductal calcineurin inhibitors to prevent PEP. Keywords: Adeno-Associated Virus, Calcineurin B1, FK506, Cyclosporine A, Intraductal Delivery

  12. Inhibition of calcineurin phosphatase promotes exocytosis of renin from juxtaglomerular cells

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Friis, Ulla Glenert; Gooch, Jennifer L

    2010-01-01

    . Simultaneous exposure to EGTA and CsA had no additive effect. The protein kinase A (PKA) blocker RpcAMPs had no effect on the CsA-induced increase in membrane capacitance. Intra- and extracellular application of tacrolimus did not alter membrane capacitance. A calmodulin antagonist (calmidazolium) and Cs...... after CsA treatment of the A-alpha knockout, while renin mRNA was suppressed. We conclude that calcineurin and calcium/calmodulin suppress exocytosis of renin from juxtaglomerular cells independent of PKA....

  13. Sperm calcineurin inhibition prevents mouse fertility with implications for male contraceptive.

    Science.gov (United States)

    Miyata, Haruhiko; Satouh, Yuhkoh; Mashiko, Daisuke; Muto, Masanaga; Nozawa, Kaori; Shiba, Kogiku; Fujihara, Yoshitaka; Isotani, Ayako; Inaba, Kazuo; Ikawa, Masahito

    2015-10-23

    Calcineurin inhibitors, such as cyclosporine A and FK506, are used as immunosuppressant drugs, but their adverse effects on male reproductive function remain unclear. The testis expresses somatic calcineurin and a sperm-specific isoform that contains a catalytic subunit (PPP3CC) and a regulatory subunit (PPP3R2). We demonstrate herein that male mice lacking Ppp3cc or Ppp3r2 genes (knockout mice) are infertile, with reduced sperm motility owing to an inflexible midpiece. Treatment of mice with cyclosporine A or FK506 creates phenocopies of the sperm motility and morphological defects. These defects appear within 4 to 5 days of treatment, which indicates that sperm-specific calcineurin confers midpiece flexibility during epididymal transit. Male mouse fertility recovered a week after we discontinued treatment. Because human spermatozoa contain PPP3CC and PPP3R2 as a form of calcineurin, inhibition of this sperm-specific calcineurin may lead to the development of a reversible male contraceptive that would target spermatozoa in the epididymis. Copyright © 2015, American Association for the Advancement of Science.

  14. PKA regulates calcineurin function through the phosphorylation of RCAN1: Identification of a novel phosphorylation site

    International Nuclear Information System (INIS)

    Kim, Seon Sook; Lee, Eun Hye; Lee, Kooyeon; Jo, Su-Hyun; Seo, Su Ryeon

    2015-01-01

    Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression. - Highlights: • We identify novel phosphorylation sites in RCAN1 by LC-MS/MS analysis. • PKA-dependent phosphorylation of RCAN1 at Ser 93 inhibits calcineurin-mediated intracellular signaling. • We show the immunosuppressive function of RCAN1 phosphorylation at Ser 93 in suppressing cytokine expression

  15. Vph6 Mutants of Saccharomyces Cerevisiae Require Calcineurin for Growth and Are Defective in Vacuolar H(+)-Atpase Assembly

    OpenAIRE

    Hemenway, C. S.; Dolinski, K.; Cardenas, M. E.; Hiller, M. A.; Jones, E. W.; Heitman, J.

    1995-01-01

    We have characterized a Saccharomyces cerevisiae mutant strain that is hypersensitive to cyclosporin A (CsA) and FK506, immunosuppressants that inhibit calcineurin, a serine-threonine-specific phosphatase (PP2B). A single nuclear mutation, designated cev1 for calcineurin essential for viability, is responsible for the CsA-FK506-sensitive phenotype. The peptidyl-prolyl cis-trans isomerases cyclophilin A and FKBP12, respectively, mediate CsA and FK506 toxicity in the cev1 mutant strain. We demo...

  16. The calcineurin activity profiles of cyclosporin and tacrolimus are different in stable renal transplant patients

    DEFF Research Database (Denmark)

    Koefoed-Nielsen, PB; Karamperis, N; Hojskov, C

    2006-01-01

    Cyclosporin and tacrolimus remain the cornerstone immunosuppressive drugs in organ transplantation. Dosing and monitoring these drugs is based on pharmacokinetic protocols, but measuring a pharmacodynamic parameter, calcineurin phosphatase (CaN) activity, could be a valuable supplement...... in determining optimal doses. Forty stable renal transplant patients were investigated three times in a 6-month period. Blood samples were drawn at 0, 1, 2, 3 and 4 h after oral intake of tacrolimus (FK) or cyclosporin at days 1 and 180. At day 90, one blood sample at trough level (FK) or C2 level (cyclosporin A...... at days 1 and 180 were the same for both drugs. Furthermore, we found that patients treated with tacrolimus or cyclosporin displayed different calcineurin activity profiles. We found that cyclosporin displayed greater calcineurin inhibition than tacrolimus. We have demonstrated that the two drugs exert...

  17. Regulation of gap junction conductance by calcineurin through Cx43 phosphorylation: implications for action potential conduction.

    Science.gov (United States)

    Jabr, Rita I; Hatch, Fiona S; Salvage, Samantha C; Orlowski, Alejandro; Lampe, Paul D; Fry, Christopher H

    2016-11-01

    Cardiac arrhythmias are associated with raised intracellular [Ca 2+ ] and slowed action potential conduction caused by reduced gap junction (GJ) electrical conductance (Gj). Ventricular GJs are composed of connexin proteins (Cx43), with Gj determined by Cx43 phosphorylation status. Connexin phosphorylation is an interplay between protein kinases and phosphatases but the precise pathways are unknown. We aimed to identify key Ca 2+ -dependent phosphorylation sites on Cx43 that regulate cardiac gap junction conductance and action potential conduction velocity. We investigated the role of the Ca 2+ -dependent phosphatase, calcineurin. Intracellular [Ca 2+ ] was raised in guinea-pig myocardium by a low-Na solution or increased stimulation. Conduction velocity and Gj were measured in multicellular strips. Phosphorylation of Cx43 serine residues (S365 and S368) and of the intermediary regulator I1 at threonine35 was measured by Western blot. Measurements were made in the presence and absence of inhibitors to calcineurin, I1 or protein phosphatase-1 and phosphatase-2.Raised [Ca 2 + ] i decreased Gj, reduced Cx43 phosphorylation at S365 and increased it at S368; these changes were reversed by calcineurin inhibitors. Cx43-S368 phosphorylation was reversed by the protein kinase C inhibitor chelerythrine. Raised [Ca 2+ ] i also decreased I1 phosphorylation, also prevented by calcineurin inhibitors, to increase activity of the Ca 2+ -independent phosphatase, PPI. The PP1 inhibitor, tautomycin, prevented Cx43-365 dephosphorylation, Cx43-S368 phosphorylation and Gj reduction in raised [Ca 2+ ] i . PP2A had no role. Conduction velocity was reduced by raised [Ca 2+ ] i and reversed by calcineurin inhibitors. Reduced action potential conduction and Gj in raised [Ca 2+ ] are regulated by calcineurin-dependent Cx43-S365 phosphorylation, leading to Cx43-S368 dephosphorylation. The calcineurin action is indirect, via I1 dephosphorylation and subsequent activation of PP1.

  18. 24-h monitoring of calcineurin phosphatase activity in healthy subjects

    DEFF Research Database (Denmark)

    Koefoed-Nielsen, P.B.; Karamperis, N.; Jørgensen, Kaj Anker

    2005-01-01

    The calcineurin inhibitors cyclosporine and tacrolimus are the cornerstone immunosuppressants used in solid organ transplantation. Studies investigating calcineurin (CaN) activity in renal transplanted patients have been published, but basic properties of the enzyme activity in healthy subjects...... remain to be described. The aim of this study was to investigate whether CaN displays circadian variation or sex difference is present in healthy subjects. Twenty subjects had blood samples drawn every 4 h for a 24-h period. CaN activity was determined in whole blood as the release of 32P from...

  19. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Zawawi, M.S.F. [Universiti Sains Malaysia (USM) (Malaysia); Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia); Dharmapatni, A.A.S.S.K.; Cantley, M.D. [Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia); McHugh, K.P. [University of Florida, College of Dentistry, Fl (United States); Haynes, D.R. [Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia); Crotti, T.N., E-mail: tania.crotti@adelaide.edu.au [Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real

  20. The calcineurin activity profiles of cyclosporin and tacrolimus are different in stable renal transplant patients

    DEFF Research Database (Denmark)

    Koefoed-Nielsen, Pernille Bundgaard; Karamperis, Nikolaos; Jørgensen, Kaj Anker

    2006-01-01

    in determining optimal doses. Forty stable renal transplant patients were investigated three times in a 6-month period. Blood samples were drawn at 0, 1, 2, 3 and 4 h after oral intake of tacrolimus (FK) or cyclosporin at days 1 and 180. At day 90, one blood sample at trough level (FK) or C2 level (cyclosporin A...... significantly different effects on calcineurin activity in renal transplant patients with stable, well-functioning grafts and that tacrolimus-treated patients can maintain good, stable graft function with minimal CaN inhibition.......Cyclosporin and tacrolimus remain the cornerstone immunosuppressive drugs in organ transplantation. Dosing and monitoring these drugs is based on pharmacokinetic protocols, but measuring a pharmacodynamic parameter, calcineurin phosphatase (CaN) activity, could be a valuable supplement...

  1. Estradiol upregulates calcineurin expression via overexpression of estrogen receptor alpha gene in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Hui-Li Lin

    2011-04-01

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disease primarily affecting women (9:1 compared with men. To investigate the influence of female sex hormone estrogen on the development of female-biased lupus, we compared the expression of estrogen receptor alpha (ERα gene and protein levels as well as expression of T-cell activation gene calcineurin in response to estrogen in peripheral blood lymphocytes (PBLs from SLE patients and normal controls. PBLs were isolated from 20 female SLE patients and 6 normal female controls. The amount of ERα protein in PBL was measured by flow cytometry. The expression of ERα and calcineurin messenger RNA was measured by semi-quantitative reverse transcription-polymerase chain reaction. Calcineurin phosphatase activity was measured by calcineurin assay kit. The expression of ERα messenger RNA and ERα protein was significantly increased (p=0.001 and p=0.023, respectively in PBL from SLE patients compared with that from normal controls. In addition, the basal calcineurin in PBL from SLE patients was significantly higher (p=0.000 than that from normal controls, and estrogen-induced expression of calcineurin was increased (p=0.007 in PBL from SLE patients compared with that from normal controls, a 3.15-fold increase. This increase was inhibited by the ERα antagonism ICI 182,780. The effects of ER antagonism were also found in calcineurin activity. These data suggest that overexpression of ERα gene and enhanced activation of calcineurin in response to estrogen in PBL may contribute to the pathogenesis of female dominant in SLE.

  2. vph6 mutants of Saccharomyces cerevisiae require calcineurin for growth and are defective in vacuolar H(+)-ATPase assembly.

    Science.gov (United States)

    Hemenway, C S; Dolinski, K; Cardenas, M E; Hiller, M A; Jones, E W; Heitman, J

    1995-11-01

    We have characterized a Saccharomyces cerevisiae mutant strain that is hypersensitive to cyclosporin A (CsA) and FK506, immunosuppressants that inhibit calcineurin, a serine-threonine-specific phosphatase (PP2B). A single nuclear mutation, designated cev1 for calcineurin essential for viability, is responsible for the CsA-FK506-sensitive phenotype. The peptidyl-prolyl cis-trans isomerases cyclophilin A and FKBP12, respectively, mediate CsA and FK506 toxicity in the cev1 mutant strain. We demonstrate that cev1 is an allele of the VPH6 gene and that vph6 mutant strains fail to assemble the vacuolar H(+)-ATPase (V-ATPase). The VPH6 gene was mapped on chromosome VIII and is predicted to encode a 181-amino acid (21 kD) protein with no identity to other known proteins. We find that calcineurin is essential for viability in many mutant strains with defects in V-ATPase function or vacuolar acidification. In addition, we find that calcineurin modulates extracellular acidification in response to glucose, which we propose occurs via calcineurin regulation of the plasma membrane H(+)-ATPase PMA1. Taken together, our findings suggest calcineurin plays a general role in the regulation of cation transport and homeostasis.

  3. Role of metabolites and calcineurin inhibition on C2 monitoring in renal transplant patients

    DEFF Research Database (Denmark)

    Karamperis, N.; Koefoed-Nielsen, P.; Bagger, Sorensen A.

    2005-01-01

    BACKGROUND: Many transplantation centres have switched to C2 monitoring of cyclosporin-treated renal transplant patients. The rationale is that the C2 correlates best with AUC0-4 (area under the concentration-time curve), which again correlates with rejection and nephrotoxicity. It has also been...... metabolites were added to whole blood from healthy volunteers and the calcineurin phosphatase activity (CaN) was determined. Twenty renal transplant patients at varying times after transplantation had blood samples drawn in the morning before and 1, 2, 3 and 4 h after intake of their usual dose of cyclosporin...

  4. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice.

    Science.gov (United States)

    Chiasson, Valorie L; Pakanati, Abhinandan R; Hernandez, Marcos; Young, Kristina J; Bounds, Kelsey R; Mitchell, Brett M

    2017-07-01

    The immunosuppressive calcineurin inhibitors cyclosporine A and tacrolimus alter T-cell subsets and can cause hypertension, vascular dysfunction, and renal toxicity. We and others have reported that cyclosporine A and tacrolimus decrease anti-inflammatory regulatory T cells and increase proinflammatory interleukin-17-producing T cells; therefore, we hypothesized that inhibition of these effects using noncellular therapies would prevent the hypertension, endothelial dysfunction, and renal glomerular injury induced by calcineurin inhibitor therapy. Daily treatment of mice with cyclosporine A or tacrolimus for 1 week significantly decreased CD4 + /FoxP3 + regulatory T cells in the spleen and lymph nodes, as well as induced hypertension, vascular injury and dysfunction, and glomerular mesangial expansion in mice. Daily cotreatment with all-trans retinoic acid reported to increase regulatory T cells and decrease interleukin-17-producing T cells, prevented all of the detrimental effects of cyclosporine A and tacrolimus. All-trans retinoic acid also increased regulatory T cells and prevented the hypertension, endothelial dysfunction, and glomerular injury in genetically modified mice that phenocopy calcineurin inhibitor-treated mice (FKBP12-Tie2 knockout). Treatment with an interleukin-17-neutralizing antibody also increased regulatory T-cell levels and prevented the hypertension, endothelial dysfunction, and glomerular injury in cyclosporine A-treated and tacrolimus-treated mice and FKBP12-Tie2 knockout mice, whereas an isotype control had no effect. Augmenting regulatory T cells and inhibiting interleukin-17 signaling using noncellular therapies prevents the cardiovascular and renal toxicity of calcineurin inhibitors in mice. © 2017 American Heart Association, Inc.

  5. The Functional Role of Calcineurin in Hypertrophy, Regeneration, and Disorders of Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2010-01-01

    Full Text Available Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, enhancing the differentiation through upregulation of myogenin or MEF2A and downregulation of the Id1 family and myostatin. Foxo may also be a downstream candidate for a calcineurin signaling molecule during muscle regeneration. The strategy of controlling the amount of calcineurin may be effective for the treatment of muscular disorders such as DMD, UCMD, and LGMD. Activation of calcineurin produces muscular hypertrophy of the slow-twitch soleus muscle but not fast-twitch muscles.

  6. Vanadate monomers and dimers both inhibit the human prostatic acid phosphatase.

    Science.gov (United States)

    Crans, D C; Simone, C M; Saha, A K; Glew, R H

    1989-11-30

    A combination of enzyme kinetics and 51V NMR spectroscopy was used to identify the species of vanadate that inhibits acid phosphatases. Monomeric vanadate was shown to inhibit wheat germ and potato acid phosphatases. At pH 5.5, the vanadate dimer inhibits the human prostatic acid phosphatase whereas at pH 7.0 it is the vanadate monomer that inhibits this enzyme. The pH-dependent shift in the affinity of the prostatic phosphatase for vanadate is presumably due to deprotonation of an amino acid side chain in or near the binding site resulting in a conformational change in the protein. pH may be a subtle effector of the insulin-like vanadate activity in biological systems and may explain some of the differences in selectivity observed with the protein phosphatases.

  7. Arctigenin inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

    Science.gov (United States)

    Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki; Li, Feng; Kadota, Shigetoshi; Esumi, Hiroyasu; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2014-01-01

    Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblastic cell-dependent pathways. Among the several lignan-derived compounds examined, arctigenin most strongly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast-like cell formation in mouse bone marrow macrophage (BMM) cultures, in which the calcineurin-dependent NFATc1 pathway was activated. Arctigenin suppressed neither the activation of nuclear factor κB and mitogen-activated protein kinases nor the up-regulation of c-Fos expression in BMMs treated with RANKL. However, arctigenin suppressed RANKL-induced NFATc1 expression. Interestingly, the treatment of osteoclast-like cells with arctigenin converted NFATc1 into a lower molecular weight species, which was translocated into the nucleus even in the absence of RANKL. Nevertheless, arctigenin as well as cyclosporin A (CsA), a calcineurin inhibitor, suppressed the NFAT-luciferase reporter activity induced by ionomycin and phorbol 12-myristate 13-acetate in BMMs. Chromatin immunoprecipitation analysis confirmed that arctigenin inhibited the recruitment of NFATc1 to the promoter region of the NFATc1 target gene. Arctigenin, but not CsA suppressed osteoclast-like cell formation in co-cultures of osteoblastic cells and bone marrow cells, in which the osteoblastic cell-dependent NFATc1 pathway was activated. The forced expression of constitutively active NFATc1 rescued osteoclastogenesis in BMM cultures treated with CsA, but not that treated with arctigenin. Arctigenin also suppressed the pit

  8. Arctigenin Inhibits Osteoclast Differentiation and Function by Suppressing Both Calcineurin-Dependent and Osteoblastic Cell-Dependent NFATc1 Pathways

    Science.gov (United States)

    Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki; Li, Feng; Kadota, Shigetoshi; Esumi, Hiroyasu; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2014-01-01

    Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblastic cell-dependent pathways. Among the several lignan-derived compounds examined, arctigenin most strongly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast-like cell formation in mouse bone marrow macrophage (BMM) cultures, in which the calcineurin-dependent NFATc1 pathway was activated. Arctigenin suppressed neither the activation of nuclear factor κB and mitogen-activated protein kinases nor the up-regulation of c-Fos expression in BMMs treated with RANKL. However, arctigenin suppressed RANKL-induced NFATc1 expression. Interestingly, the treatment of osteoclast-like cells with arctigenin converted NFATc1 into a lower molecular weight species, which was translocated into the nucleus even in the absence of RANKL. Nevertheless, arctigenin as well as cyclosporin A (CsA), a calcineurin inhibitor, suppressed the NFAT-luciferase reporter activity induced by ionomycin and phorbol 12-myristate 13-acetate in BMMs. Chromatin immunoprecipitation analysis confirmed that arctigenin inhibited the recruitment of NFATc1 to the promoter region of the NFATc1 target gene. Arctigenin, but not CsA suppressed osteoclast-like cell formation in co-cultures of osteoblastic cells and bone marrow cells, in which the osteoblastic cell-dependent NFATc1 pathway was activated. The forced expression of constitutively active NFATc1 rescued osteoclastogenesis in BMM cultures treated with CsA, but not that treated with arctigenin. Arctigenin also suppressed the pit

  9. Arctigenin inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

    Directory of Open Access Journals (Sweden)

    Teruhito Yamashita

    Full Text Available Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1, a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblastic cell-dependent pathways. Among the several lignan-derived compounds examined, arctigenin most strongly inhibited receptor activator of nuclear factor κB ligand (RANKL-induced osteoclast-like cell formation in mouse bone marrow macrophage (BMM cultures, in which the calcineurin-dependent NFATc1 pathway was activated. Arctigenin suppressed neither the activation of nuclear factor κB and mitogen-activated protein kinases nor the up-regulation of c-Fos expression in BMMs treated with RANKL. However, arctigenin suppressed RANKL-induced NFATc1 expression. Interestingly, the treatment of osteoclast-like cells with arctigenin converted NFATc1 into a lower molecular weight species, which was translocated into the nucleus even in the absence of RANKL. Nevertheless, arctigenin as well as cyclosporin A (CsA, a calcineurin inhibitor, suppressed the NFAT-luciferase reporter activity induced by ionomycin and phorbol 12-myristate 13-acetate in BMMs. Chromatin immunoprecipitation analysis confirmed that arctigenin inhibited the recruitment of NFATc1 to the promoter region of the NFATc1 target gene. Arctigenin, but not CsA suppressed osteoclast-like cell formation in co-cultures of osteoblastic cells and bone marrow cells, in which the osteoblastic cell-dependent NFATc1 pathway was activated. The forced expression of constitutively active NFATc1 rescued osteoclastogenesis in BMM cultures treated with CsA, but not that treated with arctigenin. Arctigenin also suppressed the

  10. Cyclosporin A inhibits nucleotide excision repair via downregulation of the xeroderma pigmentosum group A and G proteins, which is mediated by calcineurin inhibition.

    Science.gov (United States)

    Kuschal, Christiane; Thoms, Kai-Martin; Boeckmann, Lars; Laspe, Petra; Apel, Antje; Schön, Michael P; Emmert, Steffen

    2011-10-01

    Cyclosporin A (CsA) inhibits nucleotide excision repair (NER) in human cells, a process that contributes to the skin cancer proneness in organ transplant patients. We investigated the mechanisms of CsA-induced NER reduction by assessing all xeroderma pigmentosum (XP) genes (XPA-XPG). Western blot analyses revealed that XPA and XPG protein expression was reduced in normal human GM00637 fibroblasts exposed to 0.1 and 0.5 μm CsA. Interestingly, the CsA treatment reduced XPG, but not XPA, mRNA expression. Calcineurin knockdown in GM00637 fibroblasts using RNAi led to similar results suggesting that calcineurin-dependent signalling is involved in XPA and XPG protein regulation. CsA-induced reduction in NER could be complemented by the overexpression of either XPA or XPG protein. Likewise, XPA-deficient fibroblasts with stable overexpression of XPA (XP2OS-pCAH19WS) did not show the inhibitory effect of CsA on NER. In contrast, XPC-deficient fibroblasts overexpressing XPC showed CsA-reduced NER. Our data indicate that the CsA-induced inhibition of NER is a result of downregulation of XPA and XPG protein in a calcineurin-dependent manner. © 2011 John Wiley & Sons A/S.

  11. FKBP12-Dependent Inhibition of Calcineurin Mediates Immunosuppressive Antifungal Drug Action in Malassezia.

    Science.gov (United States)

    Ianiri, Giuseppe; Applen Clancey, Shelly; Lee, Soo Chan; Heitman, Joseph

    2017-10-24

    has adverse side effects and is not recommended for long treatment periods. Calcineurin inhibitors have been proposed as a suitable alternative to treat patients affected by skin lesions caused by Malassezia Although calcineurin inhibitors are well-known as immunosuppressive drugs, they are also characterized by potent antimicrobial activity. In the present study, we investigated the mechanism of action of FK506 (tacrolimus), ascomycin (FK520), and pimecrolimus in M. furfur and M. sympodialis and found that the conserved immunophilin FKBP12 is the target of these drugs with which it forms a complex that directly binds calcineurin and inhibits its signaling activity. We found that FKBP12 is also required for the additive activity of calcineurin inhibitors with fluconazole. Furthermore, the increasing natural occurrence in fungal pathogen populations of mutator strains poses a high risk for the rapid emergence of drug resistance and adaptation to host defense. This led us to generate an engineered hypermutator msh2 Δ mutant strain of M. sympodialis and genetically evaluate mutational events resulting in a substantially increased rate of resistance to FK506 compared to that of the wild type. Our study paves the way for the novel clinical use of calcineurin inhibitors with lower immunosuppressive activity that could be used clinically to treat a broad range of fungal infections, including skin disorders caused by Malassezia . Copyright © 2017 Ianiri et al.

  12. Arctigenin Inhibits Osteoclast Differentiation and Function by Suppressing Both Calcineurin-Dependent and Osteoblastic Cell-Dependent NFATc1 Pathways

    OpenAIRE

    Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki; Li, Feng; Kadota, Shigetoshi; Esumi, Hiroyasu; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2014-01-01

    Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblasti...

  13. Structure of Calmodulin Bound to a Calcineurin Peptide: A New Way of Making an Old Binding Mode

    International Nuclear Information System (INIS)

    Ye, Q.; Li, X.; Wong, A.; Wei, Q.; Jia, Z.

    2006-01-01

    Calcineurin is a calmodulin-binding protein in brain and the only serine/threonine protein phosphatase under the control of Ca 2+ /calmodulin (CaM), which plays a critical role in coupling Ca 2+ signals to cellular responses. CaM up-regulates the phosphatase activity of calcineurin by binding to the CaM-binding domain (CBD) of calcineurin subunit A. Here, we report crystal structural studies of CaM bound to a CBD peptide. The chimeric protein containing CaM and the CBD peptide forms an intimate homodimer, in which CaM displays a native-like extended conformation and the CBD peptide shows -helical structure. Unexpectedly, the N-terminal lobe from one CaM and the C-terminal lobe from the second molecule form a combined binding site to trap the peptide. Thus, the dimer provides two binding sites, each of which is reminiscent of the fully collapsed conformation of CaM commonly observed in complex with, for example, the myosin light chain kinase (MLCK) peptide. The interaction between the peptide and CaM is highly specific and similar to MLCK

  14. [Kinetic study on inhibition effects of dansyl-L-phenylalanine and L-phenylalanine on calf intestinal alkaline phosphatase].

    Science.gov (United States)

    Li, Li-Na; Wu, Yu-Qing; Buchet, René

    2009-10-01

    To evaluate the inhibition effect of dansyl-L-phenylalanine on calf intestinal alkaline phosphatase (CIAP), UV-Vis spectrophotometric method was employed. It was found that dansyl-L-phenylalanine can selectively inhibit CIAP. The kinetic inhibition processes of dansyl-L-phenylalanine and L-phenylalanine were comparatively studied. The authors' finding elucidates that at the optimized alkaline pH of alkaline phosphatase (pH 10.4) and 37 degrees C, dansyl-L-phenylalanine can inhibit alkaline phosphatase activity of CIAP efficiently and specifically, similar as L-phenylalanine. Both inhibition types were uncompetitive inhibition resulting from the double reciprocal curve fitting of upsilon versus substrate concentrations, and the inhibition constants Ki of both inhibitors were determined to be 2.3 and 1.1 mmol L(-1) respectively, both of which were at millimolar level. The investigation of the inhibition effect of dansyl modified L-phenylalanine on calf intestinal alkaline phosphatase not only helped get insight into the detailed inhibition mechanism of L-phenylalanine on tissue specific alkaline phosphatase, such as in the case of intestinal alkaline phosphatase, but also provided the possibility to employ fluorescence spectroscopy by labeling the specific inhibitors of alkaline phosphatase with chromophoric groups.

  15. Oral voclosporin: novel calcineurin inhibitor for treatment of noninfectious uveitis

    Directory of Open Access Journals (Sweden)

    Roesel M

    2011-09-01

    Full Text Available Martin Roesel1, Christoph Tappeiner2, Arnd Heiligenhaus1,3, Carsten Heinz1,31Department of Ophthalmology, St Franziskus-Hospital, Muenster, Germany; 2Department of Ophthalmology, Inselspital, University of Bern, Switzerland; 3University Duisburg-Essen, GermanyAbstract: Voclosporin, a novel immunomodulatory drug inhibiting the calcineurin enzyme, was developed to prevent organ graft rejection and to treat autoimmune diseases. The chemical structure of voclosporin is similar to that of cyclosporine A, with a difference in one amino acid, leading to superior calcineurin inhibition and less variability in plasma concentration. Compared with placebo, voclosporin may significantly reduce inflammation and prevent recurrences of inflammation in patients with noninfectious uveitis. Future studies have to show if these advantages are accompanied by greater clinical efficacy and fewer side effects compared with the classic calcineurin inhibitors.Keywords: uveitis, immunosuppression, voclosporin

  16. Hcm1 integrates signals from Cdk1 and calcineurin to control cell proliferation.

    Science.gov (United States)

    Arsenault, Heather E; Roy, Jagoree; Mapa, Claudine E; Cyert, Martha S; Benanti, Jennifer A

    2015-10-15

    Cyclin-dependent kinase (Cdk1) orchestrates progression through the cell cycle by coordinating the activities of cell-cycle regulators. Although phosphatases that oppose Cdk1 are likely to be necessary to establish dynamic phosphorylation, specific phosphatases that target most Cdk1 substrates have not been identified. In budding yeast, the transcription factor Hcm1 activates expression of genes that regulate chromosome segregation and is critical for maintaining genome stability. Previously we found that Hcm1 activity and degradation are stimulated by Cdk1 phosphorylation of distinct clusters of sites. Here we show that, upon exposure to environmental stress, the phosphatase calcineurin inhibits Hcm1 by specifically removing activating phosphorylations and that this regulation is important for cells to delay proliferation when they encounter stress. Our work identifies a mechanism by which proliferative signals from Cdk1 are removed in response to stress and suggests that Hcm1 functions as a rheostat that integrates stimulatory and inhibitory signals to control cell proliferation. © 2015 Arsenault, Roy, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Nan P.; LaMarche, Matthew J.; Chan, Ho Man; Fekkes, Peter; Garcia-Fortanet, Jorge; Acker, Michael G.; Antonakos, Brandon; Chen, Christine Hiu-Tung; Chen, Zhouliang; Cooke, Vesselina G.; Dobson, Jason R.; Deng, Zhan; Fei, Feng; Firestone, Brant; Fodor, Michelle; Fridrich, Cary; Gao, Hui; Grunenfelder, Denise; Hao, Huai-Xiang; Jacob, Jaison; Ho, Samuel; Hsiao, Kathy; Kang, Zhao B.; Karki, Rajesh; Kato, Mitsunori; Larrow, Jay; La Bonte, Laura R.; Lenoir, Francois; Liu, Gang; Liu, Shumei; Majumdar, Dyuti; Meyer, Matthew J.; Palermo, Mark; Perez, Lawrence; Pu, Minying; Price, Edmund; Quinn, Christopher; Shakya, Subarna; Shultz, Michael D.; Slisz, Joanna; Venkatesan, Kavitha; Wang, Ping; Warmuth, Markus; Williams, Sarah; Yang, Guizhi; Yuan, Jing; Zhang, Ji-Hu; Zhu, Ping; Ramsey, Timothy; Keen, Nicholas J.; Sellers, William R.; Stams, Travis; Fortin , Pascal D. (Novartis)

    2016-06-29

    The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase1. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma1, 2, 3, 4, 5. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway2, 3. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways6, 7. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy8, 9. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.

  18. Transgenic overexpression of active calcineurin in beta-cells results in decreased beta-cell mass and hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Ernesto Bernal-Mizrachi

    2010-08-01

    Full Text Available Glucose modulates beta-cell mass and function through an initial depolarization and Ca(2+ influx, which then triggers a number of growth regulating signaling pathways. One of the most important downstream effectors in Ca(2+ signaling is the calcium/Calmodulin activated serine threonine phosphatase, calcineurin. Recent evidence suggests that calcineurin/NFAT is essential for beta-cell proliferation, and that in its absence loss of beta-cells results in diabetes. We hypothesized that in contrast, activation of calcineurin might result in expansion of beta-cell mass and resistance to diabetes.To determine the role of activation of calcineurin signaling in the regulation of pancreatic beta-cell mass and proliferation, we created mice that expressed a constitutively active form of calcineurin under the insulin gene promoter (caCn(RIP. To our surprise, these mice exhibited glucose intolerance. In vitro studies demonstrated that while the second phase of Insulin secretion is enhanced, the overall insulin secretory response was conserved. Islet morphometric studies demonstrated decreased beta-cell mass suggesting that this was a major component responsible for altered Insulin secretion and glucose intolerance in caCn(RIP mice. The reduced beta-cell mass was accompanied by decreased proliferation and enhanced apoptosis.Our studies identify calcineurin as an important factor in controlling glucose homeostasis and indicate that chronic depolarization leading to increased calcineurin activity may contribute, along with other genetic and environmental factors, to beta-cell dysfunction and diabetes.

  19. Extinction of aversive taste memory homeostatically prevents the maintenance of in vivo insular cortex LTP: Calcineurin participation.

    Science.gov (United States)

    Rivera-Olvera, Alejandro; Nelson-Mora, Janikua; Gonsebatt, María E; Escobar, Martha L

    2018-04-06

    Accumulating evidence indicates that homeostatic plasticity mechanisms dynamically adjust synaptic strength to promote stability that is crucial for memory storage. Our previous studies have shown that prior training in conditioned taste aversion (CTA) prevents the subsequent induction of long-term potentiation (LTP) in the projection from the basolateral nucleus of the amygdala (Bla) to the insular cortex (IC) in vivo. We have also reported that induction of LTP in the Bla-IC pathway modifies the CTA extinction. Memoryextinction involves the formation of a new associativememorythat inhibits a previously conditioned association. The aim of the present study was to analyze the effect of CTA extinction on the ability to induce subsequent LTP in the Bla-IC projection in vivo. Thus, 48 h after CTA extinction animals received high frequency stimulation in order to induce IC-LTP. Our results show that extinction training allows the induction but not the maintenance of IC-LTP. In addition, with the purpose of exploring part of the mechanisms involved in this process and since a body of evidence suggests that protein phosphatase calcineurin (CaN) is involved in the extinction of some behavioral tasks, we analyzed the participation of this phosphatase. The present results show that extinction training increases the CaN expression in the IC, as well as that the inhibition of this phosphatase reverts the effects of the CTA-extinction on the IC-LTP. These findings reveal that CTA extinction promotes a homeostatic regulation of subsequent IC synaptic plasticity maintenance through increases in CaN levels. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Role of calmodulin and calcineurin in regulating flagellar motility and wave polarity in Leishmania.

    Science.gov (United States)

    Mukhopadhyay, Aakash Gautam; Dey, Chinmoy Sankar

    2017-11-01

    We have previously reported the involvement of cyclic AMP in regulating flagellar waveforms in Leishmania. Here, we investigated the roles of calcium, calmodulin, and calcineurin in flagellar motility regulation in L. donovani. Using high-speed videomicroscopy, we show that calcium-independent calmodulin and calcineurin activity is necessary for motility in Leishmania. Inhibition of calmodulin and calcineurin induced ciliary beats interrupting flagellar beating in both live (in vivo) and ATP-reactivated (in vitro) parasites. Our results indicate that signaling mediated by calmodulin and calcineurin operates antagonistically to cAMP signaling in regulating the waveforms of Leishmania flagellum. These two pathways are possibly involved in maintaining the balance between the two waveforms, essential for responding to environmental cues, survival, and infectivity.

  1. T-plastin expression downstream to the calcineurin/NFAT pathway is involved in keratinocyte migration.

    Directory of Open Access Journals (Sweden)

    Cécilia Brun

    Full Text Available Cutaneous wound healing requires keratinocyte proliferation, migration and differentiation to restore the barrier function of the skin. The calcineurin/nuclear factor of activated-T-cell (NFAT signaling pathway has been recently shown to be involved in keratinocyte growth, differentiation and migration. It is induced by an increased intracellular calcium rate and its inhibition results in decreased capacities of keratinocytes to migrate. Nevertheless, the link between calcineurin activation and keratinocyte migration remains unknown. Recently, Orai1, a pore subunit of a store-operated calcium channel that favors calcium influx, was shown to play a critical role to control proliferation and migration of basal keratinocytes. Of interest, the actin-bundling T-plastin is crucial in cell motility through cross-linking to actin filament and its synthesis was shown to be induced by calcium influx and regulated by the calcineurin/NFAT pathway in tumor Sezary cells. We investigated herein the role of the calcineurin/NFAT pathway-dependent T-plastin in keratinocyte migration, by quantifying T-plastin expression in keratinocytes and by analyzing their migration under calcineurin inhibition or knockdown of NFAT2 or T-plastin. We did confirm the role of the calcineurin/NFAT pathway in keratinocyte migration as shown by their decreased capacities to migrate after FK506 treatment or siNFAT2 transfection in both scratching and Boyden assays. The expression of NFAT2 and T-plastin in keratinocytes was decreased under FK506 treatment, suggesting that T-plastin plays a role in keratinocyte migration downstream to the calcineurin/NFAT pathway. Accordingly, siRNA knockdown of T-plastin expression also decreased their migration capacities. Actin lamellipodia formation as well as FAK and β6-integrin expression were also significantly decreased after treatment with FK506 or siRNA, reinforcing that NFAT2-dependent T-plastin expression plays a role in keratinocyte

  2. Pituitary adenylate cyclase activating polypeptide (PACAP signalling exerts chondrogenesis promoting and protecting effects: implication of calcineurin as a downstream target.

    Directory of Open Access Journals (Sweden)

    Tamás Juhász

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is an important neurotrophic factor influencing differentiation of neuronal elements and exerting protecting role during traumatic injuries or inflammatory processes of the central nervous system. Although increasing evidence is available on its presence and protecting function in various peripheral tissues, little is known about the role of PACAP in formation of skeletal components. To this end, we aimed to map elements of PACAP signalling in developing cartilage under physiological conditions and during oxidative stress. mRNAs of PACAP and its receptors (PAC1,VPAC1, VPAC2 were detectable during differentiation of chicken limb bud-derived chondrogenic cells in micromass cell cultures. Expression of PAC1 protein showed a peak on days of final commitment of chondrogenic cells. Administration of either the PAC1 receptor agonist PACAP 1-38, or PACAP 6-38 that is generally used as a PAC1 antagonist, augmented cartilage formation, stimulated cell proliferation and enhanced PAC1 and Sox9 protein expression. Both variants of PACAP elevated the protein expression and activity of the Ca-calmodulin dependent Ser/Thr protein phosphatase calcineurin. Application of PACAPs failed to rescue cartilage formation when the activity of calcineurin was pharmacologically inhibited with cyclosporine A. Moreover, exogenous PACAPs prevented diminishing of cartilage formation and decrease of calcineurin activity during oxidative stress. As an unexpected phenomenon, PACAP 6-38 elicited similar effects to those of PACAP 1-38, although to a different extent. On the basis of the above results, we propose calcineurin as a downstream target of PACAP signalling in differentiating chondrocytes either in normal or pathophysiological conditions. Our observations imply the therapeutical perspective that PACAP can be applied as a natural agent that may have protecting effect during joint inflammation and/or may promote

  3. Effects of SOV-induced phosphatase inhibition and expression of protein tyrosine phosphatases in rat corneal endothelial cells.

    Science.gov (United States)

    Chen, Wei-Li; Harris, Deshea L; Joyce, Nancy C

    2005-11-01

    Contact inhibition is an important mechanism for maintaining corneal endothelium in a non-replicative state. Protein tyrosine phosphatases (PTPs) play a role in regulating the integrity of cell-cell contacts, differentiation, and growth. In this study, we aimed to evaluate whether phosphatases are involved in the maintenance of contact-dependent inhibition of proliferation in corneal endothelial cells and to identify candidate PTPs that are expressed in these cells and might be involved in regulation of contact inhibition. Confluent cultures of rat corneal endothelial cells or endothelium in ex vivo corneas were treated with the general phosphatase inhibitor, sodium orthovanadate (SOV). Immunocytochemistry (ICC) evaluated the effect of SOV on cell-cell contacts by staining for ZO-1, and on cell cycle progression by staining for Ki67. Transverse sections of rat cornea and cultured rat corneal endothelial cells were used to test for expression of the candidate PTPs: PTP-mu, PTP-LAR, PTP1B, SHP-1, SHP-2, and PTEN using ICC and either Western blots or RT-PCR. ZO-1 staining demonstrated that SOV induced a time-dependent release of cell-cell contacts in confluent cultures of corneal endothelial cells and in the endothelium of ex vivo corneas. Staining for Ki67 indicated that SOV promoted limited cell cycle progression in the absence of serum. PTP-mu, PTP1B, SHP-1, SHP-2, and PTEN, but not PTP-LAR, were expressed in rat corneal endothelial cells in situ and in culture. The subcellular location of PTP-mu and PTP1B differed in subconfluent and confluent cells, while that of SHP-1, SHP-2, and PTEN was similar, regardless of confluent status. Western blots confirmed the expression of PTP1B, SHP-1, SHP-2, and PTEN. RT-PCR confirmed expression of PTP-mu mRNA. Phosphatases are involved in regulation of junctional integrity and of cell proliferation in corneal endothelial cells. PTP-mu, PTP1B, SHP-1, SHP-2, and PTEN are expressed in rat corneal endothelium and may be involved in

  4. FKBP12-Dependent Inhibition of Calcineurin Mediates Immunosuppressive Antifungal Drug Action in Malassezia

    Directory of Open Access Journals (Sweden)

    Giuseppe Ianiri

    2017-10-01

    Full Text Available The genus Malassezia includes yeasts that are commonly found on the skin or hair of animals and humans as commensals and are associated with a number of skin disorders. We have previously developed an Agrobacterium tumefaciens transformation system effective for both targeted gene deletion and insertional mutagenesis in Malassezia furfur and M. sympodialis. In the present study, these molecular resources were applied to characterize the immunophilin FKBP12 as the target of tacrolimus (FK506, ascomycin, and pimecrolimus, which are calcineurin inhibitors that are used as alternatives to corticosteroids in the treatment of inflammatory skin disorders such as those associated with Malassezia species. While M. furfur and M. sympodialis showed in vitro sensitivity to these agents, fkb1Δ mutants displayed full resistance to all three of them, confirming that FKBP12 is the target of these calcineurin inhibitors and is essential for their activity. We found that calcineurin inhibitors act additively with fluconazole through an FKBP12-dependent mechanism. Spontaneous M. sympodialis isolates resistant to calcineurin inhibitors had mutations in the gene encoding FKBP12 in regions predicted to affect the interactions between FKBP12 and FK506 based on structural modeling. Due to the presence of homopolymer nucleotide repeats in the gene encoding FKBP12, an msh2Δ hypermutator of M. sympodialis was engineered and exhibited an increase of more than 20-fold in the rate of emergence of resistance to FK506 compared to that of the wild-type strain, with the majority of the mutations found in these repeats.

  5. The phosphatase inhibitor menadione (vitamin K3) protects cells from EGFR inhibition by erlotinib and cetuximab.

    Science.gov (United States)

    Perez-Soler, Roman; Zou, Yiyu; Li, Tianhong; Ling, Yi He

    2011-11-01

    Skin toxicity is the main side effect of epidermal growth factor receptor (EGFR) inhibitors, often leading to dose reduction or discontinuation. We hypothesized that phosphatase inhibition in the skin keratinocytes may prevent receptor dephosphorylation caused by EGFR inhibitors and be used as a new potential strategy for the prevention or treatment of this side effect. Menadione (Vitamin K3) was used as the prototype compound to test our hypothesis. HaCat human skin keratinocyte cells and A431 human squamous carcinoma cells were used. EGFR inhibition was measured by Western blotting and immunofluorescence. Phosphatase inhibition and reactive oxygen species (ROS) generation were measured by standard ELISA and fluorescence assays. Menadione caused significant and reversible EGFR activation in a dose-dependent manner starting at nontoxic concentrations. EGFR activation by menadione was associated with reversible protein tyrosine phosphatase inhibition, which seemed to be mediated by ROS generation as exposure to antioxidants prevented both menadione-induced ROS generation and phosphatase inhibition. Short-term coincubation of cells with nontoxic concentrations of menadione and the EGFR inhibitors erlotinib or cetuximab prevented EGFR dephosphorylation. Seventy-two-hour coincubation of cells with the highest nontoxic concentration of menadione and erlotinib provided for a fourfold cell growth inhibitory protection in HaCat human keratinocyte cells. Menadione at nontoxic concentrations causes EGFR activation and prevents EGFR dephosphorylation by erlotinib and cetuximab. This effect seems to be mediated by ROS generation and secondary phosphatase inhibition. Mild oxidative stress in skin keratinocytes by topical menadione may protect the skin from the toxicity secondary to EGFR inhibitors without causing cytotoxicity. ©2011 AACR

  6. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin.

    Directory of Open Access Journals (Sweden)

    Sheena D Singh

    2009-07-01

    Full Text Available Candida albicans is the leading fungal pathogen of humans, causing life-threatening disease in immunocompromised individuals. Treatment of candidiasis is hampered by the limited number of antifungal drugs whose efficacy is compromised by host toxicity, fungistatic activity, and the emergence of drug resistance. We previously established that the molecular chaperone Hsp90, which regulates the form and function of diverse client proteins, potentiates resistance to the azoles in C. albicans and in the model yeast Saccharomyces cerevisiae. Genetic studies in S. cerevisiae revealed that Hsp90's role in azole resistance is to enable crucial cellular responses to the membrane stress exerted by azoles via the client protein calcineurin. Here, we demonstrate that Hsp90 governs cellular circuitry required for resistance to the only new class of antifungals to reach the clinic in decades, the echinocandins, which inhibit biosynthesis of a critical component of the fungal cell wall. Pharmacological or genetic impairment of Hsp90 function reduced tolerance of C. albicans laboratory strains and resistance of clinical isolates to the echinocandins and created a fungicidal combination. Compromising calcineurin function phenocopied compromising Hsp90 function. We established that calcineurin is an Hsp90 client protein in C. albicans: reciprocal co-immunoprecipitation validated physical interaction; Hsp90 inhibition blocked calcineurin activation; and calcineurin levels were depleted upon genetic reduction of Hsp90. The downstream effector of calcineurin, Crz1, played a partial role in mediating calcineurin-dependent stress responses activated by echinocandins. Hsp90's role in echinocandin resistance has therapeutic potential given that genetic compromise of C. albicans HSP90 expression enhanced the efficacy of an echinocandin in a murine model of disseminated candidiasis. Our results identify the first Hsp90 client protein in C. albicans, establish an entirely

  7. The neuropeptide catestatin promotes vascular smooth muscle cell proliferation through the Ca{sup 2+}-calcineurin-NFAT signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaoxia [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China); Zhou, Chunyan, E-mail: chunyanzhou@bjmu.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Sun, Ningling, E-mail: nlsun@263.net [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China)

    2011-04-22

    Highlights: {yields} Catestatin stimulates proliferation of vascular smooth muscle cells in a dose-dependent manner. {yields} Catestatin provokes sustained increase in intracellular Ca{sup 2+}. {yields} Catestatin produces increased activation of calcineurin and promotes NFATc1 translocation into the nucleus. -- Abstract: The Chromogranin A-derived neuropeptide catestatin is an endogenous nicotinic cholinergic antagonist that acts as a pleiotropic hormone. Since catestatin shares several functions with other members derived from the chromogranin/secretogranin protein family and other neuropeptides which exert proliferative effects on vascular smooth muscle cells (VSMCs), we therefore hypothesized that catestatin would regulate VSMC proliferation. The present study demonstrates that catestatin caused a dose-dependent induction of proliferation in rat aortic smooth muscle cells and furthermore evoked a sustained increase in intracellular calcium. This subsequently leaded to enhanced activation of the Ca{sup 2+}/calmodulin-dependent phosphatase, calcineurin and resulted in an activation of the Ca{sup 2+}-dependent transcription factor, nuclear factor of activated T cells (NFAT), initiating transcription of proliferative genes. In addition, cyclosporin A (CsA), a potent inhibitor of calcineurin, abrogated catestatin-mediated effect on VSMCs, indicating that the calcineurin-NFAT signaling is strongly required for catestatin-induced growth of VSMCs. The present study establishes catestatin as a novel proliferative cytokine on vascular smooth muscle cells and this effect is mediated by the Ca{sup 2+}-calcineurin-NFAT signaling pathway.

  8. Activation of the Ca2+/calcineurin/NFAT2 pathway controls smooth muscle cell differentiation

    International Nuclear Information System (INIS)

    Larrieu, Daniel; Thiebaud, Pierre; Duplaa, Cecile; Sibon, Igor; Theze, Nadine; Lamaziere, Jean-Marie Daniel

    2005-01-01

    Cellular mechanisms controlling smooth muscle cells (SMCs) phenotypic modulation are largely unknown. Intracellular Ca 2+ movements are essential to ensure SMC functions; one of the roles of Ca 2+ is to regulate calcineurin, which in turn induces nuclear localization of the nuclear factor of activated T-cell (NFAT). In order to investigate, during phenotypic differentiation of SMCs, the effect of calcineurin inhibition on NFAT 2 nuclear translocation, we used a culture model of SMC differentiation in serum-free conditions. We show that the treatment of cultured SMC with the calcineurin inhibitor cyclosporine A induced their dedifferentiation while preventing their differentiation. These findings suggest that nuclear translocation of NFAT 2 is dependent of calcineurin activity during the in vitro SMC differentiation kinetic and that the nuclear presence of NFAT 2 is critical in the acquisition and maintenance of SMC differentiation

  9. Calcineurin /NFAT activation-dependence of leptin synthesis and vascular growth in response to mechanical stretch

    Directory of Open Access Journals (Sweden)

    Nadia Soudani

    2016-09-01

    Full Text Available Background and Aims- Hypertension and obesity are important risk factors of cardiovascular disease. They are both associated with high leptin levels and have been shown to promote vascular hypertrophy, through the RhoA/ROCK and ERK1/2 phosphorylation. Calcineurin/NFAT activation also induces vascular hypertrophy by upregulating various genes. This study aimed to decipher whether a crosstalk exists between the RhoA/ROCK pathway, Ca+2/calcineurin/NFAT pathway, and ERK1/2 phosphorylation in the process of mechanical stretch-induced vascular smooth muscle cell (VSMC hypertrophy and leptin synthesis. Methods and Results- Rat portal vein (RPV organ culture was used to investigate the effect of mechanical stretch and exogenous leptin (3.1 nM on VSMC hypertrophy and leptin synthesis. Results showed that stretching the RPV significantly upregulated leptin secretion, mRNA and protein expression, which were inhibited by the calcium channel blocker nifedipine (10 μM, the selective calcineurin inhibitor FK506 (1 nM and the ERK1/2 inhibitor PD98059 (1 μM. The transcription inhibitor actinomycin D (0.1M and the translation inhibitor cycloheximide (1 mM significantly decreased stretch-induced leptin protein expression. Mechanical stretch or leptin caused an increase in wet weight changes and protein synthesis, considered as hypertrophic markers, while they were inhibited by FK506 (0.1 nM; 1 nM. In addition, stretch or exogenous leptin significantly increased calcineurin activity and MCIP1 expression whereas leptin induced NFAT nuclear translocation in VSMCs. Moreover, in response to stretch or exogenous leptin, the Rho inhibitor C3 exoenzyme (30 ng/mL, the ROCK inhibitor Y-27632 (10 μM, and the actin depolymerization agents Latrunculin B (50 nM and cytochalasin D (1 μM reduced calcineurin activation and NFAT nuclear translocation. ERK1/2 phosphorylation was inhibited by FK506 and C3. Conclusions- Mechanical stretch-induced VSMC hypertrophy and leptin

  10. CAMKII and calcineurin regulate the lifespan of Caenorhabditis elegans through the FOXO transcription factor DAF-16.

    Science.gov (United States)

    Tao, Li; Xie, Qi; Ding, Yue-He; Li, Shang-Tong; Peng, Shengyi; Zhang, Yan-Ping; Tan, Dan; Yuan, Zengqiang; Dong, Meng-Qiu

    2013-06-25

    The insulin-like signaling pathway maintains a relatively short wild-type lifespan in Caenorhabditis elegans by phosphorylating and inactivating DAF-16, the ortholog of the FOXO transcription factors of mammalian cells. DAF-16 is phosphorylated by the AKT kinases, preventing its nuclear translocation. Calcineurin (PP2B phosphatase) also limits the lifespan of C. elegans, but the mechanism through which it does so is unknown. Herein, we show that TAX-6•CNB-1 and UNC-43, the C. elegans Calcineurin and Ca(2+)/calmodulin-dependent kinase type II (CAMKII) orthologs, respectively, also regulate lifespan through DAF-16. Moreover, UNC-43 regulates DAF-16 in response to various stress conditions, including starvation, heat or oxidative stress, and cooperatively contributes to lifespan regulation by insulin signaling. However, unlike insulin signaling, UNC-43 phosphorylates and activates DAF-16, thus promoting its nuclear localization. The phosphorylation of DAF-16 at S286 by UNC-43 is removed by TAX-6•CNB-1, leading to DAF-16 inactivation. Mammalian FOXO3 is also regulated by CAMKIIA and Calcineurin. DOI:http://dx.doi.org/10.7554/eLife.00518.001.

  11. Calcineurin Dysregulation Underlies Spinal Cord Injury-Induced K+ Channel Dysfunction in DRG Neurons.

    Science.gov (United States)

    Zemel, Benjamin M; Muqeem, Tanziyah; Brown, Eric V; Goulão, Miguel; Urban, Mark W; Tymanskyj, Stephen R; Lepore, Angelo C; Covarrubias, Manuel

    2017-08-23

    Dysfunction of the fast-inactivating Kv3.4 potassium current in dorsal root ganglion (DRG) neurons contributes to the hyperexcitability associated with persistent pain induced by spinal cord injury (SCI). However, the underlying mechanism is not known. In light of our previous work demonstrating modulation of the Kv3.4 channel by phosphorylation, we investigated the role of the phosphatase calcineurin (CaN) using electrophysiological, molecular, and imaging approaches in adult female Sprague Dawley rats. Pharmacological inhibition of CaN in small-diameter DRG neurons slowed repolarization of the somatic action potential (AP) and attenuated the Kv3.4 current. Attenuated Kv3.4 currents also exhibited slowed inactivation. We observed similar effects on the recombinant Kv3.4 channel heterologously expressed in Chinese hamster ovary cells, supporting our findings in DRG neurons. Elucidating the molecular basis of these effects, mutation of four previously characterized serines within the Kv3.4 N-terminal inactivation domain eliminated the effects of CaN inhibition on the Kv3.4 current. SCI similarly induced concurrent Kv3.4 current attenuation and slowing of inactivation. Although there was little change in CaN expression and localization after injury, SCI induced upregulation of the native regulator of CaN 1 (RCAN1) in the DRG at the transcript and protein levels. Consistent with CaN inhibition resulting from RCAN1 upregulation, overexpression of RCAN1 in naive DRG neurons recapitulated the effects of pharmacological CaN inhibition on the Kv3.4 current and the AP. Overall, these results demonstrate a novel regulatory pathway that links CaN, RCAN1, and Kv3.4 in DRG neurons. Dysregulation of this pathway might underlie a peripheral mechanism of pain sensitization induced by SCI. SIGNIFICANCE STATEMENT Pain sensitization associated with spinal cord injury (SCI) involves poorly understood maladaptive modulation of neuronal excitability. Although central mechanisms have

  12. Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides.

    Science.gov (United States)

    Lee, Soo Chan; Li, Alicia; Calo, Silvia; Inoue, Makoto; Tonthat, Nam K; Bain, Judith M; Louw, Johanna; Shinohara, Mari L; Erwig, Lars P; Schumacher, Maria A; Ko, Dennis C; Heitman, Joseph

    2015-09-01

    Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi. © 2015 John Wiley & Sons Ltd.

  13. Calcineurin Targets Involved in Stress Survival and Fungal Virulence.

    Directory of Open Access Journals (Sweden)

    Hee-Soo Park

    2016-09-01

    Full Text Available Calcineurin governs stress survival, sexual differentiation, and virulence of the human fungal pathogen Cryptococcus neoformans. Calcineurin is activated by increased Ca2+ levels caused by stress, and transduces signals by dephosphorylating protein substrates. Herein, we identified and characterized calcineurin substrates in C. neoformans by employing phosphoproteomic TiO2 enrichment and quantitative mass spectrometry. The identified targets include the transactivator Crz1 as well as novel substrates whose functions are linked to P-bodies/stress granules (PBs/SGs and mRNA translation and decay, such as Pbp1 and Puf4. We show that Crz1 is a bona fide calcineurin substrate, and Crz1 localization and transcriptional activity are controlled by calcineurin. We previously demonstrated that thermal and other stresses trigger calcineurin localization to PBs/SGs. Several calcineurin targets localized to PBs/SGs, including Puf4 and Pbp1, contribute to stress resistance and virulence individually or in conjunction with Crz1. Moreover, Pbp1 is also required for sexual development. Genetic epistasis analysis revealed that Crz1 and the novel targets Lhp1, Puf4, and Pbp1 function in a branched calcineurin pathway that orchestrates stress survival and virulence. These findings support a model whereby calcineurin controls stress and virulence, at the transcriptional level via Crz1, and post-transcriptionally by localizing to PBs/SGs and acting on targets involved in mRNA metabolism. The calcineurin targets identified in this study share little overlap with known calcineurin substrates, with the exception of Crz1. In particular, the mRNA binding proteins and PBs/SGs residents comprise a cohort of novel calcineurin targets that have not been previously linked to calcineurin in mammals or in Saccharomyces cerevisiae. This study suggests either extensive evolutionary rewiring of the calcineurin pathway, or alternatively that these novel calcineurin targets have yet

  14. CNP-1 (ARRD-17), a novel substrate of calcineurin, is critical for modulation of egg-laying and locomotion in response to food and lysine sensation in Caenorhabditis elegans.

    Science.gov (United States)

    Jee, Changhoon; Choi, Tae-Woo; Kalichamy, Karunambigai; Yee, Jong Zin; Song, Hyun-Ok; Ji, Yon Ju; Lee, Jungsoo; Lee, Jin Il; L'Etoile, Noelle D; Ahnn, Joohong; Lee, Sun-Kyung

    2012-03-30

    Calcineurin is a Ca(2+)/calmodulin-dependent protein phosphatase involved in calcium signaling pathways. In Caenorhabditis elegans, the loss of calcineurin activity causes pleiotropic defects including hyperadaptation of sensory neurons, hypersensation to thermal difference and hyper-egg-laying when worms are refed after starvation. In this study, we report on arrd-17 as calcineurin-interacting protein-1 (cnp-1), which is a novel molecular target of calcineurin. CNP-1 interacts with the catalytic domain of the C. elegans calcineurin A subunit, TAX-6, in a yeast two-hybrid assay and is dephosphorylated by TAX-6 in vitro. cnp-1 is expressed in ASK, ADL, ASH and ASJ sensory neurons as TAX-6. It acts downstream of tax-6 in regulation of locomotion and egg-laying after starvation, ASH sensory neuron adaptation and lysine chemotaxis, that is known to be mediated by ASK neurons. Altogether, our biochemical and genetic evidence indicates that CNP-1 is a direct target of calcineurin and required in stimulated egg-laying and locomotion after starvation, adaptation to hyperosmolarity and attraction to lysine, which is modulated by calcineurin. We suggest that the phosphorylation status of CNP-1 plays an important role in regulation of refed stimulating behaviors after starvation and attraction to amino acid, which provides valuable nutritious information. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Functional characterization of calcineurin homologs PsCNA1/PsCNB1 in Puccinia striiformis f. sp. tritici using a host-induced RNAi system.

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    Full Text Available Calcineurin plays a key role in morphogenesis, pathogenesis and drug resistance in most fungi. However, the function of calcineurin genes in Puccinia striiformis f. sp. tritici (Pst is unclear. We identified and characterized the calcineurin genes PsCNA1 and PsCNB1 in Pst. Phylogenetic analyses indicate that PsCNA1 and PsCNB1 form a calcium/calmodulin regulated protein phosphatase belonging to the calcineurin heterodimers composed of subunits A and B. Quantitative RT-PCR analyses revealed that both PsCNA1 and PsCNB1 expression reached their maximum in the stage of haustorium formation, which is one day after inoculation. Using barely stripe mosaic virus (BSMV as a transient expression vector in wheat, the expression of PsCNA1 and PsCNB1 in Pst was suppressed, leading to slower extension of fungal hyphae and reduced production of urediospores. The immune-suppressive drugs cyclosporin A and FK506 markedly reduced the germination rates of urediospores, and when germination did occur, more than two germtubes were produced. These results suggest that the calcineurin signaling pathway participates in stripe rust morphogenetic differentiation, especially the formation of haustoria during the early stage of infection and during the production of urediospores. Therefore PsCNA1 and PsCNB1 can be considered important pathogenicity genes involved in the wheat-Pst interaction.

  16. Regulator of calcineurin 1 differentially regulates TLR-dependent MyD88 and TRIF signaling pathways.

    Directory of Open Access Journals (Sweden)

    Zheng Pang

    Full Text Available Toll-like receptors (TLRs recognize the conserved molecular patterns in microorganisms and trigger myeloid differentiation primary response 88 (MyD88 and/or TIR-domain-containing adapter-inducing interferon-β (TRIF pathways that are critical for host defense against microbial infection. However, the molecular mechanisms that govern TLR signaling remain incompletely understood. Regulator of calcineurin-1 (RCAN1, a small evolutionarily conserved protein that inhibits calcineurin phosphatase activity, suppresses inflammation during Pseudomonas aeruginosa infection. Here, we define the roles for RCAN1 in P. aeruginosa lipopolysaccharide (LPS-activated TLR4 signaling. We compared the effects of P. aeruginosa LPS challenge on bone marrow-derived macrophages from both wild-type and RCAN1-deficient mice and found that RCAN1 deficiency increased the MyD88-NF-κB-mediated cytokine production (IL-6, TNF and MIP-2, whereas TRIF-interferon-stimulated response elements (ISRE-mediated cytokine production (IFNβ, RANTES and IP-10 was suppressed. RCAN1 deficiency caused increased IκBα phosphorylation and NF-κB activity in the MyD88-dependent pathway, but impaired ISRE activation and reduced IRF7 expression in the TRIF-dependent pathway. Complementary studies of a mouse model of P. aeruginosa LPS-induced acute pneumonia confirmed that RCAN1-deficient mice displayed greatly enhanced NF-κB activity and MyD88-NF-κB-mediated cytokine production, which correlated with enhanced pulmonary infiltration of neutrophils. By contrast, RCAN1 deficiency had little effect on the TRIF pathway in vivo. These findings demonstrate a novel regulatory role of RCAN1 in TLR signaling, which differentially regulates MyD88 and TRIF pathways.

  17. Iron overload triggers mitochondrial fragmentation via calcineurin-sensitive signals in HT-22 hippocampal neuron cells

    International Nuclear Information System (INIS)

    Park, Junghyung; Lee, Dong Gil; Kim, Bokyung; Park, Sun-Ji; Kim, Jung-Hak; Lee, Sang-Rae; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2015-01-01

    Highlights: • FAC-induced iron overload promotes neuronal apoptosis. • Iron overload causes mitochondrial fragmentation in a Drp1-dependent manner. • Iron-induced Drp1 activation depends on dephosphorylation of Drp1(Ser637). • Calcineurin is a key regulator of Drp1-dependent mitochondrial fission by iron. - Abstract: The accumulation of iron in neurons has been proposed to contribute to the pathology of numerous neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. However, insufficient research has been conducted on the precise mechanism underlying iron toxicity in neurons. In this study, we investigated mitochondrial dynamics in hippocampal HT-22 neurons exposed to ferric ammonium citrate (FAC) as a model of iron overload and neurodegeneration. Incubation with 150 μM FAC for 48 h resulted in decreased cell viability and apoptotic death in HT-22 cells. The FAC-induced iron overload triggered mitochondrial fragmentation, which was accompanied by Drp1(Ser637) dephosphorylation. Iron chelation with deferoxamine prevented the FAC-induced mitochondrial fragmentation and apoptotic cell death by inhibiting Drp1(Ser637) dephosphorylation. In addition, a S637D mutation of Drp1, which resulted in a phosphorylation-mimetic form of Drp1 at Ser637, protected against the FAC-induced mitochondrial fragmentation and neuronal apoptosis. FK506 and cyclosporine A, inhibitors of calcineurin activation, determined that calcineurin was associated with the iron-induced changes in mitochondrial morphology and the phosphorylation levels of Drp1. These results indicate that the FAC-induced dephosphorylation of Drp1-dependent mitochondrial fragmentation was rescued by the inhibition of calcineurin activation. Therefore, these findings suggest that calcineurin-mediated phosphorylation of Drp1(Ser637) acts as a key regulator of neuronal cell loss by modulating mitochondrial dynamics in iron-induced toxicity. These results may contribute to the

  18. Angiotensin II induces calcium/calcineurin signaling and podocyte injury by downregulating microRNA-30 family members.

    Science.gov (United States)

    Zhao, Yue; Wu, Junnan; Zhang, Mingchao; Zhou, Minlin; Xu, Feng; Zhu, Xiaodong; Zhou, Xianguang; Lang, Yue; Yang, Fan; Yun, Shifeng; Shi, Shaolin; Liu, Zhihong

    2017-08-01

    Angiotensin II (AngII) is capable of inducing calcium/calcineurin signaling and podocyte injury; however, the precise underlying mechanism is not well understood. Because we have previously demonstrated that microRNA-30s (miR-30s) inhibit calcium/calcineurin signaling in podocytes, we hypothesize that AngII may induce podocyte injury by downregulating miR-30s and thereby activating calcium/calcineurin signaling. To test this hypothesis, we used an AngII-induced podocyte injury mouse model. The mice were treated with AngII via infusion for 28 days, which resulted in hypertension, albuminuria, and glomerular damage. AngII treatment also resulted in a significant reduction of miR-30s and upregulation of calcium/calcineurin signaling components, including TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3, which are the known targets of miR-30s in podocytes. The delivery of miR-30a-expressing lentivirus to the podocytes on day 14 of the infusion ameliorated the AngII-induced podocyte and glomerular injury and attenuated the upregulation of the calcium/calcineurin signaling components. Similarly, treatment with losartan, which is an AngII receptor blocker, also prevented AngII-induced podocyte injury and calcium/calcineurin signaling activation. Notably, losartan was found to sustain miR-30 levels during AngII treatment both in vivo and in vitro. In conclusion, the effect of AngII on podocytes is in part mediated by miR-30s through calcium/calcineurin signaling, a novel mechanism underlying AngII-induced podocyte injury. • AngII infusion resulted in downregulation of miR-30s in podocytes. • Exogenous miR-30a delivery mitigated the glomerular and podocyte injuries induced by AngII. • Both miR-30a and losartan prevented AngII-induced activation of calcium-calcineurin signaling.

  19. Dual-specificity phosphatase 3 deficiency or inhibition limits platelet activation and arterial thrombosis.

    Science.gov (United States)

    Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas D Y; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan W M; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad

    2015-02-17

    A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. A better understanding of the molecular mechanisms leading to platelet activation is important for the development of improved therapies. Recently, protein tyrosine phosphatases have emerged as critical regulators of platelet function. This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated by the collagen receptor glycoprotein VI and the C-type lectin-like receptor 2. DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism compared with wild-type mice and showed severely impaired thrombus formation on ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of phospholipase Cγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen- and C-type lectin-like receptor 2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. DUSP3 plays a selective and essential role in collagen- and C-type lectin-like receptor 2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a protein tyrosine phosphatase, implicated in platelet signaling, has been targeted with a small-molecule drug. © 2014 American Heart Association, Inc.

  20. Vanadyl complexes with dansyl-labelled di-picolinic acid ligands: synthesis, phosphatase inhibition activity and cellular uptake studies.

    Science.gov (United States)

    Collins, Juliet; Cilibrizzi, Agostino; Fedorova, Marina; Whyte, Gillian; Mak, Lok Hang; Guterman, Inna; Leatherbarrow, Robin; Woscholski, Rudiger; Vilar, Ramon

    2016-04-28

    Vanadium complexes have been previously utilised as potent inhibitors of cysteine based phosphatases (CBPs). Herein, we present the synthesis and characterisation of two new fluorescently labelled vanadyl complexes (14 and 15) with bridged di-picolinic acid ligands. These compounds differ significantly from previous vanadyl complexes with phosphatase inhibition properties in that the metal-chelating part is a single tetradentate unit, which should afford greater stability and scope for synthetic elaboration than the earlier complexes. These new complexes inhibit a selection of cysteine based phosphatases (CBPs) in the nM range with some selectivity. Fluorescence spectroscopic studies (including fluorescence anisotropy) were carried out to demonstrate that the complexes are not simply acting as vanadyl delivery vehicles but they interact with the proteins. Finally, we present preliminary fluorescence microscopy studies to demonstrate that the complexes are cell permeable and localise throughout the cytoplasm of NIH3T3 cells.

  1. Inhibition of hydrolytic enzymes by gold compounds. I. beta-Glucuronidase and acid phosphatase by sodium tetrachloroaurate (III) and potassium tetrabromoaurate (III).

    Science.gov (United States)

    Lee, M T; Ahmed, T; Friedman, M E

    1989-01-01

    Purified bovine liver beta-glucuronidase (beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32) and wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) were inhibited with freshly dissolved and 24 h aquated tetrahaloaurate (III) compounds. Rate and equilibrium inhibition constants were measured. From this data two acid phosphatases species were observed. Equilibrium inhibition constants ranged from 1 to 12.5 microM for the various gold compounds toward both enzymes. The first order rate constants ranged between 0.005 and 0.04 min.-1 for most reactions with the exception of the fast reacting acid phosphatase which had values as high as 2.6 and 2.8 min.-1. It is observed that the beta-glucuronidase is rapidly inhibited during the equilibrium phase before the more slower reaction covalent bond formation takes place. The acid phosphatases form the covalent bonds more rapidly, especially the faster reacting species suggesting a unique difference in the active site geometry to that of the more slowly reacting species. The tightly bonded gold (III)-enzyme complex is probably the reason for its toxicity and non-anti-inflammatory use as a drug.

  2. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang, E-mail: puthmzk@163.com

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  3. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    International Nuclear Information System (INIS)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang

    2015-01-01

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment

  4. Phosphotyrosine phosphatase and tyrosine kinase inhibition modulate airway pressure-induced lung injury.

    Science.gov (United States)

    Parker, J C; Ivey, C L; Tucker, A

    1998-11-01

    We determined whether drugs which modulate the state of protein tyrosine phosphorylation could alter the threshold for high airway pressure-induced microvascular injury in isolated perfused rat lungs. Lungs were ventilated for successive 30-min periods with peak inflation pressures (PIP) of 7, 20, 30, and 35 cmH2O followed by measurement of the capillary filtration coefficient (Kfc), a sensitive index of hydraulic conductance. In untreated control lungs, Kfc increased by 1.3- and 3.3-fold relative to baseline (7 cmH2O PIP) after ventilation with 30 and 35 cmH2O PIP. However, in lungs treated with 100 microM phenylarsine oxide (a phosphotyrosine phosphatase inhibitor), Kfc increased by 4.7- and 16.4-fold relative to baseline at these PIP values. In lungs treated with 50 microM genistein (a tyrosine kinase inhibitor), Kfc increased significantly only at 35 cmH2O PIP, and the three groups were significantly different from each other. Thus phosphotyrosine phosphatase inhibition increased the susceptibility of rat lungs to high-PIP injury, and tyrosine kinase inhibition attenuated the injury relative to the high-PIP control lungs.

  5. Lycopene inhibits regulator of calcineurin 1-mediated apoptosis by reducing oxidative stress and down-regulating Nucling in neuronal cells.

    Science.gov (United States)

    Lim, Seiyoung; Hwang, Sinwoo; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung

    2017-05-01

    Regulator of calcineurin 1 (RCAN1) is located on the Down syndrome critical region (DSCR) locus in human chromosome 21. Oxidative stress and overexpression of RCAN1 are implicated in neuronal impairment in Down's syndrome (DS) and Alzheimer's disease (AD). Serum level of lycopene, an antioxidant pigment, is low in DS and AD patients, which may be related to neuronal damage. The present study is to investigate whether lycopene inhibits apoptosis by reducing ROS levels, NF-κB activation, expression of the apoptosis regulator Nucling, cell viability, and indices of apoptosis (cytochrome c release, caspase-3 activation) in RCAN1-overexpressing neuronal cells. Cells transfected with either pcDNA or RCAN1 were treated with or without lycopene. Lycopene decreased intracellular and mitochondrial ROS levels, NF-κB activity, and Nucling expression while it reversed decrease in mitochondrial membrane potential, mitochondrial respiration, and glycolytic function in RCAN1-overexpressing cells. Lycopene inhibited cell death, DNA fragmentation, caspase-3 activation, and cytochrome c release in RCAN1-overexpressing cells. Lycopene inhibits RCAN1-mediated apoptosis by reducing ROS levels and by inhibiting NF-κB activation, Nucling induction, and the increase in apoptotic indices in neuronal cells. Consumption of lycopene-rich foods may prevent oxidative stress-associated neuronal damage in some pathologic conditions such as DS or AD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Calcineurin B in CD4+ T Cells Prevents Autoimmune Colitis by Negatively Regulating the JAK/STAT Pathway.

    Science.gov (United States)

    Mencarelli, Andrea; Vacca, Maurizio; Khameneh, Hanif Javanmard; Acerbi, Enzo; Tay, Alicia; Zolezzi, Francesca; Poidinger, Michael; Mortellaro, Alessandra

    2018-01-01

    Calcineurin (Cn) is a protein phosphatase that regulates the activation of the nuclear factor of activated T-cells (NFAT) family of transcription factors, which are key regulators of T-cell development and function. Here, we generated a conditional Cnb1 mouse model in which Cnb1 was specifically deleted in CD4 + T cells (Cnb1 CD4 mice) to delineate the role of the Cn-NFAT pathway in immune homeostasis of the intestine. The Cnb1 CD4 mice developed severe, spontaneous colitis characterized at the molecular level by an increased T helper-1-cell response but an unaltered regulatory T-cell compartment. Antibiotic treatment ameliorated the intestinal inflammation observed in Cnb1 CD4 mice, suggesting that the microbiota contributes to the onset of colitis. CD4 + T cells isolated from Cnb1 CD4 mice produced high levels of IFNγ due to increased activation of the JAK2/STAT4 pathway induced by IL-12. Our data highlight that Cn signaling in CD4 + T cells is critical for intestinal immune homeostasis in part by inhibiting IL-12 responsiveness of CD4 + T cells.

