WorldWideScience

Sample records for bulk packaging shipments

  1. Module 13: Bulk Packaging Shipments by Highway

    International Nuclear Information System (INIS)

    Przybylski, J.L.

    1994-07-01

    The Hazardous Materials Modular Training Program provides participating United States Department of Energy (DOE) sites with a basic, yet comprehensive, hazardous materials transportation training program for use onsite. This program may be used to assist individual program entities to satisfy the general awareness, safety training, and function specific training requirements addressed in Code of Federal Regulation (CFR), Title 49, Part 172, Subpart H -- ''Training.'' Module 13 -- Bulk Packaging Shipments by Highway is a supplement to the Basic Hazardous Materials Workshop. Module 13 -- Bulk Packaging Shipments by Highway focuses on bulk shipments of hazardous materials by highway mode, which have additional or unique requirements beyond those addressed in the ten module core program. Attendance in this course of instruction should be limited to those individuals with work experience in transporting hazardous materials utilizing bulk packagings and who have completed the Basic Hazardous Materials Workshop or an equivalent. Participants will become familiar with the rules and regulations governing the transportation by highway of hazardous materials in bulk packagings and will demonstrate the application of these requirements through work projects and examination

  2. 7 CFR 322.8 - Packaging of shipments.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Packaging of shipments. 322.8 Section 322.8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION... Packaging of shipments. (a) Adult honeybees. All shipments of adult honeybees imported into the United...

  3. Safety evaluation for packaging 222-S laboratory cargo tank for onetime type B material shipment

    International Nuclear Information System (INIS)

    Nguyen, P.M.

    1994-01-01

    The purpose of this Safety Evaluation for Packaging (SEP) is to evaluate and document the safety of the onetime shipment of bulk radioactive liquids in the 222-S Laboratory cargo tank (222-S cargo tank). The 222-S cargo tank is a US Department of Transportation (DOT) MC-312 specification (DOT 1989) cargo tank, vehicle registration number HO-64-04275, approved for low specific activity (LSA) shipments in accordance with the DOT Title 49, Code of Federal Regulations (CFR). In accordance with the US Department of Energy, Richland Operations Office (RL) Order 5480.1A, Chapter III (RL 1988), an equivalent degree of safety shall be provided for onsite shipments as would be afforded by the DOT shipping regulations for a radioactive material package. This document demonstrates that this packaging system meets the onsite transportation safety criteria for a onetime shipment of Type B contents

  4. Safety Analysis Report for Packaging, Y-12 National Security Complex, Model ES-3100 Package with Bulk HEU Contents

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, James [Y-12 National Security Complex, Oak Ridge, TN (United States); Goins, Monty [Y-12 National Security Complex, Oak Ridge, TN (United States); Paul, Pran [Y-12 National Security Complex, Oak Ridge, TN (United States); Wilkinson, Alan [Y-12 National Security Complex, Oak Ridge, TN (United States); Wilson, David [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2015-09-03

    This safety analysis report for packaging (SARP) presents the results of the safety analysis prepared in support of the Consolidated Nuclear Security, LLC (CNS) request for licensing of the Model ES-3100 package with bulk highly enriched uranium (HEU) contents and issuance of a Type B(U) Fissile Material Certificate of Compliance. This SARP, published in the format specified in the Nuclear Regulatory Commission (NRC) Regulatory Guide 7.9 and using information provided in UCID-21218 and NRC Regulatory Guide 7.10, demonstrates that the Y-12 National Security Complex (Y-12) ES-3100 package with bulk HEU contents meets the established NRC regulations for packaging, preparation for shipment, and transportation of radioactive materials given in Title 10, Part 71, of the Code of Federal Regulations (CFR) [10 CFR 71] as well as U.S. Department of Transportation (DOT) regulations for packaging and shipment of hazardous materials given in Title 49 CFR. To protect the health and safety of the public, shipments of adioactive materials are made in packaging that is designed, fabricated, assembled, tested, procured, used, maintained, and repaired in accordance with the provisions cited above. Safety requirements addressed by the regulations that must be met when transporting radioactive materials are containment of radioactive materials, radiation shielding, and assurance of nuclear subcriticality.

  5. 7 CFR 322.24 - Packaging of transit shipments.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Packaging of transit shipments. 322.24 Section 322.24 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION... Restricted Organisms Through the United States § 322.24 Packaging of transit shipments. (a) Restricted...

  6. Directory of national competent authorities' approval certificates for packages, shipments, special arrangements and special form radioactive material

    International Nuclear Information System (INIS)

    1987-11-01

    The Agency's transport regulations prescribe various requirements for the authorization of packages and shipments in respect of both national and international movement of radioactive material. These authorizations are issued by the relevant competent authority of the country concerned; they take the form of package approval and/or shipment approval certificates. At the request of the Standing Advisory Group of the Safe Transport of Radioactive Material (SAGSTRAM), the Agency has established a programme to maintain a file of those certificates for packages and shipments which are either transported internationally or used outside the country of origin. The purpose of this directory is to facilitate the transfer of information to competent authorities and any other person wishing details on the packaging, authorized contents or special conditions pertinent to any package or shipment. The directory enables competent authorities to be aware of the status of any certificate submitted for validation. It also indicates any change in status of any certificate already validated

  7. Directory of national competent authorities' approval certificates for package design and shipment of radioactive material

    International Nuclear Information System (INIS)

    1990-04-01

    The authorization of packages and shipments of radioactive materials are issued in the form of certificates by the national competent authority of the IAEA Member State in which the package is designed or from which a shipment originates, and may be validated or endorsed by the corresponding authority of other Member States as the need arises. This directory summarizes in tabular form the key information on existing package approval certificates contained in PACKTRAM database. 5 tabs

  8. 41 CFR 102-118.130 - Must my agency use a GBL for express, courier, or small package shipments?

    Science.gov (United States)

    2010-07-01

    ... package express delivery, the terms and conditions of that contract are binding. ... for express, courier, or small package shipments? 102-118.130 Section 102-118.130 Public Contracts and... Transportation Services § 102-118.130 Must my agency use a GBL for express, courier, or small package shipments...

  9. Directory of national competent authorities' approval certificates for packages, shipments, special arrangements and special form radioactive material

    International Nuclear Information System (INIS)

    1986-09-01

    The Agency's transport regulations prescribe various requirements for the authorization of packages and shipments in respect of both national and international movement of radioactive materials. These authorizations are issued by the relevant competent authority of the country concerned; they take the form of package approval and/or shipment approval certificates. At the request of the Standing Advisory Group of the Safe Transport of Radioactive Material (SAGSTRAM), the Agency has established a programme to maintain a file of those certificates for packages and shipments which are either transported internationally or used outside the country of origin. The purpose of this directory is to facilitate the transfer of information to competent authorities and any other person wishing details on the packaging, authorized contents or special conditions pertinent to any package or shipment. The directory enables competent authorities to be aware of the status of any certificate submitted for validation. It also indicates any change in status of any certificate already validated. Future updates of the complete data will be distributed annually in a TECDOC form and, in addition, summary listings of the certificates will be issued every six months thereafter

  10. Unit-of-Use Versus Traditional Bulk Packaging

    Directory of Open Access Journals (Sweden)

    Tiffany So

    2012-01-01

    Full Text Available Background: The choice between unit-of-use versus traditional bulk packaging in the US has long been a continuous debate for drug manufacturers and pharmacies in order to have the most efficient and safest practices. Understanding the benefits of using unit-of-use packaging over bulk packaging by US drug manufacturers in terms of workflow efficiency, economical costs and medication safety in the pharmacy is sometimes challenging.Methods: A time-saving study comparing the time saved using unit-of-use packaging versus bulk packaging, was examined. Prices between unit-of-use versus bulk packages were compared by using the Red Book: Pharmacy’s Fundamental Reference. Other articles were reviewed on the topics of counterfeiting, safe labeling, and implementation of unit-of-use packaging. Lastly, a cost-saving study was reviewed showing how medication adherence, due to improved packaging, could be cost-effective for patients.Results: When examining time, costs, medication adherence, and counterfeiting arguments, unit-of-use packaging proved to be beneficial for patients in all these terms.

  11. Unit-of-Use Versus Traditional Bulk Packaging

    Directory of Open Access Journals (Sweden)

    Tiffany So

    2012-01-01

    Full Text Available Background: The choice between unit-of-use versus traditional bulk packaging in the US has long been a continuous debate for drug manufacturers and pharmacies in order to have the most efficient and safest practices. Understanding the benefits of using unit-of-use packaging over bulk packaging by US drug manufacturers in terms of workflow efficiency, economical costs and medication safety in the pharmacy is sometimes challenging. Methods: A time-saving study comparing the time saved using unit-of-use packaging versus bulk packaging, was examined. Prices between unit-of-use versus bulk packages were compared by using the Red Book: Pharmacy's Fundamental Reference. Other articles were reviewed on the topics of counterfeiting, safe labeling, and implementation of unit-of-use packaging. Lastly, a cost-saving study was reviewed showing how medication adherence, due to improved packaging, could be cost-effective for patients. Results: When examining time, costs, medication adherence, and counterfeiting arguments, unit-of-use packaging proved to be beneficial for patients in all these terms.   Type: Student Project

  12. 49 CFR 173.206 - Packaging requirements for chlorosilanes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packaging requirements for chlorosilanes. 173.206...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.206 Packaging requirements for chlorosilanes. (a) When § 172.101 of this...

  13. 7 CFR 58.313 - Print and bulk packaging rooms.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Print and bulk packaging rooms. 58.313 Section 58.313 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....313 Print and bulk packaging rooms. Rooms used for packaging print or bulk butter and related products...

  14. National Bureau of Standards health physics radioactive material shipment survey, packaging, and labelling program under ICAO/IATA and DOT regulations

    International Nuclear Information System (INIS)

    Sharp, D.R.; Slaback, L.A.

    1984-01-01

    NBS routinely ships many radionuclides in small to moderate activities, with many shipments containing mixtures of radionuclides in a variety of combinations. The ICAO/IATA shipping regulations (and the new DoT regulations on their model) specify individual shipping parameters for every radionuclide. As a result, quality control in the shipment of these radioactive packages has become difficult to maintain. The authors have developed a computer program that will guide a Health Physics technician through package surveys and give exact packaging and labelling instructions. The program is a 27 kilobyte user-friendly BASIC program that runs on an Epson-HX20 notebook computer with microcassette drive and 16 kilobyte memory expansion unit. This small computer is more manageable than the regulation books for which it will be substituted and will be used in routine radioactive shipments

  15. Assessment of the radiological risks of road transport accidents involving type A package shipments

    International Nuclear Information System (INIS)

    Lange, F.; Fett, H.J.; Schwarz, G.; Raffestin, D.; Schneider, T.; Gelder, R.; Hughes, J.S.; Shaw, K.B.; Hedberg, B.; Simenstad, P.; Svahn, B.; Hienen, J.F.A.; Jansma, R.

    1998-01-01

    This paper is an account of work performed within a multi-lateral research project on the radiological risks associated with the transportation of Type A packaged radioactive material. The research project has been performed on behalf of the European Commission and various national agencies of the participating countries and involved organizations and institutes of five EU Member States, France, Germany, The Netherlands, Sweden, and the UK. The main objectives of the research project were the assessment and appraisal of the potential radiological risks of road transport accidents involving Type A package shipments in participating EU Member States. Data were collected and include harmonized sets information related to the type, quantity and characteristics of Type A package shipments by road. Such databases were basically non-existent until recently. The results are expected to be valuable to both national agencies and international organizations, with responsibilities for the safe transport of radioactive materials by providing some insight in the carriage of radioactive materials by road making up a major fraction of radioactive material transports. Similarly, a wide body of information has been collected and compiled on road transport accidents in terms of the frequency of occurrence and the severity of accidental impact loads potentially experienced by a Type A package.In addition, the results will facilitate judgement of the adequacy of the IAEA Transport Regulations as far as Type A packages are concerned. (O.M.)

  16. 7 CFR 58.211 - Packaging room for bulk products.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging room for bulk products. 58.211 Section 58... Service 1 Rooms and Compartments § 58.211 Packaging room for bulk products. A separate room or area shall... dust within the packaging room and where needed, a dust collector shall be provided and properly...

  17. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 2002 ed

    International Nuclear Information System (INIS)

    2002-08-01

    The current edition of the transport Regulations was published in 1996 and is more commonly referred to as 'ST-1'. Earlier Editions were known as Safety Series No. 6. The latest English reprint (2000) is now identified as TS-R-1 (ST-1, Revised). The transport Regulations elaborate requirements for the design, fabrication and maintenance of packaging as well as those for preparation, consigning, handling, carriage, storage in transit and receipt of the packages at final destination. Approval issued in the form of certificates is required for the design or shipment of packages. This report supersedes IAEA-TECDOC-1237 Directory of National Competent Authorities' Approval Certificates for Package Design, Special Form Material and Shipment of Radioactive Material, 2001 Edition. It is distributed worldwide to the IAEA Member States' competent authorities for transport, and other entities who have requested copies. Electronic copies of the main data file are provided to registered users of the PACKTRAM database. The information contained in this report is given in six tables. In each of these, information is presented in alphabetical order based on the certificate number. Tables 1 to 4 present administrative data including issue and expiry dates, package identification, package serial numbers, modes for which the package/shipment is approved and the edition of the IAEA Transport Safety Regulations on which the approval has been based. The technical information on package mass, authorized contents, and detailed and general description of the package are contained in Table 5. Table 6 shows the certificates reported to the Secretariat by each participating Member State

  18. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 2001 edition

    International Nuclear Information System (INIS)

    2001-08-01

    The current edition of the transport Regulations was published in 1996 and is more commonly referred to as 'ST-1'. Earlier Editions were known as Safety Series No. 6. The latest English reprint (2000) is now identified as TS-R-1 (ST-1, Revised). The transport Regulations elaborate requirements for the design, fabrication and maintenance of packaging as well as those for preparation, consigning, handling, carriage, storage in transit and receipt of the packages at final destination. Approval issued in the form of certificates is required for the design or shipment of packages. This report supersedes IAEA-TECDOC-1171 D irectory of National Competent Authorities' Approval Certificates for Package Design, Special Form Material and Shipment of Radioactive Material, 2000 Edition . It is distributed worldwide to the IAEA Member States' competent authorities for transport, and other entities who have requested copies. Electronic copies of the main data file are provided to registered users of the PACKTRAM database. The information contained in this report is given in six tables. In each of these, information is presented in alphabetical order based on the certificate number. Tables 1 to 4 present administrative data including issue and expiry dates, package identification, package serial numbers, modes for which the package/shipment is approved and the edition of the IAEA Transport Safety Regulations on which the approval has been based. The technical information on package mass, authorized contents, and detailed and general description of the package are contained in Table 5. Table 6 shows the certificates reported to the Secretariat by each participating Member State

  19. Shipments of nuclear fuel and waste: are they really safe

    International Nuclear Information System (INIS)

    1978-08-01

    This paper presents a summarized status report on the potential hazards of shipping nuclear materials. Principles of nuclear shipment safety, government regulations, shipment information, quality assurance, types of radioactive wastes, package integrity, packaging materials, number of shipments, accidents, and accident risk are considered

  20. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 1998 edition

    International Nuclear Information System (INIS)

    1998-08-01

    The information contained in this report is given in six tables. Tables 1 to 4 present administrative data including issue and expiration dates, package identification, package serial numbers, modes for which the package/shipments approved and the edition of Safety Series No. 6 on which the approval has been based. The technical information on package mass, authorized contents, and detailed and general description of the package are contained in Table 5. Table 6 shows the certificates reported to the IAEA Secretariat by each participating Member State

  1. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 1992 ed

    International Nuclear Information System (INIS)

    1992-08-01

    Being in a unique position to facilitate information exchange, the Secretariat of the International Atomic Energy Agency was requested by its Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM) to collate package approval data and publish periodical reports thereon. A database was implemented on the mainframe computer in the mid-1980s but this was soon adapted for use on a personal computer. A fully menu-driven system programme was designed that allows both contributing Member States and the Secretariat more flexibility in data processing and reporting. Complete documentation is available in the form of a user guide. The cut-off date used for this report is 31 August 1992. This report supersedes IAEA-TECDOC-617 ''Directory of National Competent Authorities' Approval Certificates for Package Design, Special Form Material and Shipment of Radioactive Material, 1991 Edition''. The information contained in this report is given in six tables. In each of these, information is presented in alphabetical order based on the certificate number. The certificate number is identical with the competent authority identification mark. It is composed of the issuing Member State's international vehicle registration identification (VRI) code, followed by a slash, then a unique number specific to a particular design or shipment that is assigned by the competent authority, another slash and finally a code identifying the type of package involved. ''-85'' is appended to those certificates that were approved on the basis of the 1985 Edition of Safety Series No. 6. Tables 1 to 4 present administrative data including issue and expiry dates, package identification, package serial numbers, modes for which the package/shipment is approved and the edition of Safety Series No. 6 on which the approval has been based. The technical information on package mass, authorized contents, and detailed and general description of the package are contained in Table 5. Table 6

  2. Safety analysis report: packages. Argonne National Laboratory SLSF test train shipping container, P-1 shipment. Fissile material. Final report

    International Nuclear Information System (INIS)

    Meyer, C.A.

    1975-06-01

    The package is used to ship an instrumented test fuel bundle (test train) containing fissile material. The package assembly is Argonne National Laboratory (ANL) Model R1010-0032. The shipment is fissile class III. The packaging consists of an outer carbon steel container into which an inner container is placed; the inner container is separated from the outer container by urethane foam cushioning material. The test train is supported in the inner container by a series of transverse supports spaced along the length of the test train. Both the inner and outer containers are closed with bolted covers. The covers do not seal the containers in a leaktight manner. The gross weight of the shipment is about 8350 lb. The unirradiated fissile material content is less than 3 kg of UO 2 of up to 93.2 percent enrichment. This is a Type A quantity (transport group III and less than 3 curies) of radioactive material which does not require shielding, cooling or heating, or neutron absorption or moderation functions in its packaging. The maximum exterior dimensions of the container are 37 ft 11 in. long, 24 1 / 2 in. wide, and 19 3 / 4 in. high

  3. Offsite Shipment Campaign Readiness Assessment (OSCRA): A tool for offsite shipment campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Michelhaugh, R.D.; Pope, R.B. [Oak Ridge National Lab., TN (United States); Bisaria, A. [Science Applications International Corp., Oak Ridge, TN (United States)

    1995-12-31

    The Offsite Shipment Campaign Readiness Assessment (OSCRA) tool is designed to assist program managers in identifying, implementing, and verifying applicable transportation and disposal regulatory requirements for specific shipment campaigns. OSCRA addresses these issues and provides the program manager with a tool to support planning for safe and compliant transportation of waste and other regulated materials. Waste transportation and disposal requirements must be identified and addressed in the planning phase of a waste management project. In the past, in some cases, transportation and disposal requirements have not been included in overall project plans. These planning deficiencies have led to substantial delays and cost impacts. Additionally, some transportation regulatory requirements have not been properly implemented, resulting in substantial fines and public embarrassment for the U.S. Department of Energy (DOE). If a material has been processed and packaged for onsite storage (prior to offsite disposal) in a package that does not meet transportation requirements, it must be repackaged in U.S. Department of Transportation (DOT)-compliant packaging for transport. This repackaging can result in additional cost, time, and personnel radiation exposure. The original OSCRA concept was developed during the Pond Waste Project at the K-25 Site in Oak Ridge, Tennessee. The continued development of OSCRA as a user-friendly tool was funded in 1995 by the DOE Office of Environmental Management, Transportation Management Division (TMD). OSCRA is designed to support waste management managers, site remediation managers, and transportation personnel in defining applicable regulatory transportation and disposal requirements for offsite shipment of hazardous waste and other regulated materials. The need for this tool stems from increasing demands imposed on DOE and the need to demonstrate and document safe and compliant packaging and shipment of wastes from various DOE sites.

  4. Safety Analysis Report for packaging (onsite) steel waste package

    International Nuclear Information System (INIS)

    BOEHNKE, W.M.

    2000-01-01

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A 2 s) and is a type B packaging

  5. Safety Analysis Report for packaging (onsite) steel waste package

    Energy Technology Data Exchange (ETDEWEB)

    BOEHNKE, W.M.

    2000-07-13

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A{sub 2}s) and is a type B packaging.

  6. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 1991 edition

    International Nuclear Information System (INIS)

    1991-08-01

    The format of this report is a result of recommendations made by the Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM) at its 6th meeting in November 1987. The database was at that time maintained on the main frame and it was felt that adapting it for use on a personal computer would allow more flexibility in data processing and reporting. This document supersedes TECDOC-552 ''Directory of National Competent Authorities' Approval Certificates for Package Design and Shipment of Radioactive Material 1990 Edition''. Since publication of TECDOC-552, some modifications affecting the structure of the database and reporting formats were undertaken. These are fully described in ''Working Material: The PACKTRAM Database National Competent Authority Package Approval Certificates, User Guide Rev. 1'', which was released in early 1991. The present report is contained in five tables. In each of these, information is presented in alphabetical order based on the certificate number. This is composed of the issuing Member State's VRI code, followed by a slash, then a three- or four-digit number, another slash and finally a code identifying the type of package involved. ''-85'' is appended to those certificates that were approved on the basis of the 1985 Edition of Safety Series No. 6. Tables 1 to 4 present administrative data including issue and expire, dates, package identification, package serial numbers, modes for which the package/shipment is approved and the edition of Safety Series No. 6 on which the approval has been based. The technical information on package mass, authorized contents, and detailed and general description of the package are contained in Table. 5

  7. Trial intercountry shipment of irradiated spices

    International Nuclear Information System (INIS)

    Saputra, T.S.; Maha, Munsiah; Purwanto, Z.I.

    1984-01-01

    An experiment has been carried out to evaluate the quality of irradiated spices packaged in some indigenous packaging materials. Spices used were whole nutmeg (myristica fragrans) and whole white pepper (piper nigrum). The spice samples were packaged in tin containers with or without oxygen absorber and in woven polypropylene (PP) bags, then irradiated at 5 kGy, and despatched from Jakarta to Wagenigen by sea-freight. The shipment was performed in small and commercial size packages. The results showed that irradiation treatment could effectively disinfest and decontaminate spices without altering their chemical composition and sensory properties. PP bags, particularly the one without inner liner, were unable to withstand rough handling and to prevent reinfestation during shipment. Tin containers were able to withstand rough handling and prevent reinfestation. The oxygen absorber used had no effect on microbial count and other parameters of the spices. (author)

  8. Trial intercountry shipment of irradiated spices

    Energy Technology Data Exchange (ETDEWEB)

    Saputra, T S; Maha, Munsiah; Purwanto, Z I; Parkas, J

    1984-10-01

    An experiment has been carried out to evaluate the quality of irradiated spices packaged in some indigenous packaging materials. Spices used were whole nutmeg (myristica fragrans) and whole white pepper (piper nigrum). The spice samples were packaged in tin containers with or without oxygen absorber and in woven polypropylene (PP) bags, then irradiated at 5 kGy, and despatched from Jakarta to Wagenigen by sea-freight. The shipment was performed in small and commercial size packages. The results showed that irradiation treatment could effectively disinfest and decontaminate spices without altering their chemical composition and sensory properties. PP bags, particularly the one without inner liner, were unable to withstand rough handling and to prevent reinfestation during shipment. Tin containers were able to withstand rough handling and prevent reinfestation. The oxygen absorber used had no effect on microbial count and other parameters of the spices. 21 references.

  9. 7 CFR 906.41 - Gift fruit shipments.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Gift fruit shipments. 906.41 Section 906.41... LOWER RIO GRANDE VALLEY IN TEXAS Order Regulating Handling Regulation § 906.41 Gift fruit shipments. The handling to any person of gift packages of fruit individually addressed to such person, in quantities...

  10. 7 CFR 932.155 - Special purpose shipments.

    Science.gov (United States)

    2010-01-01

    ... and Regulations § 932.155 Special purpose shipments. (a) The disposition of packaged olives covered by... Service, such packaged olives may be disposed of for use in the production of olive oil or dumped. (2... furnish the committee, upon demand, such evidence of disposition of the packaged olives covered by an...

  11. Licensing Air and Transboundary Shipments of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Komarov, S.V.; Budu, M.E.; Derganov, D.V.; Savina, O.A.; Bolshinsky, I.M.; Moses, S.D.; Biro, L.

    2016-01-01

    Since 1996 the IAEA TS-R-1 regulation included new requirements applicable to transport of fissile materials by air. The later 2005 and 2009 editions confirmed the validity of those provisions. Despite the fact that the IAEA TS-R-1 allows for air shipments of SNF in Type B and Type C packages, the examples of such shipments are not abundant. Nuclear regulatory bodies and transport safety experts are cautious about air shipments of SNF. Why so? What are the risks? What are the alternatives? In this new regulatory framework, in 2009, two air shipments in Type B packages of Research Reactor (RR) Spent Nuclear Fuel (SNF) from Romania and Libya were performed under the U.S. DOE/NNSA RRRFR Program. The first licensing process of such shipment brought up many questions about package and shipment safety from the licensing experts' side and so the scope of analyses exceeded the requirements of IAEA. Under the thorough supervision of Rosatom and witnessed by DOE and CNCAN, all questions were answered by various strength analyses and risk evaluations. But the progress achieved didn't stop here. In 2010-2011, an energy absorption container (EAC) with titanium spheres as absorbers based on the SKODA VPVR/M cask was designed as the first Type C package in the world destined for RR SNF, currently under approval process. At the same time, intense preparations for the safe removal of the Russian-origin damaged RR SNF from Serbia, Vinca were in progress. The big amount of SNF and its rapidly worsening condition imposed as requirements to organize only one shipment as fast as possible, i.e. using at the maximum extent the entire experience available from other SNF shipments. The long route, several transit countries and means of transport, two different casks, new European regulations and many other issues resulted for the Serbian shipment in one of the most complex SNF shipments’ licensing exercise. This paper shows how the international regulatory framework ensures the

  12. Low level waste shipment accident lessons learned

    International Nuclear Information System (INIS)

    Rast, D.M.; Rowe, J.G.; Reichel, C.W.

    1995-01-01

    On October 1, 1994 a shipment of low-level waste from the Fernald Environmental Management Project, Fernald, Ohio, was involved in an accident near Rolla, Missouri. The accident did not result in the release of any radioactive material. The accident did generate important lessons learned primarily in the areas of driver and emergency response communications. The shipment was comprised of an International Standards Organization (ISO) container on a standard flatbed trailer. The accident caused the low-level waste package to separate from the trailer and come to rest on its top in the median. The impact of the container with the pavement and median inflicted relatively minor damage to the container. The damage was not substantial enough to cause failure of container integrity. The success of the package is attributable to the container design and the packaging procedures used at the Fernald Environmental Management Project for low-level waste shipments. Although the container survived the initial wreck, is was nearly breached when the first responders attempted to open the ISO container. Even though the container was clearly marked and the shipment documentation was technically correct, this information did not identify that the ISO container was the primary containment for the waste. The lessons learned from this accident have DOE complex wide applicability. This paper is intended to describe the accident, subsequent emergency response operations, and the lessons learned from this incident

  13. Packaging and transportation of radioactive liquid at the U.S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Smith, R.J.

    1995-02-01

    Beginning in the 1940's, radioactive liquid waste has been generated at the US Department of Energy (DOE) Hanford Site as a result of defense material production. The liquid waste is currently stored in 177 underground storage tanks. As part of the tank remediation efforts, Type B quantity packagings for the transport of large volumes of radioactive liquids are required. There are very few Type B liquid packagings in existence because of the rarity of large-volume radioactive liquid payloads in the commercial nuclear industry. Development of aboveground transport systems for large volumes of radioactive liquids involves institutional, economic, and technical issues. Although liquid shipments have taken place under DOE-approved controlled conditions within the boundaries of the Hanford Site for many years, offsite shipment requires compliance with DOE, US Nuclear Regulatory Commission (NRC), and US Department of Transportation (DOT) directives and regulations. At the present time, no domestic DOE nor NRC-certified Type B packagings with the appropriate level of shielding are available for DOT-compliant transport of radioactive liquids in bulk volumes. This paper will provide technical details regarding current methods used to transport such liquids on and off the Hanford Site, and will provide a status of packaging development programs for future liquid shipments

  14. Emergency response packaging: A conceptual outline

    International Nuclear Information System (INIS)

    Luna, R.E.; McClure, J.D.; Bennett, P.C.; Wheeler, T.A.

    1991-01-01

    The main thrust of this paper has been to put forth the idea of developing a package for the recovery and retrieval of released radioactive material contents from Radioactive Materials (RAM) packaging involved in transport accidents. Prior to the development of such a package, some additional studies might be performed which would confirm the general type of candidate materials which might have to be recovered. This would require a detailed inventory of US packages that have released their contents due to transport accidents. The main issue is one of preparedness which would allow the US Department of Energy to respond to accidents for DOE shipments and to respond nationally for shipments outside the normal jurisdiction of US DOE shipments

  15. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 2000 edition

    International Nuclear Information System (INIS)

    2000-08-01

    Safety in the transport of radioactive material is dependent on packaging appropriate for the contents being shipped, rather than on operational and/or administrative actions required on the package. The grater the radiological risk posed by the material being moved, the more stringent become the performance for the packaging that can be authorised to contain it. These principles have been expanded since 1061 into a set of regulations that are responsible for safety moving the ever-growing number and complexity of radioactive material shipments throughout the world. The IAEA Regulations for the Safe Transport of Radioactive Material are incorporated into UN regulations, as well as the requirements of other international transport organizations. This is the eleventh report published by the IAEA since implementing its database on package approval certificates (PACKTRAM) at the recommendation of the Transport safety Standards Advisory Committee (TRANSSAC). Through the PACKTRAM database, the IAEA collects administrative and technical information provided by the issuing competent authority about package approval certificates

  16. Moderation control in low enriched 235U uranium hexafluoride packaging operations and transportation

    International Nuclear Information System (INIS)

    Dyer, R.H.; Kovac, F.M.; Pryor, W.A.

    1993-01-01

    Moderation control is the basic parameter for ensuring nuclear criticality safety during the packaging and transport of low 235 U enriched uranium hexafluoride before its conversion to nuclear power reactor fuel. Moderation control has permitted the shipment of bulk quantities in large cylinders instead of in many smaller cylinders and, therefore, has resulted in economies without compromising safety. Overall safety and uranium accountability have been enhanced through the use of the moderation control. This paper discusses moderation control and the operating procedures to ensure that moderation control is maintained during packaging operations and transportation

  17. Shipment of radioactive materials by the US Department of Energy

    International Nuclear Information System (INIS)

    1986-01-01

    This brochure provides notification of, and information on, the general types of radioactive material shipments being transported for or on behalf of DOE in commerce across state and other jurisdictional boundaries. This brochure addresses: packaging and material types, shipment identification, modes of transport/materials shipped, DOE policy for routing and oversize/overweight shipments, DOE policy for notification and cargo security, training, emergency assistance, compensation for nuclear accidents, safety record, and principal DOE contact

  18. 49 CFR 173.474 - Quality control for construction of packaging.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Quality control for construction of packaging. 173...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.474 Quality control for construction of packaging. Prior to the first use of any packaging for the shipment of Class 7...

  19. 49 CFR 173.312 - Requirements for shipment of MEGCs.

    Science.gov (United States)

    2010-10-01

    ...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.312 Requirements... MEGC's structural or service equipment may be affected. (4) No person may fill or offer for... requalification due date. (5) Prior to filling and offering a MEGC for transportation, the MEGC's structural and...

  20. Emergency response packaging: A conceptual outline

    International Nuclear Information System (INIS)

    Luna, R.E.; McClure, J.D.; Bennett, P.C.; Wheeler, T.A.

    1992-01-01

    The Packaging and Transportation Needs in the 1990's (PATN) component of the Transportation Assessment and Integration (TRAIN) program (DOE Nov. 1991) was designed to survey United States Department of Energy programs, both ongoing and planned, to identify needs for packaging and transportation services over the next decade. PATN also identified transportation elements that should be developed by the DOE Office of Environmental Restoration and Waste Management (DOE EM) Transportation Management Program (TMP). As a result of the predominant involvement of the TMP in radioactive material shipment issues and DOE EM's involvement with waste management issues, the primary focus of PATN was on waste packaging issues. Pending DOE regulations will formalize federal guidelines and regulations for transportation of hazardous and radioactive materials within the boundaries of DOE reservations and facilities and reflect a growing awareness of concern regarding safety environmental responsibility activities on DOE reservations. Future practices involving the transportation of radioactive material within DOE reservations will closely parallel those used for commercial and governmental transportation across the United States. This has added to the perceived need for emergency recovery packaging and emergency response features on primary packaging, for both on-site shipments and shipments between DOE facilities (off-site). Historically, emergency response and recovery functions of packaging have not been adequately considered in packaging design and construction concepts. This paper develops the rationale for emergency response packaging, including both overpack concepts for repackaging compromised packaging and primary packaging redesign to facilitate the recovery of packages via mobile remote handling equipment. The rationale will examine concepts for determination of likely use patterns to identify types of shipments where recovery packaging may have the most favorable payoff

  1. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 2003 ed

    International Nuclear Information System (INIS)

    2003-10-01

    This is the fourteenth annual report being published by the Secretariat of the International Atomic Energy Agency since implementing its database on package approval certificates (PACKTRAM) at the recommendation of the Transport Safety Standards Committee (TRANSSC). It supersedes IAEA-TECDOC-1302 'Directory of National Competent Authorities' Approval Certificates for Package Design, Special Form Material and Shipment of Radioactive Material, 2002 Edition'. Through the database, the Secretariat collects administrative and technical information provided by the issuing competent authority about package approval certificates. Such data are used mainly by national competent authorities and port and customs officials to assist in regulating radioactive material movements in their country, and also by manufacturers and shippers of radioactive material. The database carries information on extant certificates and those that expired within the last complete calendar year. The PACKTRAM database only contains information that has been provided to the IAEA. The data are not complete nor guaranteed to be accurate. If detailed information is required, the original package approval certificates must be consulted. If information is required about package approval certificates that are not contained in the database, the issuing competent authority must be consulted

  2. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 2003 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-01

    This is the fourteenth annual report being published by the Secretariat of the International Atomic Energy Agency since implementing its database on package approval certificates (PACKTRAM) at the recommendation of the Transport Safety Standards Committee (TRANSSC). It supersedes IAEA-TECDOC-1302 'Directory of National Competent Authorities' Approval Certificates for Package Design, Special Form Material and Shipment of Radioactive Material, 2002 Edition'. Through the database, the Secretariat collects administrative and technical information provided by the issuing competent authority about package approval certificates. Such data are used mainly by national competent authorities and port and customs officials to assist in regulating radioactive material movements in their country, and also by manufacturers and shippers of radioactive material. The database carries information on extant certificates and those that expired within the last complete calendar year. The PACKTRAM database only contains information that has been provided to the IAEA. The data are not complete nor guaranteed to be accurate. If detailed information is required, the original package approval certificates must be consulted. If information is required about package approval certificates that are not contained in the database, the issuing competent authority must be consulted.

  3. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    International Nuclear Information System (INIS)

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes

  4. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes.

  5. Performance-Oriented packaging: A guide to identifying, procuring, and using

    International Nuclear Information System (INIS)

    O'Brien, J.H.

    1992-09-01

    This document guides users through the process of correctly identifying, obtaining, and using performance-oriented packaging. Almost all hazardous material shipments can be made in commercially available performance-oriented packaging. To cover the remaining shipments requiring specially designed packaging, a design guide is being developed. The design guide is scheduled to be issued 1 year after this procurement guide

  6. Safety Evaluation for Packaging (onsite) T Plant Canyon Items

    International Nuclear Information System (INIS)

    OBRIEN, J.H.

    2000-01-01

    This safety evaluation for packaging (SEP) evaluates and documents the ability to safely ship mostly unique inventories of miscellaneous T Plant canyon waste items (T-P Items) encountered during the canyon deck clean off campaign. In addition, this SEP addresses contaminated items and material that may be shipped in a strong tight package (STP). The shipments meet the criteria for onsite shipments as specified by Fluor Hanford in HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments

  7. Safety Evaluation for Packaging (onsite) T Plant Canyon Items

    Energy Technology Data Exchange (ETDEWEB)

    OBRIEN, J.H.

    2000-07-14

    This safety evaluation for packaging (SEP) evaluates and documents the ability to safely ship mostly unique inventories of miscellaneous T Plant canyon waste items (T-P Items) encountered during the canyon deck clean off campaign. In addition, this SEP addresses contaminated items and material that may be shipped in a strong tight package (STP). The shipments meet the criteria for onsite shipments as specified by Fluor Hanford in HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments.

  8. Radiological consequences of ship collisions that might occur in U.S. Ports during the shipment of foreign research reactor spent nuclear fuel to the United States in break-bulk freighters

    International Nuclear Information System (INIS)

    Sprung, J.L.; Bespalko, S.J.; Massey, C.D.; Yoshimura, R.; Johnson, J.D.; Reardon, P.C.; Ebert, M.W.; Gallagher D.W.

    1996-08-01

    Accident source terms, source term probabilities, consequences, and risks are developed for ship collisions that might occur in U.S. ports during the shipment of spent fuel from foreign research reactors to the United States in break-bulk freighters

  9. Safety analysis report for packages: packaging of fissile and other radioactive materials. Final report

    International Nuclear Information System (INIS)

    Chalfant, G.G.

    1984-01-01

    The 9965, 9966, 9967, and 9968 packages are designed for surface shipment of fissile and other radioactive materials where a high degree of containment (either single or double) is required. Provisions are made to add shielding material to the packaging as required. The package was physically tested to demonstrate that it meets the criteria specified in USDOE Order No. 5480.1, chapter III, dated 5/1/81, which invokes Title 10, Code of Federal Regulations, Part 71 (10 CFR 71), Packing and Transportation of Radioactive Material, and Title 49, Code of Federal Regulations, Part 100-179, Transportation. By restricting the maximum normal operating pressure of the packages to less than 7 kg/cm 2 (gauge) (99 to 54 psig), the packages will comply with Type B(U) regulations of the International Atomic Energy Agency (IAEA) in its Regulations for the Safe Transport of Radioactive Materials, Safety Series No. 6, 1973 Revised Edition, and may be used for export and import shipments. These packages have been assessed for transport of up to 14.5 kilograms of uranium, excluding uranium-233, or 4.4 kilograms of plutonium metal, oxides, or scrap having a maximum radioactive decay energy of 30 watts. Specific maximum package contents are given. This quantity and the configuration of uranium or plutonium metal cannot be made critical by any combination of hydrogeneous reflection and moderation regardless of the condition of the package. For a uranium-233 shipment, a separate criticality evaluation for the specific package is required

  10. Considerations relating to different types of packaging

    International Nuclear Information System (INIS)

    Sousselier, Y.; Cohendy, G.

    1976-01-01

    The transport of radioactive materials has never given rise to a serious accident in France. This is due to the high quality of the provisions contained in the Regulations and to the conscientious manner in which the latter are applied. However, it would now seem appropriate to re-examine certain of these provisions in the light of a number of minor incidents which have occurred, or merely because problems have arisen which did not exist at the time of the last revision. This applies particularly to Type B packaging, intended for irradiated fuel shipments whose considerable bulk calls for a mock-up study. The transport of Type B packaging by sea may pose the problem of its resistance to fire on normal merchant ships, and similarly its behaviour under the effect of crushing should be examined in the context of air transport. Industrial-type packaging likewise presents problems, although these are basically of a psychological nature. This is particularly the case with consignments of uraniferous concentrates, uranium hexafluoride and plutonium-contaminated wastes. The accumulation (which sometimes reaches substantial numbers) of Type A packaging on a single vehicle may involve consequences which also call for study. (author)

  11. 49 CFR 173.23 - Previously authorized packaging.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Previously authorized packaging. 173.23 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.23 Previously authorized packaging. (a) When the regulations specify a packaging with a specification marking...

  12. 49 CFR 173.3 - Packaging and exceptions.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packaging and exceptions. 173.3 Section 173.3... SHIPMENTS AND PACKAGINGS General § 173.3 Packaging and exceptions. (a) The packaging of hazardous materials.... standard packaging must be open to inspection by a representative of the Department. (b) The regulations...

  13. Type B Drum packages

    International Nuclear Information System (INIS)

    Edwards, W.S.

    1995-11-01

    The Type B Drum package is a container in which a single drum containing Type B quantities of radioactive material will be packaged for shipment. The Type B Drum containers are being developed to fill a void in the packaging and transportation capabilities of the US Department of Energy (DOE), as no double containment packaging for single drums of Type B radioactive material is currently available. Several multiple-drum containers and shielded casks presently exist. However, the size and weight of these containers present multiple operational challenges for single-drum shipments. The Type B Drum containers will offer one unshielded version and, if needed, two shielded versions, and will provide for the option of either single or double containment. The primary users of the Type B Drum container will be any organization with a need to ship single drums of Type B radioactive material. Those users include laboratories, waste retrieval facilities, emergency response teams, and small facilities

  14. Packaging and transport of radioisotopes

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1976-01-01

    The importance of radioisotope traffic is emphasized. More than a million packages are being transported each year, mostly for medical uses. The involvement of public transport services and the incidental dose to the public (which is very small) are appreciably greater than for movements connected with the nuclear fuel cycle. Modern isotope packages are described, and an outline given of the problems of a large radioisotope manufacturer who has to package many different types of product. Difficulties caused by recent uncoordinated restrictions on the use of passenger aircraft are mentioned. Some specific problems relating to radioisotope packaging are discussed. These include the crush resistance of Type A packages, the closure of steel drums, the design of secure closures for large containers, the Type A packaging of liquids, leak tightness criteria of Type B packages, and the use of 'unit load' overpacks to consign a group of individually approved packages together as a single shipment. Reference is made to recent studies of the impact of radioisotope shipments on the environment. Cost/benefit analysis is important in this field - an important public debate is only just beginning. (author)

  15. 49 CFR 173.60 - General packaging requirements for explosives.