  7. Phosphatase activity of Poa pratensis seeds. III. Effect of fluoride, citrate, urea and other substances on the activity of acid phosphatase Ia2 and Ia3

    Directory of Open Access Journals (Sweden)

    Irena Lorenc-Kubis

    2015-01-01

    Full Text Available Effects of fluoride, citrate, urea and other substances on the activity of acid phosphatase a2 and a3 toward p-nitrophenylphosphate and phenylphosphate were investigated. Both enzymes were inhibited by fluoride, p-chloromercuribenzoate and oxalate. Fluoride inhibited acid phosphatase a2 noncorapetitively with p-mitrophenylphosphate, whereas acid phosphatase a3 showed inhibition of mixed type. Hydrolysis of phenylphosphate by both acid phosphatases was activated by citrate. Cytosine and uridine inhibited the activity of phosphatase a2 toward p-nitrophenylphosphate and phenylphosphate, but no effect was observed in case of acid phosphatase a3. After 30 min. incubation with 4 M urea both enzymes lost about 30% of activity.

  8. Phosphatase activity of Poa pratensis seeds. II. Purification and characterization of acid phosphatase Ia2 and Ia3

    Directory of Open Access Journals (Sweden)

    I. Lorenc-Kubis

    2015-01-01

    Full Text Available Two acid phosphatases (Ia2, Ia3 have been isolated from Poa pratensis seeds and partially purified. Both enzymes showed maximal activity at pH 4,9. They exhibited high activity towards p-nitrophenyl phosphate, inorganic pyrophosphate and phenyl phosphate, much less activity towards glucose-6 phosphate, and mononucleotides. Phosphatases a2 and a3 differed in their activity towards ADP. Orthophosphate, fluoride and Zn2+ were effective inhibitors. EDTA, β-mercaptoethanol and Mg2+ activated phophatase a2 but had no effect on phosphatase a3. Zn2+ inhibited the activity of phosphatase a2 noncompetitively, whereas phosphatase a3 showed inhibition of mixed type. Trypsin, chymotrypsin and pronase had no effect on the enzyme activities of both molecular forms.

  9. MECHANISM OF PROTEIN TYROSINE PHOSPHATASE INHIBITION IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZN2+

    Science.gov (United States)

    A number of studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to Zn2+ inhibits protein tyrosine phosphatase (PTP) activity and leads to activation of epidermal growth factor receptor (EGFR) signaling in ...

  10. Arctigenin inhibits triple-negative breast cancers by targeting CIP2A to reactivate protein phosphatase 2A.

    Science.gov (United States)

    Huang, Qiuyue; Qin, Shanshan; Yuan, Xiaoning; Zhang, Liang; Ji, Juanli; Liu, Xuewen; Ma, Wenjing; Zhang, Yunfei; Liu, Pengfei; Sun, Zhiting; Zhang, Jingxuan; Liu, Ying

    2017-07-01

    We have shown that a novel STAT3 inhibitor arctigenin (Atn) induces significant cytotoxicity in triple-negative breast cancer (TNBC) cells. This study further delineated molecular mechanisms where by Atn triggered cytotoxicity in TNBC cells. We found Atn can also inhibit metastasis in TNBC cells through cancerous inhibitor of protein phosphatase 2A (CIP2A) pathway. CIP2A is an endogenous inhibitor of protein phosphatase 2A (PP2A), which can increase the migration and invasion of various cancer cells. PP2A is a tumor suppressor, which is functionally defective in various cancers. Atn-induced metastasis inhibition was associated with reactivation of PP2A, downregulation of CIP2A and Akt phosphorylation. Silencing CIP2A enhanced Atn-induced metastasis inhibition and apoptosis in TNBCs. Furthermore, ectopic expression of CIP2A or inhibition of PP2A in TNBC cells abolished the effects of Atn. In conclusion, we found that enhancement of PP2A activity by inhibition of CIP2A, at least in part, promotes the anti-metastasis effect induced by Atn. Our findings disclose the novel therapeutic mechanism of this targeted agent, and suggest the therapeutic potential and feasibility of developing PP2A enhancers as a novel anticancer strategy.

  11. The calcineurin inhibitor Sarah (Nebula exacerbates Aβ42 phenotypes in a Drosophila model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Soojin Lee

    2016-03-01

    Full Text Available Expression of the Down syndrome critical region 1 (DSCR1 protein, an inhibitor of the Ca2+-dependent phosphatase calcineurin, is elevated in the brains of individuals with Down syndrome (DS or Alzheimer's disease (AD. Although increased levels of DSCR1 were often observed to be deleterious to neuronal health, its beneficial effects against AD neuropathology have also been reported, and the roles of DSCR1 on the pathogenesis of AD remain controversial. Here, we investigated the role of sarah (sra; also known as nebula, a Drosophila DSCR1 ortholog, in amyloid-β42 (Aβ42-induced neurological phenotypes in Drosophila. We detected sra expression in the mushroom bodies of the fly brain, which are a center for learning and memory in flies. Moreover, similar to humans with AD, Aβ42-expressing flies showed increased Sra levels in the brain, demonstrating that the expression pattern of DSCR1 with regard to AD pathogenesis is conserved in Drosophila. Interestingly, overexpression of sra using the UAS-GAL4 system exacerbated the rough-eye phenotype, decreased survival rates and increased neuronal cell death in Aβ42-expressing flies, without modulating Aβ42 expression. Moreover, neuronal overexpression of sra in combination with Aβ42 dramatically reduced both locomotor activity and the adult lifespan of flies, whereas flies with overexpression of sra alone showed normal climbing ability, albeit with a slightly reduced lifespan. Similarly, treatment with chemical inhibitors of calcineurin, such as FK506 and cyclosporin A, or knockdown of calcineurin expression by RNA interference (RNAi, exacerbated the Aβ42-induced rough-eye phenotype. Furthermore, sra-overexpressing flies displayed significantly decreased mitochondrial DNA and ATP levels, as well as increased susceptibility to oxidative stress compared to that of control flies. Taken together, our results demonstrating that sra overexpression augments Aβ42 cytotoxicity in Drosophila suggest that DSCR1

  12. The calcineurin inhibitor Sarah (Nebula) exacerbates Aβ42 phenotypes in a Drosophila model of Alzheimer's disease.

    Science.gov (United States)

    Lee, Soojin; Bang, Se Min; Hong, Yoon Ki; Lee, Jang Ho; Jeong, Haemin; Park, Seung Hwan; Liu, Quan Feng; Lee, Im-Soon; Cho, Kyoung Sang

    2016-03-01

    Expression of the Down syndrome critical region 1 (DSCR1) protein, an inhibitor of the Ca(2+)-dependent phosphatase calcineurin, is elevated in the brains of individuals with Down syndrome (DS) or Alzheimer's disease (AD). Although increased levels of DSCR1 were often observed to be deleterious to neuronal health, its beneficial effects against AD neuropathology have also been reported, and the roles of DSCR1 on the pathogenesis of AD remain controversial. Here, we investigated the role of sarah (sra; also known as nebula), a Drosophila DSCR1 ortholog, in amyloid-β42 (Aβ42)-induced neurological phenotypes in Drosophila. We detected sra expression in the mushroom bodies of the fly brain, which are a center for learning and memory in flies. Moreover, similar to humans with AD, Aβ42-expressing flies showed increased Sra levels in the brain, demonstrating that the expression pattern of DSCR1 with regard to AD pathogenesis is conserved in Drosophila. Interestingly, overexpression of sra using the UAS-GAL4 system exacerbated the rough-eye phenotype, decreased survival rates and increased neuronal cell death in Aβ42-expressing flies, without modulating Aβ42 expression. Moreover, neuronal overexpression of sra in combination with Aβ42 dramatically reduced both locomotor activity and the adult lifespan of flies, whereas flies with overexpression of sra alone showed normal climbing ability, albeit with a slightly reduced lifespan. Similarly, treatment with chemical inhibitors of calcineurin, such as FK506 and cyclosporin A, or knockdown of calcineurin expression by RNA interference (RNAi), exacerbated the Aβ42-induced rough-eye phenotype. Furthermore, sra-overexpressing flies displayed significantly decreased mitochondrial DNA and ATP levels, as well as increased susceptibility to oxidative stress compared to that of control flies. Taken together, our results demonstrating that sra overexpression augments Aβ42 cytotoxicity in Drosophila suggest that DSCR1

  13. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    Science.gov (United States)

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  14. Intermedilysin induces EGR-1 expression through calcineurin/NFAT pathway in human cholangiocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Susilowati, Heni [Department of Oral Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Okamura, Hirohiko [Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Hirota, Katsuhiko, E-mail: hirota@dent.tokushima-u.ac.jp [Department of Oral Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Shono, Masayuki [Support Center for Advanced Medical Sciences, The University of Tokushima, Tokushima 770-8504 (Japan); Yoshida, Kaya [Department of Fundamental Oral Health Science, School of Oral Health and Welfare, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Murakami, Keiji [Department of Oral Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Tabata, Atsushi; Nagamune, Hideaki [Department of Biological Science and Technology, Life System, Institute of Technology and Science, The University of Tokushima Graduate School, Tokushima 770-8506 (Japan); Haneji, Tatsuji [Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Miyake, Yoichiro [Department of Oral Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan)

    2011-01-07

    Research highlights: {yields} ILY leads to the accumulation of [Ca{sup 2+}]i in the nucleus in HuCCT1 cells. {yields} ILY induced activation of NFAT1 through a calcineurin-dependent pathway. {yields} Calcineuri/NFAT pathway is involved in EGR-1 expression in response to ILY treatment. -- Abstract: Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellular calcium ([Ca{sup 2+}]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-{kappa}B translocation in human hepatic HepG2 cells, ILY did not affect NF-{kappa}B localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca{sup 2+}]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.

  15. Intermedilysin induces EGR-1 expression through calcineurin/NFAT pathway in human cholangiocellular carcinoma cells

    International Nuclear Information System (INIS)

    Susilowati, Heni; Okamura, Hirohiko; Hirota, Katsuhiko; Shono, Masayuki; Yoshida, Kaya; Murakami, Keiji; Tabata, Atsushi; Nagamune, Hideaki; Haneji, Tatsuji; Miyake, Yoichiro

    2011-01-01

    Research highlights: → ILY leads to the accumulation of [Ca 2+ ]i in the nucleus in HuCCT1 cells. → ILY induced activation of NFAT1 through a calcineurin-dependent pathway. → Calcineuri/NFAT pathway is involved in EGR-1 expression in response to ILY treatment. -- Abstract: Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellular calcium ([Ca 2+ ]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-κB translocation in human hepatic HepG2 cells, ILY did not affect NF-κB localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca 2+ ]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.

  16. Calcium Input Frequency, Duration and Amplitude Differentially Modulate the Relative Activation of Calcineurin and CaMKII

    Science.gov (United States)

    Li, Lu; Stefan, Melanie I.; Le Novère, Nicolas

    2012-01-01

    NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors. PMID:22962589

  17. Evidence That Speciation of Oxovanadium Complexes Does Not Solely Account for Inhibition of Leishmania Acid Phosphatases

    Science.gov (United States)

    Dorsey, Benjamin M.; McLauchlan, Craig C.; Jones, Marjorie A.

    2018-01-01

    Leishmaniasis is an endemic disease affecting a diverse spectra of populations, with 1.6 million new cases reported each year. Current treatment options are costly and have harsh side effects. New therapeutic options that have been previously identified, but still underappreciated as potential pharmaceutical targets, are Leishmania secreted acid phosphatases (SAP). These acid phosphatases, which are reported to play a role in the survival of the parasite in the sand fly vector, and in homing to the host macrophage, are inhibited by orthovanadate and decavanadate. Here, we use L. tarentolae to further evaluate these inhibitors. Using enzyme assays, and UV-visible spectroscopy, we investigate which oxovanadium starting material (orthovanadate or decavanadate) is a better inhibitor of L. tarentolae secreted acid phosphatase activity in vitro at the same total moles of vanadium. Considering speciation and total vanadium concentration, decavanadate is a consistently better inhibitor of SAP in our conditions, especially at low substrate:inhibitor ratios. PMID:29707535

  18. Evidence that Speciation of Oxovanadium Complexes does not Solely Account for Inhibition of Leishmania Acid Phosphatases

    Science.gov (United States)

    Dorsey, Benjamin M.; McLauchlan, Craig C.; Jones, Marjorie A.

    2018-04-01

    Leishmaniasis is an endemic disease affecting a diverse spectra of populations, with 1.6 million new cases reported each year. Current treatment options are costly and have harsh side effects. New therapeutic options that have been previously identified, but still underappreciated as potential pharmaceutical targets, are Leishmania secreted acid phosphatases (SAP). These acid phosphatases, which are reported to play a role in the survival of the parasite in the sand fly vector, and in homing to the host macrophage, are inhibited by orthovanadate and decavanadate. Here, we use L. tarentolae to further evaluate these inhibitors. Using enzyme assays, and UV-visible spectroscopy, we investigate which oxovanadium starting material (orthovanadate or decavanadate) is a better inhibitor of L. tarentolae secreted acid phosphatase activity in vitro at the same total moles of vanadium. Considering speciation and total vanadium concentration, decavanadate is a consistently better inhibitor of SAP in our conditions, especially at low substrate:inhibitor ratios.

  19. Inhibition of AcpA phosphatase activity with ascorbate attenuates Francisella tularensis intramacrophage survival.

    Science.gov (United States)

    McRae, Steven; Pagliai, Fernando A; Mohapatra, Nrusingh P; Gener, Alejandro; Mahmou, Asma Sayed Abdelgeliel; Gunn, John S; Lorca, Graciela L; Gonzalez, Claudio F

    2010-02-19

    Acid phosphatase activity in the highly infectious intracellular pathogen Francisella tularensis is directly related with the ability of these bacteria to survive inside host cells. Pharmacological inactivation of acid phosphatases could potentially help in the treatment of tularemia or even be utilized to neutralize the infection. In the present work, we report inhibitory compounds for three of the four major acid phosphatases produced by F. tularensis SCHU4: AcpA, AcpB, and AcpC. The inhibitors were identified using a catalytic screen from a library of chemicals approved for use in humans. The best results were obtained against AcpA. The two compounds identified, ascorbate (K(i) = 380 +/- 160 microM) and 2-phosphoascorbate (K(i) = 3.2 +/- 0.85 microM) inhibit AcpA in a noncompetitive, nonreversible fashion. A potential ascorbylation site in the proximity of the catalytic pocket of AcpA was identified using site-directed mutagenesis. The effects of the inhibitors identified in vitro were evaluated using bioassays determining the ability of F. tularensis to survive inside infected cells. The presence of ascorbate or 2-phosphoascorbate impaired the intramacrophage survival of F. tularensis in an AcpA-dependent manner as it was probed using knockout strains. The evidence presented herein indicated that ascorbate could be a good alternative to be used clinically to improve treatments against tularemia.

  20. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase.

    Science.gov (United States)

    Oguro, Ami; Imaoka, Susumu

    2012-03-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3-7 μM; Vmax, 150-193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism.

  1. Calcineurin B homologous protein 3 negatively regulates cardiomyocyte hypertrophy via inhibition of glycogen synthase kinase 3 phosphorylation.

    Science.gov (United States)

    Kobayashi, Soushi; Nakamura, Tomoe Y; Wakabayashi, Shigeo

    2015-07-01

    Cardiac hypertrophy is a leading cause of serious heart diseases. Although many signaling molecules are involved in hypertrophy, the functions of some proteins in this process are still unknown. Calcineurin B homologous protein 3 (CHP3)/tescalcin is an EF-hand Ca(2+)-binding protein that is abundantly expressed in the heart; however, the function of CHP3 is unclear. Here, we aimed to identify the cardiac functions of CHP3. CHP3 was expressed in hearts at a wide range of developmental stages and was specifically detected in neonatal rat ventricular myocytes (NRVMs) but not in cardiac fibroblasts in culture. Moreover, knockdown of CHP3 expression using adenoviral-based RNA interference in NRVMs resulted in enlargement of cardiomyocyte size, concomitant with increased expression of a pathological hypertrophy marker ANP. This same treatment elevated glycogen synthase kinase (GSK3α/β) phosphorylation, which is known to inhibit GSK3 function. In contrast, CHP3 overexpression blocked the insulin-induced phosphorylation of GSK3α/β without affecting the phosphorylation of Akt, which is an upstream kinase of GSK3α/β, in HEK293 cells, and it inhibited both IGF-1-induced phosphorylation of GSK3β and cardiomyocyte hypertrophy in NRVMs. Co-immunoprecipitation experiments revealed that GSK3β interacted with CHP3. However, a Ca(2+)-binding-defective mutation of CHP3 (CHP3-D123A) also interacted with GSK3β and had the same inhibitory effect on GSK3α/β phosphorylation, suggesting that the action of CHP3 was independent of Ca(2+). These findings suggest that CHP3 functions as a novel negative regulator of cardiomyocyte hypertrophy via inhibition of GSK3α/β phosphorylation and subsequent enzymatic activation of GSK3α/β. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    Science.gov (United States)

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3–7 μM; Vmax, 150–193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism. PMID:22217705

  3. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells

    International Nuclear Information System (INIS)

    Ramp, W.K.; Lenz, L.G.; Galvin, R.J.

    1991-01-01

    Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase were concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of [ 3 H]proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of [ 3 H]hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of [ 3 H]thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone

  4. Simplified preparation of a phosphatase inhibitor and further studies of its action.

    Science.gov (United States)

    Coburn, S P; Schaltenbrand, W E

    1978-05-01

    1-Pyrrolidinecarbothioic acid (2-pyridylmethylene) hydrazide chelates Zn2+ but not Mg2+. This compound is about twice as effective as EDTA for inhibiting alkaline phosphatase from calf mucosa, and approx. 1000-fold more effective than EDTA for inhibiting acid phosphatase from wheat germ. The compound did not inhibit pyridoxine kinase activity in human leucocytes at the highest concentration tested (33 micron). Therefore it may be a useful tool for either examining or eliminating the effects of phosphatases in complex enzyme systems.

  5. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation

    Science.gov (United States)

    Hoyt, Laura R.; Ather, Jennifer L.; Randall, Matthew J.; DePuccio, Daniel P.; Landry, Christopher C.; Wewers, Mark D.; Gavrilin, Mikhail A.; Poynter, Matthew E.

    2016-01-01

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished ASC speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of GABAA receptor activation or NMDA receptor inhibition, but was associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, while administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC, were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols. PMID:27421477

  6. Marine Longilenes, Oxasqualenoids with Ser-Thr Protein Phosphatase 2A Inhibition Activity

    Directory of Open Access Journals (Sweden)

    Francisco Cen-Pacheco

    2018-04-01

    Full Text Available The red seaweed Laurencia viridis is a rich source of oxygenated secondary metabolites that were derived from squalene. We report here the structures of three novel compounds, (+-longilene peroxide (1, longilene (2, and (+-prelongilene (3 that were isolated from this alga, in addition to other substances, 4 and 5, resulting from their acid-mediated degradation. The effect of compounds 1 and 3 against Ser-Thr protein phosphatase type 2A (PP2A was evaluated, showing that (+-longilene peroxide (1 inhibited PP2A (IC50 11.3 μM. In order to explain the interaction between PP2A and compounds 1 and 3, molecular docking simulations onto the PP2A enzyme-binding region were used.

  7. Phosphatase activity of Poa pratensis seeds. I. Preliminary studies on acid phosphatase II

    Directory of Open Access Journals (Sweden)

    I. Lorenc-Kubis

    2015-01-01

    Full Text Available Acid phosphatase (EC 3.1.3.2 was extracted with 0.1 M sodium acetate buffer pH 5.1 from Poa pratensis seeds, and separated into three fractions by chromatography on DEAE cellulose. The highest activity was found in fraction Il-b (acid phosphatase II. The activity of the enzyme was optimal at pH 4.9. It hydrolyzed p-nitrophenyl phosphate most readily among the various phosphomonoesters examined. Acid phosphatase II showed also a high activity toward β-naphtyl phosphate and phenyl phosphate, very low activity towards β-glycero phosphate, 5'-GMP and no activity with glucose-1 phosphate. The enzyme was inhibited by Ca2+ and fluoride, but activated by Mg2+. EDTA had no influence on the activity of the enzyme.

  8. Phosphatase activity of Poa pratensis seeds. l. Preliminary studies on acid phosphatase II

    Energy Technology Data Exchange (ETDEWEB)

    Lorenc-Kubis, I.; Morawiecka, B.

    1973-01-01

    Acid phosphatase (EC 3.1.3.2) was extracted from 0.1 M sodium acetate buffer, pH 5.1 from Poa pratensis seeds, and separated into three fractions by chromatography on DEAE cellulose. The highest activity was found in fraction II-b (acid phosphatase II). The activity of the enzyme was optimal at pH 4.9. It hydrolyzed p-nitrophenyl phosphate most readily among the various phosphomonoesters examined. Acid phosphatase II showed also a high activity toward ..beta..-naphtyl phosphate and phenyl phosphate, very low activity towards ..beta..-glycero phosphate, 5'-GMP and no activity with glucose-1 phosphate. The enzyme was inhibited by Ca/sup 2 +/ and fluoride, but activated by Mg/sup 2 +/. EDTA had no influence on the activity of the enzyme. 12 references, 3 figures, 4 tables.

  9. Calcineurin inhibitor-induced complement system activation via ERK1/2 signalling is inhibited by SOCS-3 in human renal tubule cells.

    Science.gov (United States)

    Loeschenberger, Beatrix; Niess, Lea; Würzner, Reinhard; Schwelberger, Hubert; Eder, Iris E; Puhr, Martin; Guenther, Julia; Troppmair, Jakob; Rudnicki, Michael; Neuwirt, Hannes

    2018-02-01

    One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An Additional Method for Analyzing the Reversible Inhibition of an ?Enzyme Using Acid Phosphatase as a Model

    OpenAIRE

    Baumhardt, Jordan M.; Dorsey, Benjamin M.; McLauchlan, Craig C.; Jones, Marjorie A.

    2015-01-01

    Using wheat germ acid phosphatase and sodium orthovanadate as a competitive inhibitor, a novel method for analyzing reversible inhibition was carried out. Our alternative approach involves plotting the initial velocity at which product is formed as a function of the ratio of substrate concentration to inhibitor concentration at a constant enzyme concentration and constant assay conditions. The concept of initial concentrations driving equilibrium leads to the chosen axes. Three apparent const...

  11. Increased calcineurin expression after pilocarpine-induced status epilepticus is associated with brain focal edema and astrogliosis.

    Science.gov (United States)

    Liu, Jinzhi; Li, Xiaolin; Chen, Liguang; Xue, Ping; Yang, Qianqian; Wang, Aihua

    2015-07-28

    Calcineurin plays an important role in the development of neuronal excitability, modulation of receptor's function and induction of apoptosis in neurons. It has been established in kindling models that status epilepticus induces brain focal edema and astrocyte activation. However, the role of calcineurin in brain focal edema and astrocyte activation in status epilepticus has not been fully understood. In this study, we employed a model of lithium-pilocarpine-induced status epilepticus and detected calcineurin expression in hippocampus by immunoblotting, brain focal edema by non-invasive magnetic resonance imaging (MRI-7T) and astrocyte expression by immunohistochemistry. We found that the brain focal edema was seen at 24 h after status epilepticus, and astrocyte expression was obviously seen at 7 d after status epilepticus. Meanwhile, calcineurin expression was seen at24 h and retained to 7 d after status epilepticus. A FK506, a calcineurin inhibitor, remarkably suppressed the status epilepticus-induced brain focal edema and astrocyte expression. Our data suggested that calcineurin overexpression plays a very important role in brain focal edema and astrocyte expression. Therefore, calcineurin may be a novel candidate for brain focal edema occurring and intracellular trigger of astrogliosis in status epilepticus.

  12. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90.

    Directory of Open Access Journals (Sweden)

    Shantelle L LaFayette

    2010-08-01

    Full Text Available Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC, which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which

  13. Antitumor effects of metformin via indirect inhibition of protein phosphatase 2A in patients with endometrial cancer.

    Directory of Open Access Journals (Sweden)

    Shinsuke Hanawa

    Full Text Available Metformin, an antidiabetic drug, inhibits the endometrial cancer cell growth in vivo by improving the insulin resistance; however, its mechanism of action is not completely understood. Protein phosphatase 2A (PP2A is a serine/threonine phosphatase associated with insulin resistance and type 2 diabetes, and its inhibition restores the insulin resistance. This study investigated the antitumor effect of metformin on endometrial cancer with a focus on PP2A.Metformin (1,500-2,250 mg/day was preoperatively administered to patients with endometrial cancer for 4 to 6 weeks. Expression of the PP2A regulatory subunits, 4 (PPP2R4 and B (PP2A-B, was evaluated using real-time polymerase chain reaction (RT-PCR and immunohistochemistry (IHC using paired specimens obtained before and after metformin treatment. The effect of PPP2R4 inhibition with small interfering RNA was evaluated in the endometrial cancer cell lines HEC265 and HEC1B. P values of < .05 were considered statistically significant.Preoperative metformin treatment significantly reduced the expression of PP2A-B, as determined using IHC, and the mRNA expression of PPP2R4, as determined using RT-PCR, in the patients with endometrial cancer. However, metformin could not directly alter the PPP2R4 mRNA levels in the endometrial cancer cell lines in vitro. PPP2R4 knockdown reduced the proliferation and induced the apoptosis by activating caspases 3/7 in HEC265 and HEC1B cells.Downregulation of the PP2A-B subunit, including PPP2R4, is an important indirect target of metformin. Inhibition of PP2A may be an option for the treatment of endometrial cancer patients with insulin resistance.This trial is registered with UMIN-CTR (number UMIN000004852.

  14. Discorhabdin P, a new enzyme inhibitor from a deep-water Caribbean sponge of the genus Batzella.

    Science.gov (United States)

    Gunasekera, S P; McCarthy, P J; Longley, R E; Pomponi, S A; Wright, A E; Lobkovsky, E; Clardy, J

    1999-01-01

    Discorhabdin P (1), a new discorhabdin analogue, has been isolated from a deep-water marine sponge of the genus Batzella. Discorhabdin P (1) inhibited the phosphatase activity of calcineurin and the peptidase activity of CPP32. It also showed in vitro cytotoxicity against P-388 and A-549 cell lines. The isolation and structure elucidation of discorhabdin P (1) are described.

  15. Cyclosporin versus tacrolimus for liver transplanted patients

    DEFF Research Database (Denmark)

    Haddad, E M; McAlister, V C; Renouf, E

    2006-01-01

    Most liver transplant recipients receive either cyclosporin or tacrolimus to prevent rejection. Both drugs inhibit calcineurin phosphatase which is thought to be the mechanism of their anti-rejection effect and principle toxicities. The drugs have different pharmacokinetic profiles and potencies....... Several randomised clinical trials have compared cyclosporin and tacrolimus in liver transplant recipients, but it remains unclear which is superior....

  16. Tyr phosphatase-mediated P-ERK inhibition suppresses senescence in EIA + v-raf transformed cells, which, paradoxically, are apoptosis-protected in a MEK-dependent manner.

    Science.gov (United States)

    De Vitis, Stefania; Sonia Treglia, Antonella; Ulianich, Luca; Turco, Stefano; Terrazzano, Giuseppe; Lombardi, Angela; Miele, Claudia; Garbi, Corrado; Beguinot, Francesco; Di Jeso, Bruno

    2011-02-01

    Activation of the Ras-Raf-extracellular signal-regulated kinase (ERK) pathway causes not only proliferation and suppression of apoptosis but also the antioncogenic response of senescence. How these contrasting effects are reconciled to achieve cell transformation and cancer formation is poorly understood. In a system of two-step carcinogenesis (dedifferentiated PC EIA, transformed PC EIA-polyoma-middle T [PC EIA + Py] and PC EIA-v-raf [PC EIA + raf] cells], v-raf cooperated with EIA by virtue of a strong prosurvival effect, not elicited by Py-middle T, evident toward serum-deprivation-and H(2)O(2)-induced apoptosis. Apoptosis was detected by DNA fragmentation and annexin V staining. The prosurvival function of v-raf was, in part, mitogen-activated protein kinase/ERK kinase (MEK)-dependent, as shown by pharmacological MEK inhibition. The MEK-dependent antiapoptotic effect of v-raf was exerted despite a lower level of P-ERK1/2 in EIA + raf cells with respect to EIA + Py/EIA cells, which was dependent on a high tyrosine phosphatase activity, as shown by orthovanadate blockade. An ERK1/2 tyrosine phosphatase was likely involved. The high tyrosine phosphatase activity was instrumental to the complete suppression of senescence, detected by β-galactosidase activity, because tyrosine phosphatase blockade induced senescence in EIA + raf but not in EIA + Py cells. High tyrosine phosphatase activity and evasion from senescence were confirmed in an anaplastic thyroid cancer cell line. Therefore, besides EIA, EIA + raf cells suppress senescence through a new mechanism, namely, phosphatase-mediated P-ERK1/2 inhibition, but, paradoxically, retain the oncogenic effects of the Raf-ERK pathway. We propose that the survival effect of Raf is not a function of absolute P-ERK1/2 levels at a given time but is rather dynamically dependent on greater variations after an apoptotic stimulus.

  17. Tyr Phosphatase-Mediated P-ERK Inhibition Suppresses Senescence in EIA + v-raf Transformed Cells, Which, Paradoxically, Are Apoptosis-Protected in a MEK-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Stefania De Vitis

    2011-02-01

    Full Text Available Activation of the Ras-Raf-extracellular signal-regulated kinase (ERK pathway causes not only proliferation and suppression of apoptosis but also the antioncogenic response of senescence. How these contrasting effects are reconciled to achieve cell transformation and cancer formation is poorly understood. In a system of two-step carcinogenesis (dedifferentiated PC EIA, transformed PC EIA-polyoma-middle T [PC EIA + Py] and PC EIA-v-raf [PC EIA + raf] cells], v-raf cooperated with EIA by virtue of a strong prosurvival effect, not elicited by Py-middle T, evident toward serum-deprivation-and H2O2-induced apoptosis. Apoptosis was detected by DNA fragmentation and annexin V staining. The prosurvival function of v-raf was, in part, mitogen-activated protein kinase/ERK kinase (MEK-dependent, as shown by pharmacological MEK inhibition. The MEK-dependent antiapoptotic effect of v-raf was exerted despite a lower level of P-ERK1/2 in EIA + raf cells with respect to EIA + Py/EIA cells, which was dependent on a high tyrosine phosphatase activity, as shown by orthovanadate blockade. An ERK1/2 tyrosine phosphatase was likely involved. The high tyrosine phosphatase activity was instrumental to the complete suppression of senescence, detected by β-galactosidase activity, because tyrosine phosphatase blockade induced senescence in EIA + raf but not in EIA + Py cells. High tyrosine phosphatase activity and evasion from senescence were confirmed in an anaplastic thyroid cancer cell line. Therefore, besides EIA, EIA + raf cells suppress senescence through a new mechanism, namely, phosphatase-mediated P-ERK1/2 inhibition, but, paradoxically, retain the oncogenic effects of the Raf-ERK pathway. We propose that the survival effect of Raf is not a function of absolute P-ERK1/2 levels at a given time but is rather dynamically dependent on greater variations after an apoptotic stimulus.

  18. Expression and Immunohistochemical Localisation of the G beta gamma activated and Calcineurin-inhibited Adenylyl Cyclase Isoforms in Rat Articular Chondrocytes

    International Nuclear Information System (INIS)

    Memon, I.; Khan, K.M.; Siddiqui, S.; Perveen, S.; Ishaq, M.

    2016-01-01

    Objective: To determine the expression and localisation of the Gβγ-activated adenylyl cyclase (AC) isoforms 2, 4, and 7 and calcineurin-inhibited AC isoform 9 in rat articular chondrocytes. Study Design: Experimental study. Place and Duration of Study: Jumma Research Laboratory and Histology Laboratory, The Aga Khan University, Karachi, from 2009 to 2011. Methodology: Fresh slices of articular cartilage were taken from various synovial joints of rats of different age groups. The expression of AC isoforms was determined by RT-PCR and immunohistochemistry was performed to localise these isoforms in articular chondrocytes. Tissue sections were processed for immunostaining with respective antibodies. The color was developed by diaminobenzidine. Results: All the studied AC isoforms were found to be differentially expressed in different zones of the rat articular cartilage. Generally, expression of all AC isoforms studied increased with age. The expression of the AC isoforms through PCR was almost consistent with the localisation of these isoforms by immunohistochemistry. Conclusion: These data add to the information about signalling cascades possibly involved in articular chondrocytes. Variable expression of AC isoforms 2, 4, 7, and 9 suggest a role for the signalling cascades regulated by the AC isoforms in articular chondrocytes. (author)

  19. Modulation of Spc1 stress-activated protein kinase activity by methylglyoxal through inhibition of protein phosphatase in the fission yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Takatsume, Yoshifumi; Izawa, Shingo; Inoue, Yoshiharu

    2007-01-01

    Methylglyoxal, a ubiquitous metabolite derived from glycolysis has diverse physiological functions in yeast cells. Previously, we have reported that extracellularly added methylglyoxal activates Spc1, a stress-activated protein kinase (SAPK), in the fission yeast Schizosaccharomyces pombe [Y. Takatsume, S. Izawa, Y. Inoue, J. Biol. Chem. 281 (2006) 9086-9092]. Phosphorylation of Spc1 by treatment with methylglyoxal in S. pombe cells defective in glyoxalase I, an enzyme crucial for the metabolism of methylglyoxal, continues for a longer period than in wild-type cells. Here we show that methylglyoxal inhibits the activity of the protein phosphatase responsible for the dephosphorylation of Spc1 in vitro. In addition, we found that methylglyoxal inhibits human protein tyrosine phosphatase 1B (PTP1B) also. We propose a model for the regulation of the activity of the Spc1-SAPK signaling pathway by methylglyoxal in S. pombe

  20. Secobatzellines A and B, two new enzyme inhibitors from a deep-water Caribbean sponge of the genus Batzella.

    Science.gov (United States)

    Gunasekera, S P; McCarthy, P J; Longley, R E; Pomponi, S A; Wright, A E

    1999-08-01

    Secobatzelline A (1), a new batzelline natural analogue, and secobatzelline B (2), a likely artifact formed during the isolation procedure, have been isolated from a deep-water marine sponge of the genus Batzella. Secobatzellines A and B inhibited the phosphatase activity of calcineurin, and secobatzelline A inhibited the peptidase activity of CPP32. Both compounds showed in vitro cytotoxicity against P-388 and A-549 cell lines. The isolation and structure elucidation of secobatzellines A (1) and B (2) are described.

  1. The inhibitory effect of metals and other ions on acid phosphatase activity from Vigna aconitifolia seeds.

    Science.gov (United States)

    Srivastava, Pramod Kumar; Anand, Asha

    2015-01-01

    Sensitivity of acid phosphatase from Vigna aconitifolia seeds to metal ions, fluoride, and phosphate was examined. All the effectors had different degree of inhibitory effect on the enzyme. Among metal ions, molybdate and ferric ion were observed to be most potent inhibitors and both exhibited mixed type of inhibition. Acid phosphatase activity was inhibited by Cu2+ in a noncompetitive manner. Zn and Mn showed mild inhibition on the enzyme activity. Inhibition kinetics analysis explored molybdate as a potent inhibitor for acid phosphatase in comparison with other effectors used in this study. Fluoride was the next most strong inhibitor for the enzyme activity, and caused a mixed type of inhibition. Phosphate inhibited the enzyme competitively, which demonstrates that inhibition due to phosphate is one of the regulatory factors for enzyme activity.

  2. Requirement for tyrosine phosphatase during serotonergic neuromodulation by protein kinase C.

    Science.gov (United States)

    Catarsi, S; Drapeau, P

    1997-08-01

    Tyrosine kinases and phosphatases are abundant in the nervous system, where they signal cellular differentiation, mediate the responses to growth factors, and direct neurite outgrowth during development. Tyrosine phosphorylation can also alter ion channel activity, but its physiological significance remains unclear. In an identified leech mechanosensory neuron, the ubiquitous neuromodulator serotonin increases the activity of a cation channel by activating protein kinase C (PKC), resulting in membrane depolarization and modulation of the receptive field properties. We observed that the effects on isolated neurons and channels were blocked by inhibiting tyrosine phosphatases. Serotonergic stimulation of PKC thus activates a tyrosine phosphatase activity associated with the channels, which reverses their constitutive inhibition by tyrosine phosphorylation, representing a novel form of neuromodulation.

  3. Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides.

    Science.gov (United States)

    Lee, Soo Chan; Li, Alicia; Calo, Silvia; Heitman, Joseph

    2013-01-01

    Many pathogenic fungi are dimorphic and switch between yeast and filamentous states. This switch alters host-microbe interactions and is critical for pathogenicity. However, in zygomycetes, whether dimorphism contributes to virulence is a central unanswered question. The pathogenic zygomycete Mucor circinelloides exhibits hyphal growth in aerobic conditions but switches to multi-budded yeast growth under anaerobic/high CO₂ conditions. We found that in the presence of the calcineurin inhibitor FK506, Mucor exhibits exclusively multi-budded yeast growth. We also found that M. circinelloides encodes three calcineurin catalytic A subunits (CnaA, CnaB, and CnaC) and one calcineurin regulatory B subunit (CnbR). Mutations in the latch region of CnbR and in the FKBP12-FK506 binding domain of CnaA result in hyphal growth of Mucor in the presence of FK506. Disruption of the cnbR gene encoding the sole calcineurin B subunit necessary for calcineurin activity yielded mutants locked in permanent yeast phase growth. These findings reveal that the calcineurin pathway plays key roles in the dimorphic transition from yeast to hyphae. The cnbR yeast-locked mutants are less virulent than the wild-type strain in a heterologous host system, providing evidence that hyphae or the yeast-hyphal transition are linked to virulence. Protein kinase A activity (PKA) is elevated during yeast growth under anaerobic conditions, in the presence of FK506, or in the yeast-locked cnbR mutants, suggesting a novel connection between PKA and calcineurin. cnaA mutants lacking the CnaA catalytic subunit are hypersensitive to calcineurin inhibitors, display a hyphal polarity defect, and produce a mixture of yeast and hyphae in aerobic culture. The cnaA mutants also produce spores that are larger than wild-type, and spore size is correlated with virulence potential. Our results demonstrate that the calcineurin pathway orchestrates the yeast-hyphal and spore size dimorphic transitions that contribute to

  4. Presynaptic Dopamine D2 Receptors Modulate [3H]GABA Release at StriatoPallidal Terminals via Activation of PLC → IP3 → Calcineurin and Inhibition of AC → cAMP → PKA Signaling Cascades.

    Science.gov (United States)

    Jijón-Lorenzo, Rafael; Caballero-Florán, Isaac Hiram; Recillas-Morales, Sergio; Cortés, Hernán; Avalos-Fuentes, José Arturo; Paz-Bermúdez, Francisco Javier; Erlij, David; Florán, Benjamín

    2018-02-21

    Striatal dopamine D2 receptors activate the PLC → IP3 → Calcineurin-signaling pathway to modulate the neural excitability of En+ Medium-sized Spiny GABAergic neurons (MSN) through the regulation of L-type Ca 2+ channels. Presynaptic dopaminergic D2 receptors modulate GABA release at striatopallidal terminals through L-type Ca 2+ channels as well, but their signaling pathway is still undetermined. Since D2 receptors are Gi/o-coupled and negatively modulate adenylyl cyclase (AC), we investigated whether presynaptic D2 receptors modulate GABA release through the same signaling cascade that controls excitability in the striatum or by the inhibition of AC and decreased PKA activity. Activation of D2 receptors stimulated formation of [ 3 H]IP 1 and decreased Forskolin-stimulated [ 3 H]cAMP accumulation in synaptosomes from rat Globus Pallidus. D2 receptor activation with Quinpirole in the presence of L 745,870 decreased, in a dose-dependent manner, K + -induced [ 3 H]GABA release in pallidal slices. The effect was prevented by the pharmacological blockade of Gi/o βγ subunit effects with Gallein, PLC with U 73122, IP3 receptor activation with 4-APB, Calcineurin with FK506. In addition, when release was stimulated with Forskolin to activate AC, D2 receptors also decreased K + -induced [ 3 H]GABA release, an effect occluded with the effect of the blockade of PKA with H89 or stimulation of release with the cAMP analog 8-Br-cAMP. These data indicate that D2 receptors modulate [ 3 H]GABA release at striatopallidal terminals by activating the PLC → IP3 → Calcineurin-signaling cascade, the same one that modulates excitability in soma. Additionally, D2 receptors inhibit release when AC is active. Both mechanisms appear to converge to regulate the activity of presynaptic L-type Ca 2+ channels. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. A role for CaV1 and calcineurin signaling in depolarization-induced changes in neuronal DNA methylation.

    Science.gov (United States)

    Hannon, Eilis; Chand, Annisa N; Evans, Mark D; Wong, Chloe C Y; Grubb, Matthew S; Mill, Jonathan

    2015-07-01

    Direct manipulations of neuronal activity have been shown to induce changes in DNA methylation (DNAm), although little is known about the cellular signaling pathways involved. Using reduced representation bisulfite sequencing, we identify DNAm changes associated with moderate chronic depolarization in dissociated rat hippocampal cultures. Consistent with previous findings, these changes occurred primarily in the vicinity of loci implicated in neuronal function, being enriched in intergenic regions and underrepresented in CpG-rich promoter regulatory regions. We subsequently used 2 pharmacological interventions (nifedipine and FK-506) to test whether the identified changes depended on 2 interrelated signaling pathways known to mediate multiple forms of neuronal plasticity. Both pharmacological manipulations had notable effects on the extent and magnitude of depolarization-induced DNAm changes indicating that a high proportion of activity-induced changes are likely to be mediated by calcium entry through L-type Ca V 1 channels and/or downstream signaling via the calcium-dependent phosphatase calcineurin.

  6. A role for CaV1 and calcineurin signaling in depolarization-induced changes in neuronal DNA methylation

    Directory of Open Access Journals (Sweden)

    Eilis Hannon

    2015-07-01

    Full Text Available Direct manipulations of neuronal activity have been shown to induce changes in DNA methylation (DNAm, although little is known about the cellular signaling pathways involved. Using reduced representation bisulfite sequencing, we identify DNAm changes associated with moderate chronic depolarization in dissociated rat hippocampal cultures. Consistent with previous findings, these changes occurred primarily in the vicinity of loci implicated in neuronal function, being enriched in intergenic regions and underrepresented in CpG-rich promoter regulatory regions. We subsequently used 2 pharmacological interventions (nifedipine and FK-506 to test whether the identified changes depended on 2 interrelated signaling pathways known to mediate multiple forms of neuronal plasticity. Both pharmacological manipulations had notable effects on the extent and magnitude of depolarization-induced DNAm changes indicating that a high proportion of activity-induced changes are likely to be mediated by calcium entry through L-type CaV1 channels and/or downstream signaling via the calcium-dependent phosphatase calcineurin.

  7. Nebula/DSCR1 upregulation delays neurodegeneration and protects against APP-induced axonal transport defects by restoring calcineurin and GSK-3β signaling.

    Science.gov (United States)

    Shaw, Jillian L; Chang, Karen T

    2013-01-01

    Post-mortem brains from Down syndrome (DS) and Alzheimer's disease (AD) patients show an upregulation of the Down syndrome critical region 1 protein (DSCR1), but its contribution to AD is not known. To gain insights into the role of DSCR1 in AD, we explored the functional interaction between DSCR1 and the amyloid precursor protein (APP), which is known to cause AD when duplicated or upregulated in DS. We find that the Drosophila homolog of DSCR1, Nebula, delays neurodegeneration and ameliorates axonal transport defects caused by APP overexpression. Live-imaging reveals that Nebula facilitates the transport of synaptic proteins and mitochondria affected by APP upregulation. Furthermore, we show that Nebula upregulation protects against axonal transport defects by restoring calcineurin and GSK-3β signaling altered by APP overexpression, thereby preserving cargo-motor interactions. As impaired transport of essential organelles caused by APP perturbation is thought to be an underlying cause of synaptic failure and neurodegeneration in AD, our findings imply that correcting calcineurin and GSK-3β signaling can prevent APP-induced pathologies. Our data further suggest that upregulation of Nebula/DSCR1 is neuroprotective in the presence of APP upregulation and provides evidence for calcineurin inhibition as a novel target for therapeutic intervention in preventing axonal transport impairments associated with AD.

  8. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases

    Directory of Open Access Journals (Sweden)

    Maulilio John Kipanyula

    2016-01-01

    Full Text Available The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA and regulator of calcineurin 1 (RCAN1 also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.

  9. Interplay between calcineurin and the Slt2 MAP-kinase in mediating cell wall integrity, conidiation and virulence in the insect fungal pathogen Beauveria bassiana.

    Science.gov (United States)

    Huang, Shuaishuai; He, Zhangjiang; Zhang, Shiwei; Keyhani, Nemat O; Song, Yulin; Yang, Zhi; Jiang, Yahui; Zhang, Wenli; Pei, Yan; Zhang, Yongjun

    2015-10-01

    The entomopathogenic fungus, Beauveria bassiana, is of environmental and economic importance as an insect pathogen, currently used for the biological control of a number of pests. Cell wall integrity and conidiation are critical parameters for the ability of the fungus to infect insects and for production of the infectious propagules. The contribution of calcineurin and the Slt2 MAP kinase to cell wall integrity and development in B. bassiana was investigated. Gene knockouts of either the calcineurin CNA1 subunit or the Slt2 MAP kinase resulted in decreased tolerance to calcofluor white and high temperature. In contrast, the Δcna1 strain was more tolerant to Congo red but more sensitive to osmotic stress (NaCl, sorbitol) than the wild type, whereas the Δslt2 strain had the opposite phenotype. Changes in cell wall structure and composition were seen in the Δslt2 and Δcna1 strains during growth under cell wall stress as compared to the wild type. Both Δslt2 and Δcna1 strains showed significant alterations in growth, conidiation, and viability. Elevation of intracellular ROS levels, and decreased conidial hydrophobicity and adhesion to hydrophobic surfaces, were also seen for both mutants, as well as decreased virulence. Under cell wall stress conditions, inactivation of Slt2 significantly repressed CN-mediated phosphatase activity suggesting some level of cross talk between the two pathways. Comparative transcriptome profiling of the Δslt2 and Δcna1 strains revealed alterations in the expression of distinct gene sets, with overlap in transcripts involved in cell wall integrity, stress response, conidiation and virulence. These data illustrate convergent and divergent phenotypes and targets of the calcineurin and Slt2 pathways in B. bassiana. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Effect of vanadium compounds on acid phosphatase activity

    OpenAIRE

    Vescina, Cecilia M.; Sálice, Viviana C.; Cortizo, Ana María; Etcheverry, Susana B.

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activi...

  11. Inhibition of receptor tyrosine kinase signalling by small molecule agonist of T-cell protein tyrosine phosphatase

    International Nuclear Information System (INIS)

    Mattila, Elina; Marttila, Heidi; Sahlberg, Niko; Kohonen, Pekka; Tähtinen, Siri; Halonen, Pasi; Perälä, Merja; Ivaska, Johanna

    2010-01-01

    T-cell protein tyrosine phosphatase (TCPTP/TC45) is a ubiquitously expressed intra-cellular non-receptor protein tyrosine phosphatase involved in the negative regulation of several cancer relevant cellular signalling pathways. We have previously shown that interaction between the α-cytoplasmic tail of α1β1 integrin and TCPTP activates TCPTP by disrupting an inhibitory intra-molecular bond in TCPTP. Thus, inhibition of the regulatory interaction in TCPTP is a desirable strategy for TCPTP activation and attenuation of oncogenic RTK signalling. However, this is challenging with low molecular weight compounds. We developed a high-throughput compatible assay to analyse activity of recombinant TCPTP in vitro. Using this assay we have screened 64280 small molecules to identify novel agonists for TCPTP. Dose-dependent response to TCPTP agonist was performed using the in vitro assay. Inhibition effects and specificity of TCPTP agonists were evaluated using TCPTP expressing and null mouse embryonic fibroblasts. Western blot analysis was used to evaluate attenuation of PDGFRβ and EGFR phosphorylation. Inhibition of VEGF signalling was analysed with VEGF-induced endothelial cell sprouting assays. From the screen we identified six TCPTP agonists. Two compounds competed with α1-cytoplasmic domain for binding to TCPTP, suggesting that they activate TCPTP similar to α1-cyt by disrupting the intra-molecular bond in TCPTP. Importantly, one of the compounds (spermidine) displayed specificity towards TCPTP in cells, since TCPTP -/- cells were 43-fold more resistant to the compound than TCPTP expressing cells. This compound attenuates PDGFRβ and VEGFR2 signalling in cells in a TCPTP-dependent manner and functions as a negative regulator of EGFR phosphorylation in cancer cells. In this study we showed that small molecules mimicking TCPTP-α1 interaction can be used as TCPTP agonists. These data provide the first proof-of-concept description of the use of high-throughput screening

  12. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    Science.gov (United States)

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  13. CaZF, a plant transcription factor functions through and parallel to HOG and calcineurin pathways in Saccharomyces cerevisiae to provide osmotolerance.

    Directory of Open Access Journals (Sweden)

    Deepti Jain

    Full Text Available Salt-sensitive yeast mutants were deployed to characterize a gene encoding a C2H2 zinc finger protein (CaZF that is differentially expressed in a drought-tolerant variety of chickpea (Cicer arietinum and provides salinity-tolerance in transgenic tobacco. In Saccharomyces cerevisiae most of the cellular responses to hyper-osmotic stress is regulated by two interconnected pathways involving high osmolarity glycerol mitogen-activated protein kinase (Hog1p and Calcineurin (CAN, a Ca(2+/calmodulin-regulated protein phosphatase 2B. In this study, we report that heterologous expression of CaZF provides osmotolerance in S. cerevisiae through Hog1p and Calcineurin dependent as well as independent pathways. CaZF partially suppresses salt-hypersensitive phenotypes of hog1, can and hog1can mutants and in conjunction, stimulates HOG and CAN pathway genes with subsequent accumulation of glycerol in absence of Hog1p and CAN. CaZF directly binds to stress response element (STRE to activate STRE-containing promoter in yeast. Transactivation and salt tolerance assays of CaZF deletion mutants showed that other than the transactivation domain a C-terminal domain composed of acidic and basic amino acids is also required for its function. Altogether, results from this study suggests that CaZF is a potential plant salt-tolerance determinant and also provide evidence that in budding yeast expression of HOG and CAN pathway genes can be stimulated in absence of their regulatory enzymes to provide osmotolerance.

  14. Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Saif Hameed

    2011-04-01

    Full Text Available We previously demonstrated that iron deprivation enhances drug susceptibility of Candida albicans by increasing membrane fluidity which correlated with the lower expression of ERG11 transcript and ergosterol levels. The iron restriction dependent membrane perturbations led to an increase in passive diffusion and drug susceptibility. The mechanisms underlying iron homeostasis and multidrug resistance (MDR, however, are not yet resolved. To evaluate the potential mechanisms, we used whole genome transcriptome and electrospray ionization tandem mass spectrometry (ESI-MS/MS based lipidome analyses of iron deprived Candida cells to examine the new cellular circuitry of the MDR of this pathogen. Our transcriptome data revealed a link between calcineurin signaling and iron homeostasis. Among the several categories of iron deprivation responsive genes, the down regulation of calcineurin signaling genes including HSP90, CMP1 and CRZ1 was noteworthy. Interestingly, iron deprived Candida cells as well as iron acquisition defective mutants phenocopied molecular chaperone HSP90 and calcineurin mutants and thus were sensitive to alkaline pH, salinity and membrane perturbations. In contrast, sensitivity to above stresses did not change in iron deprived DSY2146 strain with a hyperactive allele of calcineurin. Although, iron deprivation phenocopied compromised HSP90 and calcineurin, it was independent of protein kinase C signaling cascade. Notably, the phenotypes associated with iron deprivation in genetically impaired calcineurin and HSP90 could be reversed with iron supplementation. The observed down regulation of ergosterol (ERG1, ERG2, ERG11 and ERG25 and sphingolipid biosynthesis (AUR1 and SCS7 genes followed by lipidome analysis confirmed that iron deprivation not only disrupted ergosterol biosynthesis, but it also affected sphingolipid homeostasis in Candida cells. These lipid compositional changes suggested extensive remodeling of the membranes in iron

  15. Calcineurin Orchestrates Lateral Transfer of Aspergillus fumigatus during Macrophage Cell Death.

    Science.gov (United States)

    Shah, Anand; Kannambath, Shichina; Herbst, Susanne; Rogers, Andrew; Soresi, Simona; Carby, Martin; Reed, Anna; Mostowy, Serge; Fisher, Matthew C; Shaunak, Sunil; Armstrong-James, Darius P

    2016-11-01

    Pulmonary aspergillosis is a lethal mold infection in the immunocompromised host. Understanding initial control of infection and how this is altered in the immunocompromised host are key goals for comprehension of the pathogenesis of pulmonary aspergillosis. To characterize the outcome of human macrophage infection with Aspergillus fumigatus and how this is altered in transplant recipients on calcineurin inhibitor immunosuppressants. We defined the outcome of human macrophage infection with A. fumigatus, as well as the impact of calcineurin inhibitors, through a combination of single-cell fluorescence imaging, transcriptomics, proteomics, and in vivo studies. Macrophage phagocytosis of A. fumigatus enabled control of 90% of fungal germination. However, fungal germination in the late phagosome led to macrophage necrosis. During programmed necroptosis, we observed frequent cell-cell transfer of A. fumigatus between macrophages, which assists subsequent control of germination in recipient macrophages. Lateral transfer occurred through actin-dependent exocytosis of the late endosome in a vasodilator-stimulated phosphoprotein envelope. Its relevance to the control of fungal germination was also shown by direct visualization in our zebrafish aspergillosis model in vivo. The calcineurin inhibitor FK506 (tacrolimus) reduced cell death and lateral transfer in vitro by 50%. This resulted in uncontrolled fungal germination in macrophages and also resulted in hyphal escape. These observations identify programmed, necrosis-dependent lateral transfer of A. fumigatus between macrophages as an important host strategy for controlling fungal germination. This process is critically dependent on calcineurin. Our studies provide fundamental insights into the pathogenesis of pulmonary aspergillosis in the immunocompromised host.

  16. Calcineurin regulates slow myosin, but not fast myosin or metabolic enzymes, during fast-to-slow transformation in rabbit skeletal muscle cell culture

    Science.gov (United States)

    Meißner, Joachim D; Gros, Gerolf; Scheibe, Renate J; Scholz, Michael; Kubis, Hans-Peter

    2001-01-01

    The addition of cyclosporin A (500 ng ml−1) - an inhibitor of the Ca2+-calmodulin-regulated serine/threonine phosphatase calcineurin - to primary cultures of rabbit skeletal muscle cells had no influence on the expression of fast myosin heavy chain (MHC) isoforms MHCIIa and MHCIId at the level of protein and mRNA, but reduced the expression of slow MHCI mRNA. In addition, no influence of cyclosporin A on the expression of citrate synthase (CS) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was found. The level of enzyme activity of CS was also not affected. When the Ca2+ ionophore A23187 (4 × 10−7m) was added to the medium, a partial fast-to-slow transformation occurred. The level of MHCI mRNA increased, and the level of MHCIId mRNA decreased. Cotreatment with cyclosporin A was able to prevent the upregulation of MHCI at the level of mRNA as well as protein, but did not reverse the decrease in MHCIId expression. The expression of MHCIIa was also not influenced by cyclosporin A. Cyclosporin A was not able to prevent the upregulation of CS mRNA under Ca2+ ionophore treatment and failed to reduce the increased enzyme activity of CS. The expression of GAPDH mRNA was reduced under Ca2+ ionophore treatment and was not altered under cotreatment with cyclosporin A. When the myotubes in the primary muscle culture were electrostimulated at 1 Hz for 15 min periods followed by pauses of 30 min, a partial fast-to-slow transformation was induced. Again, cotreatment with cyclosporin A prevented the upregulation of MHCI at the level of mRNA and protein without affecting MHCIId expression. The nuclear translocation of the calcineurin-regulated transcription factor nuclear factor of activated thymocytes (NFATc1) during treatment with Ca2+ ionophore, and the prevention of the translocation in the presence of cyclosporin A, were demonstrated immunocytochemically in the myotubes of the primary culture. The effects of cyclosporin A demonstrate the involvement of

  17. to view fulltext PDF

    Indian Academy of Sciences (India)

    2013-04-24

    Apr 24, 2013 ... threonine-specific protein phosphatase, calcineurin. Also called protein ...... were players in a larger insulin/IGF-1 signaling pathway that can regulate ..... Differential expression of calcineurin A isoforms in the diabetic kidney.

  18. Antihelminthic drug niclosamide inhibits CIP2A and reactivates tumor suppressor protein phosphatase 2A in non-small cell lung cancer cells.

    Science.gov (United States)

    Kim, Myeong-Ok; Choe, Min Ho; Yoon, Yi Na; Ahn, Jiyeon; Yoo, Minjin; Jung, Kwan-Young; An, Sungkwan; Hwang, Sang-Gu; Oh, Jeong Su; Kim, Jae-Sung

    2017-11-15

    Protein phosphatase 2A (PP2A) is a critical tumor suppressor complex responsible for the inactivation of various oncogenes. Recently, PP2A reactivation has emerged asan anticancer strategy. Cancerous inhibitor of protein phosphatase 2A (CIP2A), an endogenous inhibitor of PP2A, is upregulated in many cancer cells, including non-small cell lung cancer (NSCLC) cells. We demonstrated that the antihelminthic drug niclosamide inhibited the expression of CIP2A and reactivated the tumor suppressor PP2A in NSCLC cells. We performed a drug-repurposing screen and identified niclosamide asa CIP2A suppressor in NSCLC cells. Niclosamide inhibited cell proliferation, colony formation, and tumor sphere formation, and induced mitochondrial dysfunction through increased mitochondrial ROS production in NSCLC cells; however, these effects were rescued by CIP2A overexpression, which indicated that the antitumor activity of niclosamide was dependent on CIP2A. We found that niclosamide increased PP2A activity through CIP2A inhibition, which reduced the phosphorylation of several oncogenic proteins. Moreover, we found that a niclosamide analog inhibited CIP2A expression and increased PP2A activity in several types of NSCLC cells. Finally, we showed that other well-known PP2A activators, including forskolin and FTY720, did not inhibit CIP2A and that their activities were not dependent on CIP2A. Collectively, our data suggested that niclosamide effectively suppressed CIP2A expression and subsequently activated PP2A in NSCLC cells. This provided strong evidence for the potential use of niclosamide asa PP2A-activating drug in the clinical treatment of NSCLC. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Endothelial Regulator of Calcineurin 1 Promotes Barrier Integrity and Modulates Histamine-Induced Barrier Dysfunction in Anaphylaxis

    Directory of Open Access Journals (Sweden)

    Constanza Ballesteros-Martinez

    2017-10-01

    Full Text Available Anaphylaxis, the most serious and life-threatening allergic reaction, produces the release of inflammatory mediators by mast cells and basophils. Regulator of calcineurin 1 (Rcan1 is a negative regulator of mast-cell degranulation. The action of mediators leads to vasodilation and an increase in vascular permeability, causing great loss of intravascular volume in a short time. Nevertheless, the molecular basis remains unexplored on the vascular level. We investigated Rcan1 expression induced by histamine, platelet-activating factor (PAF, and epinephrine in primary human vein (HV-/artery (HA-derived endothelial cells (ECs and human dermal microvascular ECs (HMVEC-D. Vascular permeability was analyzed in vitro in human ECs with forced Rcan1 expression using Transwell migration assays and in vivo using Rcan1 knockout mice. Histamine, but neither PAF nor epinephrine, induced Rcan1-4 mRNA and protein expression in primary HV-ECs, HA-ECs, and HMVEC-D through histamine receptor 1 (H1R. These effects were prevented by pharmacological inhibition of calcineurin with cyclosporine A. Moreover, intravenous histamine administration increased Rcan1 expression in lung tissues of mice undergoing experimental anaphylaxis. Functional in vitro assays showed that overexpression of Rcan1 promotes barrier integrity, suggesting a role played by this molecule in vascular permeability. Consistent with these findings, in vivo models of subcutaneous and intravenous histamine-mediated fluid extravasation showed increased response in skin, aorta, and lungs of Rcan1-deficient mice compared with wild-type animals. These findings reveal that endothelial Rcan1 is synthesized in response to histamine through a calcineurin-sensitive pathway and may reduce barrier breakdown, thus contributing to the strengthening of the endothelium and resistance to anaphylaxis. These new insights underscore its potential role as a regulator of sensitivity to anaphylaxis in humans.

  20. Nebula/DSCR1 upregulation delays neurodegeneration and protects against APP-induced axonal transport defects by restoring calcineurin and GSK-3β signaling.

    Directory of Open Access Journals (Sweden)

    Jillian L Shaw

    Full Text Available Post-mortem brains from Down syndrome (DS and Alzheimer's disease (AD patients show an upregulation of the Down syndrome critical region 1 protein (DSCR1, but its contribution to AD is not known. To gain insights into the role of DSCR1 in AD, we explored the functional interaction between DSCR1 and the amyloid precursor protein (APP, which is known to cause AD when duplicated or upregulated in DS. We find that the Drosophila homolog of DSCR1, Nebula, delays neurodegeneration and ameliorates axonal transport defects caused by APP overexpression. Live-imaging reveals that Nebula facilitates the transport of synaptic proteins and mitochondria affected by APP upregulation. Furthermore, we show that Nebula upregulation protects against axonal transport defects by restoring calcineurin and GSK-3β signaling altered by APP overexpression, thereby preserving cargo-motor interactions. As impaired transport of essential organelles caused by APP perturbation is thought to be an underlying cause of synaptic failure and neurodegeneration in AD, our findings imply that correcting calcineurin and GSK-3β signaling can prevent APP-induced pathologies. Our data further suggest that upregulation of Nebula/DSCR1 is neuroprotective in the presence of APP upregulation and provides evidence for calcineurin inhibition as a novel target for therapeutic intervention in preventing axonal transport impairments associated with AD.

  1. Protein phosphatase 2A inhibition and circumvention of cisplatin cross-resistance by novel TCM-platinum anticancer agents containing demethylcantharidin.

    Science.gov (United States)

    To, Kenneth K W; Wang, Xinning; Yu, Chun Wing; Ho, Yee-Ping; Au-Yeung, Steve C F

    2004-09-01

    Novel TCM-platinum compounds [Pt(C(8)H(8)O(5))(NH(2)R)(2)] 1-5, derived from integrating demethylcantharidin, a modified component from a traditional Chinese medicine (TCM) with a platinum moiety, possess anticancer and protein phosphatase 2A inhibition properties. The compounds are able to circumvent cisplatin resistance by apparently targeting the DNA repair mechanism. Novel isosteric analogues [Pt(C(9)H(10)O(4))(NH(2)R)(2)] A and B, devoid of PP2A-inhibitory activity, were found to suffer from an enhanced DNA repair and were cross-resistant to cisplatin. The results advocate a well-defined structure-activity requirement associating the PP2A-inhibiting demethylcantharidin with the circumvention of cisplatin cross-resistance demonstrated by TCM-Pt compounds 1-5.

  2. High on Cannabis and Calcineurin Inhibitors: A Word of Warning in an Era of Legalized Marijuana.

    Science.gov (United States)

    Hauser, Naomi; Sahai, Tanmay; Richards, Rocco; Roberts, Todd

    2016-01-01

    Tacrolimus, a potent immunosuppressant medication, acts by inhibiting calcineurin, which eventually leads to inhibition of T-cell activation. The drug is commonly used to prevent graft rejection in solid organ transplant and graft-versus-host disease in hematopoietic stem cell transplant patients. Tacrolimus has a narrow therapeutic index with variable oral bioavailability and metabolism via cytochrome P-450 3A enzyme. Toxicity can occur from overdosing or from drug-drug interactions with the simultaneous administration of cytochrome P-450 3A inhibitors and possibly P-glycoprotein inhibitors. Tacrolimus toxicity can be severe and may include multiorgan damage. We present a case of suspected tacrolimus toxicity in a postallogeneic hematopoietic stem cell transplant patient who was concurrently using oral marijuana. This case represents an important and growing clinical scenario with the increasing legalization and use of marijuana throughout the United States.

  3. High on Cannabis and Calcineurin Inhibitors: A Word of Warning in an Era of Legalized Marijuana

    Directory of Open Access Journals (Sweden)

    Naomi Hauser

    2016-01-01

    Full Text Available Tacrolimus, a potent immunosuppressant medication, acts by inhibiting calcineurin, which eventually leads to inhibition of T-cell activation. The drug is commonly used to prevent graft rejection in solid organ transplant and graft-versus-host disease in hematopoietic stem cell transplant patients. Tacrolimus has a narrow therapeutic index with variable oral bioavailability and metabolism via cytochrome P-450 3A enzyme. Toxicity can occur from overdosing or from drug-drug interactions with the simultaneous administration of cytochrome P-450 3A inhibitors and possibly P-glycoprotein inhibitors. Tacrolimus toxicity can be severe and may include multiorgan damage. We present a case of suspected tacrolimus toxicity in a postallogeneic hematopoietic stem cell transplant patient who was concurrently using oral marijuana. This case represents an important and growing clinical scenario with the increasing legalization and use of marijuana throughout the United States.

  4. An acid phosphatase in the plasma membranes of human astrocytoma showing marked specificity toward phosphotyrosine protein.

    Science.gov (United States)

    Leis, J F; Kaplan, N O

    1982-11-01

    The plasma membrane from the human tumor astrocytoma contains an active acid phosphatase activity based on hydrolysis of p-nitrophenyl phosphate. Other acid phosphatase substrates--beta-glycerophosphate, O-phosphorylcholine, and 5'-AMP--are not hydrolyzed significantly. The phosphatase activity is tartrate insensitive and is stimulated by Triton X-100 and EDTA. Of the three known phosphoamino acids, only free O-phosphotyrosine is hydrolyzed by the membrane phosphatase activity. Other acid phosphatases tested from potato, wheat germ, milk, and bovine prostate did not show this degree of specificity. The plasma membrane activity also dephosphorylated phosphotyrosine histone at a much greater rate than did the other acid phosphatases. pH profiles for free O-phosphotyrosine and phosphotyrosine histone showed a shift toward physiological pH, indicating possible physiological significance. Phosphotyrosine histone dephosphorylation activity was nearly 10 times greater than that seen for phosphoserine histone dephosphorylation, and Km values were much lower for phosphotyrosine histone dephosphorylation (0.5 microM vs. 10 microM). Fluoride and zinc significantly inhibited phosphoserine histone dephosphorylation. Vanadate, on the other hand, was a potent inhibitor of phosphotyrosine histone dephosphorylation (50% inhibition at 0.5 microM) but not of phosphoserine histone. ATP stimulated phosphotyrosine histone dephosphorylation (160-250%) but inhibited phosphoserine histone dephosphorylation (95%). These results suggest the existence of a highly specific phosphotyrosine protein phosphatase activity associated with the plasma membrane of human astrocytoma.

  5. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    Directory of Open Access Journals (Sweden)

    Naoto Tatewaki

    Full Text Available Ataxia telangiectasia mutated (ATM kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR. The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15 and Chk1 (Ser317 was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression.

  6. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase.

    Science.gov (United States)

    Story, Sandra; Brigmon, Robin L

    2017-03-01

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soil resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. These results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications. Copyright © 2016. Published by Elsevier Inc.

  7. A histochemical study of rat salivary gland acid phosphatase.

    Science.gov (United States)

    Isacsson, G

    1986-01-01

    Male Sprague-Dawley rats received 4 mg pilocarpine/100 g body wt intraperitoneally or physiological saline as control and were killed at various intervals. Acid phosphatase was reacted on frozen sections from soft palate, parotid and submandibular glands using sodium-alpha-naphthyl acid phosphate as substrate. Various inhibitors were added to the incubation medium. The strongest acid phosphatase activity was in the parotid gland acinar and proximal secretory duct cells; the mucous minor glands of the palate were completely negative. Activity was found in the acinar cells, proximal secretory duct cells, granular and striated duct and excretory duct cells. Pilocarpine injection slightly reduced the activity up to 6 h after injection. Cupric chloride added to the incubation medium lowered the overall activity. Fluoride and molybdate inhibited the acid phosphatase reaction in all structures. Tartrate inhibited the reaction in all structures except the submandibular striated duct cells. The tartrate-resistant activity may be a Na+K+-dependent ATPase involved in re-absorbing water and electrolytes from the primary saliva.

  8. Imaging findings in a child with calcineurin inhibitor-induced pain syndrome after bone marrow transplant for beta thalassemia major

    Energy Technology Data Exchange (ETDEWEB)

    Ayyala, Rama S.; Arnold, Staci D.; Bhatia, Monica; Dastgir, Jahannaz [Columbia University Medical Center, Morgan Stanley Children' s Hospital, Department of Radiology, New York, NY (United States)

    2016-10-15

    Calcineurin inhibitor-induced pain syndrome is an entity recognized in patients on immunosuppressive therapy after transplantation. Diagnosis is characterized by onset of pain beginning in the setting of an elevated calcineurin-inhibitor trough level. Reducing the medication dose relieves symptoms. Imaging findings can be nonspecific, including bone marrow edema and periosteal reaction. We present the unique case of calcineurin inhibitor-induced pain syndrome in a child and review the imaging findings. (orig.)

  9. Imaging findings in a child with calcineurin inhibitor-induced pain syndrome after bone marrow transplant for beta thalassemia major

    International Nuclear Information System (INIS)

    Ayyala, Rama S.; Arnold, Staci D.; Bhatia, Monica; Dastgir, Jahannaz

    2016-01-01

    Calcineurin inhibitor-induced pain syndrome is an entity recognized in patients on immunosuppressive therapy after transplantation. Diagnosis is characterized by onset of pain beginning in the setting of an elevated calcineurin-inhibitor trough level. Reducing the medication dose relieves symptoms. Imaging findings can be nonspecific, including bone marrow edema and periosteal reaction. We present the unique case of calcineurin inhibitor-induced pain syndrome in a child and review the imaging findings. (orig.)

  10. Long-term habituation of the gill-withdrawal reflex in Aplysia requires gene transcription, calcineurin and L-type voltage-gated calcium channels

    Directory of Open Access Journals (Sweden)

    Joseph eEsdin

    2010-11-01

    Full Text Available Although habituation is possibly the simplest form of learning, we still do not fully understand the neurobiological basis of habituation in any organism. To advance the goal of a comprehensive understanding of habituation, we have studied long-term habituation (LTH of the gill-withdrawal reflex (GWR in the marine snail Aplysia californica. Previously, we showed that habituation of the GWR in a reduced preparation lasts for up to 12 hr, and depends on protein synthesis, as well as activation of protein phosphatases 1 and 2A and postsynaptic glutamate receptors. Here, we have used the reduced preparation to further analyze the mechanisms of LTH in Aplysia. We found that LTH of the GWR depends on RNA synthesis because it was blocked by both the irreversible transcriptional inhibitor actinomycin-D and the reversible transcriptional inhibitor, 5,6-dichlorobenzimidazole riboside (DRB. In addition, LTH requires activation of protein phosphatase 2B (calcineurin, because it was disrupted by ascomycin. Finally, LTH was blocked by nitrendipine, which indicates that activation of L-type voltage-gated Ca2+ channels is required for this form of learning. Together with our previous results, the present results indicate that exclusively presynaptic mechanisms, although possibly sufficient for short-term habituation, are insufficient for LTH. Rather, LTH must involve postsynaptic, as well as presynaptic, mechanisms.

  11. Everolimus with reduced calcineurin inhibitor in thoracic transplant recipients with renal dysfunction: a multicenter, randomized trial

    DEFF Research Database (Denmark)

    Gullestad, Lars; Iversen, Martin; Mortensen, Svend-Aage

    2010-01-01

    The proliferation signal inhibitor everolimus offers the potential to reduce calcineurin inhibitor (CNI) exposure and alleviate CNI-related nephrotoxicity. Randomized trials in maintenance thoracic transplant patients are lacking.......The proliferation signal inhibitor everolimus offers the potential to reduce calcineurin inhibitor (CNI) exposure and alleviate CNI-related nephrotoxicity. Randomized trials in maintenance thoracic transplant patients are lacking....

  12. TORC1 regulates Pah1 phosphatidate phosphatase activity via the Nem1/Spo7 protein phosphatase complex.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Dubots

    Full Text Available The evolutionarily conserved target of rapamycin complex 1 (TORC1 controls growth-related processes such as protein, nucleotide, and lipid metabolism in response to growth hormones, energy/ATP levels, and amino acids. Its deregulation is associated with cancer, type 2 diabetes, and obesity. Among other substrates, mammalian TORC1 directly phosphorylates and inhibits the phosphatidate phosphatase lipin-1, a central enzyme in lipid metabolism that provides diacylglycerol for the synthesis of membrane phospholipids and/or triacylglycerol as neutral lipid reserve. Here, we show that yeast TORC1 inhibits the function of the respective lipin, Pah1, to prevent the accumulation of triacylglycerol. Surprisingly, TORC1 regulates Pah1 in part indirectly by controlling the phosphorylation status of Nem1 within the Pah1-activating, heterodimeric Nem1-Spo7 protein phosphatase module. Our results delineate a hitherto unknown TORC1 effector branch that controls lipin function in yeast, which, given the recent discovery of Nem1-Spo7 orthologous proteins in humans, may be conserved.

  13. Inhibition of protein tyrosine phosphatase (PTP1B) and α-glucosidase by geranylated flavonoids from Paulownia tomentosa.

    Science.gov (United States)

    Song, Yeong Hun; Uddin, Zia; Jin, Young Min; Li, Zuopeng; Curtis-Long, Marcus John; Kim, Kwang Dong; Cho, Jung Keun; Park, Ki Hun

    2017-12-01

    Protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase are important targets to treat obesity and diabetes, due to their deep correlation with insulin and leptin signalling, and glucose regulation. The methanol extract of Paulownia tomentosa fruits showed potent inhibition against both enzymes. Purification of this extract led to eight geranylated flavonoids (1-8) displaying dual inhibition of PTP1B and α-glucosidase. The isolated compounds were identified as flavanones (1-5) and dihydroflavonols (6-8). Inhibitory potencies of these compounds varied accordingly, but most of the compounds were highly effective against PTP1B (IC 50  = 1.9-8.2 μM) than α-glucosidase (IC 50  = 2.2-78.9 μM). Mimulone (1) was the most effective against PTP1B with IC 50  = 1.9 μM, whereas 6-geranyl-3,3',5,5',7-pentahydroxy-4'-methoxyflavane (8) displayed potent inhibition against α-glucosidase (IC 50  = 2.2 μM). All inhibitors showed mixed type Ι inhibition toward PTP1B, and were noncompetitive inhibitors of α-glucosidase. This mixed type behavior against PTP1B was fully demonstrated by showing a decrease in V max , an increase of K m , and K ik /K iv ratio ranging between 2.66 and 3.69.

  14. Phosphate activity of Poa pratensis seeds. III. Effect of fluoride, citrate, urea and other substances on the activity of acid phosphatase Ia/sub 2/ and Ia/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Lorenc-Kubis, I.; Morawiecka, B.

    1978-01-01

    Effects of fluoride, citrate, urea and other substances on the activity of acid phosphatase a/sub 2/ and a/sub 3/ toward p-nitrophenylphosphate and phenylphosphate were investigated. Both enyzmes were inhibited by fluoride, p-chloro-mercuribenzoate and oxalate. Fluoride inhibited acid phosphatase a/sub 2/ non-competitively with p-nitrophenylphosphate, whereas acid phosphatase a/sub 3/ showed mixed type inhibition. Hydrolysis of phenylphosphate by both acid phosphatases was activated by citrate. Cytosine and uridine inhibited the activity of phosphatase a/sub 2/ toward p-nitrophenylphosphate and phenylphosphate, but no effect was observed in case of acid phosphatase a/sub 3/. After 30 min. incubation with 4 M urea both enzymes lost about 30% of their activity. 11 references, 5 figures, 1 table.

  15. Comparison of Protein Phosphatase Inhibition Assay with LC-MS/MS for Diagnosis of Microcystin Toxicosis in Veterinary Cases

    Directory of Open Access Journals (Sweden)

    Caroline E. Moore

    2016-03-01

    Full Text Available Microcystins are acute hepatotoxins of increasing global concern in drinking and recreational waters and are a major health risk to humans and animals. Produced by cyanobacteria, microcystins inhibit serine/threonine protein phosphatase 1 (PP1. A cost-effective PP1 assay using p-nitrophenyl phosphate was developed to quickly assess water and rumen content samples. Significant inhibition was determined via a linear model, which compared increasing volumes of sample to the log-transformed ratio of the exposed rate over the control rate of PP1 activity. To test the usefulness of this model in diagnostic case investigations, samples from two veterinary cases were tested. In August 2013 fifteen cattle died around two ponds in Kentucky. While one pond and three tested rumen contents had significant PP1 inhibition and detectable levels of microcystin-LR, the other pond did not. In August 2013, a dog became fatally ill after swimming in Clear Lake, California. Lake water samples collected one and four weeks after the dog presented with clinical signs inhibited PP1 activity. Subsequent analysis using liquid chromatography-mass spectrometry (LC-MS/MS detected microcystin congeners -LR, -LA, -RR and -LF but not -YR. These diagnostic investigations illustrate the advantages of using functional assays in combination with LC-MS/MS.

  16. Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study.

    Directory of Open Access Journals (Sweden)

    Silvia Petrezsélyová

    Full Text Available Regulated expression of the Ena1 Na+-ATPase is a crucial event for adaptation to high salt and/or alkaline pH stress in the budding yeast Saccharomyces cerevisiae. ENA1 expression is under the control of diverse signaling pathways, including that mediated by the calcium-regulatable protein phosphatase calcineurin and its downstream transcription factor Crz1. We present here a quantitative study of the expression of Ena1 in response to alkalinization of the environment and we analyze the contribution of Crz1 to this response. Experimental data and mathematical models substantiate the existence of two stress-responsive Crz1-binding sites in the ENA1 promoter and estimate that the contribution of Crz1 to the early response of the ENA1 promoter is about 60%. The models suggest the existence of a second input with similar kinetics, which would be likely mediated by high pH-induced activation of the Snf1 kinase.

  17. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death

    International Nuclear Information System (INIS)

    Zaja, Ivan; Bai, Xiaowen; Liu, Yanan; Kikuchi, Chika; Dosenovic, Svjetlana; Yan, Yasheng; Canfield, Scott G.; Bosnjak, Zeljko J.

    2014-01-01

    Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of

  18. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death

    Energy Technology Data Exchange (ETDEWEB)

    Zaja, Ivan [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Bai, Xiaowen, E-mail: xibai@mcw.edu [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Liu, Yanan; Kikuchi, Chika; Dosenovic, Svjetlana; Yan, Yasheng; Canfield, Scott G. [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Bosnjak, Zeljko J. [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States)

    2014-10-31

    Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of

  19. Using an enzyme linked immunosorbent assay (ELISA) and a protein phosphatase inhibition assay (PPIA) for the detection of microcystins and nodularins.

    Science.gov (United States)

    Carmichael, W W; An, J

    1999-01-01

    Cyanotoxins produced by cyanobacteria (blue-green algae) include potent neurotoxins and hepatotoxins. The hepatotoxins include cyclic peptide microcystins and nodularins plus the alkaloid cylindrospermopsins. Among the cyanotoxins the microcystins have proven to be the most widespread, and are most often implicated in animal and human poisonings. This paper presents a practical guide to two widely used methods for detecting and quantifying microcystins and nodularins in environmental samples-the enzyme linked immunosorbant assay (ELISA) and the protein phosphatase inhibition assay (PPIA).

  20. Phosphotyrosine as a substrate of acid and alkaline phosphatases.

    Science.gov (United States)

    Apostoł, I; Kuciel, R; Wasylewska, E; Ostrowski, W S

    1985-01-01

    A new spectrophotometric method for following dephosphorylation of phosphotyrosine has been described. The absorption spectra of phosphotyrosine and tyrosine were plotted over the pH range from 3 to 9. The change in absorbance accompanying the conversion of phosphotyrosine to tyrosine was the greatest at 286 nm. The difference absorption coefficients were calculated for several pH values. Dephosphorylation of phosphotyrosine by acid phosphatases from human prostate gland, from wheat germ and potatoes obeys the Michaelis-Menten equation, whereas alkaline phosphatases calf intestine and E. coli are inhibited by excess of substrate.

  1. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    OpenAIRE

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hyd...

  2. Protein phosphatase 5 promotes hepatocarcinogenesis through interaction with AMP-activated protein kinase.

    Science.gov (United States)

    Chen, Yao-Li; Hung, Man-Hsin; Chu, Pei-Yi; Chao, Tzu-I; Tsai, Ming-Hsien; Chen, Li-Ju; Hsiao, Yung-Jen; Shih, Chih-Ting; Hsieh, Feng-Shu; Chen, Kuen-Feng

    2017-08-15

    The serine-threonine protein phosphatase family members are known as critical regulators of various cellular functions, such as survival and transformation. Growing evidence suggests that pharmacological manipulation of phosphatase activity exhibits therapeutic benefits. Ser/Thr protein phosphatase 5 (PP5) is known to participate in glucocorticoid receptor (GR) and stress-induced signaling cascades that regulate cell growth and apoptosis, and has been shown to be overexpressed in various human malignant diseases. However, the role of PP5 in hepatocellular carcinoma (HCC) and whether PP5 may be a viable therapeutic target for HCC treatment are unknown. Here, by analyzing HCC clinical samples obtained from 215 patients, we found that overexpression of PP5 is tumor specific and associated with worse clinical outcomes. We further characterized the oncogenic properties of PP5 in HCC cells. Importantly, both silencing of PP5 with lentiviral-mediated short hairpin RNA (shRNA) and chemical inhibition of PP5 phosphatase activity using the natural compound cantharidin/norcantharidin markedly suppressed the growth of HCC cells and tumors in vitro and in vivo. Moreover, we identified AMP-activated protein kinase (AMPK) as a novel downstream target of oncogenic PP5 and demonstrated that the antitumor mechanisms underlying PP5 inhibition involve activation of AMPK signaling. Overall, our results establish a pathological function of PP5 in hepatocarcinogenesis via affecting AMPK signaling and suggest that PP5 inhibition is an attractive therapeutic approach for HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics

    NARCIS (Netherlands)

    Groves, M R; Yao, Z J; Roller, P P; Burke, T R; Barford, D

    1998-01-01

    Protein tyrosine phosphatases regulate diverse cellular processes and represent important targets for therapeutic intervention in a number of diseases. The crystal structures of protein tyrosine phosphatase 1B (PTP1B) in complex with small molecule inhibitors based upon two classes of

  4. Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species

    International Nuclear Information System (INIS)

    Haase, Hajo; Engelhardt, Gabriela; Hebel, Silke; Rink, Lothar

    2011-01-01

    Mercury intoxication profoundly affects the immune system, in particular, signal transduction of immune cells. However, the mechanism of the interaction of mercury with cellular signaling pathways, such as mitogen activated protein kinases (MAPK), remains elusive. Therefore, the objective of this study is to investigate three potential ways in which Hg 2+ ions could inhibit MAPK dephosphorylation in the human T-cell line Jurkat: (1) by direct binding to phosphatases; (2) by releasing cellular zinc (Zn 2+ ); and (3) by inducing reactive oxygen species (ROS). Hg 2+ causes production of ROS, measured by dihydrorhodamine 123, and triggers ROS-mediated Zn 2+ release, detected with FluoZin-3. Yet, phosphatase-inhibition is not mediated by binding of Zn 2+ or Hg 2+ . Rather, phosphatases are inactivated by at least two forms of thiol oxidation; initial inhibition is reversible with reducing agents such as Tris(2-carboxyethyl)phosphine. Prolonged inhibition leads to non-reversible phosphatase oxidation, presumably oxidizing the cysteine thiol to sulfinic- or sulfonic acid. Notably, phosphatases are a particularly sensitive target for Hg 2+ -induced oxidation, because phosphatase activity is inhibited at concentrations of Hg 2+ that have only minor impact on over all thiol oxidation. This phosphatase inhibition results in augmented, ROS-dependent MAPK phosphorylation. MAPK are important regulators of T-cell function, and MAPK-activation by inhibition of phosphatases seems to be one of the molecular mechanisms by which mercury affects the immune system.

  5. Shikonin, a constituent of Lithospermum erythrorhizon exhibits anti-allergic effects by suppressing orphan nuclear receptor Nr4a family gene expression as a new prototype of calcineurin inhibitors in mast cells.

    Science.gov (United States)

    Wang, Xiaoyu; Hayashi, Shusaku; Umezaki, Masahito; Yamamoto, Takeshi; Kageyama-Yahara, Natsuko; Kondo, Takashi; Kadowaki, Makoto

    2014-12-05

    Over the last few decades, food allergy (FA) has become a common disease in infants in advanced countries. However, anti-allergic medicines available in the market have no effect on FA, and consequently effective drug therapies for FA are not yet available. We have already demonstrated that mucosal mast cells play an essential role in the development of FA in a murine model. Thus, we screened many constituents from medicinal herbs for the ability to inhibit rat basophilic leukemia-2H3 mast-like cell degranulation, and found that shikonin, a naphthoquinone dye from Lithospermum erythrorhizon, exhibited the most potent inhibitory effect among them. Furthermore, shikonin extremely inhibited the IgE/antigen-induced and calcium ionophore-induced upregulation of tumor necrosis factor (TNF)-α mRNA expression in mucosal-type bone marrow-derived mast cells (mBMMCs). Global gene expression analysis confirmed by real-time PCR revealed that shikonin drastically inhibited the IgE/antigen-induced and calcium ionophore-induced upregulation of mRNA expression of the nuclear orphan receptor 4a family (Nr4a1, Nr4a2 and Nr4a3) in mBMMCs, and knockdown of Nr4a1 or Nr4a2 suppressed the IgE/antigen-induced upregulation of TNF-α mRNA expression. Computational docking simulation of a small molecule for a target protein is a useful technique to elucidate the molecular mechanisms underlying the effects of drugs. Therefore, the simulation revealed that the predicted binding sites of shikonin to immunophilins (cyclophilin A and FK506 binding protein (FKBP) 12) were almost the same as the binding sites of immunosuppressants (cyclosporin A and FK506) to immunophilins. Indeed, shikonin inhibited the calcineurin activity to a similar extent as cyclosporin A that markedly suppressed the IgE/antigen-enhanced mRNA expression of TNF-α and the Nr4a family in mBMMCs. These findings suggest that shikonin suppresses mucosal mast cell activation by reducing Nr4a family gene expression through the

  6. Caged xanthones displaying protein tyrosine phosphatase 1B (PTP1B) inhibition from Cratoxylum cochinchinense.

    Science.gov (United States)

    Li, Zuo Peng; Lee, Hyeong-Hwan; Uddin, Zia; Song, Yeong Hun; Park, Ki Hun

    2018-08-01

    Four new caged xanthones (1-4) and two known compounds (5, 6) were isolated from the roots of Cratoxylum cochinchinense, a polyphenol rich plant, collected in China. The structures of the isolated compounds (1-6) were characterized by obtaining their detailed spectroscopic data. In particular, compounds 1 and 6 were fully identified by X-ray crystallographic data. The isolated compounds (1-6) were evaluated against protein tyrosine phosphatase 1B (PTP1B), which plays an important role in diabetes, obesity, and cancer. Among these compounds, 3, 4, and 6 displayed significant inhibition with IC 50 values of 76.3, 43.2, and 6.6 µM, respectively. A detailed kinetic study was conducted by determining K m , V max , and the ratio of K ik and K iv , which revealed that all the compounds behaved as competitive inhibitors. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Beryllium and growth. III. The effect of beryllium on plant phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, M B

    1952-01-01

    The purpose of the investigations was to correlate the apparent ability of beryllium to substitute for magnesium in plant growth with a specific biochemical effect of the metal. Through association with earlier work on beryllium inhibition of animal alkaline phosphatase, a study was made of the effect of beryllium and other metals upon the activity of a phosphatase derived from tomato leaves. Although only indirect evidence is available that this enzyme system was magnesium-activated, beryllium was found to inhibit reversibly the splitting of GP and ATP. Other metals were also found to be inhibitory but the ATP-ase inhibition - and especially the ratio of P split from GP to P split from ATP - was higher for beryllium than for any other metal studied. The significance of this finding in relation to energy metabolism, growth, and beryllium toxicity is discussed. 12 references, 5 figures, 2 tables.

  8. Effect of vanadium compounds on acid phosphatase activity.

    Science.gov (United States)

    Vescina, C M; Sálice, V C; Cortizo, A M; Etcheverry, S B

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activity seems to depend on the geometry around the vanadium atom more than on the oxidation state. Our results indicate a correlation between the PTPase activity and the sensitivity to vanadate and vanadyl cation.

  9. Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) interacts with neurofilament L and inhibits its filament association

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Hana [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Katoh, Tsuyoshi [Department of Biochemistry, Asahikawa Medical University, Asahikawa, 078-8510 (Japan); Nakagawa, Ryoko; Ishihara, Yasuhiro [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Sueyoshi, Noriyuki; Kameshita, Isamu [Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795 (Japan); Taniguchi, Takanobu [Department of Biochemistry, Asahikawa Medical University, Asahikawa, 078-8510 (Japan); Hirano, Tetsuo; Yamazaki, Takeshi [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Ishida, Atsuhiko, E-mail: aishida@hiroshima-u.ac.jp [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan)

    2016-09-02

    Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr phosphatase that belongs to the PPM family. Growing evidence suggests that PPM phosphatases including CaMKP act as a complex with other proteins to regulate cellular functions. In this study, using the two-dimensional far-western blotting technique with digoxigenin-labeled CaMKP as a probe, in conjunction with peptide mass fingerprinting analysis, we identified neurofilament L (NFL) as a CaMKP-binding protein in a Triton-insoluble fraction of rat brain. We confirmed binding of fluorescein-labeled CaMKP (F-CaMKP) to NFL in solution by fluorescence polarization. The analysis showed that the dissociation constant of F-CaMKP for NFL is 73 ± 17 nM (n = 3). Co-immunoprecipitation assay using a cytosolic fraction of NGF-differentiated PC12 cells showed that endogenous CaMKP and NFL form a complex in cells. Furthermore, the effect of CaMKP on self-assembly of NFL was examined. Electron microscopy revealed that CaMKP markedly prevented NFL from forming large filamentous aggregates, suggesting that CaMKP-binding to NFL inhibits its filament association. These findings may provide new insights into a novel mechanism for regulating network formation of neurofilaments during neuronal differentiation. - Highlights: • NFL was identified as a CaMKP-binding protein in an insoluble fraction of rat brain. • CaMKP bound to NFL in solution with a K{sub d} value of 73 ± 17 nM. • A CaMKP-NFL complex was found in NGF-differentiated PC12 cells. • CaMKP-binding to NFL inhibited its filament association. • CaMKP may regulate network formation of neurofilaments in neurons.

  10. Purification and characterization of an alkaline phosphatase induced by phosphorus starvation in common bean (Phaseolus vulgaris L.) roots

    International Nuclear Information System (INIS)

    Morales, L.; Gutierrez, N.; Maya, V.; Parra, C.; Martinez B, E.; Coello, P.

    2012-01-01

    Two phosphatase isoforms from roots of the common bean (Phaseolus vulgaris L.) showed an increase in activity in response to phosphate deficiency. One of them (APIII) was chosen for further purification through ionic exchange chromatography and preparative electrophoresis. The estimated molecular mass of APIII was 35 kDa by both SDS-Page and gel filtration analyses, suggesting a monomeric form of the active enzyme. The phosphatase was classified as an alkaline phosphatase based on the requirement of ph 8 for optimum catalysis. It not only exhibited broad substrate specificity, with the most activity against pyrophosphate, but also effectively catalyzed the hydrolysis of polyphosphate, glucose-1-phosphate and phospho enol-pyruvate. Activity was completely inhibited by molybdate, vanadate and phosphate but was only partially inhibited by fluoride. Although divalent cations were not essential for the pyro phosphatase activity of this enzyme, the hydrolysis of pyro phosphatase increased substantially in the presence of Mg 2+ .

  11. Purification and characterization of an alkaline phosphatase induced by phosphorus starvation in common bean (Phaseolus vulgaris L.) roots

    Energy Technology Data Exchange (ETDEWEB)

    Morales, L.; Gutierrez, N.; Maya, V.; Parra, C.; Martinez B, E.; Coello, P., E-mail: pcoello@servidor.unam.mx [UNAM, Facultad de Quimica, Departamento de Bioquimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-07-01

    Two phosphatase isoforms from roots of the common bean (Phaseolus vulgaris L.) showed an increase in activity in response to phosphate deficiency. One of them (APIII) was chosen for further purification through ionic exchange chromatography and preparative electrophoresis. The estimated molecular mass of APIII was 35 kDa by both SDS-Page and gel filtration analyses, suggesting a monomeric form of the active enzyme. The phosphatase was classified as an alkaline phosphatase based on the requirement of ph 8 for optimum catalysis. It not only exhibited broad substrate specificity, with the most activity against pyrophosphate, but also effectively catalyzed the hydrolysis of polyphosphate, glucose-1-phosphate and phospho enol-pyruvate. Activity was completely inhibited by molybdate, vanadate and phosphate but was only partially inhibited by fluoride. Although divalent cations were not essential for the pyro phosphatase activity of this enzyme, the hydrolysis of pyro phosphatase increased substantially in the presence of Mg{sup 2+}.

  12. Reconsolidation or extinction: transcription factor switch in the determination of memory course after retrieval.

    Science.gov (United States)

    de la Fuente, Verónica; Freudenthal, Ramiro; Romano, Arturo

    2011-04-13

    In fear conditioning, aversive stimuli are readily associated with contextual features. A brief reexposure to the training context causes fear memory reconsolidation, whereas a prolonged reexposure induces memory extinction. The regulation of hippocampal gene expression plays a key role in contextual memory consolidation and reconsolidation. However, the mechanisms that determine whether memory will reconsolidate or extinguish are not known. Here, we demonstrate opposing roles for two evolutionarily related transcription factors in the mouse hippocampus. We found that nuclear factor-κB (NF-κB) is required for fear memory reconsolidation. Conversely, calcineurin phosphatase inhibited NF-κB and induced nuclear factor of activated T-cells (NFAT) nuclear translocation in the transition between reconsolidation and extinction. Accordingly, the hippocampal inhibition of both calcineurin and NFAT independently impaired memory extinction, whereas inhibition of NF-κB enhanced memory extinction. These findings represent the first insight into the molecular mechanisms that determine memory reprocessing after retrieval, supporting a transcriptional switch that directs memory toward reconsolidation or extinction. The precise molecular characterization of postretrieval processes has potential importance to the development of therapeutic strategies for fear memory disorders.

  13. Direct determination of phosphatase activity from physiological substrates in cells.

    Directory of Open Access Journals (Sweden)

    Zhongyuan Ren

    Full Text Available A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1 mg(-1 for PPi, to 56 ± 11 nmol min(-1 mg(-1 for AMP, to 79 ± 23 nmol min(-1 mg(-1 for beta-glycerophosphate and to 73 ± 15 nmol min(-1 mg(-1 for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes.

  14. Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats. A pharmacological study with the chlorogenic acid derivative S4048

    NARCIS (Netherlands)

    van Dijk, T. H.; van der Sluijs, F. H.; Wiegman, C. H.; Baller, J. F.; Gustafson, L. A.; Burger, H. J.; Herling, A. W.; Kuipers, F.; Meijer, A. J.; Reijngoud, D. J.

    2001-01-01

    Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in

  15. Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats - A pharmacological study with the chlorogenic acid derivative S4048

    NARCIS (Netherlands)

    van Dijk, TH; van der Sluijs, FH; Wiegman, CH; Baller, JFW; Gustafson, LA; Burger, HJ; Herling, AW; Kuipers, F; Meijer, AJ; Reijngoud, DJ

    2001-01-01

    Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in

  16. Protein kinase and phosphatase activities of thylakoid membranes

    International Nuclear Information System (INIS)

    Michel, H.; Shaw, E.K.; Bennett, J.

    1987-01-01

    Dephosphorylation of the 25 and 27 kDa light-harvesting Chl a/b proteins (LHCII) of the thylakoid membranes is catalyzed by a phosphatase which differs from previously reported thylakoid-bound phosphatases in having an alkaline pH optimum (9.0) and a requirement for Mg 2+ ions. Dephosphorylation of the 8.3 kDa psb H gene product requires a Mg 2+ ion concentration more than 200 fold higher than that for dephosphorylation of LHC II. The 8.3 kDa and 27 kDa proteins appear to be phosphorylated by two distinct kinases, which differ in substrate specificity and sensitivity to inhibitors. The plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB) inhibits phosphorylation of the 27 kDa LHC II much more readily than phosphorylation of the 8.3 kDa protein. A similar pattern of inhibition is seen for two synthetic oligopeptides (MRKSATTKKAVC and ATQTLESSSRC) which are analogs of the phosphorylation sites of the two proteins. Possible modes of action of DBMIB are discussed. 45 refs., 7 figs., 3 tabs

  17. Regulator of calcineurin 1 mediates pathological vascular wall remodeling

    Science.gov (United States)

    Esteban, Vanesa; Méndez-Barbero, Nerea; Jesús Jiménez-Borreguero, Luis; Roqué, Mercè; Novensá, Laura; Belén García-Redondo, Ana; Salaices, Mercedes; Vila, Luis; Arbonés, María L.

    2011-01-01

    Artery wall remodeling, a major feature of diseases such as hypertension, restenosis, atherosclerosis, and aneurysm, involves changes in the tunica media mass that reduce or increase the vessel lumen. The identification of molecules involved in vessel remodeling could aid the development of improved treatments for these pathologies. Angiotensin II (AngII) is a key effector of aortic wall remodeling that contributes to aneurysm formation and restenosis through incompletely defined signaling pathways. We show that AngII induces vascular smooth muscle cell (VSMC) migration and vessel remodeling in mouse models of restenosis and aneurysm. These effects were prevented by pharmacological inhibition of calcineurin (CN) or lentiviral delivery of CN-inhibitory peptides. Whole-genome analysis revealed >1,500 AngII-regulated genes in VSMCs, with just 11 of them requiring CN activation. Of these, the most sensitive to CN activation was regulator of CN 1 (Rcan1). Rcan1 was strongly activated by AngII in vitro and in vivo and was required for AngII-induced VSMC migration. Remarkably, Rcan1−/− mice were resistant to AngII-induced aneurysm and restenosis. Our results indicate that aneurysm formation and restenosis share mechanistic elements and identify Rcan1 as a potential therapeutic target for prevention of aneurysm and restenosis progression. PMID:21930771

  18. Reciprocal regulation of ARPP-16 by PKA and MAST3 kinases provides a cAMP-regulated switch in protein phosphatase 2A inhibition.

    Science.gov (United States)

    Musante, Veronica; Li, Lu; Kanyo, Jean; Lam, Tukiet T; Colangelo, Christopher M; Cheng, Shuk Kei; Brody, A Harrison; Greengard, Paul; Le Novère, Nicolas; Nairn, Angus C

    2017-06-14

    ARPP-16, ARPP-19, and ENSA are inhibitors of protein phosphatase PP2A. ARPP-19 and ENSA phosphorylated by Greatwall kinase inhibit PP2A during mitosis. ARPP-16 is expressed in striatal neurons where basal phosphorylation by MAST3 kinase inhibits PP2A and regulates key components of striatal signaling. The ARPP-16/19 proteins were discovered as substrates for PKA, but the function of PKA phosphorylation is unknown. We find that phosphorylation by PKA or MAST3 mutually suppresses the ability of the other kinase to act on ARPP-16. Phosphorylation by PKA also acts to prevent inhibition of PP2A by ARPP-16 phosphorylated by MAST3. Moreover, PKA phosphorylates MAST3 at multiple sites resulting in its inhibition. Mathematical modeling highlights the role of these three regulatory interactions to create a switch-like response to cAMP. Together, the results suggest a complex antagonistic interplay between the control of ARPP-16 by MAST3 and PKA that creates a mechanism whereby cAMP mediates PP2A disinhibition.

  19. Mefloquine effectively targets gastric cancer cells through phosphatase-dependent inhibition of PI3K/Akt/mTOR signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanwei [Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province (China); Chen, Sen [Department of Academic Affairs, Hubei University of Medicine, Shiyan, Hubei Province (China); Xue, Rui [Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province (China); Zhao, Juan [Department of Oncology, Xiangyang Central Hospital, Shiyan, Hubei Province (China); Di, Maojun, E-mail: maoojun_di@163.com [Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province (China)

    2016-02-05

    Deregulation of PI3K/Akt/mTOR pathway has been recently identified to play a crucial role in the progress of human gastric cancer. In this study, we show that mefloquine, a FDA-approved anti-malarial drug, effectively targets human gastric cancer cells. Mefloquine potently inhibits proliferation and induces apoptosis of a panel of human gastric cancer cell lines, with EC{sub 50} ∼0.5–0.7 μM. In two independent gastric cancer xenograft mouse models, mefloquine significantly inhibits growth of both tumors. The combination of mefloquine with paclitaxel enhances the activity of either drug alone in in vitro and in vivo. In addition, mefloquine potently decreased phosphorylation of PI3K, Akt, mTOR and rS6. Overexpression of constitutively active Akt significantly restored mefloquine-mediated inhibition of mTOR phosphorylation and growth, and induction of apoptosis, suggesting that mefloquine acts on gastric cancer cells via suppressing PI3K/Akt/mTOR pathway. We further show that mefloquine-mediated inhibition of Akt/mTOR singaling is phosphatase-dependent as pretreatment with calyculin A does-dependently reversed mefloquine-mediated inhibition of Akt/mTOR phosphorylation. Since mefloquine is already available for clinic use, these results suggest that it is a useful addition to the treatment armamentarium for gastric cancer. - Highlights: • Mefloquine targets a panel of gastric cancer cell lines in vitro and in vivo. • Combination of mefloquine and paclitaxel is synergistic. • Mefloquine acts on gastric cancer via inhibition of PI3K/Akt/mTOR pathway. • Mefloquine can be repurposed for gastric cancer treatment.

  20. Inhibition of PTEN and activation of Akt by menadione.

    Science.gov (United States)

    Yoshikawa, Kyoko; Nigorikawa, Kiyomi; Tsukamoto, Mariko; Tamura, Namiko; Hazeki, Kaoru; Hazeki, Osamu

    2007-04-01

    Menadione (vitamin K(3)) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells. The phosphorylation of Akt by menadione was not inhibited by AG1478, an inhibitor of EGFR. Menadione inhibited the lipid phosphatase activity of PTEN in a cell-free system. In an intact cell system, menadione inhibited the effect of transfected PTEN on Akt. Thus, one mechanism of its action was considered the accelerated activation of Akt through inhibition of PTEN. This was not the sole mechanism responsible for the EGFR-independent activation of Akt, because menadione attenuated the rate of Akt dephosphorylation even in PTEN-null PC3 cells. The decelerated inactivation of Akt, probably through inhibition of some tyrosine phosphatases, was considered another mechanism of its action.

  1. An Additional Method for Analyzing the Reversible Inhibition of an 
Enzyme Using Acid Phosphatase as a Model.

    Science.gov (United States)

    Baumhardt, Jordan M; Dorsey, Benjamin M; McLauchlan, Craig C; Jones, Marjorie A

    2015-08-01

    Using wheat germ acid phosphatase and sodium orthovanadate as a competitive inhibitor, a novel method for analyzing reversible inhibition was carried out. Our alternative approach involves plotting the initial velocity at which product is formed as a function of the ratio of substrate concentration to inhibitor concentration at a constant enzyme concentration and constant assay conditions. The concept of initial concentrations driving equilibrium leads to the chosen axes. Three apparent constants can be derived from this plot: K max , K min , and K inflect . K max and K min represent the substrate to inhibitor concentration ratio for complete inhibition and minimal inhibition, respectively. K inflect represents the substrate to inhibitor concentration ratio at which the enzyme-substrate complex is equal to the inhibitory complex. These constants can be interpolated from the graph or calculated using the first and second derivative of the plot. We conclude that a steeper slope and a shift of the line to the right (increased x-axis values) would indicate a better inhibitor. Since initial velocity is not a linear function of the substrate/inhibitor ratio, this means that inhibition changes more quickly with the change in the [S]/ [I] ratio. When preincubating the enzyme with substrate before the addition of inhibitor, preincubating the enzyme with inhibitor before the addition of substrate or with concurrent addition of both substrate and inhibitor, modest changes in the slopes and y-intercepts were obtained. This plot appears useful for known competitive and non-competitive inhibitors and may have general applicability.

  2. Detection of endogenous alkaline phosphatase activity in intact cells by flow cytometry using the fluorogenic ELF-97 phosphatase substrate

    Science.gov (United States)

    Telford, W. G.; Cox, W. G.; Stiner, D.; Singer, V. L.; Doty, S. B.

    1999-01-01

    BACKGROUND: The alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone (ELF((R))-97 for enzyme-labeled fluorescence) has been found useful for the histochemical detection of endogenous AP activity and AP-tagged proteins and oligonucleotide probes. In this study, we evaluated its effectiveness at detecting endogenous AP activity by flow cytometry. METHODS: The ELF-97 phosphatase substrate was used to detect endogenous AP activity in UMR-106 rat osteosarcoma cells and primary cultures of chick chondrocytes. Cells were labeled with the ELF-97 reagent and analyzed by flow cytometry using an argon ultraviolet (UV) laser. For comparison purposes, cells were also assayed for AP using a Fast Red Violet LB azo dye assay previously described for use in detecting AP activity by flow cytometry. RESULTS: The ELF-97 phosphatase substrate effectively detected endogenous AP activity in UMR-106 cells, with over 95% of the resulting fluorescent signal resulting from AP-specific activity (as determined by levamisole inhibition of AP activity). In contrast, less than 70% of the fluorescent signal from the Fast Red Violet LB (FRV) assay was AP-dependent, reflecting the high intrinsic fluorescence of the unreacted components. The ELF-97 phosphatase assay was also able to detect very low AP activity in chick chondrocytes that was undetectable by the azo dye method. CONCLUSIONS: The ELF-97 phosphatase assay was able to detect endogenous AP activity in fixed mammalian and avian cells by flow cytometry with superior sensitivity to previously described assays. This work also shows the applicability of ELF-97 to flow cytometry, supplementing its previously demonstrated histochemical applications. Copyright 1999 Wiley-Liss, Inc.

  3. Curcumin Inhibits NTHi-Induced MUC5AC Mucin Overproduction in Otitis Media via Upregulation of MAPK Phosphatase MKP-1

    Directory of Open Access Journals (Sweden)

    Anuhya Sharma Konduru

    2017-01-01

    Full Text Available Otitis media (OM, characterized by the presence of mucus overproduction and excess inflammation in the middle ear, is the most common childhood infection. Nontypeable Haemophilus influenzae (NTHi pathogen is responsible for approximately one-third of episodes of bacteria-caused OM. Current treatments for bacterial OM rely on the systemic use of antibiotics, which often leads to the emergence of multidrug resistant bacterial strains. Therefore there is an urgent need for developing alternative therapies strategies for controlling mucus overproduction in OM. MUC5AC mucin has been shown to play a critical role in the pathogenesis of OM. Here we show that curcumin derived from Curcuma longa plant is a potent inhibitor of NTHi-induced MUC5AC mucin expression in middle ear epithelial cells. Curcumin inhibited MUC5AC expression by suppressing activation of p38 MAPK by upregulating MAPK phosphatase MKP-1. Thus, our study identified curcumin as a potential therapeutic for inhibiting mucin overproduction in OM by upregulating MKP-1, a known negative regulator of inflammation.

  4. Immunomodulation and safety of topical calcineurin inhibitors for the treatment of atopic dermatitis.

    Science.gov (United States)

    Hultsch, Thomas; Kapp, Alexander; Spergel, Jonathan

    2005-01-01

    Atopic dermatitis (AD) is a chronic or chronically relapsing inflammatory skin condition that primarily affects children. Topical corticosteroids have been the mainstay of treatment since the late 1950s. While providing excellent short-term efficacy, topical corticosteroid usage is limited by potential adverse effects, including impairment of the function and viability of Langerhans cells/dendritic cells. The recently introduced topical calcineurin inhibitors pimecrolimus cream 1% (Elidel) and tacrolimus ointment 0.03 and 0.1% (Protopic) exhibit a more selective mechanism of action and do not affect Langerhans cells/dendritic cells. For the immune system of young children 'learning' to mount a balanced Th1/Th2 response, this selective effect has particular benefits. In clinical experience, topical calcineurin inhibitors have been shown to be a safe and effective alternative to topical corticosteroids in almost 7 million patients (>5 million on pimecrolimus; >1.7 million on tacrolimus). Topical pimecrolimus is primarily used in children with mild and moderate AD, whereas tacrolimus is used preferentially in more severe cases. None of the topical calcineurin inhibitors have been associated with systemic immunosuppression-related malignancies known to occur following long-term sustained systemic immunosuppression with oral immunosuppressants (e.g., tacrolimus, cyclosporine A, and corticosteroids) in transplant patients. Preclinical and clinical data suggest a greater skin selectivity and larger safety margin for topical pimecrolimus. (c) 2005 S. Karger AG, Basel

  5. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling

    DEFF Research Database (Denmark)

    Lund, I K; Hansen, J A; Andersen, H S

    2005-01-01

    Upon leptin binding, the leptin receptor is activated, leading to stimulation of the JAK/STAT signal transduction cascade. The transient character of the tyrosine phosphorylation of JAK2 and STAT3 suggests the involvement of protein tyrosine phosphatases (PTPs) as negative regulators...

  6. Differential distribution of calcineurin Aα isoenzyme mRNA's in rat brain

    NARCIS (Netherlands)

    Buttini, M.; Limonta, S.; Luyten, M.; Boddeke, H.

    1993-01-01

    Specific antisense oligonucleotide probes for the α isoforms of the catalytic subunit (A-subunit) of calcineurin were prepared and the distribution of Aα1 and Aα2 mRNA's has been studied in rat brain using in situ hybridization histochemistry. Clear regional differences have been observed for the

  7. Impact of ionic aluminium on extracellular phosphatases in acidified lakes

    Czech Academy of Sciences Publication Activity Database

    Bittl, T.; Vrba, Jaroslav; Nedoma, Jiří; Kopáček, Jiří

    2001-01-01

    Roč. 3, č. 9 (2001), s. 578-587 ISSN 1462-2912 R&D Projects: GA ČR GA206/97/0072; GA ČR GA206/00/0063 Keywords : acid phosphatases * pH effect * inhibition Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.276, year: 2001

  8. Calcineurin Aβ regulates NADPH oxidase (Nox) expression and activity via nuclear factor of activated T cells (NFAT) in response to high glucose.

    Science.gov (United States)

    Williams, Clintoria R; Gooch, Jennifer L

    2014-02-21

    Hypertrophy is an adaptive response that enables organs to appropriately meet increased functional demands. Previously, we reported that calcineurin (Cn) is required for glomerular and whole kidney hypertrophy in diabetic rodents (Gooch, J. L., Barnes, J. L., Garcia, S., and Abboud, H. E. (2003). Calcineurin is activated in diabetes and is required for glomerular hypertrophy and ECM accumulation. Am. J. Physiol. Renal Physiol. 284, F144-F154; Reddy, R. N., Knotts, T. L., Roberts, B. R., Molkentin, J. D., Price, S. R., and Gooch, J. L. (2011). Calcineurin Aβ is required for hypertrophy but not matrix expansion in the diabetic kidney. J. Cell Mol. Med. 15, 414-422). Because studies have also implicated the reactive oxygen species-generating enzymes NADPH oxidases (Nox) in diabetic kidney responses, we tested the hypothesis that Nox and Cn cooperate in a common signaling pathway. First, we examined the role of the two main isoforms of Cn in hypertrophic signaling. Using primary kidney cells lacking a catalytic subunit of Cn (CnAα(-/-) or CnAβ(-/-)), we found that high glucose selectively activates CnAβ, whereas CnAα is constitutively active. Furthermore, CnAβ but not CnAα mediates hypertrophy. Next, we found that chronic reactive oxygen species generation in response to high glucose is attenuated in CnAβ(-/-) cells, suggesting that Cn is upstream of Nox. Consistent with this, loss of CnAβ reduces basal expression and blocks high glucose induction of Nox2 and Nox4. Inhibition of nuclear factor of activated T cells (NFAT), a CnAβ-regulated transcription factor, decreases Nox2 and Nox4 expression, whereas NFAT overexpression increases Nox2 and Nox4, indicating that the CnAβ/NFAT pathway modulates Nox. These data reveal that the CnAβ/NFAT pathway regulates Nox and plays an important role in high glucose-mediated hypertrophic responses in the kidney.

  9. Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Fortanet, Jorge Garcia; Chen, Christine Hiu-Tung; Chen, Ying-Nan P.; Chen, Zhouliang; Deng, Zhan; Firestone, Brant; Fekkes, Peter; Fodor, Michelle; Fortin, Pascal D.; Fridrich, Cary; Grunenfelder, Denise; Ho, Samuel; Kang, Zhao B.; Karki, Rajesh; Kato, Mitsunori; Keen, Nick; LaBonte, Laura R.; Larrow, Jay; Lenoir, Francois; Liu, Gang; Liu, Shumei; Lombardo, Franco; Majumdar, Dyuti; Meyer, Matthew J.; Palermo, Mark; Perez, Lawrence; Pu, Minying; Ramsey, Timothy; Sellers, William R.; Shultz, Michael D.; Stams, Travis; Towler, Christopher; Wang, Ping; Williams, Sarah L.; Zhang, Ji-Hu; LaMarche, Matthew J. (Novartis)

    2016-09-08

    SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein–ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.

  10. Combining ChIP-chip and expression profiling to model the MoCRZ1 mediated circuit for Ca/calcineurin signaling in the rice blast fungus.

    Directory of Open Access Journals (Sweden)

    Soonok Kim

    2010-05-01

    Full Text Available Significant progress has been made in defining the central signaling networks in many organisms, but collectively we know little about the downstream targets of these networks and the genes they regulate. To reconstruct the regulatory circuit of calcineurin signal transduction via MoCRZ1, a Magnaporthe oryzae C2H2 transcription factor activated by calcineurin dephosphorylation, we used a combined approach of chromatin immunoprecipitation - chip (ChIP-chip, coupled with microarray expression studies. One hundred forty genes were identified as being both a direct target of MoCRZ1 and having expression concurrently differentially regulated in a calcium/calcineurin/MoCRZ1 dependent manner. Highly represented were genes involved in calcium signaling, small molecule transport, ion homeostasis, cell wall synthesis/maintenance, and fungal virulence. Of particular note, genes involved in vesicle mediated secretion necessary for establishing host associations, were also found. MoCRZ1 itself was a target, suggesting a previously unreported autoregulation control point. The data also implicated a previously unreported feedback regulation mechanism of calcineurin activity. We propose that calcium/calcineurin regulated signal transduction circuits controlling development and pathogenicity manifest through multiple layers of regulation. We present results from the ChIP-chip and expression analysis along with a refined model of calcium/calcineurin signaling in this important plant pathogen.

  11. Tyrosine phosphorylation in T cells is regulated by phosphatase activity: studies with phenylarsine oxide.

    OpenAIRE

    Garcia-Morales, P; Minami, Y; Luong, E; Klausner, R D; Samelson, L E

    1990-01-01

    Activation of T cells induces rapid tyrosine phosphorylation on the T-cell receptor zeta chain and other substrates. These phosphorylations can be regulated by a number of protein-tyrosine kinases (ATP: protein-tyrosine O-phosphotransferase, EC 2.7.1.112) and protein-tyrosine-phosphatases (protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48). In this study, we demonstrate that phenylarsine oxide can inhibit tyrosine phosphatases while leaving tyrosine kinase function intact. We use this ...

  12. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  13. Blockades of mitogen-activated protein kinase and calcineurin both change fibre-type markers in skeletal muscle culture

    DEFF Research Database (Denmark)

    Higginson, James; Wackerhage, Henning; Woods, Niall

    2002-01-01

    A and mitogen-activated protein kinase kinase (MEK1/2) blockade with U0126 upon myosin heavy chain (MHC) isoform mRNA levels and activities of metabolic enzymes after 1 day, 3 days and 7 days of treatment in primary cultures of spontaneously twitching rat skeletal muscle. U0126 treatment significantly decreased......Activation of either the calcineurin or the extracellular signal-regulated kinase (ERK1/2) pathway increases the percentage of slow fibres in vivo suggesting that both pathways can regulate fibre phenotypes in skeletal muscle. We investigated the effect of calcineurin blockade with cyclosporin...

  14. Reciprocal regulation of ARPP-16 by PKA and MAST3 kinases provides a cAMP-regulated switch in protein phosphatase 2A inhibition

    Science.gov (United States)

    Musante, Veronica; Li, Lu; Kanyo, Jean; Lam, Tukiet T; Colangelo, Christopher M; Cheng, Shuk Kei; Brody, A Harrison; Greengard, Paul; Le Novère, Nicolas; Nairn, Angus C

    2017-01-01

    ARPP-16, ARPP-19, and ENSA are inhibitors of protein phosphatase PP2A. ARPP-19 and ENSA phosphorylated by Greatwall kinase inhibit PP2A during mitosis. ARPP-16 is expressed in striatal neurons where basal phosphorylation by MAST3 kinase inhibits PP2A and regulates key components of striatal signaling. The ARPP-16/19 proteins were discovered as substrates for PKA, but the function of PKA phosphorylation is unknown. We find that phosphorylation by PKA or MAST3 mutually suppresses the ability of the other kinase to act on ARPP-16. Phosphorylation by PKA also acts to prevent inhibition of PP2A by ARPP-16 phosphorylated by MAST3. Moreover, PKA phosphorylates MAST3 at multiple sites resulting in its inhibition. Mathematical modeling highlights the role of these three regulatory interactions to create a switch-like response to cAMP. Together, the results suggest a complex antagonistic interplay between the control of ARPP-16 by MAST3 and PKA that creates a mechanism whereby cAMP mediates PP2A disinhibition. DOI: http://dx.doi.org/10.7554/eLife.24998.001 PMID:28613156

  15. Regional imbalanced activation of the calcineurin/BAD apoptotic pathway and the PI3K/Akt survival pathway after myocardial infarction.

    Science.gov (United States)

    Li, Tieluo; Kilic, Ahmet; Wei, Xufeng; Wu, Changfu; Schwartzbauer, Gary; Yankey, G Kwame; DeFilippi, Christopher; Bond, Meredith; Wu, Zhongjun J; Griffith, Bartley P

    2013-06-05

    The underlying molecular mechanisms of the remodeling after myocardial infarction (MI) remain unclear. The purpose of this study was to investigate the role of a survival pathway (PI3K/Akt) and an apoptosis pathway (calcineurin/BAD) in the remodeling after MI in a large animal model. Ten Dorset hybrid sheep underwent 25% MI in the left ventricle (LV, n=10). Five sheep were used as sham control. The regional strain was calculated from sonomicrometry. Apoptosis and the activation of the PI3K/Akt and calcineurin/BAD pathways were evaluated in the non-ischemic adjacent zone and the remote zone relative to infarct by immunoblotting, immunoprecipitation, and immunofluorescence staining. Dilation and dysfunction of LV were present at 12 weeks after MI. The regional strain in the adjacent zone was significantly higher than in the remote zone at 12 weeks (36.6 ± 4.0% vs 9.5 ± 3.6%, pBAD pathways were activated in the adjacent zone. Dephosphorylation and translocation of BAD were evident in the adjacent zone. Regional correlation between the strain and the expression of calcineurin/BAD indicated that the activation was strain-related (R(2)=0.46, 0.48, 0.39 for calcineurin, BAD, mitochondrial BAD, respectively, pBAD apoptotic pathways were concomitantly activated in the non-ischemic adjacent zone after MI. The calcineurin/BAD pathway is strain related and its imbalanced activation may be one of the causes of progressive remodeling after MI. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Inhibition of PTEN and activation of Akt by menadione

    OpenAIRE

    Yoshikawa, Kyoko; Nigorikawa, Kiyomi; Tsukamoto, Mariko; Tamura, Namiko; Hazeki, Kaoru; Hazeki, Osamu

    2007-01-01

    Menadione (vitamin K3) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells. The phosphorylation of Akt by menadione was not inhibited by AG1478, an inhibitor of EGFR. Menadione inhibited the lipid phosphatase activity of PTEN in a cell-free system. In an...

  17. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M

    1998-01-01

    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin...... is specific by two criteria. A number of potential RPTPalpha targets were ruled out by finding (a) that they are not affected or (b) that they are not on the pathway to insulin-increased prolactin-CAT activity. The negative effect of RPTPalpha on insulin activation of the prolactin promoter is not due...... to reduced phosphorylation or kinase activity of the insulin receptor or to reduced phosphorylation of insulin receptor substrate-1 or Shc. Inhibitor studies suggest that insulin-increased prolactin gene expression is mediated by a Ras-like GTPase but is not mitogen-activated protein kinase dependent...

  18. Regulation of inward rectifier potassium current ionic channel remodeling by AT1 -Calcineurin-NFAT signaling pathway in stretch-induced hypertrophic atrial myocytes.

    Science.gov (United States)

    He, Jionghong; Xu, Yanan; Yang, Long; Xia, Guiling; Deng, Na; Yang, Yongyao; Tian, Ye; Fu, Zenan; Huang, Yongqi

    2018-05-02

    Previous studies have shown that the activation of angiotensin II receptor type I (AT 1 ) is attributed to cardiac remodeling stimulated by increased heart load, and that it is followed by the activation of the calcineurin-nuclear factor of activated T-cells (NFAT) signaling pathway. Additionally, AT 1 has been found to be a regulator of cardiocyte ionic channel remodeling, and calcineurin-NFAT signals participate in the regulation of cardiocyte ionic channel expression. A hypothesis therefore follows that stretch stimulation may regulate cardiocyte ionic channel remodeling by activating the AT 1 -calcineurin-NFAT pathway. Here, we investigated the role of the AT 1 -calcineurin-NFAT pathway in the remodeling of inward rectifier potassium (I k1 ) channel, in addition to its role in changing action potential, in stretch-induced hypertrophic atrial myocytes of neonatal rats. Our results showed that increased stretch significantly led to atrial myocytes hypertrophy; it also increased the activity of calcineurin enzymatic activity, which was subsequently attenuated by telmisartan or cyclosporine-A. The level of NFAT 3 protein in nuclear extracts, the mRNA and protein expression of Kir2.1 in whole cell extracts, and the density of I k1 were noticeably increased in stretched samples. Stretch stimulation significantly shortened the action potential duration (APD) of repolarization at the 50% and 90% level. Telmisartan, cyclosporine-A, and 11R-VIVIT attenuated stretch-induced alterations in the levels of NFAT 3 , mRNA and protein expression of Kir2.1, the density of I k1 , and the APD. Our findings suggest that the AT 1 -calcineurin-NFAT signaling pathway played an important role in regulating I k1 channel remodeling and APD change in stretch-induced hypertrophic atrial myocytes of neonatal rats. This article is protected by copyright. All rights reserved.

  19. Structure determination of T-cell protein-tyrosine phosphatase

    DEFF Research Database (Denmark)

    Iversen, L.F.; Møller, K. B.; Pedersen, A.K.

    2002-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the highly...... homologous T cell protein-tyrosine phosphatase (TC-PTP) has received much less attention, and no x-ray structure has been provided. We have previously co-crystallized PTP1B with a number of low molecular weight inhibitors that inhibit TC-PTP with similar efficiency. Unexpectedly, we were not able to co...... the high degree of functional and structural similarity between TC-PTP and PTP1B, we have been able to identify areas close to the active site that might be addressed to develop selective inhibitors of each enzyme....

  20. Opiate exposure state controls dopamine D3 receptor and cdk5/calcineurin signaling in the basolateral amygdala during reward and withdrawal aversion memory formation.

    Science.gov (United States)

    Rosen, Laura G; Rushlow, Walter J; Laviolette, Steven R

    2017-10-03

    The dopamine (DA) D3 receptor (D3R) is highly expressed in the basolateral nucleus of the amygdala (BLA), a neural region critical for processing opiate-related reward and withdrawal aversion-related memories. Functionally, D3R transmission is linked to downstream Cdk5 and calcineurin signaling, both of which regulate D3R activity states and play critical roles in memory-related synaptic plasticity. Previous evidence links D3R transmission to opiate-related memory processing, however little is known regarding how chronic opiate exposure may alter D3R-dependent memory mechanisms. Using conditioned place preference (CPP) and withdrawal aversion (conditioned place aversion; CPA) procedures in rats, combined with molecular analyses of BLA protein expression, we examined the effects of chronic opiate exposure on the functional role of intra-BLA D3R transmission during the acquisition of opiate reward or withdrawal aversion memories. Remarkably, we report that the state of opiate exposure during behavioural conditioning (opiate-naïve/non-dependent vs. chronically exposed and in withdrawal) controlled the functional role of intra-BLA D3R transmission during the acquisition of both opiate reward memories and withdrawal-aversion associative memories. Thus, whereas intra-BLA D3R blockade had no effect on opiate reward memory formation in the non-dependent state, blockade of intra-BLA D3R transmission prevented the formation of opiate reward and withdrawal aversion memory in the chronically exposed state. This switch in the functional role of D3R transmission corresponded to significant increases in Cdk5 phosphorylation and total expression levels of calcineurin, and a corresponding decrease in intra-BLA D3R expression. Inhibition of either intra-BLA Cdk5 or calcineurin reversed these effects, switching intra-BLA associative memory formation back to a D3R-independent mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Catalytic efficiency is a better predictor of arsenic toxicity to soil alkaline phosphatase.

    Science.gov (United States)

    Wang, Ziquan; Tian, Haixia; Lu, Guannan; Zhao, Yiming; Yang, Rui; Megharaj, Mallavarapu; He, Wenxiang

    2018-02-01

    Arsenic (As) is an inhibitor of phosphatase, however, in the complex soil system, the substrate concentration effect and the mechanism of As inhibition of soil alkaline phosphatase (ALP) and its kinetics has not been adequately studied. In this work, we investigated soil ALP activity in response to As pollution at different substrate concentrations in various types of soils and explored the inhibition mechanism using the enzyme kinetics. The results showed that As inhibition of soil ALP activity was substrate concentration-dependent. Increasing substrate concentration decreased inhibition rate, suggesting reduced toxicity. This dependency was due to the competitive inhibition mechanism of As to soil ALP. The kinetic parameters, maximum reaction velocity (V max ) and Michaelis constant (K m ) in unpolluted soils were 0.012-0.267mMh -1 and 1.34-3.79mM respectively. The competitive inhibition constant (K ic ) was 0.17-0.70mM, which was lower than K m , suggesting higher enzyme affinity for As than for substrate. The ecological doses, ED 10 and ED 50 (concentration of As that results in 10% and 50% inhibition on enzyme parameter) for inhibition of catalytic efficiency (V max /K m ) were lower than those for inhibition of enzyme activity at different substrate concentrations. This suggests that the integrated kinetic parameter, catalytic efficiency is substrate concentration independent and more sensitive to As than ALP activity. Thus, catalytic efficiency was proposed as a more reliable indicator than ALP activity for risk assessment of As pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis.

    Science.gov (United States)

    Kim, Woohyun; Lee, Yeon; Park, Jeongmoo; Lee, Nayoung; Choi, Giltsu

    2013-04-01

    Seed dormancy, a seed status that prohibits germination even in the presence of inductive germination signals, is a poorly understood process. To identify molecular components that regulate seed dormancy, we screened T-DNA insertion lines and identified a mutant designated honsu (hon). HON loss-of-function mutants display deep seed dormancy, whereas HON-overexpressing lines display shallow seed dormancy. HON encodes a seed-specific group A phosphatase 2C (PP2C) and is one of the major negative regulators of seed dormancy among group A PP2Cs. Like other PP2C family members, HON interacts with PYR1/RCAR11 in the presence of ABA. Our analysis indicates that HON inhibits ABA signaling and activates gibberellic acid signaling, and both of these conditions must be satisfied to promote the release of seed dormancy. However, HON mRNA levels are increased in mutants displaying deep seed dormancy or under conditions that deepen seed dormancy, and decreased in mutants displaying shallow seed dormancy or under conditions that promote the release of seed dormancy. Taken together, our results indicate that the expression of HON mRNA is homeostatically regulated by seed dormancy.

  3. Control of Acid Phosphatases Expression from Aspergillus niger by Soil Characteristics

    Directory of Open Access Journals (Sweden)

    Ely Nahas

    2015-10-01

    Full Text Available ABSTRACTThis work studied the acid phosphatase (APase activity from culture medium (extracellular, eAPase and mycelial extract (intracellular, iAPase ofAspergillus niger F111. The influence of fungus growth and phosphate concentration of the media on the synthesis and secretion of phosphatase was demonstrated. The effects of pH, substrate concentration and inorganic and organic compounds added to the reaction mixture on APase activity were also studied. Both enzymes were repressed by high concentrations of phosphate. Overexpression of iAPase in relation to eAPase was detected; iAPase activity was 46.1 times higher than eAPase. The maximal activity of eAPase was after 24h of fungus growth and for iAPase was after 96h. Optimal pH and substrate concentrations were 4.5 and 8.0 mM, respectively. Michaelis-Menten constant (Km for the hydrolysis of p-nitrophenyl phosphate was 0.57 mM with Vmax = 14,285.71 U mg-1 mycelium for the iAPase and 0.31 mM with V max = 147.06 U mg-1 mycelium for eAPase. Organic substances had little effect on acid phosphatases when compared with the salts. Both the APases were inhibited by 10 mM KH 2PO4 and 5 mM (NH42MoO4; eAPase was also inhibited by 1 mM CoCl2.

  4. Decreased calcineurin immunoreactivity in the postmortem brain of a patient with schizophrenia who had been prescribed the calcineurin inhibitor, tacrolimus, for leukemia

    Directory of Open Access Journals (Sweden)

    Wada A

    2016-07-01

    Full Text Available Akira Wada,1,2 Yasuto Kunii,1 Jyunya Matsumoto,1 Mizuki Hino,1 Atsuko Nagaoka,1 Shin-ichi Niwa,3 Hirooki Yabe1 1Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 2Department of Neuropsychiatry, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, 3Department of Psychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu City, Fukushima, Japan Background: The calcineurin (CaN inhibitor, tacrolimus, is widely used in patients undergoing allogeneic organ transplantation and in those with certain allergic diseases. Recently, several reports have suggested that CaN is also associated with schizophrenia. However, little data are currently available on the direct effect of tacrolimus on the human brain.Case: A 23-year-old Japanese female experienced severe delusion of persecution, delusional mood, suspiciousness, aggression, and excitement. She visited our hospital and was diagnosed with schizophrenia. When she was 27 years old, she had severe general fatigue, persistent fever, systemic joint pain, gingival bleeding, and breathlessness and was diagnosed with acute myelomonocytic leukemia. Later she underwent bone marrow transplantation (BMT, she was administered methotrexate and cyclosporin A to prevent graft versus host disease (GVHD. Three weeks after BMT, she showed initial symptoms of GVHD and was prescribed tacrolimus instead of cyclosporin A. Seven months after BMT at the age of 31 years, she died of progression of GVHD. Pathological anatomy was examined after her death, including immunohistochemical analysis of her brain using anti-CaN antibodies. For comparison, we used our previous data from both a schizophrenia group and a healthy control group. No significant differences were observed in the percentage of CaN-immunoreactive neurons among the schizophrenia group, healthy control group, and the tacrolimus case (all P>0.5, analysis of covariance. Compared with the

  5. The influence of complexing pharmaceutical compositions on alkaline phosphatase

    Science.gov (United States)

    Atyaksheva, L. F.; Chukhrai, E. S.; Stepina, N. D.; Novikova, N. N.; Yur'eva, E. A.

    2011-06-01

    It is established that the pharmaceutical compositions xydiphon, medifon, succimer, and EDTA, which are used as complexing agents for accelerating the excretion of heavy metals from human organism, at certain concentrations inhibit enzyme alkaline phosphatase (AP). It is concluded that xydiphon and EDTA have a noticeable effect on AP activity at concentrations over 0.01 mM; medifon and succimer, at concentrations of over 0.3-0.5 mM. The enzyme's inhibition constants and type of inhibition are determined. Xydiphon is found to manifest the highest affinity to AP ( K I = 0.35 mM). It is shown by kinetic analysis that dissociative chemoinactivation of the enzyme takes place under the action of complexing agents. The corresponding kinetic parameters are calculated.

  6. Calcineurin Orchestrates Lateral Transfer of Aspergillus fumigatus during Macrophage Cell Death

    OpenAIRE

    Armstrong-James, DPH

    2016-01-01

    RATIONALE: Pulmonary aspergillosis is a lethal mould infection in the immunocompromised host. Understanding initial control of infection, and how this is altered in the immunocompromised host, is a key goal for understanding the pathogenesis of pulmonary aspergillosis. OBJECTIVES: To characterise the outcome of human macrophage infection with Aspergillus fumigatus, and how this is altered in transplant recipients on calcineurin inhibitor immunosuppressants. METHODS: We defined the outcome of ...

  7. Defibrotide Stimulates Angiogenesis and Protects Endothelial Cells from Calcineurin Inhibitor-Induced Apoptosis via Upregulation of AKT/Bcl-xL.

    Science.gov (United States)

    Wang, Xiangmin; Pan, Bin; Hashimoto, Yuko; Ohkawara, Hiroshi; Xu, Kailin; Zeng, Lingyu; Ikezoe, Takayuki

    2018-01-01

    Sinusoidal obstruction syndrome is a life-threatening complication that can occur after haematopoietic stem cell transplantation. Defibrotide (DF) has been approved for the treatment of individuals with severe sinusoidal obstruction syndrome following haematopoietic stem cell transplantation in the European Union and the United States. However, the precise mechanisms by which DF protects endothelial cells remain to be elucidated. In this study, we found that DF stimulated angiogenesis in vitro and in vivo as assessed by vascular tube formation, scratch-wound repair and Matrigel plug assays. These effects were associated with an activation of pro-survival signalling pathways, including AKT (protein kinase B), ERK (extracellular signal-regulated kinases) and p38. More importantly, DF alleviated calcineurin inhibitor-induced growth inhibition and apoptosis of human umbilical vein endothelial cells and human hepatic sinusoidal endothelial cells in parallel with upregulation of anti-apoptotic protein B-cell lymphoma-extra-large (Bcl-xL), which was mediated by AKT (protein kinase B). Notably, these effects were abrogated when Bcl-xL was depleted by small interfering RNA (ribonucleic acid). In addition, DF counteracted calcineurin inhibitor-induced activation of nuclear factor-κB and Janus kinase 2 (JAK2)/Signal Transducer and Activator of Transcription 3 (STAT3) signalling and production of cytokines in vascular endothelial cell-derived EA.hy926 cells. Taken together, DF has pro-angiogenic, anti-apoptotic and anti-inflammatory effects on endothelial cells. DF is a potentially useful agent to prevent the development of, and treat individuals with, endothelial cell injury-related complications after haematopoietic stem cell transplantation. Schattauer GmbH Stuttgart.

  8. Enzymatic methods for the determination of pollution in seawater using salt resistant alkaline phosphatase from eggs of the sea urchin Strongylocentrotus intermedius

    International Nuclear Information System (INIS)

    Menzorova, Natalie I.; Seitkalieva, Alexandra V.; Rasskazov, Valery A.

    2014-01-01

    Highlights: • Alkaline phosphatase from eggs of the sea urchin (StAP) proved to be active in seawater. • Activity of StAP is inhibited by very low concentrations of heavy metal. • A test to assess sea and fresh water quality has been developed basing on StAP. • For the first time a salt resistant alkaline phosphatase has been found in eukaryote. - Abstract: A new salt resistant alkaline phosphatase from eggs of the sea urchin Strongylocentrotus intermedius (StAP) has been shown to have a unique property to hydrolyze substrate in seawater without loss of enzymatic activity. The enzyme has pH optimum at 8.0–8.5. Model experiments showed various concentrations of copper, zinc, cadmium and lead added to seawater or a standard buffer mixture to inhibit completely the enzyme activity at the concentrations of 15–150 μg/l. StAP sensitivity to the presence in seawater of metals, pesticides, detergents and oil products appears to be considerably less. Samples of seawater taken from aquatic areas of the Troitsy Bay of the Peter the Great Bay, Japan Sea have been shown to inhibit the enzyme activity; the same was shown for the samples of fresh waters. The phosphatase inhibition assay developed proved to be highly sensitive, technically easy-to use allowing to test a great number of samples

  9. Application of a microcystin extraction method specific for enzyme inhibition assays

    International Nuclear Information System (INIS)

    Sevilla Miguel, E.; Simienk, H.; Calvin Tienza, V.; Razquin Casquero, P.; Peleato Sanchez, M. L.; Mata Vallespin, L.

    2009-01-01

    A method for the determination of intracellular and dissolved microcystins in non treated water is proposed. The results obtained with this method, based on a phosphatase inhibition assay, are compared with those for HPLC- UV. Potential interferences of the phosphatase inhibition assays like pigments or the endogenous phosphatase activity present in cyanobacteria did not have any adverse effect on assay results. Besides, the recovery of microcystins in field samples with the proposed method was found to be high than 90% in all tested samples. A number of samples from different origins and appearances were also analyzed for their microcystin content. (Author) 27 refs

  10. Characterization of the Functional Domains of a Mammalian Voltage-Sensitive Phosphatase.

    Science.gov (United States)

    Rosasco, Mario G; Gordon, Sharona E; Bajjalieh, Sandra M

    2015-12-15

    Voltage-sensitive phosphatases (VSPs) are proteins that directly couple changes in membrane electrical potential to inositol lipid phosphatase activity. VSPs thus couple two signaling pathways that are critical for cellular functioning. Although a number of nonmammalian VSPs have been characterized biophysically, mammalian VSPs are less well understood at both the physiological and biophysical levels. In this study, we aimed to address this gap in knowledge by determining whether the VSP from mouse, Mm-VSP, is expressed in the brain and contains a functional voltage-sensing domain (VSD) and a phosphatase domain. We report that Mm-VSP is expressed in neurons and is developmentally regulated. To address whether the functions of the VSD and phosphatase domain are retained in Mm-VSP, we took advantage of the modular nature of these domains and expressed each independently as a chimeric protein in a heterologous expression system. We found that the Mm-VSP VSD, fused to a viral potassium channel, was able to drive voltage-dependent gating of the channel pore. The Mm-VSP phosphatase domain, fused to the VSD of a nonmammalian VSP, was also functional: activation resulted in PI(4,5)P2 depletion that was sufficient to inhibit the PI(4,5)P2-regulated KCNQ2/3 channels. While testing the functionality of the VSD and phosphatase domain, we observed slight differences between the activities of Mm-VSP-based chimeras and those of nonmammalian VSPs. Although the properties of VSP chimeras may not completely reflect the properties of native VSPs, the differences we observed in voltage-sensing and phosphatase activity provide a starting point for future experiments to investigate the function of Mm-VSP and other mammalian VSPs. In conclusion, our data reveal that both the VSD and the lipid phosphatase domain of Mm-VSP are functional, indicating that Mm-VSP likely plays an important role in mouse neurophysiology. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All

  11. Subcellular localisation and properties of histone phosphate phosphatase in human polymorphonuclear leukocytes: alterations in pregnancy and chronic granulocytic leukaemia and relationship to alkaline phosphatase

    International Nuclear Information System (INIS)

    Smith, G.P.; Peters, T.J.

    1981-01-01

    Using [ 32 P]histone as substrate, an assay for histone phosphate phosphatase was optimised for human polymorphonuclear leukocytes. Kinetic studies showed that the activity was optimal at pH 6.8, was stimulated by Mn 2+ and Co 2+ , and inhibited by sodium sulphite and zinc chloride. The apparent Ksub(m) of the enzyme for histone phosphate was 0.89 μmol/l. (Auth.)

  12. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells].

    Science.gov (United States)

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B

    2012-01-01

    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  13. Radioprotective effect of Panax ginseng on the phosphatases and lipid peroxidation level in testes of Swiss albino mice

    Energy Technology Data Exchange (ETDEWEB)

    Kumar M.; Sharma M.K.; Saxena P.S.; Kumar A. [Rajasthan Univ., Jaipur (India)

    2003-03-01

    The Panax ginseng has been used as traditional medicine for past several years among oriental people. The present investigation has been made to assess the radioprotective efficacy of ginseng root extract in the testicular enzymes of Swiss albino mice. The Swiss albino mice were divided into different groups. Ginseng treated group: The animals were administered 10 mg/kg body weight ginseng root extract intraperitoneal (i.p.). Radiation treated group: The animals were exposed to 8 Gy gamma radiation at the dose rate of 1.69 Gy/min at the distance of 80 cm. Combination group: Animals were administered ginseng extract continuously for 4 d and on 4th day they were irradiated to 8 Gy gamma radiation after 30 min of extract administration. The animals from above groups were autopsied on day 1, 3, 7, 14 and 30. Biochemical estimations of acid and alkaline phosphatases and Lipid peroxidation (LPO) in testes were done. In ginseng treated group acid and alkaline phosphatases activity and LPO level did not show any significant alteration. In irradiated animals there was a significant increase in acid phosphatase activity and LPO level. However, significant decline in alkaline phosphatase activity was observed. The treatment of ginseng before irradiation causes significant decrease in acid phosphatase and LPO level and significant increase in alkaline phosphatase activity. One of the cause of radiation damage is lipid peroxidation. Due to lipid peroxidation, lysosomal membrane permeability alters and thus results in release of hydrolytic enzymes. So, an increase in acid phosphatase was noticed after radiation treatment. The alkaline phosphatase activity is associated with membrane permeability and different stages of spermatogenesis. Due to membrane damage and depletion of germ cells of testes after irradiation the enzyme activity was decreased. Ginseng markedly inhibits lipid peroxidation. It acts in indirect fashion to protect radical processes by inhibition of initiation of

  14. Radioprotective effect of Panax ginseng on the phosphatases and lipid peroxidation level in testes of Swiss albino mice

    International Nuclear Information System (INIS)

    Kumar, M.; Sharma, M.K.; Saxena, P.S.; Kumar, A.

    2003-01-01

    The Panax ginseng has been used as traditional medicine for past several years among oriental people. The present investigation has been made to assess the radioprotective efficacy of ginseng root extract in the testicular enzymes of Swiss albino mice. The Swiss albino mice were divided into different groups. Ginseng treated group: The animals were administered 10 mg/kg body weight ginseng root extract intraperitoneal (i.p.). Radiation treated group: The animals were exposed to 8 Gy gamma radiation at the dose rate of 1.69 Gy/min at the distance of 80 cm. Combination group: Animals were administered ginseng extract continuously for 4 d and on 4th day they were irradiated to 8 Gy gamma radiation after 30 min of extract administration. The animals from above groups were autopsied on day 1, 3, 7, 14 and 30. Biochemical estimations of acid and alkaline phosphatases and Lipid peroxidation (LPO) in testes were done. In ginseng treated group acid and alkaline phosphatases activity and LPO level did not show any significant alteration. In irradiated animals there was a significant increase in acid phosphatase activity and LPO level. However, significant decline in alkaline phosphatase activity was observed. The treatment of ginseng before irradiation causes significant decrease in acid phosphatase and LPO level and significant increase in alkaline phosphatase activity. One of the cause of radiation damage is lipid peroxidation. Due to lipid peroxidation, lysosomal membrane permeability alters and thus results in release of hydrolytic enzymes. So, an increase in acid phosphatase was noticed after radiation treatment. The alkaline phosphatase activity is associated with membrane permeability and different stages of spermatogenesis. Due to membrane damage and depletion of germ cells of testes after irradiation the enzyme activity was decreased. Ginseng markedly inhibits lipid peroxidation. It acts in indirect fashion to protect radical processes by inhibition of initiation of

  15. Src inhibitor herbimycin A prevents 132.7 kDa tyrosine phosphatase activity in Ramos Burkitt's lymphoma B cell line

    International Nuclear Information System (INIS)

    Hristov, K.; Mitev, V.; Knox, K.

    2006-01-01

    Reversible tyrosine phosphorylation, regulation of expression and proteolytic cleavage control tyrosine phosphatase contribution for the signalling pathways of B-cell antigen receptor (BCR), and CD40 during B cell selection. We used Ramos-BL B cell line to determine whether BCR and CD40 stimulation, or inhibition of the Src - tyrosine kinase, tyrosine phosphatase and caspase activity have an effect on the tyrosine phosphatase activities determined on in-gel phosphatase assay. The tyrosine phosphatase activities present in whole cell lysates of Ramos-BL B cells following treatment with 20 μg/ml anti-IgM, 1 μg/ml anti-CD40, 10 μM herbimycin A, 178 μM vanadate,100 μM phenylarsine oxide and 10 μM zVAD-fmk were detected with an in-gel phosphatase assay. Seven major tyrosine phosphatase activities with approximate molecular weight of 132.7, 63.9, 60.3, 54.2, 49.7, 44.6, and 39 kDa are present in whole cell lysates of Ramos-BL B cells. Treatment with Src-PTK inhibitor herbimycin A prevents 132.7 kDa tyrosine phosphatase activity. We conclude that the catalytic activity of Src-PTK in Ramos-BL B cells is critical for the presence of this 132.7 kDa tyrosine phosphatase activity. (authors)

  16. Unique players in the BMP pathway: Small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling

    Science.gov (United States)

    Knockaert, Marie; Sapkota, Gopal; Alarcón, Claudio; Massagué, Joan; Brivanlou, Ali H.

    2006-01-01

    Smad transcription factors are key signal transducers for the TGF-β/bone morphogenetic protein (BMP) family of cytokines and morphogens. C-terminal serine phosphorylation by TGF-β and BMP membrane receptors drives Smads into the nucleus as transcriptional regulators. Dephosphorylation and recycling of activated Smads is an integral part of this process, which is critical for agonist sensing by the cell. However, the nuclear phosphatases involved have remained unknown. Here we provide functional, biochemical, and embryological evidence identifying the SCP (small C-terminal domain phosphatase) family of nuclear phosphatases as mediators of Smad1 dephosphorylation in the BMP signaling pathway in vertebrates. Xenopus SCP2/Os4 inhibits BMP activity in the presumptive ectoderm and leads to neuralization. In Xenopus embryos, SCP2/Os4 and human SCP1, 2, and 3 cause selective dephosphorylation of Smad1 compared with Smad2, inhibiting BMP- and Smad1-dependent transcription and leading to the induction of the secondary dorsal axis. In human cells, RNAi-mediated depletion of SCP1 and SCP2 increases the extent and duration of Smad1 phosphorylation in response to BMP, the transcriptional action of Smad1, and the strength of endogenous BMP gene responses. The present identification of the SCP family as Smad C-terminal phosphatases sheds light on the events that attenuate Smad signaling and reveals unexpected links to the essential phosphatases that control RNA polymerase II in eukaryotes. PMID:16882717

  17. Protein phosphatase 2A interacts with the Na,K-ATPase and modulates its trafficking by inhibition of its association with arrestin.

    Directory of Open Access Journals (Sweden)

    Toru Kimura

    Full Text Available The P-type ATPase family constitutes a collection of ion pumps that form phosphorylated intermediates during ion transport. One of the best known members of this family is the Na⁺,K⁺-ATPase. The catalytic subunit of the Na⁺,K⁺-ATPase includes several functional domains that determine its enzymatic and trafficking properties.Using the yeast two-hybrid system we found that protein phosphatase 2A (PP2A catalytic C-subunit is a specific Na⁺,K⁺-ATPase interacting protein. PP-2A C-subunit interacted with the Na⁺,K⁺-ATPase, but not with the homologous sequences of the H⁺,K⁺-ATPase. We confirmed that the Na⁺,K⁺-ATPase interacts with a complex of A- and C-subunits in native rat kidney. Arrestins and G-protein coupled receptor kinases (GRKs are important regulators of G-protein coupled receptor (GPCR signaling, and they also regulate Na⁺,K⁺-ATPase trafficking through direct association. PP2A inhibits association between the Na⁺,K⁺-ATPase and arrestin, and diminishes the effect of arrestin on Na⁺,K⁺-ATPase trafficking. GRK phosphorylates the Na⁺,K⁺-ATPase and PP2A can at least partially reverse this phosphorylation.Taken together, these data demonstrate that the sodium pump belongs to a growing list of ion transport proteins that are regulated through direct interactions with the catalytic subunit of a protein phosphatase.