    Science.gov (United States)

    2010-10-01

    ... explosives contained in the package, so that neither interaction between the explosives and the packaging... 49 Transportation 2 2010-10-01 2010-10-01 false General packaging requirements for explosives. 173...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1...

  16. 49 CFR 173.465 - Type A packaging tests.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Type A packaging tests. 173.465 Section 173.465 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.465 Type A packaging tests. (a) The packaging...

  17. Safety analysis report: packages. DOT specification 7A - Type A container Mark 15 sludge shipping package

    International Nuclear Information System (INIS)

    Zeh, C.W.

    1985-03-01

    Sludge or filter cake containing 1.1 wt % 235 U enriched uranium from Mark 15 fabrication will be packaged in 55-gallon containers and shipped from SRP to NLO, Fernald, Ohio for recovery of product. About 7 Metric Tons (MT) of filter cake will be produced from fabricating Mark 15 slugs each reactor charge. Packaged shipments of this material, consigned as exclusive use, will be shipped to NLO in Department of Transportation (DOT) Specification 7A - Type A packages under a DOE Certificate of Compliance for Fissile Class III shipments. ''Type A packaging'' is designed to retain containment and shielding integrity under normal conditions of transport. This report documents compliance of the package design, construction methods, material and test performance with DOT Specification 7A. This DOT 7A Type A package contains a carbon steel outer container which is a 0.060-in.-thick 55-gal, galvanized drum equipped with a gasketed closure. The outer container encloses a 0.090-in.-thick, open head, polyethylene liner with lid

  18. 7 CFR 905.140 - Gift packages.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Gift packages. 905.140 Section 905.140 Agriculture... TANGELOS GROWN IN FLORIDA Rules and Regulations Non-Regulated Fruit § 905.140 Gift packages. Any handler..., ship any varieties for the following purpose and types of shipment: (a) To any person gift packages...

  19. Rapid Gamma Screening of Shipments of Analytical Samples to Meet DOT Regulations

    International Nuclear Information System (INIS)

    Wojtaszek, P.A.; Remington, D.L.; Ideker-Mulligan, V.

    2006-01-01

    The accelerated closure program at Rocky Flats required the capacity to ship up to 1000 analytical samples per week to off-site commercial laboratories, and to conduct such shipment within 24 hours of sample collection. During a period of near peak activity in the closure project, a regulatory change significantly increased the level of radionuclide data required for shipment of each package. In order to meet these dual challenges, a centralized and streamlined sample management program was developed which channeled analytical samples through a single, high-throughput radiological screening facility. This trailerized facility utilized high purity germanium (HPGe) gamma spectrometers to conduct screening measurements of entire packages of samples at once, greatly increasing throughput compared to previous methods. The In Situ Object Counting System (ISOCS) was employed to calibrate the HPGe systems to accommodate the widely varied sample matrices and packing configurations encountered. Optimum modeling and configuration parameters were determined. Accuracy of the measurements of grouped sample jars was confirmed with blind samples in multiple configurations. Levels of radionuclides not observable by gamma spectroscopy were calculated utilizing a spreadsheet program that can accommodate isotopic ratios for large numbers of different waste streams based upon acceptable knowledge. This program integrated all radionuclide data and output all information required for shipment, including the shipping class of the package. (authors)

  20. 49 CFR 174.85 - Position in train of placarded cars, transport vehicles, freight containers, and bulk packagings.

    Science.gov (United States)

    2010-10-01

    ... Vehicles and Freight Containers § 174.85 Position in train of placarded cars, transport vehicles, freight... position in a train of each loaded placarded car, transport vehicle, freight container, and bulk packaging..., and other specially equipped cars with tie-down devices for securing vehicles. Permanent bulk head...

  1. Radiation Exposures Associated with Shipments of Foreign Research Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    MASSEY, CHARLES D.; MESSICK, C.E.; MUSTIN, T.

    1999-01-01

    Experience has shown that the analyses of marine transport of spent fuel in the Environmental Impact Statement (EIS) were conservative. It is anticipated that for most shipments. The external dose rate for the loaded transportation cask will be more in line with recent shipments. At the radiation levels associated with these shipments, we would not expect any personnel to exceed radiation exposure limits for the public. Package dose rates usually well below the regulatory limits and personnel work practices following ALARA principles are keeping human exposures to minimal levels. However, the potential for Mure shipments with external dose rates closer to the exclusive-use regulatory limit suggests that DOE should continue to provide a means to assure that individual crew members do not receive doses in excess of the public dose limits. As a minimum, the program will monitor cask dose rates and continue to implement administrative procedures that will maintain records of the dose rates associated with each shipment, the vessel used, and the crew list for the vessel. DOE will continue to include a clause in the contract for shipment of the foreign research reactor spent nuclear fuel requiring that the Mitigation Action Plan be followed

  2. Denials of Shipments for Radioactive Material - Indian Perspective

    International Nuclear Information System (INIS)

    Singh, Khaidem Ranjankumar; Hussain, S.A; Panda, G.K.; Singh, T. Dewan; Dinakaran, M.C.

    2016-01-01

    Radioactive material (RAM) needs to be transported for use in public health and industry and for production of nuclear power. In India, transport of RAM is governed by national and international regulations which are based on the IAEA Regulations for the safe transport of RAM. However, recently there were increasing numbers of instances of denials and delays of shipment of RAM, reported by many countries worldwide including India, despite compliance with regulations. In Indian experience, the reasons for denials of shipment of RAM by the carriers are varied in nature. From the feedback received from the participants (airport operators, airlines, courier and cargo service providers, cargo forwarding agents, port authorities and sea carriers) of awareness programmes on safe transport of RAM conducted from year 2008 onwards by Atomic Energy Regulatory Board (AERB) it became clear that the denials of shipments in India are mainly due to (1) perception of unnecessary fear for transport of RAM (2) lack of confidence and awareness on the procedures for acceptance of shipment of RAM (3) fear of risk during accidents with packages containing RAM (4) policy of the carriers not to accept consignment of dangerous goods (5) poor infrastructure at the major/transit ports (6) problems of transshipments and (7) shippers not having undergone dangerous goods training. In this paper, the Indian experience in dealing with the problems of denial/delay of shipments containing radioactive material and identified possible consequences of such denials including economical impact are discussed in detail. (author)

  3. Preparation of the Shippingport reactor pressure vessel shipping package

    International Nuclear Information System (INIS)

    Yannitell, D.M.

    1988-01-01

    Shippingport Station Decommissioning Project is the removal and shipment the Reactor Pressure Vessel (PRV) and its associated Neutron Shield Tank (NST) to the government owned Hanford Reservation in Richland, Washington. Engineering studies considered the alternatives for removal and shipment of the RPV/NST. These included segmentation for subsequent truck shipments, and one-piece removal with barge or rail shipment. Although the analysis indicated that current technology could be utilized to accomplish either alternative, one-piece removal of the RPV was selected as the safest, most cost effective method. When compared to segmentation, it was estimated that one-piece removal would reduce the duration of the Project by 1 year, reduce cost by $4 M, and result in a savings of radiation exposure of 150 man-Rem. Rail transportation of an integral RPV/NST package is not feasible due to the physical size of the package. 5 refs., 1 fig

  4. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1988-04-01

    This circular has been prepared in response to numerous requests for information regarding routes for the shipment of irradiated reactor (spent) fuel subject to regulation by the Nuclear Regulatory Commission (NRC). The NRC staff approves such routes prior to their use, in accordance with the regulatory provisions of 10 CFR Part 73.37. The objective of the safeguards regulations contained in 10 CFR Part 73.37 is to provide protection against radioactive dispersal caused by malevolent acts by persons. The design and construction of the casks used to ship the spent fuel provide adequate radiological protection of the public health and safety against accidents. Therfore, transporting appropriately packaged spent fuel over existing rail systems and via any highway system is radiologically safe without specific NRC approval of the route. However, to assure adequate planning for protection against actual or attempted acts of radiological sabotage, the NRC requires advance route approval. This approval is given on a shipment-by-shipment or series basis, it is not general approval of the route for subsequent spent fuel shipments. Spent fuel shipment routes, primarily for road transportation, but also including three rail routes, are indicated on reproductions of road maps. Also included are the amounts of material shipped during the approximate 8-year period that safeguards regulations have been effective. This information is current as of September 30, 1987

  5. Bases for DOT exemption uranyl nitrate solution shipments

    International Nuclear Information System (INIS)

    Moyer, R.A.

    1982-07-01

    Uranyl nitrate solutions from a Savannah River Plant reprocessing facility have been transported in cargo tank trailers for more than 20 years without incident during transit. The solution is shipped to Oak Ridge for further processing and returned to SRP in a solid metal form for recycle. This solution, called uranyl nitrate hexahydrate (UNH) solution in Department of Transportation (DOT) regulations, is currently diluted about 2-fold to comply with DOT concentration limits (10% of low specific activity levels) specified for bulk low specific activity (LSA) liquid shipments. Dilution of the process solution increases the number of shipments, the cost of transportation, the cost of shipper preparations, the cost of further reprocessing in the receiving facility to first evaporate the added water, and the total risk to the population along the route of travel. However, the radiological risk remains about the same. Therefore, obtaining an exemption from DOT regulations to permit shipment of undiluted UNH solution, which is normally about two times the present limit, is prudent and more economical. The radiological and nonradiological risks from shipping a unit load of undiluted solution are summarized for the probable route. Data and calculations are presented on a per load or per shipment basis throughout this memorandum to keep it unclassified

  6. 49 CFR 173.428 - Empty Class 7 (radioactive) materials packaging.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Empty Class 7 (radioactive) materials packaging... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.428 Empty Class 7 (radioactive) materials packaging. A packaging which previously contained Class 7 (radioactive...

  7. Low-level waste packaging--a managerial perspective

    International Nuclear Information System (INIS)

    Motl, G.P.; Hebbard, L.B. Jr.

    1980-01-01

    This paper emphasizes managerial responsibility for assuring that facility waste is properly packaged. Specifically, existing packaging regulations are summarized, several actual violations are reviewed and, lastly, some recommendations are made to assist managerial personnel in fulfilling their responsibility to ensure that low-level waste is packaged safely and properly before shipment to the disposal site

  8. System certification: An alternative to package certification?

    International Nuclear Information System (INIS)

    Luna, R.E.; Jefferson, R.J.

    1992-01-01

    One precept of the current radioactive material transportation regulations is that the package is the primary protection for the public. A packaging is chosen to provide containment, shielding, and criticality control suitable to the quantity and characteristics of the radionuclide being transported. Occasionally, radioactive materials requiring transport are not of a mass or size that would allow the materials to be shipped in an appropriate packaging. This is a particular problem for materials that should be shipped in a Type B package, but because such packages are designed and certified for specific contents, the package is usually fairly expensive, available in relatively small numbers, and often requires a fairly long period to achieve certification or amended certification for new contents. Where the shipment to be made is relatively infrequent, there may be economic and time penalties that may hamper shipment or force the shipper into uneconomic or high risk options. However, there is recognition of such situations in the International Atomic Energy Agency (IAEA) regulations under the provisions for Special Arrangement

  9. Composition and activity variations in bulk gas of drum waste packages of Paks NPP

    International Nuclear Information System (INIS)

    Molnar, M.; Palcsu, L.; Svingor, E.; Szanto, Zs.; Futo, I.; Ormai, P.

    2001-01-01

    To obtain reliable estimates of the quantities and rates of the gas production a series of measurements was carried out in drum waste packages generated and temporarily stored at the site of Paks Nuclear Power Plant (Paks NPP). Ten drum waste packages were equipped with sampling valves for repeated sampling. Nine times between 04/02/2000 and 19/07/2001 qualitative gas component analyses of bulk gases of drums were executed. Gas samples were delivered to the laboratory of the ATOMKI for tritium and radiocarbon content measurements.(author)

  10. Extension of ship accident analysis to multiple-package shipments

    International Nuclear Information System (INIS)

    Mills, G.S.; Neuhauser, K.S.

    1997-11-01

    Severe ship accidents and the probability of radioactive material release from spent reactor fuel casks were investigated previously. Other forms of RAM, e.g., plutonium oxide powder, may be shipped in large numbers of packagings rather than in one to a few casks. These smaller, more numerous packagings are typically placed in ISO containers for ease of handling, and several ISO containers may be placed in one of several holds of a cargo ship. In such cases, the size of a radioactive release resulting from a severe collision with another ship is determined not by the likelihood of compromising a single, robust package but by the probability that a certain fraction of 10's or 100's of individual packagings is compromised. The previous analysis involved a statistical estimation of the frequency of accidents which would result in damage to a cask located in one of seven cargo holds in a collision with another ship. The results were obtained in the form of probabilities (frequencies) of accidents of increasing severity and of release fractions for each level of severity. This paper describes an extension of the same general method in which the multiple packages are assumed to be compacted by an intruding ship's bow until there is no free space in the hold. At such a point, the remaining energy of the colliding ship is assumed to be dissipated by progressively crushing the RAM packagings and the probability of a particular fraction of package failures is estimated by adaptation of the statistical method used previously. The parameters of a common, well characterized packaging, the 6M with 2R inner containment vessel, were employed as an illustrative example of this analysis method. However, the method is readily applicable to other packagings for which crush strengths have been measured or can be estimated with satisfactory confidence

  11. Extension of ship accident analysis to multiple-package shipments

    International Nuclear Information System (INIS)

    Mills, G.S.; Neuhauser, K.S.

    1998-01-01

    Severe ship accidents and the probability of radioactive material release from spent reactor fuel casks were investigated previously (Spring, 1995). Other forms of RAM, e.g., plutonium oxide powder, may be shipped in large numbers of packagings rather than in one to a few casks. These smaller, more numerous packagings are typically placed in ISO containers for ease of handling, and several ISO containers may be placed in one of several holds of a cargo ship. In such cases, the size of a radioactive release resulting from a severe collision with another ship is determined not by the likelihood of compromising a single, robust package but by the probability that a certain fraction of 10's or 100's of individual packagings is compromised. The previous analysis (Spring, 1995) involved a statistical estimation of the frequency of accidents which would result in damage to a cask located in one of seven cargo holds in a collision with another ship. The results were obtained in the form of probabilities (frequencies) of accidents of increasing severity and of release fractions for each level of severity. This paper describes an extension of the same general method in which the multiple packages are assumed to be compacted by an intruding ship's bow until there is no free space in the hold. At such a point, the remaining energy of the colliding ship is assumed to be dissipated by progressively crushing the RAM packagings and the probability of a particular fraction of package failures is estimated by adaptation of the statistical method used previously. The parameters of a common, well-characterized packaging, the 6M with 2R inner containment vessel, were employed as an illustrative example of this analysis method. However, the method is readily applicable to other packagings for which crush strengths have been measured or can be estimated with satisfactory confidence. (authors)

  12. Is radioactive mixed waste packaging and transportation really a problem

    International Nuclear Information System (INIS)

    McCall, D.L.; Calihan, T.W. III.

    1992-01-01

    Recently, there has been significant concern expressed in the nuclear community over the packaging and transportation of radioactive mixed waste under US Department of Transportation regulation. This concern has grown more intense over the last 5 to 10 years. Generators and regulators have realized that much of the waste shipped as ''low-level radioactive waste'' was in fact ''radioactive mixed waste'' and that these wastes pose unique transportation and disposal problems. Radioactive mixed wastes must, therefore, be correctly identified and classed for shipment. If must also be packaged, marked, labeled, and otherwise prepared to ensure safe transportation and meet applicable storage and disposal requirements, when established. This paper discusses regulations applicable to the packaging and transportation of radioactive mixed waste and identifies effective methods that waste shippers can adopt to meet the current transportation requirements. This paper will include a characterization and description of the waste, authorized packaging, and hazard communication requirements during transportation. Case studies will be sued to assist generators in understanding mixed waste shipment requirements and clarify the requirements necessary to establish a waste shipment program. Although management and disposal of radioactive mixed waste is clearly a critical issue, packaging and transportation of these waste materials is well defined in existing US Department of Transportation hazardous material regulations

  13. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1991-01-01

    Shipments of radioactive material (RAM) constitute but a small fraction of the total hazardous materials shipped in the United States each year. Public perception, however, of the potential consequences of a release from a transportation package containing RAM has resulted in significant regulation of transport operations, both to ensure the integrity of a package in accident conditions and to place operational constraints on the shipper. Much of this attention has focused on shipments of spent nuclear fuel and high level wastes which, although comprising a very small number of total shipments, constitute a majority of the total curies transported on an annual basis. This report discusses the shipment of these highly radioactive materials

  14. Severities of transportation accidents involving large packages

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, A.W.; Foley, J.T. Jr.; Hartman, W.F.; Larson, D.W.

    1978-05-01

    The study was undertaken to define in a quantitative nonjudgmental technical manner the abnormal environments to which a large package (total weight over 2 tons) would be subjected as the result of a transportation accident. Because of this package weight, air shipment was not considered as a normal transportation mode and was not included in the study. The abnormal transportation environments for shipment by motor carrier and train were determined and quantified. In all cases the package was assumed to be transported on an open flat-bed truck or an open flat-bed railcar. In an earlier study, SLA-74-0001, the small-package environments were investigated. A third transportation study, related to the abnormal environment involving waterways transportation, is now under way at Sandia Laboratories and should complete the description of abnormal transportation environments. Five abnormal environments were defined and investigated, i.e., fire, impact, crush, immersion, and puncture. The primary interest of the study was directed toward the type of large package used to transport radioactive materials; however, the findings are not limited to this type of package but can be applied to a much larger class of material shipping containers.

  15. Severities of transportation accidents involving large packages

    International Nuclear Information System (INIS)

    Dennis, A.W.; Foley, J.T. Jr.; Hartman, W.F.; Larson, D.W.

    1978-05-01

    The study was undertaken to define in a quantitative nonjudgmental technical manner the abnormal environments to which a large package (total weight over 2 tons) would be subjected as the result of a transportation accident. Because of this package weight, air shipment was not considered as a normal transportation mode and was not included in the study. The abnormal transportation environments for shipment by motor carrier and train were determined and quantified. In all cases the package was assumed to be transported on an open flat-bed truck or an open flat-bed railcar. In an earlier study, SLA-74-0001, the small-package environments were investigated. A third transportation study, related to the abnormal environment involving waterways transportation, is now under way at Sandia Laboratories and should complete the description of abnormal transportation environments. Five abnormal environments were defined and investigated, i.e., fire, impact, crush, immersion, and puncture. The primary interest of the study was directed toward the type of large package used to transport radioactive materials; however, the findings are not limited to this type of package but can be applied to a much larger class of material shipping containers

  16. Safety analysis report for packaging (onsite) steel drum

    International Nuclear Information System (INIS)

    McCormick, W.A.

    1998-01-01

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum

  17. Qualification of Type IP-2, Type IP-3 and Type A packages for radioactive liquid shipments

    International Nuclear Information System (INIS)

    Marcu, L.; Sullivan, G.; Lo, K.K.

    2006-01-01

    Commercial products such as pails, drums or bulk containers can be used for radioactive materials transportation if they can be shown to meet the regulatory requirements. Ontario Power Generation (OPG) has successfully tested and qualified several off-the-shelf containers as Type IP-2, Type IP-3 and Type A packages for liquids in accordance with the International and Canadian Regulations. This paper describes the testing and qualification of these commercial products, and discusses the problems encountered and lessons learned during this process. (author)

  18. Radioisotope thermoelectric generator licensed hardware package and certification tests

    International Nuclear Information System (INIS)

    Goldmann, L.H.; Averette, H.S.

    1994-01-01

    This paper presents the Licensed Hardware package and the Certification Test portions of the Radioisotope Thermoelectric Generator Transportation System. This package has been designed to meet those portions of the Code of Federal Regulations (10 CFR 71) relating to ''Type B'' shipments of radioactive materials. The detailed information for the anticipated license is presented in the safety analysis report for packaging, which is now in process and undergoing necessary reviews. As part of the licensing process, a full-size Certification Test Article unit, which has modifications slightly different than the Licensed Hardware or production shipping units, is used for testing. Dimensional checks of the Certification Test Article were made at the manufacturing facility. Leak testing and drop testing were done at the 300 Area of the US Department of Energy's Hanford Site near Richland, Washington. The hardware includes independent double containments to prevent the environmental spread of 238 Pu, impact limiting devices to protect portions of the package from impacts, and thermal insulation to protect the seal areas from excess heat during accident conditions. The package also features electronic feed-throughs to monitor the Radioisotope Thermoelectric Generator's temperature inside the containment during the shipment cycle. This package is designed to safely dissipate the typical 4500 thermal watts produced in the largest Radioisotope Thermoelectric Generators. The package also contains provisions to ensure leak tightness when radioactive materials, such as a Radioisotope Thermoelectric Generator for the Cassini Mission, planned for 1997 by the National Aeronautics and Space Administration, are being prepared for shipment. These provisions include test ports used in conjunction with helium mass spectrometers to determine seal leakage rates of each containment during the assembly process

  19. The radioactive materials packaging handbook: Design, operations, and maintenance

    International Nuclear Information System (INIS)

    Shappert, L.B.; Bowman, S.M.; Arnold, E.D.

    1998-01-01

    As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE's cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials

  20. The radioactive materials packaging handbook: Design, operations, and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Shappert, L.B.; Bowman, S.M. [Oak Ridge National Lab., TN (United States); Arnold, E.D. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States)] [and others

    1998-08-01

    As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

  1. Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

    2013-03-21

    Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation of hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.

  2. Hanford Site radioactive hazardous materials packaging directory

    International Nuclear Information System (INIS)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations ampersand Development (PO ampersand D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage

  3. Hanford Site radioactive hazardous materials packaging directory

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  4. 27 CFR 19.401 - Inventories of wines and bulk spirits (except in packages) in processing account.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Inventories of wines and... DISTILLED SPIRITS PLANTS Processing Operations Other Than Denaturation and Manufacture of Articles Inventories § 19.401 Inventories of wines and bulk spirits (except in packages) in processing account. Each...

  5. Safety analysis report: packages cobalt-60 shipping cask (packaging of radioactive and fissile materials)

    International Nuclear Information System (INIS)

    Evans, J.E.; Langhaar, J.W.

    1973-07-01

    Safety Analysis Report DPSPU-73-124-1 replaces DPSPU-69-124-1 and Supplement 1 to permit shipment of 350,000 curies of 60 Co (maximum) in cobalt-60 shipping casks in compliance with 10 CFR Part 71, Packaging of Radioactive Materials for Transport

  6. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  7. Safety evaluation for packaging (onsite) depleted uranium waste boxes

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, W.A.

    1997-08-27

    This safety evaluation for packaging (SEP) allows the one-time shipment of ten metal boxes and one wooden box containing depleted uranium material from the Fast Flux Test Facility to the burial grounds in the 200 West Area for disposal. This SEP provides the analyses and operational controls necessary to demonstrate that the shipment will be safe for the onsite worker and the public.

  8. Safety evaluation for packaging (onsite) depleted uranium waste boxes

    International Nuclear Information System (INIS)

    McCormick, W.A.

    1997-01-01

    This safety evaluation for packaging (SEP) allows the one-time shipment of ten metal boxes and one wooden box containing depleted uranium material from the Fast Flux Test Facility to the burial grounds in the 200 West Area for disposal. This SEP provides the analyses and operational controls necessary to demonstrate that the shipment will be safe for the onsite worker and the public

  9. The PACKTRAM database on national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. User's guide for compiled system program

    International Nuclear Information System (INIS)

    1995-01-01

    The PACKTRAM system program enables Member States to prepare data diskettes on national competent authorities' approval certificates for package design, special form material and shipment of radioactive material, for submission to the IAEA, and facilitates data manipulation and report preparation for the IAEA. The system program is provided as a 424 kbyte executable file, for which this document is the User Guide. The system is fully menu-driven and requires an IBM-compatible personal computer with a minimum of 640 kbyte random access memory, a hard drive and one 3-1/2 inch diskette drive. 3 refs, 6 tabs

  10. Safety aspects of the RA-6 spent fuel shipment to the USA

    International Nuclear Information System (INIS)

    Novara, Oscar; Facchini, Guillermo; Fernandez, Carlos

    2008-01-01

    RA-6 reactor is located in Bariloche Atomic Centre (CAB), in the city of San Carlos de Bariloche, in the south of Argentina. In 2005, CNEA and DOE signed a contract for the conversion of the RA-6 reactor to LEU and for shipping back in a single shipment the HEU spent fuel inventory that consisted of 42 MTR - type fuel assemblies. The shipment activity was performed in the frame of the DOE's Spent Fuel Acceptance Program. The shipment campaign took place in the last quarter of 2007 and the receiving facility for the RA-6 fuel was Savannah River Site. One unit of a NAC - LWT shipping cask was used to ship the fuel. In order to place inside it all the fuel assemblies, cropping of their non active parts (structural parts) was required. In order to provide adequate shielding to the operators, fuel cropping was performed under water. Transfer of baskets loaded with conditioned fuel to the transport cask was made by shielded intermediate transfer systems. Especially designed shielded drums were manufactured for the storage of the cropped parts that remained in the reactor site as medium-level radioactive waste. After testing of the loaded LWT (radionuclide sampling test, helium test), the package check out was completed by measuring the superficial contamination (α and β/γ emitters) and the dose rate in contact and at 1 m. An additional requirement was to verify that the package was 'self-protected'. The ISO containers with the package and with the auxiliary equipment were also subjected to an equivalent radiological control. The typical daily staff that participated in the loading campaign was about twelve people. The collective dose was 0.72 mSv.man. (author)

  11. Experience in arranging shipments of spent fuel assemblies of commercial and research reactors

    International Nuclear Information System (INIS)

    Komarov, S.; Barinkov, O.; Eshcherkin, A.; Lozhnikov, V.; Smirnov, A.

    2008-01-01

    At present the key activities of Sosny Company are to inspect physical conditions, handle and arrange shipment of SFA including failed SFA. In 2003 after obtaining the license of Gosatomnadzor (Rostechnadzor now) entitled to handle nuclear materials in the process of their shipment, Sosny Company started preparing certification and arranging SFA shipment on its own. About 40 shipments of SFA were performed with participation of Sosny Company. Experience in handling failed SFA - an example of development of a new technology could be the transport and technological scheme of RBMK-1000 SFA shipment from Leningradskaya NPP that was designed by Sosny Company. TUK-11 cask was selected for this shipment. The example of change of transport and technological scheme is modification of the technology for handling and shipment of WWER-440 SFA from Kola NPP. Experience in arranging transportation - based on the results of development of logistics schemes for shipping SFA of reactor facilities Sosny Company justified and implemented composition of mixed trains containing rail cars of many types that enabled to perform shipment more efficiently in time and cost. Experience in arranging handling and shipment of research reactor SFA - over the past years the activity of Sosny Company was aimed at implementing international Russian Research Reactor Fuel Return (RRRFR) program. Since equipment of the majority of research centers doesn't allow for the large casks to be accepted and loaded, special casks of less mass and dimensions are used to ship SFA from research reactors. In RRRFR program it is assumed to use different casks for RR SFA such as Russian TUK- 19, TUK-128 and foreign SKODA VPVR/M and NAC-LWT. At present Sosny Company is involved in coordination of the efforts of the affected organizations in creating the type 'C' package for RR SFA in the RF. Conclusion: Under conditions of constant increase of the requirements to shipment safety and complication of regulations of all

  12. Performance-oriented packaging: A guide to identifying, procuring, and using. Procurement and use of packaging using HM-181 regulations

    International Nuclear Information System (INIS)

    1994-09-01

    This document addresses procurement of nonbulk packaging used for nonradioactive, hazardous materials that are transported by highway. The basic procedure is the same when making shipments by other modes. However, other sections of the regulations may affect the packaging requirements when shipping by other modes. The variation in requirements is extensive when air transportation is selected. A packaging engineer or transportation specialist should be contacted for guidance wen transport is by a mode other than highway

  13. Lessons learned from the West Valley spent nuclear fuel shipment within the United States

    International Nuclear Information System (INIS)

    Tyacke, M.J.; Anderson, T.

    2004-01-01

    This paper describes the lessons learned from the U.S. Department of Energy (DOE) transportation of 125 DOE-owned commercial spent nuclear fuel (SNF) assemblies by railroad from the West Valley Demonstration Project to the Idaho National Engineering and Environmental Laboratory (INEEL). On July 17, 2003, DOE made the largest single shipment of commercial SNF in the history of the United States. This was a highly visible and political shipment that used two specially designed Type B transportation and storage casks. This paper describes the background and history of the shipment. It discusses the technical challenges for licensing Type B packages for hauling large quantities of SNF, including the unique design features, testing and analysis. This paper also discusses the preshipment planning, preparations, coordination, route evaluation and selection, carrier selection and negotiations, security, inspections, tracking, and interim storage at the INEEL

  14. In-package inhibition of E. coli O157:H7 on bulk Romaine lettuce using cold plasma.

    Science.gov (United States)

    Min, Sea C; Roh, Si Hyeon; Niemira, Brendan A; Boyd, Glenn; Sites, Joseph E; Uknalis, Joseph; Fan, Xuetong

    2017-08-01

    Dielectric barrier discharge atmospheric cold plasma (DACP) treatment was evaluated for the inactivation of Escherichia coli O157:H7, surface morphology, color, carbon dioxide generation, and weight loss of bulk Romaine lettuce in a commercial plastic clamshell container. The lettuce samples were packed in a model bulk packaging configuration (three rows with either 1, 3, 5, or 7 layers) in the container and treated by DACP (42.6 kV, 10 min). DACP treatment reduced the number of E. coli O157:H7 in the leaf samples in the 1-, 3-, and 5-layer configurations by 0.4-0.8 log CFU/g lettuce, with no significant correlation to the sample location (P > 0.05). In the largest bulk stacking with 7 layers, a greater degree of reduction (1.1 log CFU/g lettuce) was observed at the top layer, but shaking the container increased the uniformity of the inhibition. DACP did not significantly change the surface morphology, color, respiration rate, or weight loss of the samples, nor did these properties differ significantly according to their location in the bulk stack. DACP treatment inhibited E. coli O157:H7 on bulk lettuce in clamshell containers in a uniform manner, without affecting the physical and biological properties and thus holds promise as a post-packaging process for fresh and fresh-cut fruits and vegetables. Published by Elsevier Ltd.

  15. Type B drum packages

    International Nuclear Information System (INIS)

    McCoy, J.C.

    1994-08-01

    The Type B drum packages (TBD) are conceptualized as a family of containers in which a single 208 L or 114 L (55 gal or 30 gal) drum containing Type B quantities of radioactive material (RAM) can be packaged for shipment. The TBD containers are being developed to fill a void in the packaging and transportation capabilities of the U.S. Department of Energy as no container packaging single drums of Type B RAM exists offering double containment. Several multiple-drum containers currently exist, as well as a number of shielded casks, but the size and weight of these containers present many operational challenges for single-drum shipments. As an alternative, the TBD containers will offer up to three shielded versions (light, medium, and heavy) and one unshielded version, each offering single or optional double containment for a single drum. To reduce operational complexity, all versions will share similar design and operational features where possible. The primary users of the TBD containers are envisioned to be any organization desiring to ship single drums of Type B RAM, such as laboratories, waste retrieval activities, emergency response teams, etc. Currently, the TBD conceptual design is being developed with the final design and analysis to be completed in 1995 to 1996. Testing and certification of the unshielded version are planned to be completed in 1996 to 1997 with production to begin in 1997 to 1998

  16. Waste management (Truck and rail shipments to Hanford)

    International Nuclear Information System (INIS)

    O'Donnell, J.P.; Culbertson, R.C.

    1988-01-01

    As part of the physical decommissioning of the Shippingport Atomic Power Station, Shippingport, PA, a large volume of Low Specific Activity (LSA) radioactive waste was accumulated. The waste, which consisted primarily of radioactive reactor plant components, piping, contaminated asbestos, tanks, building rubble, sludge and ion exchange resins was packaged and prepared for shipment. The waste was transported by truck and rail from Shippingport, PA, to the Department of Energy burial ground at Hanford, Washington, a journey of 2,329 miles. This presentation will discuss the successful management of over 2,600 packages weighing in excess of 3,600 tons of radioactive waste from the cradle-to-the-grave, that is from the time it was generated during the decommissioning process until its final burial at the Hanford, Washington burial site. 1 tab

  17. Packaging-radiation disinfestation relationships

    International Nuclear Information System (INIS)

    Highland, H.A.

    1985-01-01

    Foods that are susceptible to insect infestation can be irradiated to destroy the infestation; however, the food must be kept essentially insect-free until consumed, or it must be disinfested again, perhaps repeatedly. Insect-resistant packages can be used to prevent reinfestation, but there are certain requirements that must be fulfilled before a package can be made insect resistant. These include the use of insect-light construction and packaging materials that resist boring insects. The relative insect resistance of various packages and packaging materials is discussed, as are behavior traits such as egressive boring that enables insects to escape from packages and the ability of insects to climb on various packaging materials. Some successful and unsuccessful attempts to make various types of packages insect resistant are discussed, as are factors that must be considered in the selection or development of insect-resistant packages for radiation disinfested foods. The latter factors include biological and physical environments, length of storage periods, stresses on packages during shipment, types of storage facilities, governmental regulations, health requirements, and others

  18. 49 CFR 173.323 - Ethylene oxide.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Ethylene oxide. 173.323 Section 173.323... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.323 Ethylene oxide. (a) For packaging ethylene oxide in non-bulk packagings, silver mercury or any of its alloys or copper may not be used in any...

  19. System certification: An alternative to package certification?

    International Nuclear Information System (INIS)

    Luna, R.E.; Jefferson, R.J.

    1991-01-01

    One precept of the current radioactive material transportation regulations is that the package is the primary protection for the public. A packaging is chosen to provide containment, shielding, and criticality control suitable to the quantity and characteristics of the radionuclide being transported. Occasionally, radioactive materials requiring transport are not of a mass or size that would allow the materials to be shipped in an appropriate packaging. Where the shipment to be made is relatively infrequent, there may be economic and time penalties that may hamper shipment or force the shipper into uneconomic or high risk options. However, there is recognition of such situations in the International Atomic Energy Agency (IAEA) regulations under the provisions for Special Arrangement. The principal paragraphs defining Special Arrangement in Regulations for the Safe of Radioactive Material; Safety Series 6 (SS6) [IAEA, 1990a] are 141, 211, 720, and 727. In the US regulations the applicable term is ''Exemption.'' An exemption is obtained from either the United States Department of Transportation (USDOT) or the United States Nuclear Regulatory Commission (USNRC) depending on the character of the needed exemption. The essential concept is that some requirements of the regulations that apply in a given situation are not required if the shipment is subjected to other operational controls that provide an equivalent level of risk to that attained if the regulations were observed fully. This paper deals primarily with changing of packaging requirements in Special Arrangements, but it is also true that operational requirements also may be changed as a result of an Exemption or Special Arrangement approval by a regulatory authority

  20. Directory of Certificates of Compliance for Radioactive Materials Packages: Report of NRC Approved Packages

    International Nuclear Information System (INIS)

    1993-10-01

    This directory contains a Report of NRC Approved Packages (Volume 1). The purpose of this directory is to make available a convenient source of information on Quality Assurance Programs and Packagings which have been approved by the US Nuclear Regulatory Commission. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR section 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure themselves that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program

  1. Assessment of the radiological risks of road transport accidents involving Type A packages

    International Nuclear Information System (INIS)

    Lange, F.; Fett, H.J.; Schwarz, G.; Raffestin, D.; Schneider, T.; Gelder, R.; S. Hughes, J.; B. Shaw, K.; Hedberg, B.; Simenstad, P.; Svahn, B.; Heinen, J.F.A. van; Jansma, R.

    2001-01-01

    An assessment and evaluation of the potential radiological risks of transport accidents involving Type A package shipments by road have been performed by five EU Member States, France, Germany, Sweden, The Netherlands, and the UK. The analysis involved collection and analysis of information on a national basis related to the type, volume, and characteristics of Type A package consignments, the associated radioactive traffic, and the expected frequency and consequences of potential vehicular road transport accidents. It was found that the majority of Type A packaged radioactive material shipments by road is related to applications of non-special form radioactive material, i.e. radiopharmaceuticals, radiochemicals etc., in medicine, research, and industry and special form material contained in radiography and other radiation sources, e.g. gauging equipment. The annual volumes of Type A package shipments of radiopharmaceuticals and radiochemicals by road differ considerably between the participating EU Member States from about 12,000 Type A packages in Sweden to about 240,000 in the Netherlands. The broad range reflects to a large extent the supply of radioactive material for the national populations and the production and distribution operations prevailing in the participating EU Member States (some are producer countries, others are not!). Very few standard package designs weighing from about 1-25 kg are predominant in Type A package shipments in all participating countries. Type A packages contain typically a range of radioactivity from a few mega becquerels to a few tens of giga becquerels, the average package activity contents is in terms of fractions of A 2 about 0.01, i.e. about one hundredth of a Type A package contents limits. Based on a probabilistic risk assessment method it has been concluded that the expected frequencies of occurrence of vehicular road transport accidents with the potential to result in an environmental release - including radiologically

  2. 76 FR 73775 - Information Collection Activities

    Science.gov (United States)

    2011-11-29

    ... materials shipments. Part 172 of the HMR requires persons who offer or transport certain hazardous materials... shipment of hazardous materials in a bulk packaging with a capacity equal to or greater than 13,248 L (3... such a requirement posed problems for motor carriers with regard to complying with segregation...

  3. Safety analysis report: packages. Pu oxide and Am oxide shipping cask (Packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    Chalfant, G.G.

    1980-05-01

    The PuO 2 cask or SP 5320-2 and 3 cask is designed for surface shipment of americium or plutonium. The cask design was physically tested to demonstrate that it met the criteria specified in US ERDA Manual Chapter 0529, and Chapter I, Interstate Commerce Commission. The package has been assessed for transport of up to 357 grams of plutonium (403 grams PuO 2 powder) and up to 176 grams of americium (200 grams AmO 2 powder), having a maximum decay heat of 203 watts. Criticality evaluation alone would allow the shipment as Fissile Class II but the radiation level of the cask, measured at the time of shipment, may exceed 50 mrem/h at the surface and require shipment as Fissile Class III. Sample calculations address only the more restrictive of the two materials, which in most cases is 238 PuO 2

  4. 75 FR 27273 - Hazardous Materials; Packages Intended for Transport by Aircraft

    Science.gov (United States)

    2010-05-14

    ... shipments have routinely utilized multiple flight segments in the past, the proliferation of sort systems.... Today, air carriers use multiple mechanical handling systems to sort packages, and the number of... Leaks in Flexible Packaging by Bubble Emission'' or a generic test method outlined in a proposed new...

  5. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device

    Science.gov (United States)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti

    2003-12-01

    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  6. 78 FR 33224 - Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers

    Science.gov (United States)

    2013-06-04

    ... 1625-AA00 Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers... Guard is establishing a temporary safety zone around all inbound and outbound grain-shipment and grain-shipment assist vessels involved in commerce with the Columbia Grain facility on the Willamette River in...

  7. 78 FR 57261 - Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers

    Science.gov (United States)

    2013-09-18

    ... 1625-AA00 Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers... temporary safety zone around all inbound and outbound grain-shipment and grain-shipment assist vessels involved in commerce with the Columbia Grain facility on the Willamette River in Portland, OR, the United...

  8. 44 years of testing radioactive materials packages at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Shappert, L.B.; Ludwig, S.B. [Oak Ridge National Lab., Oak Ridge, TN (United States)

    2004-07-01

    This paper briefly reviews the package testing at the Oak Ridge National Laboratory (ORNL) since 1960 and then examines the trends in the testing activities that occurred during the same period. Radioactive material shipments have been made from ORNL since the 1940s. The first fully operating reactor built at the ORNL site was patterned after the graphite pile constructed by Enrico Fermi under Stagg Field in Chicago. After serving as a test bed for future reactors, it became useful as a producer of radioactive isotopes. The Isotopes Division was established at ORNL to furnish radioactive materials used in the medical community. Often these shipments have been transported by aircraft worldwide due to the short half-lives of many of the materials. This paper touches briefly on the lighter and smaller radioisotope packages that were being shipped from ORNL in large numbers and then deals with the testing of packages designed to handle large radioactive sources, such as spent fuel, and other fissile materials.

  9. 44 years of testing radioactive materials packages at ORNL

    International Nuclear Information System (INIS)

    Shappert, L.B.; Ludwig, S.B.

    2004-01-01

    This paper briefly reviews the package testing at the Oak Ridge National Laboratory (ORNL) since 1960 and then examines the trends in the testing activities that occurred during the same period. Radioactive material shipments have been made from ORNL since the 1940s. The first fully operating reactor built at the ORNL site was patterned after the graphite pile constructed by Enrico Fermi under Stagg Field in Chicago. After serving as a test bed for future reactors, it became useful as a producer of radioactive isotopes. The Isotopes Division was established at ORNL to furnish radioactive materials used in the medical community. Often these shipments have been transported by aircraft worldwide due to the short half-lives of many of the materials. This paper touches briefly on the lighter and smaller radioisotope packages that were being shipped from ORNL in large numbers and then deals with the testing of packages designed to handle large radioactive sources, such as spent fuel, and other fissile materials

  10. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Science.gov (United States)

    2010-01-01

    ... fuel and nuclear waste. 71.97 Section 71.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... advance notification of transportation of nuclear waste was published in the Federal Register on June 30...