  18. TRESK background K(+ channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Gabriella Braun

    Full Text Available TRESK (TWIK-related spinal cord K(+ channel, KCNK18 is a major background K(+ channel of sensory neurons. Dominant-negative mutation of TRESK is linked to familial migraine. This important two-pore domain K(+ channel is uniquely activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which is responsible for the basal inhibition of the K(+ current, is sensitive to the adaptor protein 14-3-3. Therefore we have examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279 in the intracellular loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase. Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of 14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background potassium channel.

  19. The manometric determination of thiamine pyrophosphate and the inhibition of the acid yeast phosphatase

    NARCIS (Netherlands)

    Steyn-Parvé, Elizabeth P.

    1962-01-01

    Sodium molybdate is a powerful inhibitor of the acid yeast phosphatase in both fresh baker's yeast and dried brewer's yeast, provided that the yeast is suspended in a suitable buffer. It displays no action in citrate or phosphate buffers, but is active in acetate or maleate buffers, both at the

  20. Endocytosis of lysosomal acid phosphatase; involvement of mannose receptor and effect of lectins.

    Science.gov (United States)

    Imai, K; Yoshimura, T

    1994-08-01

    Acid phosphatase and beta-glucosidase are unique among lysosomal enzymes in that they have both high mannose and complex type sugasr chains, whereas oligosaccharide chains of lysosomal enzymes in matrix are of high mannose type. We have previously shown that beta-glucosidase was endocytosed into macrophages via an unidentified receptor different from a mannose/fucose receptor (K. Imai, Cell Struct. Funct. 13, 325-332, 1988). Here, we show that uptake of acid phosphatase purified from rat liver lysosomes into rat macrophages was inhibited by ligands for a mannose/fucose receptor and was mediated via an apparently single binding site with Kuptake of 24.7 nM. These results indicate that acid phosphatase and beta-glucosidase recognize different types of receptors even if they have similar sugar chains. Polyvalent concanavalin A which binds both to the enzyme and to macrophages specifically stimulated the uptake in a dose dependent manner, whereas wheat germ agglutinin and phytohaemagglutinin did not.

  1. Soil properties influence kinetics of soil acid phosphatase in response to arsenic toxicity.

    Science.gov (United States)

    Wang, Ziquan; Tan, Xiangping; Lu, Guannan; Liu, Yanju; Naidu, Ravi; He, Wenxiang

    2018-01-01

    Soil phosphatase, which plays an important role in phosphorus cycling, is strongly inhibited by Arsenic (As). However, the inhibition mechanism in kinetics is not adequately investigated. In this study, we investigated the kinetic characteristics of soil acid phosphatase (ACP) in 14 soils with varied properties, and also explored how kinetic properties of soil ACP changed with different spiked As concentrations. The results showed that the Michaelis constant (K m ) and maximum reaction velocity (V max ) values of soil ACP ranged from 1.18 to 3.77mM and 0.025-0.133mMh -1 in uncontaminated soils. The kinetic parameters of soil ACP in different soils changed differently with As contamination. The K m remained unchanged and V max decreased with increase of As concentration in most acid and neutral soils, indicating a noncompetitive inhibition mechanism. However, in alkaline soils, the K m increased linearly and V max decreased with increase of As concentration, indicating a mixed inhibition mechanism that include competitive and noncompetitive. The competitive inhibition constant (K ic ) and noncompetitive inhibition constant (K iu ) varied among soils and ranged from 0.38 to 3.65mM and 0.84-7.43mM respectively. The inhibitory effect of As on soil ACP was mostly affected by soil organic matter and cation exchange capacity. Those factors influenced the combination of As with enzyme, which resulted in a difference of As toxicity to soil ACP. Catalytic efficiency (V max /K m ) of soil ACP was a sensitive kinetic parameter to assess the ecological risks of soil As contamination. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.

    Science.gov (United States)

    Cross, Megan; Biberacher, Sonja; Park, Suk-Youl; Rajan, Siji; Korhonen, Pasi; Gasser, Robin B; Kim, Jeong-Sun; Coster, Mark J; Hofmann, Andreas

    2018-04-24

    The opportunistic bacterium Pseudomonas aeruginosa has been recognized as an important pathogen of clinical relevance and is a leading cause of hospital-acquired infections. The presence of a glycolytic enzyme in Pseudomonas, which is known to be inhibited by trehalose 6-phosphate (T6P) in other organisms, suggests that these bacteria may be vulnerable to the detrimental effects of intracellular T6P accumulation. In the present study, we explored the structural and functional properties of trehalose 6-phosphate phosphatase (TPP) in P. aeruginosa in support of future target-based drug discovery. A survey of genomes revealed the existence of 2 TPP genes with either chromosomal or extrachromosomal location. Both TPPs were produced as recombinant proteins, and characterization of their enzymatic properties confirmed specific, magnesium-dependent catalytic hydrolysis of T6P. The 3-dimensional crystal structure of the chromosomal TPP revealed a protein dimer arising through β-sheet expansion of the individual monomers, which possess the overall fold of halo-acid dehydrogenases.-Cross, M., Biberacher, S., Park, S.-Y., Rajan, S., Korhonen, P., Gasser, R. B., Kim, J.-S., Coster, M. J., Hofmann, A. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.

  3. Photocarcinogenicity of selected topically applied dermatological drugs: calcineurin inhibitors, corticosteroids, and vitamin D analogs

    Directory of Open Access Journals (Sweden)

    Catharina Margrethe Lerche

    2010-09-01

    Full Text Available Topical therapies constitute the mainstay of dermatological treatments for skin disorders, such as atopic dermatitis, contact dermatitis, psoriasis, or acne. Since some of these diseases are often chronic, treatment duration may last for years and may even last the patient’s entire lifetime. Obviously, such long-term therapy may raise safety concerns, which also include the potential photocarcinogenic effect. Most patients are exposed to ultraviolet radiation (UVR during leisure, work, vacations, or in tanning beds. Additionally, the patients may receive UVR via UVB phototherapy or psoralens plus UVA radiation (PUVA. The use of immunosuppressant’s, such as corticosteroids and calcineurin inhibitors, has markedly increased. Patients with skin diseases have benefited from both systemic and topical treatment of both new and established drugs. The issue of a black box warning by the US Food and Drug Administration has increased concerns about photocarcinogenesis, which raises the question: “Are these drugs safe?” This review focuses on the mechanism of action and photocarcinogenic potential of commonly used topical treatments, such as corticosteroids, calcineurin inhibitors, and vitamin D analogs.

  4. Prokineticin-1 (PROK1) modulates interleukin (IL)-11 expression via prokineticin receptor 1 (PROKR1) and the calcineurin/NFAT signalling pathway.

    Science.gov (United States)

    Cook, Ian H; Evans, Jemma; Maldonado-Pérez, David; Critchley, Hilary O; Sales, Kurt J; Jabbour, Henry N

    2010-03-01

    Prokineticin-1 (PROK1) is a multifunctional secreted protein which signals via the G-protein coupled receptor, PROKR1. Previous data from our laboratory using a human genome survey microarray showed that PROK1-prokineticin receptor 1 (PROKR1) signalling regulates numerous genes important for establishment of early pregnancy, including the cytokine interleukin (IL)-11. Here, we have shown that PROK1-PROKR1 induces the expression of IL-11 in PROKR1 Ishikawa cells and first trimester decidua via the calcium-calcineurin signalling pathway in a guanine nucleotide-binding protein (G(q/11)), extracellular signal-regulated kinases, Ca(2+) and calcineurin-nuclear factor of activated T cells dependent manner. Conversely, treatment of human decidua with a lentiviral miRNA to abolish endogenous PROK1 expression results in a significant reduction in IL-11 expression and secretion. Importantly, we have also shown a regulatory role for the regulator of calcineurin 1 isoform 4 (RCAN1-4). Overexpression of RCAN1-4 in PROKR1 Ishikawa cells using an adenovirus leads to a reduction in PROK1 induced IL-11 indicating that RCAN1-4 is a negative regulator in the calcineurin-mediated signalling to IL-11. Finally, we have shown the potential for both autocrine and paracrine signalling in the human endometrium by co-localizing IL-11, IL-11Ralpha and PROKR1 within the stromal and glandular epithelial cells of non-pregnant endometrium and first trimester decidua. Overall we have identified and characterized the signalling components of a novel PROK1-PROKR1 signalling pathway regulating IL-11.

  5. Calcineurin inhibitor sparing with mycophenolate in kidney transplantation: a systematic review and meta-analysis.

    LENUS (Irish Health Repository)

    Moore, Jason

    2009-02-27

    Limiting the exposure of kidney transplant recipients to calcineurin inhibitors (CNIs) has potential merit, but there is no clear consensus on the utility of current strategies. In an attempt to aid clarification, we conducted a systematic review and meta-analysis of randomized trials that assessed CNI sparing (minimization or elimination) with mycophenolate as sole adjunctive immunosuppression.

  6. Calcium-activated-calcineurin reduces the In vitro and In vivo sensitivity of fluconazole to Candida albicans via Rta2p.

    Directory of Open Access Journals (Sweden)

    Yu Jia

    Full Text Available Due to the emergence of drug-resistance, first-line therapy with fluconazole (FLC increasingly resulted in clinical failure for the treatment of candidemia. Our previous studies found that in vitro RTA2 was involved in the calcineurin-mediated resistance to FLC in C. albicans. In this study, we found that calcium-activated-calcineurin significantly reduced the in vitro sensitivity of C. albicans to FLC by blocking the impairment of FLC to the plasma membrane via Rta2p. Furthermore, we found that RTA2 itself was not involved in C. albicans virulence, but the disruption of RTA2 dramatically increased the therapeutic efficacy of FLC in a murine model of systemic candidiasis. Conversely, both re-introduction of one RTA2 allele and ectopic expression of RTA2 significantly reduced FLC efficacy in a mammalian host. Finally, we found that calcium-activated-calcineurin, through its target Rta2p, dramatically reduced the efficacy of FLC against candidemia. Given the critical roles of Rta2p in controlling the efficacy of FLC, Rta2p can be a potential drug target for antifungal therapies.

  7. Phosphatases in Cancer : Shifting the balance

    NARCIS (Netherlands)

    E. Hoekstra (Elmer)

    2015-01-01

    markdownabstractAbstract The role of phosphatases in cancer is an ignored research field, mostly based on the dogma that phosphatases function as tumor suppressor genes. However, in our opinion dephosphorylation events by phosphatases can also enhance signaling in cancer. The current research

  8. Endothelial Regulator of Calcineurin 1 Promotes Barrier Integrity and Modulates Histamine-Induced Barrier Dysfunction in Anaphylaxis

    DEFF Research Database (Denmark)

    Ballesteros-Martinez, Constanza; Mendez-Barbero, Nerea; Montalvo-Yuste, Alma

    2017-01-01

    Anaphylaxis, the most serious and life-threatening allergic reaction, produces the release of inflammatory mediators by mast cells and basophils. Regulator of calcineurin 1 (Rcan1) is a negative regulator of mast-cell degranulation. The action of mediators leads to vasodilation and an increase in...

  9. Inhibition of protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase by xanthones from Cratoxylum cochinchinense, and their kinetic characterization.

    Science.gov (United States)

    Li, Zuo Peng; Song, Yeong Hun; Uddin, Zia; Wang, Yan; Park, Ki Hun

    2018-02-01

    Cratoxylum cochinchinense displayed significant inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase, both of which are key target enzymes to attenuate diabetes and obesity. The compounds responsible for both enzymes inhibition were identified as twelve xanthones (1-12) among which compounds 1 and 2 were found to be new ones. All of them simultaneously inhibited PTP1B with IC 50 s of (2.4-52.5 µM), and α-glucosidase with IC 50 values of (1.7-72.7 µM), respectively. Cratoxanthone A (3) and γ-mangostin (7) were estimated to be most active inhibitors against both PTP1B (IC 50  = 2.4 µM for 3, 2.8 µM for 7) and α-glucosidase (IC 50  = 4.8 µM for 3, 1.7 µM for 7). In kinetic studies, all isolated xanthones emerged to be mixed inhibitors of α-glucosidase, whereas they behaved as competitive inhibitors of PTP1B. In time dependent experiments, compound 3 showed isomerization inhibitory behavior with following kinetic parameters: K i app  = 2.4 µM; k 5  = 0.05001 µM -1  S -1 and k 6  = 0.02076 µM -1  S -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Phosphatase control of 4E-BP1 phosphorylation state is central for glycolytic regulation of retinal protein synthesis.

    Science.gov (United States)

    Gardner, Thomas W; Abcouwer, Steven F; Losiewicz, Mandy K; Fort, Patrice E

    2015-09-15

    Control of protein synthesis in insulin-responsive tissues has been well characterized, but relatively little is known about how this process is regulated in nervous tissues. The retina exhibits a relatively high protein synthesis rate, coinciding with high basal Akt and metabolic activities, with the majority of retinal ATP being derived from aerobic glycolysis. We examined the dependency of retinal protein synthesis on the Akt-mTOR signaling and glycolysis using ex vivo rat retinas. Akt inhibitors significantly reduced retinal protein synthesis but did not affect glycolytic lactate production. Surprisingly, the glycolytic inhibitor 2-deoxyglucose (2-DG) markedly inhibited Akt1 and Akt3 activities, as well as protein synthesis. The effects of 2-DG, and 2-fluorodeoxyglucose (2-FDG) on retinal protein synthesis correlated with inhibition of lactate production and diminished ATP content, with all these effects reversed by provision of d-mannose. 2-DG treatment was not associated with increased AMPK, eEF2, or eIF2α phosphorylation; instead, it caused rapid dephosphorylation of 4E-BP1. 2-DG reduced total mTOR activity by 25%, but surprisingly, it did not reduce mTORC1 activity, as indicated by unaltered raptor-associated mTOR autophosphorylation and ribosomal protein S6 phosphorylation. Dephosphorylation of 4E-BP1 was largely prevented by inhibition of PP1/PP2A phosphatases with okadaic acid and calyculin A, and inhibition of PPM1 phosphatases with cadmium. Thus, inhibition of retinal glycolysis diminished Akt and protein synthesis coinciding with accelerated dephosphorylation of 4E-BP1 independently of mTORC1. These results demonstrate a novel mechanism regulating protein synthesis in the retina involving an mTORC1-independent and phosphatase-dependent regulation of 4E-BP1. Copyright © 2015 the American Physiological Society.

  11. PP2A contributes to endothelial death in high glucose: inhibition by benfotiamine.

    Science.gov (United States)

    Du, Y; Kowluru, A; Kern, T S

    2010-12-01

    Endothelial death is critical in diabetic vascular diseases, but regulating factors have been only partially elucidated. Phosphatases play important regulatory roles in cell metabolism, but have not previously been implicated in hyperglycemia-induced cell death. We investigated the role of the phosphatase, type 2A protein phosphatase (PP2A), in hyperglycemia-induced changes in signaling and death in bovine aortic endothelial cells (BAEC). We explored also the influence of benfotiamine on this phosphatase. Activation of PP2A was assessed in BAEC by the extent of methylation and measurement of activity, and the enzyme was inhibited using selective pharmacological (okadaic acid, sodium fostriecin) and molecular (small interfering RNA) approaches. BAECs cultured in 30 mM glucose significantly increased PP2A methylation and activity, and PP2A inhibitors blocked these abnormalities. PP2A activity was increased also in aorta and retina from diabetic rats. NF-κB activity and cell death in BAEC were significantly increased in 30 mM glucose and inhibited by PP2A inhibition. NF-κB played a role in the hyperglycemia-induced death of BAEC, since blocking its translocation with SN50 also inhibited cell death. Inhibition of PP2A blocked the hyperglycemia-induced dephosphorylation of NF-κB and Bad, thus favoring cell survival. Incubation of benfotiamine with BAEC inhibited the high glucose-induced activation of PP2A and NF-κB and cell death, as well as several other metabolic defects, which likewise were inhibited by inhibitors of PP2A. Activation of PP2A contributes to endothelial cell death in high glucose, and beneficial actions of benfotiamine are due, at least in part, to inhibition of PP2A activation.

  12. Calcineurin Orchestrates Hyphal Growth, Septation, Drug Resistance and Pathogenesis of Aspergillus fumigatus: Where Do We Go from Here?

    Directory of Open Access Journals (Sweden)

    Praveen R Juvvadi

    2015-12-01

    Full Text Available Studies on fungal pathogens belonging to the ascomycota phylum are critical given the ubiquity and frequency with which these fungi cause infections in humans. Among these species, Aspergillus fumigatus causes invasive aspergillosis, a leading cause of death in immunocompromised patients. Fundamental to A. fumigatus pathogenesis is hyphal growth. However, the precise mechanisms underlying hyphal growth and virulence are poorly understood. Over the past 10 years, our research towards the identification of molecular targets responsible for hyphal growth, drug resistance and virulence led to the elucidation of calcineurin as a key signaling molecule governing these processes. In this review, we summarize our salient findings on the significance of calcineurin for hyphal growth and septation in A. fumigatus and propose future perspectives on exploiting this pathway for designing new fungal-specific therapeutics.

  13. An unusual case of calcineurine inhibitor pain syndrome.

    Science.gov (United States)

    Nickavar, Azar; Mehrazma, Mitra; Hallaji, Farideh

    2014-09-01

    Cyclosporine induced pain syndrome (CIPS) is a newly diagnosed complication of calcineurine inhibitors, mainly observed in solid organ and hematopoetic transplantations. The present case is a male child with steroid resistant nephrotic syndrome on low therapeutic level cyclosporine treatment. He presented with intractable and debilitating leg pain, with no reported history of previous injury or trauma. The pain was reluctant to antimicrobial and sedative treatment. MRI revealed bone marrow and soft tissue edema in the mid shaft of patient's right leg. Inspite of unusual manifestations, CIPS was suggested and cyclosporine discontinued. However, the pain did not improve and was resistant to calcium blocker. Subsequently, core decompression was performed as an unusual treatment of CIPS, revealing normal bone morphology. The pain improved rapidly and the patient was discharged a few days later.

  14. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses

    Science.gov (United States)

    Ibrahim, Ahmed M. A.; Kim, Yonggyun

    2008-01-01

    Several immunosuppressive factors are associated with parasitism of an endoparasitoid wasp, Cotesia plutellae, on the diamondback moth, Plutella xylostella. C. plutellae bracovirus (CpBV) encodes a large number of putative protein tyrosine phosphatases (PTPs), which may play a role in inhibiting host cellular immunity. To address this inhibitory hypothesis of CpBV-PTPs, we performed transient expression of individual CpBV-PTPs in hemocytes of the beet armyworm, Spodoptera exigua, and analyzed their cellular immune responses. Two different forms of CpBV-PTPs were chosen and cloned into a eukaryotic expression vector under the control of the p10 promoter of baculovirus: one with the normal cysteine active site (CpBV-PTP1) and the other with a mutated active site (CpBV-PTP5). The hemocytes transfected with CpBV-PTP1 significantly increased in PTP activity compared to control hemocytes, but those with CpBV-PTP5 exhibited a significant decrease in the PTP activity. All transfected hemocytes exhibited a significant reduction in both cell spreading and encapsulation activities compared to control hemocytes. Co-transfection of CpBV-PTP1 together with its double-stranded RNA reduced the messenger RNA (mRNA) level of CpBV-PTP1 and resulted in recovery of both hemocyte behaviors. This is the first report demonstrating that the polydnaviral PTPs can manipulate PTP activity of the hemocytes to interrupt cellular immune responses.

  15. Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells.

    Science.gov (United States)

    Lu, Gang; Sun, Haipeng; She, Pengxiang; Youn, Ji-Youn; Warburton, Sarah; Ping, Peipei; Vondriska, Thomas M; Cai, Hua; Lynch, Christopher J; Wang, Yibin

    2009-06-01

    The branched-chain amino acids (BCAA) are essential amino acids required for protein homeostasis, energy balance, and nutrient signaling. In individuals with deficiencies in BCAA, these amino acids can be preserved through inhibition of the branched-chain-alpha-ketoacid dehydrogenase (BCKD) complex, the rate-limiting step in their metabolism. BCKD is inhibited by phosphorylation of its E1alpha subunit at Ser293, which is catalyzed by BCKD kinase. During BCAA excess, phosphorylated Ser293 (pSer293) becomes dephosphorylated through the concerted inhibition of BCKD kinase and the activity of an unknown intramitochondrial phosphatase. Using unbiased, proteomic approaches, we have found that a mitochondrial-targeted phosphatase, PP2Cm, specifically binds the BCKD complex and induces dephosphorylation of Ser293 in the presence of BCKD substrates. Loss of PP2Cm completely abolished substrate-induced E1alpha dephosphorylation both in vitro and in vivo. PP2Cm-deficient mice exhibited BCAA catabolic defects and a metabolic phenotype similar to the intermittent or intermediate types of human maple syrup urine disease (MSUD), a hereditary disorder caused by defects in BCKD activity. These results indicate that PP2Cm is the endogenous BCKD phosphatase required for nutrient-mediated regulation of BCKD activity and suggest that defects in PP2Cm may be responsible for a subset of human MSUD.

  16. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sung Jun [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Ni, Lisheng [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Osinski, Adam [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Tomchick, Diana R. [Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States; Brautigam, Chad A. [Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States; Luo, Xuelian [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States

    2017-10-24

    The Hippo pathway controls tissue growth and homeostasis through a central MST-LATS kinase cascade. The scaffold protein SAV1 promotes the activation of this kinase cascade, but the molecular mechanisms remain unknown. Here, we discover SAV1-mediated inhibition of the PP2A complex STRIPAKSLMAP as a key mechanism of MST1/2 activation. SLMAP binding to autophosphorylated MST2 linker recruits STRIPAK and promotes PP2A-mediated dephosphorylation of MST2 at the activation loop. Our structural and biochemical studies reveal that SAV1 and MST2 heterodimerize through their SARAH domains. Two SAV1–MST2 heterodimers further dimerize through SAV1 WW domains to form a heterotetramer, in which MST2 undergoes trans-autophosphorylation. SAV1 directly binds to STRIPAK and inhibits its phosphatase activity, protecting MST2 activation-loop phosphorylation. Genetic ablation of SLMAP in human cells leads to spontaneous activation of the Hippo pathway and alleviates the need for SAV1 in Hippo signaling. Thus, SAV1 promotes Hippo activation through counteracting the STRIPAKSLMAP PP2A phosphatase complex.

  17. A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay.

    Science.gov (United States)

    Perego, M

    1997-08-05

    The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export-import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase-prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction.

  18. HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain.

    Directory of Open Access Journals (Sweden)

    Marie-Claude Gingras

    Full Text Available The HD-PTP protein has been described as a tumor suppressor candidate and based on its amino acid sequence, categorized as a classical non-transmembrane protein tyrosine phosphatase (PTP. To date, no HD-PTP phosphorylated substrate has been identified and controversial results concerning its catalytic activity have been recently reported.Here we report a rigorous enzymatic analysis demonstrating that the HD-PTP protein does not harbor tyrosine phosphatase or lipid phosphatase activity using the highly sensitive DiFMUP substrate and a panel of different phosphatidylinositol phosphates. We found that HD-PTP tyrosine phosphatase inactivity is caused by an evolutionary conserved amino acid divergence of a key residue located in the HD-PTP phosphatase domain since its back mutation is sufficient to restore the HD-PTP tyrosine phosphatase activity. Moreover, in agreement with a tumor suppressor activity, HD-PTP expression leads to colony growth reduction in human cancer cell lines, independently of its catalytic PTP activity status.In summary, we demonstrate that HD-PTP is a catalytically inactive protein tyrosine phosphatase. As such, we identify one residue involved in its inactivation and show that its colony growth reduction activity is independent of its PTP activity status in human cancer cell lines.

  19. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues

    DEFF Research Database (Denmark)

    Cook, Naomi L.; Moeke, Cassidy H.; Fantoni, Luca I.

    2016-01-01

    Phosphorylation of protein tyrosine residues is critical to cellular processes, and is regulated by kinases and phosphatases (PTPs). PTPs contain a redox-sensitive active site Cys residue, which is readily oxidized. Myeloperoxidase, released from activated leukocytes, catalyzes thiocyanate ion (SCN...

  20. Inhibition of several enzymes by gold compounds. II. beta-Glucuronidase, acid phosphatase and L-malate dehydrogenase by sodium thiomalatoraurate (I), sodium thiosulfatoaurate (I) and thioglucosoaurate (I).

    Science.gov (United States)

    Lee, M T; Ahmed, T; Haddad, R; Friedman, M E

    1989-01-01

    Bovine liver beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32), wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) and bovine liver L-malate dehydrogenase (L-malate: NAD oxidoreductase, EC 1.1.1.37) were inhibited by a series of gold (I) complexes that have been used as anti-inflammatory drugs. Both sodium thiosulfatoaurate (I) (Na AuTs) and sodium thiomalatoraurate (NaAuTM) effectively inhibited all three enzymes, while thioglucosoaurate (I) (AuTG) only inhibited L-malate dehydrogenase. The equilibrium constants (K1) ranged from nearly 4000 microM for the NaAuTM-beta-glucuronidase interaction to 24 microM for the NaAuTS-beta-glucuronidase interaction. The rate of covalent bond formation (kp) ranged from 0.00032 min-1 for NaAuTM-beta-glucuronidase formation to 1.7 min-1 for AuTG-L-malate dehydrogenase formation. The equilibrium data shows that the gold (I) drugs bind by several orders lower than the gold (III) compounds, suggesting a significantly stronger interaction between the more highly charged gold ion and the enzyme. Yet the rate of covalent bond formation depends as much on the structure of the active site as upon the lability of the gold-ligand bond. It was also observed that the more effective the gold inhibition the more toxic the compound.

  1. Intranasal Cotinine Plus Krill Oil Facilitates Fear Extinction, Decreases Depressive-Like Behavior, and Increases Hippocampal Calcineurin A Levels in Mice.

    Science.gov (United States)

    Alvarez-Ricartes, Nathalie; Oliveros-Matus, Patricia; Mendoza, Cristhian; Perez-Urrutia, Nelson; Echeverria, Florencia; Iarkov, Alexandre; Barreto, George E; Echeverria, Valentina

    2018-02-27

    Failure in fear extinction is one of the more troublesome characteristics of posttraumatic stress disorder (PTSD). Cotinine facilitates fear memory extinction and reduces depressive-like behavior when administered 24 h after fear conditioning in mice. In this study, it was investigated the behavioral and molecular effects of cotinine, and other antidepressant preparations infused intranasally. Intranasal (IN) cotinine, IN krill oil, IN cotinine plus krill oil, and oral sertraline were evaluated on depressive-like behavior and fear retention and extinction after fear conditioning in C57BL/6 mice. Since calcineurin A has been involved in facilitating fear extinction in rodents, we also investigated changes of calcineurin in the hippocampus, a region key on contextual fear extinction. Short-term treatment with cotinine formulations was superior to krill oil and oral sertraline in reducing depressive-like behavior and fear consolidation and enhancing contextual fear memory extinction in mice. IN krill oil slowed the extinction of fear. IN cotinine preparations increased the levels of calcineurin A in the hippocampus of conditioned mice. In the light of the results, the future investigation of the use of IN cotinine preparations for the extinction of contextual fear memory and treatment of treatment-resistant depression (TRD) in PTSD is discussed.

  2. Pterocarpans with inhibitory effects on protein tyrosine phosphatase 1B from Erythrina lysistemon Hutch

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Nguyen, Phi Hung; Thuong, Phuong Thien

    2009-01-01

    ',5':3,4]-2'',2''-dimethyldihydropyrano[6'',5'':9,10]pterocarpan (1), furano[5',4':3,4]-9-hydroxy-10-prenylpterocarpan (2), and 8-formyl-3,9-dihydroxy-4,10-diprenylpterocarpan (3), based on spectroscopic analyses. All the isolates, with the exception of 3, 6, and 11, strongly inhibited protein tyrosine phosphatase 1B (PTP1B) activity...

  3. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen

    2012-01-01

    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... profile of the integrin-linked kinase associated phosphatase (ILKAP), a member of the protein phosphatase 2C (PP2C) family. Phosphatases can potentially dephosphorylate these phosphopeptide substrates but, interestingly, performing the binding studies at 4 °C allowed efficient binding to phosphopeptides......, without the need for phosphopeptide mimics or phosphatase inhibitors. As no proven ILKAP substrates were available, we selected phosphopeptide substrates among known PP2Cδ substrates including the protein kinases: p38, ATM, Chk1, Chk2 and RSK2 and synthesized directly on PEGA solid supports through a BAL...

  4. Calcineurin signaling and PGC-1alpha expression are suppressed during muscle atrophy due to diabetes.

    Science.gov (United States)

    Roberts-Wilson, Tiffany K; Reddy, Ramesh N; Bailey, James L; Zheng, Bin; Ordas, Ronald; Gooch, Jennifer L; Price, S Russ

    2010-08-01

    PGC-1alpha is a transcriptional coactivator that controls energy homeostasis through regulation of glucose and oxidative metabolism. Both PGC-1alpha expression and oxidative capacity are decreased in skeletal muscle of patients and animals undergoing atrophy, suggesting that PGC-1alpha participates in the regulation of muscle mass. PGC-1alpha gene expression is controlled by calcium- and cAMP-sensitive pathways. However, the mechanism regulating PGC-1alpha in skeletal muscle during atrophy remains unclear. Therefore, we examined the mechanism responsible for decreased PGC-1alpha expression using a rodent streptozotocin (STZ) model of chronic diabetes and atrophy. After 21days, the levels of PGC-1alpha protein and mRNA were decreased. We examined the activation state of CREB, a potent activator of PGC-1alpha transcription, and found that phospho-CREB was paradoxically high in muscle of STZ-rats, suggesting that the cAMP pathway was not involved in PGC-1alpha regulation. In contrast, expression of calcineurin (Cn), a calcium-dependent phosphatase, was suppressed in the same muscles. PGC-1alpha expression is regulated by two Cn substrates, MEF2 and NFATc. Therefore, we examined MEF2 and NFATc activity in muscles from STZ-rats. Target genes MRF4 and MCIP1.4 mRNAs were both significantly reduced, consistent with reduced Cn signaling. Moreover, levels of MRF4, MCIP1.4, and PGC-1alpha were also decreased in muscles of CnAalpha-/- and CnAbeta-/- mice without diabetes indicating that decreased Cn signaling, rather than changes in other calcium- or cAMP-sensitive pathways, were responsible for decreased PGC-1alpha expression. These findings demonstrate that Cn activity is a major determinant of PGC-1alpha expression in skeletal muscle during diabetes and possibly other conditions associated with loss of muscle mass.

  5. Calcineurin signaling and PGC-1α expression are suppressed during muscle atrophy due to diabetes

    Science.gov (United States)

    Roberts-Wilson, Tiffany K.; Reddy, Ramesh N.; Bailey, James L.; Zheng, Bin; Ordas, Ronald; Gooch, Jennifer L.; Price, S. Russ

    2010-01-01

    PGC-1α is a transcriptional coactivator that controls energy homeostasis through regulation of glucose and oxidative metabolism. Both PGC-1α expression and oxidative capacity are decreased in skeletal muscle of patients and animals undergoing atrophy, suggesting that PGC-1α participates in the regulation of muscle mass. PGC-1α gene expression is controlled by calcium- and cAMP-sensitive pathways. However, the mechanism regulating PGC-1α in skeletal muscle during atrophy remains unclear. Therefore, we examined the mechanism responsible for decreased PGC-1α expression using a rodent streptozotocin (STZ) model of chronic diabetes and atrophy. After 21d, the levels of PGC-1α protein and mRNA were decreased. We examined the activation state of CREB, a potent activator of PGC-1α transcription, and found that phospho-CREB was paradoxically high in muscle of STZ-rats, suggesting that the cAMP pathway was not involved in PGC-1α regulation. In contrast, expression of calcineurin (Cn), a calcium-dependent phosphatase, was suppressed in the same muscles. PGC-1α expression is regulated by two Cn substrates, MEF2 and NFATc. Therefore, we examined MEF2 and NFATc activity in muscles from STZ-rats. Target genes MRF4 and MCIP1.4 were both significantly reduced, consistent with reduced Cn signaling. Moreover, levels of MRF4, MCIP1.4, and PGC-1α were also decreased in muscles of CnAα-/- and CnAβ-/- mice without diabetes indicating that decreased Cn signaling, rather than changes in other calcium- or cAMP-sensitive pathways, were responsible for decreased PGC-1α expression. These findings demonstrate that Cn activity is a major determinant of PGC-1α expression in skeletal muscle during diabetes and possibly other conditions associated with loss of muscle mass. PMID:20359506

  6. A Dictyostelium secreted factor requires a PTEN-like phosphatase to slow proliferation and induce chemorepulsion.

    Science.gov (United States)

    Herlihy, Sarah E; Tang, Yitai; Gomer, Richard H

    2013-01-01

    In Dictyostelium discoideum, AprA and CfaD are secreted proteins that inhibit cell proliferation. We found that the proliferation of cells lacking CnrN, a phosphatase and tensin homolog (PTEN)-like phosphatase, is not inhibited by exogenous AprA and is increased by exogenous CfaD. The expression of CnrN in cnrN cells partially rescues these altered sensitivities, suggesting that CnrN is necessary for the ability of AprA and CfaD to inhibit proliferation. Cells lacking CnrN accumulate normal levels of AprA and CfaD. Like cells lacking AprA and CfaD, cnrN cells proliferate faster and reach a higher maximum cell density than wild type cells, tend to be multinucleate, accumulate normal levels of mass and protein per nucleus, and form less viable spores. When cnrN cells expressing myc-tagged CnrN are stimulated with a mixture of rAprA and rCfaD, levels of membrane-associated myc-CnrN increase. AprA also causes chemorepulsion of Dictyostelium cells, and CnrN is required for this process. Combined, these results suggest that CnrN functions in a signal transduction pathway downstream of AprA and CfaD mediating some, but not all, of the effects of AprA and CfaD.

  7. Voltage-sensing phosphatase: its molecular relationship with PTEN.

    Science.gov (United States)

    Okamura, Yasushi; Dixon, Jack E

    2011-02-01

    Voltage-sensing phosphoinositide phosphatase (VSP) contains voltage sensor and cytoplasmic phosphatase domains. A unique feature of this protein is that depolarization-induced motions of the voltage sensor activate PtdIns(3,4,5)P(3) and PtdIns(4,5)P(2) phosphatase activities. VSP exhibits remarkable structural similarities with PTEN, the phosphatase and tensin homolog deleted on chromosome 10. These similarities include the cytoplasmic phosphatase region, the phosphoinositide binding region, and the putative membrane interacting C2 domain.

  8. Benomyl inhibits phosphorus transport but not fungal alkaline phosphatase activity in a Glomus-cucumber symbiosis

    DEFF Research Database (Denmark)

    Larsen, J.; Thingstrup, I.; Jakobsen, I.

    1996-01-01

    when benomyl was applied to the HC at 10 µg g-1 soil, whereas the uptake of 32P from RHC I roots + hyphae) was reduced only at the highest dose of application to the RHC (100 µ g g-1 soil). In contrast to the marked reduction of benomyl on fungal P transport, the activity of fungal alkaline phosphatase...

  9. Crystallization and preliminary X-ray diffraction analysis of rat protein tyrosine phosphatase η

    Energy Technology Data Exchange (ETDEWEB)

    Matozo, Huita C.; Nascimento, Alessandro S.; Santos, Maria A. M. [Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, CEP 13566-590 São Carlos, SP (Brazil); Iuliano, Rodolfo [Dipartimento di Medicina Sperimentale e Clinica, Facoltà di Medicina e Chirurgia, Università di Catanzaro, 88100 Catanzaro (Italy); Fusco, Alfredo [Dipartimento di Biologia e Patologia Cellulare e Molecolare, c/o Instituto di Endocrinologia ed Oncologia Sperimentale del CNR, Facolta di Medicina e Chirurgia, Università degli Studi di Napoli ‘Federico II’, Via Pansini 5, 80131 Naples (Italy); NOGEC (Naples Oncogenomocs Center)-CEINGE, Biotecnologie Avanzate, Via Comunale Margherita 482, 80145 Naples (Italy); Polikarpov, Igor, E-mail: ipolikarpov@if.sc.usp.br [Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, CEP 13566-590 São Carlos, SP (Brazil); Laboratório Nacional de Luz Síncrotron, Campinas, SP (Brazil)

    2006-09-01

    In this study, the catalytic domain of rat protein tyrosine phosphatase η was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. The rat protein tyrosine phosphatase η (rPTPη) is a cysteine-dependent phosphatase which hydrolyzes phosphoester bonds in proteins and other molecules. rPTPη and its human homologue DEP-1 are involved in neoplastic transformations. Thus, expression of the protein is reduced in all oncogene-transformed thyroid cell lines and is absent in highly malignant thyroid cells. Moreover, consistent with the suggested tumour suppression role of PTPη, inhibition of the tumorigenic process occurs after its exogenous reconstitution, suggesting that PTPη might be important for gene therapy of cancers. In this study, the catalytic domain of rPTPη was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. Diffraction data were collected to 1.87 Å resolution. The crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 46.46, b = 63.07, c = 111.64 Å, and contains one molecule per asymmetric unit.

  10. Crystallization and preliminary X-ray diffraction analysis of rat protein tyrosine phosphatase η

    International Nuclear Information System (INIS)

    Matozo, Huita C.; Nascimento, Alessandro S.; Santos, Maria A. M.; Iuliano, Rodolfo; Fusco, Alfredo; Polikarpov, Igor

    2006-01-01

    In this study, the catalytic domain of rat protein tyrosine phosphatase η was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. The rat protein tyrosine phosphatase η (rPTPη) is a cysteine-dependent phosphatase which hydrolyzes phosphoester bonds in proteins and other molecules. rPTPη and its human homologue DEP-1 are involved in neoplastic transformations. Thus, expression of the protein is reduced in all oncogene-transformed thyroid cell lines and is absent in highly malignant thyroid cells. Moreover, consistent with the suggested tumour suppression role of PTPη, inhibition of the tumorigenic process occurs after its exogenous reconstitution, suggesting that PTPη might be important for gene therapy of cancers. In this study, the catalytic domain of rPTPη was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. Diffraction data were collected to 1.87 Å resolution. The crystal belongs to space group P2 1 2 1 2 1 , with unit-cell parameters a = 46.46, b = 63.07, c = 111.64 Å, and contains one molecule per asymmetric unit

  11. Identification of genes required for secretion of the Francisella oxidative burst-inhibiting acid phosphatase AcpA

    Directory of Open Access Journals (Sweden)

    John S Gunn

    2016-04-01

    Full Text Available Francisella tularensis is a Tier 1 bioterror threat and the intracellular pathogen responsible for tularemia in humans and animals. Upon entry into the host, Francisella uses multiple mechanisms to evade killing. Our previous studies have shown that after entering its primary cellular host, the macrophage, Francisella immediately suppresses the oxidative burst by secreting a series of acid phosphatases including AcpA-B-C and HapA, thereby evading the innate immune response of the macrophage and enhancing survival and further infection. However, the mechanism of acid phosphatase secretion by Francisella is still unknown. In this study, we screened for genes required for AcpA secretion in Francisella. We initially demonstrated that the known secretion systems, the putative Francisella-pathogenicity island (FPI-encoded Type VI secretion system and the Type IV pili, do not secrete AcpA. Using random transposon mutagenesis in conjunction with ELISA, Western blotting and acid phosphatase enzymatic assays, a transposon library of 5450 mutants was screened for strains with a minimum 1.5-fold decrease in secreted (culture supernatant AcpA, but no defect in cytosolic AcpA. Three mutants with decreased supernatant AcpA were identified. The transposon insertion sites of these mutants were revealed by direct genomic sequencing or inverse-PCR and sequencing. One of these mutants has a severe defect in AcpA secretion (at least 85% decrease and is a predicted hypothetical inner membrane protein. Interestingly, this mutant also affected the secretion of the FPI-encoded protein, VgrG. Thus, this screen identified novel protein secretion factors involved in the subversion of host defenses.

  12. Implication of Ca2+ in the regulation of replicative life span of budding yeast.

    Science.gov (United States)

    Tsubakiyama, Ryohei; Mizunuma, Masaki; Gengyo, Anri; Yamamoto, Josuke; Kume, Kazunori; Miyakawa, Tokichi; Hirata, Dai

    2011-08-19

    In eukaryotic cells, Ca(2+)-triggered signaling pathways are used to regulate a wide variety of cellular processes. Calcineurin, a highly conserved Ca(2+)/calmodulin-dependent protein phosphatase, plays key roles in the regulation of diverse biological processes in organisms ranging from yeast to humans. We isolated a mutant of the SIR3 gene, implicated in the regulation of life span, as a suppressor of the Ca(2+) sensitivity of zds1Δ cells in the budding yeast Saccharomyces cerevisiae. Therefore, we investigated a relationship between Ca(2+) signaling and life span in yeast. Here we show that Ca(2+) affected the replicative life span (RLS) of yeast. Increased external and intracellular Ca(2+) levels caused a reduction in their RLS. Consistently, the increase in calcineurin activity by either the zds1 deletion or the constitutively activated calcineurin reduced RLS. Indeed, the shortened RLS of zds1Δ cells was suppressed by the calcineurin deletion. Further, the calcineurin deletion per se promoted aging without impairing the gene silencing typically observed in short-lived sir mutants, indicating that calcineurin plays an important role in a regulation of RLS even under normal growth condition. Thus, our results indicate that Ca(2+) homeostasis/Ca(2+) signaling are required to regulate longevity in budding yeast.

  13. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine

    Science.gov (United States)

    Okazaki, Taku; Maeda, Akito; Nishimura, Hiroyuki; Kurosaki, Tomohiro; Honjo, Tasuku

    2001-01-01

    PD-1 is an immunoreceptor that belongs to the immunoglobulin (Ig) superfamily and contains two tyrosine residues in the cytoplasmic region. Studies on PD-1-deficient mice have shown that PD-1 plays critical roles in establishment and/or maintenance of peripheral tolerance, but the mode of action is totally unknown. To study the molecular mechanism for negative regulation of lymphocytes through the PD-1 receptor, we generated chimeric molecules composed of the IgG Fc receptor type IIB (FcγRIIB) extracellular region and the PD-1 cytoplasmic region and expressed them in a B lymphoma cell line, IIA1.6. Coligation of the cytoplasmic region of PD-1 with the B cell receptor (BCR) in IIA1.6 transformants inhibited BCR-mediated growth retardation, Ca2+ mobilization, and tyrosine phosphorylation of effector molecules, including Igβ, Syk, phospholipase C-γ2 (PLCγ2), and ERK1/2, whereas phosphorylation of Lyn and Dok was not affected. Mutagenesis studies indicated that these inhibitory effects do not require the N-terminal tyrosine in the immunoreceptor tyrosine-based inhibitory motif-like sequence, but do require the other tyrosine residue in the C-terminal tail. This tyrosine was phosphorylated and recruited src homology 2-domain-containing tyrosine phosphatase 2 (SHP-2) on coligation of PD-1 with BCR. These results show that PD-1 can inhibit BCR signaling by recruiting SHP-2 to its phosphotyrosine and dephosphorylating key signal transducers of BCR signaling. PMID:11698646

  14. 3' Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP).

    Science.gov (United States)

    Kurokawa, Tatsuki; Takasuga, Shunsuke; Sakata, Souhei; Yamaguchi, Shinji; Horie, Shigeo; Homma, Koichi J; Sasaki, Takehiko; Okamura, Yasushi

    2012-06-19

    Voltage-sensing phosphatases (VSPs) consist of a voltage-sensor domain and a cytoplasmic region with remarkable sequence similarity to phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase. VSPs dephosphorylate the 5' position of the inositol ring of both phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] upon voltage depolarization. However, it is unclear whether VSPs also have 3' phosphatase activity. To gain insights into this question, we performed in vitro assays of phosphatase activities of Ciona intestinalis VSP (Ci-VSP) and transmembrane phosphatase with tensin homology (TPTE) and PTEN homologous inositol lipid phosphatase (TPIP; one human ortholog of VSP) with radiolabeled PI(3,4,5)P(3). TLC assay showed that the 3' phosphate of PI(3,4,5)P(3) was not dephosphorylated, whereas that of phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)] was removed by VSPs. Monitoring of PI(3,4)P(2) levels with the pleckstrin homology (PH) domain from tandem PH domain-containing protein (TAPP1) fused with GFP (PH(TAPP1)-GFP) by confocal microscopy in amphibian oocytes showed an increase of fluorescence intensity during depolarization to 0 mV, consistent with 5' phosphatase activity of VSP toward PI(3,4,5)P(3). However, depolarization to 60 mV showed a transient increase of GFP fluorescence followed by a decrease, indicating that, after PI(3,4,5)P(3) is dephosphorylated at the 5' position, PI(3,4)P(2) is then dephosphorylated at the 3' position. These results suggest that substrate specificity of the VSP changes with membrane potential.

  15. Reductions in the Cardiac Transient Outward K+ Current Ito Caused by Chronic β-Adrenergic Receptor Stimulation Are Partly Rescued by Inhibition of Nuclear Factor κB.

    Science.gov (United States)

    Panama, Brian K; Korogyi, Adam S; Aschar-Sobbi, Roozbeh; Oh, Yena; Gray, Charles B B; Gang, Hongying; Brown, Joan Heller; Kirshenbaum, Lorrie A; Backx, Peter H

    2016-02-19

    The fast transient outward potassium current (Ito,f) plays a critical role in the electrical and contractile properties of the myocardium. Ito,f channels are formed by the co-assembly of the pore-forming α-subunits, Kv4.2 and Kv4.3, together with the accessory β-subunit KChIP2. Reductions of Ito,f are common in the diseased heart, which is also associated with enhanced stimulation of β-adrenergic receptors (β-ARs). We used cultured neonatal rat ventricular myocytes to examine how chronic β-AR stimulation decreases Ito,f. To determine which downstream pathways mediate these Ito,f changes, adenoviral infections were used to inhibit CaMKIIδc, CaMKIIδb, calcineurin, or nuclear factor κB (NF-κB). We observed that chronic β-AR stimulation with isoproterenol (ISO) for 48 h reduced Ito,f along with mRNA expression of all three of its subunits (Kv4.2, Kv4.3, and KChIP2). Inhibiting either CaMKIIδc nor CaMKIIδb did not prevent the ISO-mediated Ito,f reductions, even though CaMKIIδc and CaMKIIδb clearly regulated Ito,f and the mRNA expression of its subunits. Likewise, calcineurin inhibition did not prevent the Ito,f reductions induced by β-AR stimulation despite strongly modulating Ito,f and subunit mRNA expression. In contrast, NF-κB inhibition partly rescued the ISO-mediated Ito,f reductions in association with restoration of KChIP2 mRNA expression. Consistent with these observations, KChIP2 promoter activity was reduced by p65 as well as β-AR stimulation. In conclusion, NF-κB, and not CaMKIIδ or calcineurin, partly mediates the Ito,f reductions induced by chronic β-AR stimulation. Both mRNA and KChIP2 promoter data suggest that the ISO-induced Ito,f reductions are, in part, mediated through reduced KChIP2 transcription caused by NF-κB activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Early conversion from calcineurin inhibitor- to everolimus-based therapy following kidney transplantation : Results of the randomized ELEVATE trial

    NARCIS (Netherlands)

    de Fijter, Johan W; Holdaas, Hallvard; Øyen, Ole; Sanders, Jan Stephan; Sundar, Sankaran; Bemelman, Frederike J; Sommerer, Claudia; Pascual, Julio; Avihingsanon, Yingyos; Pongskul, Cholatip; Oppenheimer, Frederic; Toselli, Lorenzo; Russ, Graeme; Wang, Zailong; Lopez, Patricia; Kochuparampil, Jossy; Cruzado, Josep M; van der Giet, Markus

    In a 24-month, multicenter, open-label, randomized trial, 715 de novo kidney transplant recipients were randomized at 10-14 weeks to convert to everolimus (n=359) or remain on standard calcineurin inhibitor (CNI) therapy (n=356; 231 tacrolimus; 125 cyclosporine), all with mycophenolic acid and

  17. A Dictyostelium secreted factor requires a PTEN-like phosphatase to slow proliferation and induce chemorepulsion.

    Directory of Open Access Journals (Sweden)

    Sarah E Herlihy

    Full Text Available In Dictyostelium discoideum, AprA and CfaD are secreted proteins that inhibit cell proliferation. We found that the proliferation of cells lacking CnrN, a phosphatase and tensin homolog (PTEN-like phosphatase, is not inhibited by exogenous AprA and is increased by exogenous CfaD. The expression of CnrN in cnrN cells partially rescues these altered sensitivities, suggesting that CnrN is necessary for the ability of AprA and CfaD to inhibit proliferation. Cells lacking CnrN accumulate normal levels of AprA and CfaD. Like cells lacking AprA and CfaD, cnrN cells proliferate faster and reach a higher maximum cell density than wild type cells, tend to be multinucleate, accumulate normal levels of mass and protein per nucleus, and form less viable spores. When cnrN cells expressing myc-tagged CnrN are stimulated with a mixture of rAprA and rCfaD, levels of membrane-associated myc-CnrN increase. AprA also causes chemorepulsion of Dictyostelium cells, and CnrN is required for this process. Combined, these results suggest that CnrN functions in a signal transduction pathway downstream of AprA and CfaD mediating some, but not all, of the effects of AprA and CfaD.

  18. Crystallization and preliminary crystallographic analysis of a calcineurin B-like protein 1 (CBL1) mutant from Ammopiptanthus mongolicus

    International Nuclear Information System (INIS)

    Shang, Guijun; Cang, Huaixing; Liu, Zhijie; Gao, Wei; Bi, Ruchang

    2010-01-01

    Recombinant calcineurin B-like protein 1 from Ammopiptanthus mongolicus (AmCBL1) was overexpressed, purified and crystallized. Calcineurin B-like protein 1 (CBL1) is a calcium sensor in plants. It transmits the calcium signal through the downstream protein CBL-interacting protein kinase (CIPK). CBL1 and CIPK play crucial roles in the response to environmental stresses such as low K + , osmotic shock, high salt, cold and drought. Recombinant CBL1 from Ammopiptanthus mongolicus (AmCBL1) was overexpressed, purified and crystallized. However, the crystal did not diffract well. A mutant prepared using the surface-entropy method and crystallized using the hanging-drop method at 298 K with PEG 2000 MME as a precipitant diffracted to 2.90 Å resolution. The crystal belonged to space group P2 1 2 1 2, with unit-cell parameters a = 99.87, b = 114.42, c = 63.80 Å, α = β = γ = 90.00° and three molecules per asymmetric unit

  19. Increased PTP1B expression and phosphatase activity in colorectal cancer results in a more invasive phenotype and worse patient outcome.

    Science.gov (United States)

    Hoekstra, Elmer; Das, Asha M; Swets, Marloes; Cao, Wanlu; van der Woude, C Janneke; Bruno, Marco J; Peppelenbosch, Maikel P; Kuppen, Peter J K; Ten Hagen, Timo L M; Fuhler, Gwenny M

    2016-04-19

    Cell signaling is dependent on the balance between phosphorylation of proteins by kinases and dephosphorylation by phosphatases. This balance if often disrupted in colorectal cancer (CRC), leading to increased cell proliferation and invasion. For many years research has focused on the role of kinases as potential oncogenes in cancer, while phosphatases were commonly assumed to be tumor suppressive. However, this dogma is currently changing as phosphatases have also been shown to induce cancer growth. One of these phosphatases is protein tyrosine phosphatase 1B (PTP1B). Here we report that the expression of PTP1B is increased in colorectal cancer as compared to normal tissue, and that the intrinsic enzymatic activity of the protein is also enhanced. This suggests a role for PTP1B phosphatase activity in CRC formation and progression. Furthermore, we found that increased PTP1B expression is correlated to a worse patient survival and is an independent prognostic marker for overall survival and disease free survival. Knocking down PTP1B in CRC cell lines results in a less invasive phenotype with lower adhesion, migration and proliferation capabilities. Together, these results suggest that inhibition of PTP1B activity is a promising new target in the treatment of colorectal cancer and the prevention of metastasis.

  20. Identification of human pulmonary alkaline phosphatase isoenzymes.

    Science.gov (United States)

    Capelli, A; Cerutti, C G; Lusuardi, M; Donner, C F

    1997-04-01

    An increase of alkaline phosphatase (ALP) activity has been observed in the bronchoalveolar lavage fluid (BALF) of patients affected by pulmonary fibrosis in chronic interstitial lung disorders. To characterize the ALP isoenzymes in such cases, we used gel filtration, agarose gel electrophoresis, heat and amino acid inhibition assays, wheat-germ agglutinin (WGA) precipitation, and an immunoassay specific for the bone-isoform of ALP. Only one anodic band representing a high-molecular-weight isoform of ALP (Mr approximately 2,000 kDa) was observed on electrophoresis of BALF. The inhibition assay results were consistent for a tissue-nonspecific isoenzyme sensitive to a temperature of 56 degrees C (71.9 +/- 2.5% inhibition) and to homoarginine (65.7 +/- 1.9%), and resistant to L-phenylalanine and L-leucine. Less than 13% of ALP activity was heat-stable. After incubation of BALF specimens with glycosyl-phosphatidylinositol-phospholipase D plus Nonidet P-40, or with phosphatidylinositol-phospholipase C alone, an electrophoretic cathodic band (Mr approximately 220 kDa) appeared near the bone band of a standard serum. With the WGA assay, 84.4 +/- 3.3% of ALP precipitated and the band disappeared. After immunoassay for the bone isoform, a mean of less than 5% enzyme activity was measured. We conclude that the ALP found in BALF is a pulmonary isoform of a tissue nonspecific isoenzyme.

  1. Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast

    International Nuclear Information System (INIS)

    Kita, Ayako; Higa, Mari; Doi, Akira; Satoh, Ryosuke; Sugiura, Reiko

    2015-01-01

    Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2 + gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity. - Highlights: • We isolated imp2-c3, in a synthetic lethal screen with calcineurin in fission yeast. • The imp2 + gene encodes a component of the actin contractile ring similar to Cdc15. • The imp2-c3 mutants showed defects in cytokinesis, which were exacerbated by FK506. • The imp2-c3 mutants were defective in membrane trafficking and cell wall integrity. • Our study revealed a novel role for Imp2 in the Golgi/vacuolar membrane trafficking

  2. Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Ayako; Higa, Mari [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Doi, Akira [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Satoh, Ryosuke [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Sugiura, Reiko, E-mail: sugiurar@phar.kindai.ac.jp [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan)

    2015-02-13

    Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2{sup +} gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity. - Highlights: • We isolated imp2-c3, in a synthetic lethal screen with calcineurin in fission yeast. • The imp2{sup +} gene encodes a component of the actin contractile ring similar to Cdc15. • The imp2-c3 mutants showed defects in cytokinesis, which were exacerbated by FK506. • The imp2-c3 mutants were defective in membrane trafficking and cell wall integrity. • Our study revealed a novel role for Imp2 in the Golgi/vacuolar membrane trafficking.

  3. Target of rapamycin complex 1 and Tap42-associated phosphatases are required for sensing changes in nitrogen conditions in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Jinmei; Yan, Gonghong; Liu, Sichi; Jiang, Tong; Zhong, Mingming; Yuan, Wenjie; Chen, Shaoxian; Zheng, Yin; Jiang, Yong; Jiang, Yu

    2017-12-01

    In yeast target of rapamycin complex 1 (TORC1) and Tap42-associated phosphatases regulate expression of genes involved in nitrogen limitation response and the nitrogen discrimination pathway. However, it remains unclear whether TORC1 and the phosphatases are required for sensing nitrogen conditions. Utilizing temperature sensitive mutants of tor2 and tap42, we examined the role of TORC1 and Tap42 in nuclear entry of Gln3, a key transcription factor in yeast nitrogen metabolism, in response to changes in nitrogen conditions. Our data show that TORC1 is essential for Gln3 nuclear entry upon nitrogen limitation and downshift in nitrogen quality. However, Tap42-associated phosphatases are required only under nitrogen limitation condition. In cells grown in poor nitrogen medium, the nitrogen permease reactivator kinase (Npr1) inhibits TORC1 activity and alters its association with Tap42, rendering Tap42-associated phosphatases unresponsive to nitrogen limitation. These findings demonstrate a direct role for TORC1 and Tap42-associated phosphatases in sensing nitrogen conditions and unveil an Npr1-dependent mechanism that controls TORC1 and the phosphatases in response to changes in nitrogen quality. © 2017 John Wiley & Sons Ltd.

  4. Role of Zinc and Magnesium Ions in the Modulation of Phosphoryl Transfer in Protein Tyrosine Phosphatase 1B.

    Science.gov (United States)

    Bellomo, Elisa; Abro, Asma; Hogstrand, Christer; Maret, Wolfgang; Domene, Carmen

    2018-03-28

    While the majority of phosphatases are metalloenzymes, the prevailing model for the reactions catalyzed by protein tyrosine phosphatases does not involve any metal ion, yet both metal cations and oxoanions affect their enzymatic activity. Mg 2+ and Zn 2+ activate and inhibit, respectively, protein tyrosine phosphatase 1B (PTP1B). Molecular dynamics simulations, metadynamics, and quantum chemical calculations in combination with experimental investigations demonstrate that Mg 2+ and Zn 2+ compete for the same binding site in the active site only in the closed conformation of the enzyme in its phosphorylated state. The two cations have different effects on the arrangements and activities of water molecules that are necessary for the hydrolysis of the phosphocysteine intermediate in the second catalytic step of the reaction. Remarkable differences between the established structural enzymology of PTP1B investigated ex vivo and the function of PTP1B in vivo become evident. Different reaction pathways are viable when the presence of metal ions and their cellular concentrations are considered. The findings suggest that the substrate delivers the inhibitory Zn 2+ ion to the active site. The inhibition and activation can be ascribed to the different coordination chemistries of Zn 2+ and Mg 2+ ions and the orientation of the metal-coordinated water molecules. Metallochemistry adds an additional dimension to the regulation of PTP1B and presumably other members of this enzyme family.

  5. Posttranslational heterogeneity of bone alkaline phosphatase in metabolic bone disease.

    Science.gov (United States)

    Langlois, M R; Delanghe, J R; Kaufman, J M; De Buyzere, M L; Van Hoecke, M J; Leroux-Roels, G G

    1994-09-01

    Bone alkaline phosphatase is a marker of osteoblast activity. In order to study the posttranscriptional modification (glycosylation) of bone alkaline phosphatase in bone disease, we investigated the relationship between mass and catalytic activity of bone alkaline phosphatase in patients with osteoporosis and hyperthyroidism. Serum bone alkaline phosphatase activity was measured after lectin precipitation using the Iso-ALP test kit. Mass concentration of bone alkaline phosphatase was determined with an immunoradiometric assay (Tandem-R Ostase). In general, serum bone alkaline phosphatase mass and activity concentration correlated well. The activity : mass ratio of bone alkaline phosphatase was low in hyperthyroidism. Activation energy of the reaction catalysed by bone alkaline phosphatase was high in osteoporosis and in hyperthyroidism. Experiments with neuraminidase digestion further demonstrated that the thermodynamic heterogeneity of bone alkaline phosphatase can be explained by a different glycosylation of the enzyme.

  6. Single-label kinase and phosphatase assays for tyrosine phosphorylation using nanosecond time-resolved fluorescence detection.

    Science.gov (United States)

    Sahoo, Harekrushna; Hennig, Andreas; Florea, Mara; Roth, Doris; Enderle, Thilo; Nau, Werner M

    2007-12-26

    The collision-induced fluorescence quenching of a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) by hydrogen atom abstraction from the tyrosine residue in peptide substrates was introduced as a single-labeling strategy to assay the activity of tyrosine kinases and phosphatases. The assays were tested for 12 different combinations of Dbo-labeled substrates and with the enzymes p60c-Src Src kinase, EGFR kinase, YOP protein tyrosine phosphatase, as well as acid and alkaline phosphatases, thereby demonstrating a broad application potential. The steady-state fluorescence changed by a factor of up to 7 in the course of the enzymatic reaction, which allowed for a sufficient sensitivity of continuous monitoring in steady-state experiments. The fluorescence lifetimes (and intensities) were found to be rather constant for the phosphotyrosine peptides (ca. 300 ns in aerated water), while those of the unphosphorylated peptides were as short as 40 ns (at pH 7) and 7 ns (at pH 13) as a result of intramolecular quenching. Owing to the exceptionally long fluorescence lifetime of Dbo, the assays were alternatively performed by using nanosecond time-resolved fluorescence (Nano-TRF) detection, which leads to an improved discrimination of background fluorescence and an increased sensitivity. The potential for inhibitor screening was demonstrated through the inhibition of acid and alkaline phosphatases by molybdate.

  7. Effecf of pH and some cations on activity of acid phosphatase secreted from Ustilago sp. isolated from acid sulphate soil

    Directory of Open Access Journals (Sweden)

    Chairatana Nilnond

    2007-03-01

    Full Text Available Acid phosphatase secreted from Ustilago sp. is able to hydrolyze organic phosphorus. These soil yeast microorganisms were isolated from rice roots grown in acid sulphate soil that generally contains highamount of aluminum (Al, iron (Fe and manganese (Mn ions. Therefore, the objectives of this study were to examine the effect of pH and some cations on acid phosphatase activity. Two isolates of Ustilago sp., AR101and AR102, were cultured in 100 mL of modified Pikovskaya's broth containing Na-phytate, pH 4, and acid phosphatase activity was determined at pH 2.0-7.0. Effect of Al, Fe, and Mn, including calcium (Ca ions,on growth of AR101 and AR102, secreted acid phosphatase activity, and the ability of acid phosphatase on the phosphorus release from Na-phytate by Ustilago sp. were investigated. It was found that the optimum pH for acid phosphatase activity was 3.5-4.5. The activity of acid phosphatase secreted from AR101 (3,690nmol min-1 mL-1 was remarkably higher than that from AR102 (956 nmol min-1 mL-1. Aluminum, iron, manganese and calcium ions in the medium did not affect the growth of either isolate. The activity of secretedacid phosphatase of AR101 was inhibited by Al and Ca ion, and synthesis of acid phosphatase of Ustilago sp. AR102 was possibly stimulated by Fe ion. Both AR101 and AR102 solubilized Na-phytate, resulting in therelease of P. However, some amount of released P was then precipitated with Al and Fe ions as the highly insoluble Fe- or Al- phosphate.

  8. Bropirimine inhibits osteoclast differentiation through production of interferon-β

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Mochizuki, Ayako; Yoshimura, Kentaro; Miyamoto, Yoichi; Kaneko, Kotaro; Inoue, Tomio; Chikazu, Daichi; Takami, Masamichi; Kamijo, Ryutaro

    2015-01-01

    Bropirimine is a synthetic agonist for toll-like receptor 7 (TLR7). In this study, we investigated the effects of bropirimine on differentiation and bone-resorbing activity of osteoclasts in vitro. Bropirimine inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) induced by receptor activator of nuclear factor κB ligand (RANKL) in a concentration-dependent manner. Furthermore, it suppressed the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), a master transcription factor for osteoclast differentiation, without affecting BMM viability. Bropirimine also inhibited osteoclast differentiation induced in co-cultures of mouse bone marrow cells (BMCs) and mouse osteoblastic UAMS-32 cells in the presence of activated vitamin D_3. Bropirimine partially suppressed the expression of RANKL mRNA in UAMS-32 cells induced by activated vitamin D_3. Finally, the anti-interferon-β (IFN-β) antibody restored RANKL-dependent differentiation of BMMs into osteoclasts suppressed by bropirimine. These results suggest that bropirimine inhibits differentiation of osteoclast precursor cells into osteoclasts via TLR7-mediated production of IFN-β.

  9. Bropirimine inhibits osteoclast differentiation through production of interferon-β

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Hiroaki [Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Mochizuki, Ayako [Department of Oral Physiology, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Yoshimura, Kentaro; Miyamoto, Yoichi [Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Kaneko, Kotaro [Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo 160-0023 (Japan); Inoue, Tomio [Department of Oral Physiology, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Chikazu, Daichi [Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo 160-0023 (Japan); Takami, Masamichi [Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Kamijo, Ryutaro, E-mail: kamijor@dent.showa-u.ac.jp [Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555 (Japan)

    2015-11-06

    Bropirimine is a synthetic agonist for toll-like receptor 7 (TLR7). In this study, we investigated the effects of bropirimine on differentiation and bone-resorbing activity of osteoclasts in vitro. Bropirimine inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) induced by receptor activator of nuclear factor κB ligand (RANKL) in a concentration-dependent manner. Furthermore, it suppressed the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), a master transcription factor for osteoclast differentiation, without affecting BMM viability. Bropirimine also inhibited osteoclast differentiation induced in co-cultures of mouse bone marrow cells (BMCs) and mouse osteoblastic UAMS-32 cells in the presence of activated vitamin D{sub 3}. Bropirimine partially suppressed the expression of RANKL mRNA in UAMS-32 cells induced by activated vitamin D{sub 3}. Finally, the anti-interferon-β (IFN-β) antibody restored RANKL-dependent differentiation of BMMs into osteoclasts suppressed by bropirimine. These results suggest that bropirimine inhibits differentiation of osteoclast precursor cells into osteoclasts via TLR7-mediated production of IFN-β.

  10. Prostatic acid phosphatase is required for the antinociceptive effects of thiamine and benfotiamine.

    Science.gov (United States)

    Hurt, Julie K; Coleman, Jennifer L; Fitzpatrick, Brendan J; Taylor-Blake, Bonnie; Bridges, Arlene S; Vihko, Pirkko; Zylka, Mark J

    2012-01-01

    Thiamine (Vitamin B1) is an essential vitamin that must be obtained from the diet for proper neurological function. At higher doses, thiamine and benfotiamine (S-benzoylthiamine O-monophosphate, BT)-a phosphorylated derivative of thiamine-have antinociceptive effects in animals and humans, although how these compounds inhibit pain is unknown. Here, we found that Prostatic acid phosphatase (PAP, ACPP) can dephosphorylate BT in vitro, in dorsal root ganglia (DRG) neurons and in primary-afferent axon terminals in the dorsal spinal cord. The dephosphorylated product S-benzoylthiamine (S-BT) then decomposes to O-benzoylthiamine (O-BT) and to thiamine in a pH-dependent manner, independent of additional enzymes. This unique reaction mechanism reveals that BT only requires a phosphatase for conversion to thiamine. However, we found that the antinociceptive effects of BT, thiamine monophosphate (TMP) and thiamine-a compound that is not phosphorylated-were entirely dependent on PAP at the spinal level. Moreover, pharmacokinetic studies with wild-type and Pap(-/-) mice revealed that PAP is not required for the conversion of BT to thiamine in vivo. Taken together, our study highlights an obligatory role for PAP in the antinociceptive effects of thiamine and phosphorylated thiamine analogs, and suggests a novel phosphatase-independent function for PAP.

  11. Prostatic acid phosphatase is required for the antinociceptive effects of thiamine and benfotiamine.

    Directory of Open Access Journals (Sweden)

    Julie K Hurt

    Full Text Available Thiamine (Vitamin B1 is an essential vitamin that must be obtained from the diet for proper neurological function. At higher doses, thiamine and benfotiamine (S-benzoylthiamine O-monophosphate, BT-a phosphorylated derivative of thiamine-have antinociceptive effects in animals and humans, although how these compounds inhibit pain is unknown. Here, we found that Prostatic acid phosphatase (PAP, ACPP can dephosphorylate BT in vitro, in dorsal root ganglia (DRG neurons and in primary-afferent axon terminals in the dorsal spinal cord. The dephosphorylated product S-benzoylthiamine (S-BT then decomposes to O-benzoylthiamine (O-BT and to thiamine in a pH-dependent manner, independent of additional enzymes. This unique reaction mechanism reveals that BT only requires a phosphatase for conversion to thiamine. However, we found that the antinociceptive effects of BT, thiamine monophosphate (TMP and thiamine-a compound that is not phosphorylated-were entirely dependent on PAP at the spinal level. Moreover, pharmacokinetic studies with wild-type and Pap(-/- mice revealed that PAP is not required for the conversion of BT to thiamine in vivo. Taken together, our study highlights an obligatory role for PAP in the antinociceptive effects of thiamine and phosphorylated thiamine analogs, and suggests a novel phosphatase-independent function for PAP.

  12. Wip1 phosphatase is associated with chromatin and dephosphorylates gammaH2AX to promote checkpoint inhibition

    Czech Academy of Sciences Publication Activity Database

    Macůrek, Libor; Lindqvist, A.; Voets, O.; Kool, J.; Vos, H.R.; Medema, R.H.

    2010-01-01

    Roč. 29, č. 15 (2010), s. 2281-2291 ISSN 0950-9232 R&D Projects: GA ČR GPP305/10/P420 Institutional research plan: CEZ:AV0Z50520514 Keywords : DNA damage * checkpoint * phosphatase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.414, year: 2010

  13. Everolimus Initiation With Early Calcineurin Inhibitor Withdrawal in De Novo Heart Transplant Recipients

    DEFF Research Database (Denmark)

    Andreassen, A K; Andersson, B; Gustafsson, F

    2016-01-01

    In a randomized, open-label trial, de novo heart transplant recipients were randomized to everolimus (3-6 ng/mL) with reduced-exposure calcineurin inhibitor (CNI; cyclosporine) to weeks 7-11 after transplant, followed by increased everolimus exposure (target 6-10 ng/mL) with cyclosporine withdrawal...... events occurred in 37.3% and 19.6% of everolimus- and CNI-treated patients, respectively (p = 0.078). These results suggest that early CNI withdrawal after heart transplantation supported by everolimus, mycophenolic acid and steroids with lymphocyte-depleting induction is safe at intermediate follow...

  14. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application.

    Science.gov (United States)

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65 °C, respectively, and is stable at 55 °C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0 was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments.

  15. Purification and characterization of a polyisoprenyl phosphate phosphatase from pig brain. Possible dual specificity.

    Science.gov (United States)

    Frank, D W; Waechter, C J

    1998-05-08

    Microsomal fractions from pig and calf brain catalyze the enzymatic dephosphorylation of endogenous and exogenous dolichyl monophosphate (Dol-P) (Sumbilla, C. A., and Waechter, C. J. (1985) Methods Enzymol. 111, 471-482). The Dol-P phosphatase (EC 3.1.3.51) has been solubilized by extracting pig brain microsomes with the nonionic detergent Nonidet P-40 and purified approximately 1,107-fold by a combination of anion exchange chromatography, polyethylene glycol fractionation, dye-ligand chromatography, and wheat germ agglutinin affinity chromatography. Treatment of the enzyme with neuraminidase prevented binding to wheat germ agglutinin-Sepharose, indicating the presence of one or more N-acetylneuraminyl residues per molecule of enzyme. When the highly purified polyisoprenyl phosphate phosphatase was analyzed by SDS-polyacrylamide gel electrophoresis, a major 33-kDa polypeptide was observed. Enzymatic dephosphorylation of Dol-P by the purified phosphatase was 1) optimal at pH 7; 2) potently inhibited by F-, orthovanadate, and Zn2+ > Co2+ > Mn2+ but unaffected by Mg2+; 3) exhibited an approximate Km for C95-Dol-P of 45 microM; and 4) was sensitive to N-ethylmaleimide, phenylglyoxal, and diethylpyrocarbonate. The pig brain phosphatase did not dephosphorylate glucose 6-phosphate, mannose 6-phosphate, 5'-AMP, or p-nitrophenylphosphate, but it dephosphorylated dioleoyl-phosphatidic acid at initial rates similar to those determined for Dol-P. Based on the virtually identical sensitivity of Dol-P and phosphatidic acid dephosphorylation by the highly purified enzyme to N-ethylmaleimide, F-, phenylglyoxal, and diethylpyrocarbonate, both substrates appear to be hydrolyzed by a single enzyme with an apparent dual specificity. This is the first report of the purification of a neutral Dol-P phosphatase from mammalian tissues. Although the enzyme is Mg2+-independent and capable of dephosphorylating Dol-P and PA, several enzymological properties distinguish this lipid

  16. Effects of parathyroid hormone and calcitonin on alkaline phosphatase activity and matrix calcification in rabbit growth-plate chondrocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Y.; Shimazu, A.; Nakashima, K.; Suzuki, F.; Jikko, A.; Iwamoto, M. (Osaka Univ. (Japan))

    1990-07-01

    The effects of PTH and calcitonin (CT) on the expression of mineralization-related phenotypes by chondrocytes were examined. In cultures of pelleted growth-plate chondrocytes. PTH caused 60-90% decreases in alkaline phosphatase activity, the incorporation of {sup 45}Ca into insoluble material, and the calcium content during the post-mitotic stage. These effects of PTH were dose-dependent and reversible. In contrast, CT increased alkaline phosphatase activity, {sup 45}Ca incorporation into insoluble material, and the calcium content by 1.4- to 1.8-fold. These observations suggest that PTH directly inhibits the expression of the mineralization-related phenotypes by growth-plate chondrocytes, and that CT has the opposite effects.

  17. Increased liver alkaline phosphatase and aminotransferase ...

    African Journals Online (AJOL)

    The effect of daily, oral administration of ethanolic extract of Khaya senegalensis stem bark (2mg/kg body weight) for 18days on the alkaline phosphatase, aspartate and alanine aminotransferase activities of rat liver and serum were investigated. Compared with the control, the activities of liver alkaline phosphatase (ALP), ...

  18. Role of the Ca2+-Calcineurin-Nuclear Factor of Activated T cell Pathway in Mitofusin-2-Mediated Immune Function of Jurkat Cells

    Directory of Open Access Journals (Sweden)

    Xiu-Ping Xu

    2018-01-01

    Conclusions: Our findings suggest that MFN2 may regulate T cell immune functions primarily through the Ca2+-calcineurin-NFAT pathway. MFN2 may represent a potential therapeutic target for T cell immune dysfunction-related diseases.

  19. Milk fermentation products of L. helveticus R389 activate calcineurin as a signal to promote gut mucosal immunity

    Directory of Open Access Journals (Sweden)

    Perdigón Gabriela

    2007-09-01

    Full Text Available Background Fermented milks containing probiotic bacteria are a way of delivering bioactive constituents to targets in the gastrointestinal tract. We reported previously that the fermentation of milk at constant pH 6 by L. helveticus R389 increased its content of peptide fractions, and the oral administration of the non-bacterial fraction (FMSpH6 to mice increased total secretory IgA in the intestinal lumen and enhanced the number of IgA and various cytokines producing cells as well as the secretion of IL-6 by small intestine epithelial cells. We also demonstrated that this FMSpH6 was effective for the prevention of Salmonella typhimurium infection in mice. In this work, we studied in mice the impact of the oral administration of the supernatant of milk fermented by L. helveticus R389 on the gut physiology by measuring parameters such as calcium channels and E-cadherin expression, the activation of the biological signal calcineurin and mast and goblet cells, as a way to determine some mechanisms involved in the immunomodulating effects of the milk fermentation products, observed in previous studies. We analyzed the impact of the supernatant of milk fermented by L. helveticus R389 at pH6-controlled on the expression of calcineurin and on the reinforcement of the ephitelial barrier, measuring parameters such as calcium channels and E-cadherin expression and in the reinforcement of the non-specific immunity determining mast cells and goblet cells associated to the gut. Results We observed an enhanced expression of TRPV6 channels in the duodenum, indicating an improved capacity for dietary Ca2+ uptake. We demonstrated an enhanced expression of calcineurin in the small intestine, able to upregulate immune parameters such as IL-2 and TNF production, with an increase in the number of these cytokines secreting cells. We determined an increase in the number of mucosal mast cells and goblet cells, which would mean an improved state of mucosal surveillance

  20. Two-year outcomes in thoracic transplant recipients after conversion to everolimus with reduced calcineurin inhibitor within a multicenter, open-label, randomized trial

    DEFF Research Database (Denmark)

    Gullestad, Lars; Mortensen, Svend-Aage; Eiskjær, Hans

    2010-01-01

    Use of the mammalian target of rapamycin inhibitor everolimus with an accompanying reduction in calcineurin inhibitor (CNI) exposure has shown promise in preserving renal function in maintenance thoracic transplant patients, but robust, long-term data are required....

  1. Effects of chronic Akt/mTOR inhibition by rapamycin on mechanical overload-induced hypertrophy and myosin heavy chain transition in masseter muscle.

    Science.gov (United States)

    Umeki, Daisuke; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Fujita, Takayuki; Nakamura, Yoshiki; Saeki, Yasutake; Okumura, Satoshi

    2013-01-01

    To examine the effects of the Akt/mammalian target of rapamycin (mTOR) pathway on masseter muscle hypertrophy and myosin heavy chain (MHC) transition in response to mechanical overload, we analyzed the effects of bite-opening (BO) on the hypertrophy and MHC composition of masseter muscle of BO-rats treated or not treated with rapamycin (RAPA), a selective mTOR inhibitor. The masseter muscle weight in BO-rats was significantly greater than that in controls, and this increase was attenuated by RAPA treatment. Expression of slow-twitch MHC isoforms was significantly increased in BO-rats with/without RAPA treatment, compared with controls, but the magnitude of the increase was much smaller in RAPA-treated BO-rats. Phosphorylation of p44/42 MAPK (ERK1/2), which preserves fast-twitch MHC isoforms in skeletal muscle, was significantly decreased in BO-rats, but the decrease was abrogated by RAPA treatment. Calcineurin signaling is known to be important for masseter muscle hypertrophy and fast-to-slow MHC isoform transition, but expression of known calcineurin activity modulators was unaffected by RAPA treatment. Taken together, these results indicate that the Akt/mTOR pathway is involved in both development of masseter muscle hypertrophy and fast-to-slow MHC isoform transition in response to mechanical overload with inhibition of the ERK1/2 pathway and operates independently of the calcineurin pathway.

  2. Phosphatase and tensin homolog-β-catenin signaling modulates regulatory T cells and inflammatory responses in mouse liver ischemia/reperfusion injury.

    Science.gov (United States)

    Zhu, Qiang; Li, Changyong; Wang, Kunpeng; Yue, Shi; Jiang, Longfeng; Ke, Michael; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Zhang, Feng; Lu, Ling; Ke, Bibo

    2017-06-01

    The phosphatase and tensin homolog (PTEN) deleted on chromosome 10 plays an important role in regulating T cell activation during inflammatory response. Activation of β-catenin is crucial for maintaining immune homeostasis. This study investigates the functional roles and molecular mechanisms by which PTEN-β-catenin signaling promotes regulatory T cell (Treg) induction in a mouse model of liver ischemia/reperfusion injury (IRI). We found that mice with myeloid-specific phosphatase and tensin homolog knockout (PTEN M-KO ) exhibited reduced liver damage as evidenced by decreased levels of serum alanine aminotransferase, intrahepatic macrophage trafficking, and proinflammatory mediators compared with the PTEN-proficient (floxed phosphatase and tensin homolog [PTEN FL/FL ]) controls. Disruption of myeloid PTEN-activated b-catenin promoted peroxisome proliferator-activated receptor gamma (PPARγ)-mediated Jagged-1/Notch signaling and induced forkhead box P3 (FOXP3)1 Tregs while inhibiting T helper 17 cells. However, blocking of Notch signaling by inhibiting γ-secretase reversed myeloid PTEN deficiency-mediated protection in ischemia/reperfusion-triggered liver inflammation with reduced FOXP3 + and increased retinoid A receptor-related orphan receptor gamma t-mediated interleukin 17A expression in ischemic livers. Moreover, knockdown of β-catenin or PPARγ in PTEN-deficient macrophages inhibited Jagged-1/Notch activation and reduced FOXP3 + Treg induction, leading to increased proinflammatory mediators in macrophage/T cell cocultures. In conclusion, our findings demonstrate that PTEN-β-catenin signaling is a novel regulator involved in modulating Treg development and provides a potential therapeutic target in liver IRI. Liver Transplantation 23 813-825 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.

  3. Finding the smoking gun: protein tyrosine phosphatases as tools and targets of unicellular microorganisms and viruses.

    Science.gov (United States)

    Heneberg, P

    2012-01-01

    Protein tyrosine phosphatases (PTPs) are increasingly recognized as important effectors of host-pathogen interactions. Since Guan and Dixon reported in 1990 that phosphatase YopH serves as an essential virulence determinant of Yersinia, the field shifted significantly forward, and dozens of PTPs were identified in various microorganisms and even in viruses. The discovery of extensive tyrosine signaling networks in non-metazoan organisms refuted the moth-eaten paradigm claiming that these organisms rely exclusively on phosphoserine/phosphothreonine signaling. Similarly to humans, phosphotyrosine signaling is thought to comprise a small fraction of total protein phosphorylation, but plays a disproportionately important role in cell-cycle control, differentiation, and invasiveness. Here we summarize the state-of-art knowledge on PTPs of important non-metazoan pathogens (Listeria monocytogenes, Staphylococcus aureus, Porphyromonas gingivalis, Caulobacter crescentus, Yersinia, Synechocystis, Leishmania, Plasmodium falciparum, Entamoeba histolytica, etc.), and focus also at the microbial proteins affecting directly or indirectly the PTPs of the host (Mycobacterium tuberculosis MTSA-10, Bacillus anthracis anthrax toxin, streptococcal β protein, Helicobacter pylori CagA and VacA, Leishmania GP63 and EF-1α, Plasmodium hemozoin, etc.). This is the first review summarizing the knowledge on biological activity and pharmacological inhibition of non-metazoan PTPs, with the emphasis of those important in host-pathogen interactions. Targeting of numerous non-metazoan PTPs is simplified by the fact that they act either as ectophosphatases or are secreted outside of the pathogen. Interfering with tyrosine phosphorylation represents a powerful pharmacologic approach, and even though the PTP inhibitors are difficult to develop, lifting the fog of phosphatase inhibition is of the great market potential and further clinical impact.

  4. Mechanisms underlying the inhibitory effects of arsenic compounds on protein tyrosine phosphatase (PTP)

    International Nuclear Information System (INIS)

    Rehman, Kanwal; Chen, Zhe; Wang, Wen Wen; Wang, Yan Wei; Sakamoto, Akira; Zhang, Yan Fang; Naranmandura, Hua; Suzuki, Noriyuki

    2012-01-01

    Arsenic binding to biomolecules is considered one of the major toxic mechanisms, which may also be related to the carcinogenic risks of arsenic in humans. At the same time, arsenic is also known to activate the phosphorylation-dependent signaling pathways including the epidermal growth factor receptor, the mitogen-activated protein kinase and insulin/insulin-like growth factor-1 pathways. These signaling pathways originate at the level of receptor tyrosine kinases whose phosphorylation status is regulated by opposing protein tyrosine phosphatase (PTP) activity. Reversible tyrosine phosphorylation, which is governed by the balanced action of protein tyrosine kinases and phosphatases, regulates important signaling pathways that are involved in the control of cell proliferation, adhesion and migration. In the present study, we have focused on the interaction of cellular PTPs with toxic trivalent arsenite (iAs III ) and its intermediate metabolites such as monomethylarsonous acid (MMA III ) and dimethylarsinous acid (DMA III ) in vitro, and then determined the arsenic binding site in PTP by the use of recombinant PTPs (e.g., PTP1B and CD45). Interestingly, the activities of PTP1B (cytoplasm-form) or CD45 (receptor-linked form) were observed to be strongly inhibited by both methylated metabolites (i.e., MMA III and DMA III ) but not by iAs III . Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has clearly confirmed that the organic intermediate, DMA III directly bound to the active site cysteine residue of PTP1B (e.g., Cys215), resulting in inhibition of enzyme activity. These results suggest that arsenic exposure may disturb the cellular signaling pathways through PTP inactivation. Highlights: ► This study focused on the interaction of PTPs with trivalent arsenicals in vitro. ► We for the first time confirmed that DMA III strongly inhibited activity of PTP1B. ► DMA III directly bound to PTP1B, resulting in inhibition of

  5. Preparative resolution of D,L-threonine catalyzed by immobilized phosphatase.

    Science.gov (United States)

    Scollar, M P; Sigal, G; Klibanov, A M

    1985-03-01

    Hydrolysis of L- and D-O-phosphothreonines catalyzed by four different phosphatases, alkaline phosphatases from calf intestine and E. coli and acid phosphatases from wheat germ and potato, has been kinetically studied. Alkaline phosphatases were found to have comparable reactivities towards the optical isomers. On the other hand, both acid phosphatases displayed a marked stereoselectivity, hydrolyzing the L-ester much faster than its D counterpart. Wheat germ acid phosphatase was the most stereoselective enzyme: V(L)/V(D) = 24 and K(m,L)/K(m,D) = 0.17. This enzyme was immobilized (in k-carrageenan gel, followed by crosslinking with glutaraldehyde) and used for the preparative resolution of D,L-threonine: the latter was first chemically O-phosphorylated and then asymmetrically hydrolyzed by the immobilized phosphatase. As a result, gram quantities of L-threonine of high optical purity and O-phospho-D-threonine were prepared. Immobilized wheat germ phosphatase has been tested for the resolution of other racemic alcohols: serine, 2-amino-1-butanol, 1-amino-2-propanol, 2-octanol, and menthol. In all those cases, the enzyme was either not sufficiently stereoselective or too slow for preparative resolutions.

  6. Inhibition of the gut enzyme intestinal alkaline phosphatase may explain how aspartame promotes glucose intolerance and obesity in mice.

    Science.gov (United States)

    Gul, Sarah S; Hamilton, A Rebecca L; Munoz, Alexander R; Phupitakphol, Tanit; Liu, Wei; Hyoju, Sanjiv K; Economopoulos, Konstantinos P; Morrison, Sara; Hu, Dong; Zhang, Weifeng; Gharedaghi, Mohammad Hadi; Huo, Haizhong; Hamarneh, Sulaiman R; Hodin, Richard A

    2017-01-01

    Diet soda consumption has not been associated with tangible weight loss. Aspartame (ASP) commonly substitutes sugar and one of its breakdown products is phenylalanine (PHE), a known inhibitor of intestinal alkaline phosphatase (IAP), a gut enzyme shown to prevent metabolic syndrome in mice. We hypothesized that ASP consumption might contribute to the development of metabolic syndrome based on PHE's inhibition of endogenous IAP. The design of the study was such that for the in vitro model, IAP was added to diet and regular soda, and IAP activity was measured. For the acute model, a closed bowel loop was created in mice. ASP or water was instilled into it and IAP activity was measured. For the chronic model, mice were fed chow or high-fat diet (HFD) with/without ASP in the drinking water for 18 weeks. The results were that for the in vitro study, IAP activity was lower (p < 0.05) in solutions containing ASP compared with controls. For the acute model, endogenous IAP activity was reduced by 50% in the ASP group compared with controls (0.2 ± 0.03 vs 0.4 ± 0.24) (p = 0.02). For the chronic model, mice in the HFD + ASP group gained more weight compared with the HFD + water group (48.1 ± 1.6 vs 42.4 ± 3.1, p = 0.0001). Significant difference in glucose intolerance between the HFD ± ASP groups (53 913 ± 4000.58 (mg·min)/dL vs 42 003.75 ± 5331.61 (mg·min)/dL, respectively, p = 0.02). Fasting glucose and serum tumor necrosis factor-alpha levels were significantly higher in the HFD + ASP group (1.23- and 0.87-fold increases, respectively, p = 0.006 and p = 0.01). In conclusion, endogenous IAP's protective effects in regard to the metabolic syndrome may be inhibited by PHE, a metabolite of ASP, perhaps explaining the lack of expected weight loss and metabolic improvements associated with diet drinks.

  7. The function of Shp2 tyrosine phosphatase in the dispersal of acetylcholine receptor clusters

    Directory of Open Access Journals (Sweden)

    Madhavan Raghavan

    2008-07-01

    Full Text Available Abstract Background A crucial event in the development of the vertebrate neuromuscular junction (NMJ is the postsynaptic enrichment of muscle acetylcholine (ACh receptors (AChRs. This process involves two distinct steps: the local clustering of AChRs at synapses, which depends on the activation of the muscle-specific receptor tyrosine kinase MuSK by neural agrin, and the global dispersal of aneural or "pre-patterned" AChR aggregates, which is triggered by ACh or by synaptogenic stimuli. We and others have previously shown that tyrosine phosphatases, such as the SH2 domain-containing phosphatase Shp2, regulate AChR cluster formation in muscle cells, and that tyrosine phosphatases also mediate the dispersal of pre-patterned AChR clusters by synaptogenic stimuli, although the specific phosphatases involved in this latter step remain unknown. Results Using an assay system that allows AChR cluster assembly and disassembly to be studied separately and quantitatively, we describe a previously unrecognized role of the tyrosine phosphatase Shp2 in AChR cluster disassembly. Shp2 was robustly expressed in embryonic Xenopus muscle in vivo and in cultured myotomal muscle cells, and treatment of the muscle cultures with an inhibitor of Shp2 (NSC-87877 blocked the dispersal of pre-patterned AChR clusters by synaptogenic stimuli. In contrast, over-expression in muscle cells of either wild-type or constitutively active Shp2 accelerated cluster dispersal. Significantly, forced expression in muscle of the Shp2-activator SIRPα1 (signal regulatory protein α1 also enhanced the disassembly of AChR clusters, whereas the expression of a truncated SIRPα1 mutant that suppresses Shp2 signaling inhibited cluster disassembly. Conclusion Our results suggest that Shp2 activation by synaptogenic stimuli, through signaling intermediates such as SIRPα1, promotes the dispersal of pre-patterned AChR clusters to facilitate the selective accumulation of AChRs at developing NMJs.

  8. Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin.

    Science.gov (United States)

    Johnson, Adam S; García, Dana M

    2007-12-19

    Inside bluegill (Lepomis macrochirus) retinal pigment epithelial cells, pigment granules move in response to extracellular signals. During the process of aggregation, pigment motility is directed toward the cell nucleus; in dispersion, pigment is directed away from the nucleus and into long apical processes. A number of different chemicals have been found to initiate dispersion, and carbachol (an acetylcholine analog) is one example. Previous research indicates that the carbachol-receptor interaction activates a Gq-mediated pathway which is commonly linked to Ca2+ mobilization. The purpose of the present study was to test for involvement of calcium and to probe calcium-dependent mediators to reveal their role in carbachol-mediated dispersion. Carbachol-induced pigment granule dispersion was blocked by the calcium chelator BAPTA. In contrast, the calcium channel antagonist verapamil, and incubation in Ca2+-free medium failed to block carbachol-induced dispersion. The calcineurin inhibitor cypermethrin blocked carbachol-induced dispersion; whereas, two protein kinase C inhibitors (staurosporine and bisindolylmaleimide II) failed to block carbachol-induced dispersion, and the protein kinase C activator phorbol 12-myristate 13-acetate failed to elicit dispersion. A rise in intracellular calcium is necessary for carbachol-induced dispersion; however, the Ca2+ requirement is not dependent on extracellular sources, implying that intracellular stores are sufficient to enable pigment granule dispersion to occur. Calcineurin is a likely Ca2+-dependent mediator involved in the signal cascade. Although the pathway leads to the generation of diacylglycerol and calcium (both required for the activation of certain PKC isoforms), our evidence does not support a significant role for PKC.

  9. FIG4 regulates lysosome membrane homeostasis independent of phosphatase function.

    Science.gov (United States)

    Bharadwaj, Rajnish; Cunningham, Kathleen M; Zhang, Ke; Lloyd, Thomas E

    2016-02-15

    FIG4 is a phosphoinositide phosphatase that is mutated in several diseases including Charcot-Marie-Tooth Disease 4J (CMT4J) and Yunis-Varon syndrome (YVS). To investigate the mechanism of disease pathogenesis, we generated Drosophila models of FIG4-related diseases. Fig4 null mutant animals are viable but exhibit marked enlargement of the lysosomal compartment in muscle cells and neurons, accompanied by an age-related decline in flight ability. Transgenic animals expressing Drosophila Fig4 missense mutations corresponding to human pathogenic mutations can partially rescue lysosomal expansion phenotypes, consistent with these mutations causing decreased FIG4 function. Interestingly, Fig4 mutations predicted to inactivate FIG4 phosphatase activity rescue lysosome expansion phenotypes, and mutations in the phosphoinositide (3) phosphate kinase Fab1 that performs the reverse enzymatic reaction also causes a lysosome expansion phenotype. Since FIG4 and FAB1 are present together in the same biochemical complex, these data are consistent with a model in which FIG4 serves a phosphatase-independent biosynthetic function that is essential for lysosomal membrane homeostasis. Lysosomal phenotypes are suppressed by genetic inhibition of Rab7 or the HOPS complex, demonstrating that FIG4 functions after endosome-to-lysosome fusion. Furthermore, disruption of the retromer complex, implicated in recycling from the lysosome to Golgi, does not lead to similar phenotypes as Fig4, suggesting that the lysosomal defects are not due to compromised retromer-mediated recycling of endolysosomal membranes. These data show that FIG4 plays a critical noncatalytic function in maintaining lysosomal membrane homeostasis, and that this function is disrupted by mutations that cause CMT4J and YVS. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Effects of Src Kinase Inhibition on Expression of Protein Tyrosine Phosphatase 1B after Brain Hypoxia in a Piglet Animal Model

    Directory of Open Access Journals (Sweden)

    Dimitrios Angelis

    2017-01-01

    Full Text Available Background. Protein tyrosine phosphatases (PTPs in conjunction with protein tyrosine kinases (PTKs regulate cellular processes by posttranslational modifications of signal transduction proteins. PTP nonreceptor type 1B (PTP-1B is an enzyme of the PTP family. We have previously shown that hypoxia induces an increase in activation of a class of nonreceptor PTK, the Src kinases. In the present study, we investigated the changes that occur in the expression of PTP-1B in the cytosolic component of the brain of newborn piglets acutely after hypoxia as well as long term for up to 2 weeks. Methods. Newborn piglets were divided into groups: normoxia, hypoxia, hypoxia followed by 1 day and 15 days in FiO2 0.21, and hypoxia pretreated with Src kinase inhibitor PP2, prior to hypoxia followed by 1 day and 15 days. Hypoxia was achieved by providing 7% FiO2 for 1 hour and PTP-1B expression was measured via immunoblotting. Results. PTP-1B increased posthypoxia by about 30% and persisted for 2 weeks while Src kinase inhibition attenuated the expected PTP-1B-increased expression. Conclusions. Our study suggests that Src kinase mediates a hypoxia-induced increased PTP-1B expression.

  11. Characterization of the FKBP12-Encoding Genes in Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Katie Falloon

    Full Text Available Invasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs form a complex with calcineurin in the presence of FK506 (FKBP12-FK506 and inhibit calcineurin activity. Research on FKBPs in fungi is limited, and none of the FKBPs have been previously characterized in A. fumigatus. We identified four orthologous genes of FKBP12, the human FK506 binding partner, in A. fumigatus and designated them fkbp12-1, fkbp12-2, fkbp12-3, and fkbp12-4. Deletional analysis of the four genes revealed that the Δfkbp12-1 strain was resistant to FK506, indicating FKBP12-1 as the key mediator of FK506-binding to calcineurin. The endogenously expressed FKBP12-1-EGFP fusion protein localized to the cytoplasm and nuclei under normal growth conditions but also to the hyphal septa following FK506 treatment, revealing its interaction with calcineurin. The FKBP12-1-EGFP fusion protein didn't localize at the septa in the presence of FK506 in the cnaA deletion background, confirming its interaction with calcineurin. Testing of all deletion strains in the Galleria mellonella model of aspergillosis suggested that these proteins don't play an important role in virulence. While the Δfkbp12-2 and Δfkbp12-3 strains didn't show any discernable phenotype, the Δfkbp12-4 strain displayed slight growth defect under normal growth conditions and inhibition of the caspofungin-mediated "paradoxical growth effect" at higher concentrations of the antifungal caspofungin. Together, these results indicate that while only FKBP12-1 is the bona fide binding partner of FK506, leading to the inhibition of calcineurin in A. fumigatus, FKBP12-4 may play a role in basal growth and the caspofungin-mediated paradoxical growth response. Exploitation of differences between A

  12. Evaluation of microcystin contamination in blue-green algal dietary supplements using a protein phosphatase inhibition-based test kit.

    Science.gov (United States)

    Marsan, David W; Conrad, Stephen M; Stutts, Whitney L; Parker, Christine H; Deeds, Jonathan R

    2018-03-01

    The cyanobacterium Aphanizomenon flos-aquae (AFA), from Upper-Klamath Lake, Oregon, are used to produce blue-green algal (BGA) dietary supplements. The periodic co-occurrence of hepatotoxin-producing contaminant species prompted the Oregon Health Division to establish a limit of 1 μg/g microcystin (MC) for products sold in Oregon in 1997. At the federal level, the current good manufacturing practice (CGMP) regulations for dietary supplements require manufacturers establish a specification, and test, for limits on contaminants that may adulterate finished products. Despite this, several previous international surveys reported MC in BGA supplements in excess of 1 μg/g. The objectives of this study were (1) identify a reliable, easy to use test kit for the detection of MC in dried BGA materials and (2) use this kit to assess the occurrence of MC contamination in AFA-BGA dietary supplements in the U.S. A commercial protein phosphatase inhibition assay (PPIA), based on the enzyme PP2A, was found to have acceptable relative enzyme inhibition and accuracy for the majority of MC variants tested, including those most commonly identified in commercial samples, making the kit fit for purpose. Using the PPIA kit, 51% (26 of 51) distinct AFA-BGA products had MC ≥0.25 μg/g (the detection limit of the kit), 10 products had MC concentrations between 0.5 and 1.0 μg/g, and 4 products exceeded the limit (1.1-2.8 μg/g). LC-MS/MS confirmed PPIA results ≥0.5 μg/g and determined that MC-LA and MC-LR were the main congeners present. PPIA is a reliable method for the detection of MC contamination in dried BGA dietary supplements produced in the U.S. While the majority of AFA-BGA products contained ≥0.25 μg/g MC, most were at or below 1.0 μg/g, suggesting that manufacturers have adopted this level as a specification in these products; however, variability in recommended serving sizes prevented further analysis of consumer exposure based on the concentrations of MC

  13. Evaluation of microcystin contamination in blue-green algal dietary supplements using a protein phosphatase inhibition-based test kit

    Directory of Open Access Journals (Sweden)

    David W. Marsan

    2018-03-01

    Full Text Available The cyanobacterium Aphanizomenon flos-aquae (AFA, from Upper-Klamath Lake, Oregon, are used to produce blue-green algal (BGA dietary supplements. The periodic co-occurrence of hepatotoxin-producing contaminant species prompted the Oregon Health Division to establish a limit of 1 μg/g microcystin (MC for products sold in Oregon in 1997. At the federal level, the current good manufacturing practice (CGMP regulations for dietary supplements require manufacturers establish a specification, and test, for limits on contaminants that may adulterate finished products. Despite this, several previous international surveys reported MC in BGA supplements in excess of 1 μg/g. The objectives of this study were (1 identify a reliable, easy to use test kit for the detection of MC in dried BGA materials and (2 use this kit to assess the occurrence of MC contamination in AFA-BGA dietary supplements in the U.S. A commercial protein phosphatase inhibition assay (PPIA, based on the enzyme PP2A, was found to have acceptable relative enzyme inhibition and accuracy for the majority of MC variants tested, including those most commonly identified in commercial samples, making the kit fit for purpose. Using the PPIA kit, 51% (26 of 51 distinct AFA-BGA products had MC ≥0.25 μg/g (the detection limit of the kit, 10 products had MC concentrations between 0.5 and 1.0 μg/g, and 4 products exceeded the limit (1.1–2.8 μg/g. LC-MS/MS confirmed PPIA results ≥0.5 μg/g and determined that MC-LA and MC-LR were the main congeners present. PPIA is a reliable method for the detection of MC contamination in dried BGA dietary supplements produced in the U.S. While the majority of AFA-BGA products contained ≥0.25 μg/g MC, most were at or below 1.0 μg/g, suggesting that manufacturers have adopted this level as a specification in these products; however, variability in recommended serving sizes prevented further analysis of consumer exposure based on the concentrations of MC

  14. Cellular uptake of exogenous calcineurin B is dependent on TLR4/MD2/CD14 complexes, and CnB is an endogenous ligand of TLR4.

    Science.gov (United States)

    Yang, Jinju; Qin, Nannan; Zhang, Hongwei; Yang, Rui; Xiang, Benqiong; Wei, Qun

    2016-04-19

    Our previous research showed that recombinant calcineurin B (rhCnB) stimulates cytokine secretion by immune cells, probably through TLR4. Exogenous CnB can be incorporated into many different tumour cells in vitro, but the mode of uptake and receptors required remain unknown. Here, we report that exogenous CnB is taken up by cells in a time- and concentration-dependent manner via clathrin-dependent receptor-mediated internalization. Our findings further confirm that uptake is mediated by the TLR4/MD2 complex together with the co-receptor CD14. The MST results revealed a high affinity between CnB and the TLR4 receptor complex. No binding was detected between CnB and LPS. CnB inhibited the uptake of LPS, and LPS also inhibited the uptake of CnB. These results indicate that the uptake of exogenous CnB did not occur through LPS and that CnB was not a chaperone of LPS. Thus, we conclude that TLR4 receptor complexes were required for the recognition and internalization of exogenous CnB. CnB could be a potential endogenous ligand of TLR4 and function as an agonist of TLR4. These properties of CnB support its potential for development as an anti-cancer drug.

  15. Domain-to-domain coupling in voltage-sensing phosphatase.

    Science.gov (United States)

    Sakata, Souhei; Matsuda, Makoto; Kawanabe, Akira; Okamura, Yasushi

    2017-01-01

    Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor and a cytoplasmic enzyme region. The enzyme region contains the phosphatase and C2 domains, is structurally similar to the tumor suppressor phosphatase PTEN, and catalyzes the dephosphorylation of phosphoinositides. The transmembrane voltage sensor is connected to the phosphatase through a short linker region, and phosphatase activity is induced upon membrane depolarization. Although the detailed molecular characteristics of the voltage sensor domain and the enzyme region have been revealed, little is known how these two regions are coupled. In addition, it is important to know whether mechanism for coupling between the voltage sensor domain and downstream effector function is shared among other voltage sensor domain-containing proteins. Recent studies in which specific amino acid sites were genetically labeled using a fluorescent unnatural amino acid have enabled detection of the local structural changes in the cytoplasmic region of Ciona intestinalis VSP that occur with a change in membrane potential. The results of those studies provide novel insight into how the enzyme activity of the cytoplasmic region of VSP is regulated by the voltage sensor domain.

  16. Presence of ecto-protein tyrosine phosphatase activity is vital for survival of Setaria cervi, a bovine filarial parasite.

    Science.gov (United States)

    Singh, Neetu; Heneberg, Petr; Rathaur, Sushma

    2014-10-01

    The ecto protein tyrosine phosphatases (PTP) are known to play a crucial role in the pathogenesis and survival of the intracellular parasites. However, their presence and role in filarial parasites is still unknown. We found a significant amount of tyrosine phosphatase activity in the surface antigen fraction extracted from Setaria cervi (S. cervi), a bovine filarial parasite. An antibody designed against the conserved catalytic core of human protein tyrosine phosphatases, PTP1B cross reacted with a 63 kDa band in the surface antigen. We detected a significant amount of PTP activity in the intact S. cervi adult parasites as well as microfilariae in this study for the first time. This PTP may be localized on the surface of the parasite with an exposed active site available for the external substrates. The PTP activity was also inhibited by sodium orthovanadate and phenyl arsine oxide, specific inhibitors of PTP in both the life stages. The Km and Vmax for PTP in the adult parasites and microfilariae were determined to be 2.574 ± 0.14 mM; 206.3 ± 2.75 μM Pi/h/two parasites and 5.510 ± 0.59 mM; 62.27 ± 2.27 μM Pi/h/10(6) parasites respectively using O-P-L-Tyrosine as substrate. Interestingly, a positive correlation was observed between the inhibition in PTP activity and reduction in the motility/ viability of the parasites when they were subjected to the specific PTP inhibitors (Orthovanadate and Phenyl arsine oxide) for 4 h in the KRB maintenance medium. The activity was also significantly inhibited in the parasites exposed to antifilarial drug/compounds for e.g. Diethylcarbamazine, Acetylsalicylic Acid and SK7, a methyl chalcone. Therefore suggesting a possible role played by PTP in the survival of the parasite, its interaction with the host as well as in the screening of newly synthesized antifilarials/drugs.

  17. Cdc14 phosphatase

    DEFF Research Database (Denmark)

    Machín, Félix; Quevedo Rodriguez, Oliver; Ramos-Pérez, Cristina

    2016-01-01

    and cancer cells uncontrollably divide, much attention has been put into knocking down CDK activity. However, much less is known on the consequences of interfering with the phosphatases that put an end to the cell cycle. We have addressed in recent years the consequences of transiently inactivating the only...

  18. Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2) ameliorates palmitate induced-apoptosis through regulating Akt/FOXO1 pathway and ROS production in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorgani-Firuzjaee, Sattar [Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Adeli, Khosrow [Division of Clinical Biochemistry, The Hospital for Sick Children, University of Toronto, Toronto (Canada); Meshkani, Reza, E-mail: rmeshkani@tums.ac.ir [Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-08-21

    The serine–threonine kinase Akt regulates proliferation and survival by phosphorylating a network of protein substrates; however, the role of a negative regulator of the Akt pathway, the SH2-domain-containing inositol 5-phosphatase (SHIP2) in apoptosis of the hepatocytes, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to apoptosis using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to palmitate (0.5 mM). Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) significantly reduced palmitate-induced apoptosis in HepG2 cells, as these cells had increased cell viability, decreased apoptotic cell death and reduced the activity of caspase-3, cytochrome c and poly (ADP-ribose) polymerase. Overexpression of the wild-type SHIP2 gene led to a massive apoptosis in HepG2 cells. The protection from palmitate-induced apoptosis by SHIP2 inhibition was accompanied by a decrease in the generation of reactive oxygen species (ROS). In addition, SHIP2 inhibition was accompanied by an increased Akt and FOXO-1 phosphorylation, whereas overexpression of the wild-type SHIP2 gene had the opposite effects. Taken together, these findings suggest that SHIP2 expression level is an important determinant of hepatic lipoapotosis and its inhibition can potentially be a target in treatment of hepatic lipoapoptosis in diabetic patients. - Highlights: • Lipoapoptosis is the major contributor to the development of NAFLD. • The PI3-K/Akt pathway regulates apoptosis in different cells. • The role of negative regulator of this pathway, SHIP2 in lipoapoptosis is unknown. • SHIP2 inhibition significantly reduces palmitate-induced apoptosis in HepG2 cells. • SHIP2 inhibition prevents palmitate induced-apoptosis by regulating Akt/FOXO1 pathway.

  19. Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2) ameliorates palmitate induced-apoptosis through regulating Akt/FOXO1 pathway and ROS production in HepG2 cells

    International Nuclear Information System (INIS)

    Gorgani-Firuzjaee, Sattar; Adeli, Khosrow; Meshkani, Reza

    2015-01-01

    The serine–threonine kinase Akt regulates proliferation and survival by phosphorylating a network of protein substrates; however, the role of a negative regulator of the Akt pathway, the SH2-domain-containing inositol 5-phosphatase (SHIP2) in apoptosis of the hepatocytes, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to apoptosis using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to palmitate (0.5 mM). Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) significantly reduced palmitate-induced apoptosis in HepG2 cells, as these cells had increased cell viability, decreased apoptotic cell death and reduced the activity of caspase-3, cytochrome c and poly (ADP-ribose) polymerase. Overexpression of the wild-type SHIP2 gene led to a massive apoptosis in HepG2 cells. The protection from palmitate-induced apoptosis by SHIP2 inhibition was accompanied by a decrease in the generation of reactive oxygen species (ROS). In addition, SHIP2 inhibition was accompanied by an increased Akt and FOXO-1 phosphorylation, whereas overexpression of the wild-type SHIP2 gene had the opposite effects. Taken together, these findings suggest that SHIP2 expression level is an important determinant of hepatic lipoapotosis and its inhibition can potentially be a target in treatment of hepatic lipoapoptosis in diabetic patients. - Highlights: • Lipoapoptosis is the major contributor to the development of NAFLD. • The PI3-K/Akt pathway regulates apoptosis in different cells. • The role of negative regulator of this pathway, SHIP2 in lipoapoptosis is unknown. • SHIP2 inhibition significantly reduces palmitate-induced apoptosis in HepG2 cells. • SHIP2 inhibition prevents palmitate induced-apoptosis by regulating Akt/FOXO1 pathway

  20. The TriTryp Phosphatome: analysis of the protein phosphatase catalytic domains

    Directory of Open Access Journals (Sweden)

    Huxley-Jones Julie

    2007-11-01

    Full Text Available Abstract Background The genomes of the three parasitic protozoa Trypanosoma cruzi, Trypanosoma brucei and Leishmania major are the main subject of this study. These parasites are responsible for devastating human diseases known as Chagas disease, African sleeping sickness and cutaneous Leishmaniasis, respectively, that affect millions of people in the developing world. The prevalence of these neglected diseases results from a combination of poverty, inadequate prevention and difficult treatment. Protein phosphorylation is an important mechanism of controlling the development of these kinetoplastids. With the aim to further our knowledge of the biology of these organisms we present a characterisation of the phosphatase complement (phosphatome of the three parasites. Results An ontology-based scan of the three genomes was used to identify 86 phosphatase catalytic domains in T. cruzi, 78 in T. brucei, and 88 in L. major. We found interesting differences with other eukaryotic genomes, such as the low proportion of tyrosine phosphatases and the expansion of the serine/threonine phosphatase family. Additionally, a large number of atypical protein phosphatases were identified in these species, representing more than one third of the total phosphatase complement. Most of the atypical phosphatases belong to the dual-specificity phosphatase (DSP family and show considerable divergence from classic DSPs in both the domain organisation and sequence features. Conclusion The analysis of the phosphatome of the three kinetoplastids indicates that they possess orthologues to many of the phosphatases reported in other eukaryotes, including humans. However, novel domain architectures and unusual combinations of accessory domains, suggest distinct functional roles for several of the kinetoplastid phosphatases, which await further experimental exploration. These distinct traits may be exploited in the selection of suitable new targets for drug development to prevent

  1. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  2. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research

    Directory of Open Access Journals (Sweden)

    Kirstin eHobiger

    2015-02-01

    Full Text Available The transmembrane protein Ci-VSP from the ascidian Ciona intestinalis was described as first member of a fascinating family of enzymes, the voltage sensitive phosphatases (VSPs. Ci-VSP and its voltage-activated homologs from other species are stimulated by positive membrane potentials and dephosphorylate the head groups of negatively charged phosphoinositide phosphates (PIPs. In doing so, VSPs act as control centers at the cytosolic membrane surface, because they intervene in signaling cascades that are mediated by PIP lipids. The characteristic motif CX5RT/S in the active site classifies VSPs as members of the huge family of cysteine-based protein tyrosine phosphatases (PTPs. Although PTPs have already been well characterized regarding both, structure and function, their relationship to VSPs has drawn only limited attention so far. Therefore, the intention of this review is to give a short overview about the extensive knowledge about PTPs in relation to the facts known about VSPs. Here, we concentrate on the structural features of the catalytic domain which are similar between both classes of phosphatases and their consequences for the enzymatic function. By discussing results obtained from crystal structures, molecular dynamics simulations, and mutagenesis studies, a possible mechanism for the catalytic cycle of VSPs is presented based on that one proposed for PTPs. In this way, we want to link the knowledge about the catalytic activity of VSPs and PTPs.

  3. Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin

    Directory of Open Access Journals (Sweden)

    García Dana M

    2007-12-01

    Full Text Available Abstract Background Inside bluegill (Lepomis macrochirus retinal pigment epithelial cells, pigment granules move in response to extracellular signals. During the process of aggregation, pigment motility is directed toward the cell nucleus; in dispersion, pigment is directed away from the nucleus and into long apical processes. A number of different chemicals have been found to initiate dispersion, and carbachol (an acetylcholine analog is one example. Previous research indicates that the carbachol-receptor interaction activates a Gq-mediated pathway which is commonly linked to Ca2+ mobilization. The purpose of the present study was to test for involvement of calcium and to probe calcium-dependent mediators to reveal their role in carbachol-mediated dispersion. Results Carbachol-induced pigment granule dispersion was blocked by the calcium chelator BAPTA. In contrast, the calcium channel antagonist verapamil, and incubation in Ca2+-free medium failed to block carbachol-induced dispersion. The calcineurin inhibitor cypermethrin blocked carbachol-induced dispersion; whereas, two protein kinase C inhibitors (staurosporine and bisindolylmaleimide II failed to block carbachol-induced dispersion, and the protein kinase C activator phorbol 12-myristate 13-acetate failed to elicit dispersion. Conclusion A rise in intracellular calcium is necessary for carbachol-induced dispersion; however, the Ca2+ requirement is not dependent on extracellular sources, implying that intracellular stores are sufficient to enable pigment granule dispersion to occur. Calcineurin is a likely Ca2+-dependent mediator involved in the signal cascade. Although the pathway leads to the generation of diacylglycerol and calcium (both required for the activation of certain PKC isoforms, our evidence does not support a significant role for PKC.

  4. The tillage effect on the soil acid and alkaline phosphatase activity

    Directory of Open Access Journals (Sweden)

    Lacramioara Oprica

    2011-12-01

    Full Text Available Phosphatases (acid and alkaline are important in soils because these extracellular enzymes catalyze the hydrolysis of organic phosphate esters to orthophosphate; thus they form an important link between biologically unavailable and mineral phosphorous. Phosphatase activity is sensitive to environmental perturbations such as organic amendments, tillage, waterlogging, compaction, fertilizer additions and thus it is often used as an environmental indicator of soil quality in riparian ecosystems. The aim of the study was to assess the effect of tillage systems on phosphatases activity in a field experiment carried out in Ezăreni farm. The phosphatase activitiy were determined at two depths (7-10 cm and 15-25cm layers of a chernozem soil submitted to conventional tillage (CT in a fertilised and unfertilised experiment. Monitoring soil alkaline phosphatase activity showed, generally, the same in fertilized soil profiles collected from both depths; the values being extremely close. In unfertilized soils, alkaline phosphatase activity is different only in soils that were exposed to unconventional work using disc harrows and 30cm tillage. Both works type (no tillage and conventional tillage cause an intense alkaline phosphatase activity in 7-10 cm soil profile. Acid phosphatase activity is highly fluctuating in both fertilized as well unfertilized soil, this enzyme being influenced by the performed works.

  5. Membrane-bound 2,3-diphosphoglycerate phosphatase of human erythrocytes.

    Science.gov (United States)

    Schröter, W; Neuvians, M

    1970-12-01

    Gradual osmotic hemolysis of human erythrocytes reduces the cell content of whole protein, hemoglobin, 2,3-diphosphoglycerate and triosephosphate isomerase extensively, but not that of membrane protein and 2,3-diphosphoglycerate phosphatase. After the refilling of the ghosts with 2,3-diphosphoglycerate and reconstitution of the membrane, the 2,3-diphosphoglycerate phosphatase activity equals that of intact red cells. The membrane-bound 2,3-diphosphoglycerate phosphatase can be activated by sodium hyposulfite. The enzyme system of ghosts seems to differ from that of intact red cells with regard to the optima of pH and temperature. It remains to be elucidated if the membrane binding of the 2,3-diphosphoglycerate phosphatase is related to the transfer of inorganic phosphate across the red cell membrane.

  6. Multiple signalling pathways redundantly control glucose transporter GLUT4 gene transcription in skeletal muscle

    DEFF Research Database (Denmark)

    Murgia, Marta; Elbenhardt Jensen, Thomas; Cusinato, Marzia

    2009-01-01

    on pharmacological evidence. Here, we have used a more specific genetic approach to establish the relative role of the three pathways in fast and slow muscles. Plasmids coding for protein inhibitors of CaMKII or calcineurin were co-transfected in vivo with a GLUT4 enhancer-reporter construct either in normal mice...... or in mice expressing a dominant negative AMPK mutant. GLUT4 reporter activity was not inhibited in the slow soleus muscle by blocking either CaMKII or calcineurin alone, but was inhibited by blocking both pathways. GLUT4 reporter activity was likewise unchanged in the soleus of dnAMPK mice......, but was significantly reduce by incapacitation of either CaMKII or calcineurin in these mice. On the other hand, in the fast tibialis anterior muscle, calcineurin appears to exert a prominent role in the control of GLUT4 reporter activity, independent of CaMKII and AMPK. The results point to a muscle type...

  7. VEGF selectively induces Down syndrome critical region 1 gene expression in endothelial cells: a mechanism for feedback regulation of angiogenesis?

    International Nuclear Information System (INIS)

    Yao, Y.-G; Duh, Elia J.

    2004-01-01

    The Down syndrome critical region 1 (DSCR1) gene (also known as MCIP1, Adapt78) encodes a regulatory protein that binds to calcineurin catalytic A subunit and acts as a regulator of the calcineurin-mediated signaling pathway. We show in this study that DSCR1 is greatly induced in endothelial cells in response to VEGF, TNF-α, and A23187 treatment, and that this up-regulation is inhibited by inhibitors of the calcineurin-NFAT (nuclear factor of activated T cells) signaling pathway as well as by PKC inhibition and a Ca 2+ chelator. We hypothesized that the up-regulation of DSCR1 gene expression in endothelial cells could act as an endogenous feedback inhibitor for angiogenesis by regulating the calcineurin-NFAT signaling pathway. Our transient transfection analyses confirm that the overexpression of DSCR1 abrogates the up-regulation of reporter gene expression driven by both the cyclooxygenase 2 and DSCR1 promoters in response to stimulators. Our results indicate that DSCR1 up-regulation may represent a potential molecular mechanism underlying the regulation of angiogenic genes activated by the calcineurin-NFAT signaling pathway in endothelial cells

  8. Isolation and characterization of a homogeneous isoenzyme of wheat germ acid phosphatase.

    Science.gov (United States)

    Waymack, P P; Van Etten, R L

    1991-08-01

    An acid phosphatase (orthophosphoric monoester phosphohydrolase, acid optimum; EC 3.1.3.2) isoenzyme from wheat germ was purified 7000-fold to homogeneity. The effect of wheat germ sources and their relationship to the isoenzyme content and purification behavior of acid phosphatases was investigated. Extensive information about the purification and stabilization of the enzyme is provided. The instability of isoenzymes in the latter stages of purification appeared to be the result of surface inactivation together with a sensitivity to dilution that could be partially offset by addition of Triton X-100 during chromatographic procedures. Added sulfhydryl protecting reagents had no effect on activity or stability, which was greatest in the pH range 4-7. The purified isoenzyme was homogeneous by polyacrylamide gel electrophoresis and exhibited the highest specific activity and turnover number reported for any acid phosphatase. The molecular weights of the pure isoenzyme and of related isoenzymes from wheat germ were found to be identical (58,000). The pure isoenzyme contained a single polypeptide chain and had a negligible carbohydrate content. The amino acid composition was determined. Of the various reasons that were considered to explain isoenzyme occurrence, a genetic basis was considered most likely. The enzyme was found to exhibit substrate inhibition with some substrates below pH 6, while above pH 8 it exhibited downwardly curving Lineweaver-Burk plots of the type that are generally described as "substrate activation". The observation of a phosphotransferase activity was consistent with the formation of a covalent phosphoenzyme intermediate, while inactivation by diethyl pyrocarbonate was consistent with the presence of an active site histidine.

  9. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  10. Role of protein phosphatase 1 in dephosphorylation of Ebola virus VP30 protein and its targeting for the inhibition of viral transcription.

    Science.gov (United States)

    Ilinykh, Philipp A; Tigabu, Bersabeh; Ivanov, Andrey; Ammosova, Tatiana; Obukhov, Yuri; Garron, Tania; Kumari, Namita; Kovalskyy, Dmytro; Platonov, Maxim O; Naumchik, Vasiliy S; Freiberg, Alexander N; Nekhai, Sergei; Bukreyev, Alexander

    2014-08-15

    The filovirus Ebola (EBOV) causes the most severe hemorrhagic fever known. The EBOV RNA-dependent polymerase complex includes a filovirus-specific VP30, which is critical for the transcriptional but not replication activity of EBOV polymerase; to support transcription, VP30 must be in a dephosphorylated form. Here we show that EBOV VP30 is phosphorylated not only at the N-terminal serine clusters identified previously but also at the threonine residues at positions 143 and 146. We also show that host cell protein phosphatase 1 (PP1) controls VP30 dephosphorylation because expression of a PP1-binding peptide cdNIPP1 increased VP30 phosphorylation. Moreover, targeting PP1 mRNA by shRNA resulted in the overexpression of SIPP1, a cytoplasm-shuttling regulatory subunit of PP1, and increased EBOV transcription, suggesting that cytoplasmic accumulation of PP1 induces EBOV transcription. Furthermore, we developed a small molecule compound, 1E7-03, that targeted a non-catalytic site of PP1 and increased VP30 dephosphorylation. The compound inhibited the transcription but increased replication of the viral genome and completely suppressed replication of EBOV in cultured cells. Finally, mutations of Thr(143) and Thr(146) of VP30 significantly inhibited EBOV transcription and strongly induced VP30 phosphorylation in the N-terminal Ser residues 29-46, suggesting a novel mechanism of regulation of VP30 phosphorylation. Our findings suggest that targeting PP1 with small molecules is a feasible approach to achieve dysregulation of the EBOV polymerase activity. This novel approach may be used for the development of antivirals against EBOV and other filovirus species. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Long-term outcomes of thoracic transplant recipients following conversion to everolimus with reduced calcineurin inhibitor in a multicenter, open-label, randomized trial lv

    DEFF Research Database (Denmark)

    Gullestad, Lars; Eiskjaer, Hans; Gustafsson, Finn

    2016-01-01

    The NOCTET study randomized 282 patients ≥1 year after heart or lung transplantation to continue conventional calcineurin inhibitor (CNI) therapy or to start everolimus with reduced-exposure CNI. Last follow-up, at ≥5 years postrandomization (mean: 5.6 years) was attended by 72/140 everolimus...

  12. Osteocalcin and bone-specific alkaline phosphatase in Sickle cell ...

    African Journals Online (AJOL)

    specific alkaline phosphatase (b-AP) total protein levels were evaluated as indicators of bone turnover in twenty patients with sickle cell haemoglobinopathies and in twenty normal healthy individuals. The serum bonespecific alkaline phosphatase ...

  13. Purification and characterization of a phosphotyrosyl-protein phosphatase from wheat seedlings.

    Science.gov (United States)

    Cheng, H F; Tao, M

    1989-10-19

    A neutral phosphatase which catalyzes the hydrolysis of p-nitrophenylphosphate has been purified to homogeneity from wheat seedlings. The enzyme is a monomeric glycoprotein exhibiting a molecular weight of 35,000, frictional ratio of 1.22, Stokes' radius of 260 nm, and sedimentation coefficient of 3.2 S. That the enzyme is a glycoprotein is surmised from its chromatographic property on Concanavalin A-Sepharose column. An examination of the substrate specificity indicates that the enzyme exhibits a preference for phosphotyrosine over a number of phosphocompounds, including p-nitrophenylphosphate and several glycolytic intermediates. Both phosphoserine and phosphothreonine are not hydrolyzed by the enzyme. The phosphatase activity is not affected by high concentrations of chelating agents and does not require metal ions. Molybdate, orthovanadate, Zn2+, and Hg2+ are all potent inhibitors of the phosphatase activity. The ability of the phosphatase to dephosphorylate protein phosphotyrosine has been investigated. [32P-Tyr]poly(Glu,Tyr)n, [32P-Tyr]alkylated bovine serum albumin, [32P-Tyr]angiotensin-I, and [32P-Tyr]band 3 (from human erythrocyte) are all substrates of the phosphatase. On the other hand, the enzyme has no activity toward protein phosphoserine and phosphothreonine. Our result further indicates that the neutral phosphatase is distinct from the wheat germ acid phosphatase. The latter enzyme is found to dephosphorylate phosphotyrosyl as well as phosphoseryl and phosphothreonyl groups in proteins. In light of the many similarities in properties to phosphotyrosyl protein phosphatases isolated from several sources, it is suggested that the wheat seedling phosphatase may participate in cellular regulation involving protein tyrosine phosphorylation.

  14. Research on Phosphatases of Belladona Leaves and Their Purification

    Directory of Open Access Journals (Sweden)

    M. Khorsand

    1957-01-01

    Full Text Available Through experimentation with several leaves it has been possible for us to point out the existance of two different acid phosphatases. We have studied in more detail the phosphatases of belldon a leaves (Atropa Belladona L. Solanacees. The great part of the phosphatase activity is water extractable. We have compared the activity of the soluble fraction with that not directly extractable by means of water. The insoluble fraction could not be solubilized in a satisfaetC'fY m.anner.The digestion by papaine produced a slight solubilizing effect; on the other hand salt solutions, neutral or alkaline, or water glycerol mixtures had no solubilizing effect on the enzyme, It has been possible to demonstrate the existence of two different phosphatases in the insoluble fraction: the first of the type II,

  15. Phosphatase Inhibitors Function as Novel, Broad Spectrum Botulinum Neurotoxin Antagonists in Mouse and Human Embryonic Stem Cell-Derived Motor Neuron-Based Assays.

    Directory of Open Access Journals (Sweden)

    Erkan Kiris

    Full Text Available There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC. Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs. Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists.

  16. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch...... is comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...

  17. Cell-specific expression of calcineurin immunoreactivity within the rat basolateral amygdala complex and colocalization with the neuropeptide Y Y1 receptor.

    Science.gov (United States)

    Leitermann, Randy J; Sajdyk, Tammy J; Urban, Janice H

    2012-10-01

    Neuropeptide Y (NPY) produces potent anxiolytic effects via activation of NPY Y1 receptors (Y1r) within the basolateral amygdaloid complex (BLA). The role of NPY in the BLA was recently expanded to include the ability to produce stress resilience and long-lasting reductions in anxiety-like behavior. These persistent behavioral effects are dependent upon activity of the protein phosphatase, calcineurin (CaN), which has long been associated with shaping long-term synaptic signaling. Furthermore, NPY-induced reductions in anxiety-like behavior persist months after intra-BLA delivery, which together indicate a form of neuronal plasticity had likely occurred. To define a site of action for NPY-induced CaN signaling within the BLA, we employed multi-label immunohistochemistry to determine which cell types express CaN and if CaN colocalizes with the Y1r. We have previously reported that both major neuronal cell populations in the BLA, pyramidal projection neurons and GABAergic interneurons, express the Y1r. Therefore, this current study evaluated CaN immunoreactivity in these cell types, along with Y1r immunoreactivity. Antibodies against calcium-calmodulin kinase II (CaMKII) and GABA were used to identify pyramidal neurons and GABAergic interneurons, respectively. A large population of CaN immunoreactive cells displayed Y1r immunoreactivity (90%). Nearly all (98%) pyramidal neurons displayed CaN immunoreactivity, while only a small percentage of interneurons (10%) contained CaN immunoreactivity. Overall, these anatomical findings provide a model whereby NPY could directly regulate CaN activity in the BLA via activation of the Y1r on CaN-expressing, pyramidal neurons. Importantly, they support BLA pyramidal neurons as prime targets for neuronal plasticity associated with the long-term reductions in anxiety-like behavior produced by NPY injections into the BLA. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Serum alkaline phosphatase screening for vitamin D deficiency states

    International Nuclear Information System (INIS)

    Shaheen, S.; Barrakzai, Q.

    2012-01-01

    Objective: To determine whether serum vitamin D levels are correlated with serum levels of alkaline phosphatase or not. Study Design: Cross-sectional, observational study. Place and Duration of Study: Multi-centre study, conducted at Liaquat National Hospital and Medical College, National Medical Centre and Medicare Hospital, Karachi, from January to October 2009. Methodology: Patients attending the Orthopaedic OPDs with complaints of pain in different body regions and serum vitamin D/sub 3/ levels of greater or equal to 30 ng/ml were included in the study. Patients with vitamin D deficiency were further categorized into mild deficiency or insufficiency (vit. D/sub 3/ = 20-29 ng/ml), moderate deficiency (vit. D/sub 3/ = 5 - 19 ng/ml) and severe deficiency forms (vit. D/sub 3/ < 5 ng/ml). Pearson correlation was applied to test the correlation of serum alkaline phosphatase levels with serum vitamin D/sub 3/ levels. P-value < 0.05 was considered to be significant. Results: Out of 110 samples, 26 had mild (23%), 61 had moderate (55%) and 21 had severe (19.1%) vitamin D deficiencies. All of the patients in the three groups had alkaline phosphatase with in normal limits and the total mean value of the enzyme was 135.97 +- 68.14I U/L. The inter group comparison showed highest values of alkaline phosphatase in the moderate vitamin D deficiency group. The correlation coefficient of alkaline phosphatase and serum vitamin D/sub 3/ levels was r =0.05 (p =0.593). Conclusion: Serum vitamin D/sub 3/ levels may not be correlated with increased serum alkaline phosphatase levels. Therefore, alkaline phosphatase may not be used as a screening test to rule out vitamin D deficiency. (author)

  19. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin Aα null mice.

    Directory of Open Access Journals (Sweden)

    Kirsten Madsen

    Full Text Available Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα-/- mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development and function persist in adult CnAα-/- mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal development and function. In contrast, we find that rather than being hypoglycemic, rescued mice are mildly hyperglycemic and insulin resistant. Examination of muscle fiber types shows that previously reported reductions in type I muscle fibers are no longer evident in rescued null mice. Rather, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2 expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα-/- mice and the advances that are now possible with the use of adult, rescued knockout animals.

  20. Elevated Serum Level of Human Alkaline Phosphatase in Obesity

    International Nuclear Information System (INIS)

    Khan, A. R.; Awan, F. R.; Najam, S. S.; Islam, M.; Siddique, T.; Zain, M.

    2015-01-01

    Objective: To investigate a correlation between serum alkaline phosphatase level and body mass index in human subjects. Methods: The comparative cross-sectional study was carried out at the National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan, from April 2012 to June 2013. Blood serum alkaline phosphatase levels were estimated and the subjects were divided into three sub-groups on the basis of their body mass index: normal weight (<25kg/m2), overweight (25-27kg/m2) and obese (>27kg/m2) subjects. The serum samples were used for the estimation of clinically important biochemical parameters, using commercial kits on clinical chemistry analyser. Results: Of the 197 subjects, 97(49 percent) were obese and 100(51 percent) were non-obese. The serum alkaline phosphatase level increased in obese (214±6.4 IU/L) compared to the non-obese subjects (184.5±5 IU/L). Furthermore, a significant linear relationship (r=0.3;p-0.0001) was found between serum alkaline phosphatase and body mass index. Other biochemical variables were not correlated to the body mass index. Conclusion: Over activity and higher amounts of alkaline phosphatase were linked to the development of obesity. (author)

  1. Detection of phosphatase activity in aquatic and terrestrial cyanobacterial strains

    Directory of Open Access Journals (Sweden)

    Babić Olivera B.

    2013-01-01

    Full Text Available Cyanobacteria, as highly adaptable microorganisms, are characterized by an ability to survive in different environmental conditions, in which a significant role belongs to their enzymes. Phosphatases are enzymes produced by algae in relatively large quantities in response to a low orthophosphate concentration and their activity is significantly correlated with their primary production. The activity of these enzymes was investigated in 11 cyanobacterial strains in order to determine enzyme synthesis depending on taxonomic and ecological group of cyanobacteria. The study was conducted with 4 terrestrial cyanobacterial strains, which belong to Nostoc and Anabaena genera, and 7 filamentous water cyanobacteria of Nostoc, Oscillatoria, Phormidium and Microcystis genera. The obtained results showed that the activity of acid and alkaline phosphatases strongly depended on cyanobacterial strain and the environment from which the strain originated. Higher activity of alkaline phosphatases, ranging from 3.64 to 85.14 μmolpNP/s/dm3, was recorded in terrestrial strains compared to the studied water strains (1.11-5.96 μmolpNP/s/dm3. The activity of acid phosphatases was higher in most tested water strains (1.67-6.28 μmolpNP/s/dm3 compared to the activity of alkaline phosphatases (1.11-5.96 μmolpNP/s/dm3. Comparing enzyme activity of nitrogen fixing and non-nitrogen fixing cyanobacteria, it was found that most nitrogen fixing strains had a higher activity of alkaline phosphatases. The data obtained in this work indicate that activity of phosphatases is a strain specific property. The results further suggest that synthesis and activity of phosphatases depended on eco-physiological characteristics of the examined cyanobacterial strains. This can be of great importance for the further study of enzymes and mechanisms of their activity as a part of cyanobacterial survival strategy in environments with extreme conditions. [Projekat Ministarstva nauke Republike

  2. Coupling between the voltage-sensing and phosphatase domains of Ci-VSP.

    Science.gov (United States)

    Villalba-Galea, Carlos A; Miceli, Francesco; Taglialatela, Maurizio; Bezanilla, Francisco

    2009-07-01

    The Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP) shares high homology with the phosphatidylinositol phosphatase enzyme known as PTEN (phosphatase and tensin homologue deleted on chromosome 10). We have taken advantage of the similarity between these proteins to inquire about the coupling between the voltage sensing and the phosphatase domains in Ci-VSP. Recently, it was shown that four basic residues (R11, K13, R14, and R15) in PTEN are critical for its binding onto the membrane, required for its catalytic activity. Ci-VSP has three of the basic residues of PTEN. Here, we show that when R253 and R254 (which are the homologues of R14 and R15 in PTEN) are mutated to alanines in Ci-VSP, phosphatase activity is disrupted, as revealed by a lack of effect on the ionic currents of KCNQ2/3, where current decrease is a measure of phosphatase activity. The enzymatic activity was not rescued by the introduction of lysines, indicating that the binding is an arginine-specific interaction between the phosphatase binding domain and the membrane, presumably through the phosphate groups of the phospholipids. We also found that the kinetics and steady-state voltage dependence of the S4 segment movement are affected when the arginines are not present, indicating that the interaction of R253 and R254 with the membrane, required for the catalytic action of the phosphatase, restricts the movement of the voltage sensor.

  3. A generally applicable sequential alkaline phosphatase immunohistochemical double staining

    NARCIS (Netherlands)

    van der Loos, Chris M.; Teeling, Peter

    2008-01-01

    A universal type of sequential double alkaline phosphatase immunohistochemical staining is described that can be used for formalin-fixed, paraffin-embedded and cryostat tissue sections from human and mouse origin. It consists of two alkaline phosphatase detection systems including enzymatic

  4. Mechanisms involved in growth inhibition induced by clofibrate in hepatoma cells

    International Nuclear Information System (INIS)

    Muzio, Giuliana; Maggiora, Marina; Trombetta, Antonella; Martinasso, Germana; Reffo, Patrizia; Colombatto, Sebastiano; Canuto, Rosa Angela

    2003-01-01

    Low concentrations of some peroxisome proliferators have been found to decrease apoptosis in rat liver cells, whereas higher but pharmacological concentrations have been found to inhibit cell proliferation or to induce apoptosis in human and rat hepatoma cells. The highly deviated JM2 rat hepatoma cell line was used to examine the mechanisms underlying the inhibitory effect on cell proliferation. Clofibrate chiefly inhibited cell proliferation in these cells. Parallel to the decrease in cell proliferation there was an increase of peroxisome proliferator activated receptor (PPAR) gamma and of protein phosphatase 2A, whose importance was confirmed, respectively, by using antisense oliginucleotides (AS-ODN) or okadaic acid. The increase of protein phosphatase 2A induced by PPARgamma caused a decrease of MAPK, an intracellular signaling transduction pathway, as shown by evaluation of Erk1,2 and c-myc. In light of these results, clofibrate, like conventional synthetic ligands of PPARgamma, may be regarded as a possible prototype anti-tumour drug

  5. COMPARISON OF METHODS FOR ALKALINE PHOSPHATASE AND PEROXIDASE DETECTION IN MILK

    Directory of Open Access Journals (Sweden)

    felipe Nael Seixas

    2014-02-01

    Full Text Available This study evaluated the performance of strips for colorimetric detection of alkaline phosphatase and peroxidase in milk, comparing them with a kit of reagents for alkaline phosphatase and the official methodology for peroxidase. The samples were analyzed at the Laboratory Inspection of Products of Animal Origin, State University of Londrina. For the comparison tests for the detection of alkaline phosphatase four treatments were made by adding different percentages of raw milk (1%, 2%, 5% and 10% in the pasteurized milk, plus two control treatments. Thirty-eight samples triplicate for each treatment were analyzed. To compare the performance of tests for peroxidase 80 pasteurized milk samples were evaluated simultaneously by official methodology and by colorimetric strips. The performance of the alkaline phosphatase were different for the treatments with 1% and 2% of raw milk which had all the strips change color as the reagent kit showed the presence of phosphatase in just 2.63% and 5.26% the cases, respectively for each treatment. The colorimetric strips for alkaline phosphatase are more sensitive for the identification of small quantities compared to the reagent kit. The performance of tests for peroxidase showed no difference. The strips for the detection of peroxidase or alkaline phosphatase were effective and can replace traditional methods.

  6. Isothiazolidinone (IZD) as a phosphoryl mimetic in inhibitors of the Yersinia pestis protein tyrosine phosphatase YopH

    International Nuclear Information System (INIS)

    Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T.; Ulrich, Robert G.; Burke, Terrence R. Jr; Waugh, David S.

    2011-01-01

    The first X-ray crystal structure of the Y. pestis protein tyrosine phosphatase YopH in complex with an isothiazolidinone-based lead-fragment compound is reported. Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacing a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors

  7. Inhibition of AMPK catabolic action by GSK3

    Science.gov (United States)

    Suzuki, Tsukasa; Bridges, Dave; Nakada, Daisuke; Skiniotis, Georgios; Morrison, Sean J.; Lin, Jiandie; Saltiel, Alan R.; Inoki, Ken

    2013-01-01

    SUMMARY AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis by inhibiting anabolic and activating catabolic processes. While AMPK activation has been extensively studied, mechanisms that inhibit AMPK remain elusive. Here we report that glycogen synthase kinase 3 (GSK3) inhibits AMPK function. GSK3 forms a stable complex with AMPK through interactions with the AMPK β regulatory subunit and phosphorylates the AMPK α catalytic subunit. This phosphorylation enhances the accessibility of the activation loop of the α subunit to phosphatases, thereby inhibiting AMPK kinase activity. Surprisingly, PI3K-Akt signaling, which is a major anabolic signaling and normally inhibits GSK3 activity, promotes GSK3 phosphorylation and inhibition of AMPK, thus revealing how AMPK senses anabolic environments in addition to cellular energy levels. Consistently, disrupting GSK3 function within the AMPK complex sustains higher AMPK activity and cellular catabolic processes even under anabolic conditions, indicating that GSK3 acts as a critical sensor for anabolic signaling to regulate AMPK. PMID:23623684

  8. The Privilege of Induction Avoidance and Calcineurin Inhibitors Withdrawal in 2 Haplotype HLA Matched White Kidney Transplantation.

    Science.gov (United States)

    Brifkani, Zaid; Brennan, Daniel C; Lentine, Krista L; Horwedel, Timothy A; Malone, Andrew F; Delos Santos, Rowena; Maw, Thin Thin; Alhamad, Tarek

    2017-03-01

    White recipients of 2-haplotype HLA-matched living kidney transplants are perceived to be of low immunologic risk. Little is known about the safety of induction avoidance and calcineurin inhibitor withdrawal in these patients. We reviewed our experience at a single center and compared it to Organ Procurement and Transplantation Network (OPTN) registry data and only included 2-haplotype HLA-matched white living kidney transplants recipients between 2000 and 2013. There were 56 recipients in a single center (where no induction was given) and 2976 recipients in the OPTN. Among the OPTN recipients, 1285 received no induction, 903 basiliximab, 608 thymoglobulin, and 180 alemtuzumab. First-year acute rejection rates were similar after induction-free transplantation among the center and induced groups nationally. Compared with induction-free transplantation in the national data, there was no decrease in graft failure risk over 13 years with use of basiliximab (adjusted hazard ratio [aHR], 0.86; confidence interval [CI], 0.68-1.08), Thymoglobulin (aHR, 0.92; CI, 0.7-1.21) or alemtuzumab (aHR, 1.18; CI, 0.72-1.93). Among induction-free recipients at the center, calcineurin inhibitor withdrawal at 1 year (n = 27) did not significantly impact graft failure risk (HR,1.62; CI, 0.38-6.89). This study may serve as a foundation for further studies to provide personalized, tailored, immunosuppression for this very low-risk population of kidney transplant patients.

  9. The impact of phosphatases on proliferative and survival signaling in cancer.

    Science.gov (United States)

    Narla, Goutham; Sangodkar, Jaya; Ryder, Christopher B

    2018-05-03

    The dynamic and stringent coordination of kinase and phosphatase activity controls a myriad of physiologic processes. Aberrations that disrupt the balance of this interplay represent the basis of numerous diseases. For a variety of reasons, early work in this area portrayed kinases as the dominant actors in these signaling events with phosphatases playing a secondary role. In oncology, these efforts led to breakthroughs that have dramatically altered the course of certain diseases and directed vast resources toward the development of additional kinase-targeted therapies. Yet, more recent scientific efforts have demonstrated a prominent and sometimes driving role for phosphatases across numerous malignancies. This maturation of the phosphatase field has brought with it the promise of further therapeutic advances in the field of oncology. In this review, we discuss the role of phosphatases in the regulation of cellular proliferation and survival signaling using the examples of the MAPK and PI3K/AKT pathways, c-Myc and the apoptosis machinery. Emphasis is placed on instances where these signaling networks are perturbed by dysregulation of specific phosphatases to favor growth and persistence of human cancer.

  10. Dimerization inhibits the activity of receptor-like protein-tyrosine phosphatase-alpha

    DEFF Research Database (Denmark)

    Jiang, G; den Hertog, J; Su, J

    1999-01-01

    that dimerization can negatively regulate activity, through the interaction of an inhibitory 'wedge' on one monomer with the catalytic cleft of domain 1 in the other monomer. Here we show that dimerization inhibits the activity of a full-length RPTP in vivo. We generated stable disulphide-bonded full...

  11. Protein tyrosine phosphatases: regulatory mechanisms.

    NARCIS (Netherlands)

    den Hertog, J.; Ostman, A.; Bohmer, F.D.

    2008-01-01

    Protein-tyrosine phosphatases are tightly controlled by various mechanisms, ranging from differential expression in specific cell types to restricted subcellular localization, limited proteolysis, post-translational modifications affecting intrinsic catalytic activity, ligand binding and

  12. Characterization and site-directed mutagenesis of Wzb, an O-phosphatase from Lactobacillus rhamnosus

    Directory of Open Access Journals (Sweden)

    Gilbert Christophe

    2008-04-01

    Full Text Available Abstract Background Reversible phosphorylation events within a polymerisation complex have been proposed to modulate capsular polysaccharide synthesis in Streptococcus pneumoniae. Similar phosphatase and kinase genes are present in the exopolysaccharide (EPS biosynthesis loci of numerous lactic acid bacteria genomes. Results The protein sequence deduced from the wzb gene in Lactobacillus rhamnosus ATCC 9595 reveals four motifs of the polymerase and histidinol phosphatase (PHP superfamily of prokaryotic O-phosphatases. Native and modified His-tag fusion Wzb proteins were purified from Escherichia coli cultures. Extracts showed phosphatase activity towards tyrosine-containing peptides. The purified fusion protein Wzb was active on p-nitrophenyl-phosphate (pNPP, with an optimal activity in presence of bovine serum albumin (BSA 1% at pH 7.3 and a temperature of 75°C. At 50°C, residual activity decreased to 10 %. Copper ions were essential for phosphatase activity, which was significantly increased by addition of cobalt. Mutated fusion Wzb proteins exhibited reduced phosphatase activity on p-nitrophenyl-phosphate. However, one variant (C6S showed close to 20% increase in phosphatase activity. Conclusion These characteristics reveal significant differences with the manganese-dependent CpsB protein tyrosine phosphatase described for Streptococcus pneumoniae as well as with the polysaccharide-related phosphatases of Gram negative bacteria.

  13. Clinical implementation of pharmacogenetics in kidney transplantation: calcineurin inhibitors in the starting blocks.

    Science.gov (United States)

    Elens, Laure; Bouamar, Rachida; Shuker, Nauras; Hesselink, Dennis A; van Gelder, Teun; van Schaik, Ron H N

    2014-04-01

    Pharmacogenetics has generated many expectations for its potential to individualize therapy proactively and improve medical care. However, despite the huge amount of reported genetic associations with either pharmacokinetics or pharmacodynamics of drugs, the translation into patient care is still slow. In fact, strong evidence for a substantial clinical benefit of pharmacogenetic testing is still limited, with a few exceptions. In kidney transplantation, established pharmacogenetic discoveries are being investigated for application in the clinic to improve efficacy and to limit toxicity associated with the use of immunosuppressive drugs, especially the frequently used calcineurin inhibitors (CNIs) tacrolimus and ciclosporin. The purpose of the present review is to picture the current status of CNI pharmacogenetics and to discuss the most promising leads that have been followed so far. © 2013 The British Pharmacological Society.

  14. A new family of phosphoinositide phosphatases in microorganisms: identification and biochemical analysis

    Directory of Open Access Journals (Sweden)

    Bennett Hayley J

    2010-08-01

    Full Text Available Abstract Background Phosphoinositide metabolism is essential to membrane dynamics and impinges on many cellular processes, including phagocytosis. Modulation of phosphoinositide metabolism is important for pathogenicity and virulence of many human pathogens, allowing them to survive and replicate in the host cells. Phosphoinositide phosphatases from bacterial pathogens are therefore key players in this modulation and constitute attractive targets for chemotherapy. MptpB, a virulence factor from Mycobacterium tuberculosis, has phosphoinositide phosphatase activity and a distinct active site P-loop signature HCXXGKDR that shares characteristics with eukaryotic lipid phosphatases and protein tyrosine phosphatases. We used this P-loop signature as a "diagnostic motif" to identify related putative phosphatases with phosphoinositide activity in other organisms. Results We found more than 200 uncharacterised putative phosphatase sequences with the conserved signature in bacteria, with some related examples in fungi and protozoa. Many of the sequences identified belong to recognised human pathogens. Interestingly, no homologues were found in any other organisms including Archaea, plants, or animals. Phylogenetic analysis revealed that these proteins are unrelated to classic eukaryotic lipid phosphatases. However, biochemical characterisation of those from Listeria monocytogenes and Leishmania major, demonstrated that, like MptpB, they have phosphatase activity towards phosphoinositides. Mutagenesis studies established that the conserved Asp and Lys in the P-loop signature (HCXXGKDR are important in catalysis and substrate binding respectively. Furthermore, we provide experimental evidence that the number of basic residues in the P-loop is critical in determining activity towards poly-phosphoinositides. Conclusion This new family of enzymes in microorganisms shows distinct sequence and biochemical characteristics to classic eukaryotic lipid phosphatases

  15. A new family of phosphoinositide phosphatases in microorganisms: identification and biochemical analysis.

    Science.gov (United States)

    Beresford, Nicola J; Saville, Charis; Bennett, Hayley J; Roberts, Ian S; Tabernero, Lydia

    2010-08-02

    Phosphoinositide metabolism is essential to membrane dynamics and impinges on many cellular processes, including phagocytosis. Modulation of phosphoinositide metabolism is important for pathogenicity and virulence of many human pathogens, allowing them to survive and replicate in the host cells. Phosphoinositide phosphatases from bacterial pathogens are therefore key players in this modulation and constitute attractive targets for chemotherapy. MptpB, a virulence factor from Mycobacterium tuberculosis, has phosphoinositide phosphatase activity and a distinct active site P-loop signature HCXXGKDR that shares characteristics with eukaryotic lipid phosphatases and protein tyrosine phosphatases. We used this P-loop signature as a "diagnostic motif" to identify related putative phosphatases with phosphoinositide activity in other organisms. We found more than 200 uncharacterised putative phosphatase sequences with the conserved signature in bacteria, with some related examples in fungi and protozoa. Many of the sequences identified belong to recognised human pathogens. Interestingly, no homologues were found in any other organisms including Archaea, plants, or animals. Phylogenetic analysis revealed that these proteins are unrelated to classic eukaryotic lipid phosphatases. However, biochemical characterisation of those from Listeria monocytogenes and Leishmania major, demonstrated that, like MptpB, they have phosphatase activity towards phosphoinositides. Mutagenesis studies established that the conserved Asp and Lys in the P-loop signature (HCXXGKDR) are important in catalysis and substrate binding respectively. Furthermore, we provide experimental evidence that the number of basic residues in the P-loop is critical in determining activity towards poly-phosphoinositides. This new family of enzymes in microorganisms shows distinct sequence and biochemical characteristics to classic eukaryotic lipid phosphatases and they have no homologues in humans. This study provides

  16. Secretion of acid phosphatase by axenic Entamoeba histolytica NIH-200 and properties of the extracellular enzyme.

    Science.gov (United States)

    Agrawal, A; Pandey, V C; Kumar, S; Sagar, P

    1989-01-01

    Entamoeba histolytica (NIH-200) secreted large amounts of acid phosphatase in its external environment when grown axenically in modified TPS-II medium. Fractionation by DEAE-cellulose chromatography of the precipitate obtained from the cell-free medium at 60% ammonium sulfate saturation yielded 3 distinct peaks of enzyme activity. The enzyme in all the peaks showed resistance to tartrate but was inhibited by fluoride, cupric chloride, ethylene diamine-tetra acetic acid, ammonium molybdate and cysteine; however, enzyme associated with different peaks differed in its polyacrylamide gel electrophoretic profiles and behavior towards concanavalin A.