  11. Safety evaluation for packaging CPC metal boxes

    International Nuclear Information System (INIS)

    Romano, T.

    1995-01-01

    This Safety Evaluation for Packaging (SEP) provides authorization for the use of Container Products Corporation (CPC) metal boxes, as described in this document, for the interarea shipment of radioactive contaminated equipment and debris for storage in the Central Waste Complex (CWC) or T Plant located in the 200 West Area. Authorization is granted until November 30, 1995. The CPC boxes included in this SEP were originally procured as US Department of Transportation (DOT) Specification 7A Type A boxes. A review of the documentation provided by the manufacturer revealed the documentation did not adequately demonstrate compliance to the 4 ft drop test requirement of 49 CFR 173.465(c). Preparation of a SEP is necessary to document the equivalent safety of the onsite shipment in lieu of meeting DOT packaging requirements until adequate documentation is received. The equivalent safety of the shipment is based on the fact that the radioactive contents consist of contaminated equipment and debris which are not dispersible. Each piece is wrapped in two layers of no less than 4 mil plastic prior to being placed in the box which has an additional 10 mil liner. Pointed objects and sharp edges are padded to prevent puncture of the plastic liner and wrapping

  12. Safety analysis report for packaging (onsite) multicanister overpack cask

    International Nuclear Information System (INIS)

    Edwards, W.S.

    1997-01-01

    This safety analysis report for packaging (SARP) documents the safety of shipments of irradiated fuel elements in the MUlticanister Overpack (MCO) and MCO Cask for a highway route controlled quantity, Type B fissile package. This SARP evaluates the package during transfers of (1) water-filled MCOs from the K Basins to the Cold Vacuum Drying Facility (CVDF) and (2) sealed and cold vacuum dried MCOs from the CVDF in the 100 K Area to the Canister Storage Building in the 200 East Area

  13. Safety analysis report for packaging (onsite) multicanister overpack cask

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, W.S.

    1997-07-14

    This safety analysis report for packaging (SARP) documents the safety of shipments of irradiated fuel elements in the MUlticanister Overpack (MCO) and MCO Cask for a highway route controlled quantity, Type B fissile package. This SARP evaluates the package during transfers of (1) water-filled MCOs from the K Basins to the Cold Vacuum Drying Facility (CVDF) and (2) sealed and cold vacuum dried MCOs from the CVDF in the 100 K Area to the Canister Storage Building in the 200 East Area.

  14. Analysis of time series for postal shipments in Regional VII East Java Indonesia

    Science.gov (United States)

    Kusrini, DE; Ulama, B. S. S.; Aridinanti, L.

    2018-03-01

    The change of number delivery goods through PT. Pos Regional VII East Java Indonesia indicates that the trend of increasing and decreasing the delivery of documents and non-documents in PT. Pos Regional VII East Java Indonesia is strongly influenced by conditions outside of PT. Pos Regional VII East Java Indonesia so that the prediction the number of document and non-documents requires a model that can accommodate it. Based on the time series plot monthly data fluctuations occur from 2013-2016 then the model is done using ARIMA or seasonal ARIMA and selected the best model based on the smallest AIC value. The results of data analysis about the number of shipments on each product sent through the Sub-Regional Postal Office VII East Java indicates that there are 5 post offices of 26 post offices entering the territory. The largest number of shipments is available on the PPB (Paket Pos Biasa is regular package shipment/non-document ) and SKH (Surat Kilat Khusus is Special Express Mail/document) products. The time series model generated is largely a Random walk model meaning that the number of shipment in the future is influenced by random effects that are difficult to predict. Some are AR and MA models, except for Express shipment products with Malang post office destination which has seasonal ARIMA model on lag 6 and 12. This means that the number of items in the following month is affected by the number of items in the previous 6 months.

  15. Packaging configurations and handling requirements for nuclear materials

    International Nuclear Information System (INIS)

    Jefferson, R.M.

    1981-01-01

    The basic safety concepts for radioactive material are that the package is the primary protection for the public, that the protection afforded by the package should be proportional to the hazard and that the package must be proved by performance. These principles are contained in Department of Energy (DOE), Nuclear Regulatory Commission (NRC) and Department of Transportation (DOT) regulations which classify hazards of various radioactive materials and link packaging requirements to the physical form and quantities being shipped. Packaging requirements are reflected in performance standards to guarantee that shipments of low hazard quantities will survive the rigors of normal transportation and that shipments of high hazard quantities will survive extreme severity transportation accidents. Administrative controls provide for segregation of radioactive material from people and other sensitive or hazardous material. They also provide the necessary information function to control the total amounts in a conveyance and to assure that appropriate emergency response activities be started in case of accidents or other emergencies. Radioactive materials shipped in conjunction with the nuclear reactor programs include, ores, concentrates, gaseous diffusion feedstocks, enriched and depleted uranium, fresh fuel, spent fuel, high level wastes, low level wastes and transuranic wastes. Each material is packaged and shipped in accordance with regulations and all hazard classes, quantity limits and packaging types are called into use. From the minimal requirements needed to ship the low hazard uranium ores or concentrates to the very stringent requirements in packaging and moving high level wastes or spent fuel, the regulatory system provides a means for carrying out transportation of radioactive material which assures low and controlled risk to the public

  16. Sensitivity of radiation monitoring systems in Manila Ports in detecting contamination in foodstuff shipments

    International Nuclear Information System (INIS)

    Romallosa, Kristine Marie D.; Caseria, Estrella S.; Piquero, Ronald E.; Agustin, Jan Aldrich A.

    2011-01-01

    During the Fukushima Nuclear Power Plant accident in Japan, one of the Philippines' measures to protect the public from radiological hazards of the accident is by monitoring agricultural and food imports for radioactive contamination. In this study, the sensitivity of the mobile Radiation Monitoring System (RM) in Manila Ports in detecting contamination in incoming foodstuff shipments was determined. Large volume synthetic 137 Cs reference sources were used to determine the minimum detectable concentration (MDC) of the RMS. The reference sources have radioactivity concentrations that are comparable to the PNRI guidance level of 1000 Bg/kg for 137 Cs that is destined for general consumption. Results of the MDC measurements show that the RMS units are sensitive enough to detect radioactivity levels that are within the guidance levels provided that a) the minimum package lot is approximately 200 kg, b) the package is positioned at the detector side, and c) the alarm setting of RMS is as calibrated. It was therefore established that the RMS can be used to initially screen incoming foodstuff shipments of possible contamination and thereby help minimize potential radiation exposures to the public. (author)

  17. Computerized waste-accountability shipping and packaging system

    International Nuclear Information System (INIS)

    Jackson, J.A.; Baston, M. Jr.; DeVer, E.A.

    1981-01-01

    The Waste Accountability, Shipping and Packaging System (WASP) is a real-time computerized system designed and implemented by Mound Facility to meet the stringent packaging and reporting requirements of radioactive waste being shipped to burial sites. The system stores packaging data and inspection results for each unit and prepares all necessary documents at the time of shipment. Shipping data specific for each burial site are automatically prepared on magnetic tape for transmission to the computing center at that site. WASP has enabled Mound Facility to effectively meet the requirements of the burial sites, diminishing the possibility of being rejected from a site because of noncompliance

  18. Transportation Packages to Support Savannah River Site Missions

    International Nuclear Information System (INIS)

    Opperman, E.

    2001-01-01

    The Savannah River Site's missions have expanded from primarily a defense mission to one that includes environmental cleanup and the stabilization, storage, and preparation for final disposition of nuclear materials. The development of packaging and the transportation of radioactive materials are playing an ever-increasing role in the successful completion of the site's missions. This paper describes the Savannah River Site and the three strategic mission areas of (1) nuclear materials stewardship, (2) environmental stewardship, and (3) nuclear weapons stockpile stewardship. The materials and components that need to be shipped, and associated packaging, will be described for each of the mission areas. The diverse range of materials requiring shipment include spent fuel, irradiated target assemblies, excess plutonium and uranium materials, high level waste canisters, transuranic wastes, mixed and low level wastes, and nuclear weapons stockpile materials and components. Since many of these materials have been in prolonged storage or resulted from disassembly of components, the composition, size and shape of the materials present packaging and certification challenges that need to be met. Over 30 different package designs are required to support the site's missions. Approximately 15 inbound shipping-legs transport materials into the Savannah River Site and the same number (15) of outgoing shipment-legs are carrying materials from the site for further processing or permanent disposal

  19. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Diana H.; Pierce, Eric M.; Wellman, Dawn M.; Strachan, Denis M.; Josephson, Gary B.

    2006-07-31

    The primary purpose of the work reported here is to analyze the potential effect of the release of technetium (Tc) from metal inclusions in bulk vitrification waste packages once they are placed in the Integrated Disposal Facility (IDF). As part of the strategy for immobilizing waste from the underground tanks at Hanford, selected wastes will be immobilized using bulk vitrification. During analyses of the glass produced in engineering-scale tests, metal inclusions were found in the glass product. This report contains the results from experiments designed to quantify the corrosion rates of metal inclusions found in the glass product from AMEC Test ES-32B and simulations designed to compare the rate of Tc release from the metal inclusions to the release of Tc from glass produced with the bulk vitrification process. In the simulations, the Tc in the metal inclusions was assumed to be released congruently during metal corrosion as soluble TcO4-. The experimental results and modeling calculations show that the metal corrosion rate will, under all conceivable conditions at the IDF, be dominated by the presence of the passivating layer and corrosion products on the metal particles. As a result, the release of Tc from the metal particles at the surfaces of fractures in the glass releases at a rate similar to the Tc present as a soluble salt. The release of the remaining Tc in the metal is controlled by the dissolution of the glass matrix. To summarize, the release of 99Tc from the BV glass within precipitated Fe is directly proportional to the diameter of the Fe particles and to the amount of precipitated Fe. However, the main contribution to the Tc release from the iron particles is over the same time period as the release of the soluble Tc salt. For the base case used in this study (0.48 mass% of 0.5 mm diameter metal particles homogeneously distributed in the BV glass), the release of 99Tc from the metal is approximately the same as the release from 0.3 mass% soluble Tc

  20. Supply Chain Shipment Pricing Data

    Data.gov (United States)

    US Agency for International Development — This data set provides supply chain health commodity shipment and pricing data. Specifically, the data set identifies Antiretroviral (ARV) and HIV lab shipments to...

  1. Directory of certificates of compliance for radioactive materials packages; Summary Report of NRC Approved Packages

    International Nuclear Information System (INIS)

    1980-12-01

    This directory contains a Summary Report of NRC approved Packages (Volume 1), Certificates of Compliance (Volume 2), and a Summary Report of NRC Approved Quality Assurance Programs for Radioactive Material Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on packagings which have been approved by the U.S. Nuclear Regulatory Commission. To assist in identifying packaging, and index by Model Number and corresponding Certificate of Compliance number is included at the back of each volume of the directory. The Summary Report includes a listing of all users of each package design prior to the publication date of the directory. Shipments of radioactive material using these packagings must be in accordance with the provisions of 49 CFR 173.393a and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure them--that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program

  2. Safety evaluation for packaging for the transport of K Basin sludge samples in the PAS-1 cask

    International Nuclear Information System (INIS)

    SMITH, R.J.

    1998-01-01

    This safety evaluation for packaging authorizes the shipment of up to two 4-L sludge samples to and from the 325 Lab or 222-S Lab for characterization. The safety of this shipment is based on the current U.S. Department of Energy Certification of Compliance (CoC) for the PAS-1 cask, USA/9184/B(U) (DOE)

  3. Safety evaluation for packaging for the transport of K Basin sludge samples in the PAS-1 cask

    Energy Technology Data Exchange (ETDEWEB)

    SMITH, R.J.

    1998-11-17

    This safety evaluation for packaging authorizes the shipment of up to two 4-L sludge samples to and from the 325 Lab or 222-S Lab for characterization. The safety of this shipment is based on the current U.S. Department of Energy Certification of Compliance (CoC) for the PAS-1 cask, USA/9184/B(U) (DOE).

  4. Directory of certificates of compliance for radioactive materials packages. Volume 1, Revision 17: Report of NRC approved packages

    International Nuclear Information System (INIS)

    1994-10-01

    This directory contains a Report of NRC Approved Packages (Volume 1), Certificates of Compliance (Volume 2), and a Report of NRC Approved Quality Assurance Programs for Radioactive Materials Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on Quality Assurance Programs and Packagings which have been approved by the US Nuclear Regulatory Commission. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR section 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure themselves that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program

  5. Conceptual Assessment of a Fresh Fuel Transport Package for KJRR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Chan; Choi, W. S.; Bang, K. S.; Yu, S. H.; Park, J. S.; Yang, Y. Y. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The IAEA and domestic regulations stipulate that the fissile material transport package be subjected to the cumulative effects of a 9 m drop, 1 m puncture, 800 ℃ thermal and water leakage tests. A fissile material transport package should be maintained the subcriticality during the normal and accident conditions for contingency of leakage of water into or out of package, rearrangement of the contents, reduction of spaces and temperature changes. KAERI has been developing a fresh fuel transport package for Kijang research reactor (KJRR). This paper describes a conceptual design and preliminary safety analysis of the transport package for KJRR. The transport package was designed for shipment of a fresh fuel and a FM (Fission Molybdenum) target. Low-enriched uranium (LEU) of U-Mo fuel with U-235 enrichment of 19.75 w/o is used as a research reactor fuel. And LEU of UAlx-Al with U-235 enrichment of 19.75 w/o is used as a FM target material. The transport package was designed for shipment of a fresh fuel and a FM target. Safety analyses were conducted on all areas, including criticality, structural, and thermal fields. In the criticality analysis, effective neutron multiplication factors were below the criticality safety limit. In the structural analysis, the maximum stress satisfied the stress requirement stipulated in the ASME code. After 9 m free drop and 1 m puncture test, there was no significant deformation of fuel basket to cause a criticality. In the thermal analysis, the maximum temperatures at each part were lower than the allowable values.

  6. The 9th international symposium on the packaging and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-06-01

    This three-volume document contains the papers and poster sessions presented at the symposium. Volume 3 contains 87 papers on topics such as structural codes and benchmarking, shipment of plutonium by air, spent fuel shipping, planning, package design and risk assessment, package testing, OCRWN operations experience and regulations. Individual papers were processed separately for the data base. (TEM)

  7. Radioactive material packaging performance testing

    International Nuclear Information System (INIS)

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation's hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation's system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations

  8. Spent Fuel Transportation Package Performance Study - Experimental Design Challenges

    International Nuclear Information System (INIS)

    Snyder, A. M.; Murphy, A. J.; Sprung, J. L.; Ammerman, D. J.; Lopez, C.

    2003-01-01

    Numerous studies of spent nuclear fuel transportation accident risks have been performed since the late seventies that considered shipping container design and performance. Based in part on these studies, NRC has concluded that the level of protection provided by spent nuclear fuel transportation package designs under accident conditions is adequate. [1] Furthermore, actual spent nuclear fuel transport experience showcase a safety record that is exceptional and unparalleled when compared to other hazardous materials transportation shipments. There has never been a known or suspected release of the radioactive contents from an NRC-certified spent nuclear fuel cask as a result of a transportation accident. In 1999 the United States Nuclear Regulatory Commission (NRC) initiated a study, the Package Performance Study, to demonstrate the performance of spent fuel and spent fuel packages during severe transportation accidents. NRC is not studying or testing its current regulations, a s the rigorous regulatory accident conditions specified in 10 CFR Part 71 are adequate to ensure safe packaging and use. As part of this study, NRC currently plans on using detailed modeling followed by experimental testing to increase public confidence in the safety of spent nuclear fuel shipments. One of the aspects of this confirmatory research study is the commitment to solicit and consider public comment during the scoping phase and experimental design planning phase of this research

  9. Directory of certificates of compliance for radioactive materials packages

    International Nuclear Information System (INIS)

    1991-10-01

    This directory contains a Report of NRC Approved Packages (Volume 1) for Radioactive Materials Packages. The purpose of this directory is to make available a convenient source of information on Quality Assurance Programs and Packagings which have been approved by the US Nuclear Regulatory Commission. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR section 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure themselves that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program

  10. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Becker, D.L.; Lindquist, M.R.

    1993-01-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of enriched uranium hexafluoride (UF 6 ). Uranium hexafluoride enriched greater than 1.0 wt percent 235 U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 and 178, or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF 6 cylinders/overpacks. International shipments typically are not made using dedicated trailers, and numerous trailers have been received at PORTS with improperly and potentially dangerously secured overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF 6 packaging tiedown and shipping practices used by PORTS; and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations

  11. Significance of campaigned spent fuel shipments

    International Nuclear Information System (INIS)

    Doman, J.W.; Tehan, T.E.

    1993-01-01

    Operational experience associated with spent fuel or irradiated hardware shipments to or from the General Electric Morris Facility is presented. The following specific areas are addressed: Problems and difficulties associated with meeting security and safeguard requirements of 10 CFR Part 73; problems associated with routing via railroad; problems associated with scheduling and impact on affected parties when a shipment is delayed or cancelled; and impact on training when shipments spread over many years. The lessons learned from these experiences indicate that spent fuel shipments are best conducted in dedicated open-quotes campaignsclose quotes that concentrate as much consecutive shipping activity as possible into one continuous time frame

  12. Directory of Certificates of Compliance for Radioactive Materials Packages: Report of NRC Approved Quality Assurance Programs for Radioactive Materials Packages

    International Nuclear Information System (INIS)

    1993-10-01

    This directory contains a Report of NRC Approved Packages (Volume 1), Certificates of Compliance (Volume 2), and a Report of NRC Approved Quality Assurance Programs for Radioactive Materials Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on Quality Assurance Programs and Packagings which have been approved by the US Nuclear Regulatory Commission. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR section 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure themselves that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program

  13. Development of Self-Remediating Packaging for Safe and Secure Transport of Infectious Substances.

    Energy Technology Data Exchange (ETDEWEB)

    Guilinger, Terry Rae; Gaudioso, Jennifer M; Aceto, Donato Gonzalo; Lowe, Kathleen M.; Tucker, Mark D; Salerno, Reynolds Mathewson; Souza, Caroline Ann

    2006-11-01

    As George W. Bush recognized in November 2001, "Infectious diseases make no distinctions among people and recognize no borders." By their very nature, infectious diseases of natural or intentional (bioterrorist) origins are capable of threatening regional health systems and economies. The best mechanism for minimizing the spread and impact of infectious disease is rapid disease detection and diagnosis. For rapid diagnosis to occur, infectious substances (IS) must be transported very quickly to appropriate laboratories, sometimes located across the world. Shipment of IS is problematic since many carriers, concerned about leaking packages, refuse to ship this material. The current packaging does not have any ability to neutralize or kill leaking IS. The technology described here was developed by Sandia National Laboratories to provide a fail-safe packaging system for shipment of IS that will increase the likelihood that critical material can be shipped to appropriate laboratories following a bioterrorism event or the outbreak of an infectious disease. This safe and secure packaging method contains a novel decontaminating material that will kill or neutralize any leaking infectious organisms; this feature will decrease the risk associated with shipping IS, making transport more efficient. 3 DRAFT4

  14. Temperature/Humidity Conditions in Stacked Flexible Intermediate Bulk Containers for Shelled Peanuts

    Science.gov (United States)

    Shelled peanuts are loaded into flexible intermediate bulk containers, or totes. After loading, the 1000-kg totes are placed directly into cold storage at 3ºC and 65% relative humidity until shipment to the customer domestically in the United States or internationally requiring transport overseas. ...

  15. Documentation and verification required for type A packaging use

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, J.H.

    1997-07-30

    This document furnishes knowledge and methods for verifying compliance with the U.S. Department of Transportation (DOT) packaging requirements for shipping Type A quantities of radioactive material. The primary emphasis is on the requirements identified in 49 CFR 173.415(a), which states, ``Each offeror of a Specification 7A package must maintain on file for at least one year after the shipment, and shall provide to DOT on request, complete documentation of tests and an engineering evaluation of comparative data showing that the construction methods, packaging design, and materials of construction comply with that specification.`` This guidance document uses a checklist to show compliance.

  16. Directory of Certificates of Compliance for Radioactive Materials Packages

    International Nuclear Information System (INIS)

    1993-10-01

    This directory contains Certificates of Compliance (Volume 2), for NRC Approved Packages. The purpose of this directory is to make available a convenient source of information on Quality Assurance Programs and Packagings which have been approved by the US Nuclear Regulatory Commission. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR section 173.471 and 10 CFR Part 71, is applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure themselves that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program

  17. Directory of certificates of compliance for radioactive materials packages

    International Nuclear Information System (INIS)

    1991-10-01

    This directory contains Certificates of Compliance (Volume 2) for Radioactive Materials Packages. The purpose of this directory is to make available a convenient source of information on Quality Assurance Programs and Packagings which have been approved by the US Nuclear Regulatory Commission. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR section 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure themselves that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program

  18. Documentation and verification required for type A packaging use

    International Nuclear Information System (INIS)

    O'Brien, J.H.

    1997-01-01

    This document furnishes knowledge and methods for verifying compliance with the U.S. Department of Transportation (DOT) packaging requirements for shipping Type A quantities of radioactive material. The primary emphasis is on the requirements identified in 49 CFR 173.415(a), which states, ''Each offeror of a Specification 7A package must maintain on file for at least one year after the shipment, and shall provide to DOT on request, complete documentation of tests and an engineering evaluation of comparative data showing that the construction methods, packaging design, and materials of construction comply with that specification.'' This guidance document uses a checklist to show compliance

  19. 7 CFR 160.84 - Identification of shipments.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Identification of shipments. 160.84 Section 160.84... STANDARDS FOR NAVAL STORES Sales and Shipments § 160.84 Identification of shipments. The invoice or contract of sale of any naval stores in commerce shall identify and describe the article in accordance with...

  20. Validation of the effects of a single one second hypochlorite floral dip on Bortytis cinerea incidence following long-term shipment of cut roses

    NARCIS (Netherlands)

    Woltering, E.J.; Boerrigter, H.A.M.; Mensink, M.G.J.; Harkema, H.; Macnish, A.J.; Reid, M.S.; Jiang, C.Z.

    2015-01-01

    The effect of a pre-shipment hypochlorite treatment on botrytis incidence was evaluated in a large number of rose cultivars and under different long-term storage conditions. Application parameters, stability and sources of hypochlorite were investigated. Irrespective of the type of packaging and

  1. Layered packaging: A synergistic method of transporting radioactive material

    International Nuclear Information System (INIS)

    Hohmann, G.L.

    1989-01-01

    The DOE certification for a transportation cask used to ship radioactive Krypton 85 from the Idaho Chemical Processing Plant (ICPP) to Oak Ridge National Laboratory (ORNL), was allowed to expire in 1987. The Westinghouse Idaho Nuclear Company (WINCO) was charged by DOE with modifying this cask to meet all current NRC requirements and preparing an updated Safety Analysis Report for Packaging, which would be submitted by DOE to the NRC for certification. However, an urgent need arose for ORNL to receive Krypton 85 which was in storage at the ICPP, which would not allow time to obtain certification of the modified shipping cask. WINCO elected to use a layered shipping configuration in which the gaseous Krypton 85 was placed in the uncertified, modified shipping cask to make use of its shielding and thermal insulation properties. This cask was then inserted into the Model No. 6400 (Super Tiger) packaging using a specially constructed plywood box and polyurethane foam dunnage. Structural evaluations were completed to assure the Super Tiger would provide the necessary impact, puncture, and thermal protection during maximum credible accidents. Analyses were also completed to determine the uncertified Krypton shipping cask would provide the necessary containment and shielding for up to 3.7 E+14 Bq of Krypton 85 when packaged inside the Super Tiger. The resulting reports, based upon this layered packaging concept, were adequate to first obtain DOE certification for several restricted shipments of Krypton 85 and then NRC certification for unrestricted shipments

  2. Active Packaging Coatings

    Directory of Open Access Journals (Sweden)

    Luis J. Bastarrachea

    2015-11-01

    Full Text Available Active food packaging involves the packaging of foods with materials that provide an enhanced functionality, such as antimicrobial, antioxidant or biocatalytic functions. This can be achieved through the incorporation of active compounds into the matrix of the commonly used packaging materials, or by the application of coatings with the corresponding functionality through surface modification. The latter option offers the advantage of preserving the packaging materials’ bulk properties nearly intact. Herein, different coating technologies like embedding for controlled release, immobilization, layer-by-layer deposition, and photografting are explained and their potential application for active food packaging is explored and discussed.

  3. DYNAMIC ANALYSIS OF THE BULK TRITIUM SHIPPING PACKAGE SUBJECTED TO CLOSURE TORQUES AND SEQUENTIAL IMPACTS

    International Nuclear Information System (INIS)

    Wu, T; Paul Blanton, P; Kurt Eberl, K

    2007-01-01

    This paper presents a finite-element technique to simulate the structural responses and to evaluate the cumulative damage of a radioactive material packaging requiring bolt closure-tightening torque and subjected to the scenarios of the Hypothetical Accident Conditions (HAC) defined in the Code of Federal Regulations Title 10 part 71 (10CFR71). Existing finite-element methods for modeling closure stresses from bolt pre-load are not readily adaptable to dynamic analyses. The HAC events are required to occur sequentially per 10CFR71 and thus the evaluation of the cumulative damage is desirable. Generally, each HAC event is analyzed separately and the cumulative damage is partially addressed by superposition. This results in relying on additional physical testing to comply with 10CFR71 requirements for assessment of cumulative damage. The proposed technique utilizes the combination of kinematic constraints, rigid-body motions and structural deformations to overcome some of the difficulties encountered in modeling the effect of cumulative damage. This methodology provides improved numerical solutions in compliance with the 10CFR71 requirements for sequential HAC tests. Analyses were performed for the Bulk Tritium Shipping Package (BTSP) designed by Savannah River National Laboratory to demonstrate the applications of the technique. The methodology proposed simulates the closure bolt torque preload followed by the sequential HAC events, the 30-foot drop and the 30-foot dynamic crush. The analytical results will be compared to the package test data

  4. Historical overview of domestic spent fuel shipments: Update

    International Nuclear Information System (INIS)

    1991-07-01

    This report presents available historic data on most commercial and research reactor spent fuel shipments in the United States from 1964 through 1989. Data include sources of the spent fuel shipped, types of shipping casks used, number of fuel assemblies shipped, and number of shipments made. This report also addresses the shipment of spent research reactor fuel. These shipments have not been documented as well as commercial power reactor spent fuel shipment activity. Available data indicate that the greatest number of research reactor fuel shipments occurred in 1986. The largest campaigns in 1986 were from the Brookhaven National Laboratory, Brooklyn, New York, to the Idaho Chemical Processing Plant (ICPP) and from the Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) in Tennessee and the Rockwell International Reactor in California to the Savannah River Plant near Aiken, South Carolina. For all years addressed in this report, DOE facilities in Idaho Falls and Savannah River were the major recipients of research reactor spent fuel. In 1989, 10 shipments were received at the Idaho facilities. These originated from universities in California, Michigan, and Missouri. 9 refs., 12 figs., 7 tabs

  5. Directory of certificates of compliance for radioactive materials packages

    International Nuclear Information System (INIS)

    1991-10-01

    This directory contains a Report of NRC Approved Packages (Volume 1), Certificates of Compliance (Volume 2), and Report of NRC Approved Quality Assurance Programs for Radioactive Materials Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on Quality Assurance Programs and Packagings which have been approved by the US Nuclear Regulatory Commission. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR section 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12., it is the responsibility of the licensees to insure themselves that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program

  6. Packaging and shipment of U.S. breeder reactor experiments

    International Nuclear Information System (INIS)

    Berger, J.D.

    1980-01-01

    Irradiation testing of fuels and materials in the Fast Test Reactor (FTR) required development of a shipping cask (designated T-3) and associated hardware for loading and shipping of these experiments to postirradiation examination facilities. The T-3 shipping-cask program included design, fabrication, and testing of internal cask packages to protect the experiments during loading, shipping, and unloading. The cask was designed for loading in both the vertical and horizontal attitudes

  7. 27 CFR 28.230 - Consignment, shipment, and delivery.

    Science.gov (United States)

    2010-04-01

    ... delivery. 28.230 Section 28.230 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Drawback Consignment, Shipment, and Delivery § 28.230 Consignment, shipment, and delivery. The consignment, shipment, and delivery of taxpaid beer removed under this subpart shall be made under the provisions of...

  8. 27 CFR 28.145 - Consignment, shipment and delivery.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Consignment, shipment and delivery. 28.145 Section 28.145 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE...-Trade Zone § 28.145 Consignment, shipment and delivery. The consignment, shipment and delivery of beer...

  9. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Science.gov (United States)

    2010-10-01

    ... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... hermetically sealed inner packagings. (6) Packages containing liquid infectious substances in primary...

  10. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1996-07-01

    This circular provides information on shipment of spent fuel subject to regulation by US NRC. It provides a brief description of spent fuel shipment safety and safeguards requirement of general interest, a summary of data for 1979-1995 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials

  11. Normal Condition on Transport Thermal Analysis and Testing of a Type B Drum Package

    International Nuclear Information System (INIS)

    Jerrell, J.W.; van Alstine, M.N.; Gromada, R.J.

    1995-01-01

    Increasing the content limits of radioactive material packagings can save money and increase transportation safety by decreasing the total number of shipments required to transport large quantities of material. The contents of drum packages can be limited by unacceptable containment vessel pressures and temperatures due to the thermal properties of the insulation. The purpose of this work is to understand and predict the effects of insulation properties on containment system performance

  12. Safety evaluation for packaging for 1720-DR sodium-filled tank

    International Nuclear Information System (INIS)

    Mercado, M.S.

    1996-01-01

    Preparations are under way to sell the sodium stored in the 1720-DR tank in the 1720-DR building. This will require that the tank, as well as the 1720-DR facility, be moved to the 300 Area, so that the sodium may be melted and transferred into a railroad tanker car. Because the sodium is a hazardous material and is being shipped in a nonspecification packaging, a safety evaluation for packaging (SEP) is required. This SEP approves the sodium-filled tank for a single shipment from the 105-DR area to the 300 Area

  13. Type B plutonium transport package development that uses metallic filaments and composite materials

    International Nuclear Information System (INIS)

    Pierce, J.D.; Moya, J.L.; McClure, J.D.; Hohnstreiter, G.F.; Golliher, K.G.

    1991-01-01

    A new package was developed for transporting Pu and U quantities that are currently carried in DOT-6M packages. It uses double containment with threaded closures and elastomeric seals. A composite overpack of metallic wire mesh and ceramic or quartz cloth insulation is provided for protection in accidents. Two prototypes were subjected to dynamic crush tests. A thermal computer model was developed and benchmarked by test results to predict package behavior in fires. The material performed isotropically in a global fashion. A Type B Pu transport package can be developed for DOE Pu shipments for less than $5000 if manufactured in quantity. 5 figs, 6 refs

  14. Directory of certificates of compliance for radioactive materials packages. Volume 3, Revision 14: Report of NRC approved quality assurance programs for radioactive materials packages

    International Nuclear Information System (INIS)

    1994-10-01

    This directory contains a Report of NRC Approved Packages (Volume 1), Certificates of Compliance (Volume 2), and a Report of NRC Approved Quality Assurance Programs for Radioactive Materials Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on Quality Assurance Programs and Packagings which have been approved by the US Nuclear Regulatory Commission. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR section 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure themselves that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program

  15. Sustaining Shipments

    Energy Technology Data Exchange (ETDEWEB)

    Bonnardel-Azzarelli, Betty [World Nuclear Transport Institute, Remo House, 4th Floor, 310-312 Regent Street, London, London W1B 3AX (United Kingdom)

    2009-06-15

    Transport plays an essential role in bringing the benefits of the atom to people the world over. Each day thousands of shipments of radioactive materials are transported on national and international routes. These consignments are essential to many aspects of modern life, from the generation of electricity, to medicine and health, scientific research and agriculture. Maintaining safe, cost-effective transport is essential to support them. Despite an outstanding safety record spanning over 45 years, the transport of radioactive materials cannot and must not be taken for granted. In an era of nuclear expansion, with increased transports required to more destinations, a worrisome trend for global supply is that some shipping companies, air carriers, ports and terminals, have instituted policies of not accepting radioactive materials. Experience has shown that the reasons for delays and denials of shipments are manifold and often have their origin in mis-perceptions about the nature of the materials and the requirements for their safe handling and carriage. There is growing recognition internationally of the problems created by shipment delays and denials and they now are being addressed in a more proactive way by such organisations as the International Atomic Energy Agency (IAEA). The rapidly changing supply-demand equation for fuel cycle services: substantial new nuclear build planned or underway in several countries, twenty-first century 'gold rush' fever in uranium exploration and mining, proposed new mechanisms to assure fuel supply to more countries while minimising proliferation risks. But, can supply to meet demand be assured, unless and until transport can be assured? And is it reasonable to expect that transport can be assured to meet the emerging demand-side of the fuel cycle equation when industry already is facing increased instances of shipment delays and denials? It is a worrisome trend for global supply of Class 7 radioactive materials that

  16. Tamper indicating packaging

    International Nuclear Information System (INIS)

    Baumann, M.J.; Bartberger, J.C.; Welch, T.D.

    1994-01-01

    Protecting sensitive items from undetected tampering in an unattended environment is crucial to the success of non-proliferation efforts relying on the verification of critical activities. Tamper Indicating Packaging (TIP) technologies are applied to containers, packages, and equipment that require an indication of a tamper attempt. Examples include: the transportation and storage of nuclear material, the operation and shipment of surveillance equipment and monitoring sensors, and the retail storage of medicine and food products. The spectrum of adversarial tampering ranges from attempted concealment of a pin-hole sized penetration to the complete container replacement, which would involve counterfeiting efforts of various degrees. Sandia National Laboratories (SNL) has developed a technology base for advanced TIP materials, sensors, designs, and processes which can be adapted to various future monitoring systems. The purpose of this technology base is to investigate potential new technologies, and to perform basic research of advanced technologies. This paper will describe the theory of TIP technologies and recent investigations of TIP technologies at SNL

  17. K Basin sludge packaging design criteria (PDC) and safety analysis report for packaging (SARP) approval plan

    International Nuclear Information System (INIS)

    Brisbin, S.A.

    1996-01-01

    This document delineates the plan for preparation, review, and approval of the Packaging Design Crieteria for the K Basin Sludge Transportation System and the Associated on-site Safety Analysis Report for Packaging. The transportation system addressed in the subject documents will be used to transport sludge from the K Basins using bulk packaging

  18. 7 CFR 58.444 - Packaging and repackaging.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging and repackaging. 58.444 Section 58.444... Procedures § 58.444 Packaging and repackaging. (a) Packaging rindless cheese or cutting and repackaging all styles of bulk cheese shall be conducted under rigid sanitary conditions. The atmosphere of the packaging...

  19. 7 CFR 58.340 - Printing and packaging.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Printing and packaging. 58.340 Section 58.340... Procedures § 58.340 Printing and packaging. Printing and packaging of consumer size containers of butter... packaging equipment should be provided. The outside cartons should be removed from bulk butter in a room...

  20. CH Packaging Program Guidance

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: ''each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.'' They further state: ''each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SARP charges the Waste Isolation Pilot Plant (WIPP) management and operating (M and O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) 71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.

  1. TRANSCOM: The US Department of Energy (DOE) system for tracking shipments

    International Nuclear Information System (INIS)

    Boes, K.S.; Joy, D.S.; Pope, R.B.; Thomas, T.M.; Lester, P.B.

    1994-01-01

    The US Department of energy (DOE) Transportation Management Division (TMD) has developed a system which allows communications with and near real-time tracking of high-visibility shipments of hazardous materials. This system, which is known as TRANSCOM (Transportation Tracking and Communications System), is currently in operation. This paper summarizes the current status of TRANSCOM, its history, the experience associated with its use, and the future plans for its growth and enhancement. during the first half of fiscal year (FY) 1994, 38 shipments were tracked by the TRANSCOM system. These shipments included two Mark-42 spent fuel shipments, one BUSS cask shipment, and one waterway shipment (the Seawolf shipment)

  2. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1991-01-01

    This circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the US Nuclear Regulatory Commission (NRC). It provides a brief description of spent fuel shipment safety and safeguards requirements of general interest, a summary of data for 1979--1989 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials. 11 figs., 3 tabs

  3. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1992-06-01

    The circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the US Nuclear Regulatory Commission (NRC). It provides a brief description of spent fuel shipment safety and safeguards requirements of general interest, a summary of data for 1979--1991 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials

  4. Journey of a Package: Category 1 Source (Co-60) Shipment with Several Border Crossings, Multiple Modes

    International Nuclear Information System (INIS)

    Gray, P. A.

    2016-01-01

    Radioactive materials (RAM) are used extensively in a vast array of industries and in an even wider breadth of applications on a truly global basis each and every day. Over the past 50 years, these applications and the quantity (activity) of RAM shipped has grown significantly, with the next 50 years expected to show a continuing trend. The movement of these goods occurs in all regions of the world, and must therefore be conducted in a manner which will not adversely impact people or the environment. Industry and regulators have jointly met this challenge, so much so that RAM shipments are amongst the safest of any product. How has this level of performance been achieved? What is involved in shipping RAM from one corner of the world to another, often via a number of in-transit locations and often utilizing multiple modes of transport in any single shipment? This paper reviews one such journey, of Category 1 Cobalt-60 sources, as they move from point of manufacture through to point of use including the detailed and multi-approval process, the stringent regulatory requirements in place, the extensive communications required throughout, and the practical aspects needed to simply offer such a product for sale and transport. Upon completion, the rationale for such an exemplary safety and security record will be readily apparent. (author)

  5. Hazardous materials package performance regulations

    International Nuclear Information System (INIS)

    Russell, N.A.; Glass, R.E.; McClure, J.D.; Finley, N.C.

    1992-01-01

    The hazardous materials (hazmat) packaging development and certification process is currently defined by two different regulatory philosophies, one based on specification packagings and the other based on performance standards. With specification packagings, a packaging is constructed according to an agreed set of design specifications. In contrast, performance standards do not specify the packaging design; they specify performance standards that a packaging design must be able to pass before it can be certified for transport. The packaging can be designed according to individual needs as long as it meets these performance standards. Performance standards have been used nationally and internationally for about 40 years to certify radioactive materials (RAM) packagings. It is reasonable to state that for RAM transport, performance specifications have maintained transport safety. A committee of United Nation's experts recommended the performance standard philosophy as the preferred regulation method for hazmat packaging. Performance standards for hazmat packagings smaller than 118 gallons have been adopted in 49CFR178. Packagings for materials that are classified as toxic-by-inhalation must comply with the performance standards by October 1, 1993, and packagings for all other classes of hazardous materials covered must comply by October 1, 1996. For packages containing bulk (in excess of 188 gallons) quantities of materials that are extremely toxic by inhalation, there currently are no performance requirements. This paper discusses a Hazmat Packaging Performance Evaluation (HPPE) project to look at the subset of bulk packagings that are larger than 2000 gallons. The objectives of this project are the evaluate current hazmat specification packagings and develop supporting documentation for determining performance requirements for packagings in excess of 2000 gallons that transport hazardous materials that have been classified as extremely toxic by inhalation (METBI)

  6. Hazardous Material Packaging and Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-04

    This is a student training course. Some course objectives are to: recognize and use standard international and US customary units to describe activities and exposure rates associated with radioactive material; determine whether a quantity of a single radionuclide meets the definition of a class 7 (radioactive) material; determine, for a given single radionuclide, the shipping quantity activity limits per 49 Code of Federal Regulations (CFR) 173.435; determine the appropriate radioactive material hazard class proper shipping name for a given material; determine when a single radionuclide meets the DOT definition of a hazardous substance; determine the appropriate packaging required for a given radioactive material; identify the markings to be placed on a package of radioactive material; determine the label(s) to apply to a given radioactive material package; identify the entry requirements for radioactive material labels; determine the proper placement for radioactive material label(s); identify the shipping paper entry requirements for radioactive material; select the appropriate placards for a given radioactive material shipment or vehicle load; and identify allowable transport limits and unacceptable transport conditions for radioactive material.

  7. Shipment security update - 2003

    International Nuclear Information System (INIS)

    Patterson, John; Anne, Catherine

    2003-01-01

    At the 2002 RERTR, NAC reported on the interim measures taken by the U.S. Nuclear Regulatory Commission to enhance the security afforded to shipments of spent nuclear fuel. Since that time, there have been a number of additional actions focused on shipment security including training programs sponsored by the U.S. Department of Transportation and the Electric Power Research Council, investigation by the Government Accounting Office, and individual measures taken by shippers and transportation agents. The paper will present a status update regarding this dynamic set of events and provide an objective assessment of the cost, schedule and technical implications of the changing security landscape. (author)

  8. Fall Protection Procedures for Sealing Bulk Waste Shipments by Rail Cars at Formerly Utilized Sites Remedial Action Program (FUSRAP) Sites - 13509

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, J.D. [U.S. Army Corps of Engineers - Buffalo District, Buffalo, New York 14207 (United States); Fort, E. Joseph; Lorenz, William [Cabrera Services (Cabrera) East Harford, CT 06108 (United States); Mills, Andy [Shaw Environmental and Infrastructure, Inc. (Shaw) Baton Rouge, LA 70809 (United States)

    2013-07-01

    Rail-cars loaded with radioactive materials must be closed and fastened to comply with United States Department of Transportation (DOT) requirements before they shipped. Securing waste shipments in a manner that meets these regulations typically results in the use of a sealable rail-car liner. Workers accessing the tops of the 2.74 m high rail-cars to seal and inspect liners for compliance prior to shipment may be exposed to a fall hazard. Relatively recent revisions to the Fall Protection requirements in the Safety and Health Requirements Manual (EM385-1-1, U.S. Army Corps of Engineers) have necessitated modifications to the fall protection systems previously employed for rail-car loading at Formerly Utilized Sites Remedial Action Program (FUSRAP) sites. In response these projects have developed site-specific procedures to protect workers and maintain compliance with the improved fall protection regulations. (authors)

  9. 27 CFR 28.217 - Consignment, shipment, and delivery.

    Science.gov (United States)

    2010-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Exportation of Wine With Benefit of Drawback § 28.217 Consignment, shipment, and delivery. The consignment, shipment, and delivery of wines...

  10. Commercial spent nuclear fuel shipments in the United States, 1964--1987

    International Nuclear Information System (INIS)

    1990-12-01

    This report provides an overview of US commercial light-water reactor spent-fuel shipments that have occurred from January, 1964 through December, 1987. A summary analysis was performed on these historical shipments, showing the amount of fuel that has been shipped to research facilities, reprocessing plants, away-from-reactor (AFR) storage sites, and other reactors. Also presented in this report is a listing of potential spent-fuel shipments to and/or from commercial nuclear plants. Table 1 provides the detailed listing of historical spent-fuel shipments. Table 2 is a summary of these shipments grouped by destination. Section IV discusses utility plans for future spent-fuel shipments. 2 tabs

  11. A Joint Optimal Decision on Shipment Size and Carbon Reduction under Direct Shipment and Peddling Distribution Strategies

    Directory of Open Access Journals (Sweden)

    Daiki Min

    2017-11-01

    Full Text Available Recently, much research has focused on lowering carbon emissions in logistics. This paper attempts to contribute to the literature on the joint shipment size and carbon reduction decisions by developing novel models for distribution systems under direct shipment and peddling distribution strategies. Unlike the literature that has simply investigated the effects of carbon costs on operational decisions, we address how to reduce carbon emissions and logistics costs by adjusting shipment size and making an optimal decision on carbon reduction investment. An optimal decision is made by analyzing the distribution cost including not only logistics and carbon trading costs but also the cost for adjusting carbon emission factors. No research has explicitly considered the two sources of carbon emissions, but we develop a model covering the difference in managing carbon emissions from transportation and storage. Structural analysis guides how to determine an optimal shipment size and emission factors in a closed form. Moreover, we analytically prove the possibility of reducing the distribution cost and carbon emissions at the same time. Numerical analysis follows validation of the results and demonstrates some interesting findings on carbon and distribution cost reduction.

  12. CH Packaging Program Guidance

    International Nuclear Information System (INIS)

    Washington TRU Solutions LLC

    2003-01-01

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: ''each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.'' They further state: ''each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SARP charges the WIPP management and operating (M and O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 CFR 71.11. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document provides the instructions to be followed to operate, maintain, and test the TRUPACT-II and HalfPACT packaging. The intent of these instructions is to standardize operations. All users will follow these instructions or equivalent instructions that assure operations are safe and meet the requirements of the SARPs

  13. CH Packaging Program Guidance

    International Nuclear Information System (INIS)

    Washington TRU Solutions LLC

    2002-01-01

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT Shipping Package, and directly related components. This document complies with the minimum requirements as specified in TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event there is a conflict between this document and the SARP or C of C, the SARP and/or C of C shall govern. C of Cs state: ''each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.'' They further state: ''each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SAR P charges the WIPP Management and Operation (M and O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 CFR 71.11. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document details the instructions to be followed to operate, maintain, and test the TRUPACT-II and HalfPACT packaging. The intent of these instructions is to standardize these operations. All users will follow these instructions or equivalent instructions that assure operations are safe and meet the requirements of the SARPs

  14. 76 FR 56872 - Information Collection Activities

    Science.gov (United States)

    2011-09-14

    ... transport certain hazardous materials to develop and implement written plans to enhance the security of... inhalation in hazard zone A; (4) a shipment of hazardous materials in a bulk packaging with a capacity equal.... However, the lack of such a requirement posed problems for motor carriers with regard to complying with...

  15. Status of the TRIGA shipments to the INEEL from Europe

    International Nuclear Information System (INIS)

    Stump, Robert C.; Mustin, Tracy

    1997-01-01

    During 1999 shipment from 4 European countries, involving the following 4 research reactors was foreseen: ENEA of Italy, ICN of Romania, TRIGA-IJS of Slovenia, and MHH of Germany. The research reactors under consideration are LENA of Italy, IFK and DKFZ of Germany. Unique challenges of this task are: first shipment to the INEEL from the east coast of the United States; Need to identify a transportation route and working with the states, tribes and local governments to ensure that adequate public safety and security planning is done and followed; first shipment to INEEL involving both high-income and less-than-high-income countries in one shipment. There is an opportunity to save a significant amount of money for both DOE and the high-income countries by cooperating and coordinating the shipments together. The First will be the shipment to INEEL of mixed TRIGA SNF and more than one shipping cask type. This shipment will include a mixture of LEU, HEU, aluminum clad, stainless steel clad, and Incoloy clad rods. INEEL will need to prepare the safety documentation, procedures, and make equipment and facility modifications necessary to handle the ifferent fuel and cask types

  16. Shipments/receipts resolution program

    International Nuclear Information System (INIS)

    Davis, F.B.

    1988-01-01

    Savannah River Plant (SRP) has initiated an aggressive program aimed at improving shipper/receiver (S/R) posture. The site is routinely involved in 800 nuclear material transfers/year. This many transactions between facilities provides many opportunities for resolving S/R differences. Resolution of S/R differences requires considerable effort from both DOE offices and contractors, presents legitimate safeguards concerns if the receiving quantity is less than the quantity shipped, and must be resolved for shipments to continue. This paper discusses the programs in place at SRP to resolve S/R differences. S/R agreements provide a method of communicating between the shipping and receiving facilities and protect both facilities by eliminating misunderstandings. Nondestructive assay (NDA) instrumentation allows the facility to obtain an accountability quality value for receipt before the material is processed. More accurate and precise analytical techniques are in use wherever SRP does not have the capability to measure a shipment or receipt by NDA. S/R values are graphed to identify trends and/or biases that may not have exceeded any error limits. The central Material Control and Accountability (MCandA) division has become more involved in analyzing the data from shipments and receipts including the calculation of limits of error (LOE's), instrument biases, and analyzing trends

  17. Safety Analysis Report for Packaging (SARP): USA/9507/BLF (ERDA--AL), Model AL-M1

    International Nuclear Information System (INIS)

    Watkins, R.A.; Bertram, R.E.; Blauvelt, R.K.; Edling, D.A.; Flanagan, T.M.; Griffin, J.F.; Rhinehammer, T.B.

    1977-01-01

    The SARP includes structural integrity, thermal resistance, radiation shielding and radiological safety, nuclear criticality safety, and quality control of three insulated drum shipping containers identified as USA/9507/BLF (ERDA-AL), also called AL-M1, configurations 1, 3, and 5. Complete physical and technical descriptions of the packages are presented. Each package consists of an inner container centered within an insulated steel drum. The contents are plutonium-239 and uranium-235 in configurations-1 and -3. The configuration-5 package is intended for shipment of up to 100,000 Ci of tritiated water immobilized on a sorbent such as molecular sieve

  18. Directory of certificates of compliance for radioactive materials packages

    International Nuclear Information System (INIS)

    1989-10-01

    The purpose of this directory is to make available a convenient source of information on packaging which have been approved by the US Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance Number is included at the front of Volume 2 of the directory. A listing by packaging types is included in the back of Volume 2. An alphabetical listing by Company name is included in the back of Volume 3 for approved QA programs. The reports include a listing of all users of each package design and approved QA programs prior to the publication date of the directory. Shipments of radioactive material utilizing these packages must be in accordance with the provisions of 49 CFR section 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure themselves that they have a copy of the current approval and conduct their transportation activities in accordance with a Nuclear Regulatory Commission approved quality assurance program

  19. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Becker, D.L.; Green, D.J.; Lindquist, M.R.

    1993-07-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF 6 ). Uranium hexafluoride enriched uranium than 1.0 wt percent 235 U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF 6 cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF 6 packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4

  20. The BG18, a B(U)F type package used for the transport of irradiated fuel rods - return of experience

    Energy Technology Data Exchange (ETDEWEB)

    Juergen, S.; Herman, S. [Transnubel, Dessel (Belgium)

    2004-07-01

    The purpose of this presentation is to share the return of experience of Transnubel after a period of nearly 3 years operation of the BG18 package in several nuclear power plants and hot cell facilities. This package has been used mainly for the shipment of full scale as well as samples of irradiated fuel rods - UOX or MOX, PWR or BWR.

  1. The BG18, a B(U)F type package used for the transport of irradiated fuel rods - return of experience

    International Nuclear Information System (INIS)

    Juergen, S.; Herman, S.

    2004-01-01

    The purpose of this presentation is to share the return of experience of Transnubel after a period of nearly 3 years operation of the BG18 package in several nuclear power plants and hot cell facilities. This package has been used mainly for the shipment of full scale as well as samples of irradiated fuel rods - UOX or MOX, PWR or BWR

  2. Successful completion of a time sensitive MTR and TRIGA Indonesian shipment

    International Nuclear Information System (INIS)

    Anne, Catherine; Patterson, John; Messick, Chuck

    2005-01-01

    Early this year, a shipment of 109 MTR fuel assemblies was received at the Department of Energy's Savannah River Site from the BATAN reactor in Serpong, Indonesia and another of 181 TRIGA fuel assemblies was received at the Idaho National Laboratory from the two BATAN Indonesian TRIGA reactors in Bandung and Yogyakarta, Indonesia. These were the first Other-Than- High-Income Countries shipments under the FRR program since the Spring 2001. The Global Threat Reduction Initiative announced by Secretary Abraham will require expeditious scheduling and extreme sensitivity to shipment security. The subject shipments demonstrated exceptional performance in both respects. Indonesian terrorist acts and 9/11 impacted the security requirements for the spent nuclear fuel shipments. Internal Indonesian security issues and an upcoming Indonesian election led to a request to perform the shipment with a very short schedule. Preliminary site assessments were performed in November 2003. The DOE awarded a task order to NAC for shipment performance just before Christmas 2003. The casks departed the US in January and the fuel elements were delivered at the DOE sites by the end of April 2004. The paper will present how the team completed a successful shipment in a timely manner. (author)

  3. Application of ALARA principles to shipment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Greenborg, J.; Brackenbush, L.W.; Murphy, D.W.; Burnett, R.A.; Lewis, J.R.

    1980-05-01

    The public exposure from spent fuel shipment is very low. In view of this low exposure and the perfect safety record for spent fuel shipment, existing systems can be considered satisfactory. On the other hand, occupational exposure reduction merits consideration and technology improvement to decrease dose should concentrate on this exposure. Practices that affect the age of spent fuel in shipment and the number of times the fuel must be shipped prior to disposal have the largest impact. A policy to encourage a 5-year spent fuel cooling period prior to shipment coupled with appropriate cask redesign to accommodate larger loads would be consistent with ALARA and economic principles. And finally, bypassing high population density areas will not in general reduce shipment dose

  4. The tracking of high level waste shipments-TRANSCOM system

    International Nuclear Information System (INIS)

    Johnson, P.E.; Joy, D.S.; Pope, R.B.

    1995-01-01

    The TRANSCOM (transportation tracking and communication) system is the U.S. Department of Energy's (DOE's) real-time system for tracking shipments of spent fuel, high-level wastes, and other high-visibility shipments of radioactive material. The TRANSCOM system has been operational since 1988. The system was used during FY1993 to track almost 100 shipments within the US.DOE complex, and it is accessed weekly by 10 to 20 users

  5. The tracking of high level waste shipments - TRANSCOM system

    International Nuclear Information System (INIS)

    Johnson, P.E.; Joy, D.S.; Pope, R.B.; Thomas, T.M.; Lester, P.B.

    1994-01-01

    The TRANSCOM (transportation tracking and communication) system is the US Department of Energy's (DOE's) real-time system for tracking shipments of spent fuel, high-level wastes, and other high-visibility shipments of radioactive material. The TRANSCOM system has been operational since 1988. The system was used during FY 1993 to track almost 100 shipments within the US DOE complex, and it is accessed weekly by 10 to 20 users

  6. 19 CFR 18.6 - Short shipments; shortages; entry and allowance.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Short shipments; shortages; entry and allowance...; DEPARTMENT OF THE TREASURY TRANSPORTATION IN BOND AND MERCHANDISE IN TRANSIT General Provisions § 18.6 Short shipments; shortages; entry and allowance. (a) When there has been a short shipment and the short-shipped...

  7. Safety evaluation for packaging (onsite) product removal can containers

    International Nuclear Information System (INIS)

    Burnside, M.E.

    1998-01-01

    Six Product Removal (PR) Cans and Containers are located within the Plutonium Finishing Plant. Each can is expected to contain a maximum of 3 g of residual radioactive material, consisting mainly of plutonium isotopes. The PR Can Containers were previously authorized by HNF-SD-TP-SEP-064, Rev. 0 (Boettger 1997), for the interarea transport of up to 3 g of plutonium. The purpose of this safety evaluation for packaging is to allow the transport of six PR Cans with their Containers from the Plutonium Finishing Plant to the 233 S Evaporator Facility. This safety evaluation for packaging is authorized for use until April 29, 1999, or until the shipment is made, whichever happens first

  8. The option study of air shipment of DUPIC fuel elements to Canada

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Koo, J. H.

    2003-01-01

    KAERI developed a DUPIC nuclear fuel with the refabrication of spent PWR fuel discharged from domestic nuclear power plant by a dry process at M6 hot-cell in IMEF. To verify the performance of DUPIC nuclear fuel, irradiation test at operating conditions of commercially operating power plant is essential. Since the HANARO research reactor of KAERI does not have Fuel Test Loop(FTL) for irradiating nuclear fuel under high temperature and high pressure conditions, DUPIC fuel cannot be irradiated in the FTL of HANARO until about 2008. In the 13-th PRM among Korea, Canada, USA and IAEA, AECL proposed that KAERI fabricated DUPIC fuel can be irradiated in the FTL of the NRU research reactor without charge of neutrons. The transportation quantity of DUPIC fuel to Canada is 10 elements(about 6 kg). This transportation package is classified as the 7-th class according to 'recommendation on the transport of dangerous goods' made by the United Nations. Air shipment was investigated as a promising option because it is generally understood that air shipment is more appropriate than ship shipment for transportation of small quantity of nuclear materials from the perspectives of cost and transportation period. In case of air shipment, the IATA regulations have been more intensified since the July of 2001. To make matters worse, it becomes more difficult to get the ratification of corresponding authorities due to 9.11 terror. It was found that at present there is no proper air transportation cask for DUPIC fuel. So, air transportation is considered to be impossible. An alternative of using the exemption limit of fissile material was reviewed. Its results showed that in case of going via USA territory, approvals from US DOT should be needed. The approvals include shipping and cask approvals on technical cask testing. Furthermore, since passes through territories of Japan and Russia have to be done in case of using a regular air cargo from Korea to Canada, approvals from Russia and

  9. CH Packaging Program Guidance

    International Nuclear Information System (INIS)

    2006-01-01

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: 'each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.' They further state: 'each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.' Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant| (WIPP) management and operating (M and O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations(CFR) 71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations

  10. CH Packaging Program Guidance

    International Nuclear Information System (INIS)

    2007-01-01

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: 'each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.' They further state: 'each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.' Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant (WIPP) management and operating (M and O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) 71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations

  11. 27 CFR 28.124 - Consignment, shipment, and delivery.

    Science.gov (United States)

    2010-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Withdrawal of Wine Without Payment of... Bonded Warehouse, or Transportation to a Manufacturing Bonded Warehouse § 28.124 Consignment, shipment, and delivery. The consignment, shipment, and delivery of wines withdrawn without payment of tax under...

  12. Leveraging Available Data to Support Extension of Transportation Packages Service Life

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, K.; Abramczyk, G.; Bellamy, S.; Daugherty, W.; Hackney, B.; Hoffman, E.; Skidmore, E.; Stefek, T.

    2012-06-12

    Data obtained from testing shipping package materials have been leveraged to support extending the service life of select shipping packages while in nuclear materials transportation. Increasingly, nuclear material inventories are being transferred to an interim storage location where they will reside for extended periods of time. Use of a shipping package to store nuclear materials in an interim storage location has become more attractive for a variety of reasons. Shipping packages are robust and have a qualified pedigree for their performance in normal operation and accident conditions within the approved shipment period and storing nuclear material within a shipping package results in reduced operations for the storage facility. However, the shipping package materials of construction must maintain a level of integrity as specified by the safety basis of the storage facility through the duration of the storage period, which is typically well beyond the one year transportation window. Test programs have been established to obtain aging data on materials of construction that are the most sensitive/susceptible to aging in certain shipping package designs. The collective data are being used to support extending the service life of shipping packages in both transportation and storage.

  13. Leveraging Available Data to Support Extension of Transportation Packages Service Life

    International Nuclear Information System (INIS)

    Dunn, K.; Abramczyk, G.; Bellamy, S.; Daugherty, W.; Hackney, B.; Hoffman, E.; Skidmore, E.; Stefek, T.

    2012-01-01

    Data obtained from testing shipping package materials have been leveraged to support extending the service life of select shipping packages while in nuclear materials transportation. Increasingly, nuclear material inventories are being transferred to an interim storage location where they will reside for extended periods of time. Use of a shipping package to store nuclear materials in an interim storage location has become more attractive for a variety of reasons. Shipping packages are robust and have a qualified pedigree for their performance in normal operation and accident conditions within the approved shipment period and storing nuclear material within a shipping package results in reduced operations for the storage facility. However, the shipping package materials of construction must maintain a level of integrity as specified by the safety basis of the storage facility through the duration of the storage period, which is typically well beyond the one year transportation window. Test programs have been established to obtain aging data on materials of construction that are the most sensitive/susceptible to aging in certain shipping package designs. The collective data are being used to support extending the service life of shipping packages in both transportation and storage.

  14. Safety Evaluation for Packaging for the N Reactor/single pass reactor fuel characterization shipments

    International Nuclear Information System (INIS)

    Stevens, P.F.

    1994-01-01

    The purpose of this Safety Evaluation for Packaging (SEP) is to authorize the ChemNuclear CNS 1-13G packaging to ship samples of irradiated fuel elements from the 100 K East and 100 K West basins to the Postirradiation Testing Laboratory (PTL) in support of the spent nuclear fuel characterization effort. It also authorizes the return of the fuel element samples to the 100 K East facility using the same packaging. The CNS 1-13G cask has been-chosen to transport the fuel because it has a Certificate of Compliance (CoC) issued by the US Nuclear Regulatory Commission (NRC) for transporting irradiated oxide and metal fuel in commerce. It is capable of being loaded and offloaded underwater and may be shipped with water in the payload compartment

  15. 49 CFR 173.28 - Reuse, reconditioning and remanufacture of packagings.

    Science.gov (United States)

    2010-10-01

    ... and limitations: (1) A non-bulk packaging which, upon inspection, shows evidence of a reduction in... than fiberboard), plastic film, or textile are not authorized for reuse; (4) Metal and plastic drums... metal packagings) or minimum (for plastic packagings) thickness of the packaging material, as required...

  16. Full-scale testing of waste package inspection system

    International Nuclear Information System (INIS)

    Yagi, T.; Kuribayashi, H.; Moriya, Y.; Fujisawa, H.; Takebayashi, N.

    1989-01-01

    In land disposal of low-level radioactive waste (LLW) in Japan, it is legally required that the waste packages to be disposed of be inspected for conformance to applicable technical regulations prior to shipment from each existing power station. JGC has constructed a fully automatic waste package inspection system for the purpose of obtaining the required design data and proving the performance of the system. This system consists of three inspection units (for visual inspection, surface contamination/dose rate measurement and radioactivity/weight measurement), a labelling unit, a centralized control unit and a drum handling unit. The outstanding features of the system are as follows: The equipment and components are modularized and designed to be of the most compact size and the quality control functions are performed by an advanced centralized control system. The authors discuss how, as a result of the full-scale testing, it has been confirmed that this system satisfies all the performance requirements for the inspection of disposal packages

  17. Public information circular for shipments of irradiated reactor fuel. Revision 12

    International Nuclear Information System (INIS)

    1997-10-01

    This circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the US Nuclear Regulatory Commission (NRC). It provides a brief description of spent fuel shipment safety and safeguards requirements of general interest, a summary of data for 1979--1996 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials

  18. Public information circular for shipments of irradiated reactor fuel. Revision 10

    International Nuclear Information System (INIS)

    1995-04-01

    This circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the US Nuclear Regulatory Commission (NRC). It provides a brief description of spent fuel shipment safety and safeguards requirements of general interest, a summary of data for 1979--1994 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials

  19. 7 CFR 58.413 - Cutting and packaging rooms.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cutting and packaging rooms. 58.413 Section 58.413....413 Cutting and packaging rooms. When small packages of cheese are cut and wrapped, separate rooms shall be provided for the cleaning and preparation of the bulk cheese and for the cutting and wrapping...

  20. ATMX-600 rail car safety analysis report for packaging (SARP)

    International Nuclear Information System (INIS)

    Adcock, F.E.; McCarthy, J.D.

    1977-01-01

    The ATMX-600 series rail car is used by Rockwell International, Rocky Flats Plant, for shipping low-level radioactive waste under the provisions of DOT Special Permit 5948. Fissile Class I shipments are authorized with the car loaded to capacity with drums containing up to 200 g of 239 Pu. Inner packaging may be polyethylene-lined steel drums or fiberglass-coated plywood crates. These massive double-walled steel cars provide the equivalent protection of a Type B package. Rapid loading and unloading of the 9- by 9- by 50-ft cargo space is accomplished by prepackaging the waste in standard 20-ft steel cargo containers. The ATMX-600 rail car will hold two cargo containers, each carrying seventy 55-gal drums and up to 44,800 lb gross weight. Improvements to inner packaging and current shipping practices are discussed

  1. International performance-oriented packaging standards adopted in the united states

    International Nuclear Information System (INIS)

    McCall, D.L.

    1993-01-01

    On January 1, 1991, the U.S. Department of Transportation (DOT) initiated a transition to adopting a modified version of current international standards for packaging and transporting hazardous materials and hazardous wastes. This transition permits a 5-year phase-in period that will impact all phases of hazardous material transportation including material classification and description, packaging for shipment, and hazard communication standards. These changes are being enacted through the DOT Federal Docket HM-181, 'Performance-Oriented Packaging Standards.' These regulatory standards will have dramatic impact on nearly 5 billion tons of hazardous materials transported within the United States each year. This paper summarizes the principal elements of the new DOT regulations, the latest implementation schedule and impacts on U.S. shipping activities, and discusses outstanding issues that remain to be solved through the next 5 years. (author)

  2. 19 CFR 123.41 - Truck shipments transiting Canada.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Truck shipments transiting Canada. 123.41 Section... OF THE TREASURY CUSTOMS RELATIONS WITH CANADA AND MEXICO United States and Canada In-Transit Truck Procedures § 123.41 Truck shipments transiting Canada. (a) Manifest required. Trucks with merchandise...

  3. 27 CFR 28.155 - Consignment, shipment, and delivery.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Consignment, shipment, and delivery. 28.155 Section 28.155 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE..., and delivery. The consignment, shipment, and delivery of specially denatured spirits withdrawn free of...

  4. 27 CFR 28.106 - Consignment, shipment, and delivery.

    Science.gov (United States)

    2010-04-01

    ... delivery. 28.106 Section 28.106 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Transportation to a Manufacturing Bonded Warehouse § 28.106 Consignment, shipment, and delivery. The consignment, shipment, and delivery of distilled spirits withdrawn without payment of tax under this subpart shall be...

  5. 27 CFR 28.196 - Consignment, shipment, and delivery.

    Science.gov (United States)

    2010-04-01

    ... delivery. 28.196 Section 28.196 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Benefit of Drawback Filing of Notice and Removal § 28.196 Consignment, shipment, and delivery. The consignment, shipment, and delivery of distilled spirits removed under this subpart for export, use on vessels...

  6. Waste package performance analysis

    International Nuclear Information System (INIS)

    Lester, D.H.; Stula, R.T.; Kirstein, B.E.

    1982-01-01

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been applied to several package designs. The resulting preliminary assessments were intended for use in making decisions about package development programs. A computer model called BARIER estimates the package life and subsequent rate of release of selected nuclides. The model accounts for temperature, pressure (and resulting stresses), bulk and localized corrosion, and nuclide retardation by the backfill after water intrusion into the waste form. The assessment model assumes a post-closure, flooded, geologic repository. Calculations indicated that, within the bounds of model assumptions, packages could last for several hundred years. Intact backfills of appropriate design may be capable of nuclide release delay times on the order of 10 7 yr for uranium, plutonium, and americium. 8 references, 6 figures, 9 tables

  7. Historical overview of domestic spent fuel shipments

    International Nuclear Information System (INIS)

    Pope, R.B.; Wankerl, M.W.; Armstrong, S.; Hamberger, C.; Schmid, S.

    1991-01-01

    The purpose of this paper is to provide available historical data on most commercial and research reactor spent fuel shipments that have been completed in the United States between 1964 and 1989. This information includes data on the sources of spent fuel that has been shipped, the types of shipping casks used, the number of fuel assemblies that have been shipped, and the number of shipments that have been made. The data are updated periodically to keep abreast of changes. Information on shipments is provided for planning purposes; to support program decisions of the US Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM); and to inform interested members of the public, federal, state, and local government, Indian tribes, and the transportation community. 5 refs., 7 figs., 2 tabs

  8. 19 CFR 148.114 - Shipment of unaccompanied articles.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Shipment of unaccompanied articles. 148.114 Section 148.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY... States § 148.114 Shipment of unaccompanied articles. One copy of the validated Customs Form 255 shall be...

  9. 15 CFR 752.7 - Direct shipment to customers.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Direct shipment to customers. 752.7... COMPREHENSIVE LICENSE § 752.7 Direct shipment to customers. (a) General authorization. (1) Upon request by a... directly to the requesting consignee's customer in either: (i) The requesting consignee's country; or (ii...

  10. Decontamination of food packaging using electron beam--status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Mittendorfer, J. E-mail: htcmitt@eunet.at; Bierbaumer, H.P.; Gratzl, F.; Kellauer, E

    2002-03-01

    In this paper the status of food packaging disinfection decontamination using electron beam at Mediscan GmbH is presented. The first section of the paper describes the activities at the service center, where food packaging materials, e.g. yoghurt cups are decontaminated in their final shipment containers. As important step in the hazard analysis and critical control point of food processing, microbiological uncontaminated food packaging material is of public interest and attracts a lot of attention from packaging material producers and food processors. The dose ranges for different sterility assurance levels are discussed and results from microbiological test are presented. Studies at Mediscan have demonstrated, that an electron beam treatment at a dose of 5-7 kGy is most effective against yeast and mold, which are mainly responsible for spoilage and short shelf-life of a variety of products. The second section is devoted to the field of inline decontamination of food packaging and sterilization of pharmaceutical packaging material and the research currently conducted at Mediscan. The requirements for industrial inline electron beam systems are summarized and design concepts discussed in terms of beam energy, beam current, irradiation topology, product handling and shielding.

  11. Decontamination of food packaging using electron beam—status and prospects

    Science.gov (United States)

    Mittendorfer, J.; Bierbaumer, H. P.; Gratzl, F.; Kellauer, E.

    2002-03-01

    In this paper the status of food packaging disinfection decontamination using electron beam at Mediscan GmbH is presented. The first section of the paper describes the activities at the service center, where food packaging materials, e.g. yoghurt cups are decontaminated in their final shipment containers. As important step in the hazard analysis and critical control point of food processing, microbiological uncontaminated food packaging material is of public interest and attracts a lot of attention from packaging material producers and food processors. The dose ranges for different sterility assurance levels are discussed and results from microbiological test are presented. Studies at Mediscan have demonstrated, that an electron beam treatment at a dose of 5-7 kGy is most effective against yeast and mold, which are mainly responsible for spoilage and short shelf-life of a variety of products. The second section is devoted to the field of inline decontamination of food packaging and sterilization of pharmaceutical packaging material and the research currently conducted at Mediscan. The requirements for industrial inline electron beam systems are summarized and design concepts discussed in terms of beam energy, beam current, irradiation topology, product handling and shielding.

  12. Decontamination of food packaging using electron beam--status and prospects

    International Nuclear Information System (INIS)

    Mittendorfer, J.; Bierbaumer, H.P.; Gratzl, F.; Kellauer, E.

    2002-01-01

    In this paper the status of food packaging disinfection decontamination using electron beam at Mediscan GmbH is presented. The first section of the paper describes the activities at the service center, where food packaging materials, e.g. yoghurt cups are decontaminated in their final shipment containers. As important step in the hazard analysis and critical control point of food processing, microbiological uncontaminated food packaging material is of public interest and attracts a lot of attention from packaging material producers and food processors. The dose ranges for different sterility assurance levels are discussed and results from microbiological test are presented. Studies at Mediscan have demonstrated, that an electron beam treatment at a dose of 5-7 kGy is most effective against yeast and mold, which are mainly responsible for spoilage and short shelf-life of a variety of products. The second section is devoted to the field of inline decontamination of food packaging and sterilization of pharmaceutical packaging material and the research currently conducted at Mediscan. The requirements for industrial inline electron beam systems are summarized and design concepts discussed in terms of beam energy, beam current, irradiation topology, product handling and shielding

  13. Addendum to the Safety Analysis Report for the Steel Waste Packaging. Revision 1

    International Nuclear Information System (INIS)

    Crow, S.R.

    1996-01-01

    The Battelle Pacific Northwest National Laboratory Safety Analysis Report (SAR) for the Steel Waste Package requires additional analyses to support the shipment of remote-handled radioactive waste and special-case waste from the 324 building hot cells to PUREX for interim storage. This addendum provides the analyses required to show that this waste can be safely shipped onsite in the configuration shown

  14. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1982-06-01

    This publication is the third in a proposed series of annual publications issued by the Nuclear Regulatory Commission in response to public information requests regarding the Commission's regulation of shipments of irradiated reactor fuel. Subsequent issues in this series will update the information contained herein. This publication contains basically three kinds of information: (1) routes approved by the Commission for the shipment of irradiated reactor fuel, (2) information regarding any safeguards-significant incidents which have been reported to occur during shipments along such routes, and (3) cumulative amounts of material shipped

  15. Public information circular for shipments of irradiated reactor fuel. Revision 5

    International Nuclear Information System (INIS)

    1985-06-01

    This circular has been prepared in response to numerous requests for information regarding routes used for the shipment of irradiated reactor (spent) fuel subject to regulation by the Nuclear Regulatory Commission (NRC), and to meet the requirements of Public Law 96-295. The NRC staff must approve such routes prior to their first use in accordance with the regulatory provisions of Section 73.37 of 10 CFR Part 73. The information included reflects NRC staff knowledge as of June 1, 1985. Spent fuel shipment routes, primarily for road transportation, but also including one rail route, are indicated on reproductions of DOT road maps. Also included are the amounts of material shipped during the approximate three year period that safeguards regulations for spent fuel shipments have been effective. In addition, the Commission has chosen to provide information in this document regarding the NRC's safety and safeguards regulations for spent fuel shipment as well as safeguards incidents regarding spent fuel shipments (of which none have been reported to date). This additional information is furnished by the Commission in order to convey to the public a more complete picture of NRC regulatory practices concerning the shipment of spent fuel than could be obtained by the publication of the shipment routes and quantities alone

  16. 27 CFR 19.396 - Spirits removed for shipment to Puerto Rico.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Spirits removed for shipment to Puerto Rico. 19.396 Section 19.396 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO... § 19.396 Spirits removed for shipment to Puerto Rico. Spirits removed for shipment to Puerto Rico with...

  17. 27 CFR 28.244a - Shipment to a customs bonded warehouse.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Shipment to a customs... Export Consignment § 28.244a Shipment to a customs bonded warehouse. Distilled spirits and wine withdrawn for shipment to a customs bonded warehouse shall be consigned in care of the customs officer in charge...

  18. Tritium waste package

    Science.gov (United States)

    Rossmassler, Rich; Ciebiera, Lloyd; Tulipano, Francis J.; Vinson, Sylvester; Walters, R. Thomas

    1995-01-01

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  19. Present status of JMTR spent fuel shipment

    International Nuclear Information System (INIS)

    Miyazawa, Masataka; Watanabe, Masao; Yokokawa, Makoto; Sato, Hiroshi; Ito, Haruhiko

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been consistently making the enrichment reduction of reactor fuels in cooperation with RERTR Program and FRR SNF Acceptance Program both conducted along with the U.S. Nuclear Non-Proliferation Policy and JMTR, 50 MW test reactor in Oarai Research Establishment, has achieved core conversion, from its initial 93% enriched UAl alloy to 45% enriched uranium-aluminide fuel, and then to the current 19.8% enriched uranium-silicide fuel. In order to return all of JMTR spent fuels, to be discharged from the reactor by May 12, 2006, to the U.S.A. by May 12, 2009, JAERI is planning the transportation schedule based on one shipment per year. The sixth shipment of spent fuels to U.S. was carried out as scheduled this year, where the total number of fuels shipped amounts to 651 elements. All of the UAl alloy elements have so far been shipped and now shipments of 45% enriched uranium-aluminide type fuels are in progress. Thus far the JMTR SFs have been transported on schedule. From 2003 onward are scheduled more then 850 elements to be shipped. In this paper, we describe our activities on the transportation in general and the schedule for the SFs shipments. (author)

  20. Analyses of notification, routing, and packaging for shipments of nuclear materials

    International Nuclear Information System (INIS)

    Pellettieri, M.W.; Welles, B.W.

    1983-01-01

    Although the ground work has been laid for the development of national standards and conformance to international standards for radioactive materials transportation; confusion, conflicts, and legal challenges have prevented implementation of a comprehensive system. Implementation of the NRC prenotification rule had produced the following perceived advantages or disadvantages: (1) the notices do not provide a planning data base for state emergency preparedness; (2) some states believed that the data was useful in defining the magnitude of potential hazards from radioactive material transport, and the notices enabled them to be more immediately responsive if necessary; (3) the NRC regional offices view the data use to be primarily as a historical record; (4) the shippers/carriers view the notices as another layer of regulated paperwork - the cost of which is passed on to the nuclear industry; and (5) concern exists regarding the safeguards provisions of Part 73 on the spentfuel shipments and the implementation by the states of this requirement. The DOT response to the NRC prenotification ruling has been: (1) the NRC rules are not preemptive of state or local prenotification requirements; (2) no national system for notification has been established; and (3) the post-notification requirements of DOT provide a more significant data base for state emergency planning. In order to implement the preemptive powers defined by the Appendix of HM-164, the DOT must rule state or local ordinances as inconsistent with federal policy; the inconsistency ruling may then be subjected to judicial review. Thus is a pattern developing of establishment of national policy by way of inconsistency rulings

  1. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1983-07-01

    This publication contains basically three kinds of information: routes approved by the Commission for the shipment of irradiated reactor fuel, information regarding any safeguards-significant incidents which have been reported to occur during shipments along such routes, and cumulative amounts of material shipped

  2. EARLY TESTS OF DRUM TYPE PACKAGINGS - THE LEWALLEN REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.

    2010-07-29

    The need for robust packagings for radioactive materials (RAM) was recognized from the earliest days of the nuclear industry. The U.S. Department of Energy (DOE) Rocky Flats Plant developed a packaging for shipment of Pu in the early 1960's, which became the U.S. Department of Transportation (DOT) 6M specification package. The design concepts were employed in other early packagings. Extensive tests of these at Savannah River Laboratory (now Savannah River National Laboratory) were performed in 1969 and 1970. The results of these tests were reported in 'Drum and Board-Type Insulation Overpacks of Shipping Packages for Radioactive Materials', by E. E. Lewallen. The Lewallen Report was foundational to design of subsequent drum type RAM packaging. This paper summarizes this important early study of drum type packagings. The Lewallen Report demonstrated the ability packagings employing drum and insulation board overpacks and engineered containment vessels to meet the Type B package requirements. Because of the results of the Lewallen Report, package designers showed high concern for thermal protection of 'Celotex'. Subsequent packages addressed this by following strategies like those recommended by Lewallen and by internal metal shields and supplemental, encapsulated insulation disks, as in 9975. The guidance provide by the Lewallen Report was employed in design of a large number of drum size packagings over the following three decades. With the increased public concern over transportation of radioactive materials and recognition of the need for larger margins of safety, more sophisticated and complex packages have been developed and have replaced the simple packagings developed under the Lewallen Report paradigm.

  3. Shipments of nuclear fuel and waste: are they really safe

    International Nuclear Information System (INIS)

    1977-10-01

    The safety aspects of shipping nuclear fuels and radioactive wastes are discussed by considering: US regulations on the shipment of hazardous and radioactive materials, types of radioactive wastes; packaging methods, materials, and specifications; design of shipping containers; evaluation of the risk potential under normal shipping conditions and in accident situations. It is concluded that: the risk of public catastrophe has been eliminated by strict standards, engineering design safety, and operational care; the long-term public burden of not transporting nuclear materials is likely to be higher than the risks of carefully controlled transportation, considering the various options available; and the likelihood of death, injury, or serious property damage from the nuclear aspects of nuclear transportation is thousands of times less than the likelihood of death, injury, or serious property damage from more common hazards, such as automobile accidents, boating accidents, accidental poisoning, gunshot wounds, fires, or even falls

  4. ATMX-600 rail car safety analysis report for packaging (SARP)

    International Nuclear Information System (INIS)

    Adcock, F.E.; McCarthy, J.D.

    1977-01-01

    The ATMX-600 series rail car is used by Rockwell International, Rocky Flats Plant, for shipping low-level radioactive waste under the provisions of DOT Special Permit 5948. Fissile Class I shipments are authorized with the car loaded to capacity with drums containing up to 200 grams of plutonium-239. Inner packaging may be polyethylene-lined steel drums or fiberglass-coated plywood crates. These massive double-walled steel cars provide the equivalent protection of a Type B package. Rapid loading and unloading of the 9- by 9- by 50-foot cargo space are accomplished by prepackaging the waste in standard 20-foot steel cargo containers. The ATMX-600 rail car will hold two cargo containers, each carrying seventy 55-gallon drums and up to 44,800 pounds gross weight. This report is a revision of an earlier document and describes improvements to inner packaging. It also reflects current shipping practices

  5. Denial of shipments - myth or reality

    International Nuclear Information System (INIS)

    Charrette, M.A.; McInnes, D.

    2004-01-01

    The global healthcare community depends on shipments of radioisotopes. MDS Nordion manufactures and distributes radioisotopes used in the medical, research and sterilization industries throughout the world. With a growing demand for radiation and radiation technology to prevent, diagnose and treat disease, it is important that the global health care industry have a secure and reliable supply of such important materials. Despite this ever increasing need, shipments of radioisotopes are being increasingly delayed and outright denied. This paper outlines the importance of radioisotopes to global healthcare. It also details examples of shipment denials and how this evolving situation has impeded the efficient transport of radioactive material which risks preventing the delivery of essential radioisotopes to many member states. Denial of shipments was identified as a key issue at the 2003 International Conference on the Safety of Transport of Radioactive Material, the 2003 International Atomic Energy Agency (IAEA) General Conference and at an IAEA Technical Meeting in January 2004. The outcome is that the IAEA is focused on better documenting the problem and is starting to develop ideas to address it. Moreover, governments, associations and modal organizations are becoming more aware of the matter. As a responsible partner in a unique industry, MDS Nordion encourages all IAEA Member States, commercial carriers, airports and ports to be engaged in this matter and accept the transport of radioactive material without additional requirements. In this respect, the collaboration of all organizations involved in this highly interactive global system of transport is vital to assure the effective transport of radioactive material for global health care

  6. Denial of shipments - myth or reality

    Energy Technology Data Exchange (ETDEWEB)

    Charrette, M.A.; McInnes, D. [MDS Nordion, Ottawa, ON (Canada)

    2004-07-01

    The global healthcare community depends on shipments of radioisotopes. MDS Nordion manufactures and distributes radioisotopes used in the medical, research and sterilization industries throughout the world. With a growing demand for radiation and radiation technology to prevent, diagnose and treat disease, it is important that the global health care industry have a secure and reliable supply of such important materials. Despite this ever increasing need, shipments of radioisotopes are being increasingly delayed and outright denied. This paper outlines the importance of radioisotopes to global healthcare. It also details examples of shipment denials and how this evolving situation has impeded the efficient transport of radioactive material which risks preventing the delivery of essential radioisotopes to many member states. Denial of shipments was identified as a key issue at the 2003 International Conference on the Safety of Transport of Radioactive Material, the 2003 International Atomic Energy Agency (IAEA) General Conference and at an IAEA Technical Meeting in January 2004. The outcome is that the IAEA is focused on better documenting the problem and is starting to develop ideas to address it. Moreover, governments, associations and modal organizations are becoming more aware of the matter. As a responsible partner in a unique industry, MDS Nordion encourages all IAEA Member States, commercial carriers, airports and ports to be engaged in this matter and accept the transport of radioactive material without additional requirements. In this respect, the collaboration of all organizations involved in this highly interactive global system of transport is vital to assure the effective transport of radioactive material for global health care.