  17. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.

    Science.gov (United States)

    Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya

    2013-01-01

    ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

  18. A Disposable Alkaline Phosphatase-Based Biosensor for Vanadium Chronoamperometric Determination

    Directory of Open Access Journals (Sweden)

    Ana Lorena Alvarado-Gámez

    2014-02-01

    Full Text Available A chronoamperometric method for vanadium ion determination, based on the inhibition of the enzyme alkaline phosphatase, is reported. Screen-printed carbon electrodes modified with gold nanoparticles were used as transducers for the immobilization of the enzyme. The enzymatic activity over 4-nitrophenyl phosphate sodium salt is affected by vanadium ions, which results in a decrease in the chronoamperometric current registered. The developed method has a detection limit of 0.39 ± 0.06 µM, a repeatability of 7.7% (n = 4 and a reproducibility of 8% (n = 3. A study of the possible interferences shows that the presence of Mo(VI, Cr(III, Ca(II and W(VI, may affect vanadium determination at concentration higher than 1.0 mM. The method was successfully applied to the determination of vanadium in spiked tap water.

  19. Dephosphorylation of chicken cardiac myofibril C-protein by protein phosphatases 1 and 2A

    International Nuclear Information System (INIS)

    Thysseril, T.J.; Hegazy, M.G.; Schlender, K.K.

    1987-01-01

    C-Protein, which is a regulatory component of cardiac muscle myofibrils, is phosphorylated in response to β-adrenergic agonists by a cAMP-dependent mechanism and dephosphorylated in response to cholinergic agonists. It is believed that the cAMP-dependent phosphorylation is due to cAMP-dependent protein kinase. The protein phosphatase(s) involved in the dephosphorylation of C-protein has not been determined. In this study, chicken cardiac C-protein was phosphorylated with the cAMP-dependent protein kinase to about 3 mol phosphate/mol C-protein. Incubation of [ 32 P]C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of 32 [P]. Phosphopeptide maps and phosphoamino acid analysis revealed that the major site(s) dephosphorylated by either phosphatase was a phosphothreonine residue(s) located on the same tryptic peptide and on the same CNBr fragment. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A completely dephosphorylated C-protein. Preliminary studies showed that the major protein phosphatase associated with the myofibril was phosphatase 2A. These results indicate the phosphatase 2A may be important in the regulation of the phosphorylation state of C-protein

  20. Serum creatinine and alkaline phosphatase levels are associated with severe chronic periodontitis.

    Science.gov (United States)

    Caúla, A L; Lira-Junior, R; Tinoco, E M B; Fischer, R G

    2015-12-01

    Periodontitis may alter systemic homeostasis and influence creatinine and alkaline phosphatase levels. Therefore, the aim of this study was to evaluate the relationship between severe chronic periodontitis and serum creatinine and alkaline phosphatase levels. One hundred patients were evaluated, 66 with severe chronic periodontitis (test group) and 34 periodontally healthy controls (control group). Medical, demographic and periodontal parameters were registered. Blood sample was collected after an overnight fast and serum creatinine and alkaline phosphatase levels were determined. There were significant differences between test and control groups in ethnicity, gender and educational level (p creatinine level (p creatinine and alkaline phosphatase levels. Severe chronic periodontitis was associated to lower creatinine and higher alkaline phosphatase levels. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Risk factors for calcineurin inhibitor nephrotoxicity after renal transplantation: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Xia T

    2018-02-01

    Full Text Available Tianyi Xia, Sang Zhu, Yan Wen, Shouhong Gao, Mingming Li, Xia Tao, Feng Zhang, Wansheng Chen Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China Background: Nephrotoxicity of calcineurin inhibitors (CNIs is the major concern for long-term allograft survival despite its predominant role in current immunosuppressive regime after renal transplantation. CNI nephrotoxicity is multifactorial with demographic, environmental, and pharmacogenetic flexibility, whereas studies indicating risk factors for CNI nephrotoxicity obtained incomplete or conflicting results.Methods: A systematic review and meta-analysis of risk factors for CNI nephrotoxicity was performed on all retrieved studies through a comprehensive research of network database. Data were analyzed by Review Manager 5.2 with heterogeneity assessed using the Cochrane Q and I2 tests. CNI nephrotoxicity was primarily indicated with protocol biopsy or index-based clinical diagnosis, and the secondary outcome was defined as delayed graft function.Results: Twelve observational studies containing a total of 2,849 cases were identified. Donor age (odds ratio [OR], 1.01; 95% CI, 1.01–1.03; p=0.02, recipient zero-time arteriosclerosis (OR, 1.44; 95% CI, 1.04–1.99; p=0.03, and CYP3A5*3/*3 genotype (OR, 2.80; 95% CI, 2.63–2.98; p=0.00 were confirmed as risk factors for CNI nephrotoxicity. Subgroup and sensitivity analysis claimed donor age as a significant contributor in Asian and Caucasian areas.Conclusion: Older donor age, recipient zero-time arteriosclerosis, and CYP3A5*3/*3 genotype might add up the risk for CNI nephrotoxicity, which could be interpreted into a robust biomarker system. Keywords: calcineurin inhibitor, transplantation, nephrotoxicity, risk factor, systematic review, meta-analysis

  2. Bis-enoxacin Inhibits Bone Resorption and Orthodontic Tooth Movement

    Science.gov (United States)

    Toro, E.J.; Zuo, J.; Guiterrez, A.; La Rosa, R.L.; Gawron, A.J.; Bradaschia-Correa, V.; Arana-Chavez, V.; Dolce, C.; Rivera, M.F.; Kesavalu, L.; Bhattacharyya, I.; Neubert, J.K.; Holliday, L.S.

    2013-01-01

    Enoxacin inhibits binding between the B-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments, and also between osteoclast formation and bone resorption in vitro. We hypothesized that a bisphosphonate derivative of enoxacin, bis-enoxacin (BE), which was previously studied as a bone-directed antibiotic, might have similar activities. BE shared a number of characteristics with enoxacin: It blocked binding between the recombinant B-subunit and microfilaments and inhibited osteoclastogenesis in cell culture with IC50s of about 10 µM in each case. BE did not alter the relative expression levels of various osteoclast-specific proteins. Even though tartrate-resistant acid phosphatase 5b was expressed, proteolytic activation of the latent pro-enzyme was inhibited. However, unlike enoxacin, BE stimulated caspase-3 activity. BE bound to bone slices and inhibited bone resorption by osteoclasts on BE-coated bone slices in cell culture. BE reduced the amount of orthodontic tooth movement achieved in rats after 28 days. Analysis of these data suggests that BE is a novel anti-resorptive molecule that is active both in vitro and in vivo and may have clinical uses. Abbreviations: BE, bis-enoxacin; V-ATPase, vacuolar H+-ATPase; TRAP, tartrate-resistant acid phosphatase; αMEM D10, minimal essential media, alpha modification with 10% fetal bovine serum; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; RANKL, receptor activator of nuclear factor kappa B-ligand; NFATc1, nuclear factor of activated T-cells; ADAM, a disintegrin and metalloprotease domain; OTM, orthodontic tooth movement. PMID:23958763

  3. Acid phosphatase turnover during repressed and derepressed cultivation of Aspergillus niger

    International Nuclear Information System (INIS)

    Komano, Teruya

    1975-01-01

    Enhancement of the activity of acid phosphatase (EC 3.1.3.2) by phosphate starvation in growing Aspergillus niger mycelia was prevented by cycloheximide. This indicates that the enhancement was due to de novo protein synthesis caused by derepression. Radioactive acid phosphatase extracted from mycelia labeled with 14 C-amino acid was separated into at least four fractions. Experiments on pulse labeling and the chasing of the four acid phosphatases revealed the synthesis and degradation of each fraction occurred at different rates; showing a different rate of turnover of the enzyme molecules. The results of similar experiments performed during culture in the presence of phosphate (partially repressed condition) suggested that the marked change in the activity ratios of the four acid phosphatases during cultivation was the result of the active turnover of enzyme molecules. In contrast, the slight changes in the ratios observed during derepressed cultivation seemed to be the result of similar of synthesis and degradation of each phosphatase fraction. (auth.)

  4. Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation.

    Science.gov (United States)

    Koshibu, K; Gräff, J; Mansuy, I M

    2011-01-26

    Complex brain diseases and neurological disorders in human generally result from the disturbance of multiple genes and signaling pathways. These disturbances may derive from mutations, deletions, translocations or rearrangements of specific gene(s). However, over the past years, it has become clear that such disturbances may also derive from alterations in the epigenome affecting several genes simultaneously. Our work recently demonstrated that epigenetic mechanisms in the adult brain are in part regulated by protein phosphatase 1 (PP1), a protein Ser/Thr phosphatase that negatively regulates hippocampus-dependent long-term memory (LTM) and synaptic plasticity. PP1 is abundant in brain structures involved in emotional processing like the amygdala, it may therefore be involved in the regulation of fear memory, a form of memory related to post-traumatic stress disorder (PTSD) in human. Here, we demonstrate that PP1 is a molecular suppressor of fear memory and synaptic plasticity in the amygdala that can control chromatin remodeling in neurons. We show that the selective inhibition of the nuclear pool of PP1 in amygdala neurons significantly alters posttranslational modifications (PTMs) of histones and the expression of several memory-associated genes. These alterations correlate with enhanced fear memory, and with an increase in long-term potentiation (LTP) that is transcription-dependent. Our results underscore the importance of nuclear PP1 in the amygdala as an epigenetic regulator of emotional memory, and the relevance of protein phosphatases as potential targets for therapeutic treatment of brain disorders like PTSD. © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. The calcineurin pathway inhibitor tacrolimus enhances the in vitro activity of azoles against Mucorales via apoptosis.

    Science.gov (United States)

    Shirazi, F; Kontoyiannis, D P

    2013-09-01

    The calcineurin pathway regulates antifungal drug resistance and the virulence of several major human-pathogenic fungi, including the recalcitrant Mucorales. We hypothesized that the fungistatic triazoles posaconazole (PCZ) and itraconazole (ICZ) become fungicidal in the setting of the calcineurin inhibitor tacrolimus (TCR) and that such an effect is mediated through apoptosis. Fungicidal activity and apoptosis were studied using standard microbiological techniques and hyphal metabolic and vital dye reduction assays at 37°C in RPMI 1640. Apoptosis was characterized by detecting intracellular Ca(2+), phosphatidylserine (PS) externalization, DNA fragmentation, plasma membrane integrity, chromatin condensation, reactive oxygen species (ROS) generation, caspase-like activity, ATP, and cytochrome c release. MICs for PCZ and ICZ alone were significantly higher (8 to 128 μg/ml) than those of PCZ or ICZ plus TCR (0.25 to 4 μg/ml) for Rhizopus oryzae, Cunninghamella bertholletiae, and Mucor circinelloides. Both PCZ and ICZ in combination with TCR became fungicidal, and their activity was mediated through increased apoptotic cell death of R. oryzae (10 to 50%), C. bertholletiae (5 to 50%), and M. circinelloides (5 to 55%) germlings, with morphological apoptotic changes characterized by externalization of PS, nuclear condensation, and DNA fragmentation. Moreover, activation of the caspase-like activity was correlated with cell death induced by TCR plus PCZ or ICZ. These changes correlated with elevated intracellular Ca(2+) and ROS levels and disturbance of mitochondrial potential. We found that PCZ or ICZ in combination with TCR renders Mucorales sensitive to triazoles via apoptotic death. These observations could serve as a new paradigm for the development of new therapeutic strategies.

  6. Further characterization of serum alkaline phosphatase from male and female beagle dogs.

    Science.gov (United States)

    Amacher, D E; Higgins, C V; Schomaker, S J; Clay, R J

    1989-01-01

    Alkaline phosphatase (AP) from the sera of both male and female beagle dogs was partially purified and then analyzed for the presence of AP isoenzymes having intestinal or osseous characteristics as detected by bromotetramisole inhibition or wheat germ lectin agarose electrophoresis, respectively. The sera from both sexes were similar in regard to the presence of AP isoenzymes with intestinal (16 vs. 20%) or osseous (19 vs. 23%) characteristics, but serum AP from the male had a greater sialic acid content and only the male serum contained a detectable constitutive acidic (pI = 3.4) AP isoenzyme. This was similar to a serum AP isoenzyme previously found elevated in the sera of dogs afflicted with hyperadrenocorticalism or of dogs treated with certain corticosteroids.

  7. Cloning and expression of a widely expressed receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Sap, J; D'Eustachio, P; Givol, D

    1990-01-01

    We describe the identification of a widely expressed receptor-type (transmembrane) protein tyrosine phosphatase (PTPase; EC 3.1.3.48). Screening of a mouse brain cDNA library under low-stringency conditions with a probe encompassing the intracellular (phosphatase) domain of the CD45 lymphocyte...... antigen yielded cDNA clones coding for a 794-amino acid transmembrane protein [hereafter referred to as receptor protein tyrosine phosphatase alpha (R-PTP-alpha)] with an intracellular domain displaying clear homology to the catalytic domains of CD45 and LAR (45% and 53%, respectively). The 142-amino acid...

  8. MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Julija Umbrasaite

    2010-12-01

    Full Text Available In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells.

  9. Immunocytochemical detection of the microsomal glucose-6-phosphatase in human brain astrocytes.

    Science.gov (United States)

    Bell, J E; Hume, R; Busuttil, A; Burchell, A

    1993-10-01

    Using an antibody raised against the catalytic subunit of glucose-6-phosphatase, this enzyme was immunolocalized in many astrocytes in 20 normal human brains. Double immunofluorescence studies showed co-localization of glial fibrillary acidic protein (GFAP) with glucose-6-phosphatase in astrocytes. However, not all GFAP-positive cells were also glucose-6-phosphatase positive, indicating that some astrocytes do not contain demonstrable expression of this enzyme. Reactive astrocytes in a variety of abnormal brains were strongly glucose-6-phosphatase positive, but neoplastic astrocytes were often only weakly positive. Expression of the enzyme could not be demonstrated in radial glia, neurons or oligodendroglia. Astrocytes normally contain glycogen and the demonstration that some astrocytes also contain glucose-6-phosphatase indicates that they are competent for both glycogenolysis and gluconeogenesis, which may be critical for neuronal welfare.

  10. Lipid Emulsion Inhibits Vasodilation Induced by a Toxic Dose of Bupivacaine via Attenuated Dephosphorylation of Myosin Phosphatase Target Subunit 1 in Isolated Rat Aorta

    Science.gov (United States)

    Ok, Seong-Ho; Byon, Hyo-Jin; Kwon, Seong-Chun; Park, Jungchul; Lee, Youngju; Hwang, Yeran; Baik, Jiseok; Choi, Mun-Jeoung; Sohn, Ju-Tae

    2015-01-01

    Lipid emulsions are widely used for the treatment of systemic toxicity that arises from local anesthetics. The goal of this in vitro study was to examine the cellular mechanism associated with the lipid emulsion-mediated attenuation of vasodilation induced by a toxic dose of bupivacaine in isolated endothelium-denuded rat aorta. The effects of lipid emulsion on vasodilation induced by bupivacaine, mepivacaine, and verapamil were assessed in isolated aorta precontracted with phenylephrine, the Rho kinase stimulant NaF, and the protein kinase C activator phorbol 12,13-dibutyrate (PDBu). The effects of Rho kinase inhibitor Y-27632 on contraction induced by phenylephrine or NaF were assessed. The effects of bupivacaine on intracellular calcium concentrations ([Ca2+]i) and tension induced by NaF were simultaneously measured. The effects of bupivacaine alone and lipid emulsion plus bupivacaine on myosin phosphatase target subunit 1 (MYPT1) phosphorylation induced by NaF were examined in rat aortic vascular smooth muscle cells. In precontracted aorta, the lipid emulsion attenuated bupivacaine-induced vasodilation but had no effect on mepivacaine-induced vasodilation. Y-27632 attenuated contraction induced by either phenylephrine or NaF. The lipid emulsion attenuated verapamil-induced vasodilation. Compared with phenylephrine-induced precontracted aorta, bupivacaine-induced vasodilation was slightly attenuated in NaF-induced precontracted aorta. The magnitude of the bupivacaine-induced vasodilation was higher than that of a bupivacaine-induced decrease in [Ca2+]i. Bupivacaine attenuated NaF-induced MYPT1 phosphorylation, whereas lipid emulsion pretreatment attenuated the bupivacaine-induced inhibition of MYPT1 phosphorylation induced by NaF. Taken together, these results suggest that lipid emulsions attenuate bupivacaine-induced vasodilation via the attenuation of inhibition of MYPT1 phosphorylation evoked by NaF. PMID:26664257

  11. Protein phosphatase 2A inhibition and subsequent cytoskeleton reorganization contributes to cell migration caused by microcystin-LR in human laryngeal epithelial cells (Hep-2).

    Science.gov (United States)

    Wang, Beilei; Liu, Jinghui; Huang, Pu; Xu, Kailun; Wang, Hanying; Wang, Xiaofeng; Guo, Zonglou; Xu, Lihong

    2017-03-01

    The major toxic mechanism of Microcystin-LR is inhibition of the activity of protein phosphatase 2A (PP2A), resulting in a series of cytotoxic effects. Our previous studies have demonstrated that microcystin-LR (MCLR) induced very different molecular effects in normal cells and the tumor cell line SMMC7721. To further explore the MCLR toxicity mechanism in tumor cells, human laryngeal epithelial cells (Hep-2) was examined in this study. Western blot, immunofluorescence, immunoprecipitation, and transwell migration assay were used to detect the effects of MCLR on PP2A activity, PP2A substrates, cytoskeleton, and cell migration. The results showed that the protein level of PP2A subunits and the posttranslational modification of the catalytic subunit were altered and that the binding of the AC core enzyme as well as the binding of PP2A/C and α4, was also affected. As PP2A substrates, the phosphorylation of MAPK pathway members, p38, ERK1/2, and the cytoskeleton-associated proteins, Hsp27, VASP, Tau, and Ezrin were increased. Furthermore, MCLR induced reorganization of the cytoskeleton and promoted cell migration. Taken together, direct covalent binding to PP2A/C, alteration of the protein levels and posttranslational modification, as well as the binding of subunits, are the main pattern for the effects of MCLR on PP2A in Hep-2. A dose-dependent change in p-Tau and p-Ezrin due to PP2A inhibition may contribute to the changes in the cytoskeleton and be related to the cell migration in Hep-2. Our data provide a comprehensive exposition of the MCLR mechanism on tumor cells. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 890-903, 2017. © 2016 Wiley Periodicals, Inc.

  12. Dynamic Changes in Yeast Phosphatase Families Allow for Specialization in Phosphate and Thiamine Starvation.

    Science.gov (United States)

    Nahas, John V; Iosue, Christine L; Shaik, Noor F; Selhorst, Kathleen; He, Bin Z; Wykoff, Dennis D

    2018-05-10

    Convergent evolution is often due to selective pressures generating a similar phenotype. We observe relatively recent duplications in a spectrum of Saccharomycetaceae yeast species resulting in multiple phosphatases that are regulated by different nutrient conditions - thiamine and phosphate starvation. This specialization is both transcriptional and at the level of phosphatase substrate specificity. In Candida glabrata , loss of the ancestral phosphatase family was compensated by the co-option of a different histidine phosphatase family with three paralogs. Using RNA-seq and functional assays, we identify one of these paralogs, CgPMU3 , as a thiamine phosphatase. We further determine that the 81% identical paralog CgPMU2 does not encode thiamine phosphatase activity; however, both are capable of cleaving the phosphatase substrate, 1-napthyl-phosphate. We functionally demonstrate that members of this family evolved novel enzymatic functions for phosphate and thiamine starvation, and are regulated transcriptionally by either nutrient condition, and observe similar trends in other yeast species. This independent, parallel evolution involving two different families of histidine phosphatases suggests that there were likely similar selective pressures on multiple yeast species to recycle thiamine and phosphate. In this work, we focused on duplication and specialization, but there is also repeated loss of phosphatases, indicating that the expansion and contraction of the phosphatase family is dynamic in many Ascomycetes. The dynamic evolution of the phosphatase gene families is perhaps just one example of how gene duplication, co-option, and transcriptional and functional specialization together allow species to adapt to their environment with existing genetic resources. Copyright © 2018, G3: Genes, Genomes, Genetics.

  13. Plasma NGAL and glomerular filtration rate in cardiac transplant recipients treated with standard or reduced calcineurin inhibitor levels

    DEFF Research Database (Denmark)

    Gustafsson, Finn; Gude, Einar; Sigurdardottir, Vilborg

    2014-01-01

    GFR) at baseline (R(2) = 0.21; p year (median [25-75 % percentiles]: ΔmGFR 5.5 [-0.5-11.5] vs -1 [-7-4] ml/min/1.73 m(2); p = 0.006). Baseline P-NGAL predicted mGFR after 1 year (R(2) = 0.18; p ...: P-NGAL was measured in 88 cardiac transplantation patients (median 5 years post-transplant) with renal dysfunction randomized to continuation of conventional calcineurin inhibitor-based immunosuppression or switching to an everolimus-based regimen. RESULTS: P-NGAL correlated with measured GFR (m...

  14. Phosphoglycolate phosphatase and 2,3-diphosphoglycerate in red cells of normal and anemic subjects.

    Science.gov (United States)

    Somoza, R; Beutler, E

    1983-10-01

    Red cell phosphoglycolate phosphatase (PGP) and 2,3-diphosphoglycerate (2,3-DPG) were investigated in normal and anemic patients and rabbits. In hemolytic anemia and blood-loss anemia, characterized by a young red cell population, there was an increase in both phosphoglycolate phosphatase activity and 2,3-diphosphoglycerate levels. In aplastic anemia, the phosphoglycolate phosphatase activity was normal, but the 2,3-diphosphoglycerate values were nonetheless increased. Thus, no relationship was found between phosphoglycolate phosphatase activity and 2,3-diphosphoglycerate levels. The lack of correlation between the activity of phosphoglycolate phosphatase and 2,3-DPG levels suggests that modulation of phosphoglycolate phosphatase activity does not control the level of 2,3-DPG in erythrocytes.

  15. H32, a non-quinone sulfone analog of vitamin K3, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating ERK.

    Science.gov (United States)

    Kar, Siddhartha; Wang, Meifang; Ham, Seung Wook; Carr, Brian I

    2006-10-01

    We previously synthesized a K-vitamin derivative, Cpd 5, which was a potent growth inhibitor of human tumor cells, including Hep3B hepatoma cells. However, being a quinone compound, Cpd 5 has the potential for generating toxic reactive oxygen species (ROS). We therefore synthesized a nonquinone sulfone derivative, H32, which has a sufone group substituting the quinone. The IC50 of H32 for Hep3B cells was found to be 2.5 microM, which was 2.5 and 3.2 times more potent than Cpd 5 and vitamin K3 respectively. It induced apoptosis in Hep3B cells but did not generate ROS when compared to Cpd 5. Interestingly, under similar culture conditions, normal rat hepatocytes were 14-fold more and 7-fold more resistant to the growth inhibitory effects of H32 than Hep3B and PLC/PRF5 cells respectively. H32 preferentially inhibited the activities of the cell cycle controlling Cdc25A phosphatase likely by binding to its catalytic cysteine. As a consequence, it induced inhibitory tyrosine phosphorylation of the Cdc25 substrate kinases Cdk2 and Cdk4 in Hep3B cells and the cells undergo an arrest in the G1 phase of the cell cycle. H32 also induced persistent phosphorylation of the MAPK protein ERK1/2, but marginal JNK1/2 and p38 phosphorylation. The ERK inhibitor U0126, added at least 30 min prior to H32, antagonized the growth inhibition induced by H32. However, the JNK and p38 inhibitors, JNKI-II and SB203580, were not able to antagonize H32 induced growth inhibition. Thus, H32 differentially inhibited growth of normal and liver tumor cells by preferentially inhibiting the actions of Cdc25 phosphatases and inducing persistent ERK phosphorylation.

  16. Calcineurin inhibitors acutely improve insulin sensitivity without affecting insulin secretion in healthy human volunteers

    DEFF Research Database (Denmark)

    Øzbay, Aygen; Møller, Niels; Juhl, Claus

    2012-01-01

    and tacrolimus has been attributed to both beta cell dysfunction and impaired insulin sensitivity. WHAT THIS STUDY ADDS: This is the first trial to investigate beta cell function and insulin sensitivity using gold standard methodology in healthy human volunteers treated with clinically relevant doses...... of ciclosporin and tacrolimus. We document that both drugs acutely increase insulin sensitivity, while first phase and pulsatile insulin secretion remain unaffected. This study demonstrates that ciclosporin and tacrolimus have similar acute effects on glucose metabolism in healthy humans. AIM The introduction...... of calcineurin inhibitors (CNIs) ciclosporin (CsA) and tacrolimus (Tac) has improved the outcome of organ transplants, but complications such as new onset diabetes mellitus after transplantation (NODAT) cause impairment of survival rates. The relative contribution of each CNI to the pathogenesis and development...

  17. Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin

    Science.gov (United States)

    1996-01-01

    , results in the accumulation of phosphorylated tyrosine residues on beta-catenin, uncoupling of N-cadherin from its association with the actin containing cytoskeleton, and loss of N- cadherin function. We now report that binding of these ligands to the GalNAcPTase results in the absence of the PTP1B-like phosphatase from its association with N-cadherin as well as the loss of the tyrosine kinase and tyrosine phosphatase activities that otherwise co- precipitate with N-cadherin. Control antibodies and proteoglycans have no such effect. This effect is similar to that observed with tyrosine kinase inhibitors, suggesting that the GalNAcPTase/proteoglycan interaction inhibits a tyrosine kinase, thereby preventing the phosphorylation of the PTP1B-like phosphatase, and its association with N-cadherin. Taken together these data indicate that a PTP1B-like tyrosine phosphatase can regulate N-cadherin function through its ability to dephosphorylate beta-catenin and that the association of the phosphatase with N-cadherin is regulated via the interaction of the GalNAcPTase with its proteoglycan ligand. In this manner the GalNAcPTase-proteoglycan interaction may play a major role in morphogenetic cell and tissue interactions during development. PMID:8707857

  18. Screening a library of household substances for inhibitors of phosphatases: An introduction to high-throughput screening.

    Science.gov (United States)

    Taylor, Ann T S

    2005-01-01

    Library screening methods are commonly used in industry and research. This article describes an experiment that screens a library of household substances for properties that would make a good "drug," including enzyme inhibition, neutral pH, and nondenaturing to proteins, using wheat germ acid phosphatase as the target protein. An adaptation of the experiment appropriate for lower level biochemistry or outreach is also described. This work was supported by Wabash College through the Haines Fund for the Study of Biochemistry and the National Science Foundation through Grant DUE 0126242. Copyright © 2005 International Union of Biochemistry and Molecular Biology, Inc.

  19. A study of the alkaline and acid phosphatase activities in acute uranium intoxication

    International Nuclear Information System (INIS)

    Bokova, N.; Pavlova, V.; Stancheva, Yu.; Khadzhirusev, S.; Kiradzhiev, G.

    1975-01-01

    Comparative study of the ability of the sodium salt of diethylbarbituric acid and acetazolamide to protect the kidneys is conducted under conditions of acute uranium intoxication in rats. The parameters studied are alkaline and acid phosphatase activities in the serum and urine and phosphatase activity in the kidneys (histochemically as described by Gomori) followed up until the 30th day after the total uranyl acetate dose was reached (2 or 7 mg per kg bodyweight). Either compound exerted only minor effect on serum alkaline phosphatase activity. Sodium diethylbarbiturate induced distinct fluctuations in urinary alkaline phosphatase activity throughout the entire study period, but the differences never reached statistical significance. Acetazolamide caused essential decrease in urinary alkaline phosphatase activity. In either case renal tissue protection from the action of the uranyl ion may be suggested. This assumption is supported by the histochemical analysis. The compounds appeared to have no effect on serum acid phosphatase activity which showed high variability both in control and in treated rats. (Ch.K.)

  20. Rap phosphatase of virulence plasmid pXO1 inhibits Bacillus anthracis sporulation.

    Science.gov (United States)

    Bongiorni, Cristina; Stoessel, Ricarda; Shoemaker, Dorinda; Perego, Marta

    2006-01-01

    This study shows that the Bacillus anthracis pXO1 virulence plasmid carries a Rap-Phr system, BXA0205, which regulates sporulation initiation in this organism. The BXA0205Rap protein was shown to dephosphorylate the Spo0F response regulator intermediate of the phosphorelay signal transduction system that regulates the initiation of the developmental pathway in response to environmental, metabolic, and cell cycle signals. The activity of the Rap protein was shown to be inhibited by the carboxy-terminal pentapeptide generated through an export-import processing pathway from the associated BXA0205Phr protein. Deregulation of the Rap activity by either overexpression or lack of the Phr pentapeptide resulted in severe inhibition of sporulation. Five additional Rap-Phr encoding systems were identified on the chromosome of B. anthracis, one of which, BA3790-3791, also affected sporulation initiation. The results suggest that the plasmid-borne Rap-Phr system may provide a selective advantage to the virulence of B. anthracis.

  1. Rap Phosphatase of Virulence Plasmid pXO1 Inhibits Bacillus anthracis Sporulation†

    Science.gov (United States)

    Bongiorni, Cristina; Stoessel, Ricarda; Shoemaker, Dorinda; Perego, Marta

    2006-01-01

    This study shows that the Bacillus anthracis pXO1 virulence plasmid carries a Rap-Phr system, BXA0205, which regulates sporulation initiation in this organism. The BXA0205Rap protein was shown to dephosphorylate the Spo0F response regulator intermediate of the phosphorelay signal transduction system that regulates the initiation of the developmental pathway in response to environmental, metabolic, and cell cycle signals. The activity of the Rap protein was shown to be inhibited by the carboxy-terminal pentapeptide generated through an export-import processing pathway from the associated BXA0205Phr protein. Deregulation of the Rap activity by either overexpression or lack of the Phr pentapeptide resulted in severe inhibition of sporulation. Five additional Rap-Phr encoding systems were identified on the chromosome of B. anthracis, one of which, BA3790-3791, also affected sporulation initiation. The results suggest that the plasmid-borne Rap-Phr system may provide a selective advantage to the virulence of B. anthracis. PMID:16385039

  2. Functional diversity of voltage-sensing phosphatases in two urodele amphibians.

    Science.gov (United States)

    Mutua, Joshua; Jinno, Yuka; Sakata, Souhei; Okochi, Yoshifumi; Ueno, Shuichi; Tsutsui, Hidekazu; Kawai, Takafumi; Iwao, Yasuhiro; Okamura, Yasushi

    2014-07-16

    Voltage-sensing phosphatases (VSPs) share the molecular architecture of the voltage sensor domain (VSD) with voltage-gated ion channels and the phosphoinositide phosphatase region with the phosphatase and tensin homolog (PTEN), respectively. VSPs enzymatic activities are regulated by the motions of VSD upon depolarization. The physiological role of these proteins has remained elusive, and insights may be gained by investigating biological variations in different animal species. Urodele amphibians are vertebrates with potent activities of regeneration and also show diverse mechanisms of polyspermy prevention. We cloned cDNAs of VSPs from the testes of two urodeles; Hynobius nebulosus and Cynops pyrrhogaster, and compared their expression and voltage-dependent activation. Their molecular architecture is highly conserved in both Hynobius VSP (Hn-VSP) and Cynops VSP (Cp-VSP), including the positively-charged arginine residues in the S4 segment of the VSD and the enzymatic active site for substrate binding, yet the C-terminal C2 domain of Hn-VSP is significantly shorter than that of Cp-VSP and other VSP orthologs. RT-PCR analysis showed that gene expression pattern was distinct between two VSPs. The voltage sensor motions and voltage-dependent phosphatase activities were investigated electrophysiologically by expression in Xenopus oocytes. Both VSPs showed "sensing" currents, indicating that their voltage sensor domains are functional. The phosphatase activity of Cp-VSP was found to be voltage dependent, as shown by its ability to regulate the conductance of coexpressed GIRK2 channels, but Hn-VSP lacked such phosphatase activity due to the truncation of its C2 domain. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  3. Campath, calcineurin inhibitor reduction and chronic allograft nephropathy (3C) study: background, rationale, and study protocol

    Science.gov (United States)

    2013-01-01

    Background Kidney transplantation is the best treatment for patients with end-stage renal failure, but uncertainty remains about the best immunosuppression strategy. Long-term graft survival has not improved substantially, and one possible explanation is calcineurin inhibitor (CNI) nephrotoxicity. CNI exposure could be minimized by using more potent induction therapy or alternative maintenance therapy to remove CNIs completely. However, the safety and efficacy of such strategies are unknown. Methods/Design The Campath, Calcineurin inhibitor reduction and Chronic allograft nephropathy (3C) Study is a multicentre, open-label, randomized controlled trial with 852 participants which is addressing two important questions in kidney transplantation. The first question is whether a Campath (alemtuzumab)-based induction therapy strategy is superior to basiliximab-based therapy, and the second is whether, from 6 months after transplantation, a sirolimus-based maintenance therapy strategy is superior to tacrolimus-based therapy. Recruitment is complete, and follow-up will continue for around 5 years post-transplant. The primary endpoint for the induction therapy comparison is biopsy-proven acute rejection by 6 months, and the primary endpoint for the maintenance therapy comparison is change in estimated glomerular filtration rate from baseline to 2 years after transplantation. The study is sponsored by the University of Oxford and endorsed by the British Transplantation Society, and 18 centers for adult kidney transplant are participating. Discussion Late graft failure is a major issue for kidney-transplant recipients. If our hypothesis that minimizing CNI exposure with Campath-based induction therapy and/or an elective conversion to sirolimus-based maintenance therapy can improve long-term graft function and survival is correct, then patients should experience better graft function for longer. A positive outcome could change clinical practice in kidney transplantation. Trial

  4. Hematopoietic cell phosphatase is recruited to CD22 following B cell antigen receptor ligation

    NARCIS (Netherlands)

    Lankester, A. C.; van Schijndel, G. M.; van Lier, R. A.

    1995-01-01

    Hematopoietic cell phosphatase is a nonreceptor protein tyrosine phosphatase that is preferentially expressed in hematopoietic cell lineages. Motheaten mice, which are devoid of (functional) hematopoietic cell phosphatase, have severe disturbances in the regulation of B cell activation and

  5. GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Javier Duran

    Full Text Available Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis. Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results

  6. Phylogenetic characterization of phosphatase-expressing bacterial communities in Baltic Sea sediments

    NARCIS (Netherlands)

    Steenbergh, Anne; Bodelier, Paul; Hoogveld, H.L.; Slomp, C.P; Laanbroek, H.J.

    2015-01-01

    Phosphate release from sediments hampers the remediation of aquatic systems from a eutrophic state. Microbial phosphatases in sediments release phosphorus during organic matter degradation. Despite the important role of phosphatase-expressing bacteria, the identity of these bacteria in sediments is

  7. Yeast Acid Phosphatases and Phytases: Production, Characterization and Commercial Prospects

    Science.gov (United States)

    Kaur, Parvinder; Satyanarayana, T.

    The element phosphorus is critical to all life forms as it forms the basic component of nucleic acids and ATP and has a number of indispensable biochemical roles. Unlike C or N, the biogeochemical cycling of phosphorus is very slow, and thus making it the growth-limiting element in most soils and aquatic systems. Phosphohydrolases (e.g. acid phosphatases and phytases) are enzymes that break the C-O-P ester bonds and provide available inorganic phosphorus from various inassimilable organic forms of phosphorus like phytates. These enzymes are of significant value in effectively combating phosphorus pollution. Although phytases and acid phosphatases are produced by various plants, animals and micro organisms, microbial sources are more promising for the production on a commercial scale. Yeasts being the simplest eukaryotes are ideal candidates for phytase and phos-phatase research due to their mostly non-pathogenic and GRAS status. They have not, however, been utilized to their full potential. This chapter focuses attention on the present state of knowledge on the production, characterization and potential commercial prospects of yeast phytases and acid phosphatases.

  8. Kaempferol Promotes Transplant Tolerance by Sustaining CD4+FoxP3+ Regulatory T Cells in the Presence of Calcineurin Inhibitor.

    Science.gov (United States)

    Zeng, Y Q; Liu, X S; Wu, S; Zou, C; Xie, Q; Xu, S M; Jin, X W; Li, W; Zhou, A; Dai, Z

    2015-07-01

    Calcineurin inhibitor cyclosporine is widely used as an immunosuppressant in clinic. However, mounting evidence has shown that cyclosporine hinders tolerance induction by dampening Tregs. Therefore, it is of paramount importance to overcome this pitfall. Kaempferol was reported to inhibit DC function. Here, we found that kaempferol delayed islet allograft rejection. Combination of kaempferol and low-dose, but not high-dose, of cyclosporine induced allograft tolerance in majority of recipient mice. Although kaempferol plus either dose of cyclosporine largely abrogated proliferation of graft-infiltrating T cells and their CTL activity, both proliferation and CTL activity in mice treated with kaempferol plus low-dose, but not high-dose, cyclosporine reemerged rapidly upon treatment withdrawal. Kaempferol increased CD4+FoxP3+ Tregs both in transplanted mice and in vitro, likely by suppressing DC maturation and their IL-6 expression. Reduction in Tregs by low dose of cyclosporine was reversed by kaempferol. Kaempferol-induced Tregs exhibited both allospecific and non-allospecific suppression. Administering IL-6 abrogated allograft tolerance induced by kaempferol and cyclosporine via diminishing CD4+FoxP3+ Tregs. Thus, for the first time, we demonstrated that kaempferol promotes transplant tolerance in the presence of low dose of cyclosporine, which allows for sufficient Treg generation while minimizing side effects, resulting in much-needed synergy between kaempferol and cyclosporine. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  9. Crystallization of a newly discovered histidine acid phosphatase from Francisella tularensis

    Energy Technology Data Exchange (ETDEWEB)

    Felts, Richard L. [Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States); Reilly, Thomas J. [Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri 65212 (United States); Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri 65212 (United States); Calcutt, Michael J. [Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri 65212 (United States); Tanner, John J., E-mail: tannerjj@missouri.edu [Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States); Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2006-01-01

    A histidine acid phosphatase from the CDC Category A pathogen F. tularensis has been crystallized in space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 61.96, c = 210.78 Å. A 1.75 Å resolution data set was collected at Advanced Light Source beamline 4.2.2. Francisella tularensis is a highly infectious bacterial pathogen that is considered by the Centers for Disease Control and Prevention to be a potential bioterrorism weapon. Here, the crystallization of a 37.2 kDa phosphatase encoded by the genome of F. tularensis subsp. holarctica live vaccine strain is reported. This enzyme shares 41% amino-acid sequence identity with Legionella pneumophila major acid phosphatase and contains the RHGXRXP motif that is characteristic of the histidine acid phosphatase family. Large diffraction-quality crystals were grown in the presence of Tacsimate, HEPES and PEG 3350. The crystals belong to space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 61.96, c = 210.78 Å. The asymmetric unit is predicted to contain one protein molecule, with a solvent content of 53%. A 1.75 Å resolution native data set was recorded at beamline 4.2.2 of the Lawrence Berkeley National Laboratory Advanced Light Source. Molecular-replacement trials using the human prostatic acid phosphatase structure as the search model (28% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of F. tularensis histidine acid phosphatase will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  10. Crystallization of a newly discovered histidine acid phosphatase from Francisella tularensis

    International Nuclear Information System (INIS)

    Felts, Richard L.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2005-01-01

    A histidine acid phosphatase from the CDC Category A pathogen F. tularensis has been crystallized in space group P4 1 2 1 2, with unit-cell parameters a = 61.96, c = 210.78 Å. A 1.75 Å resolution data set was collected at Advanced Light Source beamline 4.2.2. Francisella tularensis is a highly infectious bacterial pathogen that is considered by the Centers for Disease Control and Prevention to be a potential bioterrorism weapon. Here, the crystallization of a 37.2 kDa phosphatase encoded by the genome of F. tularensis subsp. holarctica live vaccine strain is reported. This enzyme shares 41% amino-acid sequence identity with Legionella pneumophila major acid phosphatase and contains the RHGXRXP motif that is characteristic of the histidine acid phosphatase family. Large diffraction-quality crystals were grown in the presence of Tacsimate, HEPES and PEG 3350. The crystals belong to space group P4 1 2 1 2, with unit-cell parameters a = 61.96, c = 210.78 Å. The asymmetric unit is predicted to contain one protein molecule, with a solvent content of 53%. A 1.75 Å resolution native data set was recorded at beamline 4.2.2 of the Lawrence Berkeley National Laboratory Advanced Light Source. Molecular-replacement trials using the human prostatic acid phosphatase structure as the search model (28% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of F. tularensis histidine acid phosphatase will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative

  11. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium

    Directory of Open Access Journals (Sweden)

    Vasavada Abhay

    1993-01-01

    Full Text Available The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium. In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium. From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  12. Research on Phosphatases of Belladona Leaves and Their Purification (Part 1

    Directory of Open Access Journals (Sweden)

    M. Khorsand

    1956-12-01

    Full Text Available Belladona leaves as well as all other studied leaves contains two distinct phosphatase fractions belonging respectively to types II and IIIi the major parts of these enzymes is extraetible by water. It was not possible to extract the non soluble fraction which is solidly retained by the cellular constituents. Phosphatase II does not differ from other phosphatnses of the same type. Whereas phosphatase III is distinetely different from enzymes of the same type of vegetal or animal origins. It is activated by bivalent metallic ions which are specific activators of the alkaline phcspbatnses: Mg-Zn-Ni and Co.

  13. ELEVATE: an innovative study design to assess the efficacy, safety, and evolution of cardiovascular parameters in de novo kidney transplant recipients after early conversion from a calcineurin inhibitor to everolimus

    Directory of Open Access Journals (Sweden)

    van der Giet M

    2014-03-01

    Full Text Available Markus van der Giet,1 Josep M Cruzado,2 Johan W de Fijter,3 Hallvard Holdaas,4 Zailong Wang,5 Antonio Speziale,6 Guido Junge61Department of Nephrology, Campus Benjamin Franklin, Charite'-Universitätsmedizin, Berlin, Germany; 2Department of Nephrology, University Hospital of Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; 3Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; 4Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; 5Biometrics and Statistical Science, Novartis Pharmaceuticals, East Hanover, NJ, USA; 6Research and Development, Novartis Pharma AG, Basel, SwitzerlandAbstract: Progressive decline in allograft function and cardiovascular mortality after kidney transplantation remain major clinical challenges that can potentially be addressed by the mammalian target of rapamycin (mTOR inhibitors, everolimus and sirolimus. mTOR inhibitors maintain immunosuppressive efficacy after minimization of calcineurin inhibitor (CNI therapy and can achieve significant long-term improvements in renal function. Recently, data have accumulated that suggest mTOR inhibitors may offer cardioprotective effects. In animal models, inhibition of mTOR leads to regression of cardiac hypertrophy, and the limited data consistently point to a remodeling benefit following heart transplantation. Experimentally, mTOR inhibitors restrict atherogenesis, confirmed clinically by intravascular ultrasound data demonstrating lower rates of transplant vasculopathy in heart transplant recipients on everolimus. Lastly, mTOR inhibitors appear to ameliorate arterial stiffness, a known risk factor for post-transplant cardiovascular events, but data remain sparse. The ELEVATE study will examine the renal effect of early conversion from CNI therapy to everolimus after kidney transplantation. Key secondary endpoints include the change in left ventricular mass index, the first time

  14. A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism.

    Directory of Open Access Journals (Sweden)

    Bruno L Bozaquel-Morais

    Full Text Available In virtually every cell, neutral lipids are stored in cytoplasmic structures called lipid droplets (LDs and also referred to as lipid bodies or lipid particles. We developed a rapid high-throughput assay based on the recovery of quenched BODIPY-fluorescence that allows to quantify lipid droplets. The method was validated by monitoring lipid droplet turnover during growth of a yeast culture and by screening a group of strains deleted in genes known to be involved in lipid metabolism. In both tests, the fluorimetric assay showed high sensitivity and good agreement with previously reported data using microscopy. We used this method for high-throughput identification of protein phosphatases involved in lipid droplet metabolism. From 65 yeast knockout strains encoding protein phosphatases and its regulatory subunits, 13 strains revealed to have abnormal levels of lipid droplets, 10 of them having high lipid droplet content. Strains deleted for type I protein phosphatases and related regulators (ppz2, gac1, bni4, type 2A phosphatase and its related regulator (pph21 and sap185, type 2C protein phosphatases (ptc1, ptc4, ptc7 and dual phosphatases (pps1, msg5 were catalogued as high-lipid droplet content strains. Only reg1, a targeting subunit of the type 1 phosphatase Glc7p, and members of the nutrient-sensitive TOR pathway (sit4 and the regulatory subunit sap190 were catalogued as low-lipid droplet content strains, which were studied further. We show that Snf1, the homologue of the mammalian AMP-activated kinase, is constitutively phosphorylated (hyperactive in sit4 and sap190 strains leading to a reduction of acetyl-CoA carboxylase activity. In conclusion, our fast and highly sensitive method permitted us to catalogue protein phosphatases involved in the regulation of LD metabolism and present evidence indicating that the TOR pathway and the SNF1/AMPK pathway are connected through the Sit4p-Sap190p pair in the control of lipid droplet biogenesis.

  15. IL-12 Inhibits Lipopolysaccharide Stimulated Osteoclastogenesis in Mice

    Directory of Open Access Journals (Sweden)

    Masako Yoshimatsu

    2015-01-01

    Full Text Available Lipopolysaccharide (LPS is related to osteoclastogenesis in osteolytic diseases. Interleukin- (IL- 12 is an inflammatory cytokine that plays a critical role in host defense. In this study, we investigated the effects of IL-12 on LPS-induced osteoclastogenesis. LPS was administered with or without IL-12 into the supracalvariae of mice, and alterations in the calvarial suture were evaluated histochemically. The number of osteoclasts in the calvarial suture and the mRNA level of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, were lower in mice administered LPS with IL-12 than in mice administered LPS alone. The serum level of tartrate-resistant acid phosphatase 5b (TRACP 5b, a bone resorption marker, was also lower in mice administered LPS with IL-12 than in mice administered LPS alone. These results revealed that IL-12 might inhibit LPS-induced osteoclastogenesis and bone resorption. In TdT-mediated dUTP-biotin nick end-labeling (TUNEL assays, apoptotic changes in cells were recognized in the calvarial suture in mice administered LPS with IL-12. Furthermore, the mRNA levels of both Fas and FasL were increased in mice administered LPS with IL-12. Taken together, the findings demonstrate that LPS-induced osteoclastogenesis is inhibited by IL-12 and that this might arise through apoptotic changes in osteoclastogenesis-related cells induced by Fas/FasL interactions.

  16. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    Science.gov (United States)

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  17. The protein histidine phosphatase LHPP is a tumour suppressor.

    Science.gov (United States)

    Hindupur, Sravanth K; Colombi, Marco; Fuhs, Stephen R; Matter, Matthias S; Guri, Yakir; Adam, Kevin; Cornu, Marion; Piscuoglio, Salvatore; Ng, Charlotte K Y; Betz, Charles; Liko, Dritan; Quagliata, Luca; Moes, Suzette; Jenoe, Paul; Terracciano, Luigi M; Heim, Markus H; Hunter, Tony; Hall, Michael N

    2018-03-29

    Histidine phosphorylation, the so-called hidden phosphoproteome, is a poorly characterized post-translational modification of proteins. Here we describe a role of histidine phosphorylation in tumorigenesis. Proteomic analysis of 12 tumours from an mTOR-driven hepatocellular carcinoma mouse model revealed that NME1 and NME2, the only known mammalian histidine kinases, were upregulated. Conversely, expression of the putative histidine phosphatase LHPP was downregulated specifically in the tumours. We demonstrate that LHPP is indeed a protein histidine phosphatase. Consistent with these observations, global histidine phosphorylation was significantly upregulated in the liver tumours. Sustained, hepatic expression of LHPP in the hepatocellular carcinoma mouse model reduced tumour burden and prevented the loss of liver function. Finally, in patients with hepatocellular carcinoma, low expression of LHPP correlated with increased tumour severity and reduced overall survival. Thus, LHPP is a protein histidine phosphatase and tumour suppressor, suggesting that deregulated histidine phosphorylation is oncogenic.

  18. Protein phosphatases decrease their activity during capacitation: a new requirement for this event.

    Directory of Open Access Journals (Sweden)

    Janetti R Signorelli

    Full Text Available There are few reports on the role of protein phosphatases during capacitation. Here, we report on the role of PP2B, PP1, and PP2A during human sperm capacitation. Motile sperm were resuspended in non-capacitating medium (NCM, Tyrode's medium, albumin- and bicarbonate-free or in reconstituted medium (RCM, NCM plus 2.6% albumin/25 mM bicarbonate. The presence of the phosphatases was evaluated by western blotting and the subcellular localization by indirect immunofluorescence. The function of these phosphatases was analyzed by incubating the sperm with specific inhibitors: okadaic acid, I2, endothall, and deltamethrin. Different aliquots were incubated in the following media: 1 NCM; 2 NCM plus inhibitors; 3 RCM; and 4 RCM plus inhibitors. The percent capacitated sperm and phosphatase activities were evaluated using the chlortetracycline assay and a phosphatase assay kit, respectively. The results confirm the presence of PP2B and PP1 in human sperm. We also report the presence of PP2A, specifically, the catalytic subunit and the regulatory subunits PR65 and B. PP2B and PP2A were present in the tail, neck, and postacrosomal region, and PP1 was present in the postacrosomal region, neck, middle, and principal piece of human sperm. Treatment with phosphatase inhibitors rapidly (≤1 min increased the percent of sperm depicting the pattern B, reaching a maximum of ∼40% that was maintained throughout incubation; after 3 h, the percent of capacitated sperm was similar to that of the control. The enzymatic activity of the phosphatases decreased during capacitation without changes in their expression. The pattern of phosphorylation on threonine residues showed a sharp increase upon treatment with the inhibitors. In conclusion, human sperm express PP1, PP2B, and PP2A, and the activity of these phosphatases decreases during capacitation. This decline in phosphatase activities and the subsequent increase in threonine phosphorylation may be an important

  19. ATP catabolism by tissue nonspecific alkaline phosphatase contributes to development of ARDS in influenza-infected mice.

    Science.gov (United States)

    Woods, Parker S; Doolittle, Lauren M; Hickman-Davis, Judy M; Davis, Ian C

    2018-01-01

    Influenza A viruses are highly contagious respiratory pathogens that are responsible for significant morbidity and mortality worldwide on an annual basis. We have shown previously that influenza infection of mice leads to increased ATP and adenosine accumulation in the airway lumen. Moreover, we demonstrated that A 1 -adenosine receptor activation contributes significantly to influenza-induced acute respiratory distress syndrome (ARDS). However, we found that development of ARDS in influenza-infected mice does not require catabolism of ATP to adenosine by ecto-5'-nucleotidase (CD73). Hence, we hypothesized that increased adenosine generation in response to infection is mediated by tissue nonspecific alkaline phosphatase (TNAP), which is a low-affinity, high-capacity enzyme that catabolizes nucleotides in a nonspecific manner. In the current study, we found that whole lung and BALF TNAP expression and alkaline phosphatase enzymatic activity increased as early as 2 days postinfection (dpi) of C57BL/6 mice with 10,000 pfu/mouse of influenza A/WSN/33 (H1N1). Treatment at 2 and 4 dpi with a highly specific quinolinyl-benzenesulfonamide TNAP inhibitor (TNAPi) significantly reduced whole lung alkaline phosphatase activity at 6 dpi but did not alter TNAP gene or protein expression. TNAPi treatment attenuated hypoxemia, lung dysfunction, histopathology, and pulmonary edema at 6 dpi without impacting viral replication or BALF adenosine. Treatment also improved epithelial barrier function and attenuated cellular and humoral immune responses to influenza infection. These data indicate that TNAP inhibition can attenuate influenza-induced ARDS by reducing inflammation and fluid accumulation within the lung. They also further emphasize the importance of adenosine generation for development of ARDS in influenza-infected mice.

  20. Identification and characterization of a pyridoxal 5'-phosphate phosphatase in the silkworm (Bombyx mori).

    Science.gov (United States)

    Huang, ShuoHao; Han, CaiYun; Ma, ZhenQiao; Zhou, Jie; Zhang, JianYun; Huang, LongQuan

    2017-03-01

    Vitamin B 6 comprises six interconvertible pyridine compounds, among which pyridoxal 5'-phosphate (PLP) is a coenzyme for over 140 enzymes. PLP is also a very reactive aldehyde. The most well established mechanism for maintaining low levels of free PLP is its dephosphorylation by phosphatases. A human PLP-specific phosphatase has been identified and characterized. However, very little is known about the phosphatase in other living organisms. In this study, a cDNA clone of putative PLP phosphatase was identified from B. mori and characterized. The cDNA encodes a polypeptide of 343 amino acid residues, and the recombinant enzyme purified from E. coli exhibited properties similar to that of human PLP phosphatase. B. mori has a single copy of the PLPP gene, which is located on 11th chromosome, spans a 5.7kb region and contains five exons and four introns. PLP phosphatase transcript was detected in every larva tissue except hemolymph, and was most highly represented in Malpighian tube. We further down-regulated the gene expression of the PLP phosphatase in 5th instar larvae with the RNA interference. However, no significant changes in the gene expression of PLP biosynthetic enzymes and composition of B 6 vitamers were detected as compared with the control. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Mutational analyses of the signals involved in the subcellular location of DSCR1

    Directory of Open Access Journals (Sweden)

    Henrique-Silva Flávio

    2002-09-01

    Full Text Available Abstract Background Down syndrome is the most frequent genetic disorder in humans. Rare cases involving partial trisomy of chromosome 21 allowed a small chromosomal region common to all carriers, called Down Syndrome Critical Region (DSCR, to be determined. The DSCR1 gene was identified in this region and is expressed preferentially in the brain, heart and skeletal muscle. Recent studies have shown that DSCR1 belongs to a family of proteins that binds and inhibits calcineurin, a serine-threonine phosphatase. The work reported on herein consisted of a study of the subcellular location of DSCR1 and DSCR1-mutated forms by fusion with a green fluorescent protein, using various cell lines, including human. Results The protein's location was preferentially nuclear, independently of the isoform, cell line and insertion in the GFP's N- or C-terminal. A segment in the C-terminal, which is important in the location of the protein, was identified by deletion. On the other hand, site-directed mutational analyses have indicated the involvement of some serine and threonine residues in this event. Conclusion In this paper, we discuss the identification of amino acids which can be important for subcellular location of DSCR1. The involvement of residues that are prone to phosphorylation suggests that the location and function of DSCR1 may be regulated by kinases and/or phosphatases.

  2. Global phosphotyrosine proteomics identifies PKCδ as a marker of responsiveness to Src inhibition in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Eliot T McKinley

    Full Text Available Sensitive and specific biomarkers of protein kinase inhibition can be leveraged to accelerate drug development studies in oncology by associating early molecular responses with target inhibition. In this study, we utilized unbiased shotgun phosphotyrosine (pY proteomics to discover novel biomarkers of response to dasatinib, a small molecule Src-selective inhibitor, in preclinical models of colorectal cancer (CRC. We performed unbiased mass spectrometry shotgun pY proteomics to reveal the pY proteome of cultured HCT-116 colonic carcinoma cells, and then extended this analysis to HCT-116 xenograft tumors to identify pY biomarkers of dasatinib-responsiveness in vivo. Major dasatinib-responsive pY sites in xenograft tumors included sites on delta-type protein kinase C (PKCδ, CUB-domain-containing protein 1 (CDCP1, Type-II SH2-domain-containing inositol 5-phosphatase (SHIP2, and receptor protein-tyrosine phosphatase alpha (RPTPα. The pY313 site PKCδ was further supported as a relevant biomarker of dasatinib-mediated Src inhibition in HCT-116 xenografts by immunohistochemistry and immunoblotting with a phosphospecific antibody. Reduction of PKCδ pY313 was further correlated with dasatinib-mediated inhibition of Src and diminished growth as spheroids of a panel of human CRC cell lines. These studies reveal PKCδ pY313 as a promising readout of Src inhibition in CRC and potentially other solid tumors and may reflect responsiveness to dasatinib in a subset of colorectal cancers.

  3. Inhibition of Protein Tyrosine Phosphatase 1B by Aurintricarboxylic Acid and Methylenedisalicylic Acid: Polymer versus Monomer

    International Nuclear Information System (INIS)

    Shrestha, Suja; Lee, Keun Hyeung; Cho, Hyeong Jin

    2004-01-01

    In this study, we examined whether the in vitro inhibitory activity of ATA against PTPases resides in the monomer or high molecular weight components. Not to mention commercial ATA, the ATA sample synthesized according to the method previously reported to produce monomer was also found to contain polymeric materials as described below. Therefore, monomeric component of ATA was prepared absolutely free of polymer. Also synthesized in a pure form was methylenedisalicylic acid (MDSA), one of the low molecular weight components formed in the conventional preparation of ATA. Commercial MDSA was also proved to contain polymeric substances. The inhibitory potency of ATA and MDSA synthesized in a polymer-free form was evaluated against human protein tyrosine phosphatase 1B (PTP1B). Commercial ATA, however, contains significant amounts of polymeric materials schematically represented as. In general, ATA is prepared by condensation of salicylic acid with formaldehyde and the branching reaction results in the formation of polymers of molecular weights up to several thousands Dalton

  4. Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases.

    Science.gov (United States)

    Battistone, M A; Da Ros, V G; Salicioni, A M; Navarrete, F A; Krapf, D; Visconti, P E; Cuasnicú, P S

    2013-09-01

    In all mammalian species studied so far, sperm capacitation correlates with an increase in protein tyrosine (Tyr) phosphorylation mediated by a bicarbonate-dependent cAMP/protein kinase A (PKA) pathway. Recent studies in mice revealed, however, that a Src family kinase (SFK)-induced inactivation of serine/threonine (Ser/Thr) phosphatases is also involved in the signaling pathways leading to Tyr phosphorylation. In view of these observations and with the aim of getting a better understanding of the signaling pathways involved in human sperm capacitation, in the present work we investigated the involvement of both the cAMP/PKA and SFK/phosphatase pathways in relation to the capacitation state of the cells. For this purpose, different signaling events and sperm functional parameters were analyzed as a function of capacitation time. Results revealed a very early bicarbonate-dependent activation of PKA indicated by the rapid (1 min) increase in both phospho-PKA substrates and cAMP levels (P < 0.05). However, a complete pattern of Tyr phosphorylation was detected only after 6-h incubation at which time sperm exhibited the ability to undergo the acrosome reaction (AR) and to penetrate zona-free hamster oocytes. Sperm capacitated in the presence of the SFK inhibitor SKI606 showed a decrease in both PKA substrate and Tyr phosphorylation levels, which was overcome by exposure of sperm to the Ser/Thr phosphatase inhibitor okadaic acid (OA). However, OA was unable to induce phosphorylation when sperm were incubated under PKA-inhibitory conditions (i.e. in the absence of bicarbonate or in the presence of PKA inhibitor). Moreover, the increase in PKA activity by exposure to a cAMP analog and a phosphodiesterase inhibitor did not overcome the inhibition produced by SKI606. Whereas the presence of SKI606 during capacitation produced a negative effect (P < 0.05) on sperm motility, progesterone-induced AR and fertilizing ability, none of these inhibitions were observed when sperm

  5. Combining affinity proteomics and network context to identify new phosphatase substrates and adapters in growth pathways.

    Directory of Open Access Journals (Sweden)

    Francesca eSacco

    2014-05-01

    Full Text Available Protein phosphorylation homoeostasis is tightly controlled and pathological conditions are caused by subtle alterations of the cell phosphorylation profile. Altered levels of kinase activities have already been associated to specific diseases. Less is known about the impact of phosphatases, the enzymes that down-regulate phosphorylation by removing the phosphate groups. This is partly due to our poor understanding of the phosphatase-substrate network. Much of phosphatase substrate specificity is not based on intrinsic enzyme specificity with the catalytic pocket recognizing the sequence/structure context of the phosphorylated residue. In addition many phosphatase catalytic subunits do not form a stable complex with their substrates. This makes the inference and validation of phosphatase substrates a non-trivial task. Here, we present a novel approach that builds on the observation that much of phosphatase substrate selection is based on the network of physical interactions linking the phosphatase to the substrate. We first used affinity proteomics coupled to quantitative mass spectrometry to saturate the interactome of eight phosphatases whose down regulations was shown to affect the activation of the RAS-PI#K pathway. By integrating information from functional siRNA with protein interaction information, we develop a strategy that aims at inferring phosphatase physiological substrates. Graph analysis is used to identify protein scaffolds that may link the catalytic subunits to their substrates. By this approach we rediscover several previously described phosphatase substrate interactions and characterize two new protein scaffolds that promote the dephosphorylation of PTPN11 and ERK by DUSP18 and DUSP26 respectively.

  6. [Spectroscopic analysis of the interaction of ethanol and acid phosphatase from wheat germ].

    Science.gov (United States)

    Xu, Dong-mei; Liu, Guang-shen; Wang, Li-ming; Liu, Wei-ping

    2004-11-01

    Conformational and activity changes of acid phosphatase from wheat germ in ethanol solutions of different concentrations were measured by fluorescence spectra and differential UV-absorption spectra. The effect of ethanol on kinetics of acid phosphatase was determined by using the double reciprocal plot. The results indicate the ethanol has a significant effect on the activity and conformation of acid phosphatase. The activity of acid phosphatase decreased linearly with increasing the concentration of ethanol. Differential UV-absorption spectra of the enzyme denatured in ethanol solutions showed two positive peaks at 213 and 234 nm, respectively. The peaks on the differential UV-absorption spectra suggested that the conformation of enzyme molecule changed from orderly structure to out-of-order crispation. The fluorescence emission peak intensity of the enzyme gradually strengthened with increasing ethanol concentration, which is in concordance with the conformational change of the microenvironments of tyrosine and tryptophan residues. The results indicate that the expression of the enzyme activity correlates with the stability and integrity of the enzyme conformation to a great degree. Ethanol is uncompetitive inhibitor of acid phosphatase.

  7. Alkaline phosphatase activity in gingival crevicular fluid during canine retraction.

    Science.gov (United States)

    Batra, P; Kharbanda, Op; Duggal, R; Singh, N; Parkash, H

    2006-02-01

    The aim of the study was to investigate alkaline phosphatase activity in the gingival crevicular fluid (GCF) during orthodontic tooth movement in humans. Postgraduate orthodontic clinic. Ten female patients requiring all first premolar extractions were selected and treated with standard edgewise mechanotherapy. Canine retraction was done using 100 g sentalloy springs. Maxillary canine on one side acted as experimental site while the contralateral canine acted as control. Gingival crevicular fluid was collected from mesial and distal of canines before initiation of canine retraction (baseline), immediately after initiation of retraction, and on 1st, 7th, 14th and 21st day and the alkaline phosphatase activity was estimated. The results show significant (p < 0.05) changes in alkaline phosphatase activity on the 7th, 14th and 21st day on both mesial and distal aspects of the compared experimental and control sides. The peak in enzyme activity occurred on the 14th day of initiation of retraction followed by a significant fall in activity especially on the mesial aspect. The study showed that alkaline phosphatase activity could be successfully estimated in the GCF using calorimetric estimation assay kits. The enzyme activity showed variation according to the amount of tooth movement.

  8. Interaction of Myosin Phosphatase Target Subunit (MYPT1) with Myosin Phosphatase-RhoA Interacting Protein (MRIP): A Role of Glutamic Acids in the Interaction.

    Science.gov (United States)

    Lee, Eunhee; Stafford, Walter F

    2015-01-01

    Scaffold proteins bind to and functionally link protein members of signaling pathways. Interaction of the scaffold proteins, myosin phosphatase target subunit (MYPT1) and myosin phosphatase-RhoA interacting protein (MRIP), causes co-localization of myosin phosphatase and RhoA to actomyosin. To examine biophysical properties of interaction of MYPT1 with MRIP, we employed analytical ultracentrifugation and surface plasmon resonance. In regard to MRIP, its residues 724-837 are sufficient for the MYPT1/MRIP interaction. Moreover, MRIP binds to MYPT1 as either a monomer or a dimer. With respect to MYPT1, its leucine repeat region, LR (residues 991-1030) is sufficient to account for the MYPT1/MRIP interaction. Furthermore, point mutations that replace glutamic acids 998-1000 within LR reduced the binding affinity toward MRIP. This suggests that the glutamic acids of MYPT1 play an important role in the interaction.

  9. 200 kDa and 160 kDa neurofilament protein phosphatase resistance following in vivo aluminum chloride exposure.

    Science.gov (United States)

    Strong, M J; Jakowec, D M

    1994-01-01

    We have used time-course dephosphorylation experiments and two dimensional isoelectric focusing to assess the phosphorylation state of neurofilament (NF) proteins following the intracisternal inoculation of AlCl3. Littermates of New Zealand white rabbits, age 5-6 weeks, were inoculated with either 1000, 750, 500, 250 or 100 micrograms AlCl3 in 0.9% NaCl or 0.9% NaCl alone, killed 48 hours later and the NF-enriched cytoskeletal fraction isolated from the spinal cord. Neurofilamentous inclusions did not occur following inoculums of 100 or 250 micrograms AlCl3, but thereafter developed in increasing quantities in a dosage-dependent manner. Incubation of the NF-enriched fraction with E. Coli. alkaline phosphatase (enzyme: substrate 1:50) induced a replacement of the highly phosphorylated 200 kDa isoform of NFH with a more poorly phosphorylated 170 kDa isoform, confirmed by immunoblot analysis. This reaction was complete within 20 minutes with NF derived from NaCl, 100 or 250 micrograms AlCl3 inoculated rabbits and within 30 minutes for 500 micrograms AlCl3 inoculums. However, residual highly phosphorylated NFH isoforms persisted at 60 minutes for 750 micrograms inoculums and 90 minutes for that derived from 1000 micrograms AlCl3 inoculums. A similar inhibition of phosphatase activity was observed for NFM. Following two dimensional electrophoresis of the NF-enriched isolate, no alteration in the net phosphorylation state of individual NF subunit proteins was observed--regardless of the inoculum. These results demonstrate a dose-dependent induction of neurofilamentous inclusions in spinal motor neurons following intracisternal AlCl3 inoculation accompanied by increasing phosphatase resistance without a demonstrable alteration in NF net phosphorylation state.

  10. The effect of water and salt stresses on the phosphorus content and acid phosphatase activity in oilseed rape

    Directory of Open Access Journals (Sweden)

    Stanisław Flasiński

    2014-01-01

    Full Text Available Oilseed rape plants responded to water and salt stresses (-0.5 MPa, PEG 6000 and NaCI by reduction of the fresh and dry weights of shoots and roots. When PEG was used, the ratio of dry weights of roots:shoots surpassed that of controls. The leaf protein content increased considerably. The phosphorus content decreased only in the roots, most significantly after three days of stress. Immediately after the stresses were induced, an increase in the acid phosphatase (AP activity was noted. Water and salt stresses caused four- and two-fold increases in AP activity in leaves, respectively. Changes in the enzyme activity were negligible in stems and roots. There are nine forms of AP in young leaves of oilseed rape. In the stressed plants, from No. 5 revealed lower activity and forms Nos 8 and 9, higher activities than in the control. The increase in AP activity was directly accompanied by the decrease in the water potential of the tissues. Oilseed rape is considerably less sensitive to salt stress than to water stress, which is manifested as the lower inhibition of plant growth and also by a smaller increase in acid phosphatase activity.

  11. An acid phosphatase in the plasma membranes of human astrocytoma showing marked specificity toward phosphotyrosine protein.

    OpenAIRE

    Leis, J F; Kaplan, N O

    1982-01-01

    The plasma membrane from the human tumor astrocytoma contains an active acid phosphatase activity based on hydrolysis of p-nitrophenyl phosphate. Other acid phosphatase substrates--beta-glycerophosphate, O-phosphorylcholine, and 5'-AMP--are not hydrolyzed significantly. The phosphatase activity is tartrate insensitive and is stimulated by Triton X-100 and EDTA. Of the three known phosphoamino acids, only free O-phosphotyrosine is hydrolyzed by the membrane phosphatase activity. Other acid pho...

  12. Asperentin B, a New Inhibitor of the Protein Tyrosine Phosphatase 1B.

    Science.gov (United States)

    Wiese, Jutta; Aldemir, Hülya; Schmaljohann, Rolf; Gulder, Tobias A M; Imhoff, Johannes F

    2017-06-21

    In the frame of studies on secondary metabolites produced by fungi from deep-sea environments we have investigated inhibitors of enzymes playing key roles in signaling cascades of biochemical pathways relevant for the treatment of diseases. Here we report on a new inhibitor of the human protein tyrosine phosphatase 1B (PTP1B), a target in the signaling pathway of insulin. A new asperentin analog is produced by an Aspergillus sydowii strain isolated from the sediment of the deep Mediterranean Sea. Asperentin B ( 1 ) contains an additional phenolic hydroxy function at C-6 and exhibits an IC 50 value against PTP1B of 2 μM in vitro, which is six times stronger than the positive control, suramin. Interestingly, asperentin ( 2 ) did not show any inhibition of this enzymatic activity. Asperentin B ( 1 ) is discussed as possible therapeutic agents for type 2 diabetes and sleeping sickness.

  13. A tacrolimus-related immunosuppressant with reduced toxicity.

    Science.gov (United States)

    Dumont, F J; Koprak, S; Staruch, M J; Talento, A; Koo, G; DaSilva, C; Sinclair, P J; Wong, F; Woods, J; Barker, J; Pivnichny, J; Singer, I; Sigal, N H; Williamson, A R; Parsons, W H; Wyvratt, M

    1998-01-15

    Tacrolimus (FK506) has potent immunosuppressive properties reflecting its ability to block the transcription of lymphokine genes in activated T cells through formation of a complex with FK506 binding protein-12, which inhibits the phosphatase activity of calcineurin. The clinical usefulness of tacrolimus is limited, however, by severe adverse effects, including neurotoxicity and nephrotoxicity. Although this toxicity, like immunosuppression, appears mechanistically related to the calcineurin inhibitory action of the drug, a large chemistry effort has been devoted to search for tacrolimus analogs with reduced toxicity but preserved immunosuppressive activity that might have enhanced therapeutic utility. Here, we report on the identification of such an analog, which was synthetically derived from ascomycin (ASC), the C21 ethyl analog of tacrolimus, by introducing an indole group at the C32 position. The profile of biological activity of indolyl-ASC was characterized in rodent models of immunosuppression and toxicity. Indolyl-ASC was found to exhibit an immunosuppressive potency equivalent to that of tacrolimus in T-cell activation in vitro and in murine transplant models, even though indolyl-ASC bound about 10 times less to intracellular FK506 binding protein-12 than tacrolimus or ASC. Further evaluation of indolyl-ASC revealed that it is threefold less potent than tacrolimus in inducing hypothermia, a response that may reflect neurotoxicity, and in causing gastrointestinal transit alterations in mice. Moreover, indolyl-ASC was at least twofold less nephrotoxic than tacrolimus upon 3-week oral treatment in rats. Altogether, these data indicate a modest but definite improvement in the therapeutic index for indolyl-ASC compared with tacrolimus in rodent models.

  14. Role of tyrosine phosphatase inhibitors in cancer treatment with emphasis on SH2 domain-containing tyrosine phosphatases (SHPs)

    NARCIS (Netherlands)

    Irandoust, Mahban; van den Berg, Timo K.; Kaspers, Gertjan J. L.; Cloos, Jacqueline

    2009-01-01

    Protein tyrosine phosphorylation is one of the key mechanisms involved in signal transduction pathways. This modification is regulated by concerted action of protein tyrosine phosphatases and protein tyrosine kinases. Deregulation of either of these key regulators lead to abnormal cellular

  15. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter

    DEFF Research Database (Denmark)

    Joner, E.J.; Jakobsen, I.

    1995-01-01

    Two experiments were set up to investigate the influence of soil organic matter on growth of arbuscular mycorrhizal (AM) hyphae and concurrent changes in soil inorganic P, organic P and phosphatase activity. A sandy loam soil was kept for 14 months under two regimes (outdoor where surplus...... additions. In soil with added clover alkaline phosphatase activity increased due to the presence of mycorrhizal hyphae. We suggest that mycorrhizas may influence the exudation of acid phosphatase by roots. Hyphae of G. invermaium did apparently not excrete extracellular phosphatases, but their presence may...

  16. Redox Regulation of Receptor Protein-Tyrosine Phosphatases

    NARCIS (Netherlands)

    Groen, A.J.

    2006-01-01

    Phosphorylation is of major importance in cell signalling processes like cell migration, cell proliferation and cell differentiation within higher eukaryotic organisms. Therefore, the balance between phosphorylation, mediated by kinases, and dephosphorylation, mediated by phosphatases, must be

  17. Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer's Therapy?

    Science.gov (United States)

    Vieira, Marcelo N N; Lyra E Silva, Natalia M; Ferreira, Sergio T; De Felice, Fernanda G

    2017-01-01

    Despite significant advances in current understanding of mechanisms of pathogenesis in Alzheimer's disease (AD), attempts at drug development based on those discoveries have failed to translate into effective, disease-modifying therapies. AD is a complex and multifactorial disease comprising a range of aberrant cellular/molecular processes taking part in different cell types and brain regions. As a consequence, therapeutics for AD should be able to block or compensate multiple abnormal pathological events. Here, we examine recent evidence that inhibition of protein tyrosine phosphatase 1B (PTP1B) may represent a promising strategy to combat a variety of AD-related detrimental processes. Besides its well described role as a negative regulator of insulin and leptin signaling, PTB1B recently emerged as a modulator of various other processes in the central nervous system (CNS) that are also implicated in AD. These include signaling pathways germane to learning and memory, regulation of synapse dynamics, endoplasmic reticulum (ER) stress and microglia-mediated neuroinflammation. We propose that PTP1B inhibition may represent an attractive and yet unexplored therapeutic approach to correct aberrant signaling pathways linked to AD.

  18. Response to DNA damage: why do we need to focus on protein phosphatases?

    Directory of Open Access Journals (Sweden)

    Midori eShimada

    2013-01-01

    Full Text Available Eukaryotic cells are continuously threatened by unavoidable errors during normal DNA replication or various sources of genotoxic stresses that cause DNA damage or stalled replication. To maintain genomic integrity, cells have developed a coordinated signaling network, known as the DNA damage response (DDR. Following DNA damage, sensor molecules detect the presence of DNA damage and transmit signals to downstream transducer molecules. This in turn conveys the signals to numerous effectors, which initiate a large number of specific biological responses, including transient cell cycle arrest mediated by checkpoints, DNA repair, and apoptosis. It is recently becoming clear that dephosphorylation events are involved in keeping DDR factors inactive during normal cell growth. Moreover, dephosphorylation is required to shut off checkpoint arrest following DNA damage and has been implicated in the activation of the DDR. Spatial and temporal regulation of phosphorylation events is essential for the DDR, and fine-tuning of phosphorylation is partly mediated by protein phosphatases. While the role of kinases in the DDR has been well documented, the complex roles of protein dephosphorylation have only recently begun to be investigated. Therefore, it is important to focus on the role of phosphatases and to determine how their activity is regulated upon DNA damage. In this work, we summarize current knowledge on the involvement of serine/threonine phosphatases, especially the protein phosphatase 1, protein phosphatase 2A, and protein phosphatase Mg2+/Mn2+-dependent families, in the DDR.

  19. Elevated serum tartrate-resistant acid phosphatase isoform 5a levels in metabolic syndrome.

    Science.gov (United States)

    Huang, Yi-Jhih; Huang, Tsai-Wang; Chao, Tsu-Yi; Sun, Yu-Shan; Chen, Shyi-Jou; Chu, Der-Ming; Chen, Wei-Liang; Wu, Li-Wei

    2017-09-29

    Tartrate-resistant phosphatase isoform 5a is expressed in tumor-associated macrophages and is a biomarker of chronic inflammation. Herein, we correlated serum tartrate-resistant phosphatase isoform 5a levels with metabolic syndrome status and made comparisons with traditional markers of inflammation, including c-reactive protein and interleukin-6. One hundred healthy volunteers were randomly selected, and cut-off points for metabolic syndrome related inflammatory biomarkers were determined using receiver operating characteristic curves. Linear and logistic regression models were subsequently used to correlate inflammatory markers with the risk of metabolic syndrome. Twenty-two participants met the criteria for metabolic syndrome, and serum tartrate-resistant phosphatase isoform 5a levels of >5.8 μg/L were associated with metabolic syndrome (c-statistics, 0.730; p = 0.001; 95% confidence interval, 0.618-0.842). In addition, 1 μg/L increases in tartrate-resistant phosphatase isoform 5a levels were indicative of a 1.860 fold increase in the risk of metabolic syndrome (p = 0.012). Elevated serum tartrate-resistant phosphatase isoform 5a levels are associated with the risk of metabolic syndrome, with a cut-off level of 5.8 μg/L.

  20. Implication of Ca2+ in the Regulation of Replicative Life Span of Budding Yeast*

    OpenAIRE

    Tsubakiyama, Ryohei; Mizunuma, Masaki; Gengyo, Anri; Yamamoto, Josuke; Kume, Kazunori; Miyakawa, Tokichi; Hirata, Dai

    2011-01-01

    In eukaryotic cells, Ca2+-triggered signaling pathways are used to regulate a wide variety of cellular processes. Calcineurin, a highly conserved Ca2+/calmodulin-dependent protein phosphatase, plays key roles in the regulation of diverse biological processes in organisms ranging from yeast to humans. We isolated a mutant of the SIR3 gene, implicated in the regulation of life span, as a suppressor of the Ca2+ sensitivity of zds1Δ cells in the budding yeast Saccharomyces cerevisiae. Therefore, ...

  1. Enzyme domain affects the movement of the voltage sensor in ascidian and zebrafish voltage-sensing phosphatases.

    Science.gov (United States)

    Hossain, Md Israil; Iwasaki, Hirohide; Okochi, Yoshifumi; Chahine, Mohamed; Higashijima, Shinichi; Nagayama, Kuniaki; Okamura, Yasushi

    2008-06-27

    The ascidian voltage-sensing phosphatase (Ci-VSP) consists of the voltage sensor domain (VSD) and a cytoplasmic phosphatase region that has significant homology to the phosphatase and tensin homolog deleted on chromosome TEN (PTEN). The phosphatase activity of Ci-VSP is modified by the conformational change of the VSD. In many proteins, two protein modules are bidirectionally coupled, but it is unknown whether the phosphatase domain could affect the movement of the VSD in VSP. We addressed this issue by whole-cell patch recording of gating currents from a teleost VSP (Dr-VSP) cloned from Danio rerio expressed in tsA201 cells. Replacement of a critical cysteine residue, in the phosphatase active center of Dr-VSP, by serine sharpened both ON- and OFF-gating currents. Similar changes were produced by treatment with phosphatase inhibitors, pervanadate and orthovanadate, that constitutively bind to cysteine in the active catalytic center of phosphatases. The distinct kinetics of gating currents dependent on enzyme activity were not because of altered phosphatidylinositol 4,5-bisphosphate levels, because the kinetics of gating current did not change by depletion of phosphatidylinositol 4,5-bisphosphate, as reported by coexpressed KCNQ2/3 channels. These results indicate that the movement of the VSD is influenced by the enzymatic state of the cytoplasmic domain, providing an important clue for understanding mechanisms of coupling between the VSD and its effector.

  2. Evidence for an indirect transcriptional regulation of glucose-6-phosphatase gene expression by liver X receptors

    International Nuclear Information System (INIS)

    Grempler, Rolf; Guenther, Susanne; Steffensen, Knut R.; Nilsson, Maria; Barthel, Andreas; Schmoll, Dieter; Walther, Reinhard

    2005-01-01

    Liver X receptor (LXR) paralogues α and β (LXRα and LXRβ) are members of the nuclear hormone receptor family and have oxysterols as endogenous ligands. LXR activation reduces hepatic glucose production in vivo through the inhibition of transcription of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase). In the present study, we investigated the molecular mechanisms involved in the regulation of G6Pase gene expression by LXR. Both T0901317, a synthetic LXR agonist, and the adenoviral overexpression of either LXRα or LXRβ suppressed G6Pase gene expression in H4IIE hepatoma cells. However, compared to the suppression of G6Pase expression seen by insulin, the decrease of G6Pase mRNA by LXR activation was delayed and was blocked by cycloheximide, an inhibitor of protein synthesis. These observations, together with the absence of a conserved LXR-binding element within the G6Pase promoter, suggest an indirect inhibition of G6Pase gene expression by liver X receptors

  3. Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol

    NARCIS (Netherlands)

    Cerneus, D. P.; Ueffing, E.; Posthuma, G.; Strous, G. J.; van der Ende, A.

    1993-01-01

    Alkaline phosphatase is anchored to the outer leaflet of the plasma membrane by a covalently attached glycosyl-phosphatidylinositol anchor. We have studied the biosynthetic transport and endocytosis of alkaline phosphatase in the choriocarcinoma cell line BeWo, which endogenously expresses this

  4. Emerging issues in receptor protein tyrosine phosphatase function: lifting fog or simply shifting?

    DEFF Research Database (Denmark)

    Petrone, A; Sap, J

    2000-01-01

    Transmembrane (receptor) tyrosine phosphatases are intimately involved in responses to cell-cell and cell-matrix contact. Several important issues regarding the targets and regulation of this protein family are now emerging. For example, these phosphatases exhibit complex interactions with signal...

  5. Molecular mechanism of ERK dephosphorylation by striatal-enriched protein tyrosine phosphatase (STEP)

    Science.gov (United States)

    Li, Hui; Li, Kang-shuai; Su, Jing; Chen, Lai-Zhong; Xu, Yun-Fei; Wang, Hong-Mei; Gong, Zheng; Cui, Guo-Ying; Yu, Xiao; Wang, Kai; Yao, Wei; Xin, Tao; Li, Min-Yong; Xiao, Kun-Hong; An, Xiao-fei; Huo, Yuqing; Xu, Zhi-gang; Sun, Jin-Peng; Pang, Qi

    2013-01-01

    Striatal-enriched tyrosine phosphatase (STEP) is an important regulator of neuronal synaptic plasticity, and its abnormal level or activity contributes to cognitive disorders. One crucial downstream effector and direct substrate of STEP is extracellular signal-regulated protein kinase (ERK), which has important functions in spine stabilisation and action potential transmission. The inhibition of STEP activity toward phospho-ERK has the potential to treat neuronal diseases, but the detailed mechanism underlying the dephosphorylation of phospho-ERK by STEP is not known. Therefore, we examined STEP activity toward pNPP, phospho-tyrosine-containing peptides, and the full-length phospho-ERK protein using STEP mutants with different structural features. STEP was found to be a highly efficient ERK tyrosine phosphatase that required both its N-terminal regulatory region and key residues in its active site. Specifically, both KIM and KIS of STEP were required for ERK interaction. In addition to the N-terminal KIS region, S245, hydrophobic residues L249/L251, and basic residues R242/R243 located in the KIM region were important in controlling STEP activity toward phospho-ERK. Further kinetic experiments revealed subtle structural differences between STEP and HePTP that affected the interactions of their KIMs with ERK. Moreover, STEP recognised specific positions of a phospho-ERK peptide sequence through its active site, and the contact of STEP F311 with phospho-ERK V205 and T207 were crucial interactions. Taken together, our results not only provide the information for interactions between ERK and STEP, but will also help in the development of specific strategies to target STEP-ERK recognition, which could serve as a potential therapy for neurological disorders. PMID:24117863

  6. Crystal structure of the cytoplasmic phosphatase and tensin homolog (PTEN)-like region of Ciona intestinalis voltage-sensing phosphatase provides insight into substrate specificity and redox regulation of the phosphoinositide phosphatase activity.

    Science.gov (United States)

    Matsuda, Makoto; Takeshita, Kohei; Kurokawa, Tatsuki; Sakata, Souhei; Suzuki, Mamoru; Yamashita, Eiki; Okamura, Yasushi; Nakagawa, Atsushi

    2011-07-01

    Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) has a transmembrane voltage sensor domain and a cytoplasmic region sharing similarity to the phosphatase and tensin homolog (PTEN). It dephosphorylates phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon membrane depolarization. The cytoplasmic region is composed of a phosphatase domain and a putative membrane interaction domain, C2. Here we determined the crystal structures of the Ci-VSP cytoplasmic region in three distinct constructs, wild-type (248-576), wild-type (236-576), and G365A mutant (248-576). The crystal structure of WT-236 and G365A-248 had the disulfide bond between the catalytic residue Cys-363 and the adjacent residue Cys-310. On the other hand, the disulfide bond was not present in the crystal structure of WT-248. These suggest the possibility that Ci-VSP is regulated by reactive oxygen species as found in PTEN. These structures also revealed that the conformation of the TI loop in the active site of the Ci-VSP cytoplasmic region was distinct from the corresponding region of PTEN; Ci-VSP has glutamic acid (Glu-411) in the TI loop, orienting toward the center of active site pocket. Mutation of Glu-411 led to acquirement of increased activity toward phosphatidylinositol 3,5-bisphosphate, suggesting that this site is required for determining substrate specificity. Our results provide the basic information of the enzymatic mechanism of Ci-VSP.

  7. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  8. Effects of tunicamycin, mannosamine, and other inhibitors of glycoprotein processing on skeletal alkaline phosphatase in human osteoblast-like cells.

    Science.gov (United States)

    Farley, J R; Magnusson, P

    2005-01-01

    Skeletal alkaline phosphatase (sALP) is a glycoprotein- approximately 20% carbohydrate by weight, with five presumptive sites for N-linked glycosylation, as well as a carboxy-terminal site for attachment of the glycolipid structure (glycosylphosphatidylinositol, GPI), which anchors sALP to the outer surface of osteoblasts. The current studies were intended to characterize the effects of inhibiting glycosylation and glycosyl-processing on the synthesis, plasma membrane attachment, cellular-extracellular distribution, and reaction kinetics of sALP in human osteosarcoma (SaOS-2) cells. sALP synthesis, glycosylation, and GPI-anchor attachment were assessed as total protein synthesis/immunospecific sALP synthesis, sialic acid content (i.e., wheat germ agglutinin precipitation), and insolubility (i.e., temperature-dependent phase-separation), respectively. sALP reaction kinetics were characterized by analysis of dose-dependent initial velocity data, with a phosphoryl substrate. The results of these studies revealed that the inhibition of either N-linked glycosylation or oligosaccharide synthesis for GPI-anchor addition could affect the synthesis and the distribution of sALP, but not the kinetics of the phosphatase reaction. Tunicamycin-which blocks N-linked glycosylation by inhibiting core oligosaccharide synthesis-decreased cell layer protein and the total amount of sALP in the cells, while increasing the relative level of sALP in the cell-conditioned culture medium (CM, i.e., the amount of sALP released). These effects were attributed to dose- and time-dependent decreases in sALP synthesis and N-linked glycosylation, and an increase in apoptotic cell death (P sALP specific activity, in the cells and in the CM; and (3) increases in the percentages of both anchorless and wheat germ agglutinin (WGA)-soluble sALP in the medium, but not in the cells (P sALP to the outside of the plasma membrane surface. Neither mannosammine nor tunicamycin had any effect on the reaction

  9. Central regulation of metabolism by protein tyrosine phosphatases

    Directory of Open Access Journals (Sweden)

    Ryan eTsou

    2013-01-01

    Full Text Available Protein tyrosine phosphatases (PTPs are important regulators of intracellular signaling pathways via the dephosphorylation of phosphotyrosyl residues on various receptor and non-receptor substrates. The phosphorylation state of central nervous system (CNS signaling components underlies the molecular mechanisms of a variety of physiological functions including the control of energy balance and glucose homeostasis. In this review, we summarize the current evidence implicating PTPs as central regulators of metabolism, specifically highlighting their interactions with the neuronal leptin and insulin signaling pathways. We discuss the role of a number of PTPs (PTP1B, SHP2, TCPTP, RPTPe, and PTEN, reviewing the findings from genetic mouse models and in vitro studies which highlight these phosphatases as key central regulators of energy homeostasis.

  10. Oxovanadium (iv) complexes with n/o- and o-donor ligands: their synthesis, characterization, semiempirical study and alkaline phosphatase activity (abstract)

    International Nuclear Information System (INIS)

    Munawar, K.S.; Ali, S.; Khan, A.N.

    2011-01-01

    Various N/O- and O-donor ligands and their oxovanadium complexes have been synthesized and characterized by different techniques such as FTIR, elemental analysis, thermogravimetery and conductometry. The IR data show the bidentate nature of the ligands and reveals hexa-coordinated geometry in the solid state which is also confirmed by semi-empirical study. Conductance measurements reveal the non-electrolytic nature of the complexes. These complexes have been checked for their alkaline phosphatase activity in the presence and absence of inhibitor which shows that by the addition of inhibitor the activity of enzyme decreases and at higher concentration it is completely inhibited. (author)

  11. 2,3-diphosphoglycerate phosphatase activity of phosphoglycerate mutase: stimulation by vanadate and phosphate

    International Nuclear Information System (INIS)

    Stankiewicz, P.J.; Gresser, M.J.; Tracey, A.S.; Hass, L.F.

    1987-01-01

    The binding of inorganic vanadate (V/sub i/) to rabbit muscle phosphoglycerate mutase (PGM), studied by using 51 V nuclear magnetic resonance spectroscopy, shows a sigmoidal dependence on vanadate concentration with a stoichiometry of four vanadium atoms per PGM molecule at saturating [V/sub i/]. The data are consistent with binding of one divanadate ion to each of the two subunits of PGM in a noncooperative manner with an intrinsic dissociation constant of 4 x 10 -6 M. The relevance of this result to other studies which have shown that the V/sub i/-stimulated 2,3-diphosphoglycerate (2,3-DPG) phosphatase activity of PGM has a sigmoidal dependence on [V/sub i/] with a Hill coefficient of 2.0 is discussed. At pH 7.0, inorganic phosphate has little effect on the 2,3-DPG phosphatase activity of PGM, even at concentrations as high as 50 mM. Similarly, 25 μM V/sub i/ has little effect on the phosphatase activity. However, in the presence of 25 μM V/sub i/, a phosphate concentration of 20 mM increases the phosphatase activity by more than 3-fold. This behavior is rationalized in terms of activation of the phosphatase activity by a phosphate/vanadate mixed anhydride. This interpretation is supported by the observation of strong activation of the phosphatase activity by inorganic pyrophosphate. A molecular mechanism for the observed effects of vanadate is proposed, and the relevance of this study to the possible use of vanadate as a therapeutic agent for the treatment of sickle cell anemia is discussed

  12. Dephosphorylation of microtubule-binding sites at the neurofilament-H tail domain by alkaline, acid, and protein phosphatases.

    Science.gov (United States)

    Hisanaga, S; Yasugawa, S; Yamakawa, T; Miyamoto, E; Ikebe, M; Uchiyama, M; Kishimoto, T

    1993-06-01

    The dephosphorylation-induced interaction of neurofilaments (NFs) with microtubules (MTs) was investigated by using several phosphatases. Escherichia coli alkaline and wheat germ acid phosphatases increased the electrophoretic mobility of NF-H and NF-M by dephosphorylation, and induced the binding of NF-H to MTs. The binding of NFs to MTs was observed only after the electrophoretic mobility of NF-H approached the exhaustively dephosphorylated level when alkaline phosphatase was used. The number of phosphate remaining when NF-H began to bind to MTs was estimated by measuring phosphate bound to NF-H. NF-H did not bind to MTs even when about 40 phosphates from the total of 51 had been removed by alkaline phosphatase. The removal of 6 further phosphates finally resulted in the association of NF-H with MTs. A similar finding, that the restricted phosphorylation sites in the NF-H tail domain, but not the total amount of phosphates, were important for binding to MTs, was also obtained with acid phosphatases. In contrast to alkaline and acid phosphatases, four classes of protein phosphatases (protein phosphatases 1, 2A, 2B, and 2C) were ineffective for shifting the electrophoretic mobility of NF proteins and for inducing the association of NFs to MTs.

  13. Novel Combinatorial Chemistry-Derived Inhibitors of Oncogenic Phosphatases

    National Research Council Canada - National Science Library

    Lazo, John

    1999-01-01

    Our overall goal of this US Army Breast Cancer Grant entitled "Novel Combinatorial Chemistry-Derived Inhibitors of Oncogenic Phosphatases" is to identity and develop novel therapeutic agents for human breast cancer...

  14. Cloning and characterization of rat density-enhanced phosphatase-1, a protein tyrosine phosphatase expressed by vascular cells.

    Science.gov (United States)

    Borges, L G; Seifert, R A; Grant, F J; Hart, C E; Disteche, C M; Edelhoff, S; Solca, F F; Lieberman, M A; Lindner, V; Fischer, E H; Lok, S; Bowen-Pope, D F

    1996-09-01

    We have cloned from cultured vascular smooth muscle cells a protein tyrosine phosphatase, rat density-enhanced phosphatase-1 (rDEP-1), which is a probable rat homologue of DEP-1/HPTP eta. rDEP-1 is encoded by an 8.7-kb transcript and is expressed as a 180- to 220-kD protein. The rDEP-1 gene is located on human chromosome 11 (region p11.2) and on mouse chromosome 2 (region 2E). The cDNA sequence predicts a transmembrane protein consisting of a single phosphatase catalytic domain in the intracellular region, a single transmembrane domain, and eight fibronectin type III repeats in the extracellular region (GenBank accession number U40790). In situ hybridization analysis demonstrates that rDEP-1 is widely expressed in vivo but that expression is highest in cells that form epithelioid monolayers. In cultured cells with epitheliod morphology, including endothelial cells and newborn smooth muscle cells, but not in fibroblast-like cells, rDEP-1 transcript levels are dramatically upregulated as population density increases. In vivo, quiescent endothelial cells in normal arteries express relatively high levels of rDEP-1. During repair of vascular injury, expression of rDEP-1 is downregulated in migrating and proliferating endothelial cells. In vivo, rDEP-1 transcript levels are present in very high levels in megakaryocytes, and circulating plates have high levels of the rDEP-1 protein. In vitro, initiation of differentiation of the human megakaryoblastic cell line CHRF-288-11 with phorbol 12-myristate 13-acetate leads to a very strong upregulation of rDEP-1 transcripts. The deduced structure and the regulation of expression of rDEP-1 suggest that it may play a role in adhesion and/or signaling events involving cell-cell and cell-matrix contact.

  15.  Alkaline phosphatase normalization is a biomarker of improved survival in primary sclerosing cholangitis.

    Science.gov (United States)

    Hilscher, Moira; Enders, Felicity B; Carey, Elizabeth J; Lindor, Keith D; Tabibian, James H

    2016-01-01

     Introduction. Recent studies suggest that serum alkaline phosphatase may represent a prognostic biomarker in patients with primary sclerosing cholangitis. However, this association remains poorly understood. Therefore, the aim of this study was to investigate the prognostic significance and clinical correlates of alkaline phosphatase normalization in primary sclerosing cholangitis. This was a retrospective cohort study of patients with a new diagnosis of primary sclerosing cholangitis made at an academic medical center. The primary endpoint was time to hepatobiliaryneoplasia, liver transplantation, or liver-related death. Secondary endpoints included occurrence of and time to alkaline phosphatase normalization. Patients who did and did not achieve normalization were compared with respect to clinical characteristics and endpoint-free survival, and the association between normalization and the primary endpoint was assessed with univariate and multivariate Cox proportional-hazards analyses. Eighty six patients were included in the study, with a total of 755 patient-years of follow-up. Thirty-eight patients (44%) experienced alkaline phosphatase normalization within 12 months of diagnosis. Alkaline phosphatase normalization was associated with longer primary endpoint-free survival (p = 0.0032) and decreased risk of requiring liver transplantation (p = 0.033). Persistent normalization was associated with even fewer adverse endpoints as well as longer survival. In multivariate analyses, alkaline phosphatase normalization (adjusted hazard ratio 0.21, p = 0.012) and baseline bilirubin (adjusted hazard ratio 4.87, p = 0.029) were the only significant predictors of primary endpoint-free survival. Alkaline phosphatase normalization, particularly if persistent, represents a robust biomarker of improved long-term survival and decreased risk of requiring liver transplantation in patients with primary sclerosing cholangitis.

  16. The involvement of glucose-6-phosphatase in mucilage secretion by root cap cells of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1985-01-01

    In order to determine the involvement of glucose-6-phosphatase in mucilage secretion by root cap cells, we have cytochemically localized the enzyme in columella and peripheral cells of root caps of Zea mays. Glucose-6-phosphatase is associated with the plasmalemma and cell wall of columella cells. As columella cells differentiate into peripheral cells and begin to produce and secrete mucilage, glucose-6-phosphatase staining intensifies and becomes associated with the mucilage and, to a lesser extent, the cell wall. Cells being sloughed from the cap are characterized by glucose-6-phosphatase staining being associated with the vacuole and plasmalemma. These changes in enzyme localization during cellular differentiation in root caps suggest that glucose-6-phosphatase is involved in the production and/or secretion of mucilage by peripheral cells of Z. mays.

  17. Evidence for phosphoprotein phosphatase in Streptomyces granaticolor

    Czech Academy of Sciences Publication Activity Database

    Bobek, J.; Hercík, K.; Dobrová, Zuzana; Branny, Pavel; Nádvorník, Richard; Janeček, Jiří

    2000-01-01

    Roč. 45, č. 4 (2000), s. 310-312 ISSN 0015-5632 R&D Projects: GA ČR GA204/99/1534 Institutional research plan: CEZ:AV0Z5020903 Keywords : streptomycetes * phosphoprotein phosphatase Subject RIV: EE - Microbiology, Virology Impact factor: 0.752, year: 2000

  18. Purification and properties of acid phosphatase from Avena elatior L. seeds

    Directory of Open Access Journals (Sweden)

    E. Wieczorek

    2015-01-01

    Full Text Available Acid phosphatase F1 from Avena elatior seeds was isolated and partially purified by means of alcohol precepitation, DEAE-, CM-column chromatography, Sephadex G-150, Sephadex G-200 and Sepharose 4B - gel filtration. The enzyme was stable at 50°C, pH 5.1. The pH optimum for phosphatase activity was 4.2. Fluoride, Zn2+, molybdate were effective inhibitors. EDTA and l, 10-phenanthroline activated the enzyme.

  19. Tetranucleotide repeat polymorphism at the human prostatic acid phosphatase (ACPP) gene

    Energy Technology Data Exchange (ETDEWEB)

    Polymeropoulos, M H; Xiao, Hong; Rath, D S; Merril, C R [National Inst. of Mental Health Neuroscience Center, Washington, DC (United States)

    1991-09-11

    The polymorphic (AAAT){sub n} repeat begins at base pair 2342 of the human prostatic acid phosphatase gene on chromosome 3q21-qter. The polymorphism can be typed using the polymerase chain reaction (PCR) as described previously. The predicted length of the amplified sequence was 275 bp. Co-dominant segregation was observed in two informative families. The human prostatic acid phosphatase gene has been assigned to chromosome 3q21-qter.

  20. Development of a gene therapy strategy to target hepatocellular carcinoma based inhibition of protein phosphatase 2A using the α-fetoprotein promoter enhancer and pgk promoter: an in vitro and in vivo study

    International Nuclear Information System (INIS)

    Li, Wei; Tao, Min; Li, Dao-Ming; Chen, Kai; Chen, Zheng; Zong, Yang; Yin, Hong; Xu, Ze-Kuan; Zhu, Yi; Gong, Fei-Ran

    2012-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Current therapies are insufficient, making HCC an intractable disease. Our previous studies confirmed that inhibition of protein phosphatase 2A (PP2A) may provide a promising therapeutic strategy for cancer. Unfortunately, constitutive expression of PP2A in normal tissues limits the application of PP2A inhibition. Thus, a HCC-specific gene delivery system should be developed. The α-fetoprotein (AFP) promoter is commonly used in HCC-specific gene therapy strategies; however, the utility of this approach is limited due to the weak activity of the AFP promoter. It has been shown that linking the AFP enhancer with the promoter of the non-tissue-specific, human housekeeping phosphoglycerate kinase (pgk) gene can generate a strong and HCC-selective promoter. We constructed a HCC-specific gene therapy system to target PP2A using the AFP enhancer/pgk promoter, and evaluated the efficiency and specificity of this system both in vitro and in vivo. AFP enhancer/pgk promoter-driven expression of the dominant negative form of the PP2A catalytic subunit α (DN-PP2Acα) exerted cytotoxic effects against an AFP-positive human hepatoma cell lines (HepG2 and Hep3B), but did not affect AFP-negative human hepatoma cells (SK-HEP-1) or normal human liver cells (L-02). Moreover, AFP enhancer/pgk promoter driven expression of DN-PP2Acα inhibited the growth of AFP-positive HepG2 tumors in nude mice bearing solid tumor xenografts, but did not affect AFP-negative SK-HEP-1 tumors. The novel approach of AFP enhancer/pgk promoter-driven expression of DN-PP2Acα may provide a useful cancer gene therapy strategy to selectively target HCC

  1. Structural Basis of Rap Phosphatase Inhibition by Phr Peptides

    Science.gov (United States)

    Gallego del Sol, Francisca; Marina, Alberto

    2013-01-01

    Two-component systems, composed of a sensor histidine kinase and an effector response regulator (RR), are the main signal transduction devices in bacteria. In Bacillus, the Rap protein family modulates complex signaling processes mediated by two-component systems, such as competence, sporulation, or biofilm formation, by inhibiting the RR components involved in these pathways. Despite the high degree of sequence homology, Rap proteins exert their activity by two completely different mechanisms of action: inducing RR dephosphorylation or blocking RR binding to its target promoter. However the regulatory mechanism involving Rap proteins is even more complex since Rap activity is antagonized by specific signaling peptides (Phr) through a mechanism that remains unknown at the molecular level. Using X-ray analyses, we determined the structure of RapF, the anti-activator of competence RR ComA, alone and in complex with its regulatory peptide PhrF. The structural and functional data presented herein reveal that peptide PhrF blocks the RapF-ComA interaction through an allosteric mechanism. PhrF accommodates in the C-terminal tetratricopeptide repeat domain of RapF by inducing its constriction, a conformational change propagated by a pronounced rotation to the N-terminal ComA-binding domain. This movement partially disrupts the ComA binding site by triggering the ComA disassociation, whose interaction with RapF is also sterically impaired in the PhrF-induced conformation of RapF. Sequence analyses of the Rap proteins, guided by the RapF-PhrF structure, unveil the molecular basis of Phr recognition and discrimination, allowing us to relax the Phr specificity of RapF by a single residue change. PMID:23526880

  2. Proteomic analysis of protein phosphatase Z1 from Candida albicans.

    Directory of Open Access Journals (Sweden)

    Bernadett Márkus

    Full Text Available Protein phosphatase Z is a "novel type" fungus specific serine/threonine protein phosphatase. Previously our research group identified the CaPPZ1 gene in the opportunistic pathogen Candida albicans and reported that the gene deletion had several important physiological consequences. In order to reveal the protein targets and the associated mechanisms behind the functions of the phosphatase a proteomic method was adopted for the comparison of the cappz1 deletion mutant and the genetically matching QMY23 control strain. Proteins extracted from the control and deletion mutant strains were separated by two-dimensional gel electrophoresis and the protein spots were stained with RuBPS and Pro-Q Diamond in order to visualize the total proteome and the phosphoproteome, respectively. The alterations in spot intensities were determined by densitometry and were analysed with the Delta2D (Decodon software. Spots showing significantly different intensities between the mutant and control strains were excised from the gels and were digested with trypsin. The resulting peptides were identified by LC-MS/MS mass spectrometry. As many as 15 protein spots were found that exhibited significant changes in their intensity upon the deletion of the phosphatase and 20 phosphoproteins were identified in which the level of phosphorylation was modified significantly in the mutant. In agreement with previous findings we found that the affected proteins function in protein synthesis, oxidative stress response, regulation of morphology and metabolism. Among these proteins we identified two potential CaPpz1 substrates (Eft2 and Rpp0 that may regulate the elongation step of translation. RT-qPCR experiments revealed that the expression of the genes coding for the affected proteins was not altered significantly. Thus, the absence of CaPpz1 exerted its effects via protein synthesis/degradation and phosphorylation/dephosphorylation. In addition, our proteomics data strongly

  3. Proteomic analysis of protein phosphatase Z1 from Candida albicans

    Science.gov (United States)

    Pfliegler, Walter P.; Petrényi, Katalin; Boros, Enikő; Pócsi, István; Tőzsér, József; Dombrádi, Viktor

    2017-01-01

    Protein phosphatase Z is a “novel type” fungus specific serine/threonine protein phosphatase. Previously our research group identified the CaPPZ1 gene in the opportunistic pathogen Candida albicans and reported that the gene deletion had several important physiological consequences. In order to reveal the protein targets and the associated mechanisms behind the functions of the phosphatase a proteomic method was adopted for the comparison of the cappz1 deletion mutant and the genetically matching QMY23 control strain. Proteins extracted from the control and deletion mutant strains were separated by two-dimensional gel electrophoresis and the protein spots were stained with RuBPS and Pro-Q Diamond in order to visualize the total proteome and the phosphoproteome, respectively. The alterations in spot intensities were determined by densitometry and were analysed with the Delta2D (Decodon) software. Spots showing significantly different intensities between the mutant and control strains were excised from the gels and were digested with trypsin. The resulting peptides were identified by LC-MS/MS mass spectrometry. As many as 15 protein spots were found that exhibited significant changes in their intensity upon the deletion of the phosphatase and 20 phosphoproteins were identified in which the level of phosphorylation was modified significantly in the mutant. In agreement with previous findings we found that the affected proteins function in protein synthesis, oxidative stress response, regulation of morphology and metabolism. Among these proteins we identified two potential CaPpz1 substrates (Eft2 and Rpp0) that may regulate the elongation step of translation. RT-qPCR experiments revealed that the expression of the genes coding for the affected proteins was not altered significantly. Thus, the absence of CaPpz1 exerted its effects via protein synthesis/degradation and phosphorylation/dephosphorylation. In addition, our proteomics data strongly suggested a role for

  4. Alkaline phosphatase levels in patients with coronary heart disease saliva and its relation with periodontal status

    Science.gov (United States)

    Yunita, Dina Suci; Masulili, Sri Lelyati C.; Tadjoedin, Fatimah M.; Radi, Basuni

    2017-02-01

    Coronary heart disease (CHD) is a disease that causes narrowing of the coronary arteries. Currently, there is a hypothesis regarding periodontal infection that increases risk for heart disease. Alkaline phosphatase (ALP) as a marker of inflammation will increase in atherosclerosis and periodontal disease. The objective of this research is analyzing the relationship between the levels of alkaline phosphatase in saliva with periodontal status in patients with CHD and non CHD. Here, saliva of 104 subjects were taken, each 1 ml, and levels of Alkaline Phosphatase was analyzed using Abbott ci4100 architect. We found that no significant difference of Alkaline Phosphatase levels in saliva between CHD patients and non CHD. Therefore, it can be concluded that Alkaline Phosphatase levels in patients with CHD saliva was higher than non CHD and no association between ALP levels with periodontal status.

  5. Effects of Betaine Aldehyde Dehydrogenase-Transgenic Soybean on Phosphatase Activities and Rhizospheric Bacterial Community of the Saline-Alkali Soil

    Directory of Open Access Journals (Sweden)

    Ying Nie

    2016-01-01

    Full Text Available The development of transgenic soybean has produced numerous economic benefits; however the potential impact of root exudates upon soil ecological systems and rhizospheric soil microbial diversity has also received intensive attention. In the present study, the influence of saline-alkali tolerant transgenic soybean of betaine aldehyde dehydrogenase on bacterial community structure and soil phosphatase during growth stages was investigated. The results showed that, compared with nontransgenic soybean as a control, the rhizospheric soil pH of transgenic soybean significantly decreased at the seedling stage. Compared to HN35, organic P content was 13.5% and 25.4% greater at the pod-filling stage and maturity, respectively. The acid phosphatase activity of SRTS was significantly better than HN35 by 12.74% at seedling, 14.03% at flowering, and 59.29% at podding, while alkaline phosphatase achieved maximum activity in the flowering stage and was markedly lower than HN35 by 13.25% at pod-filling. The 454 pyrosequencing technique was employed to investigate bacterial diversity, with a total of 25,499 operational taxonomic units (OTUs obtained from the 10 samples. Notably, the effect of SRTS on microbial richness and diversity of rhizospheric soil was marked at the stage of podding and pod-filling. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla among all samples. Compared with HN35, the relative abundance of Proteobacteria was lower by 2.01%, 2.06%, and 5.28% at the stage of seedling, at pod-bearing, and at maturity. In genus level, the relative abundance of Gp6, Sphingomonas sp., and GP4 was significantly inhibited by SRTS at the stage of pod-bearing and pod-filling.

  6. Displacement affinity chromatography of protein phosphatase one (PP1 complexes

    Directory of Open Access Journals (Sweden)

    Gourlay Robert

    2008-11-01

    Full Text Available Abstract Background Protein phosphatase one (PP1 is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.

  7. Prominent increased calcineurin immunoreactivity in the superior temporal gyrus in schizophrenia: A postmortem study.

    Science.gov (United States)

    Wada, Akira; Kunii, Yasuto; Matsumoto, Jyunya; Hino, Mizuki; Yang, Qiaohui; Niwa, Shin-Ichi; Yabe, Hirooki

    2017-01-01

    Many neuroimaging studies have demonstrated structural changes in the superior temporal gyrus (STG) in patients with schizophrenia. Several postmortem studies have reported on the pathogenesis of schizophrenia, but few reports have investigated alterations in molecules in the STG. In addition, several studies have suggested that calcineurin (CaN) inadequacy may be a risk factor for schizophrenia, but no reports about CaN expression in the STG in schizophrenia have been published. We compared the density of CaN-immunoreactive (CaN-IR) neurons in the STG from 11 patients with schizophrenia with that of 11 sex- and age-matched controls. We used immunohistochemical analysis with rabbit polyclonal antibodies against human CaN. In the STG, the density of CaN-IR neurons in layers II - VI in the group with schizophrenia was significantly higher than that in the control group. Our results confirmed pathological changes in the STG in patients with schizophrenia, suggesting that alterations in the CaN pathway play a role in the pathogenesis of schizophrenia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. The PP4R1 sub-unit of protein phosphatase PP4 is essential for inhibition of NF-κB by merkel polyomavirus small tumour antigen.

    Science.gov (United States)

    Abdul-Sada, Hussein; Müller, Marietta; Mehta, Rajni; Toth, Rachel; Arthur, J Simon C; Whitehouse, Adrian; Macdonald, Andrew

    2017-04-11

    Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with a high metastatic potential. The majority of MCC cases are caused by the Merkel cell polyomavirus (MCPyV), through expression of the virus-encoded tumour antigens. Whilst mechanisms attributing tumour antigen expression to transformation are being uncovered, little is known of the mechanisms by which MCPyV persists in the host. We previously identified the MCPyV small T antigen (tAg) as a novel inhibitor of nuclear factor kappa B (NF-kB) signalling and a modulator of the host anti-viral response. Here we demonstrate that regulation of NF-kB activation involves a previously undocumented interaction between tAg and regulatory sub-unit 1 of protein phosphatase 4 (PP4R1). Formation of a complex with PP4R1 and PP4c is required to bridge MCPyV tAg to the NEMO adaptor protein, allowing deactivation of the NF-kB pathway. Mutations in MCPyV tAg that fail to interact with components of this complex, or siRNA depletion of PP4R1, prevents tAg-mediated inhibition of NF-kB and pro-inflammatory cytokine production. Comparison of tAg binding partners from other human polyomavirus demonstrates that interactions with NEMO and PP4R1 are unique to MCPyV. Collectively, these data identify PP4R1 as a novel target for virus subversion of the host anti-viral response.

  9. Modulation of catalytic activity in multi-domain protein tyrosine phosphatases.

    Directory of Open Access Journals (Sweden)

    Lalima L Madan

    Full Text Available Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1 domains, while the membrane-distal (D2 domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A. While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.

  10. Overexpression of protein tyrosine phosphatase-alpha (PTP-alpha) but not PTP-kappa inhibits translocation of GLUT4 in rat adipose cells

    DEFF Research Database (Denmark)

    Cong, L N; Chen, H; Li, Y

    1999-01-01

    Protein tyrosine phosphatases (PTPases) are likely to play important roles in insulin action. We recently demonstrated that the nontransmembrane PTPase PTP1B can act as a negative modulator of insulin-stimulated translocation of GLUT4. We now examine the role of PTP-alpha and PTP-kappa (two...... of cell surface GLUT4 in response to insulin and a threefold decrease in insulin sensitivity when compared with control cells expressing only tagged GLUT4. Co-overexpression of PTP-alpha and PTP1B did not have additive effects, suggesting that these PTPases share common substrates. Cells overexpressing...

  11. Epidermal growth factor receptor activation by diesel particles is mediated by tyrosine phosphatase inhibition

    International Nuclear Information System (INIS)

    Tal, Tamara L.; Bromberg, Philip A.; Kim, Yumee; Samet, James M.

    2008-01-01

    Exposure to particulate matter (PM) is associated with increased cardiopulmonary morbidity and mortality. Diesel exhaust particles (DEP) are a major component of ambient PM and may contribute to PM-induced pulmonary inflammation. Proinflammatory signaling is mediated by phosphorylation-dependent signaling pathways whose activation is opposed by the activity of protein tyrosine phosphatases (PTPases) which thereby function to maintain signaling quiescence. PTPases contain an invariant catalytic cysteine that is susceptible to electrophilic attack. DEP contain electrophilic oxy-organic compounds that may contribute to the oxidant effects of PM. Therefore, we hypothesized that exposure to DEP impairs PTPase activity allowing for unopposed basal kinase activity. Here we report that exposure to 30 μg/cm 2 DEP for 4 h induces differential activation of signaling in primary cultures of human airway epithelial cells (HAEC), a primary target cell in PM inhalation. In-gel kinase activity assay of HAEC exposed to DEPs of low (L-DEP), intermediate (I-DEP) or high (H-DEP) organic content showed differential activation of intracellular kinases. Exposure to these DEP also induced varying levels of phosphorylation of the receptor tyrosine kinase EGFR in a manner that requires EGFR kinase activity but does not involve receptor dimerization. We demonstrate that treatment with DEP results in an impairment of total and EGFR-directed PTPase activity in HAEC with a potency that is independent of the organic content of these particles. These data show that DEP-induced EGFR phosphorylation in HAEC is the result of a loss of PTPase activities which normally function to dephosphorylate EGFR in opposition to baseline EGFR kinase activity

  12. Celecoxib inhibits osteoblast maturation by suppressing the expression of Wnt target genes

    Directory of Open Access Journals (Sweden)

    Akihiro Nagano

    2017-01-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs have been shown to impair bone healing. We previously reported that in colon cancer cells, celecoxib, a COX-2-selective NSAID, inhibited the canonical Wnt/β-catenin signaling pathway. Since this pathway also plays an important role in osteoblast growth and differentiation, we examined the effect of celecoxib on maturation of osteoblast-like cell line MC3T3-E1. Celecoxib induced degradation of transcription factor 7-like 2, a key transcription factor of the canonical Wnt pathway. Subsequently, we analyzed the effect of celecoxib on two osteoblast differentiation markers; runt-related transcription factor 2 (RUNX2 and alkaline phosphatase (ALP, both of which are the products of the canonical Wnt pathway target genes. Celecoxib inhibited the expression of both RUNX2 and ALP by suppressing their promoter activity. Consistent with these observations, celecoxib also strongly inhibited osteoblast-mediated mineralization. These results suggest that celecoxib inhibits osteoblast maturation by suppressing Wnt target genes, and this could be the mechanism that NSAIDs inhibit bone formation and fracture healing.

  13. Phosphatase activity in Antarctica soil samples as a biosignature of extant life

    Science.gov (United States)

    Sato, Shuji; Itoh, Yuki; Takano, Yoshinori; Fukui, Manabu; Kaneko, Takeo; Kobayashi, Kensei

    Microbial activities have been detected in such extreme terrestrial environments as deep lithosphere, a submarine hydrothermal systems, stratosphere, and Antarctica. Microorganisms have adapted to such harsh environments by evolving their biomolecules. Some of these biomolecules such as enzymes might have different characteristics from those of organisms in ordinary environments. Many biosignatures (or biomarkers) have been proposed to detect microbial activities in such extreme environments. A number of techniques are proposed to evaluate biological activities in extreme environments including cultivation methods, assay of metabolism, and analysis of bioorganic compounds like amino acids and DNA. Enzyme activities are useful signature of extant life in extreme environments. Among many enzymes, phosphatase could be a good indicator of biological activities, since phosphate esters are essential for all the living terrestrial organisms. In addition, alkaline phosphatase is known as a typical zinc-containing metalloenzyme and quite stable in environments. We analyzed phosphatase activities in Antarctica soil samples to see whether they can be used as biosignatures for extant life. In addition, we characterized phosphatases extracted from the Antarctica soil samples, and compared with those obtained from other types of environments. Antarctica surface environments are quite severe environments for life since it is extremely cold and dry and exposed to strong UV and cosmic rays. We tried to evaluate biological activities in Antarctica by measuring phosphatase activities. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Activities of acid phosphatase (ACP) and alkaline phosphatase (ALP) are measured spectrophotometrically after mixing the powdered sample and p-nitrophenyl phosphate solution (pH 6.5 for ACP, pH 8.0 for ALP). ALP was characterized after extraction from soils with

  14. Chimeric design, synthesis, and biological assays of a new nonpeptide insulin-mimetic vanadium compound to inhibit protein tyrosine phosphatase 1B.

    Science.gov (United States)

    Scior, Thomas; Guevara-García, José Antonio; Melendez, F J; Abdallah, Hassan H; Do, Quoc-Tuan; Bernard, Philippe

    2010-09-24

    Prior to its total synthesis, a new vanadium coordination compound, called TSAG0101, was computationally designed to inhibit the enzyme protein tyrosine phosphatase 1B (PTP1B). The PTP1B acts as a negative regulator of insulin signaling by blocking the active site where phosphate hydrolysis of the insulin receptor takes place. TSAG001, [V(V)O(2)(OH)(picolinamide)], was characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy; IR: ν/cm(-1) 3,570 (NH), 1,627 (C=O, coordinated), 1,417 (C-N), 970/842 (O=V=O), 727 δ̣ (pyridine ring); (13)C NMR: 5 bands between 122 and 151 ppm and carbonyl C shifted to 180 ppm; and (1)H NMR: 4 broad bands from 7.6 to 8.2 ppm and NH(2) shifted to 8.8 ppm. In aqueous solution, in presence or absence of sodium citrate as a biologically relevant and ubiquitous chelator, TSAG0101 undergoes neither ligand exchange nor reduction of its central vanadium atom during 24 hours. TSAG0101 shows blood glucose lowering effects in rats but it produced no alteration of basal- or glucose-induced insulin secretion on β cells during in vitro tests, all of which excludes a direct mechanism evidencing the extrapancreatic nature of its activity. The lethal dose (LD(50)) of TSAG0101 was determined in Wistar mice yielding a value of 412 mg/kg. This value is one of the highest among vanadium compounds and classifies it as a mild toxicity agent when compared with literature data. Due to its nonsubstituted, small-sized scaffold design, its remarkable complex stability, and low toxicity; TSAG0101 should be considered as an innovative insulin-mimetic principle with promising properties and, therefore, could become a new lead compound for potential nonpeptide PTP1B inhibitors in antidiabetic drug research. In view of the present work, the inhibitory concentration (IC(50)) and extended solution stability will be tested.

  15. The impact of calcineurin inhibitors on neutrophil gelatinase-associated lipocalin and fibroblast growth factor 23 in long-term kidney transplant patients.

    Science.gov (United States)

    Bleskestad, Inger Hjørdis; Thorsen, Inga Strand; Jonsson, Grete; Skadberg, Øyvind; Gøransson, Lasse Gunnar

    2017-08-01

    Neutrophil gelatinase-associated lipocalin (NGAL), a protein with bacteriostatic functions rapidly excreted from stimulated or damaged epithelial cells, is elevated in acute and chronic kidney disease. A calcineurin dependent signaling pathway for fibroblast growth factor 23 (FGF23) has been revealed, but the effect of calcineurin inhibitors (CNIs) on the levels of NGAL and markers of mineral metabolism in long-term kidney transplant patients has not been explored. In a cross-sectional study, 39 patients who received a first kidney transplant more than 10 years ago were split into two groups based on whether (n=28) or not (n=11) they used CNIs. Only patients with well-functioning grafts defined as an estimated glomerular filtration rate ≥45 mL/min per 1.73 m 2 were included. The median levels of NGAL, intact parathyroid hormone (iPTH), and iFGF23 were significantly higher in CNI users vs CNI nonusers, 167.0 (134.0-235.0) ng/mL vs 105.0 (91.3-117.0) ng/mL, P<.001, 13.8 (10.0-17.3) pmol/L vs 8.4 (6.4-9.9) pmol/L, P=.003, and 81.6 (56.4-116.5) pg/mL vs 61.8 (43.3-72.1) pg/mL, P=.04 respectively. The median levels of iFGF23 were higher in CNI users compared to CNI nonusers giving support to the notion of a CNI induced FGF23 resistance in the parathyroid. The net result of CNIs side effects needs to be further explored. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Acid phosphatase from stored Poa pratensis caryopses and its ability for binding to lectins

    Directory of Open Access Journals (Sweden)

    Irena Lorenc-Kubis

    2014-01-01

    Full Text Available The effect of the storage period of Poa pratensis caryopses on acid phosphatase activity and on the ability of this enzyme to interact with lectins has been studied. It has been shown that after ten years of caryopses storage, the activity of acid phosphatase decreased about 50 per cent, while the content of proteins and carbohydrates did not change. The decrease of enzyme activity during the long period of storage was found only in seeds, but not in chaffs. Acid phosphatase was isolated from caryopses stored one, two, three, five and ten years. The enzyme showed the ability to bind to immoblized as well as to free conA during the whole period of storage, hut did not react with Wheat Germen Agglutinin (WGA. The activation of acid phosphatase by binding to conA decreased with the length of storage period.

  17. Identification and characterization of an ATP.Mg-dependent protein phosphatase from pig brain

    International Nuclear Information System (INIS)

    Yang, S.D.; Fong, Y.L.

    1985-01-01

    Substantial amounts of ATP.Mg-dependent phosphorylase phosphatase (Fc. M) and its activator (kinase FA) were identified and extensively purified from pig brain, in spite of the fact that glycogen metabolism in the brain is of little importance. The brain Fc.M was completely inactive and could only be activated by ATP.Mg and FA, isolated either from rabbit muscle or pig brain. Kinetical analysis of the dephosphorylation of endogenous brain protein indicates that Fc.M could dephosphorylate 32 P-labeled myelin basic protein (MBP) and [ 32 P]phosphorylase alpha at a comparable rate and moreover, this associated MBP phosphatase activity was also strictly kinase FA/ATP.Mg-dependent, demonstrating that MBP is a potential substrate for Fc.M in the brain. By manipulating MBP and inhibitor-2 as specific potent phosphorylase phosphatase inhibitors, we further demonstrate that 1) Fc.M contains two distinct catalytic sites to dephosphorylate different substrates, and 2) brain MBP may be a physiological trigger involved in the regulation of protein phosphatase substrate specificity in mammalian nervous tissues

  18. Bidirectional Regulation of Amyloid Precursor Protein-Induced Memory Defects by Nebula/DSCR1: A Protein Upregulated in Alzheimer's Disease and Down Syndrome.

    Science.gov (United States)

    Shaw, Jillian L; Zhang, Shixing; Chang, Karen T

    2015-08-12

    Aging individuals with Down syndrome (DS) have an increased risk of developing Alzheimer's disease (AD), a neurodegenerative disorder characterized by impaired memory. Memory problems in both DS and AD individuals usually develop slowly and progressively get worse with age, but the cause of this age-dependent memory impairment is not well understood. This study examines the functional interactions between Down syndrome critical region 1 (DSCR1) and amyloid-precursor protein (APP), proteins upregulated in both DS and AD, in regulating memory. Using Drosophila as a model, we find that overexpression of nebula (fly homolog of DSCR1) initially protects against APP-induced memory defects by correcting calcineurin and cAMP signaling pathways but accelerates the rate of memory loss and exacerbates mitochondrial dysfunction in older animals. We report that transient upregulation of Nebula/DSCR1 or acute pharmacological inhibition of calcineurin in aged flies protected against APP-induced memory loss. Our data suggest that calcineurin dyshomeostasis underlies age-dependent memory impairments and further imply that chronic Nebula/DSCR1 upregulation may contribute to age-dependent memory impairments in AD in DS. Most Down syndrome (DS) individuals eventually develop Alzheimer's disease (AD)-like dementia, but mechanisms underlying this age-dependent memory impairment remain poorly understood. This study examines Nebula/Down syndrome critical region 1 (DSCR1) and amyloid-precursor protein (APP), proteins upregulated in both DS and AD, in regulating memory. We uncover a previously unidentified role for Nebula/DSCR1 in modulating APP-induced memory defects during aging. We show that upregulation of Nebula/DSCR1, an inhibitor of calcineurin, rescues APP-induced memory defects in young flies but enhances memory loss of older flies. Excitingly, transient Nebula/DSCR1 overexpression or calcineurin inhibition in aged flies ameliorates APP-mediated memory problems. These results

  19. Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate

    DEFF Research Database (Denmark)

    Faerk, J; Peitersen, Birgit; Petersen, S

    2002-01-01

    BACKGROUND: The bone mineral content of premature infants at term is lower than in mature infants at the same postconceptional age. Serum alkaline phosphatase and serum phosphate are often used as indicators of bone mineralisation. OBJECTIVE: To analyse the association between bone mineral content...... content was measured at term (mean gestational age 41 weeks) by dual energy x ray absorptiometry and corrected for body size. RESULTS: Serum alkaline phosphatase was significantly negatively associated with serum phosphate (p mineral content was not associated with mean serum alkaline...... and serum alkaline phosphatase and serum phosphate. METHODS: Serum alkaline phosphatase and phosphate were measured at weekly intervals during admission in 108 premature infants of gestational age below 32 weeks (mean (SD) gestational age 29 (2) weeks; mean (SD) birth weight 1129 (279) g). Bone mineral...

  20. A role for protein phosphatase-2A in p38 mitogen-activated protein kinase-mediated regulation of the c-Jun NH(2)-terminal kinase pathway in human neutrophils.

    Science.gov (United States)

    Avdi, Natalie J; Malcolm, Kenneth C; Nick, Jerry A; Worthen, G Scott

    2002-10-25

    Human neutrophil accumulation in inflammatory foci is essential for the effective control of microbial infections. Although exposure of neutrophils to cytokines such as tumor necrosis factor-alpha (TNFalpha), generated at sites of inflammation, leads to activation of MAPK pathways, mechanisms responsible for the fine regulation of specific MAPK modules remain unknown. We have previously demonstrated activation of a TNFalpha-mediated JNK pathway module, leading to apoptosis in adherent human neutrophils (Avdi, N. J., Nick, J. A., Whitlock, B. B., Billstrom, M. A., Henson, P. M., Johnson, G. L., and Worthen, G. S. (2001) J. Biol. Chem. 276, 2189-2199). Herein, evidence is presented linking regulation of the JNK pathway to p38 MAPK and the Ser/Thr protein phosphatase-2A (PP2A). Inhibition of p38 MAPK by SB 203580 and M 39 resulted in significant augmentation of TNFalpha-induced JNK and MKK4 (but not MKK7 or MEKK1) activation, whereas prior exposure to a p38-activating agent (platelet-activating factor) diminished the TNFalpha-induced JNK response. TNFalpha-induced apoptosis was also greatly enhanced upon p38 inhibition. Studies with a reconstituted cell-free system indicated the absence of a direct inhibitory effect of p38 MAPK on the JNK module. Neutrophil exposure to the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A induced JNK activation. Increased phosphatase activity following TNFalpha stimulation was shown to be PP2A-associated and p38-dependent. Furthermore, PP2A-induced dephosphorylation of MKK4 resulted in its inactivation. Thus, in neutrophils, p38 MAPK, through a PP2A-mediated mechanism, regulates the JNK pathway, thus determining the extent and nature of subsequent responses such as apoptosis.

  1. Downregulation of PTP1B and TC-PTP phosphatases potentiate dendritic cell-based immunotherapy through IL-12/IFNγ signaling.

    Science.gov (United States)

    Penafuerte, Claudia; Feldhammer, Matthew; Mills, John R; Vinette, Valerie; Pike, Kelly A; Hall, Anita; Migon, Eva; Karsenty, Gerard; Pelletier, Jerry; Zogopoulos, George; Tremblay, Michel L

    2017-01-01

    PTP1B and TC-PTP are highly related protein-tyrosine phosphatases (PTPs) that regulate the JAK/STAT signaling cascade essential for cytokine-receptor activation in immune cells. Here, we describe a novel immunotherapy approach whereby monocyte-derived dendritic cell (moDC) function is enhanced by modulating the enzymatic activities of PTP1B and TC-PTP. To downregulate or delete the activity/expression of these PTPs, we generated mice with PTP-specific deletions in the dendritic cell compartment or used PTP1B and TC-PTP specific inhibitor. While total ablation of PTP1B or TC-PTP expression leads to tolerogenic DCs via STAT3 hyperactivation, downregulation of either phosphatase remarkably shifts the balance toward an immunogenic DC phenotype due to hyperactivation of STAT4, STAT1 and Src kinase. The resulting increase in IL-12 and IFNγ production subsequently amplifies the IL-12/STAT4/IFNγ/STAT1/IL-12 positive autocrine loop and enhances the therapeutic potential of mature moDCs in tumor-bearing mice. Furthermore, pharmacological inhibition of both PTPs improves the maturation of defective moDCs derived from pancreatic cancer (PaC) patients. Our study provides a new advance in the use of DC-based cancer immunotherapy that is complementary to current cancer therapeutics.

  2. Identification of possible targets of the Aspergillus fumigatus CRZ1 homologue, CrzA

    Directory of Open Access Journals (Sweden)

    Goldman Gustavo H

    2010-01-01

    Full Text Available Abstract Background Calcineurin, a serine/threonine-specific protein phosphatase, plays an important role in the control of cell morphology and virulence in fungi. Calcineurin regulates localization and activity of a transcription factor called CRZ1. Recently, we characterize Aspergillus fumigatus CRZ1 homologue, AfCrzA. Here, we investigate which pathways are influenced by A. fumigatus AfCrzA during a short pulse of calcium by comparatively determining the transcriptional profile of A. fumigatus wild type and ΔAfcrzA mutant strains. Results We were able to observe 3,622 genes modulated in at least one timepoint in the mutant when compared to the wild type strain (3,211 and 411 at 10 and 30 minutes, respectively. Decreased mRNA abundance in the ΔcrzA was seen for genes encoding calcium transporters, transcription factors and genes that could be directly or indirectly involved in calcium metabolism. Increased mRNA accumulation was observed for some genes encoding proteins involved in stress response. AfCrzA overexpression in A. fumigatus increases the expression of several of these genes. The deleted strain of one of these genes, AfRcnA, belonging to a class of endogenous calcineurin regulators, calcipressins, had more calcineurin activity after exposure to calcium and was less sensitive to menadione 30 μM, hydrogen peroxide 2.5 mM, EGTA 25 mM, and MnCl2 25 mM. We constructed deletion, overexpression, and GFP fusion protein for the closely related A. nidulans AnRcnA. GFP::RcnA was mostly detected along the germling, did not accumulate in the nuclei and its location is not affected by the cellular response to calcium chloride. Conclusion We have performed a transcriptional profiling analysis of the A. fumigatus ΔAfcrzA mutant strain exposed to calcium stress. This provided an excellent opportunity to identify genes and pathways that are under the influence of AfCrzA. AfRcnA, one of these selected genes, encodes a modulator of calcineurin

  3. Decryptification of Acid Phosphatase in Arthrospores of Geotrichum Species Treated with Dimethyl Sulfoxide and Acetone

    Science.gov (United States)

    Cotter, David A.; Martel, Anita J.; MacDonald, Paul

    1975-01-01

    Decryptification of acid phosphatase in Geotrichum sp. arthrospores was accomplished using acetone or dimethyl sulfoxide treatment. Both dimethyl sulfoxide and acetone irreversibly destroyed the integrity of the spore membranes without solubilizing acid phosphatase. PMID:1167386

  4. Biocatalysis with Sol-Gel Encapsulated Acid Phosphatase

    Science.gov (United States)

    Kulkarni, Suhasini; Tran, Vu; Ho, Maggie K.-M.; Phan, Chieu; Chin, Elizabeth; Wemmer, Zeke; Sommerhalter, Monika

    2010-01-01

    This experiment was performed in an upper-level undergraduate biochemistry laboratory course. Students learned how to immobilize an enzyme in a sol-gel matrix and how to perform and evaluate enzyme-activity measurements. The enzyme acid phosphatase (APase) from wheat germ was encapsulated in sol-gel beads that were prepared from the precursor…

  5. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    Science.gov (United States)

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  6. Cyclosporin A preferentially attenuates skeletal slow-twitch muscle regeneration

    Directory of Open Access Journals (Sweden)

    Miyabara E.H.

    2005-01-01

    Full Text Available Calcineurin, a Ca2+/calmodulin-dependent phosphatase, is associated with muscle regeneration via NFATc1/GATA2-dependent pathways. However, it is not clear whether calcineurin preferentially affects the regeneration of slow- or fast-twitch muscles. We investigated the effect of a calcineurin inhibitor, cyclosporin A (CsA, on the morphology and fiber diameter of regenerating slow- and fast-twitch muscles. Adult Wistar rats (259.5 ± 9 g maintained under standard conditions were treated with CsA (20 mg/kg body weight, ip for 5 days, submitted to cryolesion of soleus and tibialis anterior (TA muscles on the 6th day, and then treated with CsA for an additional 21 days. The muscles were removed, weighed, frozen, and stored in liquid nitrogen. Cryolesion did not alter the body weight gain of the animals after 21 days of regeneration (P = 0.001 and CsA significantly reduced the body weight gain (15.5%; P = 0.01 during the same period. All treated TA and soleus muscles showed decreased weights (17 and 29%, respectively, P < 0.05. CsA treatment decreased the cross-sectional area of both soleus and TA muscles of cryoinjured animals (TA: 2108 ± 930 vs 792 ± 640 µm²; soleus: 2209 ± 322 vs 764 ± 439 m²; P < 0.001. Histological sections of both muscles stained with Toluidine blue revealed similar regenerative responses after cryolesion. In addition, CsA was able to minimize these responses, i.e., centralized nuclei and split fibers, more efficiently so in TA muscle. These results indicate that calcineurin preferentially plays a role in regeneration of slow-twitch muscle.

  7. Dephosphorylation of endotoxin by alkaline phosphatase in vivo

    NARCIS (Netherlands)

    Poelstra, Klaas; Bakker, W.W; Klok, P.A; Kamps, J.AAM; Hardonk, M.J; Meijer, D.K F

    1997-01-01

    Natural substrates for alkaline phosphatase (AP) are at present not identified despite extensive investigations. Difficulties in imagining a possible physiological function involve its extremely high pH optimum for the usual exogenous substrates and its localization as an ecto-enzyme. As endotoxin

  8. Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues.

    Science.gov (United States)

    Majumder, Shyam Prasad; Das, Amal Chandra

    2016-04-01

    An experiment was conducted under laboratory conditions to investigate the effect of four organophosphate insecticides, viz. monocrotophos, profenophos, quinalphos and triazophos at their field application rates (0.75, 1.0, 0.5 and 0.6 kg a.i.ha(-1), respectively), on the growth and activities of phosphate solubilizing microorganisms in relation to availability of insoluble phosphates in the Gangetic alluvial soil of West Bengal, India. The proliferation of phosphate solubilizing microorganisms was highly induced with profenophos (38.3%), while monocrotophos exerted maximum stimulation (20.8%) towards the solubility of insoluble phosphates in soil. The phosphatase activities of the soil (both acid phosphatase and alkaline phosphatase) were significantly increased due to the incorporation of the insecticides in general, and the augmentation was more pronounced with quinalphos (43.1%) followed by profenophos (27.6%) for acid phosphatase, and with monocrotophos (25.2%) followed by profenophos (16.1%) for alkaline phosphatase activity in soil. The total phosphorus was highly retained by triazophos (19.9%) followed by monocrotophos (16.5%), while incorporation of triazophos and quinalphos manifested greater availability of water soluble phosphorus in soil. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Influence of acid phosphatase activity on the saccharification of potato maltodextrins by Aspergillus niger glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Zyla, K. (Akademia Rolnicza, Cracow (Poland). Dept. of Biotechnology)

    1990-01-01

    A preparation of Aspergillus niger acid phosphatase, which had the temperature optimum 60deg C, pH optimum 1.8-3.0; good stability at pH 4-5, the ability to hydrolyze glucose-6-phosphate at a high rate, and substantial lack of glucogenic activities, was used simultaneously with a glucoamylase in order to learn its influence on the saccharification of potato maltodextrins. The addition of the acid phosphatase activity in amounts that gave the 50 fold increase, as compared to phosphatase activity which naturally occurs in the gluocoamylase (GA) preparation 'AMG-200', was found to influence on the DE level, mainly at the high substrate concentration (40% d.s.) and low glucoamylase dosage (60-100 GAU/kg d.s.). It may also be possible, when using the acid phosphatase addition, to shorten the saccharification time. (orig.).

  10. Catalytic activity of a novel serine/threonine protein phosphatase PP5 from Leishmania major

    Directory of Open Access Journals (Sweden)

    Norris-Mullins Brianna

    2014-01-01

    Full Text Available Leishmaniasis is a vector-borne disease caused by protozoan parasites of the genus Leishmania. Our knowledge of protein phosphatases (PPs and their implication in signaling events is very limited. Here we report the expression, characterization and mutagenesis analysis of a novel protein phosphatase 5 (PP5 in Leishmania major. Recombinant PP5 is a bona fide phosphatase and is enzymatically active. Site-directed mutagenesis revealed auto-inhibitory roles of the N-terminal region. This is a rational first approach to understand the role of PP5 in the biology of the parasite better as well as its potential future applicability to anti-parasitic intervention.

  11. AR-v7 protein expression is regulated by protein kinase and phosphatase

    Science.gov (United States)

    Li, Yinan; Xie, Ning; Gleave, Martin E.; Rennie, Paul S.; Dong, Xuesen

    2015-01-01

    Failure of androgen-targeted therapy and progression of castration-resistant prostate cancer (CRPC) are often attributed to sustained expression of the androgen receptor (AR) and its major splice variant, AR-v7. Although the new generation of anti-androgens such as enzalutamide effectively inhibits AR activity, accumulating pre-clinical and clinical evidence indicates that AR-v7 remains constitutively active in driving CRPC progression. However, molecular mechanisms which control AR-v7 protein expression remain unclear. We apply multiple prostate cancer cell models to demonstrate that enzalutamide induces differential activation of protein phosphatase-1 (PP-1) and Akt kinase depending on the gene context of cancer cells. The balance between PP-1 and Akt activation governs AR phosphorylation status and activation of the Mdm2 ubiquitin ligase. Mdm2 recognizes phosphorylated serine 213 of AR-v7, and induces AR-v7 ubiquitination and protein degradation. These findings highlight the decisive roles of PP-1 and Akt for AR-v7 protein expression and activities when AR is functionally blocked. PMID:26378044

  12. Gardenia jasminoides Encodes an Inhibitor-2 Protein for Protein Phosphatase Type 1

    Science.gov (United States)

    Gao, Lan; Li, Hao-Ming

    2017-08-01

    Protein phosphatase-1 (PP1) regulates diverse, essential cellular processes such as cell cycle progression, protein synthesis, muscle contraction, carbohydrate metabolism, transcription and neuronal signaling. Inhibitor-2 (I-2) can inhibit the activity of PP1 and has been found in diverse organisms. In this work, a Gardenia jasminoides fruit cDNA library was constructed, and the GjI-2 cDNA was isolated from the cDNA library by sequencing method. The GjI-2 cDNA contains a predicted 543 bp open reading frame that encodes 180 amino acids. The bioinformatics analysis suggested that the GjI-2 has conserved PP1c binding motif, and contains a conserved phosphorylation site, which is important in regulation of its activity. The three-dimensional model structure of GjI-2 was buite, its similar with the structure of I-2 from mouse. The results suggest that GjI-2 has relatively conserved RVxF, FxxR/KxR/K and HYNE motif, and these motifs are involved in interaction with PP1.

  13. Studies on alkaline and acid phosphatase activity of neutrophil leukicytes, 2

    International Nuclear Information System (INIS)

    Niki, Yoko

    1983-01-01

    With a view to analyzing the inhibiting effect of anticancer drugs and irradiation on hematopoiesis in rabbits neutrophil (pseudoeosinophil) counts and the neutrophilic activities of alkaline phosphatase (AP) and acid phosphatase (SP) were serially followed up after drug administration or irradiation. The enzym activity was estimated histochemically, using azo-dye staining. Each rabbit was given cyclophosphamid (CP) (25mg/kg x 10, at intervals of 5 - 7 days ; 50mg/kg x 5, every day; or 100mg/kg x 1, i.m.), Thio-TEPA (4mg/kg x 1, i.m.), Vinblastin (VBT) (1mg/kg x 1, i.v.), 6MP (25mg/kg x 1, p.o.), or Mitomycin C (MMC) (1.5mg/kg x 1, i.v.). The results obtained were as follows : 1) The neutrophil counts became slightly elevated at 24 hrs, reached their nadir at 48 to 72 hrs, and recovered to normal in 5 to 6 days thereafter, except with 6 MP which produced no significant change but for a temporary elevation after dosages. 2) Except in the group administrated 6MP, which caused no significant hematorogical changes, the AP changes were similar in all of the animal groups : after temporary depression, it became elevated for 5 to 6 days, and recovered to normal about 9 days thereafter. 3) SP showed no changes in the 25mg/kg x 10 CP and the 6MP groups, it became elevated in 2 or 3 days after the administration of MMC, VBT, or Thio-TEPA to recover to normal in 5 to 10 days thereafter. 4) 60 Co irradiation (1,000 rad/whole body x 1) led to a temporary ascent in phil count followed by a descent from the 6th day on, and then a slow recovery to normal. AP was elevated from the third to the sixth days, and, after a depression on the tenth day, it returned to normal 24 days after irradiation, while SP showed a continued elevation from the 2nd to the 13th day. (author)

  14. Mechanism of inhibition of rat brain adenosine triphosphatase by mercuric chloride

    International Nuclear Information System (INIS)

    Chetty, C.S.; Rajanna, B.; Rajanna, S.

    1989-01-01

    Mercuric Chloride (Hg), a neurotoxic compound inhibited ATPase system of rat brain microsomes. Membrane bound enzymes, Na + -K + ATPase (IC 50 = 2.35 x 10 -7M ) and K-paranitrophenyl phosphatase (K-PNPPase) (IC 50 = 2.7 x 10 -7M ) and 3 H-Ouabain binding (IC 50 = 3.3 x 10 -7M ) were inhibited by Hg at micromolar concentrations in a dose dependent manner. Hydrolysis of ATP was linear with time with or without Hg in the reaction mixtures. Altered pH or temperature versus enzyme activity showed higher inhibition by Hg at basic pH (8.0-9.0) and at lower temperatures (17-32 degree C). Activation energy (ΔE) values were increased at 27-37 degree C in the presence of Hg. Kinetic studies of cationic-substrate activation of Na + -K + ATPase and K-PNPPase in the presence of Hg showed significant changes in kinetic constant (K m and V max ). Inhibition of Na + -K + ATPase was partially restored by repeated washings of microsomes. Preincubation with sulfhydryl agents protected Na + -K + ATPase from Hg inhibition. Cumulative inhibition studies with Hg and ouabain indicated possible interaction between the two inhibitors of Na + -K + ATPase by interacting at Na + and K + sites

  15. Receptor protein tyrosine phosphatase alpha is essential for hippocampal neuronal migration and long-term potentiation

    DEFF Research Database (Denmark)

    Petrone, Angiola; Battaglia, Fortunato; Wang, Cheng

    2003-01-01

    Despite clear indications of their importance in lower organisms, the contributions of protein tyrosine phosphatases (PTPs) to development or function of the mammalian nervous system have been poorly explored. In vitro studies have indicated that receptor protein tyrosine phosphatase alpha...

  16. Synthesis and phosphatase activity of a Cobalt(II) phenanthroline ...

    Indian Academy of Sciences (India)

    MAMONI GARAI

    2017-09-19

    Sep 19, 2017 ... Synthesis and phosphatase activity of a Cobalt(II) phenanthroline complex. MAMONI GARAIa ... tion, cobalt complexes have gained importance because of their application as ... 2.3 Physical measurements. Infrared spectrum ...

  17. Phosphatase and tensin homologue deleted on chromosome 10 ...

    African Journals Online (AJOL)

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor gene deleted or mutated in many human cancers such as glioblastoma, spinal tumors, prostate, bladder, adrenals, thyroid, breast, endometrium, and colon cancers. They result from loss of heterozygosity (LOH) for the PTEN ...

  18. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B

    International Nuclear Information System (INIS)

    Brown-Shimer, S.; Johnson, K.A.; Bruskin, A.; Green, N.R.; Hill, D.E.; Lawrence, J.B.; Johnson, C.