  7. Characterizing, for packaging and transport, large objects contaminated by radioactive material having a limited A2 value

    International Nuclear Information System (INIS)

    Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D.; Cash, J.M.; Best, R.E.

    1998-02-01

    The International Atomic Energy Agency (IAEA) Regulations for the safe packaging and transportation of radioactive materials follow a graded approach to the requirements for both packaging and controls during transport. The concept is that, the lower the risk posed to the people and the environment by the contents, (1) the less demanding are the packaging requirements and (2) the smaller in number are the controls imposed on the transport of the material. There are likely to be a great number of situations arising in coming years when large objects, contaminated with radioactive material having unlimited A 2 values will result from various decommissioning and decontamination (D and D) activities and will then require shipment from the D and D site to a disposal site. Such situations may arise relatively frequently during the cleanup of operations involving mining, milling, feedstock, and uranium enrichment processing facilities. Because these objects are contaminated with materials having an unlimited A 2 value they present a low radiological risk to worker and public safety and to the environment during transport. However, when these radioactive materials reside on the surfaces of equipment and other large objects, where the equipment and objects themselves are not radioactive, the radioactive materials appear as surface contamination and, if the contaminated object is categorized as a surface contaminated object, it would need to be packaged for shipment according to the requirements of the Regulations for SCO. Despite this categorization, alternatives may be available which will allow these contaminants, when considered by themselves for packaging and transport, to be categorized as either (1) a limited quantity of radioactive material to be shipped in an excepted package or (2) low specific activity (LSA) materials to be shipped in an IP-1 package or possibly even shipped unpackaged. These options are discussed in this paper

  8. Review and assessment of package requirements (yellowcake) and emergency response to transportation accidents

    International Nuclear Information System (INIS)

    1978-10-01

    As a consequence of an accident involving a truck shipment of yellowcake, a joint NRC--DOT study was undertaken to review and assess the regulations and practices related to package integrity and to emergency response to transportation accidents involving low specific activity radioactive materials. Recommendations are made regarding the responsibilities of state and local agencies, carriers, and shippers, and the DOT and NRC regulations

  9. Safety analysis report for packaging (onsite) transuranic performance demonstration program sample packaging

    International Nuclear Information System (INIS)

    Mccoy, J.C.

    1997-01-01

    The Transuranic Performance Demonstration Program (TPDP) sample packaging is used to transport highway route controlled quantities of weapons grade (WG) plutonium samples from the Plutonium Finishing Plant (PFP) to the Waste Receiving and Processing (WRAP) facility and back. The purpose of these shipments is to test the nondestructive assay equipment in the WRAP facility as part of the Nondestructive Waste Assay PDP. The PDP is part of the U. S. Department of Energy (DOE) National TRU Program managed by the U. S. Department of Energy, Carlsbad Area Office, Carlsbad, New Mexico. Details of this program are found in CAO-94-1045, Performance Demonstration Program Plan for Nondestructive Assay for the TRU Waste Characterization Program (CAO 1994); INEL-96/0129, Design of Benign Matrix Drums for the Non-Destructive Assay Performance Demonstration Program for the National TRU Program (INEL 1996a); and INEL-96/0245, Design of Phase 1 Radioactive Working Reference Materials for the Nondestructive Assay Performance Demonstration Program for the National TRU Program (INEL 1996b). Other program documentation is maintained by the national TRU program and each DOE site participating in the program. This safety analysis report for packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the TRU PDP sample packaging meets the onsite transportation safety requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for an onsite Transportation Hazard Indicator (THI) 2 packaging. This SARP, however, does not include evaluation of any operations within the PFP or WRAP facilities, including handling, maintenance, storage, or operating requirements, except as they apply directly to transportation between the gate of PFP and the gate of the WRAP facility. All other activities are subject to the requirements of the facility safety analysis reports (FSAR) of the PFP or WRAP facility and requirements of the PDP

  10. Safety of HLW shipments

    International Nuclear Information System (INIS)

    1998-01-01

    The third shipment back to Japan of vitrified high-level radioactive waste (HLW) produced through reprocessing in France is scheduled to take place in early 1998. A consignment last March drew protest from interest groups and countries along the shipping route. Requirements governing the shipment of cargoes of this type and concerns raised by Greenpeace that were assessed by an international expert group, were examined in a previous article. A further report prepared on behalf of Greenpeace Pacific has been released. The paper: Transportation accident of a ship carrying vitrified high-level radioactive waste, Part 1 Impact on the Federated States of Micronesia by Resnikoff and Champion, is dated 31 July 1997. A considerable section of the report is given over to discussion of the economic situation of the Federated Statess of Micronesia, and lifestyle and dietary factors which would influence radiation doses arising from a release. It postulates a worst case accident scenario of a collision between the HLW transport ship and an oil tanker 1 km off Pohnpei with the wind in precisely the direction to result in maximum population exposure, and attempts to assess the consequences. In summary, the report postulates accident and exposure scenarios which are conceivable but not credible. It combines a series of worst case scenarios and attempts to evaluate the consequences. Both the combined scenario and consequences have probabilities of occurrence which are negligible. The shipment carried by the 'Pacific Swan' left Cherbourgon 21 January 1998 and comprised 30 tonnes of reprocessed vitrified waste in 60 stainless steel canisters loaded into three shipping casks. (author)

  11. Using computer technology to identify the appropriate radioactive materials packaging

    International Nuclear Information System (INIS)

    Driscoll, K.L.; Conan, M.R.

    1989-01-01

    The Radioactive Materials Packaging (RAMPAC) database is designed to store and retrieve information on all non-classified packages certified for the transport of radioactive materials within the boundaries of the US. The information in RAMPAC is publicly available, and the database has been designed so that individuals without programming experience can search for and retrieve information using a menu-driven system. RAMPAC currently contains information on over 650 radioactive material shipping packages. Information is gathered from the US Department of Energy (DOE), the US Department of transportation (DOT), and the US Nuclear Regulatory Commission (NRC). RAMPAC is the only tool available to radioactive material shippers that contains and reports packaging information from all three Federal Agencies. The DOT information includes package listings from Canada, France, Germany, Great Britain, and Japan, which have DOT revalidations for their certificates of competent authority and are authorized for use within the US for import and export shipments only. RAMPAC was originally developed in 1981 by DOE as a research and development tool. In recent years, however, RAMPAC has proven to be highly useful to operational personnel. As packages become obsolete or materials to be transported change, shippers of radioactive materials must be able to determine if alternative packages exist before designing new packages. RAMPAC is designed to minimize the time required to make this determination, thus assisting the operational community in meeting their goals

  12. Application of the ASME code in designing containment vessels for packages used to transport radioactive materials

    International Nuclear Information System (INIS)

    Raske, D.T.; Wang, Z.

    1992-01-01

    The primary concern governing the design of shipping packages containing radioactive materials is public safety during transport. When these shipments are within the regulatory jurisdiction of the US Department of Energy, the recommended design criterion for the primary containment vessel is either Section III or Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code, depending on the activity of the contents. The objective of this paper is to discuss the design of a prototypic containment vessel representative of a packaging for the transport of high-level radioactive material

  13. 19 CFR 351.515 - Internal transport and freight charges for export shipments.

    Science.gov (United States)

    2010-04-01

    ... shipments. 351.515 Section 351.515 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE... Internal transport and freight charges for export shipments. (a) Benefit—(1) In general. In the case of internal transport and freight charges on export shipments, a benefit exists to the extent that the charges...

  14. Off-site shipment request development and review plan

    International Nuclear Information System (INIS)

    1992-05-01

    On May 17, 1991, Department of Energy Headquarters (DOE-HQ) imposed a moratorium on the shipment of all Resource Conservation and Recovery Act (RCRA) hazardous and Toxic Substances Control Act (TSCA) waste to commercial treatment, storage and disposal facilities. The moratorium was imposed after it was discovered that some shipments of RCRA and TSCA waste from Department of Energy (DOE) sites contained small quantities of radioactive and special nuclear material (SNM). The shipment of these wastes has been attributed to inconsistent and possibly erroneous interpretation of DOE Orders and guidance. In an effort to clarify existing DOE Orders and guidance and establish throughout the DOE complex, June 21, 1991, DOE-HQ issued in draft the Performance Objective for Certification of Non-Radioactive Hazardous Waste. This Performance Objective was subsequently approved on November 15, 1991. The Performance Objective contains specific requirements that must be net to allow the shipment of RCRA and TSCA waste for commercial treatment, storage and disposal. On July 16, 1991, based on the initial draft of the Performance Objective, Martin Marietta Energy Systems (MMES) issued a directive which applies the Performance Objective requirements to all wastes and materials. In addition, this MMES directive imposed the requirement for a review by a Central Waste Management (CWM) Readiness Review Board (RRB). Additional DOE and MMES guidance and directives have been issued since May 17, 1991. This plan applies to all waste destined for shipment from the Portsmouth Gaseous Diffusion Plant (PORTS) to off-site commercial treatment, storage and disposal facilities, and to all materials destined for recycle, surplus and salvage

  15. Regulatory compliance in the design of packages used to transport radioactive materials

    International Nuclear Information System (INIS)

    Raske, D.T.

    1993-01-01

    Shipments of radioactive materials within the regulatory jurisdiction of the US Department of Energy (DOE) must meet the package design requirements contained in Title 10 of the Code of Federal Regulations, Part 71, and DOE Order 5480.3. These regulations do not provide design criteria requirements, but only detail the approval standards, structural performance criteria, and package integrity requirements that must be met during transport. The DOE recommended design criterion for high-level Category I radioactive packagings is Section III, Division 1, of the ASME Boiler and Pressure Vessel Code. However, alternative design criteria may be used if all the design requirements are satisfied. The purpose of this paper is to review alternatives to the Code criteria and discuss their applicability to the design of containment vessels in packages for high-level radioactive materials. Issues such as design qualification by physical testing, the use of scale models, and problems encountered using a non-ASME design approach are addressed

  16. Design of shipping packages to transport varying radioisotopic source materials for future space and terrestrial missions

    International Nuclear Information System (INIS)

    Barklay, C.D.

    1995-01-01

    The exploration of space will begin with manned missions to the moon and to Mars, first for scientific discoveries, then for mining and manufacturing. Because of the great financial costs of this type of exploration, it can only be accomplished through an international team effort. This unified effort must include the design, planning and, execution phases of future space missions, extending down to such activities as isotope processing, and shipping package design, fabrication, and certification. All aspects of this effort potentially involve the use of radioisotopes in some capacity, and the transportation of these radioisotopes will be impossible without a shipping package that is certified by the Nuclear Regulatory Commission or the U.S. Department of Energy for domestic shipments, and the U.S. Department of Transportation or the International Atomic Energy Agency for international shipments. To remain without the international regulatory constraints, and still support the needs of new and challenging space missions conducted within ever-shrinking budgets, shipping package concepts must be innovative. A shipping package must also be versatile enough to be reconfigured to transport the varying radioisotopic source materials that may be required to support future space and terrestrial missions. One such package is the Mound USA/9516/B(U)F. Taking into consideration the potential need to transport specific types of radioisotopes, approximations of dose rates at specific distances were determined taking into account the attenuation of dose rate with distance for varying radioisotopic source materials. As a result, it has been determined that the shipping package requirements that will be demanded by future space (and terrestrial) missions can be met by making minor modifications to the USA/9516/B(U)F. copyright 1995 American Institute of Physics

  17. Packaging's Contribution for the Effectiveness of the Space Station's Food Service Operation

    Science.gov (United States)

    Rausch, B. A.

    1985-01-01

    Storage limitations will have a major effect on space station food service. For example: foods with low bulk density such as ice cream, bread, cake, standard type potato chips and other low density snacks, flaked cereals, etc., will exacerbate the problem of space limitations; package containers are inherently volume consuming and refuse creating; and the useful observation that the optimum package is no package at all leads to the tentative conclusion that the least amount of packaging per unit of food, consistent with storage, aesthetics, preservation, cleanliness, cost and disposal criteria, is the most practical food package for the space station. A series of trade offs may have to be made to arrive at the most appropriate package design for a particular type of food taking all the criteria into account. Some of these trade offs are: single serve vs. bulk; conventional oven vs. microwave oven; nonmetallic aseptically vs. non-aseptically packaged foods; and comparison of aseptic vs. nonaseptic food packages. The advantages and disadvantages are discussed.

  18. 27 CFR 28.245 - Shipment to foreign-trade zone.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Shipment to foreign-trade zone. 28.245 Section 28.245 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Consignment § 28.245 Shipment to foreign-trade zone. Where distilled spirits (including specially denatured...

  19. Characterization of mixed waste for shipment to TSD Facilities Program

    International Nuclear Information System (INIS)

    Chandler, K.; Goyal, K.

    1995-01-01

    In compliance with the Federal Facilities Compliance Agreement, Los Alamos National Laboratory (LANL) is striving to ship its low-level mixed waste (LLMW) off-site for treatment and disposal. In order to ship LLMW off site to a commercial facility, LANL must request exemption from the DOE Order 5820.2A requirement that LLMW be shipped only to Department of Energy facilities. Because the process of obtaining the required information and approvals for a mixed waste shipment campaign can be very expensive, time consuming, and frustrating, a well-planned program is necessary to ensure that the elements for the exemption request package are completed successfully the first time. LANL has developed such a program, which is cost- effective, quality-driven, and compliance-based. This program encompasses selecting a qualified analytical laboratory, developing a quality project-specific sampling plan, properly sampling liquid and solid wastes, validating analytical data, documenting the waste characterization and decision processes, and maintaining quality records. The products of the program are containers of waste that meet the off-site facility's waste acceptance criteria, a quality exemption request package, documentation supporting waste characterization, and overall quality assurance for the process. The primary goal of the program is to provide an avenue for documenting decisions, procedures, and data pertinent to characterizing waste and preparing it for off-site treatment or disposal

  20. Packaging development needs to support environmental restoration

    International Nuclear Information System (INIS)

    Hummer, J.H.; Kuklinski, J.L.

    1993-01-01

    The U.S. Department of Energy is bringing its facilities into compliance with present environmental protection regulations. At the Hanford Site, this includes cleanup of its vast nuclear and chemical wastes. Cleanup will involve extensive collecting, consolidating, and processing of radioactive and other hazardous wastes. The Hanford Site was established by the Federal government in 1943 to produce plutonium. Natural uranium was fabricated into fuel slugs, inserted into nuclear reactors, and converted into plutonium. The irradiated slugs were then sent through plutonium extraction facilities. Process waste was discharged to the ground, stored on-site, or shipped off-site for disposal. Activities grew to include nine production reactors, five coal-fired power plants, nuclear fuel fabrication, other support facilities including underground waste storage tanks, and numerous chemical and waste processing plants. Cleanup activities will require extensive transport of radioactive and other hazardous materials. Packaging developments and research are required in the following areas to enhance environmental cleanup; (1) Packaging for Large Contaminated and Activated Components. (2) Bulk Packaging for Contaminated Solids. (3) Bulk Packaging for Contaminated Liquids. (4) Environmental Samples. (J.P.N.)

  1. Improvement in Space Food Packaging Methods

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Food Systems Laboratory's (SFSL) current Bulk Overwrap Bag (BOB) package, while simple and effective, leaves room for improvement. Currently, BOBs are...

  2. Radiation surveys of radioactive material shipments

    International Nuclear Information System (INIS)

    Howell, W.P.

    1986-07-01

    Although contractors function under the guidance of the Department of Energy, there is often substantial variation in the methods and techniques utilized in making radiation measurements. When radioactive materials are shipped from one contractor to another, the measurements recorded on the shipping papers may vary significantly from those measured by the receiver and has been a frequent cause of controversy between contractors. Although significant variances occur in both measurements of radiation fields emanating from shipment containers and measurements of residual radioactivity on the surfaces of the containers, the latter have been the most troublesome. This report describes the measurement of contamination on the exterior surfaces of shipment containers

  3. Overseas shipments of 48Y cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, R.T.; Furlan, A.S. [Cameco Corp., Port Hope, Ontario (Canada)

    1991-12-31

    This paper describes experiences with two incidents of overseas shipments of uranium hexafluoride (UF{sub 6}) cylinders. The first incident involved nine empty UF{sub 6} cylinders in enclosed sea containers. Three UF{sub 6} cylinders broke free from their tie-downs and damaged and contaminated several sea containers. This paper describes briefly how decontamination was carried out. The second incident involved a shipment of 14 full UF{sub 6} cylinders. Although the incident did not cause an accident, the potential hazard was significant. The investigation of the cause of the near accident is recounted. Recommendations to alleviate future similar incidents for both cases are presented.

  4. Directory of certificates of compliance for radioactive materials packages. Volume 2, Revision 17: Certificates of compliance

    International Nuclear Information System (INIS)

    1994-10-01

    This directory contains a Report of NRC Approved Packages (Volume 1), Certificates of Compliance (Volume 2), and a Report of NRC Approved Quality Assurance Programs for Radioactive Materials Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on Quality Assurance Programs and Packagings which have been approved by the US Nuclear Regulatory Commission. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR section 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure themselves that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program

  5. Safety Analysis Report: Packages, Pu oxide and Am oxide shipping cask: Packaging of fissile and other radioactive materials: Final report

    International Nuclear Information System (INIS)

    Chalfant, G.G.

    1984-12-01

    The PuO 2 cask or 5320-3 cask is designed for shipment of americium or plutonium by surface transportation modes. The cask design was physically tested to demonstrate that it met the criteria specified in US ERDA Manual Chapter 0529, dated 12/21/76, which invokes Title 10 Code of Federal Regulations, Part 71 (10 CFR 71) ''Packaging of Radioactive Materials for Transport,'' and Title 49 CFR Parts 171.179 ''Hazardous Materials Regulations.'' (US DOE Order 4580.1A, Chapter III, superseded manual chapter 0529 effective May 1981, but it retained the same 10 CFR 71 and 49 CFR 171-179 references

  6. Pre-Shipment Preparations at the Savannah River Site

    International Nuclear Information System (INIS)

    Thomas, J.E.

    2000-01-01

    This paper will provide a detailed description of each of the pre-shipment process steps WSRC performs to produce the technical basis for approving the receipt and storage of spent nuclear fuel at the Savannah River Site. It is intended to be a guide to reactor operators who plan on returning ''U.S. origin'' SNF and to emphasize the need for accurate and timely completion of pre-shipment activities

  7. Evaluating the loss of a LWR spent fuel or plutonium shipping package into the sea

    International Nuclear Information System (INIS)

    Heaberlin, S.W.; Baker, D.A.

    1976-06-01

    As the nations of the world turn to nuclear power for an energy source, commerce in nuclear fuel cycle materials will increase. Some of this commerce will be transported by sea. Such shipments give rise to the possibility of loss of these materials into the sea. This paper discusses the postulated accidental loss of two materials, light water reactor (LWR) spent fuel and plutonium, at sea. The losses considered are that of a single shipping package which is either undamaged or damaged by fire prior to the loss. The containment failure of the package in the sea,

  8. The selective use of emergency shipments for service-contract differentiation

    NARCIS (Netherlands)

    Alvarez, Elisa; van der Heijden, Matthijs C.; Zijm, Willem H.M.

    2013-01-01

    Suppliers of capital goods increasingly offer performance-based service contracts with customer-specific service levels. We use selective emergency shipments of spare parts to differentiate logistic performance: We apply emergency shipments in out-of-stock situations for combinations of parts and

  9. Highway route controlled quantity shipment routing reports - An overview

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Welles, B.W.; Welch, M.J.

    1989-01-01

    US Department of Transportation (DOT) regulations require a postnotification report from the shipper for all shipments of radioactive materials categorized as a Highway Route Controlled Quantity. These postnotification reports, filed in compliance with 49 CFR 172.203(d), have been compiled by the DOT in a database known as the Radioactive Materials Routing Report (RAMRT) since 1982. The data were sorted by each of its elements to establish historical records and trends of Highway Route Controlled Quantity shipments from 1982 through 1987. Approximately 1520 records in the RAMRT database were compiled for this analysis. Approximately half of the shipments reported for the study period were from the US Department of Energy (DOE) and its contractors, with the others being commercial movements. Two DOE installations, EG and G Idaho and Oak Ridge, accounted for nearly half of the DOE activities. Similarly, almost half of the commercial movements were reported by two vendors, Nuclear Assurance Corporation and Transnuclear, Incorporated. Spent fuel from power and research reactors accounted for approximately half of all shipments

  10. CH Packaging Program Guidance

    International Nuclear Information System (INIS)

    2008-01-01

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: 'each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the pplication.' They further state: 'each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.' Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant (WIPP) management and operating (M and O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) 71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations

  11. CH Packaging Program Guidance

    International Nuclear Information System (INIS)

    2009-01-01

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: 'each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.' They further state: 'each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.' Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant (WIPP) management and operating (M and O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) 71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations

  12. RH Packaging Program Guidance

    International Nuclear Information System (INIS)

    2008-01-01

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package (also known as the 'RH-TRU 72-B cask') and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: 'each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.' It further states: 'each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.' Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M and O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) 71.8, 'Deliberate Misconduct.' Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, 'Packaging and Transportation of Radioactive Material,' certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, 'Reporting of Defects and Noncompliance,' regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous

  13. RH Packaging Program Guidance

    International Nuclear Information System (INIS)

    2006-01-01

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: 'each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.' It further states: 'each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.' Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M and O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 Code of Federal Regulations (CFR) 1.8, 'Deliberate Misconduct.' Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, 'Packaging and Transportation of Radioactive Material,' certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, 'Reporting of Defects and Noncompliance,' regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these

  14. Twenty years of experience in spent fuel shipment from German nuclear power plants - a view of the competent authority

    International Nuclear Information System (INIS)

    Fasten, Ch.; Mueller, U.; Alter, U.

    1994-01-01

    A survey of the transport of spent fuel in and from Germany during the last 20 years is presented. The spent fuel is now transported from the German nuclear power facilities to the reprocessing plants in France and the United Kingdom. In the past, there were also shipments to the former reprocessing plant WAK Karlsruhe (Germany), to the long-term storage facility CLAB (Sweden) and also from the former German Democratic Republic to the USSR. The transport of the spent fuel is carried out in specially built flasks requiring an extensive quality assurance programme. Due to the heavy weight of these packages, the shipments are mostly carried out by rail, but also by road and sea. An overview is given of the following matters: (i) quantities of spent fuel transport, (ii) organisation of transport (iii) licensing matters, and (iv) reported incidents. In addition, an analysis is included of the radiation exposure for normal conditions of transport, especially of the transport workers. Difficulties and hindrances during transport are also reported. (author)

  15. Case histories of West Valley spent fuel shipments: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs.

  16. Case histories of West Valley spent fuel shipments: Final report

    International Nuclear Information System (INIS)

    1987-01-01

    In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs

  17. Directory of Certificates of Compliance for Radioactive Materials Packages. Summary report of NRC approved packages. Volume 1, Revision 8

    International Nuclear Information System (INIS)

    1985-10-01

    This directory contains a Summary Report of NRC Approved Packages (Volume 1), Certificates of Compliance (Volume 2), and a Summary Report of NRC Approved Quality Assurance Programs for Radioactive Material Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on packagings which have been approved by the US Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance number is included at the back of each volume of the directory. The Summary Report includes a listing of all users of each package design prior to the publication date of the directory. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure them that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program. Copies of the current approval may be obtained from the US Nuclear Regulatory Commission Public Document Room files (see Docket No. listed on each certificate) at 1717 H Street, Washington, DC 20555. Note that the general license of 10 CFR 71.12 does not authorize the receipt, possession, use or transfer of byproduct source, or special nuclear material; such authorization must be obtained pursuant to 10 CFR Parts 30 to 36, 40, 50, or 70

  18. Directory of certificates of compliance for radioactive materials packages. Summary report of NRC approved packages. Volume 1. Revision 9

    International Nuclear Information System (INIS)

    1986-10-01

    This directory contains a Summary Report of NRC Approved Packages (Volume 1), Certificates of Compliance (Volume 2), and a Summary Report of NRC Approved Quality Assurance Programs for Radioactive Material Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on packagings which have been approved by the US Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and Corresponding Certificate of Compliance number is included at the back of each volume of the directory. The Summary Report includes a listing of all users of each package design prior to the publication date of the directory. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Sections 71.12, it is the responsibility of the licensees to insure them that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program. Copies of the current approval may be obtained from the US Nuclear Regulatory Commission Public Document Room files (see Docket No. listed on each certificate) at 1717 H Street, Washington, DC 20555. Note that the general license of 10 CFR 71.12 does not authorize the receipt, possession, use or transfer of byproduct source, or special nuclear material; such authorization must be obtained pursuant to 10 CFR Parts 30 to 36, 40, 50, or 70

  19. Directory of certificates of compliance for radioactive materials packages. Summary report of NRC approved packages. Volume 1, Revision 7

    International Nuclear Information System (INIS)

    1984-11-01

    This directory contains a Summary Report of NRC Approved Packages (Volume 1), Certificates of Compliance (Volume 2), and a Summary Report of NRC Approved Quality Assurance Programs for Radioactive Material Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on packagings which have been approved by the US Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance number is included at the back of each volume of the directory. The Summary Report includes a listing of all users of each package design prior to the publication date of the directory. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program. Copies of the current approval may be obtained from the US Nuclear Regulatory Commission Public Document Room files (see Docket No. listed on each certificate) at 1717 H Street, Washington, DC 20555. Note that the general license of 10 CFR 71.12 does not authorize the receipt, possession, use or transfer of byproduct source, or special nuclear material; such authorization must be obtained pursuant to 10 CFR Parts 30 to 36, 40, 50, or 70

  20. Conceptual design and development of high-activity radioactive liquid packaging (summary)

    International Nuclear Information System (INIS)

    Riley, D.L.; McCoy, J.C.; Edwards, W.S.

    1994-08-01

    Environmental remediation and disposal of US Department of Energy radioactive liquid waste require analytical support, characterization, process development, testing, demonstration, and stabilization. In support of these diverse activities, there is a need to transport varying quantities of Type B high-activity liquid (HAL). To date, except for quantities of 50 ml (1.7 oz), there has never been, a US, Nuclear Regulatory Commission-licensed liquid Type B package available to support these remediation activities. In an effort to develop suitable packaging for large volumes of HAL, an investigation into packaging alternatives that would facilitate such transfers is under way. In, past and present studies, a spent fuel shipping cask fitted with a high-integrity pressure vessel has been determined to be the most viable concept for large volume HAL shipments. One concept that was investigated utilized the Pacific Nuclear 125-B shipping container and has been shown to meet the strUctural, thermal, shielding, and criticality conditions for HAL. The results of these investigations are being extended to develop the concept into the HAL packaging system

  1. RASPLAV package

    International Nuclear Information System (INIS)

    1990-01-01

    The RASPLAV package for investigation of post-accident mass transport and heat transfer processes is presented. The package performs three dimensional thermal conduction calculations in space nonuniform and temperature dependent conductivities and variable heat sources, taking into account phase transformations. The processes of free-moving bulk material, mixing of melting fuel due to advection and dissolution, and also evaporation/adsorption are modelled. Two-dimensional hydrodynamics with self-consistent heat transfer are also performed. The paper briefly traces the ways the solution procedures are carried out in the program package and outlines the major results of the simulation of reactor vessel melting after a core meltdown. The theoretical analysis and the calculations in this case were carried out in order to define the possibility of localization of the zone reminders. The interactions between the reminders and the concrete are simulated and evaluation of the interaction parameters is carried out. 4 refs. (R.Ts)

  2. Type B plutonium transport package development that uses metallic filaments and composite materials

    International Nuclear Information System (INIS)

    Pierce, J.D.; Moya, J.L.; McClure, J.D.; Hohnstreiter, G.F.; Golliher, K.G.

    1992-01-01

    A new design concept for a Type B transport packaging for transporting plutonium and uranium has been developed by the Transportation Systems Department at Sandia National Laboratories (SNL). The new design came about following a review of current packagings, projected future transportation needs, and current and future regulatory requirements. United States packaging, regulations specified in Title 49, Code of Federal Regulations Parts 173.416 and 173.417 (for fissile materials) offer parallel paths under the heading of authorized Type B packages for the transport of greater than A 1 or A 2 quantities of radioactive material. These pathways are for certified Type B packagings and specification packagings. Consequently, a review was made of both type B and specification packages. A request for comment has been issued by the US Nuclear Regulatory Commission (NRC) for proposed changes to Title 10, Code of Federal Regulations Part 71. These regulations may therefore change in the near future. The principle proposed regulation change that would affect this type of package is the addition of a dynamic crush requirement for certain packagings. The US Department of Transportation (DOT) may also re-evaluate the specifications in 49 CFR that authorize the fabrication and use of specification packagings. Therefore, packaging, options were considered that will meet expected new regulations and provide shipment capability for the US Department of Energy well into the future

  3. Safety analysis report for packaging (SARP) of the Oak Ridge National Laboratory. TRU curium shipping container

    International Nuclear Information System (INIS)

    Box, W.D.; Klima, B.B.; Seagren, R.D.; Shappert, L.B.; Aramayo, G.A.

    1980-06-01

    An analytical evaluation of the Oak Ridge National Laboratory Transuranium (TRU) Curium Shipping Container was made to demonstrate its compliance with the regulations governing offsite shipment of packages containing radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of the evaluation show that the container complies with the applicable regulations

  4. The choice of nuclear material measurement strategy in bulk-form in material balance area

    International Nuclear Information System (INIS)

    Smirnov, V.M.; Sergeev, S.A.; Kirsanov, V.S.

    1999-01-01

    Concepts have been defined such as Shipment batch, Technological batch, and Accounting batch, it has been found that Shipment and Technological batches should be formed through the arrangement of group of measured Accounting batches. The strategy for nuclear material (NM) measurement based on the Accounting batch is shown to give a possibility to use the advantages for the accounting purposes: ensure safeguards of non-diversion of NM at quantitative (numerical) level, which is a higher grade of safeguards compared to the systems of accounting and control now in force of the US and EURATOM; ensure a guaranteed accuracy and reliability (confidence level) when making up NM balance in Material Balance Area (MBA) and at Federal level, which has been realized only in part in the NM control and accounting systems. Strategy of NM measurement for MBAs counting NM in bulk form has been proposed [ru

  5. 27 CFR 24.231 - Receipt of spirits in sealed bulk containers.

    Science.gov (United States)

    2010-04-01

    ... TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.231 Receipt of spirits in sealed bulk containers. The proprietor shall examine sealed bulk containers (packages) of spirits... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Receipt of spirits in...

  6. Irradiated test fuel shipment plan for the LWR MOX fuel irradiation test project

    International Nuclear Information System (INIS)

    Shappert, L.B.; Dickerson, L.S.; Ludwig, S.B.

    1998-01-01

    This document outlines the responsibilities of DOE, DOE contractors, the commercial carrier, and other organizations participating in a shipping campaign of irradiated test specimen capsules containing mixed-oxide (MOX) fuel from the Idaho National Engineering and Environmental Laboratory (INEEL) to the Oak Ridge National Laboratory (ORNL). The shipments described here will be conducted according to applicable regulations of the US Department of Transportation (DOT), US Nuclear Regulatory Commission (NRC), and all applicable DOE Orders. This Irradiated Test Fuel Shipment Plan for the LWR MOX Fuel Irradiation Test Project addresses the shipments of a small number of irradiated test specimen capsules and has been reviewed and agreed to by INEEL and ORNL (as participants in the shipment campaign). Minor refinements to data entries in this plan, such as actual shipment dates, exact quantities and characteristics of materials to be shipped, and final approved shipment routing, will be communicated between the shipper, receiver, and carrier, as needed, using faxes, e-mail, official shipping papers, or other backup documents (e.g., shipment safety evaluations). Any major changes in responsibilities or data beyond refinements of dates and quantities of material will be prepared as additional revisions to this document and will undergo a full review and approval cycle

  7. Public information circular for shipments of irradiated reactor fuel. Revision 4

    International Nuclear Information System (INIS)

    1984-06-01

    This publication is the fifth in a series of annual publications issued by the Nuclear Regulatory Commission in response to public information requests regarding the Commission's regulation of shipments of irradiated reactor fuel. This publication contains basically three kinds of information: (1) routes recently approved (18 months) by the Commission for the shipment of irradiated reactor fuel; (2) information regarding any safeguards-significant incidents that may be (to date none have) reported during shipments along such routes; and (3) cumulative amounts of material shipped

  8. Transportation incidents involving Canadian shipments of radioactive material

    International Nuclear Information System (INIS)

    Jardine, J.M.

    1979-06-01

    This paper gives a brief statement of the legislation governing the transportation of radioactive materials in Canada, reviews the types of shipments made in Canada in 1977, and surveys the transportation incidents that have been reported to the Atomic Energy Control Board over the period 1947-1978. Some of the more significant incidents are described in detail. A totAl of 135 incidents occurred from 1947 to 1978, during which time there were 644750 shipments of radioactive material in Canada

  9. Spent fuel transportation in the United States: commercial spent fuel shipments through December 1984

    International Nuclear Information System (INIS)

    1986-04-01

    This report has been prepared to provide updated transportation information on light water reactor (LWR) spent fuel in the United States. Historical data are presented on the quantities of spent fuel shipped from individual reactors on an annual basis and their shipping destinations. Specifically, a tabulation is provided for each present-fuel shipment that lists utility and plant of origin, destination and number of spent-fuel assemblies shipped. For all annual shipping campaigns between 1980 and 1984, the actual numbers of spent-fuel shipments are defined. The shipments are tabulated by year, and the mode of shipment and the casks utilized in shipment are included. The data consist of the current spent-fuel inventories at each of the operating reactors as of December 31, 1984. This report presents historical data on all commercial spent-fuel transportation shipments have occurred in the United States through December 31, 1984

  10. Postharvest quality of carrot cultivars, packaged and in bulk

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... presented the highest number of sprouts when stored in bulk (48.5%) and the largest number of carrots with radicels (54.7%). ... The carrot (Daucus carota L.), a plant of the family. Apiaceae ... widespread global consumption and large planted area. .... increased temperature and CO2 concentration and the.

  11. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory TRU Californium Shipping Container

    International Nuclear Information System (INIS)

    Box, W.D.; Shappert, L.B.; Seagren, R.D.; Klima, B.B.; Jurgensen, M.C.; Hammond, C.R.; Watson, C.D.

    1980-01-01

    An analytical evaluation of the Oak Ridge National Laboratory TRU Californium Shipping Container was made in order to demonstrate its compliance with the regulations governing off-site shipment of packages that contain radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of this evaluation demonstrate that the container complies with the applicable regulations

  12. 7 CFR 35.6 - Shipment.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Shipment. 35.6 Section 35.6 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... country regardless of the number of consignees, receivers, or ports of destination in that country. [41 FR...

  13. Proposed risk evaluation guidelines for use by the DOE-AL Nuclear Explosive Safety Division in evaluating proposed shipments of nuclear components

    International Nuclear Information System (INIS)

    Just, R.A.; Love, A.F.

    1997-10-01

    The licensing requirements of 10 CFR 71 (US Code of Federal Regulations) are the primary criteria used to license proposed US Department of Energy (DOE) shipments of nuclear components. However, if a shipment cannot meet 10 CFR 71 requirements, a Transportation System Risk Assessment (TSRA) is prepared to document: (1) the degree of compliance of proposed DOE shipments of nuclear components with applicable federal regulations, and (2) the risk associated with the proposed shipments. The Nuclear Explosive Safety Division (NESD) of the Department of Energy, Albuquerque Area Office (DOE-AL) is responsible for evaluating TSRAs and for preparing Safety Evaluation Reports (SERs) to authorize the off-site transport. Hazards associated with the transport may include the presence of fissile material, chemically and radiologically toxic uranium, and ionizing radiation. The Nuclear Regulatory Commission (NRC) has historically considered only radiological hazards in licensing the transport of radiological material because the US Department of Transportation considers licensing requirements of nonradiological (i.e., chemically toxic) hazards. The requirements of 10 CFR 71 are based primarily on consideration of radiological hazards. For completeness, this report provides information for assessing the effects of chemical toxicity. Evaluating the degree of compliance with the requirements of 10 CFR 71 is relatively straightforward. However, there are few precedents associated with developing TSRA risk assessments for packages that do not comply with all of the requirements of 10 CFR 71. The objective of the task is to develop Risk Evaluation Guidelines for DOE-AL to use when evaluating a TSRA. If the TSRA shows that the Risk Evaluation Guidelines are not exceeded, then from a risk perspective the TSRA should be approved if there is evidence that the ALARA (as low as reasonably achievable) principle has been applied

  14. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  15. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    International Nuclear Information System (INIS)

    Allen, K.J.; Bolshinsky, I.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.

    2010-01-01

    Romania safely air shipped 23.7 kilograms of Russian-origin highly enriched uranium (HEU) spent nuclear fuel from the VVR-S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world's first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3. country under the RRRFR program and the 14. country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment. (authors)

  16. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory Shipping Cask D-38. Revision 1

    International Nuclear Information System (INIS)

    Box, W.D.; Shappert, L.B.; Seagren, R.D.; Watson, C.D.; Hammond, C.R.; Klima, B.B.

    1979-09-01

    An analytical evaluation of the Oak Ridge National Laboratory Shipping Cask D-38 (solids shipments) was made to demonstrate its compliance with the regulations governing off-site radioactive material shipping packages. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of the evaluation show that the cask complies with the applicable regulations

  17. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory Shipping Cask D-38. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Box, W.D.; Shappert, L.B.; Seagren, R.D.; Watson, C.D.; Hammond, C.R.; Klima, B.B.

    1979-09-01

    An analytical evaluation of the Oak Ridge National Laboratory Shipping Cask D-38 (solids shipments) was made to demonstrate its compliance with the regulations governing off-site radioactive material shipping packages. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of the evaluation show that the cask complies with the applicable regulations.

  18. 75 FR 1235 - Revisions to the Requirements for: Transboundary Shipments of Hazardous Wastes Between OECD...

    Science.gov (United States)

    2010-01-08

    ..., Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, New Zealand, Norway... Requirements for: Transboundary Shipments of Hazardous Wastes Between OECD Member Countries, Export Shipments of Spent Lead- Acid Batteries, Submitting Exception Reports for Export Shipments of Hazardous Wastes...

  19. Regulatory concerns for leakage testing of packagings with three O-ring closure seals

    International Nuclear Information System (INIS)

    Oras, J.J.; Towell, R.H.; Wangler, M.E.

    1997-01-01

    The American National Standard for Radioactive Materials--Leakage Tests on Packages for Shipment (ANSI N14.5) provides guidance for leakage rate testing to show that a particular packaging complies with regulatory requirements and also provides guidance in determining appropriate acceptance criteria. Recent radioactive packagings designs have incorporated three O-ring closure seals, the middle O-ring being the containment seal. These designs have the potential for false positive results of leakage rate tests. The volume between the containment O-ring and the inner O-ring is used for the helium gas required for the leakage rate tests to reduce both the amount of helium used and the time required to conduct the tests. A leak detector samples the evacuated volume between the outer O-ring and the containment O-ring. False positive results can be caused in two ways, a large leakage in the containment seal or leakage in the inner seal. This paper will describe the problem together with possible solutions/areas that need to be addressed in a Safety Analysis Report for Packagings before a particular packaging design can be certified for transport

  20. The procedures used to review safety analysis reports for packagings submitted to the US Department of Energy for certification

    International Nuclear Information System (INIS)

    Popper, G.F.; Raske, D.T.; Turula, P.

    1988-01-01

    This paper presents an overview of the procedures used at the Argonne National Laboratory (ANL) to review Safety Analysis Reports for Packagings (SARPs) submitted to the US Department of Energy (DOE) for issuance of a Certificate of Compliance. Prior to certification and shipment of a packaging for the transport of radioactive materials, a SARP must be prepared describing the design, contents, analyses, testing, and safety features of the packaging. The SARP must be reviewed to ensure that the specific packaging meets all DOE orders and federal regulations for safe transport. The ANL SARP review group provides an independent review and evaluation function for the DOE to ensure that the packaging meets all the prescribed requirements. This review involves many disciplines and includes evaluating the general information, drawings, construction details, operating procedures, maintenance and test programs, and the quality assurance plan for compliance with requirements. 14 refs., 6 figs

  1. Regulation of spent nuclear fuel shipment: A state perspective

    International Nuclear Information System (INIS)

    Halstead, R.J.; Sinderbrand, C.; Woodbury, D.