    1990-01-01

    The inactivation of growth suppressor genes appears to play a major role in the malignant process. To assess whether protein phosphotyrosyl phosphatases function as growth suppressors, the authors have isolated a cDNA clone encoding human protein phosphotyrosyl phosphatase 1B for structural and functional characterization. The translation product deduced from the 1,305-nucleotide open reading frame predicts a protein containing 435 amino acids and having a molecular mass of 49,966 Da. The amino-terminal 321 amino acids deduced from the cDNA sequence are identical to the empirically determined sequence of protein phosphotyrosyl phosphatase 1B. A genomic clone has been isolated and used in an in situ hybridization to banded metaphase chromosomes to determine that the gene encoding protein phosphotyrosyl phosphatase 1B maps as a single-copy gene to the long arm of chromosome 20 in the region q13.1-q13.2

  19. A therapeutic exploratory study to determine the efficacy and safety of calcineurin-inhibitor-free de-novo immunosuppression after liver transplantation: CILT

    Directory of Open Access Journals (Sweden)

    Lorf Thomas

    2010-04-01

    Full Text Available Abstract Background Immunosuppression with calcineurin inhibitors (CNI increases the risk of renal dysfunction after orthotopic liver transplantation (OLT. Controlled trials have shown improvement of renal function in patients that received delayed and/or reduced-dose CNI after OLT. Delaying immunosuppression with CNI in combination with induction therapy does not increase the risk of acute rejection but reduces the incidence of acute renal dysfunction. Based on this clinical data this study protocol was designed to assess the efficacy and safety of calcineurin-inhibitor-free de-novo immunosuppression after liver transplantation. Methods/Design A prospective therapeutic exploratory, non-placebo controlled, two stage monocenter trial in a total of 29 liver transplant patients was designed to assess the safety and efficacy of de-novo CNI-free immunosuppression with basiliximab, mycophenolate sodium, prednisolone and everolimus. The primary endpoint is the rate of steroid resistant rejections. Secondary endpoints are the incidence of acute rejection, kidney function (assessed by incidence and duration of renal replacement therapy, incidence of chronic renal failure, and measurement glomerular filtration rate, liver allograft function (assessed by measurement of AST, ALT, total bilirubin, AP, GGT, treatment failure, (i. e., re-introduction of CNI, incidence of adverse events, and mortality up to one year after OLT. Discussion This prospective, two-stage, single-group pilot study represents an intermediate element of the research chain. If the data of the phase II study corroborates safety of de-novo CNI-free immunosuppressive regimen this should be confirmed in a randomized, prospective, controlled double-blinded clinical trial. The exploratory data from this trial may then also facilitate the design (e. g. sample size calculation of this phase III trial. Trial registration number NCT00890253 (clinicaltrials.gov

  20. Andrographolide inhibits hypoxia-induced hypoxia-inducible factor 1α and endothelin 1 expression through the heme oxygenase 1/CO/cGMP/MKP-5 pathways in EA.hy926 cells.

    Science.gov (United States)

    Lin, Hung-Chih; Su, Shih-Li; Lin, Wan-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Lii, Chong-Kuei; Chen, Haw-Wen

    2018-03-01

    Andrographolide is a potent anti-inflammatory agent found in Andrographis paniculata. Endothelin 1 (ET-1) is an endothelium-derived vasoconstrictor with pro-inflammatory properties secreted in response to hypoxia. Mitogen-activated protein kinase phosphatase 5 (MKP-5) is a dual-specificity phosphatase that dephosphorylates threonine and tyrosine residues of MAPKs. We showed previously that hypoxia-induced HIF-1α expression and ET-1 secretion are dependent on p38 MAPK in EA.hy926 cells. Here, we investigate what role MKP-5 plays in andrographolide's inhibition of hypoxia-induced expression of HIF-1α and ET-1. Hypoxic conditions were created using the hypoxia-mimetic agent CoCl 2 . Andrographolide enhanced HO-1 and MKP-5 expression and cellular cGMP content in addition to inhibiting hypoxia-induced ROS generation. Concomitantly, the HO-1 byproduct CO and the cGMP analogue 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP) increased MKP-5 expression, and pretreatment with CO and 8-Br-cGMP inhibited hypoxia-induced HIF-1α and ET-1 expression. Transfection of HO-1 siRNA or pretreatment with the HO-1 inhibitor ZnPP-9 or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a specific inhibitor of soluble guanylate cyclase, reduced andrographolide-induced MKP-5 expression. Moreover, silencing MKP-5 or treatment with the phosphatase inhibitor vanadate abrogated andrographolide's suppressing hypoxia-induced p38 MAPK activation and HIF-1α expression. The inhibition of hypoxia-induced HIF-1α and ET-1 expression by andrographolide is likely associated with HO-1/CO/cGMP/MKP-5 pathways, which is involved in inhibiting hypoxia-induced p38 MAPK activation. © 2017 Wiley Periodicals, Inc.

  1. Regulation of Akt/Protein Kinase B Signaling by a Novel Protein Phosphatase in Breast Cancer Cells

    National Research Council Canada - National Science Library

    Brognard, John; Newton, Alexandra

    2008-01-01

    ...: cell proliferation, growth, and apoptosis. Finally, since this phosphatase resides in a location of frequent loss of heterozygosity in breast cancer, we sought to determine if this phosphatase played a role in breast tumorigenesis...

  2. The effect of potassium iodide on the production of acid phosphatase by Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    P. S. Grover

    2003-06-01

    Full Text Available The present study was undertaken to find out the in vitro effect of potassium iodide (KI on the production of acid phosphatase by fully characterized strain of S.schenckii isolated from a patient of Cutaneous Sporotrichosis. The enzyme acid phosphatase was estimated during the 3 phases of growth of S.schenckii, without and with three concentrations of KI incorporated in the culture medium. In the control and in the test proper, with various concentrations of KI, no adverse effect of KI was observed on the production of acid phosphatase in early and mid log phase of fungal growth. Whereas in the exponential phase in test proper, there was a statistical significant decrease in the enzyme production with 0.8% and 3.2% of KI. The low activity at 0.8% and 3.2% KI indicates that KI has inhibitory effect on the growth of S.schenckii and has led to decrease in the activity of the enzyme. (Med J Indones 2003; 12: 65-8 Keywords: S.schenckii, acid phosphatase, potassium iodide

  3. Calcineurin Inhibitors in the Treatment of Primary Focal Segmental Glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Louis-Philippe Laurin

    2017-02-01

    Full Text Available Purpose of review: Primary focal segmental glomerulosclerosis (FSGS is the most common cause of nephrotic syndrome in adults. Glucocorticoids have been evaluated in the treatment of primary FSGS in numerous retrospective studies. Evidence suggesting a role for including calcineurin inhibitors (CNIs in early therapy remains limited. The aim of this study was to systematically review the literature examining the efficacy of CNIs in the treatment of primary FSGS both as first-line therapy and as an adjunctive agent in steroid-resistant patients, with respect to remission in proteinuria and renal survival. Sources of information: PubMed and EMBASE were searched from inception to August 2014 for prospective controlled trials, and case-control and cohort studies. Findings: After systematically applying our inclusion criteria, a total of 152 titles and abstracts were identified. Six randomized controlled trials and 2 cohort studies were reviewed. Three randomized controlled trials compared CNIs with placebo or supportive therapy. The pooled relative “risk” of proteinuria remission associated with cyclosporine was 7.0 (95% confidence interval, 2.9-16.8 compared with placebo/supportive therapy. There was very low heterogeneity among these studies with an I -squared of 0%. Three studies compared CNIs with another immunosuppressive agent. All prospective trials were conducted in patients with primary FSGS deemed steroid-resistant. Limitations: The relatively small number of included studies and their heterogeneity with respect to treatment protocols, and possible publication bias, limit conclusions drawn from this systematic review. Implications: The efficacy of CNIs has been evaluated in steroid-resistant primary FSGS patients. There is no evidence supporting their role as first-line therapy. Further studies are needed to determine this role.

  4. SH2 domain-containing phosphatase 1 regulates pyruvate kinase M2 in hepatocellular carcinoma.

    Science.gov (United States)

    Tai, Wei-Tien; Hung, Man-Hsin; Chu, Pei-Yi; Chen, Yao-Li; Chen, Li-Ju; Tsai, Ming-Hsien; Chen, Min-Husan; Shiau, Chung-Wai; Boo, Yin-Pin; Chen, Kuen-Feng

    2016-04-19

    Pyruvate kinase M2 (PKM2) is known to promote tumourigenesis through dimer formation of p-PKM2Y105. Here, we investigated whether SH2-containing protein tyrosine phosphatase 1 (SHP-1) decreases p-PKM2Y105 expression and, thus, determines the sensitivity of sorafenib through inhibiting the nuclear-related function of PKM2. Immunoprecipitation and immunoblot confirmed the effect of SHP-1 on PKM2Y105 dephosphorylation. Lactate production was assayed in cells and tumor samples to determine whether sorafenib reversed the Warburg effect. Clinical hepatocellular carcinoma (HCC) tumor samples were assessed for PKM2 expression. SHP-1 directly dephosphorylated PKM2 at Y105 and further decreased the proliferative activity of PKM2; similar effects were found in sorafenib-treated HCC cells. PKM2 was also found to determine the sensitivity of targeted drugs, such as sorafenib, brivanib, and sunitinib, by SHP-1 activation. Significant sphere-forming activity was found in HCC cells stably expressing PKM2. Clinical findings suggest that PKM2 acts as a predicting factor of early recurrence in patients with HCC, particularly those without known risk factors (63.6%). SHP-1 dephosphorylates PKM2 at Y105 to inhibit nuclear function of PKM2 and determines the efficacy of targeted drugs. Targeting PKM2 by SHP-1 might provide new therapeutic insights for patients with HCC.

  5. miR-141-3p inhibits human stromal (mesenchymal) stem cell proliferation and differentiation

    DEFF Research Database (Denmark)

    Qiu, Weimin; Kassem, Moustapha

    2014-01-01

    Wnt signaling determines human stromal (mesenchymal) stem cell (hMSC) differentiation fate into the osteoblast or adipocyte lineage. microRNAs (miRNAs) are small RNA molecules of 21-25 nucleotides that regulate many aspects of osteoblast biology. Thus, we examined miRNAs regulated by Wnt signaling...... in hMSC. We identified miRNA (miR)-141-3p as a Wnt target which in turn inhibited Wnt signaling. Moreover, miR-141-3p inhibited hMSC proliferation by arresting cells at the G1 phase of the cell cycle. miR-141-3p inhibited osteoblast differentiation of hMSC as evidenced by reduced alkaline phosphatase...... activity, gene expression and in vitro mineralized matrix formation. Bioinformatic studies, Western blot analysis and 3'UTR reporter assay demonstrated that cell division cycle 25A (CDC25A) is a direct target of miR-141-3p. siRNA-mediated knock-down of CDC25A inhibited hMSC proliferation and osteoblast...

  6. Bifunctional coating based on carboxymethyl chitosan with stable conjugated alkaline phosphatase for inhibiting bacterial adhesion and promoting osteogenic differentiation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dong; Neoh, Koon Gee, E-mail: chenkg@nus.edu.sg; Kang, En-Tang

    2016-01-01

    Graphical abstract: - Highlights: • Alkaline phosphatase was immobilized on carboxymethyl chitosan coating on Ti. • The coating is bifunctional; resists bacterial adhesion and enhances cell functions. • Osteogenic differentiation of osteoblasts and stem cells is enhanced on the coating. • The coating remains stable and functional after ethanol treatment and autoclaving. - Abstract: In this work, alkaline phosphatase (ALP) was covalently immobilized on carboxymethyl chitosan (CMCS)-coated polydopamine (PDA)-functionalized Ti to achieve a bifunctional surface. Our results showed ∼89% reduction in Staphylococcus epidermidis adhesion on this surface compared to that on pristine Ti. The ALP-modified Ti supported cell proliferation, and significantly enhanced cellular ALP activity and calcium deposition of osteoblasts, human mesenchymal stem cells (hMSCs) and human adipose-derived stem cells (hADSCs). The extent of enhancement in the functions of these cells is dependent on the surface density of immobilized ALP. The substrate prepared using an ALP solution of 50 μg/cm{sup 2} resulted in 44%, 54% and 129% increase in calcium deposited by osteoblasts, hMSCs and hADSCs, respectively, compared to those cultured on pristine Ti. The ALP-modified substrates also promoted the osteogenic differentiation of hMSCs and hADSCs by up-regulating gene expressions of runt-related transcription factor 2 (RUNX2), osterix (OSX), and osteocalcin (OC) in the two types of stem cells. The surface-immobilized ALP was stable after being subjected to 1 h immersion in 70% ethanol and autoclaving at 121 °C for 20 min. However, the enzymatic bioactivity of the surface-immobilized ALP was reduced by about 50% after these substrates were immersed in phosphate buffered saline (PBS) or PBS containing lysozyme for 14 days.

  7. [Effects of soy bean isoflavone on inhibition of benign prostatic hyperplasia and the expressions of NO and NOS of rats].

    Science.gov (United States)

    Yang, Aiqing; Ren, Guofeng; Tang, Ling; Jiang, Weiwei

    2009-03-01

    To explore the inhibitive effect of soybean isoflavone on the prostatic hyperplasia on the expressions of nitric oxid and nitric oxide synthase in the prostatic hyperplasia rats. Subcutaneously injected testosterone propionate were to induce prostate hyperplasia in rats. The changes of prostate wet weight, prostatic index, liver index, the changes of some biochemical indexes in rat prostate tissue in the control and the treatment, the low, moderate, high dose groups of soybean isoflavone groups were observed. The prostate wet weight and prostatic index in all dose groups were merely lower than those in the treatment and the moderate groups were lowest in all dose group. There were no significant differences in liver index, urea nitrogen, glutamic-pyruvic transaminase of each group. Acid phosphatase, prostatic acid phosphatase and lactate dehydrogenase in all dose groups were merely lower than those in the treatment group. Nitric oxide and nitric oxide synthase in all dose groups were merely higher than those in the treatment group. Soybean isoflavone could inhibit prostate hyperplasia and increase the expressions of nitric oxide and nitric oxide synthase in rats.

  8. Acid phosphatases in seeds and developing of squash (Cucurbita ficifolia

    Directory of Open Access Journals (Sweden)

    Irena Lorenc-Kubis

    2014-01-01

    Full Text Available Changes in protein content and acid phosphatase activity were followed during germination (imbition through seedlings development in extracts from cotyledons of squash (Cucurbita ficifolia. It has been shown that the activity of acid phosphatase was initially low and than increased to a maximum after 6 days of imbition. Acid phosphates were isolated from cotyledons of seeds and from 6-, 10- and 22-days old seedlings by extraction the proteins with 0.1 M acetate buffer pH 5.1, precipitation with ethanol and by affinity chromatography on con A-Sepharose. Two glycoprotein enzymes AcPase Ba and AcPase Bb which differ in their affinity to immobilized con A were obtained. Both acid phosphatates retained the enzyme activity after binding to free con A. Rocket affinity electrophoresis of AcPase Ba and AcPase Bb, isolated from cotyledons of seeds and seedlings, revealed differences in their ability to bind to con A during seeds germination and seedling develop-ment indicating changes in their sugar component. Con A was found to activate both enzymes. The enzymes cross-reacted with monospecific antibodies raised against grass seed acid phosphatate Ba indicating an antigenic relationship between squash and grass acid phosphatases.

  9. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte alkaline phosphatase test. 864.7660 Section 864.7660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7660...

  10. Structural Insight into the Critical Role of the N-Terminal Region in the Catalytic Activity of Dual-Specificity Phosphatase 26.

    Directory of Open Access Journals (Sweden)

    Eun-Young Won

    Full Text Available Human dual-specificity phosphatase 26 (DUSP26 is a novel target for anticancer therapy because its dephosphorylation of the p53 tumor suppressor regulates the apoptosis of cancer cells. DUSP26 inhibition results in neuroblastoma cell cytotoxicity through p53-mediated apoptosis. Despite the previous structural studies of DUSP26 catalytic domain (residues 61-211, DUSP26-C, the high-resolution structure of its catalytically active form has not been resolved. In this study, we determined the crystal structure of a catalytically active form of DUSP26 (residues 39-211, DUSP26-N with an additional N-terminal region at 2.0 Å resolution. Unlike the C-terminal domain-swapped dimeric structure of DUSP26-C, the DUSP26-N (C152S monomer adopts a fold-back conformation of the C-terminal α8-helix and has an additional α1-helix in the N-terminal region. Consistent with the canonically active conformation of its protein tyrosine phosphate-binding loop (PTP loop observed in the structure, the phosphatase assay results demonstrated that DUSP26-N has significantly higher catalytic activity than DUSP26-C. Furthermore, size exclusion chromatography-multiangle laser scattering (SEC-MALS measurements showed that DUSP26-N (C152S exists as a monomer in solution. Notably, the crystal structure of DUSP26-N (C152S revealed that the N-terminal region of DUSP26-N (C152S serves a scaffolding role by positioning the surrounding α7-α8 loop for interaction with the PTP-loop through formation of an extensive hydrogen bond network, which seems to be critical in making the PTP-loop conformation competent for phosphatase activity. Our study provides the first high-resolution structure of a catalytically active form of DUSP26, which will contribute to the structure-based rational design of novel DUSP26-targeting anticancer therapeutics.

  11. Phosphatase activity in sandy soil influenced by mycorrhizal and non-mycorrhizal cover crops

    Directory of Open Access Journals (Sweden)

    Alceu Kunze

    2011-06-01

    Full Text Available Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg and corn spurry (Spergula arvensis L.. The control treatment consisted of resident vegetation (fallow in the winter season. In the summer, a mixture of pearl millet (Pennisetum americanum L. with sunnhemp (Crotalaria juncea L. or with soybean (Glycine max L. was sown in all plots. Soil cores (0-10 cm and root samples were collected in six growing seasons (winter and summer of each year. Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

  12. Phosphorylation of Mycobacterium tuberculosis Ser/Thr phosphatase by PknA and PknB.

    Directory of Open Access Journals (Sweden)

    Andaleeb Sajid

    2011-03-01

    Full Text Available The integrated functions of 11 Ser/Thr protein kinases (STPKs and one phosphatase manipulate the phosphorylation levels of critical proteins in Mycobacterium tuberculosis. In this study, we show that the lone Ser/Thr phosphatase (PstP is regulated through phosphorylation by STPKs.PstP is phosphorylated by PknA and PknB and phosphorylation is influenced by the presence of Zn(2+-ions and inorganic phosphate (Pi. PstP is differentially phosphorylated on the cytosolic domain with Thr(137, Thr(141, Thr(174 and Thr(290 being the target residues of PknB while Thr(137 and Thr(174 are phosphorylated by PknA. The Mn(2+-ion binding residues Asp(38 and Asp(229 are critical for the optimal activity of PstP and substitution of these residues affects its phosphorylation status. Native PstP and its phosphatase deficient mutant PstP(c (D38G are phosphorylated by PknA and PknB in E. coli and addition of Zn(2+/Pi in the culture conditions affect the phosphorylation level of PstP. Interestingly, the phosphorylated phosphatase is more active than its unphosphorylated equivalent.This study establishes the novel mechanisms for regulation of mycobacterial Ser/Thr phosphatase. The results indicate that STPKs and PstP may regulate the signaling through mutually dependent mechanisms. Consequently, PstP phosphorylation may play a critical role in regulating its own activity. Since, the equilibrium between phosphorylated and non-phosphorylated states of mycobacterial proteins is still unexplained, understanding the regulation of PstP may help in deciphering the signal transduction pathways mediated by STPKs and the reversibility of the phenomena.

  13. Characterization of protein phosphatase 5 from three lepidopteran insects: Helicoverpa armigera, Mythimna separata and Plutella xylostella.

    Directory of Open Access Journals (Sweden)

    Xi'en Chen

    Full Text Available Protein phosphatase 5 (PP5, a unique member of serine/threonine phosphatases, regulates a variety of biological processes. We obtained full-length PP5 cDNAs from three lepidopteran insects, Helicoverpa armigera, Mythimna separata and Plutella xylostella, encoding predicted proteins of 490 (55.98 kDa, 490 (55.82 kDa and 491 (56.07 kDa amino acids, respectively. These sequences shared a high identity with other insect PP5s and contained the TPR (tetratricopeptide repeat domains at N-terminal regions and highly conserved C-terminal catalytic domains. Tissue- and stage-specific expression pattern analyses revealed these three PP5 genes were constitutively expressed in all stages and in tested tissues with predominant transcription occurring at the egg and adult stages. Activities of Escherichia coli-produced recombinant PP5 proteins could be enhanced by almost 2-fold by a known PP5 activator: arachidonic acid. Kinetic parameters of three recombinant proteins against substrate pNPP were similar both in the absence or presence of arachidonic acid. Protein phosphatases inhibitors, okadaic acid, cantharidin, and endothall strongly impeded the activities of the three recombinant PP5 proteins, as well as exerted an inhibitory effect on crude protein phosphatases extractions from these three insects. In summary, lepidopteran PP5s share similar characteristics and are all sensitive to the protein phosphatases inhibitors. Our results also imply protein phosphatase inhibitors might be used in the management of lepidopteran pests.

  14. Relationship of serum and saliva calcium, phosphorus and alkaline phosphatase with dry mouth feeling in menopause.

    Science.gov (United States)

    Agha-Hosseini, Farzaneh; Mirzaii-Dizgah, Iraj; Moosavi, Mahdieh-Sadat

    2012-06-01

    The aim of this study was to compare serum and saliva calcium, phosphorus and alkaline phosphatase of menopausal women with/without dry mouth (DM) feeling. The composition of saliva in menopause women with/without DM feeling is different. Some of these differences are in hormones that are related to bone turnover. A case-control study was carried out on 60 selected menopausal women aged 45-79 years with or without DM feeling (30 as case, 30 as control), conducted at the Clinic of Oral Medicine, Tehran University of Medical Sciences. The phosphorus concentration was measured by photometrical measurement of the blue colour formed after the addition of ammonium molybdate and stannous chloride; calcium was measured by Arsenazo reaction; and alkaline phosphatase by the pNPP-AMP method. Statistical analysis of Student's t-test was used. The mean serum phosphorus and alkaline phosphatase, stimulated and unstimulated saliva calcium and alkaline phosphatase levels were significantly higher in the menopausal women suffering from DM. There were no significant differences between groups regarding saliva phosphorus and serum calcium concentration. Calcium, phosphorus and alkaline phosphatase appear associated with DM feeling in menopause. © 2012 The Gerodontology Society and John Wiley & Sons A/S.

  15. In vitro studies on the translocation of acid phosphatase into the endoplasmic reticulum of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Krebs, H O; Hoffschulte, H K; Müller, M

    1989-05-01

    We demonstrate here the in vitro translocation of yeast acid phosphatase into rough endoplasmic reticulum. The precursor of the repressible acid phosphatase from Saccharomyces cerevisiae encoded by the PHO5 gene, was synthesized in a yeast lysate programmed with in vitro transcribed PHO5 mRNA. In the presence of yeast rough microsomes up to 16% of the acid phosphatase synthesized was found to be translocated into the microsomes, as judged by proteinase resistance, and fully core-glycosylated. The translocation efficiency however, decreased to 3% if yeast rough microsomes were added after synthesis of acid phosphatase had been terminated. When a wheat-germ extract was used for in vitro synthesis, the precursor of acid phosphatase was translocated into canine pancreatic rough microsomes and thereby core-glycosylated in a signal-recognition-particle-dependent manner. Replacing canine with yeast rough microsomes in the wheat-germ translation system, however, resulted in a significant decrease in the ability to translocate and glycosylate the precursor. Translocation and glycosylation were partially restored by a high-salt extract prepared from yeast ribosomes. The results presented here suggest that yeast-specific factors are needed to translocate and glycosylate acid phosphatase efficiently in vitro.

  16. FK506 protects against articular cartilage collagenous extra-cellular matrix degradation

    NARCIS (Netherlands)

    M. Siebelt (Michiel); A.E. van der Windt (Anna); H.C. Groen (Harald); M. Sandker (Marjan); J.H. Waarsing (Jan); C. Müller (Cristina); M. de Jong (Marcel); H. Jahr (Holger); H.H. Weinans (Harrie)

    2014-01-01

    textabstractObjective: Osteoarthritis (OA) is a non-rheumatologic joint disease characterized by progressive degeneration of the cartilage extra-cellular matrix (ECM), enhanced subchondral bone remodeling, activation of synovial macrophages and osteophyte growth. Inhibition of calcineurin (Cn)

  17. Protein tyrosine phosphatase encoded in Cotesia plutellae bracovirus suppresses a larva-to-pupa metamorphosis of the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Kim, Jiwan; Hepat, Rahul; Lee, Daeweon; Kim, Yonggyun

    2013-09-01

    Parasitization by an endoparasitoid wasp, Cotesia plutellae, inhibits a larva-to-pupa metamorphosis of the diamondback moth, Plutella xylostella. This study tested an inhibitory effect of C. plutellae bracovirus (CpBV) on the metamorphosis of P. xylostella. Parasitized P. xylostella exhibited significantly reduced prothoracic gland (PTG) development at the last instar compared to nonparasitized larvae. Expression of the ecdysone receptor (EcR) was markedly suppressed during the last instar larvae parasitized by C. plutellae. By contrast, expression of the insulin receptor (InR) significantly increased in the parasitized larvae. Microinjection of CpBV significantly inhibited the larva-to-pupa metamorphosis of nonparasitized larvae in a dose-dependent manner. Injection of CpBV also inhibited the expression of the EcR and increased the expression of the InR. Individual CpBV segments were transiently expressed in its encoded genes in nonparasitized larvae and screened to determine antimetamorphic viral gene(s). Out of 21 CpBV segments, two viral segments (CpBV-S22 and CpBV-S27) were proved to inhibit larva-to-pupa metamorphosis by transient expression assay. RNA interference of each gene encoded in the viral segments was applied to determine antimetamorphic gene(s). Protein tyrosine phosphatase, early expressed gene, and four hypothetical genes were selected to be associated with the antimetamorphic activity of CpBV. These results suggest that antimetamorphosis of P. xylostella parasitized by C. plutellae is induced by inhibiting PTG development and subsequent ecdysteroid signaling with viral factors of CpBV. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Gamma-glutamyltransferase, aspartate aminotransferase and alkaline phosphatase as markers of alcohol consumption in out-patient alcoholics

    DEFF Research Database (Denmark)

    Gluud, C; Andersen, I; Dietrichson, O

    1981-01-01

    and alkaline phosphatase in 18% and 7%. Neither the activity of gamma-glutamyltransferase, aspartate aminotransferase nor alkaline phosphatase showed any significant (P greater than 0.05) correlation with the history of alcohol consumption. The activities of gamma-glutamyltransferase and aspartate...

  19. ETS1 mediates MEK1/2-dependent overexpression of cancerous inhibitor of protein phosphatase 2A (CIP2A in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Anchit Khanna

    2011-03-01

    Full Text Available EGFR-MEK-ERK signaling pathway has an established role in promoting malignant growth and disease progression in human cancers. Therefore identification of transcriptional targets mediating the oncogenic effects of the EGFR-MEK-ERK pathway would be highly relevant. Cancerous inhibitor of protein phosphatase 2A (CIP2A is a recently characterized human oncoprotein. CIP2A promotes malignant cell growth and is over expressed at high frequency (40-80% in most of the human cancer types. However, the mechanisms inducing its expression in cancer still remain largely unexplored. Here we present systematic analysis of contribution of potential gene regulatory mechanisms for high CIP2A expression in cancer. Our data shows that evolutionary conserved CpG islands at the proximal CIP2A promoter are not methylated both in normal and cancer cells. Furthermore, sequencing of the active CIP2A promoter region from altogether seven normal and malignant cell types did not reveal any sequence alterations that would increase CIP2A expression specifically in cancer cells. However, treatment of cancer cells with various signaling pathway inhibitors revealed that CIP2A mRNA expression was sensitive to inhibition of EGFR activity as well as inhibition or activation of MEK-ERK pathway. Moreover, MEK1/2-specific siRNAs decreased CIP2A protein expression. Series of CIP2A promoter-luciferase constructs were created to identify proximal -27 to -107 promoter region responsible for MEK-dependent stimulation of CIP2A expression. Additional mutagenesis and chromatin immunoprecipitation experiments revealed ETS1 as the transcription factor mediating stimulation of CIP2A expression through EGFR-MEK pathway. Thus, ETS1 is probably mediating high CIP2A expression in human cancers with increased EGFR-MEK1/2-ERK pathway activity. These results also suggest that in addition to its established role in invasion and angiogenesis, ETS1 may support malignant cellular growth via regulation of

  20. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate.

    Science.gov (United States)

    Halawa, Mohamed Ibrahim; Gao, Wenyue; Saqib, Muhammad; Kitte, Shimeles Addisu; Wu, Fengxia; Xu, Guobao

    2017-09-15

    In this work, we designed highly sensitive and selective luminescent detection method for alkaline phosphatase using bovine serum albumin functionalized gold nanoclusters (BSA-AuNCs) as the nanosensor probe and pyridoxal phosphate as the substrate of alkaline phosphatase. We found that pyridoxal phosphate can quench the fluorescence of BSA-AuNCs and pyridoxal has little effect on the fluorescence of BSA-AuNCs. The proposed mechanism of fluorescence quenching by PLP was explored on the basis of data obtained from high-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), UV-vis spectrophotometry, fluorescence spectroscopy, fluorescence decay time measurements and circular dichroism (CD) spectroscopy. Alkaline phosphatase catalyzes the hydrolysis of pyridoxal phosphate to generate pyridoxal, restoring the fluorescence of BSA-AuNCs. Therefore, a recovery type approach has been developed for the sensitive detection of alkaline phosphatase in the range of 1.0-200.0U/L (R 2 =0.995) with a detection limit of 0.05U/L. The proposed sensor exhibit excellent selectivity among various enzymes, such as glucose oxidase, lysozyme, trypsin, papain, and pepsin. The present switch-on fluorescence sensing strategy for alkaline phosphatase was successfully applied in human serum plasma with good recoveries (100.60-104.46%), revealing that this nanosensor probe is a promising tool for ALP detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. YbiV from E. coli K12 is a HAD phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Anne; Lee, Seok-Yong; McCullagh, Emma; Silversmith, Ruth E.; Wemmer, David E.

    2004-03-16

    The protein YbiV from Escherichia coli K12 MG1655 is a hypothetical protein with sequence homology to the haloacid dehalogenase (HAD) superfamily of proteins. Although numerous members of this family have been identified, the functions of few are known. Using the crystal structure, sequence analysis, and biochemical assays, we have characterized ybiV as a HAD phosphatase. The crystal structure of YbiV reveals a two domain protein, one with the characteristic HAD hydrolase fold, the other an inserted a/b fold. In an effort to understand the mechanism we also solved and report the structures of YbiV in complex with beryllofluoride (BeF3-) and aluminum trifluoride (AlF3) which have been shown to mimic the phosphorylated intermediate and transition state for hydrolysis, respectively, in analogy to other HAD phosphatases. Analysis of the structures reveals the substrate binding cavity, which is hydrophilic in nature. Both structure and sequence homology indicate ybiV may be a sugar phosphatase, which is supported by biochemical assays which measured the release of free phosphate on a number of sugar-like substrates. We also investigated available genomic and functional data in an effort to determine the physiological substrate.

  2. Efficacy of topical tacrolimus 0.1% in active plaque morphea: randomized, double-blind, emollient-controlled pilot study.

    NARCIS (Netherlands)

    Kroft, Ilse; Groeneveld, T.J.; Seyger, M.M.B.; Jong, E.M.G.J. de

    2009-01-01

    BACKGROUND: Tacrolimus, a calcineurin inhibitor, is an immunomodulating and anti-inflammatory drug that inhibits T-cell activation and production of cytokines. The elevated level of cytokines in morphea causes fibroblast proliferation and subsequent overproduction of collagen. Theoretically,

  3. The Association of Endothelin-1 Signaling with Bone Alkaline Phosphatase Expression and Protumorigenic Activities in Canine Osteosarcoma.

    Science.gov (United States)

    Neumann, Z L; Pondenis, H C; Masyr, A; Byrum, M L; Wycislo, K L; Fan, T M

    2015-01-01

    Canine osteosarcoma (OS) is an aggressive sarcoma characterized by pathologic skeletal resorption and pulmonary metastases. A number of negative prognostic factors, including bone alkaline phosphatase, have been identified in dogs with OS, but the underlying biologic factors responsible for such observations have not been thoroughly investigated. Endothelin-1-mediated signaling is active during bone repair, and is responsible for osteoblast migration, survival, proliferation, and bone alkaline phosphatase expression. The endothelin-1 signaling axis is active in canine OS cells, and this pathway is utilized by malignant osteoblasts for promoting cellular migration, survival, proliferation, and bone alkaline phosphatase activities. 45 dogs with appendicular OS. The expressions of endothelin-1 and endothelin A receptor were studied in OS cell lines and in samples from spontaneously occurring tumors. Activities mediated by endothelin-1 signaling were investigated by characterizing responses in 3 OS cell lines. In 45 dogs with OS, bone alkaline phosphatase concentrations were correlated with primary tumor osteoproductivity. Canine OS cells express endothelin-1 and endothelin A receptor, and this signaling axis mediates OS migration, survival, proliferation, and bone alkaline phosphatase activities. In OS-bearing dogs, circulating bone alkaline phosphatase activities were positively correlated with primary tumor relative bone mineral densities. Canine OS cells express endothelin-1 and functional endothelin A receptors, with the potential for a protumorigenic signaling loop. Increases in bone alkaline phosphatase activity are associated with osteoblastic OS lesions, and might be an epiphenomenon of active endothelin-1 signaling or excessive osteoproduction within the localized bone microenvironment. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  4. Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes

    International Nuclear Information System (INIS)

    Arino, J.; Woon, Chee Wai; Brautigan, D.L.; Miller, T.B. Jr.; Johnson, G.L.

    1988-01-01

    Two cDNA clones were isolated from a human liver library that encode two phosphatase 2A catalytic subunits. The two cDNAs differed in eight amino acids (97% identity) with three nonconservative substitutions. All of the amino acid substitutions were clustered in the amino-terminal domain of the protein. Amino acid sequence of one human liver clone (HL-14) was identical to the rabbit skeletal muscle phosphatase 2A cDNA (with 97% nucleotide identity). The second human liver clone (HL-1) is encoded by a separate gene, and RNA gel blot analysis indicates that both mRNAs are expressed similarly in several human clonal cell lines. Sequence comparison with phosphatase 1 and 2A indicates highly divergent amino acid sequences at the amino and carboxyl termini of the proteins and identifies six highly conserved regions between the two proteins that are predicted to be important for phosphatase enzymatic activity

  5. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Robert J.; Beazley, Melanie J.; Wilson, Jarad J.; Taillefert, Martial; Sobecky, Patricia A.

    2005-04-05

    The overall goal of this project is to examine the role of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO{sub 4}{sup 3-}. During this phase of the project we have been conducting assays to determine the effects of pH, inorganic anions and organic ligands on U(VI) mineral formation and precipitation when FRC bacterial isolates were grown in simulated groundwater medium. The molecular characterization of FRC isolates has also been undertaken during this phase of the project. Analysis of a subset of gram-positive FRC isolates cultured from FRC soils (Areas 1, 2 and 3) and background sediments have indicated a higher percentage of isolates exhibiting phosphatase phenotypes (i.e., in particular those surmised to be PO{sub 4}{sup 3-}-irrepressible) relative to isolates from the reference site. A high percentage of strains that exhibited such putatively PO{sub 4}{sup 3-}-irrepressible phosphatase phenotypes were also resistant to the heavy metals lead and cadmium. Previous work on FRC strains, including Arthrobacter, Bacillus and Rahnella spp., has demonstrated differences in tolerance to U(VI) toxicity (200 {micro}M) in the absence of organophosphate substrates. For example, Arthrobacter spp. exhibited the greatest tolerance to U(VI) while the Rahnella spp. have been shown to facilitate the precipitation of U(VI) from solution and the Bacillus spp. demonstrate the greatest sensitivity to acidic conditions and high concentrations of U(VI). PCR-based detection of FRC strains are being conducted to determine if non-specific acid phosphatases of the known molecular classes [i.e., classes A, B and C] are present in these FRC isolates. Additionally, these

  6. Ivermectin resistant and susceptible third-stage larvae of Haemonchus contortus: cholinesterase and phosphatase activities

    Directory of Open Access Journals (Sweden)

    Consuelo Giménez-Pardo

    2004-03-01

    Full Text Available Cholinesterase and acid phosphatase (AP, but not alkaline phosphatase activities, were detected in cytosolic and membrane-bound fractions of ivermectin resistant and susceptible Haemonchus contortus infective-stage larvae. Some differences in acetylcholinesterase activity of cytosolic fractions and in the AP activity of these fractions as well as in the response to AP inhibitors by membrane-bound fractions were detected. Data are discussed.

  7. Phosphatase activity tunes two-component system sensor detection threshold.

    Science.gov (United States)

    Landry, Brian P; Palanki, Rohan; Dyulgyarov, Nikola; Hartsough, Lucas A; Tabor, Jeffrey J

    2018-04-12

    Two-component systems (TCSs) are the largest family of multi-step signal transduction pathways in biology, and a major source of sensors for biotechnology. However, the input concentrations to which biosensors respond are often mismatched with application requirements. Here, we utilize a mathematical model to show that TCS detection thresholds increase with the phosphatase activity of the sensor histidine kinase. We experimentally validate this result in engineered Bacillus subtilis nitrate and E. coli aspartate TCS sensors by tuning their detection threshold up to two orders of magnitude. We go on to apply our TCS tuning method to recently described tetrathionate and thiosulfate sensors by mutating a widely conserved residue previously shown to impact phosphatase activity. Finally, we apply TCS tuning to engineer B. subtilis to sense and report a wide range of fertilizer concentrations in soil. This work will enable the engineering of tailor-made biosensors for diverse synthetic biology applications.

  8. Crystal structure and putative substrate identification for the Entamoeba histolytica low molecular weight tyrosine phosphatase.

    Science.gov (United States)

    Linford, Alicia S; Jiang, Nona M; Edwards, Thomas E; Sherman, Nicholas E; Van Voorhis, Wesley C; Stewart, Lance J; Myler, Peter J; Staker, Bart L; Petri, William A

    2014-01-01

    Entamoeba histolytica is a eukaryotic intestinal parasite of humans, and is endemic in developing countries. We have characterized the E. histolytica putative low molecular weight protein tyrosine phosphatase (LMW-PTP). The structure for this amebic tyrosine phosphatase was solved, showing the ligand-induced conformational changes necessary for binding of substrate. In amebae, it was expressed at low but detectable levels as detected by immunoprecipitation followed by immunoblotting. A mutant LMW-PTP protein in which the catalytic cysteine in the active site was replaced with a serine lacked phosphatase activity, and was used to identify a number of trapped putative substrate proteins via mass spectrometry analysis. Seven of these putative substrate protein genes were cloned with an epitope tag and overexpressed in amebae. Five of these seven putative substrate proteins were demonstrated to interact specifically with the mutant LMW-PTP. This is the first biochemical study of a small tyrosine phosphatase in Entamoeba, and sets the stage for understanding its role in amebic biology and pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Advances in lanthanide-based luminescent peptide probes for monitoring the activity of kinase and phosphatase.

    Science.gov (United States)

    Pazos, Elena; Vázquez, M Eugenio

    2014-02-01

    Signaling pathways based on protein phosphorylation and dephosphorylation play critical roles in the orchestration of complex biochemical events and form the core of most signaling pathways in cells (i.e. cell cycle regulation, cell motility, apoptosis, etc.). The understanding of these complex signaling networks is based largely on the biochemical study of their components, i.e. kinases and phosphatases. The development of luminescent sensors for monitoring kinase and phosphatase activity is therefore an active field of research. Examples in the literature usually rely on the modulation of the fluorescence emission of organic fluorophores. However, given the exceptional photophysical properties of lanthanide ions, there is an increased interest in their application as emissive species for monitoring kinase and phosphatase activity. This review summarizes the advances in the development of lanthanide-based luminescent peptide sensors as tools for the study of kinases and phosphatases and provides a critical description of current examples and synthetic approaches to understand these lanthanide-based luminescent peptide sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase.

    Science.gov (United States)

    Guo, Xiao; Niemi, Natalie M; Coon, Joshua J; Pagliarini, David J

    2017-07-14

    The pyruvate dehydrogenase complex (PDC) is the primary metabolic checkpoint connecting glycolysis and mitochondrial oxidative phosphorylation and is important for maintaining cellular and organismal glucose homeostasis. Phosphorylation of the PDC E1 subunit was identified as a key inhibitory modification in bovine tissue ∼50 years ago, and this regulatory process is now known to be conserved throughout evolution. Although Saccharomyces cerevisiae is a pervasive model organism for investigating cellular metabolism and its regulation by signaling processes, the phosphatase(s) responsible for activating the PDC in S. cerevisiae has not been conclusively defined. Here, using comparative mitochondrial phosphoproteomics, analyses of protein-protein interactions by affinity enrichment-mass spectrometry, and in vitro biochemistry, we define Ptc6p as the primary PDC phosphatase in S. cerevisiae Our analyses further suggest additional substrates for related S. cerevisiae phosphatases and describe the overall phosphoproteomic changes that accompany mitochondrial respiratory dysfunction. In summary, our quantitative proteomics and biochemical analyses have identified Ptc6p as the primary-and likely sole- S. cerevisiae PDC phosphatase, closing a key knowledge gap about the regulation of yeast mitochondrial metabolism. Our findings highlight the power of integrative omics and biochemical analyses for annotating the functions of poorly characterized signaling proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Phosphatase Activity of Microbial Populations in Different Milk Samples in Relation to Protein and Carbohydrate Content

    Directory of Open Access Journals (Sweden)

    Sosanka Protim SANDILYA

    2014-12-01

    Full Text Available Cattle milk is a rich source of protein, carbohydrate, vitamins, minerals and all other major and micro nutrients. At a moderate pH, milk is an excellent media for the growth of microbes and thus, intake of raw milk is precarious. In this study, attempt was made for a qualitative study of eight raw milk samples of different varieties of cow and goat milk, collected from Jorhat district of Assam, India, on the basis of nutritional value and microbial population. The highest microbial population was found in the milk collected from cross hybrid variety of cow, whereas microbial contamination was the least in Jersey cow milk. Samples of C1 (Jersey cow variety showed presence of the highest amount of protein and carbohydrate content as compared to the others. Almost all the milk samples showed positive acid and alkaline phosphatase activity. Maximum acid phosphatase activity was observed in cross hybrid cow milk, whereas local cow milk exhibited the highest alkaline phosphatase activity. Phosphatase activity did not show any co-relationship with microbial population of the milk samples. Similarly, the protein and carbohydrate content of the samples did not have any significant impact on both acid and alkaline phosphatase activity.

  12. Intercropping Acacia mangium stimulates AMF colonization and soil phosphatase activity in Eucalyptus grandis

    Directory of Open Access Journals (Sweden)

    Daniel Bini

    Full Text Available ABSTRACT: Arbuscular mycorrhizal fungi (AMF are very important to plant nutrition, mostly in terms of acquisition of P and micronutrients. While Acacia mangium is closely associated with AMF throughout the whole cycle, Eucalyptus grandis presents this symbiosis primarily at the seedling stage. The aim of this study was to evaluate the dynamics of AMF in these two tree species in both pure and mixed plantations during the first 20 months after planting. We evaluated the abundance, richness and diversity of AMF spores, the rate of AMF mycorrhizal root colonization, enzymatic activity and soil and litter C, N and P. There was an increase in AMF root colonization of E. grandis when intercropped with A. mangium as well as an increase in the activity of acid and alkaline phosphatase in the presence of leguminous trees. AMF colonization and phosphatase activities were both involved in improvements in P cycling and P nutrition in soil. In addition, P cycling was favored in the intercropped plantation, which showed negative correlation with litter C/N and C/P ratios and positive correlation with soil acid phosphatase activity and soil N and P concentrations. Intercropping A. mangium and E. grandis maximized AMF root colonization of E. grandis and phosphatase activity in the soil, both of which accelerate P cycling and forest performance.

  13. Phosphatase-regulated recruitment of the spindle- and kinetochore-associated (Ska complex to kinetochores

    Directory of Open Access Journals (Sweden)

    Sushama Sivakumar

    2017-11-01

    Full Text Available Kinetochores move chromosomes on dynamic spindle microtubules and regulate signaling of the spindle checkpoint. The spindle- and kinetochore-associated (Ska complex, a hexamer composed of two copies of Ska1, Ska2 and Ska3, has been implicated in both roles. Phosphorylation of kinetochore components by the well-studied mitotic kinases Cdk1, Aurora B, Plk1, Mps1, and Bub1 regulate chromosome movement and checkpoint signaling. Roles for the opposing phosphatases are more poorly defined. Recently, we showed that the C terminus of Ska1 recruits protein phosphatase 1 (PP1 to kinetochores. Here we show that PP1 and protein phosphatase 2A (PP2A both promote accumulation of Ska at kinetochores. Depletion of PP1 or PP2A by siRNA reduces Ska binding at kinetochores, impairs alignment of chromosomes to the spindle midplane, and causes metaphase delay or arrest, phenotypes that are also seen after depletion of Ska. Artificial tethering of PP1 to the outer kinetochore protein Nuf2 promotes Ska recruitment to kinetochores, and it reduces but does not fully rescue chromosome alignment and metaphase arrest defects seen after Ska depletion. We propose that Ska has multiple functions in promoting mitotic progression and that kinetochore-associated phosphatases function in a positive feedback cycle to reinforce Ska complex accumulation at kinetochores.

  14. Purification of acidic phosphatase from mustard seedlings

    OpenAIRE

    sprotocols

    2014-01-01

    ### INTRODUCTION Phosphate esters are widely distributed in any organism. Nucleic acids, metabolic intermediates like glucose-6-phosphate, energy-rich substrates (AMP, creatine phosphate) are some obvious examples. While many metabolic intermediates are activated through the transfer of phosphate groups (e.g., by kinases) it is equally important that phosphate esters can also be rapidly broken down. The hydrolytic removal of phosphate groups from phosphoesters is catalyzed by phosphatases...

  15. The mTOR inhibitor sirolimus suppresses renal, hepatic, and cardiac tissue cellular respiration.

    Science.gov (United States)

    Albawardi, Alia; Almarzooqi, Saeeda; Saraswathiamma, Dhanya; Abdul-Kader, Hidaya Mohammed; Souid, Abdul-Kader; Alfazari, Ali S

    2015-01-01

    The purpose of this in vitro study was to develop a useful biomarker (e.g., cellular respiration, or mitochondrial O2 consumption) for measuring activities of mTOR inhibitors. It measured the effects of commonly used immunosuppressants (sirolimus-rapamycin, tacrolimus, and cyclosporine) on cellular respiration in target tissues (kidney, liver, and heart) from C57BL/6 mice. The mammalian target of rapamycin (mTOR), a serine/ threonine kinase that supports nutrient-dependent cell growth and survival, is known to control energy conversion processes within the mitochondria. Consistently, inhibitors of mTOR (e.g., rapamycin, also known as sirolimus or Rapamune®) have been shown to impair mitochondrial function. Inhibitors of the calcium-dependent serine/threonine phosphatase calcineurin (e.g., tacrolimus and cyclosporine), on the other hand, strictly prevent lymphokine production leading to a reduced T-cell function. Sirolimus (10 μM) inhibited renal (22%, P=0.002), hepatic (39%, Prespiration. Tacrolimus and cyclosporine had no or minimum effects on cellular respiration in these tissues. Thus, these results clearly demonstrate that impaired cellular respiration (bioenergetics) is a sensitive biomarker of the immunosuppressants that target mTOR.

  16. α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitory Activity of Plastoquinones from Marine Brown Alga Sargassum serratifolium

    Directory of Open Access Journals (Sweden)

    Md. Yousof Ali

    2017-12-01

    Full Text Available Sargassum serratifolium C. Agardh (Phaeophyceae, Fucales is a marine brown alga that belongs to the family Sargassaceae. It is widely distributed throughout coastal areas of Korea and Japan. S. serratifolium has been found to contain high concentrations of plastoquinones, which have strong anti-cancer, anti-inflammatory, antioxidant, and neuroprotective activity. This study aims to investigate the anti-diabetic activity of S. serratifolium and its major constituents through inhibition of protein tyrosine phosphatase 1B (PTP1B, α-glucosidase, and ONOO−-mediated albumin nitration. S. serratifolium ethanolic extract and fractions exhibited broad PTP1B and α-glucosidase inhibitory activity (IC50, 1.83~7.04 and 3.16~24.16 µg/mL for PTP1B and α-glucosidase, respectively. In an attempt to identify bioactive compounds, three plastoquinones (sargahydroquinoic acid, sargachromenol and sargaquinoic acid were isolated from the active n-hexane fraction of S. serratifolium. All three plastoquinones exhibited dose-dependent inhibitory activity against PTP1B in the IC50 range of 5.14–14.15 µM, while sargachromenol and sargaquinoic acid showed dose-dependent inhibitory activity against α-glucosidase (IC50 42.41 ± 3.09 and 96.17 ± 3.48 µM, respectively. In the kinetic study of PTP1B enzyme inhibition, sargahydroquinoic acid and sargaquinoic acid led to mixed-type inhibition, whereas sargachromenol displayed noncompetitive-type inhibition. Moreover, plastoquinones dose-dependently inhibited ONOO−-mediated albumin nitration. Docking simulations of these plastoquinones demonstrated negative binding energies and close proximity to residues in the binding pocket of PTP1B and α-glucosidase, indicating that these plastoquinones have high affinity and tight binding capacity towards the active site of the enzymes. These results demonstrate that S. serratifolium and its major plastoquinones may have the potential as functional food ingredients for the

  17. Protein tyrosine phosphatase 1B (PTP1B) is required for cardiac lineage differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Eshkiki, Zahra Shokati; Ghahremani, Mohammad Hossein; Shabani, Parisa; Firuzjaee, Sattar Gorgani; Sadeghi, Asie; Ghanbarian, Hossein; Meshkani, Reza

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.

  18. Src homology domain 2-containing protein-tyrosine phosphatase-1 (SHP-1) binds and dephosphorylates G(alpha)-interacting, vesicle-associated protein (GIV)/Girdin and attenuates the GIV-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway.

    Science.gov (United States)

    Mittal, Yash; Pavlova, Yelena; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2011-09-16

    GIV (Gα-interacting vesicle-associated protein, also known as Girdin) is a bona fide enhancer of PI3K-Akt signals during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, and cancer invasion/metastasis. We recently demonstrated that tyrosine phosphorylation of GIV by receptor and non-receptor-tyrosine kinases is a key step that is required for GIV to directly bind and enhance PI3K activity. Here we report the discovery that Src homology 2-containing phosphatase-1 (SHP-1) is the major protein-tyrosine phosphatase that targets two critical phosphotyrosines within GIV and antagonizes phospho-GIV-dependent PI3K enhancement in mammalian cells. Using phosphorylation-dephosphorylation assays, we demonstrate that SHP-1 is the major and specific protein-tyrosine phosphatase that catalyzes the dephosphorylation of tyrosine-phosphorylated GIV in vitro and inhibits ligand-dependent tyrosine phosphorylation of GIV downstream of both growth factor receptors and GPCRs in cells. In vitro binding and co-immunoprecipitation assays demonstrate that SHP-1 and GIV interact directly and constitutively and that this interaction occurs between the SH2 domain of SHP-1 and the C terminus of GIV. Overexpression of SHP-1 inhibits tyrosine phosphorylation of GIV and formation of phospho-GIV-PI3K complexes, and specifically suppresses GIV-dependent activation of Akt. Consistently, depletion of SHP-1 enhances peak tyrosine phosphorylation of GIV, which coincides with an increase in peak Akt activity. We conclude that SHP-1 antagonizes the action of receptor and non-receptor-tyrosine kinases on GIV and down-regulates the phospho-GIV-PI3K-Akt axis of signaling.

  19. Joint influence of temperature and ions of metals on level of activity alkaline phosphatase the mucous membrane of intestines beluga, the starlet and their hybrid

    Directory of Open Access Journals (Sweden)

    D. A. Bednyakov

    2010-01-01

    Full Text Available In work joint influence of ions of bivalent metals (Mn, Fe, Co, Ni, Cu and Zn and temperatures on level of activity alkaline phosphatase mucous membrane beluga, starlet and their hybrid is shown. Dependence of response of enzyme on action of ions of metals according to their position in a periodic table of chemical elements is shown. The given dependence remains and at temperature change incubation, only at low temperatures the activating effect of metals being in the period beginning is maximum, and at high, is maximum inhibiting effect of metals being in the period end.

  20. Subcellular localization of alkaline phosphatase in Bacillus licheniformis 749/C by immunoelectron microscopy with colloidal gold

    International Nuclear Information System (INIS)

    Tinglu, G.; Ghosh, A.; Ghosh, B.K.

    1984-01-01

    Subcellular distribution of the alkaline phosphatase of Bacillus licheniformis 749/C was determined by an immunoelectron microscopy method. Anti-alkaline phosphatase antibody labeled with 15- to 18-nm colloidal gold particles (gold-immunoglobulin G [IgG] complex) were used for the study. Both the plasma membrane and cytoplasmic material were labeled with the gold-IgG particles. These particles formed clusters in association with the plasma membrane; in contrast, in the cytoplasm the particles were largely dispersed, and only a few clusters were found. The gold-IgG binding was quantitatively estimated by stereological analysis of labeled, frozen thin sections. This estimation of a variety of control samples showed that the labeling was specific for the alkaline phosphatase. Cluster formation of the gold -IgG particles in association with the plasma membrane suggests that existence of specific alkaline phosphatase binding sites (receptors) in the plasma membrane of B. licheniformis 749/C. 27 references, 6 figures, 1 table

  1. Phosphorylation-mediated regulation of the Staphylococcus aureus secreted tyrosine phosphatase PtpA.

    Science.gov (United States)

    Brelle, Solène; Baronian, Grégory; Huc-Brandt, Sylvaine; Zaki, Laila Gannoun; Cohen-Gonsaud, Martin; Bischoff, Markus; Molle, Virginie

    2016-01-15

    Due to the emergence of methicillin-resistant strains, Staphylococcus aureus has become as major public-health threat. Studies aimed at deciphering the molecular mechanism of virulence are thus required to identify new targets and develop efficient therapeutic agents. Protein phosphorylations are known to play key regulatory functions and their roles in pathogenesis are under intense scrutiny. Here we analyzed the protein tyrosine phosphatase PtpA of S. aureus, a member of the family of low molecular weight protein tyrosine phosphatases that are often secreted by pathogenic bacteria. We report for the first time that PtpA is phosphorylated in vitro by the S. aureus tyrosine kinase CapA1B2. A mass spectrometry approach allowed determining that Tyr122 and Tyr123 were the only two residues phosphorylated by this kinase. This result was confirmed by analysis of a double PtpA_Y122A/Y123A mutant that showed no phosphorylation by CapA1B2. Interestingly, PtpA phosphatase activity was abrogated in this mutant, suggesting a key regulatory function for these two tyrosine residues. This was further reinforced by the observation that CapA1B2-mediated phosphorylation significantly increased PtpA phosphatase activity. Moreover, we provide evidence that PtpA is secreted during growth of S. aureus. Together our results suggest that PtpA is an exported S. aureus signaling molecule controlled by tyrosine phosphorylation which may interfere with host cell signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  3. Osteomalacia with low alkaline phosphatase: a not so rare condition with important consequences.

    Science.gov (United States)

    Belkhouribchia, Jamal; Bravenboer, Bert; Meuwissen, Marije; Velkeniers, Brigitte

    2016-01-28

    Hypophosphatasia is a genetic disorder, characterised by a dysfunctional tissue-non-specific isoenzyme of alkaline phosphatase that impacts bone metabolism and predisposes to osteomalacia or rickets. The clinical presentation is very diverse, depending on the age of onset and the severity of the disease. Several forms of hypophosphatasia are recognised. We present a case of a 50-year-old woman with low impact fractures and loss of teeth at a young age. She also had a low alkaline phosphatase and was diagnosed with adult hypophosphatasia. Although the severe forms of hypophosphatasia are rather rare, the adult form is thought to occur quite frequently. As this condition is not well known by healthcare professionals, the time to diagnosis and initiation of adequate treatment is often postponed. When encountering a patient with low alkaline phosphatase, low bone density or a history of bone fractures, the possibility of hypophosphatasia should be considered. 2016 BMJ Publishing Group Ltd.

  4. [Effect of elevated atmospheric CO2 on soil urease and phosphatase activities].

    Science.gov (United States)

    Chen, Lijun; Wu, Zhijie; Huang, Guohong; Zhou, Likai

    2002-10-01

    The response of soil urease and phosphatase activities at different rice growth stages to free air CO2 enrichment (FACE) was studied. The results showed that comparing with the ambient atmospheric CO2 concentration (370 mumol.mol-1), FACE (570 mumol.mol-1) significantly increased the urease activity of 0-5 cm soil layer at the vigorous growth stage of rice, whole that of 5-10 cm layer had no significant change during the whole growing season. Phosphatase activity of 0-5 cm and 5-10 cm soil layers significantly increased, and the peak increment was at the vigorous growth stage of rice.

  5. Identification of protein phosphatase involvement in the AT-receptor induced activation of endothelial nitric oxide synthase

    DEFF Research Database (Denmark)

    Peluso, A Augusto; Bertelsen, Jesper Bork; Andersen, Kenneth

    2018-01-01

    -antagonist), L-NAME (10µM; eNOS inhibitor), MK-2206 (100nM; Akt-inhibitor) sodium fluoride (1nM; serine/threonine-phosphatase inhibitor) or sodium orthovanadate (10nM; tyrosine-phosphatase inhibitor). NO release was estimated by quantifying DAF-FM fluorescence. The phosphorylation status of activating (e...

  6. Alkaline phosphatase immobilization onto Bio-Gide(R) and Bio-Oss(R) for periodontal and bone regeneration.

    NARCIS (Netherlands)

    Oortgiesen, D.A.W.; Plachokova, A.S.; Geenen, C.; Meijer, G.J.; Walboomers, X.F.; Beucken, J.J.J.P van den; Jansen, J.B.M.J.

    2012-01-01

    AIM: To evaluate the effect of alkaline phosphatase (ALP) immobilization onto Bio-Gide((R)) in vitro, and to study the in vivo performance of ALP-enriched Bio-Gide((R)) and/or Bio-Oss((R)) with the purpose to enhance periodontal regeneration. MATERIALS AND METHODS: Alkaline phosphatase ALP was

  7. Study on alkaline and acid phosphatase activity in acute uranium intoxication

    International Nuclear Information System (INIS)

    Bokova, N.V.; Pavlova, V.B.; Stancheva, Yu.A.; Khadzhirusev, S.B.; Kiradzhiev, G.D.

    1975-01-01

    The protective potential of diethyl barbituric acid sodium salt is studied, in comparison with that of acetazolamide, on kidneys under acute uranium intoxication. Experiments involved rats given intraperitoneal injections with uranyl acetate on 12 successive days up to a total dose of 0.5, 2.0 or 7.0 mg/kg. The resulting effects are measured by chemical assays of serum and urine for alkaline and acid phosphatase and histochemical assays for phosphatase activities in kidneys, kinetics being followed over a 30-day period after total dose administration. Protection of kidneys from toxic uranium effects was found to be of about the same degree with sodium diethyl barbiturate as with acetazolamide. (A.B.)

  8. A quantitative method for measurement of lysosomal acid phosphatase latency in cultured rat heart cells with 210Pb

    International Nuclear Information System (INIS)

    Hale, T.W.; Wenzel, D.G.

    1978-01-01

    A method is described for measuring the latency of lysomal acid phosphatase in cultured rat heart endotheloid cells. 210 Pb was added to a medium used to demonstrate acid phosphatase activity by the Gomori lead method, and the amount of lead deposited was measured with a liquid scintillation counter. Deposition rates were measured after enzyme activation pretreatments with acetate buffer (pH 5.0) at various osmolalities, and after formaldehyde fixation. Formaldehyde, alloxan, or fluoride in the Gomori medium were evaluated for their differential effects on lysosomal and non-lysosomal acid phosphatase The method was found to provide a sensitive, rapid and quantitative evaluation of acid phosphatase latency and should be useful for studying the integrity of lysosomes within cells. (author)

  9. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1).

    Science.gov (United States)

    Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan

    2013-08-09

    Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.

  10. Structural stability of human protein tyrosine phosphatase ρ catalytic domain: effect of point mutations.

    Directory of Open Access Journals (Sweden)

    Alessandra Pasquo

    Full Text Available Protein tyrosine phosphatase ρ (PTPρ belongs to the classical receptor type IIB family of protein tyrosine phosphatase, the most frequently mutated tyrosine phosphatase in human cancer. There are evidences to suggest that PTPρ may act as a tumor suppressor gene and dysregulation of Tyr phosphorylation can be observed in diverse diseases, such as diabetes, immune deficiencies and cancer. PTPρ variants in the catalytic domain have been identified in cancer tissues. These natural variants are nonsynonymous single nucleotide polymorphisms, variations of a single nucleotide occurring in the coding region and leading to amino acid substitutions. In this study we investigated the effect of amino acid substitution on the structural stability and on the activity of the membrane-proximal catalytic domain of PTPρ. We expressed and purified as soluble recombinant proteins some of the mutants of the membrane-proximal catalytic domain of PTPρ identified in colorectal cancer and in the single nucleotide polymorphisms database. The mutants show a decreased thermal and thermodynamic stability and decreased activation energy relative to phosphatase activity, when compared to wild- type. All the variants show three-state equilibrium unfolding transitions similar to that of the wild- type, with the accumulation of a folding intermediate populated at ~4.0 M urea.

  11. Phosphatases as an index of biotic contamination of dust

    NARCIS (Netherlands)

    Kniest, F.M.; Bronswijk, van J.E.M.H.; Schober, G.; Bouma, C.

    1990-01-01

    Enzymatic (phosphatase) activity (naphthol-release made visible with diazonium salt) of 10 mattress dust samples was correlated with number of counted arthropods, fungal spores and bacteria. This method can be helpful in the evaluation of large number of dust samples e.g. from riskful areas or from

  12. Myosin phosphatase Fine-tunes Zebrafish Motoneuron Position during Axonogenesis.

    Directory of Open Access Journals (Sweden)

    Juliane Bremer

    2016-11-01

    Full Text Available During embryogenesis the spinal cord shifts position along the anterior-posterior axis relative to adjacent tissues. How motor neurons whose cell bodies are located in the spinal cord while their axons reside in adjacent tissues compensate for such tissue shift is not well understood. Using live cell imaging in zebrafish, we show that as motor axons exit from the spinal cord and extend through extracellular matrix produced by adjacent notochord cells, these cells shift several cell diameters caudally. Despite this pronounced shift, individual motoneuron cell bodies stay aligned with their extending axons. We find that this alignment requires myosin phosphatase activity within motoneurons, and that mutations in the myosin phosphatase subunit mypt1 increase myosin phosphorylation causing a displacement between motoneuron cell bodies and their axons. Thus, we demonstrate that spinal motoneurons fine-tune their position during axonogenesis and we identify the myosin II regulatory network as a key regulator.

  13. Inhibition of fouling by animal growth - a study using wood constituents

    International Nuclear Information System (INIS)

    Shukla, S.K.

    1983-01-01

    Inhibitory effects of constituents from Dalbergia retusa, Tectona grandis and Lophira procera heartwoods on fouling were studied in field and laboratory tests and compared with a copper paint. Lophira extract impaired fouling by barnacles and tubeworms, R-4 methoxydalbergione, obtusaquinone and lapachol didn't. Lapachol proved to be more effective than R-4 methoxydalbergione and obtusaquinone against Balanus improvisus in LD 50 -tests. Maximum inhibition of 45 Ca and 14 C uptake in the shell of Balanus improvisus was caused by lapachol. The same trend was observed in studies on alkaline phosphatase of mantel. (orig.) [de

  14. Protein phosphatases 2A as well as reactive oxygen species involved in tributyltin-induced apoptosis in mouse livers.

    Science.gov (United States)

    Zhang, Yali; Chen, Yonggang; Sun, Lijun; Liang, Jing; Guo, Zonglou; Xu, Lihong

    2014-02-01

    Tributyltin (TBT), a highly toxic environmental contaminant, has been shown to induce caspase-3-dependent apoptosis in human amniotic cells through protein phosphatase 2A (PP2A) inhibition and consequent JNK activation. This in vivo study was undertaken to further verify the results derived from our previous in vitro study. Mice were orally dosed with 0, 10, 20, and 60 mg/kg of body weight TBT, and levels of PP2A, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), Bax/Bcl-2, and caspase-3 were detected in the mouse livers. Apoptosis was also evaluated using the TUNEL assay. The results showed that PP2A activity was inhibited, ROS levels were elevated, and MAPKs including ERK, JNK, and p38 were activated in mouse livers treated with the highest dose of TBT. Additionally, the ratio of Bax/Bcl-2 was increased, caspase-3 was activated, and apoptosis in mouse livers could be detected in the highest dose group. Therefore, a possible signaling pathway in TBT-induced apoptosis in mouse livers involves PP2A inhibition and ROS elevation serving a pivotal function as upstream activators of MAPKs; activation of MAPKs in turn leads to an increase in the Bax/Bcl-2 ratio, ultimately leading to the activation of caspase-3. The results give a comprehensive and novel description of the mechanism of TBT-induced toxicity. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  15. Changes of serum alkaline phosphatase isoenzymes in fasted rats.

    Science.gov (United States)

    Wada, H; Niwa, N; Hayakawa, T; Tsuge, H

    1996-10-01

    Changes of serum alkaline phosphatase (sALP) isoenzymes under fasting conditions were examined using polyacrylamide gel electrophoresis (PAGE), amino-acids (L-phenylalanine (L-Phe), L-homoarginine (L-HArg)) inhibition and wheat germ agglutinin (WGA) treatment. The sALP of non-fasted rats was separated into three bands (S1, S2, S3) by PAGE. The molecular weight (M.W.) of S1 corresponded to that of an isoenzyme found in the ileum. By the addition of L-Phe, the staining intensity of S1 was weakened, S2 and S3 remained unchanged and the total activity of the isoenzymes extracted from intestine decreased. On the other hand, the activity of isoenzymes extracted from kidney and bone decreased by the addition of L-HArg. Therefore, S1 was judged to be derived from intestine. The activities of total sALP and S1 decreased from 16 h of fasting. Total sALP activity and sALP activity of the supernatant prepared by WGA treatment decreased, whereas the ALP activity of the precipitate (difference between total sALP activity and supernatant sALP activity) did not change. The activity band of the precipitate corresponded to that of S3 by PAGE. Therefore, S3 was judged to be derived from bone. In conclusion, under fasting conditions, the activity of S1 decreased while the activities of S2 and S3 remained unchanged.

  16. Genetic variation of an acid phosphatase (Acp-2) in the laboratory rat: possible homology with mouse AP-1 and human ACP2.

    Science.gov (United States)

    Bender, K; Bissbort, S; Kuhn, A; Nagel, M; Günther, E

    1986-02-01

    A genetic locus controlling the electrophoretic mobility of an acid phosphatase in the rat (Rattus norvegicus) is described. The locus, designed Acp-2, is not expressed in erythrocytes but is expressed in all other tissues studied. The product of Acp-2 hydrolyzes a wide variety of phosphate monoesters and is inhibited by L(+)-tartaric acid. Inbred rat strains have fixed either allele Acp-2a or allele Acp-2b. Codominant expression is observed in the respective F1 hybrids. Backcross progenies revealed the expected 1:1 segregation ratio. Possible loose linkage was found between the Acp-2 and the Pep-3 gene loci at a recombination frequency of 0.36 +/- 0.06.

  17. Phosphatase activity and culture conditions of the yeast Candida mycoderma sp. and analysis of organic phosphorus hydrolysis ability.

    Science.gov (United States)

    Yan, Mang; Yu, Liufang; Zhang, Liang; Guo, Yuexia; Dai, Kewei; Chen, Yuru

    2014-11-01

    Orthophosphate is an essential but limiting macronutrient for plant growth. About 67% cropland in China lacks sufficient phosphorus, especially that with red soil. Extensive soil phosphorus reserves exist in the form of organic phosphorus, which is unavailable for root uptake unless hydrolyzed by secretory acid phosphatases. Thus, many microorganisms with the ability to produce phosphatase have been exploited. In this work, the activity of an extracellular acid phosphatase and yeast biomass from Candida mycoderma was measured under different culture conditions, such as pH, temperature, and carbon source. A maximal phosphatase activity of 8.47×10(5)±0.11×10(5)U/g was achieved by C. Mycoderma in 36 hr under the optimal conditions. The extracellular acid phosphatase has high activity over a wide pH tolerance range from 2.5 to 5.0 (optimum pH3.5). The effects of different phosphorus compounds on the acid phosphatase production were also studied. The presence of phytin, lecithin or calcium phosphate reduced the phosphatase activity and biomass yield significantly. In addition, the pH of the culture medium was reduced significantly by lecithin. The efficiency of the strain in releasing orthophosphate from organic phosphorus was studied in red soil (used in planting trees) and rice soil (originating as red soil). The available phosphorus content was increased by 230% after inoculating 20 days in rice soil and decreased by 50% after inoculating 10 days in red soil. This work indicates that the yeast strain C. mycoderma has potential application for enhancing phosphorus utilization in plants that grow in rice soil. Copyright © 2014. Published by Elsevier B.V.

  18. Diversity and Gene Expression of Phosphatase Genes Provide Insight into Soil Phosphorus Dynamics in a New Zealand Managed Grassland

    Science.gov (United States)

    Dunfield, K. E.; Gaiero, J. R.; Condron, L.

    2017-12-01

    Healthy and diverse communities of soil organisms influence key soil ecosystem services such as carbon sequestration, water quality protection, climate regulation and nutrient cycling. Microbially driven mineralization of organic phosphorus is an important contributor to plant available inorganic orthophosphates. In acidic soils, microbes produce non-specific acid phosphatases (NSAPs) which act on common forms of organic phosphorus (P). Our current understanding of P turnover in soils has been limited by lack of research tools capable of targeting these genes. Thus, we developed a set of oligonucleotide PCR primers that targeted bacteria with the genetic potential for acid phosphatase production. A long term randomized-block pasture trial was sampled following 22 years of continued aerial biomass removal and retention. Primers were used to target genes encoding alkaline phosphatase (phoD) and the three classes (CAAP, CBAP, CCAP) of non-specific acid phosphatases. PCR amplicons targeting total genes and gene transcripts were sequenced using Illumina MiSeq to understand the diversity of the bacterial phosphatase producing communities. In general, the majority of operational taxonomic units (OTUs) were shared across both treatments and across metagenomes and transcriptomes. However, analysis of DNA OTUs revealed significantly different communities driven by treatment differences (P reduced Olsen P levels (15 vs. 36 mg kg-1 in retained treatment). Acid phosphatase activity was measured in all samples, and found to be highest in the biomass retained treatment (16.8 vs. 11.4 µmol g-1 dry soil h-1), likely elevated due to plant-derived enzymes; however, was still correlated to bacterial gene abundances. Overall, the phosphatase producing microbial communities responded to the effect of consistent P limitation as expected, through alteration in the composition of the community structure and through increased levels of gene expression of the phosphatase genes.

  19. Phosphoprotein phosphatase of bovine spleen cell nuclei: physicochemical properties

    International Nuclear Information System (INIS)

    Rezyapkin, V.I.; Leonova, L.E.; Komkova, A.I.

    1986-01-01

    The physicochemical properties of phosphoprotein phosphatase (EC 1.3.1.16) from bovine spleen cell nuclei were studied. The enzyme possesses broad substrate specificity and catalyzes the dephosphorylation of phosphocasein, ATP, ADP, and p-nitrophenyl phosphate (pNPP). K/sub m/ for ATP, ADP, and pNPP are equal to 0.44, 0.43, and 1.25 mM, respectively. M/sub r/ of the enzyme, according to the data of gel filtraction of Sephadex G-75 and electrophoresis in polyacrylamide gel of various concentrations is ∼ 33,000. In electrophoresis in the presence of SDS, two protein bands with M/sub r/ 12,000 and 18,000 are detected. In the enzyme molecule, acid amino acid residues predominate; two free SH groups and two disulfide bridges are detected. Phosphoprotein phosphatase is a glycoprotein, containing ∼ 22% carbonhydrates. The protein possesses a supplementary absorption maximum at 560 nm. Ammonium molybdate is a competitive inhibitor with K/sub i/ 0.37 μM, while sodium fluoride is a noncompetitive inhibitor with K/sub i/ 1.3 mM. Incubation in the presence of 2 mM phenylmethylsulfonyl fluoride for 25 h leads to a loss of ∼ 46% of the enzymatic activity. Ammonium molybdate, sodium fluoride, and PMSF are reversible inhibitors. Modifications of the SH groups, NH 2 groups, and histidine leads to a decrease in the enzymatic activity. Incubation of phosphoprotein phosphatase with [γ- 32 P]ATP leads to the incorporation of 0.33 mole 33 P per mole of the enzyme. The mechanism of hydrolysis of the phosphodiester bond, catalyzed by the enzyme, is discussed

  20. Dimerization of the Glucan Phosphatase Laforin Requires the Participation of Cysteine 329

    Science.gov (United States)

    Sánchez-Martín, Pablo; Raththagala, Madushi; Bridges, Travis M.; Husodo, Satrio; Gentry, Matthew S.; Sanz, Pascual; Romá-Mateo, Carlos

    2013-01-01

    Laforin, encoded by a gene that is mutated in Lafora Disease (LD, OMIM 254780), is a modular protein composed of a carbohydrate-binding module and a dual-specificity phosphatase domain. Laforin is the founding member of the glucan-phosphatase family and regulates the levels of phosphate present in glycogen. Multiple reports have described the capability of laforin to form dimers, although the function of these dimers and their relationship with LD remains unclear. Recent evidence suggests that laforin dimerization depends on redox conditions, suggesting that disulfide bonds are involved in laforin dimerization. Using site-directed mutagenesis we constructed laforin mutants in which individual cysteine residues were replaced by serine and then tested the ability of each protein to dimerize using recombinant protein as well as a mammalian cell culture assay. Laforin-Cys329Ser was the only Cys/Ser mutant unable to form dimers in both assays. We also generated a laforin truncation lacking the last three amino acids, laforin-Cys329X, and this truncation also failed to dimerize. Interestingly, laforin-Cys329Ser and laforin-Cys329X were able to bind glucans, and maintained wild type phosphatase activity against both exogenous and biologically relevant substrates. Furthermore, laforin-Cys329Ser was fully capable of participating in the ubiquitination process driven by a laforin-malin complex. These results suggest that dimerization is not required for laforin phosphatase activity, glucan binding, or for the formation of a functional laforin-malin complex. Cumulatively, these results suggest that cysteine 329 is specifically involved in the dimerization process of laforin. Therefore, the C329S mutant constitutes a valuable tool to analyze the physiological implications of laforin’s oligomerization. PMID:23922729