    1987-01-01

    In 1985, the Wisconsin Department of Natural Resources (WDNR) sought to regulate rail shipments of spent nuclear fuel through the state, because federal regulations did not adequately protect the environmentally sensitive corridor along the route of the shipments. A state interagency working group identified five serious deficiencies in overall federal regulatory scheme: 1) failure to consider the safety or environmental risks associated with selected routes; 2) abscence of route-specific emergency response planning; 3) failure of the NRC to regulate the carrier of spent nuclear fuel or consider its safety record; 4) abscence of requirements for determination of need for, or the propriety of, specific shipments of spent nuclear fuel; and 5) the lack of any opportunity for meaningful public participation with respect to the decision to transport spent nuclear fuel. Pursuant to Wisconsin's hazardous substance statutes, the WDNR issues an order requiring the utility to file a spill prevention and mitigation plan or cease shipping through Wisconsin. A state trial court judge upheld the utility's challenge to Wisconsin's spill plan requirements, based on federal preemption of state authority. The state is now proposing federal legislation which would require: 1) NRC determination of need prior to approval of offsite shipment of spent fuel by the licensees; 2) NRC assessment of the potential environmental impacts of shipments along the proposed route, and comparative evaluation of alternative modes and routes; and 3) NRC approval of a route-specific emergency response and mitigation plan, including local training and periodic exercises. Additionally, the proposed legislation would authorize States and Indian Tribes to establish regulatory programs providing for permits, inspection, contingency plans for monitoring, containments, cleanup and decontamination, surveillance, enforcement and reasonable fees. 15 refs

  2. Contribution to optimization of individual doses of workers in shipment of generator technetium-99m

    International Nuclear Information System (INIS)

    Fonseca, Lizandra Pereira de Souza

    2010-01-01

    The Instituto de Pesquisas Energeticas e Nucleares, IPEN, radiopharmaceuticals research and produce that are distributed throughout Brazil, currently the radiopharmaceutical with the largest number of packaged shipped per year and with the highest total activity is the 99m technetium generator. To reduce individual doses for workers involved in the production of radiopharmaceuticals was performed a study of radiological protection optimization in the shipment process of technetium generator, using the techniques: differential cost-benefit analysis, integral cost-benefit analysis, multi-attribute utility analysis and multi-criteria outranking analysis. With changes in the configuration of packed for generator dispatch and with the acquirement of a mat transporter it was possible establish 4 protection options. The attributes considered were the protection cost, collective dose, individual dose and physical effort by worker to move the package without the mat. To assess the robustness of analytical solutions found with the techniques used in the optimization we performed a sensitivity study and found that option 3 is more robust than option 1, which is no longer the analytical solution with an increase of R$ 20.000,00 the cost of protection. (author)

  3. Directory of certificates of compliance for radioactive materials packages: summary report of NRC approved quality-assurance programs for radioactive-material packages. Volume 3, Revision 3

    International Nuclear Information System (INIS)

    1983-09-01

    This directory contains a Summary Report of NRC Approved Packages (Volume 1), Certificates of Compliance (Volume 2), and a Summary Report of NRC Approved Quality Assurance Programs for Radioactive Material Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on packagings which have been approved by the US Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance number is included at the back of each volume of the directory. The Summary Report includes a listing of all users of each package design prior to the publication date of the directory. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure them in accordance with an NRC approved quality assurance program. Copies of the current approval may be obtained from the US Nuclear Regulatory Commission Public Document Room files (see Docket No. listed on each certificate) at 1717 H Street, Washington, DC 20555. Note that the general license of 10 CFR 71.12 does not authorize the receipt, possession, use or transfer of byproduct source, or special nuclear material; such authorization must be obtained pursuant to 10 CFR Parts 30 to 36, 40, 50, or 70

  4. Directory of certificates of compliance for radioactive materials packages. Summary report of NRC approved quality assurance programs for radioactive material packages. Volume 3, Revision 4

    International Nuclear Information System (INIS)

    1984-11-01

    This directory contains a Summary Report of NRC Approved Packages (Volume 1), Certificates of Compliance (Volume 2), and a Summary Report of NRC Approved Quality Assurance Programs for Radioactive Material Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on packagings which have been approved by the US Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance number is included at the back of each volume of the directory. The Summary Report includes a listing of all users of each package design prior to the publication date of the directory. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program. Copies of the current approval may be obtained from the US Nuclear Regulatory Commission Public Document Room files (see Docket No. listed on each certificate) at 1717 H Street, Washington, DC 20555. Note that the general license of 10 CFR 71.12 does not authorize the receipt, possession, use or transfer of byproduct source, or special nuclear material; such authorization must be obtained pursuant to 10 CFR Parts 30 to 36, 40, 50, or 70

  5. Physical protection of shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    Kasun, D.J.

    1979-05-01

    During May 1979 the U.S. Nuclear Regulatory Commission approved for issuance in effective form new interim regulations for strengthening the protection of spent fuel shipments against sabotage and diversion. The new regulations will likely continue in force until the completion of an ongoing research program concerning the response of spent fuel to certain forms of sabotage. At that time the regulations may be rescinded, modified, or made permanent, as appropriate. This report discusses the new regulations and provides a basis on which licensees can develop an acceptable interim program for the protection of spent fuel shipments

  6. Shipment Consolidation Policy under Uncertainty of Customer Order for Sustainable Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Kyunghoon Kang

    2017-09-01

    Full Text Available With increasing concern over the environment, shipment consolidation has become one of a main initiative to reduce CO2 emissions and transportation cost among the logistics service providers. Increased delivery time caused by shipment consolidation may lead to customer’s order cancellation. Thus, order cancellation should be considered as a factor in order uncertainty to determine the optimal shipment consolidation policy. We develop mathematical models for quantity-based and time-based policies and obtain optimality properties for the models. Efficient algorithms using optimal properties are provided to compute the optimal parameters for ordering and shipment decisions. To compare the performances of the quantity-based policy with the time-based policy, extensive numerical experiments are conducted, and the total cost is compared.

  7. IN-PACKAGE CHEMISTRY ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.

  8. IN-PACKAGE CHEMISTRY ABSTRACTION

    International Nuclear Information System (INIS)

    E. Thomas

    2005-01-01

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H 2 O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package

  9. Safety evaluation for packaging (onsite) for the concrete-shielded RH TRU drum for the 327 Postirradiation Testing Laboratory

    International Nuclear Information System (INIS)

    Smith, R.J.

    1998-01-01

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments. The drum will be used for transport of 327 Building legacy waste from the 300 Area to a solid waste storage facility on the Hanford Site

  10. Delay and Denial of Shipment

    International Nuclear Information System (INIS)

    Wright, T. de; Gray, P.; Sobriera, A.C.F.; Xavier, C.C.; Schwela, U.

    2016-01-01

    Despite the strong safety and security record for shipments of Radioactive Material (RAM), Class 7 goods, transportation often continues to provide challenges as many carriers and ports (air and sea) choose not to engage in RAM product transportation. This paper discusses factors impacting the availability of regular air and sea transport routes for RAM, including: negative perception about radiation due to a lack of awareness and information about the industry; concerns about the cost and extent of training required of those who handle radioactive materials; multiplicity and diversity of regulations governing the handling, use and transport of these products; lack of harmonisation between governments in applying international regulations; and, a lack of outreach and public awareness about the needs and applications of radioactive materials. The particular issues involved in sea transport of: relatively small trade volumes; additional requirements or bans on port access, both for transit and trans-shipment; and scheduling difficulties due to commercial carrier routing decisions are also discussed. Initiatives being taken internationally, regionally and nationally to overcome these issues and examples of success are described. (author)

  11. Programmatic and technical requirements for the FMDP fresh MOX fuel transport package

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Michelhaugh, R.D.; Pope, R.B.

    1997-12-01

    This document is intended to guide the designers of the package to all pertinent regulatory and other design requirements to help ensure the safe and efficient transport of the weapons-grade (WG) fresh MOX fuel under the Fissile Materials Disposition Program. To accomplish the disposition mission using MOX fuel, the unirradiated MOX fuel must be transported from the MOX fabrication facility to one or more commercial reactors. Because the unirradiated fuel contains large quantities of plutonium and is not sufficient radioactive to create a self-protecting barrier to deter the material from theft, DOE intends to use its fleet of safe secure trailers (SSTs) to provide the necessary safeguards and security for the material in transit. In addition to these requirements, transport of radioactive materials must comply with regulations of the Department of Transportation and the Nuclear Regulatory Commission (NRC). In particular, NRC requires that the packages must meet strict performance requirements. The requirements for shipment of MOX fuel (i.e., radioactive fissile materials) specify that the package design is certified by NRC to ensure the materials contained in the packages are not released and remain subcritical after undergoing a series of hypothetical accident condition tests. Packages that pass these tests are certified by NRC as a Type B fissile (BF) package. This document specifies the programmatic and technical design requirements a package must satisfy to transport the fresh MOX fuel assemblies

  12. Packaging- and transportation-related occurrence reports. Fiscal year 1996 annual report

    International Nuclear Information System (INIS)

    Dickerson, L.S.; Welch, M.J.

    1997-02-01

    The Oak Ridge National Laboratory (ORNL), through its support to the US Department of Energy's (DOE's) Office of Transportation, Emergency Management, and Analytical Services (EM-76), retrieves reports and information pertaining to transportation and packaging occurrences from the centralized Occurrence Reporting and Processing System (ORPS) database. These selected reports are analyzed for trends, impact on packaging and transportation operations and safety concerns, and lessons learned (LL) in transportation and packaging safety. Some selected reports are reviewed to evaluate the corrective actions being conducted. This report contains an analysis of 246 occurrences identified as packaging- or transportation-related during fiscal year (FY) 1996, with supporting data from calendar year (CY) 1991 through 1995 which provide the basis for trending. The overall number of packaging- and transportation-related occurrences remains a small percentage of the total occurrences in the DOE system, through it is relatively higher this year (∼6%) than previous years when transportation occurrences were approximately 3% of the total. The decrease in the total number of occurrences may be the result of the rollup provisions of the new DOE Order 232.1, and the comparative increase in packaging- and transportation-related occurrence reports (ORs) is only a reflection of the decrease in the overall total. There does not appear to be a correlation between the total number of offsite hazardous materials shipments and the number of reported occurrences. The offsite occurrences, while few in number, are consistent for the major shippers and contractors

  13. Guidance for package approvals in the United Kingdom

    International Nuclear Information System (INIS)

    Morgan-Warren, E.J.

    2004-01-01

    Approval is required under the transport regulations for a wide range of package designs and operations, and applications for competent authority approval and validation are received from many sources, both in the UK and overseas. To assist package designers and applicants for approval, and to promote consistency in applications and their assessment, the UK Department for Transport issues guidance on the interpretation of the transport regulations and the requirements of an application for approval and its supporting safety case. The general guidance document, known as the Guide to an Application for UK Competent Authority Approval of Radioactive Material in Transport, has been issued for many years and updated to encompass the provisions of each successive edition of the IAEA transport regulations. The guide has been referred to in a number of international fora, including PATRAM, and was cited as a 'good practice' in the report of the IAEA TRANSAS appraisal of the UK in 2002. Specialist guides include the Guide to the Suitability of Elastomeric Seal Materials, which is the subject of a separate paper in this conference, and the Guide to the Approval of Freight Containers as Types IP-2 and IP-3 Packages. This paper discusses the guidance material and summarises the administrative and technical information required in support of applications for approval of package designs, special form and low-dispersible radioactive materials, shipments, special arrangements, modifications and validations. (author)

  14. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1993-03-01

    This circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the Nuclear Regulatory Commission (NRC), and to meet the requirements of Public Law 96--295. The report provides a brief description of NRC authority for certain aspects of transporting spent fuel. It provides descriptive statistics on spent fuel shipments regulated by the NRC from 1979 to 1992. It also lists detailed highway and railway segments used within each state from October 1, 1987 through December 31, 1992

  15. 49 CFR 173.247 - Bulk packaging for certain elevated temperature materials.

    Science.gov (United States)

    2010-10-01

    ... reference to the axes of the transport vehicle. Each accelerative or decelerative load may be considered... packagings used for transportation of molten metals and molten glass by rail when movement is restricted to...

  16. Normal conditions of transport thermal analysis and testing of a Type B drum package

    International Nuclear Information System (INIS)

    Jerrell, J.W.; Alstine, M.N. van; Gromada, R.J.

    1995-01-01

    Increasing the content limits of radioactive material packagings can save money and increase transportation safety by decreasing the total number of shipments required to transport large quantities of material. The contents of drum packages can be limited by unacceptable containment vessel pressures and temperatures due to the thermal properties of the insulation. The purpose of this work is to understand and predict the effects of insulation properties on containment system performance. The type B shipping container used in the study is a double containment fiberboard drum package. The package is primarily used to transport uranium and plutonium metals and oxides. A normal condition of transport (NCT) thermal test was performed to benchmark an NCT analysis of the package. A 21 W heater was placed in an instrumented package to simulate the maximum source decay heat. The package reached thermal equilibrium 120 hours after the heater was turned on. Testing took place indoors to minimize ambient temperature fluctuations. The thermal analysis of the package used fiberboard properties reported in the literature and resulted in temperature significantly greater than those measured during the test. Details of the NCT test will be described and transient temperatures at key thermocouple locations within the package will be presented. Analytical results using nominal fiberboard properties will be presented. Explanations of the results and the attempt to benchmark the analysis will be presented. The discovery that fiberboard has an anisotropic thermal conductivity and its effect on thermal performance will also be discussed

  17. RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly Cummins; Igor Bolshinsky; Ken Allen; Tihomir Apostolov; Ivaylo Dimitrov

    2009-07-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  18. Russian-Origin Highly Enriched Uranium Spent Nuclear Fuel Shipment From Bulgaria

    International Nuclear Information System (INIS)

    Cummins, Kelly; Bolshinsky, Igor; Allen, Ken; Apostolov, Tihomir; Dimitrov, Ivaylo

    2009-01-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  19. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    P.S. Domski

    2003-07-21

    The work associated with the development of this model report was performed in accordance with the requirements established in ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA'' (BSC 2002a). The in-package chemistry model and in-package chemistry model abstraction are developed to predict the bulk chemistry inside of a failed waste package and to provide simplified expressions of that chemistry. The purpose of this work is to provide the abstraction model to the Performance Assessment Project and the Waste Form Department for development of geochemical models of the waste package interior. The scope of this model report is to describe the development and validation of the in-package chemistry model and in-package chemistry model abstraction. The in-package chemistry model will consider chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) and codisposed high-level waste glass (HLWG) and N Reactor spent fuel (CDNR). The in-package chemistry model includes two sub-models, the first a water vapor condensation (WVC) model, where water enters a waste package as vapor and forms a film on the waste package components with subsequent film reactions with the waste package materials and waste form--this is a no-flow model, the reacted fluids do not exit the waste package via advection. The second sub-model of the in-package chemistry model is the seepage dripping model (SDM), where water, water that may have seeped into the repository from the surrounding rock, enters a failed waste package and reacts with the waste package components and waste form, and then exits the waste package with no accumulation of reacted water in the waste package. Both of the submodels of the in-package chemistry model are film models in contrast to past in-package chemistry models where all of the waste package pore space was filled with water. The

  20. In-Package Chemistry Abstraction

    International Nuclear Information System (INIS)

    P.S. Domski

    2003-01-01

    The work associated with the development of this model report was performed in accordance with the requirements established in ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA'' (BSC 2002a). The in-package chemistry model and in-package chemistry model abstraction are developed to predict the bulk chemistry inside of a failed waste package and to provide simplified expressions of that chemistry. The purpose of this work is to provide the abstraction model to the Performance Assessment Project and the Waste Form Department for development of geochemical models of the waste package interior. The scope of this model report is to describe the development and validation of the in-package chemistry model and in-package chemistry model abstraction. The in-package chemistry model will consider chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) and codisposed high-level waste glass (HLWG) and N Reactor spent fuel (CDNR). The in-package chemistry model includes two sub-models, the first a water vapor condensation (WVC) model, where water enters a waste package as vapor and forms a film on the waste package components with subsequent film reactions with the waste package materials and waste form--this is a no-flow model, the reacted fluids do not exit the waste package via advection. The second sub-model of the in-package chemistry model is the seepage dripping model (SDM), where water, water that may have seeped into the repository from the surrounding rock, enters a failed waste package and reacts with the waste package components and waste form, and then exits the waste package with no accumulation of reacted water in the waste package. Both of the submodels of the in-package chemistry model are film models in contrast to past in-package chemistry models where all of the waste package pore space was filled with water. The current in-package

  1. Understanding and managing the movements of hazardous material shipments through Texas population centers.

    Science.gov (United States)

    2009-08-01

    Every day almost a million shipments of hazardous materials move safely and securely along our nations transportation system, via any combination of modes. Only a small fraction of total shipments interrupt their planned journey due to an incident...

  2. 49 CFR 172.301 - General marking requirements for non-bulk packagings.

    Science.gov (United States)

    2010-10-01

    ... Liquefied petroleum gas (LPG) unless it is legibly marked NON-ODORIZED or NOT ODORIZED in letters not less... empty packagings, see § 173.29 of this subchapter.) (f) NON-ODORIZED marking on cylinders containing LPG...

  3. Directory of certificates of compliance for radioactive materials packages. Summary report of NRC approved quality assurance programs for radioactive material packages. Volume 3, Revision 6

    International Nuclear Information System (INIS)

    1986-10-01

    This directory contains a Summary Report of NRC Approved Packages (Volumes 1), Certificates of Compliance (Volume 2), and a Summary Report of NRC Approved Quality Assurance Programs for Radioactive Material Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on packagings which have been approved by the US Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance number is included at the back of each volume of the directory. The Summary Report includes a listing of all users of each package design prior to the publication date of the directory. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure them that have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program. Copies of the current approval may be obtained from the US Nuclear Regulatory Commission Public Document Room files (see Docket No. listed on each certificate) at 1717 H Street, Washington, DC 20555. Note that the general license of 10 CFR 71.12 does not authorize the receipt, possession, use of transfer of byproduct source, or special nuclear material; such authorization must be obtained pursuant to 10 CFR Parts 30 to 36, 40, 50, or 70

  4. Yucca Mountain Project waste package design for MRS [Monitored Retrievable Storage] system studies

    International Nuclear Information System (INIS)

    Nelson, T.; Russell, E.; Johnson, G.L.; Morissette, R.; Stahl, D.; LaMonica, L.; Hertel, G.

    1989-04-01

    This report, prepared by the Yucca Mountain Project, is the report for Task E of the MRS System Study. A number of assumptions were necessary prior to initiation of this system study. These assumptions have been defined in Section 2 for the packaging scenarios, the waste forms, and the waste package concepts and materials. Existing concepts were utilized because of schedule constraints. Section 3 provides a discussion of sensitivity considerations regarding the impact of different assumptions on the overall result of the system study. With the exception of rod consolidation considerations, the system study should not be sensitive to the parameters assumed for the waste package. The current reference waste package materials and concepts are presented in Section 4. Although stainless steel is assumed for this study, a container material has not yet been selected for Advanced Conceptual Design (ACD) from the six candidates currently under study. Section 5 discusses the current thinking for possible alternate waste package materials and concepts. These concepts are being considered in the event that the waste package emplacement environment is more severe than is currently anticipated. Task E also provides a concept in Section 6 for an MRS canister to contain consolidated fuel for storage at the MRS and eventual shipment to the repository. 5 refs., 14 figs., 10 tabs

  5. Hazardous waste shipment data collection from DOE sites

    International Nuclear Information System (INIS)

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste

  6. Operational aspects of TRIGA shipment from South Korea to INEEL

    International Nuclear Information System (INIS)

    Shelton, Thomas

    1999-01-01

    A shipment of 299 irradiated TRIGA fuel elements was made from South Korea to the United States in July 1998. The shipment was from two facilities in Korea and was received at the Irradiated Fuel Storage Facility (IFSF) at the Idaho National Engineering and Environmental Laboratory (INEEL). Fuel types shipped included aluminum and stainless steel clad standard fuel elements, instrumented and fuel follower control elements, as well as FLIP elements and failed fuel elements. Modes of transport included truck, rail and ship. (author)

  7. Routing of radioactive shipments in networks with time-varying costs and curfews

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, L.A.; Mahmassani, H.S. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

    1998-09-01

    This research examines routing of radioactive shipments in highway networks with time-dependent travel times and population densities. A time-dependent least-cost path (TDLCP) algorithm that uses a label-correcting approach is adapted to include curfews and waiting at nodes. A method is developed to estimate time-dependent population densities, which are required to estimate risk associated with the use of a particular highway link at a particular time. The TDLCP algorithm is implemented for example networks and used to examine policy questions related to radioactive shipments. It is observed that when only Interstate highway facilities are used to transport these materials, a shipment must go through many cities and has difficulty avoiding all of them during their rush hour periods. Decreases in risk, increased departure time flexibility, and modest increases in travel times are observed when primary and/or secondary roads are included in the network. Based on the results of the example implementation, the suitability of the TDLCP algorithm for strategic nuclear material and general radioactive material shipments is demonstrated.

  8. Routing of radioactive shipments in networks with time-varying costs and curfews

    International Nuclear Information System (INIS)

    Bowler, L.A.; Mahmassani, H.S.

    1998-09-01

    This research examines routing of radioactive shipments in highway networks with time-dependent travel times and population densities. A time-dependent least-cost path (TDLCP) algorithm that uses a label-correcting approach is adapted to include curfews and waiting at nodes. A method is developed to estimate time-dependent population densities, which are required to estimate risk associated with the use of a particular highway link at a particular time. The TDLCP algorithm is implemented for example networks and used to examine policy questions related to radioactive shipments. It is observed that when only Interstate highway facilities are used to transport these materials, a shipment must go through many cities and has difficulty avoiding all of them during their rush hour periods. Decreases in risk, increased departure time flexibility, and modest increases in travel times are observed when primary and/or secondary roads are included in the network. Based on the results of the example implementation, the suitability of the TDLCP algorithm for strategic nuclear material and general radioactive material shipments is demonstrated

  9. 46 CFR 153.976 - Transfer of packaged cargo or ship's stores.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Transfer of packaged cargo or ship's stores. 153.976 Section 153.976 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.976 Transfer of...

  10. Plan for shipment, storage, and examination of TMI-2 fuel

    International Nuclear Information System (INIS)

    Quinn, G.J.; Engen, I.A.; Tyacke, M.J.; Reno, H.W.

    1984-05-01

    This Plan addresses the preparation and shipment of core debris from Three Mile Island Unit 2 (TMI-2) to the Idaho National Engineering Laboratory (INEL) for receipt, storage, and examination. The Manager of the Nuclear Materials Evaluation Programs Division of EG and G Idaho, Inc. will manage two separate but integrated programs, one located at TMI (Part 1) and the other at INEL (Part 2). The Technical Integration Office (at TMI) is responsible for developing and implementing Part 1, TMI-2 Core Shipment Program. That portion of the Plan establishes coordination between TMI and INEL (and others) for shipment of core debris, and it provides the coordination by which handling systems at both locations are designed, constructed, or modified to establish and maintain system compatibility. The Technical Support Branch (at INEL) is responsible for developing and implementing Part 2, Core Activities Program. That portion of the Plan details operational and examination activities at INEL, as well as defines core-related activities planned at other DOE laboratories

  11. Status of the TRIGA shipments to the INEEL from Asia

    International Nuclear Information System (INIS)

    Tyacke, M.; George, W.; Petrasek, A.; Stump, R.C.; Patterson, J.

    1997-01-01

    This paper will report on preparations being made for returning Training, Research, Isotope, General Atomics (TRIGA) foreign research reactor (FRR) spent fuel from South Korea and Indonesia to the Idaho National Engineering and Environmental Laboratory (INEEL). The roles of US Department of Energy, INEEL, and NAC International in implementing a safe shipment are provided. Special preparations necessitated by making a shipment through a west coast port of the US to the INEEL will be explained. The institutional planning and actions needed to meet the unique political and operational environment for making a shipment from Asia to INEEL will be discussed. Facility preparation at both the INEEL and the FRRs is discussed. Cask analysis needed to properly characterize the various TRIGA configurations, compositions, and enrichments is discussed. Shipping preparations will include an explanation of the integrated team of spent fuel transportation specialists, and shipping resources needed to retrieve the fuel from foreign research reactor sites and deliver it to the INEEL

  12. 21 CFR 600.15 - Temperatures during shipment.

    Science.gov (United States)

    2010-04-01

    ... to maintain a temperature range between 1 to 10 °C during shipment. Yellow Fever Vaccine 0 °C or... Evaluation and Research. [39 FR 39872, Nov. 12, 1974, as amended at 49 FR 23833, June 8, 1984; 50 FR 4133...

  13. Logistics: DoD International Personal Property Shipment Rates

    National Research Council Canada - National Science Library

    2002-01-01

    .... The allegation claimed that under current procedures Code of Service 4 DoD was paying excessive costs for ocean transportation on household goods shipments because a third party company purchased...

  14. Fuel shipment experience, fuel movements from the BMI-1 transport cask

    International Nuclear Information System (INIS)

    Bauer, Thomas L.; Krause, Michael G.

    1986-01-01

    The University of Texas at Austin received two shipments of irradiated fuel elements from Northrup Aircraft Corporation on April 11 and 16, 1985. A total of 59 elements consisting of standard and instrumented TRIGA fuel were unloaded from the BMI-1 shipping cask. At the time of shipment, the Northrup core burnup was approximately 50 megawatt days with fuel element radiation levels, after a cooling time of three months, of approximately 1.75 rem/hr at 3 feet. In order to facilitate future planning of fuel shipment at the UT facility and other facilities, a summary of the recent transfer process including several factors which contributed to its success are presented. Numerous color slides were made of the process for future reference by UT and others involved in fuel transfer and handling of the BMI-1 cask

  15. 49 CFR 173.29 - Empty packagings.

    Science.gov (United States)

    2010-10-01

    ... hazardous material shall be offered for transportation and transported in the same manner as when it.... (c) A non-bulk packaging containing only the residue of a hazardous material covered by Table 2 of... in Column 10a of the § 172.101 table for transportation by vessel, an empty drum or cylinder may be...

  16. Hexaferrite multiferroics: from bulk to thick films

    Science.gov (United States)

    Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.

    2018-03-01

    We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.

  17. 7 CFR 947.54 - Shipments for specified purposes.

    Science.gov (United States)

    2010-01-01

    ... shipments of potatoes for the following purposes: (1) Livestock feed; (2) Charity; (3) Export; (4) Seed; (5) Prepeeling; (6) Canning and freezing; (7) Processing into other products, including “other processing...

  18. 7 CFR 920.54 - Special purpose shipments.

    Science.gov (United States)

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... (including shipments to facilitate the conduct of marketing research and development projects); or, (3) in... prevent kiwifruit handled under the provisions of this section from entering the channels of trade for...

  19. 7 CFR 924.54 - Special purpose shipments.

    Science.gov (United States)

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... shipments to facilitate the conduct of marketing research and development projects established pursuant to... necessary to prevent prunes handled under the provisions of this section from entering the channels of trade...

  20. Route selection issues for NWPA shipments

    International Nuclear Information System (INIS)

    Hill, C.V.; Harrison, I.G.

    1993-01-01

    Questions surrounding the designation of routes for the movement of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) by the Office of Civilian Radioactive Waste Management (OCRWM) have broad implications. Federal regulations prescribe rules to be applied in the selection of highway routes. In most cases, these rules will lead to a clear selection of one route between an origin and destination point. However, in other cases, strict application of the regulations does not result in a clear choice of a preferred route. The regulations also provide discretion to State governments and carriers to select alternative routes to enhance the safety of the shipment. Railroad shipments of radioactive materials are not subject to Federal routing regulations. Since the railroads operate on private property, it has been assumed that they know the best way to move freight on their system. This discretion, while desirable for addressing unique local safety concerns or for responding to temporary safety concerns such as road problems, weather conditions, or construction areas, leads to significant opportunity for misunderstandings and uneasiness on the part of local residents

  1. Historical overview of domestic spent nuclear fuel shipments in the United States

    International Nuclear Information System (INIS)

    Pope, R.B.; Wankerl, M.W.; Hamberger, C.R.; Schmid, S.P.

    1993-01-01

    The information in this paper summarized historical data on spent nuclear fuel shipments in the United States (U.S.) from the period from 1964 to 1991. Information on shipments has been developed to establish a basis for developing a transportation system in the U.S. for initiating shipments of spent nuclear fuel beginning in 1988. The paper shows that approximately 2700 power spent nuclear fuel rail and truck casks have been shipped within the U.S. during the past 28 years. In total, approximately 2000 metric tonnes of uranium (MTU) have been shipped to date, which compares with projected shipping rates of from 3000 to greater than 6000 MTU per year when the U.S. Civilian Radiation Waste Management System is in full operation. (author)

  2. Historical overview of domestic spent nuclear fuel shipments in the United States

    International Nuclear Information System (INIS)

    Pope, R.B.; Wankerl, M.W.; Hamberger, C.R.; Schmid, S.P.

    1992-01-01

    The information in this paper summarizes historical data on spent nuclear fuel shipments in the United States (US) from the period from 1964 to 1991. Information on shipments has been developed to establish a basis for developing a transportation system in the US for initiating shipments of spent nuclear fuel beginning in 1998. The paper shows that approximately 2700 power reactor spent nuclear fuel rail and truck casks have been shipped within the US during the past 28 years. In total, approximately 2000 metric tonnes of uranium (MTU) have been shipped to date, which compares with projected shipping rates of from 3000 to greater than 6000 MM per year when the US Civilian Radioactive Waste Management System is in full operation

  3. Satellite tracking of radioactive shipments - High technology solution to tough institutional problems

    International Nuclear Information System (INIS)

    Harmon, L.H.; Grimm, P.D.

    1987-01-01

    Three troublesome institutional issues face every large-quantity radioactive materials shipment. They are routing, pre-notification, and emergency response. The Transportation Communications System (TRANSCOM), under development by DOE, is based on a rapidly developing technology to determine geographical location using geo-positioning satellite systems. This technology will be used to track unclassified radioactive materials shipments in real-time. It puts those charged with monitoring transportation status on top of very shipment. Besides its practical benefits in the areas of logistics planning and execution, it demonstrates emergency preparedness has indeed been considered and close monitoring is possible. This paper describes TRANSCOM in its technical detail and DOE plans and policy for its implementation. The state of satellite positioning technology and its business future is also discussed

  4. Consignor's part and multimodality of the packages of RAM

    International Nuclear Information System (INIS)

    Grenier, M.

    1993-01-01

    One of the essential principles of Safety in transport of RAM as it was carried on, until the present days, is that the safety comes firstly from the packaging, and not from a special consideration of the mode of transport or anything else. A natural consequence was that the packaging remains the same, whatever is the used mode of transport, another that the transport mode does not take part, otherly than by its normal safety in the carriage itself in the protection against the radioactive hazard. Some recent actions, nevertheless, could be considered as putting some doubt on the implementation of this principles in the regulations and sometimes on these principles themselves. However, these latter come from the fact that the safety of the transport lays essentially in the hands of the consignor. He is indeed the only one who knows well enough the material and who is able to assess the adequation of the packaging and to warrant it to the Competent Authority when necessary. Besides, the packaging is the only direct grasp he has on the shipment, outside the special case of exclusive use. This situation is not completely incompatible with a new possible graduation of the packaging according to the transport mode, under the condition that this graduation be unidimensional which means the same in every field of testing. The consignor must, then, select the packaging corresponding to the most demanding of the possible modes. It is certainly much more difficult to adapt the mode of transport to the shipped materials themselves. All the transport has then to be in the hands of the consignor. That perhaps, can be relevant to industrial nuclear transport (eg: irradiated fuels, wastes), but not to the carriage of radioactive materials in general, which is the scope of IAEA regulations. (author)

  5. 76 FR 24713 - Cooperative Inspection Programs: Interstate Shipment of Meat and Poultry Products

    Science.gov (United States)

    2011-05-02

    ... amenable species, such as processing game meat or for busy times in their retail shops around holidays. The... Service 9 CFR Parts 321, 332, and 381 Cooperative Inspection Programs: Interstate Shipment of Meat and... Shipment of Meat and Poultry Products AGENCY: Food Safety and Inspection Service, USDA. ACTION: Final rule...

  6. Directory of Certificates of Compliance for Radioactive Materials Packages. Summary Report of NRC Approved Quality Assurance Programs for Radioactive Material Packages. Volume 3. Revision 5

    International Nuclear Information System (INIS)

    1985-10-01

    This directory contains a Summary Report of the US Nuclear Regulatory Commission's Approved Packages (Volume I), all Certificates of Compliance (Volume 2), and Summary Report of NRC Approved Quality Assurance Programs (Volume 3) for Radioactive Material Packages effective October 1, 1985. The purpose of this directory is to make available a convenient source of information on packagings which have been approved by the US Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance Number is included at the back of Volumes 1 and 2 of the directory. A listing by packaging types is included in the back of Volume 2. An alphabetical listing by Company name is included in the back of Volume 3 for approved QA programs. The Summary Reports include a listing of all users of each package design and approved QA programs prior to the publication date of the directory. Shipments of radioactive material utilizing these packages must be in accordance with the provisions of 49 CFR Section 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure themselves that they have a copy of the current approval and conduct their transportation activities in accordance with a Nuclear Regulatory Commission approved quality assurance program. Copies of the current approval may be obtained from the US Nuclear Regulatory Commission Public Document Room files (see Docket No. listed on each certificate) at 1717 H Street, Washington, DC 20555. Note that the general license of 10 CFR Section 71.12 does not authorize the receipt, possession, use or transfer of byproduct, source or special nuclear material; such authorization must be obtained pursuant to 10 CFR Parts 30 to 36, 40, or 70

  7. 41 CFR 101-26.311 - Frustrated shipments.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Frustrated shipments. 101-26.311 Section 101-26.311 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES AND...

  8. Annual Report - FY 1998, Shipments to and from the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    1999-01-01

    This report summarizes waste shipments to the Nevada Test Site Radioactive Waste Management Sites at Area 3 and Area 5 during fiscal year 1998. In addition this report provides a summary evaluation of each shipping campaign by source (waste generator) which identifies observable incidents, if any, associated with the actual waste shipments

  9. Hazardous materials package performance regulations

    International Nuclear Information System (INIS)

    Russell, N.A.; Glass, R.E.; McClure, J.D.; Finley, N.C.

    1993-01-01

    Two regulatory philosophies, one based on 'specification' packaging standards and the other based on 'performance' packaging standards, currently define the hazmat packaging certification process. A main concern when setting performance standards is determining the appropriate standards necessary to assure adequate public protection. This paper discusses a Hazmat Packaging Performance Evaluation (HPPE) project being conducted at Sandia National Laboratories for the U.S. Department of Transportation Research and Special Programs Administration. In this project, the current bulk packagings (larger than 2000 gallons) for transporting Materials Extremely Toxic By Inhalation (METBI) are being evaluated and performance standards will be recommended. A computer software system, HazCon, has been developed which can calculate the dispersion of dense, neutral, and buoyant gases. HazCon also has a database of thermodynamic and toxicity data for the METBI materials, a user-friendly menu-driven format for creating input data sets for calculating dispersion of the METBI in the event of an accidental release, and a link between the METBI database and the dense gas dispersion code (which requires thermodynamic properties). The primary output of HazCon is a listing of mass concentrations of the released material at distances downwind from the release point. (J.P.N.)

  10. 7 CFR 925.54 - Special purpose shipments.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Special purpose shipments. 925.54 Section 925.54 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... entering the channels of trade for other than the specific purposes authorized by this section. Inspection...

  11. 48 CFR 252.247-7017 - Erroneous shipments.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Erroneous shipments. 252... SYSTEM, DEPARTMENT OF DEFENSE CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of..., articles of personal property inadvertently packed with goods of other than the rightful owner. (2) Ensure...

  12. Harmonisation of criticality assessments of packages for the transport of fissile nuclear fuel cycle materials

    International Nuclear Information System (INIS)

    Farrington, L.

    2004-01-01

    The transport of fissile nuclear fuel cycle materials is an international business, and for international shipments the regulations require a package to be certified by each country through or into which the consignment is to be transported. This raises a number of harmonisation issues, which have an important bearing on transport activities. National authorities carry out independent reviews of the criticality safety of packages containing fissile materials but the underlying assumptions used in the calculations can differ, and the outcome is that implementation of the regulations is not uniform. A single design may require multiple criticality analyses to obtain base approval and foreign validations. When several competent authorities are involved, the approval and validation process of package design can often become a time-consuming, expensive and unpredictably lengthy process that can have a significant detrimental effect upon the businesses involved. The characteristics of the fissile nuclear fuel cycle materials transported by the various countries have much in common and so have the designs of the packages to contain them. A greater degree of standardisation should allow criticality safety to be assessed consistently and efficiently with benefits for the nuclear transport industry and the regulatory bodies. (author)

  13. Harmonisation of criticality assessments of packages for the transport of fissile nuclear fuel cycle materials

    International Nuclear Information System (INIS)

    Farrington, L.

    2004-01-01

    The transport of fissile nuclear fuel cycle materials is an international business and for international shipments the regulations require a package to be certified by each country through or into which the consignment is to be transported. This raises a number of harmonisation issues, which have an important bearing on transport activities. National authorities carry out independent reviews of criticality safety of packages containing fissile materials but the underlying assumptions used in the calculations can differ, and the outcome is that implementation of the regulations is not uniform. A single design may require multiple criticality analyses to obtain base approval and foreign validations. When several Competent Authorities are involved, the approval and validation process of package design can often become time consuming, expensive and an unpredictably lengthy process that can have a significant detrimental effect upon the businesses involved. The characteristics of the fissile nuclear fuel cycle materials transported by the various countries have much in common and so have the designs of the packages to contain them. A greater degree of standardisation should allow criticality safety to be assessed consistently and efficiently with benefits for the nuclear transport industry and the regulatory bodies

  14. 49 CFR 375.509 - How must I determine the weight of a shipment?

    Science.gov (United States)

    2010-10-01

    ...—origin weigh. You determine the difference between the tare weight of the vehicle before loading at the origin of the shipment and the gross weight of the same vehicle after loading the shipment. (2) Second... fuel tanks on the vehicle must be full at the time of each weighing, or, in the alternative, when you...

  15. Type B liquid package technical issues -- Experience with LR-56 safety analysis

    International Nuclear Information System (INIS)

    Smith, A.C.; Alstine, M.N. van; Gromada, R.J.; Hensel, S.J.; Gupta, N.K.

    1997-01-01

    In the course of the development of nuclear industry in France, shipment of Type B quantities (i.e., quantities having significant radiological consequences) of radioactive liquids between different, sites became necessary. Based on the experience acquired at the Commissariat a l'Energie Atomique (CEA) nuclear centers, a series of tanker trailers has been developed to meet this need. Similarly, as part of the ongoing program to process wastes to stable end forms, a need exists to move radioactive liquids at several DOE sites. The LR-56, developed by CEA to transport liquids of medium to high activity, was selected for these US applications, based on its design features and successful operating experience in France. No comparable Type B liquid packages are certified in the US Packages employed in transport of Type B quantities of liquids are either only suitable for small volumes, or are used within site boundaries with extensive administrative controls employed to insure that an adequate level of safety is maintained. The requirement is to provide safety equivalent to the level established by federal regulations in 10 CFR 71. Type B radioactive materials packages (RAM packages) are typically simple, rugged containers which are designed and fabricated in accordance with the ASME Boiler and Pressure Vessel Code to provide containment under the normal conditions of transport (NCT) and hypothetical accident conditions (HAC) established by the regulations. Packages designed for liquid contents must address a number of technical issues which are not common to packages for solid contents. This paper reviews the technical issues associated with Type B liquid packages from the perspective of the experience gained from the evaluation of the LR-56 for use at DOE sites

  16. 31 CFR 361.4 - Preparation of shipment.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Preparation of shipment. 361.4 Section 361.4 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL... of accounting controls or otherwise, for the maintenance of basic records which will enable them to...

  17. Research reactor preparations for the air shipment of highly enriched uranium from Romania

    International Nuclear Information System (INIS)

    Bolshinsky, I.; Allen, K.J.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.; Paunoiu, C.; Ciocanescu, M.

    2010-01-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation (RF) for conversion to low enriched uranium (LEU). The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR-S research reactor at Magurele, Romania, to Ozersk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation for Atomic Energy Rosatom and the International Atomic Energy Agency (IAEA). Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel. (author)

  18. Safety analysis report for packaging (onsite) contaminated well cars

    International Nuclear Information System (INIS)

    Mercado, J.E.

    1998-01-01

    In support of past operations, railcars were used to ship irradiated fuel from the 100 Area fuel storage basins to the Plutonium Uranium Extraction (PUREX) Facility. There are two configurations for the packaging systems that transported the fuel: the Three-Well Cask Car, which is outfitted with three casks, and the taller, single well, New Production Reactor (NPR) Cask Car. In this document, these cask cars are referred to collectively as well cars. The purpose of this document is to evaluate and authorize the onsite transportation of well cars that contain significant levels of contamination. No irradiated fuel will be transported in the well cars. Neutron detection data confirmed that the well cars do not contain fuel. The intention is to move 14 retired well cars from their current locations in the 100 Area to a suitable storage location in the 200 Area. Each well car contains Type B quantities of radioactivity; so that the hazard of the transport operation is relatively low. This safety analysis report for packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the contaminated well cars meet the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for Hazardous Material Shipments for an onsite packaging. The scope of this document addresses the preparation and transportation of the contaminated well cars

  19. Packagings in the silicon era

    International Nuclear Information System (INIS)

    Beone, G.; Mione, A.; Orsini, A.; Forasassi, G.

    1993-01-01

    ENEA is studying, with the collaboration of the DCMN of the Pisa University, a new packaging to collect wastes in various facilities while proceeding to find a final disposal. Following a survey on the wastes that could be transported in the future, it was agreed to design a packaging able to contain an industrial drum, with a maximum capacity of 220 litres and a total weight less than 4000 N, previously filled with solid wastes in bulk or in a solid binding material. The packaging, to be approved as a Type B in agreement with the IAEA Regulations, will be useful to transport not only radioactive wastes but any kind of dangerous goods and also those not in agreement with the UNO Regulations. The 1/2 scale model of the packaging is formed by two concentric vessels of mild steel obtained by welding commercial shells to cylindrical walls and joined through a flange. The new packaging under development presents features that seem to be proper for its envisaged waste collection main use such as construction simplicity, relatively low cost, time and use endurance, low maintenance requirements. The design analysis and testing program ongoing at present allowed for the preliminary definition of the packaging geometry and confirmed the necessity of further investigations in some key areas as the determination of actual behaviour of the silicon foam, used as energy absorbing/thermal insulating material, in the specific conditions of interest. (J.P.N.)

  20. RH Packaging Program Guidance

    International Nuclear Information System (INIS)

    Washington TRU Solutions, LLC

    2003-01-01

    The purpose of this program guidance document is to provide technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the SARP and/or C of C shall govern. The C of C states: ''...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, ''Operating Procedures,'' of the application.'' It further states: ''...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, ''Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M and O) contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC approved, users need to be familiar with 10 CFR (section) 71.11, ''Deliberate Misconduct.'' Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions. Following these instructions assures that operations are safe and meet the requirements of the SARP. This document is available on the Internet at: ttp://www.ws/library/t2omi/t2omi.htm. Users are responsible for ensuring they are using the current revision and change notices. Sites may prepare their own document using the word

  1. Directory of certificates of compliance for radioactive materials packages. Volume 2, Revision 6

    International Nuclear Information System (INIS)

    1983-09-01

    This directory contains a Summary Report of NRC Approved Packages (Volume 1), Certificates of Compliance (Volume 2), and a Summary Report of NRC Approved Quality Assurance Programs for Radioactive Material Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on packagings which have been approved by the US Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance number is included at the back of each volume of the directory. The Summary Report includes a listing of all users of each package design prior to the publication date of the directory. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure them that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program. Copies of the current approval may be obtained from the US Nuclear Regulatory Commission Public Document Room files (see Docket No. listed on each certificate) at 1717 H Street, Washington, DC 20555. Note that the general license of 10 CFR 71.12 does not authorize the receipt, possession, use or transfer of byproduct source, or special nuclear material; such authorization must be obtained pursuant to 10 CFR Parts 30 to 36, 40, 50, or 70

  2. 75 FR 5375 - Hazardous Material; Miscellaneous Packaging Amendments

    Science.gov (United States)

    2010-02-02

    ... NPRM, we proposed to remove the maximum net mass and water capacity limits from these definitions and... a water capacity greater than 454 kg (1,000 pounds) as a receptacle for a gas are bulk packagings.... Negative comments were generally focused on issues related to record retention of closure instructions...

  3. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    International Nuclear Information System (INIS)

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean

  4. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean.

  5. 1st Quarter Transportation Report FY 2015: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Louis [National Security Technologies, LLC, Las Vegas, NV (United States)

    2015-02-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 1st quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report include minor volumes of non-radioactive classified waste/material that were approved for disposal (non-radioactive classified or nonradioactive classified hazardous). Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to rounding conventions for volumetric conversions from cubic meters to cubic feet.

  6. 3rd Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    International Nuclear Information System (INIS)

    Gregory, Louis

    2014-01-01

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.

  7. Public information circular for shipments of irradiated reactor fuel. Report for 16 Jul 79-1 May 82

    International Nuclear Information System (INIS)

    1982-06-01

    This circular has been prepared in response to numerous requests for information regarding routes used for the shipment of irradiated reactor (spent) fuel subject to regulation by the Nuclear Regulatory Commission (NRC), and to meet the requirements of Public Law 96-295. The NRC staff must approve such routes prior to their first use. Spent fuel shipment routes, primarily for road transportation, but also including one rail route, are indicated on reproductions of DOT road maps. Also included are the amounts of material shipped during the approximate three year period that safeguards regulations for spent fuel shipments have been effective. In addition, the Commission provided information in this document regarding the NRC's safety and safeguards regulations for spent fuel shipments as well as safeguards incidents regarding same

  8. First shipment of magnets from CERN to SESAME

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    On Monday, 19 October, CERN will bid a fond farewell to two containers of magnets. Their destination: SESAME, the synchrotron light source under construction in Jordan.   The SESAME magnets, ready for transport. The containers hold 31 sextupoles, produced in Cyprus and France, and 32 quadrupoles, produced in Spain and Turkey. The magnets will rejoin 8 dipoles (from the UK) that are already at SESAME. The quadrupoles and sextupoles were checked and measured at CERN before this shipment, while the dipoles went via the ALBA synchrotron, near Barcelona, where magnetic measurements were carried out. With this shipment, around 50% of the magnets for the SESAME storage ring will have been delivered. The containers are expected to arrive just in time for the upcoming SESAME Council meeting at the end of November. The rest of the magnets – as well as all the power supplies and related control modules – have been produced and will be delivered to SESAME at th...

  9. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    Energy Technology Data Exchange (ETDEWEB)

    Nissley, Paul; Berry, Joanne [EnergySolutions, 2345 Stevens Dr. Richland, WA 99354 (United States)

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operated waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying

  10. U.S. Wood Shipments to Puerty Rico

    Science.gov (United States)

    James E. Granskog

    1992-01-01

    Puerto Rico's importance as an offshore market for U.S. wood products is often overlooked. Because of its unique Commonwealth status, trade flows between the United States and Puerto Rico are recorded separately and are not counted in the U.S. foreign trade statistics. In 1991, wood product shipments from the United States to Puerto Rico totaled more than $83...

  11. Sampling and analysis plan for Mount Plant D ampersand D soils packages, Revision 1

    International Nuclear Information System (INIS)

    1991-02-01

    There are currently 682 containers of soils in storage at Mound Plant, generated between April 1 and October 31, 1990 as a result of excavation of soils containing plutonium-238 at two ongoing Decontamination and Decommissioning (D ampersand D) Program sites. These areas are known as Area 14, the waste transfer system (WTS) hillside, and Area 17, the Special Metallurgical (SM) Building area. The soils from these areas are part of Mound Plant waste stream number AMDM-000000010, Contaminated Soil, and are proposed for shipment to the Nevada Test Site (NTS) for disposal as low-level radioactive waste. The sealed waste packages, constructed of either wood or metal, are currently being stored in Building 31 and at other locations throughout the Mound facility. At a meeting in Las Vegas, Nevada on October, 26, 1990, DOE Nevada Operations Office (DOE-NV) and NTS representatives requested that the Mound Plant D ampersand D soils proposed for shipment to NTS be sampled for Toxicity Characteristic Leaching Procedure (TCLP) constituents. On December 14, 1990, DOE-NV also requested that additional analyses be performed on the soils from one of the soils boxes for polychlorinated biphenyls (PCBs), particle size distribution, and free liquids. The purpose of this plan is to document the proposed sampling and analyses of the packages of D ampersand D soils produced prior to October 31, 1990. In order to provide a thorough description of the soils excavated from the WTS and SM areas, sections 1.1 and 1.2 provide historical Information concerning the D ampersand D soils, including waste stream evaluations and past sampling data

  12. Directory of certificates of compliance for radioactive materials packages: certificates of compliance. Volume 2, Revision 7

    International Nuclear Information System (INIS)

    1984-11-01

    This directory contains a Summary Report of NRC Approved Packages (Volume 1), Certificates of Compliance (Volume 2), and a Summary Report of NRC Approved Quality Assurance Programs for Radioactive Material Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on packagings which have been approved by the US Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance number is included at the back of each volume of the directory. The Summary Report includes a listing of all users of each package design prior to the publication date of the directory. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program. Copies of the current approval may be obtained from the US Nuclear Regulatory Commission Public Document Room files (see Docket No. listed on each certificate) at 1717 H Street, Washington, DC 20555. Note the general license of 10 CFR 71.12 does not authorize the receipt, possession, use or transfer of byproduct source, or special nuclear material; such authorization must be obtained pursuant to 10 CFR Parts 30 to 36, 40, 50, or 70

  13. Directory of certificates of compliance for radioactive materials packages. Certificates of compliance. Volume 2. Revision 9

    International Nuclear Information System (INIS)

    1986-10-01

    This directory contains a Summary Report of NRC Approved Packages (Volume 1). Certificates of Compliance (Volume 2), and a Summary Report of NRC Approved Quality Assurance Programs for Radioactive Material Packages (Volumes 3). The purpose of this directory is make available a convenient source of information on packagings which have been approved by the US Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance number is included at the back of each volume of the directory. The Summary Report includes a listing of all users of each package design prior to the publication date of the directory. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure them that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program. Copies of the current approval may be obtained from the US Nuclear Regulatory Commission Public Document Room files (see Docket No. listed on each certificate) at 1717 H Street, Washington, DC 20555. Note that the general license of 10 CFR 71.12 does not authorize the receipt, possession, use or transfer of byproduct source, or special nuclear material; such authorization must be obtained pursuant to 10 CFR 30 to 36, 40, 50, or 70

  14. The juridic control of transboundary shipments of hazardous waste in the United States

    International Nuclear Information System (INIS)

    Juergensmeyer, J.C.

    1989-01-01

    An intergovernmental conflict over location of disposal of hazardous waste is discussed; the several definitions of hazardous waste in the United States are analysed; moreover the American Law Regulating the transport and disposal of hazardous waste as well is put in question; also the restrictions an disposal of waste are examined in light of the Constitution of the United States, finally, transboundary shipments of hazardous waste and international agreements on hazardous waste shipment are considered [pt

  15. Distribution and Diversity of Salmonella Strains in Shipments of Hatchling Poultry, United States, 2013.

    Science.gov (United States)

    Habing, G G; Kessler, S E; Mollenkopf, D F; Wittum, T E; Anderson, T C; Barton Behravesh, C; Joseph, L A; Erdman, M M

    2015-08-01

    Multistate outbreaks of salmonellosis associated with live poultry contact have been occurring with increasing frequency. In 2013, multistate outbreaks of salmonellosis were traced back to exposure to live poultry, some of which were purchased at a national chain of farm stores (Farm store chain Y). This study was conducted at 36 stores of Farm store chain Y and was concurrent with the timing of exposure for the human outbreaks of salmonellosis in 2013. We used environmental swabs of arriving shipment boxes of hatchling poultry and shipment tracking information to examine the distribution, diversity and anti-microbial resistance of non-typhoidal Salmonella (NTS) across farm stores and hatcheries. Isolates recovered from shipment boxes underwent serotyping, anti-microbial resistance (AMR) testing and pulsed-field gel electrophoresis (PFGE). Postal service tracking codes from the shipment boxes were used to determine the hatchery of origin. The PFGE patterns were compared with the PFGE patterns of NTS causing outbreaks of salmonellosis in 2013. A total of 219 hatchling boxes from 36 stores in 13 states were swabbed between 15 March 2013 and 18 April 2013. NTS were recovered from 59 (27%) of 219 hatchling boxes. Recovery was not significantly associated with species of hatchlings, number of birds in the shipment box, or the presence of dead, injured or sick birds. Four of the 23 PFGE patterns and 23 of 50 isolates were indistinguishable from strains causing human outbreaks in 2013. For serotypes associated with human illnesses, PFGE patterns most frequently recovered from shipment boxes were also more frequent causes of human illness. Boxes positive for the same PFGE pattern most frequently originated from the same mail-order hatchery. Only one of 59 isolates was resistant to anti-microbials used to treat Salmonella infections in people. This study provides critical information to address recurrent human outbreaks of salmonellosis associated with mail-order hatchling

  16. Determination of production-shipment policy using a two-phase algebraic approach

    Directory of Open Access Journals (Sweden)

    Huei-Hsin Chang

    2012-04-01

    Full Text Available The optimal production-shipment policy for end products using mathematicalmodeling and a two-phase algebraic approach is investigated. A manufacturing systemwith a random defective rate, a rework process, and multiple deliveries is studied with thepurpose of deriving the optimal replenishment lot size and shipment policy that minimisestotal production-delivery costs. The conventional method uses differential calculus on thesystem cost function to determine the economic lot size and optimal number of shipmentsfor such an integrated vendor-buyer system, whereas the proposed two-phase algebraicapproach is a straightforward method that enables practitioners who may not havesufficient knowledge of calculus to manage real-world systems more effectively.

  17. Prevalence, level and distribution of Salmonella in shipments of imported capsicum and sesame seed spice offered for entry to the United States: observations and modeling results.

    Science.gov (United States)

    Van Doren, Jane M; Blodgett, Robert J; Pouillot, Régis; Westerman, Ann; Kleinmeier, Daria; Ziobro, George C; Ma, Yinqing; Hammack, Thomas S; Gill, Vikas; Muckenfuss, Martin F; Fabbri, Linda

    2013-12-01

    In response to increased concerns about spice safety, the United States Food and Drug Administration (FDA) initiated research to characterize the prevalence and levels of Salmonella in imported spices. 299 imported dried capsicum shipments and 233 imported sesame seed shipments offered for entry to the United States were sampled. Observed Salmonella shipment prevalence was 3.3% (1500 g examined; 95% CI 1.6-6.1%) for capsicum and 9.9% (1500 g; 95% Confidence Interval (CI) 6.3-14%) for sesame seed. Within shipment contamination was not inconsistent with a Poisson distribution. Shipment mean Salmonella level estimates among contaminated shipments ranged from 6 × 10(-4) to 0.09 (capsicum) or 6 × 10(-4) to 0.04 (sesame seed) MPN/g. A gamma-Poisson model provided the best fit to observed data for both imported shipments of capsicum and imported shipments of sesame seed sampled in this study among the six parametric models considered. Shipment mean levels of Salmonella vary widely between shipments; many contaminated shipments contain low levels of contamination. Examination of sampling plan efficacy for identifying contaminated spice shipments from these distributions indicates that sample size of spice examined is critical. Sampling protocols examining 25 g samples are predicted to be able to identify a small fraction of contaminated shipments of imported capsicum or sesame seeds. Published by Elsevier Ltd.

  18. Thirty years of transport package development for spent fuels

    International Nuclear Information System (INIS)

    Cory, A.R.

    2005-01-01

    By June 2005, when shipments of spent fuel for reprocessing from Germany are concluded, BNFL flask types will have been responsible for transporting more than 2000 tonnes of heavy metal in Europe in the form of spent fuel. Several thousand more tonnes of spent fuel have been transported by sea from Japan over the last thirty years. The design of spent fuel packages has not stood still for that time. In order to anticipate the changing needs of the nuclear power generation industry, advances have been made both in package design and analysis. Thirty years ago spent fuel burnup and initial enrichment were considerably lower, which was reflected in the different demands placed on the shielding design of packages, and in the design of the internal basket to separate the fuel assemblies. Technical development of both 'wet' (water-filled cavity) and 'dry' packages has progressed in parallel, and the relative merits and peculiarities of each type is explored. BNFL has considerable experience in the operation of both types, and is well placed to comment on practical and functional issues associated with both types. While there have been certain evolutionary changes affecting package design, there have also been more significant changes in the Design Safety Case. These have sometimes been necessary to meet changes in IAEA Regulations, or the challenges posed by the regulators themselves. In other cases advantage has been taken of improvements in analytical techniques to demonstrate increased margins of operational safety. Where possible these margins have also been increased by other means, such as taking advantage of commercial trends to reduce package thermal loads. A key factor over the last thirty years has been the increasing influence of the Regulating Authorities and the development of the IAEA Regulations. The various Competent Authorities now tend to have a higher proportion of technical experts, often recruited from the nuclear industry, and are thus more able to

  19. Prevalence, serotype diversity, and antimicrobial resistance of Salmonella in imported shipments of spice offered for entry to the United States, FY2007-FY2009.

    Science.gov (United States)

    Van Doren, Jane M; Kleinmeier, Daria; Hammack, Thomas S; Westerman, Ann

    2013-06-01

    In response to increased concerns about spice safety, the U.S. FDA initiated research to characterize the prevalence of Salmonella in imported spices. Shipments of imported spices offered for entry to the United Sates were sampled during the fiscal years 2007-2009. The mean shipment prevalence for Salmonella was 0.066 (95% CI 0.057-0.076). A wide diversity of Salmonella serotypes was isolated from spices; no single serotype constituted more than 7% of the isolates. A small percentage of spice shipments were contaminated with antimicrobial-resistant Salmonella strains (8.3%). Trends in shipment prevalence for Salmonella associated with spice properties, extent of processing, and export country, were examined. A larger proportion of shipments of spices derived from fruit/seeds or leaves of plants were contaminated than those derived from the bark/flower of spice plants. Salmonella prevalence was larger for shipments of ground/cracked capsicum and coriander than for shipments of their whole spice counterparts. No difference in prevalence was observed between shipments of spice blends and non-blended spices. Some shipments reported to have been subjected to a pathogen reduction treatment prior to being offered for U.S. entry were found contaminated. Statistical differences in Salmonella shipment prevalence were also identified on the basis of export country. Published by Elsevier Ltd.

  20. Comparing Classical Water Models Using Molecular Dynamics to Find Bulk Properties

    Science.gov (United States)

    Kinnaman, Laura J.; Roller, Rachel M.; Miller, Carrie S.

    2018-01-01

    A computational chemistry exercise for the undergraduate physical chemistry laboratory is described. In this exercise, students use the molecular dynamics package Amber to generate trajectories of bulk liquid water for 4 different water models (TIP3P, OPC, SPC/E, and TIP4Pew). Students then process the trajectory to calculate structural (radial…

  1. 4th Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    International Nuclear Information System (INIS)

    Gregory, Louis

    2014-01-01

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. There was one shipment of two drums sent for offsite treatment and disposal. This report summarizes the 4th quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014.

  2. The effects of preparation, shipment and ageing on the Pu elemental assay results of milligram-sized samples

    International Nuclear Information System (INIS)

    Berger, J.; Doubek, N.; Jammet, G.; Aigner, H.; Bagliano, G.; Donohue, D.; Kuhn, E.

    1994-02-01

    Specialized procedures have been implemented for the sampling of Pu-containing materials such as Pu nitrate, oxide or mixed oxide in States which have not yet approved type B(U) shipment containers for the air-shipment of gram-sized quantities of Pu. In such cases, it it necessary to prepare samples for shipment which contain only milligram quantities of Pu dried from solution in penicillin vials. Potential problems due to flaking-off during shipment could affect the recovery of Pu at the analytical laboratory. Therefore, a series of tests was performed with synthetic Pu nitrated, and mixed U, Pu nitrated samples to test the effectiveness of the evaporation and recovery procedures. Results of these tests as well as experience with actual inspection samples are presented, showing conclusively that the existing procedures are satisfactory. (author). 11 refs, 6 figs, 8 tabs

  3. Physical protection of shipments of irradiated reactor fuel; Interim guidance. Regulatory report

    International Nuclear Information System (INIS)

    1980-06-01

    During May, 1979, the U.S. Nuclear Regulatory Commission approved for issuance in effective form new interim regulations for strengthening the protection of spent fuel shipments against sabotage and diversion. The new regulations were issued without benefit of public comment, but comments from the public were solicited after the effective date. Based upon the public comments received, the interim regulations were amended and reissued in effective form as a final interim rule in May, 1980. The present document supersedes a previously issued interim guidance document, NUREG-0561 (June, 1979) which accompanied the original rule. This report has been revised to conform to the new interim regulations on the physical protection of shipments of irradiated reactor fuel which are likely to remain in effect until the completion of an ongoing research program concerning the response of spent fuel to certain forms of sabotage, at which time the regulations may be rescinded, modified or made permanent, as appropriate. This report discusses the amended regulations and provides a basis on which licensees can develop an acceptable interim program for the protection of spent fuel shipments

  4. Improvement of resource efficiency by efficient waste shipment inspections; Steigerung der Ressourceneffizienz durch effiziente Kontrollen von Abfallverbringungen

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, Stephanie [Institut fuer Oekologie und Politik GmbH (OEKOPOL), Hamburg (Germany)

    2011-09-15

    Illegal shipment of waste as well as enforcement related to waste shipment have been regularly the centre of attention of public and professional debates and are also a topic of cross-national relations. In addition, the fear persists that by illegal waste shipments waste is treated in plants neither adapted to protect the environment and health nor having sufficient recuperation capabilities for precious raw materials. This project therefore intends to clarify the status quo of waste shipment inspections in the 16 federal states of Germany (Bundeslaender, in the following cited as states or federal states) to identify potential for development regarding the organisation and execution of inspections and to elaborate recommendations to optimise enforcement activities and further development of European and German legislative regulations. In order to optimise the enforcement of the European Waste Shipment Regulation (WSR) and the German Waste Shipment Act (AbfVerbrG), an adequate number of qualified personnel is necessary within all bodies involved into waste shipment inspections. Those bodies are namely the competent waste authorities, customs, police, the Federal Office for Transport of Goods (BAG), the Federal Railway Authority (EBA) and the prosecution offices. An adequate number of qualified personnel is not provided for in all states/authorities. This is also reflected in the number of transport and plant inspections which deviate between zero to a fixed number per year as well as being continuously performed and based occasion-/cause oriented inspections. Tangible means like access to IT-systems and the Internet should be provided for on-site inspections. Besides qualified and experienced personnel also IT-Systems have a relevant impact on the preselection of the entity to be inspected as well as for on-the-spot investigations. Therefore IT-System can increase the efficiency of inspections (inspections per time unit resp. exposure of illegal shipments per time

  5. A smooth and differentiable bulk-solvent model for macromolecular diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fenn, T. D. [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Schnieders, M. J. [Department of Chemistry, Stanford, California (United States); Brunger, A. T., E-mail: brunger@stanford.edu [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Departments of Neurology and Neurological Sciences, Structural Biology and Photon Science, Stanford, California (United States)

    2010-09-01

    A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R{sub free} and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography.

  6. A smooth and differentiable bulk-solvent model for macromolecular diffraction

    International Nuclear Information System (INIS)

    Fenn, T. D.; Schnieders, M. J.; Brunger, A. T.

    2010-01-01

    A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R free and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography

  7. Reliability of the fuel identification procedure used by COGEMA during cask loading for shipment to LA HAGUE

    International Nuclear Information System (INIS)

    Pretesacque, P.; Eid, M.; Zachar, M.

    1993-01-01

    This study has been carried out to demonstrate the reliability of the system of the spent fuel identification used by COGEMA and NTL prior to shipment to the reprocessing plant of La Hague. This was a prerequisite for the French competent authority to accept the 'burnup credit' assumption in the criticality assessment of spent fuel packages. The probability to load a non-irradiated and non-specified fuel assembly was considered as acceptable if our identification and irradiation status measurement procedures were used. Furthermore, the task analysis enabled us to improve the working conditions at reactor sites, the quality of the working documentation, and consequently to improve the reliability of the system. The NTL experience of transporting to La Hague, as consignor, more than 10,000 fuel assemblies since the date of implementation of our system in 1984 without any non-conformance on fuel identification, validated the formalism of this study as well as our assumptions on basic events probabilities. (J.P.N.)

  8. Shipment of Taiwanese research reactor spent nuclear fuel (Phase 2): Environmental assessment

    International Nuclear Information System (INIS)

    1988-06-01

    The proposed action is to transport approximately 1100 spent fuel rods from a foreign research reactor in Taiwan by sea to Hampton Roads, Virginia, and then overland by truck to the receiving basin for offsite fuels at the Savannah River Plant (SRP) for reprocessing to recover uranium and plutonium. The analysis of the impacts of the proposed action have been evaluated and shown to have negligible impact on the local environments. The calculations have been completed using the RADTRAN III code. PWR spent fuel was analyzed as a benchmark to link the calculations in this analysis to those in earlier environmental documentation. Cumulative total, maximum annual, and per shipment risks were calculated. The results indicate that the PWR spent fuel shipment risks are somewhat lower than those previously estimated. The cumulative and maximum annual normal, or incident-free, risks associated with the shipment of Taiwanese research reactor spent fuel is a factor of 10 lower than that for PWR fuel, and the cumulative and maximum annual accident radiological risks are a factor of about 2.2 lower than that for PWR spent fuel. As a result, the port risks are about a factor of 10 larger than the risk of overland transport. All of the risks calculated are small. The PWR risk values are similar to those judged by the NRC to be small enough not to warrant increased stringency in regulations. The Taiwanese research reactor spent fuel shipment risk values are smaller yet. 51 refs., 22 tabs

  9. Shipment of TRIGA spent fuel to DOE's INEEL site - a status report

    International Nuclear Information System (INIS)

    Patterson, John; Viebrock, James; Shelton, Tom; Parker, Dixon

    1998-01-01

    DOE placed its transportation services contract with NAC International in April 1997 and awarded the first task to NAC for return of TRIGA fuel in July 1997. This initial shipment of TRIGA fuel, scheduled for early 1998, is reflective of many of the difficulties faced by DOE and the transportation services contractor in return of the foreign research reactor fuel to the United States: 1) First time use of the INEEL dry storage facility for receipt of research reactor fuel; 2) Safety analysis of the INEEL facility for the NAC-LWT shipping cask; 3) Cask certification for a mixed loading of high enriched and low enriched TRIGA fuels; 4) Cask loading for standard length and extended length rods (instrumented and fuel follower control rods); 5) Design and certification of a canister for degraded TRIGA fuel; 6) Initial port entry through the Naval Weapons Station in Concord, California; 7) Initial approval of the rail route for shipment from Concord to INEEL. In this presentation we describe the overall activities involved in the first TRIGA shipment, discuss the actions required to resolve the difficulties identified above, and provide a status report of the initial shipment from South Korea and Indonesia. Recommendations are presented as to actions that can be taken by the research reactor operator, by DOE, and by the transportation services agent to speed and simplify the transportation process. Actions having the potential to reduce costs to DOE and to reactor operators from high-income economies will be identified. (author)

  10. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste

  11. In-Package Chemistry Abstraction

    International Nuclear Information System (INIS)

    E. Thomas

    2004-01-01

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been

  12. Comparison of actual and predicted routes used in the shipment of radioactive materials

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.; Harrison, I.G.

    1985-01-01

    A number of highway controlled shipments of radioactive materials have been made over the past several years. An excellent example showing the variability of actual routes is the transfer of 45 shipments between the Three Mile Island reactor in Pennsylvania and Scoville, Idaho in 1982 and 1983. Six different routes varying between 2273 and 2483 miles were used. Approximately 75% of these shipments followed a common route which passed through ten Urbanized Areas, defined by the Census Bureau as having a population exceeding 100,000 people. Other routes, while shorter in distance, passed through as many as 14 Urbanized Areas. Routes predicted by the Oak Ridge routing model did not exactly duplicate actual routes used. However, the analysis shows that the routing model does make a good estimate of transportation routes actually chosen by shippers of radioactive materials. In actual practice, a number of factors (weather, road conditions, driver preference, etc.) influence the actual route taken. 5 refs., 1 fig., 1 tab

  13. Transporting radioactive materials: Q ampersand A to your questions

    International Nuclear Information System (INIS)

    1993-04-01

    Over 2 million packages of radioactive materials are shipped each year in the United States. These shipments are carried by trucks, trains, ships, and airplanes every day just like other commodities. Compliance with Federal regulations ensures that radioactive materials are transported safely. Proper packaging is the key to safe shipment. Package designs for radioactive materials must protect the public and the environment even in case of an accident. As the level of radioactivity increases, packaging design requirements become more stringent. Radioactive materials have been shipped in this country for more than 40 years. As with other commodities, vehicles carrying these materials have been involved in accidents. However, no deaths or serious injuries have resulted from exposure to the radioactive contents of these shipments. People are concerned about how radioactive shipments might affect them and the environment. This booklet briefly answers some of the commonly asked questions about the transport of radioactive materials. More detailed information is available from the sources listed at the end of this booklet

  14. The particle tracking package Kassiopeia

    Energy Technology Data Exchange (ETDEWEB)

    Groh, Stefan [Karlsruhe Institute of Technology (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The Kassiopeia particle tracking framework is an object-oriented software package utilizing modern C++ techniques, written originally to meet the needs of the Katrin collaboration. Kassiopeia's target consists of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and potentially stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a fully-featured geometry package which serves a variety of roles, including initialization of electromagnetic field simulations, gas flow simulations, and the support of state-dependent algorithm-swapping and behavioral changes. Kassiopeia has been well validated and widely used within the Katrin collaboration, playing a primary role in many theses and refereed publications.

  15. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site

    International Nuclear Information System (INIS)

    2009-01-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the 'Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. No shipments were disposed of at Area 3 in fiscal year (FY) 2008. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during FY 2008. No transuranic (TRU) waste shipments were made from or to the NTS during FY 2008

  16. Directory of Certificates of Compliance for Radioactive Materials Packages. Certificates of Compliance. Volume 2, Revision 8

    International Nuclear Information System (INIS)

    1985-10-01

    This directory contains a Summary Report of NRC Approved Packages (Volume 1), Certificates of Compliance (Volume 2), and a Summary Report of NRC Approved Quality Assurance Programs for Radioactive Material Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on packagings which have been approved by the US Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance number is included at the back of each volume of the directory. The Summary Report includes a listing of all users of each package design prior to the publication date of the directory. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure them that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program. Copies of the current approval may be obtained from the US Nuclear Regulatory Commission Public Document Room files (see Docket No. listed on each certificate) at 1717 H Street, Washington, DC 20555. Note that the general license of 10 CFR 71.12 does not authorize the receipt, possession, use or transfer of byproduct source, or special nuclear material; such authorization must be obtained pursuant to 10 CFR Parts 30 to 36, 40, 50, or 70

  17. The packaging and transport of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Grover, J.R.; Price, M.S.T.

    1985-01-01

    Up to the present time, the majority of the radioactive waste which has been transported in the United Kingdom has been low level waste for disposal in the trenches of the shallow burial site operated by British Nuclear Fuels plc at Drigg and also the packaged waste destined for sea disposal in the annual operation. However, the main bulk of the low and intermediate level wastes which have been generated over the last quarter century remain in store at the various nuclear sites where it originated. Before significant packaging and transport of intermediate level wastes takes place it is desirable to examine the sources and types of wastes, the immobilisation and packaging processes and plants, the transport, and the problems of handling of packages at future land repositories. Optimisation of the packaging and transport must take account of both the upstream and downstream con=straints as well as the implications of complying with both the IAEA Transport Regulations and radiological protection guidelines. Packages for sea disposal must in addition comply with the requirements of the London Dumping Convention and the NEA guidelines. (author)

  18. DEVELOPMENT OF THE TRU WASTE TRANSPORTATION FLEET--A SUCCESS STORY

    International Nuclear Information System (INIS)

    Devarakonda, Murthy; Morrison, Cindy; Brown, Mike

    2003-01-01

    Since March 1999, the Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been operated by the U.S. Department of Energy (DOE), Carlsbad Field Office (CBFO), as a repository for the permanent disposal of defense-related transuranic (TRU) waste. More than 1,450 shipments of TRU waste for WIPP disposal have been completed, and the WIPP is currently receiving 12 to 16 shipments per week from five DOE sites around the nation. One of the largest fleets of Type B packagings supports the transportation of TRU waste to WIPP. This paper discusses the development of this fleet since the original Certificate of Compliance (C of C) for the Transuranic Package Transporter-II (TRUPACT-II) was issued by the U.S. Nuclear Regulatory Commission (NRC) in 1989. Evolving site programs, closure schedules of major sites, and the TRU waste inventory at the various DOE sites have directed the sizing and packaging mix of this fleet. This paper discusses the key issues that guided this fleet development, including the following: While the average weight of a 55-gallon drum packaging debris could be less than 300 pounds (lbs.), drums containing sludge waste or compacted waste could approach the maximum allowable weight of 1,000 lbs. A TRUPACT-II shipment may consist of three TRUPACT-II packages, each of which is limited to a total weight of 19,250 lbs. Payload assembly weights dictated by ''as-built'' TRUPACT-II weights limit each drum to an average weight of 312 lbs when three TRUPACT-IIs are shipped. To optimize the shipment of heavier drums, the HalfPACT packaging was designed as a shorter and lighter version of the TRUPACT-II to accommodate a heavier load. Additional packaging concepts are currently under development, including the ''TRUPACT-III'' packaging being designed to address ''oversized'' boxes that are currently not shippable in the TRUPACT-II or HalfPACT due to size constraints. Shipment optimization is applicable not only to the addition of new

  19. 27 CFR 44.61 - Removals, withdrawals, and shipments authorized.

    Science.gov (United States)

    2010-04-01

    ... payment of tax, for direct exportation or for delivery for subsequent exportation, in accordance with the... shipments authorized. 44.61 Section 44.61 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX General § 44.61 Removals...

  20. Analysis of alternative transportation methods for radioactive materials shipments including the use of special trains for spent fuel and wastes

    International Nuclear Information System (INIS)

    Smith, D.R.; Luna, R.E.; Taylor, J.M.

    1978-01-01

    Two studies were completed which evaluate the environmental impact of radioactive material transport. The first was a generic study which evaluated all radioactive materials and all transportation modes; the second addressed spent fuel and fuel-cycle wastes shipped by truck, rail and barge. A portion of each of those studies dealing with the change in impact resulting from alternative shipping methods is presented in this paper. Alternatives evaluated in each study were mode shifts, operational constraints, and, in generic case, changes in material properties and package capabilities. Data for the analyses were obtained from a shipper survey and from projections of shipments that would occur in an equilibrium fuel cycle supporting one hundred 1000-MW(e) reactors. Population exposures were deduced from point source radiation formulae using separation distances derived for scenarios appropriate to each shipping mode and to each exposed population group. Fourteen alternatives were investigated for the generic impact case. All showed relatively minor changes in the overall radiological impact. Since the radioactive material transport is estimated to be fewer than 3 latent cancer fatalities (LCF) for each shipment year (compared to some 300,000 yearly cancer fatalities or 5000 LCF's calculated for background radiation using the same radiological effects model), a 15% decrease caused by shifting from passenger air to cargo air is a relatively small effect. Eleven alternatives were considered for the fuel cycle/special train study, but only one produced a reduction in total special train baseline LCF's (.047) that was larger than 5%

  1. The development of ISO freight containers as IP-2 packagings

    International Nuclear Information System (INIS)

    Janicki, M.C.; Vaughan, R.A.

    1993-01-01

    Design specifications were developed for ISO freight containers to meet the requirements of the transport regulations in the 1985 Edition of IAEA SS6, and to maximize the technical and commercial benefits offered to consignors by this type of container for the transport and handling of bulk LSA/SCO materials. A range of IP-2 ISO freight containers have been designed and built to these specifications and are in use in the UK. This paper discusses the regulatory considerations which had to be reviewed and interpreted in developing freight containers as Industrial Package Type 2 (IP-2) packagings and the development of performance standards to meet the regulatory requirements. Outline details of the packages developed are indicated together with examples of handling equipment developed to facilitate loading and unloading. (J.P.N.)

  2. Bulk additive system reduces mud costs and waste

    International Nuclear Information System (INIS)

    Wisnie, A.P.

    1994-01-01

    Today, personnel safety and environmental acceptability are high priorities in oil and gas operations. Many advances have been made, but packaging and handling of drilling mud has not changed in 35 years. In most cases, bulk barite is available, however, drilling muds are typically built from chemicals contained in 50 to 100-lb sacks or 5-gal buckets. Materials must be physically opened by rig personnel and mixed into drilling mud. Chemical exposure liability, and lifting or housekeeping related injuries associated with large quantities of packaging pose serious occupational safety risk. Figures from OSHA (1986) indicate that of 1,492 serious injury cases in Louisiana oil and gas operations, 42% were to back and lower extremities, 3% were eye injuries and 1% were chemical burns. Although exact figures are not available, experience suggests that a significant number of injuries are related to mud product physical handling. Another problem with current mud packaging is generated waste. Mud material lost because of broken sacks, inefficient transfer and as residue is unacceptable. Most mud engineers agree that 5 to 15% of mud products are lost or damaged on typical offshore jobs, depending on weather. When material that is spilled or left in packages, probably 2 to 3%, is added, the total is significant. Reusable containers for drilling mud products and manifold system design effectively eliminate these problems

  3. Bulk material engineering and procurement management of NPS

    International Nuclear Information System (INIS)

    Fu Sanhong; Fan Kai

    2005-01-01

    In a nuclear power project, bulk material is often not in an outstanding position, compared to equipment, yet bulk material is one of most difficult part in engineering and procurement management. If the schedule is not in good control, it will seriously hamper the progress of the whole project. The article explores bulk material engineering and procurement management of NPS, illustrated with tables and graphs. First, major difficult aspects of bulk material procurement are described. On one hand, bulk material is really bulky in kind. We must have detail information of manufacturers, manufacture duration, and take good control of bidding schedule. On the other hand, when an order is placed, we need to make clear everything in the procurement package, such as material types, delivery batches, quantity of each batch and delivery schedule, which is a tremendous work. Then, a schedule conflict is analyzed: when an order is placed, the detail type and quantity cannot be defined (since the construction design is not finished yet). To settle this conflict, the concept 'Requirement Schedule Curve' is brought forward, along with the calculation method. To get this curve, we need to make use of the technical data of the reference power station, along with the site construction schedule, to produce a site quantity requirement curve varying from time, for each type of material. Last, based on the 'Requirement Schedule Curve', we are able to build a unified database to control the engineering, procurement, manufacturing and delivery schedule, so as to procure precisely, manufacture on time, and optimize the storage. In this way, the accurate control of bulk material engineering and procurement schedule can be achieved. (authors)

  4. State shipment fees as a supplement to federal financial assistance under section 180(c) of the nuclear waste policy act

    International Nuclear Information System (INIS)

    Janairo, L.R.

    2009-01-01

    In Section 180(c) of the Nuclear Waste Policy Act (NWPA), Congress requires the Secretary of Energy to provide financial and technical assistance to states and tribes that will be affected by shipments of spent nuclear fuel and high-level radioactive waste (HLW) to a national repository or other NWPA-mandated facility. Although Section 180(c) assistance may be an important source of revenue for some states, two major limitations will reduce its effectiveness in preparing state and local personnel along shipping routes for their oversight and emergency response roles in connection with shipments to a national repository. First, Section 180(c) applies only to shipments to facilities mandated by the NWPA, therefore unless Congress amends the NWPA, the Secretary has no obligation to provide assistance to states and tribes that are affected by shipments to private facilities or to other federal storage locations. Second, the U.S. Department of Energy (DOE) has interpreted Section 180(c) assistance as solely intended 'for training', not for actually carrying out activities such as inspecting or escorting shipments. No mechanism or mandate currently exists for DOE to provide states with assistance in connection with operations - related activities. This paper looks at state shipment fees as a supplement to or a substitute for the federal financial assistance that is available through Section 180(c) specifically with regard to states. Using DOE' s data on projected shipment numbers, representative routes, and affected population, and following the department's proposed formula for allocating Section 180(c) assistance, the author examined the potential revenues states could reap through a standard fee as opposed to the NWPA-mandated assistance . The analysis shows that, while more states would likely derive greater benefit from Section 180(c) grants than they would from fees, the states with the highest projected shipment numbers would appear to gain by foregoing Section

  5. Reducing irradiation damage to 'Arkin' carambola by plastic packaging or storage temperature

    International Nuclear Information System (INIS)

    Miller, W.R.; McDonald, R.E.

    1998-01-01

    Carambolas (Averrhoa carambola L.) require quarantine treatment for control of the Caribbean fruit fly (Anastrepha suspensa Loew) (CFF) prior to shipment to certain domestic and export markets. Low-dose irradiation, less than or equal to kGy, is effective for sterilizing CFF and other fruit flies; however, carambolas are susceptible to irradiation-induced peel injury. Low-dose gamma irradiation treatment generally reduced fruit quality, but the effects were mitigated by packaging carambola fruit in ''clamshell'' polystyrene containers, rather than conventional fiberboard boxes, prior to treatment. Use of clamshell containers reduced peel pitting, stem-end breakdown, shriveling, and loss of mass after storage for 14 days at 5 or 7 degrees C. In addition, fruit held in clamshell containers were firmer, with slightly less green peel, and had lower total soluble solids, but the flavor was not quite as good as that of fruit stored in fiberboard boxes. There was no difference in the mastication texture or acidity of fruit by package type at final storage. Packing carambolas in clamshell containers increased their tolerance to irradiation-induced peel disorders and improved the potential for usage of low-dose irradiation for quarantine treatment

  6. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 1994 ed

    International Nuclear Information System (INIS)

    1994-08-01

    This is the fifth annual report being published by the Secretariat of the International Atomic Energy Agency since implementing its database on package approval certificates (PACKTRAM) at the recommendation of the Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM). The reporting format was established at consecutive meetings of SAGSTRAM, whose membership consists of national competent authorities responsible for the transport of radioactive material from those Member States who have a nuclear industry and others who have shown a keen interest in the IAEA's transport safety programme. Through the PACKTRAM database, the Secretariat collects administrative and technical information on package approval certificates to assist national competent authorities in regulating radioactive material movements in their country. The database carries information on extant certificates and those that expired within the last two complete calendar years. The 1985 Edition of IAEA Safety Series No. 6, the ''Regulations for the Safe Transport of Radioactive Material'' highlights the role of competent authorities in assuring regulatory compliance in their own countries. Package approval certificates are an important aspect of that function. This document aims to be a useful reference for competent authorities as well as for manufacturers and shippers of radioactive material

  7. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 1995 edition

    International Nuclear Information System (INIS)

    1995-09-01

    This is the sixth annual report being published by the Secretariat of the International Atomic Energy Agency since implementing its database on package approval certificates (PACKTRAM) at the recommendation of the Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM). The reporting format was established at consecutive meetings of SAGSTRAM, whose membership consists of national competent authorities responsible for the transport of radioactive material from those Member States who have a nuclear industry and others who have shown a keen interest in the IAEA's transport safety programme. Through the PACKTRAM database, the Secretariat collects administrative and technical information on package approval certificates to assist national competent authorities in regulating radioactive material movements in their country. The database carries information on extant certificates and those that expired within the last complete calendar year. The 1985 Edition of IAEA Safety Series No. 6, the ''Regulations for the Safe Transport of Radioactive Material'' highlights the role of competent authorities in assuring regulatory compliance in their own countries. Package approval certificates are an important aspect of that function. This document aims to be a useful reference for competent authorities as well as for manufacturers and shippers of radioactive material. 6 tabs

  8. Competent authority approval of package designs in the United Kingdom

    International Nuclear Information System (INIS)

    Morgan-Warren, E.J.

    1999-01-01

    Type B packages and all packages containing fissile material, as well as special form radioactive materials, special arrangements and certain shipments, are required to be approved by the competent authority. In the United Kingdom competent authority approval is carried out on behalf of the Secretary of State by the Radioactive Materials Transport Division (RMTD) of the Department of the Environment, Transport and the Regions (DETR). Competent authority approval of a package design is given only after a detailed assessment of the design by the specialist staff of RMTD. There are three facets to the assessment procedure, namely engineering, criticality and radiation protection, and quality assurance. The engineering assessor ensures that the designer has demonstrated the integrity of the containment and shielding systems under the regulatory conditions. The criticality assessor examines criticality safety and radiation protection measures, and together with the engineering assessor, decides whether this is maintained under regulatory conditions. The quality assurance assessor verifies that the applicant has established the necessary controls to ensure that the design requirements are met. The applicant is responsible for making the case for approval, but the assessment is facilitated if the competent authority is involved with the designer at an early stage in development and during the construction of any test prototype. When a regulatory test programme is required, it is designed and carried out by the applicant, but agreed and witnessed by representatives of RMTD. Following the test programme, the applicant submits a formal application, supported by a design safety report (DSR). The DSR provides a full analysis of the design and the test results, including the behaviour of the package under normal and accident conditions of transport, the manufacturing and maintenance procedures, quality assurance and the emergency provisions for the operation of the package

  9. 15 CFR 303.7 - Issuance of licenses and shipment permits.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Issuance of licenses and shipment permits. 303.7 Section 303.7 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS WATCHES...

  10. Background and planning requirements for spent fuel shipments to DOE

    Energy Technology Data Exchange (ETDEWEB)

    Ravenscroft, Norman [Edlow International Company, 1666 Connecticut Avenue, NW, Suite 201, Washington, DC 20009 (United States)

    1996-10-01

    Information is provided on the planning required and the factors that must be included in the planning process for spent fuel shipments to DOE. A summary is also provided on the background concerning renewal of the DOE spent fuel acceptance policy in May 1996. (author)

  11. Comparison of bulk Micromegas with different amplification gaps

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Purba, E-mail: purba.bhattacharya@saha.ac.in [Applied Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Bhattacharya, Sudeb [Emeritus Scientist (CSIR), Applied Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Majumdar, Nayana; Mukhopadhyay, Supratik; Sarkar, Sandip [Applied Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Colas, Paul; Attie, David [DSM/IRFU, CEA/Saclay, F-91191 Gif-sur-Yvette CEDEX (France)

    2013-12-21

    The bulk Micromegas detector is considered to be a promising candidate for building TPCs for several future experiments including the projected linear collider. The standard bulk with a spacing of 128μm has already established itself as a good choice for its performances in terms of gas gain uniformity, energy and space point resolution, and its capability to efficiently pave large readout surfaces with minimum dead zone. The present work involves the comparison of this standard bulk with a relatively less used bulk Micromegas detector having a larger amplification gap of 192μm. Detector gain, energy resolution and electron transparency of these Micromegas have been measured under different conditions in various Argon-based gas mixtures to evaluate their performance. These measured characteristics have also been compared in detail to numerical simulations using the Garfield framework that combines packages such as neBEM, Magboltz and Heed. Further, we have carried out another numerical study to determine the effect of dielectric spacers on different detector features. A comprehensive comparison of the two detectors has been presented and analyzed in this work. -- Highlights: •We present a comparative study between bulk Micromegas having different amplification gaps. •Various detector characteristics such as gain, electron transparency, energy resolution have been measured experimentally. •Successful comparisons of these measured data with the simulation results indicate that the device physics is quite well understood. •A numerical study to determine the effect of dielectric spacers on different detect or features has been carried out.

  12. 9 CFR 73.6 - Placarding means of conveyance and marking billing of shipments of treated scabby cattle or...

    Science.gov (United States)

    2010-01-01

    ... marking billing of shipments of treated scabby cattle or cattle exposed to scabies. 73.6 Section 73.6... INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE § 73.6 Placarding means of conveyance and marking billing of shipments of treated scabby cattle or cattle exposed to...

  13. TRIGA 14 MW spent fuel shipment to USA

    International Nuclear Information System (INIS)

    Toma, C.; Barbos, D.; Preda, M.; Covaci, St.; Ciocanescu, M.

    2008-01-01

    Romania has begun to convert Pitesti TRIGA 14 MW reactor having HEU fuel in its first loading and has agreed to complete conversion of the reactor to LEU fuel by May 12, 2006. Thus it became possible to benefit of US policy as set forth in the Record of Decision (ROD) issued by the Department of Energy (DOE ) on May 13 , 1996 directed for acceptance, management and disposition of the Authorized Material which has been discharged from the foreign research reactors. Consequently, United States, DOE Idaho Operations Office and Institute for Nuclear Research at Pitesti, Romania have mutually agreed the terms and conditions set forth in a contract applicable to the receipt of the Authorized Material. Irradiated and spent nuclear fuel rods from TRIGA reactor containing uranium enriched in the United States that have met the requirements set forth in the Environmental Impact Statement and the ROD have been designated as 'Authorized Material' and transferred to Idaho National Engineering and Environmental Laboratory (INEEL)- USA during the summer of 1999 in a joint shipment. 267 TRIGA spent fuel rods loaded in a Legal Weight Truck Shipping Cask belonging to the NAC International have been transported through an overland truck route from Pitesti, Romania to Koper, Slovenia and from there it was shipped to USA. The paper has the following contents: 1.Introduction; 2.Fuel rods selection; 3.Fuel rods characterization; 4.Evaluation of TRIGA fuel in wet storage; 5.Fuel rods transfer from TRIGA pool to the transport cask; 6.Supporting documentation for transfer approval; 7. Conclusions. In conclusion one is stressed that, on site fuel evaluation process evidenced the existence of very good running and storage conditions in reactor pool during reactor operation and fuel storage. Only one fuel rod had to be packaged prior to placement in the shipping cask because of damaged cladding during negligent handling

  14. Facilitation of the USHPRR Program MP-1 Shipments

    Energy Technology Data Exchange (ETDEWEB)

    Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-04-11

    This report describes the activities necessary to support the numerous transportation tasks involved with the successful completion of the mini-plate MP-1 and future MP experiments for the U.S. High Performance Research Reactor HEU to LEU conversion program. It includes information about the general activities necessary to implement equipment, operational processes, and safety basis changes required at the shipping facility and receipt facilities to support the shipments.

  15. Facilitation of the USHPRR Program MP-1 Shipments

    International Nuclear Information System (INIS)

    Woolstenhulme, Eric C.

    2017-01-01

    This report describes the activities necessary to support the numerous transportation tasks involved with the successful completion of the mini-plate MP-1 and future MP experiments for the U.S. High Performance Research Reactor HEU to LEU conversion program. It includes information about the general activities necessary to implement equipment, operational processes, and safety basis changes required at the shipping facility and receipt facilities to support the shipments.

  16. Design and criticality considerations for 9977 and 9978 shipping packages

    International Nuclear Information System (INIS)

    Reed, R.; Biswas, D.; Abramczyk, G.

    2009-01-01

    Savannah River National Laboratory (SRNL) has developed two new, Type B, state-of-the-art, general purpose, fissile material Shipping Packages, designated as 9977 and 9978, as replacements for the U.S. Dept. of Transportation (DOT) specification 6M container. The packages accommodate plutonium, uranium, and other special nuclear materials in bulk quantities and in many forms with capabilities exceeding those of the 6M. A nuclear criticality safety evaluation demonstrates the safe configurations of the new shipping container for plutonium and uranium metal/oxide loading under various conditions for the Safety Analysis Report for Packaging (SARP). The evaluation is in compliance with the performance requirements of 10CFR 71, specifically 10CFR71.55 and 71.59. The criticality safety index (CSI) is 1.0 for most of the contents (Max. Pu Loading -4.4 kg). (authors)

  17. Program plan for shipment, receipt, and storage of the TMI-2 core. Revision 1

    International Nuclear Information System (INIS)

    Quinn, G.J.; Reno, H.W.; Schmitt, R.C.

    1985-01-01

    This plan addresses the preparation and shipment of core debris from Three Mile Island Unit 2 (TMI-2) to the Idaho National Engineering Laboratory (INEL) and receipt and storage of that core debris. The Manager of the Nuclear Materials Evaluation Programs Division of EG and G Idaho, Inc. will manage two separate but integrated programs, one located at TMI (Part 1) and the other at INEL (Part 2). The Technical Integration Office (at TMI) is responsible for developing and implementing Part 1, TMI-2 Core Shipment Program. The Technical Support Branch (at INEL) is responsible for developing and implementing Part 2, TMI-2 Core Receipt and Storage. The plan described herein is a revision of a previous document entitled Plan for Shipment, Storage, and Examination of TMI-2 Fuel. This revision was required to delineate changes, primarily in Part 2, Core Activities Program, of the previous document. That part of the earlier document related to core examination was reidentified in mid-FY-1984 as a separate trackable entity entitled Core Sample Acquisition and Examination Project, which is not included here

  18. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 1993 ed

    International Nuclear Information System (INIS)

    1993-10-01

    This is the fourth annual report being published by the Secretariat of the International Atomic Energy Agency since implementing its database on package approval certificates (PACKTRAM) at the recommendation of the Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM). The reporting format was established at consecutive meetings of SAGSTRAM, whose memberships consists of national competent authorities responsible for the transport of radioactive material from those Member States who have a nuclear industry and others who have shown a keen interest in the IAEA's transport safety programme. Through the PACKTRAM database, the Secretariat collects administrative and technical information on package approval certificates to assist national competent authorities in regulating radioactive material movements in their country. The database carries information on extant certificates and those that expired within the last two complete calendar years. The 1985 Edition of IAEA Safety Series No. 6, the 'Regulations for the Safe Transport of Radioactive Material'' highlights the role of competent authorities in assuring regulatory compliance in their own countries. Package approval certificates are an important aspect of that function. This document aims to be a useful reference for competent authorities as well as for manufacturers and shippers of radioactive material. 6 tabs

  19. Directory of national competent authorities` approval certificates for package design, special form material and shipment of radioactive material. 1995 edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This is the sixth annual report being published by the Secretariat of the International Atomic Energy Agency since implementing its database on package approval certificates (PACKTRAM) at the recommendation of the Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM). The reporting format was established at consecutive meetings of SAGSTRAM, whose membership consists of national competent authorities responsible for the transport of radioactive material from those Member States who have a nuclear industry and others who have shown a keen interest in the IAEA`s transport safety programme. Through the PACKTRAM database, the Secretariat collects administrative and technical information on package approval certificates to assist national competent authorities in regulating radioactive material movements in their country. The database carries information on extant certificates and those that expired within the last complete calendar year. The 1985 Edition of IAEA Safety Series No. 6, the ``Regulations for the Safe Transport of Radioactive Material`` highlights the role of competent authorities in assuring regulatory compliance in their own countries. Package approval certificates are an important aspect of that function. This document aims to be a useful reference for competent authorities as well as for manufacturers and shippers of radioactive material. 6 tabs.

  20. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 1999 Edition

    International Nuclear Information System (INIS)

    1999-08-01

    This is the tenth annual report being published by the Secretariat of the International Atomic Energy Agency since implementing its database on package approval certificates (PACKTRAM) at the recommendation of the Transport Safety Standards Advisory Committee (TRANSSAC), formerly known as the Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM). The reporting format was established at consecutive meetings of SAGSTRAM and endorsed by TRANSSAC, whose membership consists of national competent authorities responsible for the transport of radioactive material from those Member States who have a nuclear industry and others who have shown a keen interest in the IAEA's transport safety programme. Through the PACKTRAM database, the Secretariat collects administrative and technical information on package approval certificates to assist national competent authorities in regulating radioactive material movements in their country. The database carries information on extant certificates and those that expired within the last complete calendar year. The 1985 Edition of IAEA Safety Series No. 6, the 'Regulations for the Safe Transport of Radioactive Material' highlights the role of competent authorities in assuring regulatory compliance in their own countries. Package approval certificates are an important aspect of that function. This document aims to be a useful reference for competent authorities as well as for manufacturers and shippers of radioactive material

  1. Bases for safety of shipping radioactive materials

    International Nuclear Information System (INIS)

    Frejman, Eh.S.; Shchupanovskij, V.D.; Kaloshin, V.M.

    1986-01-01

    Classification is presented and design of packaging containers for radioactive substance shipment is described. Standard documents and the main activities related to the shipment radiation safety provision are considered. Practical recommendations on environment and personnel protection during radioactive cargo shipment by all types of vehicles are presented

  2. Recycled scrap metal and soils/debris with low radioactive contents

    International Nuclear Information System (INIS)

    Carriker, A.W.

    1996-01-01

    Two types of large volume bulk shipments of materials with low radioactivity have characteristics that complicate compliance with normal transport regulations. Scrap metal for recycling sometimes contains radioactive material that was not known or identified by the shipper prior to it being offered for transport to a scrap recycle processor. If the radioactive material is not detected before the scrap is processed, radiological and economic problems may occur. If detected before processing, the scrap metal will often be returned to the shipper. Uranium mill-tailings and contaminated soils and debris have created potential public health problems that required the movement of large volumes of bulk material to isolated safe locations. Similarly, old radium processing sites have created contamination problems needing remediation. The US Department of Transportation has issued exemptions to shippers and carriers for returning rejected scrap metal to original shippers. Other exemptions simplify transport of mill-tailings and debris from sites being remediated. These exemptions provide relief from detailed radioassay of the radioactive content in each conveyance as well as relief from the normal requirements for packaging, shipping documents, marking, labelling, and placarding which would be required for some of the shipments if the exemptions were not issued. (Author)

  3. 15 CFR 30.36 - Exemption for shipments destined to Canada.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Exemption for shipments destined to Canada. 30.36 Section 30.36 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade BUREAU OF THE CENSUS, DEPARTMENT OF COMMERCE FOREIGN TRADE REGULATIONS Exemptions From the Requirements...

  4. 19 CFR 10.540 - Packing materials and containers for shipment.

    Science.gov (United States)

    2010-04-01

    ...-Singapore Free Trade Agreement Rules of Origin § 10.540 Packing materials and containers for shipment. (a... the United States. Accordingly, in applying either the build-down or build-up method for determining... shipping container which it purchased from Company B in Singapore. The shipping container is originating...

  5. 19 CFR 10.462 - Packing materials and containers for shipment.

    Science.gov (United States)

    2010-04-01

    ... Free Trade Agreement Rules of Origin § 10.462 Packing materials and containers for shipment. (a... disregarded in determining the regional value content of a good imported into the United States. Accordingly, in applying either the build-down or build-up method for determining the regional value content of...

  6. Evaluation of the safety of vitrified high level waste shipments from the UK to continental Europe by sea. Annex 2

    International Nuclear Information System (INIS)

    Lange, F.; Fett, H.J.; Hoermann, E.; Roewekamp, M.; Cheshire, R.; Elston, B.; Slawson, G.; Raffestin, D.; Schneider, T.; Armingaud, F.; Laurent, B.

    2001-01-01

    The return of vitrified high level waste arising from the reprocessing of spent nuclear fuel at Sellafield to continental Europe, e.g. Germany, will start around the end of the century. The shipment of the specific flasks will include transportation via the Irish Sea, the English Channel and the North Sea with ships of the Pacific Nuclear Transport Limited (PNTL) classified to the INF 3 standard. The assessment approach is to analyse the severity and the frequency of mechanical impacts, fires and explosions with the potential to affect the package. The results show that there is a high safety margin due to the special safety features of the INF 3 ships compared to conventional ships. The remaining accident probability for a trans-port of vitrified high level waste from UK to the continent is very low. No realistic severe accident scenarios that could seriously affect the flasks and could lead to a radioactivity re-lease have been identified. (author)

  7. Shipment of VINCA Institute's HEU fresh fuel to Russia

    International Nuclear Information System (INIS)

    Pesic, Milan; Sotic, Obrad

    2002-01-01

    This paper shows, for the first time, the basic data related to the recent shipment of the fresh HEU fuel elements from Yugoslavia back to Russia for uranium down blending. In this way, Yugoslavia gives its contribution to the RERTR program and to the world's joint efforts to prevent possible terrorist action against nuclear material potentially usable for production of nuclear weapons. (author)

  8. Special routing of spent fuel shipments. Final report Dec 79-Apr 81

    International Nuclear Information System (INIS)

    Berkowitz, R.L.; Shaver, D.K.; Rudd, T.J.

    1982-05-01

    Special rail routing of spent fuel shipments from commercial nuclear power plants to Away-From-Reactor (AFR) storage and disposal sites has been proposed as one means of reducing the consequences and severity of radioactive materials accidents in areas of high population density. Whether or not special rail routing of spent fuel shipments does indeed decrease radiation exposure levels under normal and accident transportation conditions and at what incremental cost forms the basis of this study funded by the Federal Railroad Administration. The study is divided into five areas: (1) developing analytical models for assessing the risks associated with both the normal and accident transport modes; (2) selecting representative origin to destination routing pairs using the normal transportation and accident risk models; (3) analyzing rail shipment costs for nuclear spent fuel; and (4) performing sensitivity analyses to identify parameters that critically affect the total exposure level. The major findings resulting from this study are: (1) the risk over the seven example routes is relatively small for the normal transport mode; (2) the risk associated with an accident is at least an order of magnitude larger than the normal transport dose in all cases and as such is the overriding contribution to the total expected transport dose; and (3) no beneficial cost versus dose reduction relationship was found for any of the routes studied

  9. 19 CFR 10.602 - Packing materials and containers for shipment.

    Science.gov (United States)

    2010-04-01

    ...-Central America-United States Free Trade Agreement Rules of Origin § 10.602 Packing materials and... regional value content calculation. Packing materials and containers for shipment, as defined in § 10.593(m) of this subpart, are to be disregarded in determining the regional value content of a good imported...

  10. Packaging materials for use in radiation processing of foods

    International Nuclear Information System (INIS)

    Dragusin, M.; Rotaru, P.R.

    1999-01-01

    In radiation processing of food, the product often has to be prepackaged to prevent microbial recontamination during and after irradiation. The packaging material is exposed to radiation during radiation processing and radiation stability is a key consideration in the selection of packaging materials. The effects of ionizing radiation on many food packaging materials at the dose levels recommended for food precessing can be minimized by selecting appropriate radiation resistant materials. It is important to select materials in which chemicals formed as a result of the radiation treatment do not migrate and interact with the food, affecting its organoleptic and toxicological aspects. It is also important to select materials in which the physical properties are not altered to the extent they cannot resist damage during commercial production, shipment and storage. Radiation treatment of food may be classified broadly into two categories: 1. Processes requiring doses less than 10 kGy; 2. Processes requiring doses from 25 to 40 kGy for production of commercial sterility. In radiation processing of foods, gamma radiation from radioisotopes Co-60 and Cs-137 is most widely used because of its high penetrating power. Electron beam irradiation (E<10 MeV) and X-rays (E<5 MeV) can also be used for certain speciality food and packaging to the food. Because the public acceptance of irradiated foods is a major problem in marketing such products, we have developed in our laboratory an alternative techniques. These techniques are based on applying films on the surfaces of foods. The films are edible, i.e. they are an aqueous solution based on caseine, glycerine, poly-etilene-glycol (PEG), crosslinked by radiation processing. So, our techniques implies no longer the food irradiation but instead its isolation from the environmental biological attacks by means of edible films obtained by irradiation. The protective properties of films, as special humidity, oxygen and fat barriers, are

  11. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 1996 edition

    International Nuclear Information System (INIS)

    1996-09-01

    This is the seventh annual report being published by the Secretariat of the International Atomic Energy Agency since implementing its database on package approval certificated (PACKTRAM) at the recommendation of the then Standing Advisory Group on the Sate Transport of Radioactive Material (SAGSTRAM). The functions of SAGSTRAM were taken over in 1996 by the Transport Safety Standards Advisory Committee (TRANSSAC). The reporting format was established at consecutive meetings of SAGSTRAM, whose membership consists of national competent authorities responsible for the transport of radioactive material from those Member States who have a nuclear industry and others who have shown a keen interest in the IAEA's transport safety programme. Through the PACKTRAM database, the Secretariat collects administrative and technical information on package approval certificates to assist national competent authorities in regulating radioactive material movements in their country. The database carries information on extant certificates and those that expired within the last complete calendar year. The 1985 Edition of IAEA Safety Series No. 6, the ''Regulations for the Safe Transport of Radioactive Material'', highlights the role of competent authorities in assuring regulatory compliance in their own countries. Package approval certificates are an important aspect of that function. This document aims to be a useful reference for competent authorities as well as for manufacturers and shippers of radioactive material. 6 tabs

  12. Human islet viability and function is maintained during high density shipment in silicone rubber membrane vessels

    Science.gov (United States)

    Kitzmann, Jennifer P; Pepper, Andrew R; Lopez, Boris G; Pawlick, Rena; Kin, Tatsuya; O’Gorman, Doug; Mueller, Kathryn R; Gruessner, Angelika C; Avgoustiniatos, Efstathios S; Karatzas, Theodore; Szot, Greg L; Posselt, Andrew M; Stock, Peter G; Wilson, John R; Shapiro, AM; Papas, Klearchos K

    2014-01-01

    The shipment of human islets from processing centers to distant laboratories is beneficial for both research and clinical applications. The maintenance of islet viability and function in transit is critically important. Gas-permeable silicone rubber membrane (SRM) vessels reduce the risk of hypoxia-induced death or dysfunction during high-density islet culture or shipment. SRM vessels may offer additional advantages: they are cost-effective (fewer flasks, less labor needed), safer (lower contamination risk), and simpler (culture vessel can also be used for shipment). Human islets(IE) were isolated from two manufacturing centers and shipped in 10cm2 surface area SRM vessels in temperature and pressure controlled containers to a distant center following at least two days of culture (n = 6). Three conditions were examined: low density (LD), high density (HD), and a micro centrifuge tube negative control (NC). LD was designed to mimic the standard culture density for human islet preparations (200 IE/cm2), while HD was designed to have a 20-fold higher tissue density, which would enable the culture of an entire human isolation in 1–3 vessels. Upon receipt, islets were assessed for viability, measured by oxygen consumption rate normalized to DNA content (OCR/DNA), and quantity, measured by DNA, and, when possible, potency and function with dynamic glucose-stimulated insulin secretion (GSIS) measurements and transplants in immunodeficient B6 rag mice. Post-shipment OCR/DNA was not reduced in HD versus LD, and was substantially reduced in the NC condition. HD islets exhibited normal function post-shipment. Based on the data we conclude that entire islet isolations (up to 400,000 IE) may be shipped using a single, larger SRM vessel with no negative effect on viability and ex vivo and in vivo function. PMID:25131090

  13. A guide for validation of FE-Simulations in bulk metal forming

    International Nuclear Information System (INIS)

    Tekkaya, A. Erman

    2005-01-01

    Numerical analysis of metal forming processes is an everyday practice in industry. Forming loads, material flow, forming defects such as underfills, laps and even cracks, stresses in dies and punches, as well as product properties like new hardness distribution, dimensional accuracies and residual stresses are predicted by numerical analysis and used for technology generation. Most of the numerical analysis is done by the finite element method made available for engineers and technicians by numerous by powerful commercial software packages. These software packages act as black-boxes and usually hide the complicated numerical procedures and even their crucial parameters from the applier. Therefore, the question arises during the industrial applications: how accurate is the simulation and how can the results can be assessed? The aim of this paper is to provide a guideline to assess the results of metal forming simulations. Although some ideas are valid for any metal forming process, bulk forming is the process concern. The paper will address firstly the possible sources of error in a finite element analysis of bulk forming processes. Then, some useful elementary knowledge will be summarized. Various levels of validation such as result and ability validation and assessment will be discussed. Finally, interpretation of results will be treated. In this content also some suggestions will be given. (author)

  14. Industry self-regulation to improve student health: quantifying changes in beverage shipments to schools.

    Science.gov (United States)

    Wescott, Robert F; Fitzpatrick, Brendan M; Phillips, Elizabeth

    2012-10-01

    We developed a data collection and monitoring system to independently evaluate the self-regulatory effort to reduce the number of beverage calories available to children during the regular and extended school day. We have described the data collection procedures used to verify data supplied by the beverage industry and quantified changes in school beverage shipments. Using a proprietary industry data set collected in 2005 and semiannually in 2007 through 2010, we measured the total volume of beverage shipments to elementary, middle, and high schools to monitor intertemporal changes in beverage volumes, the composition of products delivered to schools, and portion sizes. We compared data with findings from existing research of the school beverage landscape and a separate data set based on contracts between schools and beverage bottling companies. Between 2004 and the 2009-2010 school year, the beverage industry reduced calories shipped to schools by 90%. On a total ounces basis, shipments of full-calorie soft drinks to schools decreased by 97%. Industry self-regulation, with the assistance of a transparent and independent monitoring process, can be a valuable tool in improving public health outcomes.

  15. Physical Protection of Spent Fuel Shipments: Resolution of Stakeholder Concerns Through Rulemaking - 12284

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, James D. [Department of Sociology, California State University, Northridge, Northridge, CA 91330 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects Carson City, NV 89706 (United States); Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States)

    2012-07-01

    In 1999, the State of Nevada brought its concerns about physical protection of current spent nuclear fuel (SNF) shipments, and future SNF shipments to a federal repository, before the NRC in a 1999 petition for rulemaking (PRM-73-10). In October 2010, the NRC published a rulemaking decision which would significantly strengthen physical protection of SNF in transit. The newest articulation of the rule (10 CFR 73.37) incorporates regulatory clarifications and security enhancements requested in Nevada's 1999 petition for rulemaking, codifies the findings of the Nuclear NRC and DOE consequence analyses into policy guidance documents and brings forward into regulations the agency and licensee experience gained since the terrorist attacks of September 11, 2001. Although at present DOE SNF shipments would continue to be exempt from these NRC regulations, Nevada considers the rule to constitute a largely satisfactory resolution to stakeholder concerns raised in the original petition and in subsequent comments submitted to the NRC. This paper reviews the process of regulatory changes, assesses the specific improvements contained in the new rules and briefly describes the significance of the new rule in the context of a future national nuclear waste management program. Nevada's petition for rulemaking led to a generally satisfactory resolution of the State's concerns. The decade plus timeframe from petition to rulemaking conclusion saw a sea change in many aspects of the relevant issues - perhaps most importantly the attacks on 9/11 led to the recognition by regulatory bodies that a new threat environment exists wherein shipments of SNF and HLW pose a viable target for human initiated events. The State of Nevada has always considered security a critical concern for the transport of these highly radioactive materials. This was one of the primary reasons for the original rulemaking petition and subsequent advocacy by Nevada on related issues. NRC decisions on

  16. 7 CFR 318.47-4 - Shipments by the Department of Agriculture.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Shipments by the Department of Agriculture. 318.47-4 Section 318.47-4 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE STATE OF HAWAII AND TERRITORIES QUARANTINE NOTICES...

  17. Summary of the technical review of the safety analysis reports for packaging (SARP) for the transnuclear transport/storage casks: TN-BRP and TN-REG

    International Nuclear Information System (INIS)

    1986-07-01

    The Safety Analysis Reports for Packaging for two spent fuel shipping casks were technically reviewed by the Oak Ridge National Laboratory. The casks were designed by Transnuclear, Inc., for shipment of 85 Big Rock Point boiling water reactor fuel elements and 40 R.E. Ginna pressurized water reactor fuel elements from West Valley, New York, to Idaho Falls, Idaho. The intent of the review was to ensure compliance of the casks with the requirements the applicable Federal Regulations contained in 10 CFR Pt. 71 and allow issuance of Department of Energy Certificates of Compliance for transport by the Department of Energy Idaho Operations Office. The review was performed by a team of Oak Ridge National Laboratory staff assembled for their expertise in criticality analysis, shielding, metallurgy, nondestructive testing, thermal analysis, structural analysis, and containment. This report describes the review processes, the findings in each technical area, and the overall conclusion that a Certificate of Compliance could be issued for the proposed single shipment under the specified conditions and constraints

  18. 15 CFR 30.35 - Procedure for shipments exempt from filing requirements.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Procedure for shipments exempt from filing requirements. 30.35 Section 30.35 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade BUREAU OF THE CENSUS, DEPARTMENT OF COMMERCE FOREIGN TRADE REGULATIONS Exemptions From the...

  19. Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2 radioactive waste and laundry shipments

    International Nuclear Information System (INIS)

    Doerge, D.H.; Haffner, D.R.

    1988-06-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order

  20. The Global Threat Reduction Initiative's Return of Highly Enriched Uranium from Chile

    Energy Technology Data Exchange (ETDEWEB)

    Messick, C.E.; Dickerson, S.L.; Greenberg, R.F. Jr. [U.S. Department of Energy, National Nuclear Security Administration, Washington D.C. (United States); Andes, T.C. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2011-07-01

    In March 2010, the U.S. National Nuclear Security Administration's Office of Global Threat Reduction (GTRI), in collaboration with the Chilean Nuclear Energy Commission (CCHEN), completed a shipment of 18.2 kilograms of non-U.S.-origin highly enriched uranium (HEU) to the United States. The HEU was in the form of 71 aluminium-clad material test reactor (MTR) fuel elements and was the first GTRI Gap Program shipment that included non-U.S. origin irradiated nuclear fuel. Although shipments of research reactor fuels are not unique, this shipment served as a cornerstone to the first Presidential Nuclear Security Summit held in Washington, D.C., in April 2010. Carrying out the shipment became critical when a severe earthquake struck Chile just one day before the shipment was to occur. As the fuel had already been packaged in casks and the ocean vessels were nearing the port, U.S. and Chilean officials decided that it was most imperative that the shipment continue as planned. After careful analysis of the situation, inspection of the transportation packages, roadways, and port services, the shipment team was able to make the shipment occur in a safe and secure manner. This paper describes the loading activities at both the RECH-1 and RECH-2 reactors as well as the transportation of the loaded casks to the port of departure. (author)

  1. Safety evaluation for packaging transport of LSA-II liquids in MC-312 cargo tanks

    Energy Technology Data Exchange (ETDEWEB)

    Carlstrom, R.F.

    1996-09-11

    This safety evaluation for packaging authorizes the onsite transfer of bulk LSA-II radioactive liquids in the 222-S Laboratory Cargo Tank and Liquid Effluent Treatment Facility Cargo Tanks (which are U.S. Department of Transportation MC-312 specification cargo tanks) from their operating facilities to tank farm facilities.

  2. 48 CFR 47.207-3 - Description of shipment, origin, and destination.

    Science.gov (United States)

    2010-10-01

    ..., hazardous material, whether packed for export, or unusual value. (d) Exclusion of freight. The contracting officer shall (1) clearly identify any freight or types of shipments that are subject to exclusion; e.g... clause substantially the same as the clause at 52.247-7, Freight Excluded, when any commodities or types...

  3. Poly(hydroxyalkanoates for Food Packaging: Application and Attempts towards Implementation

    Directory of Open Access Journals (Sweden)

    M. Koller

    2014-09-01

    Full Text Available Plastics are well-established for convenient and safe packaging and distribution of food and feed goods. At present, this special sector of the plastic market displays remarkably increasing quantities of its annual production. Caused by the ongoing limitation and strongly fluctuating prices of fossil feedstocks, classically used for plastic production, there is an evident trend to switch towards so-called “bio-plastics”. Especially for bulk applications such as food packaging, a broad implementation of “bio-plastics” constitutes a future-oriented strategy to restrict the dependence of global industry on fossil feedstocks, and to diminish current problematic environmental issues arising from plastic disposal. However, food packaging demands a great deal of the utilized packaging material. This encompasses tailored mechanical properties such as low brittleness and adequate tensile strength, a sufficient barrier for oxygen, CO2, and aromatic flavors, high UV-resistance, and high water retention-capacity to block the food´s moisture content, or to prevent humidity, respectively. Due to their hydrophobic character and the broad flexibility of their mechanical features, prokaryotic poly(hydroxyalkanoates (PHAs are considered as promising materials to compete with petro-plastics on the food-packaging market. Nevertheless, short-comings in particular aspects of their material performance and economics of their biosynthesis and purification constitute stumbling blocks on the long way towards broad implementation of PHAs for food packaging. This article discusses advantages and drawbacks of PHAs as food packaging materials, and demonstrates how desired properties can be improved by the designing of novel composite materials, and also encompassing techniques by applying nanoparticles.

  4. Prevalence of Salmonella in 11 Spices Offered for Sale from Retail Establishments and in Imported Shipments Offered for Entry to the United States.

    Science.gov (United States)

    Zhang, Guodong; Hu, Lijun; Pouillot, Régis; Tatavarthy, Aparna; Doren, Jane M Van; Kleinmeier, Daria; Ziobro, George C; Melka, David; Wang, Hua; Brown, Eric W; Strain, Errol; Bunning, Vincent K; Musser, Steven M; Hammack, Thomas S

    2017-10-04

    The U.S. Food and Drug Administration conducted a survey to evaluate Salmonella prevalence and aerobic plate counts in packaged (dried) spices offered for sale at retail establishments in the United States. The study included 7,250 retail samples of 11 spice types that were collected during November 2013 to September 2014 and October 2014 to March 2015. No Salmonella-positive samples (based on analysis of 125 g) were found among retail samples of cumin seed (whole or ground), sesame seed (whole, not roasted or toasted, and not black), and white pepper (ground or cracked), for prevalence estimates of 0.00% with 95% Clopper and Pearson's confidence intervals of 0.00 to 0.67%, 0.00 to 0.70%, and 0.00 to 0.63%, respectively. Salmonella prevalence estimates (confidence intervals) for the other eight spice types were 0.19% (0.0048 to 1.1%) for basil leaf (whole, ground, crushed, or flakes), 0.24% (0.049 to 0.69%) for black pepper (whole, ground, or cracked), 0.56% (0.11 to 1.6%) for coriander seed (ground), 0.19% (0.0049 to 1.1%) for curry powder (ground mixture of spices), 0.49% (0.10 to 1.4%) for dehydrated garlic (powder, granules, or flakes), 0.15% (0.0038 to 0.83%) for oregano leaf (whole, ground, crushed, or flakes), 0.25% (0.03 to 0.88%) for paprika (ground or cracked), and 0.64% (0.17 to 1.6%) for red pepper (hot red pepper, e.g., chili, cayenne; ground, cracked, crushed, or flakes). Salmonella isolates were serotyped, and genomes were sequenced. Samples of these same 11 spice types were also examined from shipments of imported spices offered for entry to the United States from 1 October 2011 to 30 September 2015. Salmonella prevalence estimates (based on analysis of two 375-g composite samples) for shipments of imported spices were 1.7 to 18%. The Salmonella prevalence estimates for spices offered for sale at retail establishments for all of the spice types except dehydrated garlic and basil were significantly lower than estimates for shipments of imported spice

  5. Health physics aspects of a research reactor fuel shipment

    International Nuclear Information System (INIS)

    Dodd, B.; Johnson, A.G.; Anderson, T.V.

    1984-01-01

    In June 1982, 92 irradiated fuel elements were shipped from the Oregon State University TRIGA Reactor to Westinghouse Hanford Corporation to be used in the Fuel Materials Examination Facility, This paper describes some of the health physics aspects of the planning, preparation and procedures associated with that shipment. In particular, the lessons learned are described in order that the benefits of the experience gained may be readily available to other small institutions. (author)

  6. Decision process involved in preparing the Shippingport reactor pressure vessel for transport

    International Nuclear Information System (INIS)

    Murphie, W.E.

    1989-01-01

    The most significant part of the Shippingport Station Decommissioning Project was the one-piece removal and shipment of the reactor pressure vessel (RPV). Implicit in the RPV transport was the task of qualifying the RPV as a waste package acceptable for shipment. Soon after physical decommissioning began on September 1985, questions regarding the packaging certification and transport of the RPV from Shippingport, Pennsylvania to the US Department of Energy (DOE) Hanford Waste Burial Site necessitated reexamination of several planning assumptions. A complete reassessment of the regulatory requirements governing the RPV shipment resulted in a programmatic decision to obtain a type B(U) Certificate of Compliance and abandon the originally planned US Department of Transportation (DOT) low specific activity (LSA) shipment. The decision process resulting in this conclusion was extensive and involved many organizations and agencies. Incidental to this process, several subtle certification issues were identified that required resolution. Some of these issues involved the definition of LSA material for large packages; interpretation and compliance with DOE, DOT and US Nuclear Regulatory Commission (NRC) regulations for the transport of radioactive material; incorporation of the International Atomic Energy Agency (IAEA) regulations by the Panama Canal; and DOE policy requiring advance notification to states of radioactive waste shipments. 2 figs

  7. Decision process involved in preparing the Shippingport reactor pressure vessel for transport

    International Nuclear Information System (INIS)

    Murphie, W.E.

    1990-01-01

    The most significant part of the Shippingport Station Decommissioning Project was the one-piece removal and shipment of the reactor pressure vessel (RPV). Implicit in the RPV transport was the task of qualifying the RPV as a waste package acceptable for shipment. Soon after physical decommissioning began on September, 1985, questions regarding the packaging certification and transport of the RPV from Shippingport, Pennsylvania to the U.S. Department of Energy (DOE) Hanford waste burial site necessitated reexamination of several planning assumptions. A complete reassessment of the regulatory requirements governing the RPV shipment resulting in a programmatic decision to obtain a Type B(U) Certification of Compliance and abandon the originally planned U.S. Department of Transportation (DOT) low specific activity (LSA) shipment. The decision process resulting in this conclusion was extensive and involved many organizations and agencies. Incidental to this process, several subtle certification issues were identified that required resolution. Some of these issues involved the definition of LSA material for large packages; interpretation and compliance with DOE, DOT and U.S. Nuclear Regulatory Commission (NRC) regulations for the transport of radioactive material; incorporation of the International Atomic Energy Agency (IAEA) regulations by the Panama Canal; and DOE policy requiring advance notification to states of radioactive waste shipments

  8. Capabilities of U.S. domestic transportation systems for the shipment of radioactive wastes

    International Nuclear Information System (INIS)

    Best, R.E.; Allen, J.H.; Aucoin, P.A.; Ball, G.D.; Hoffman, C.C.; Mason, M.E.; Propes, W.A.; Vizzini, T.A.

    1977-09-01

    This document is a compilation of data and reports that provide an overview of the capabilities of U.S. domestic transportation systems for the shipment of materials that are or may be classified as radioactive wastes

  9. Denials and Delays of Radioactive Material Shipments

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.

    2011-01-01

    delays of shipments of radioactive materials forms an important issue today. Radioactive materials need to be transported using all modes of transport for use in different applications such as public health, industry, research and production of nuclear power. The transport of radioactive materials is governed by national and international regulations, which are based on the International Atomic Energy Agency (IAEA) regulations for safe transport of radioactive materials (TS-R-1). These regulations ensure high standards of safety. Recently there were increasing numbers of instances of denials and delays of shipments of radioactive materials even when complying with the regulations. The denials and delays can result in difficulties to patients and others who rely on products sterilized by radiation. Therefore there is an urgent need for a universally accepted approach to solve this problem. In response, the IAEA has formed an International Steering Committee (ISC) on denials and delays of radioactive materials. Also, it designate the National Focal Points (NFP) representative to help the ISC members and the IAEA by informing about denial operations and how they can help. The Steering Committee developed and adopted an action plan which includes the action to be taken. This plan is based on: Awareness, Training, Communication, Lobbying for marketing, Economic and Harmonization among member states. It is important to work within the mandate of the ISC and in the line of action plan on denials and delays. It identified the following network members such as: National Focal Points, Regional Coordinators, National Committee, National Representative for different modes of transport and similar bodies, Carriers, Producers and Suppliers, Different civil societies, NGO's, Ministry of transport and others.

  10. Technical Report on DOMICE Simulation Model

    Science.gov (United States)

    2012-04-01

    Branch GPS Global Positioning System HHO home heating oil LCA Lake Carriers’ Association MAR USCG Domestic Icebreaking Mission Analysis...cargo types considered in the module. The module groups the four types of cargo into two broader categories, namely, Home Heating Oil ( HHO ) shipments...or Non- HHO shipments. Table 11. Cargo types. Types of Cargo Cargo Group Dry Bulk Non- HHO Liquid Bulk Perishable / Food Home Heating Oil HHO

  11. Processing Discrepancy Reports Against Foreign Military Sales Shipments (Supplementation is Permitted at all Levels)

    National Research Council Canada - National Science Library

    Tucker, Gary

    1991-01-01

    ...) shipments are processed. It provides for the basic documents required to support adjustment of property and financial inventory accounting records, notification to shippers of the type of discrepancies, required corrective...

  12. Cross-border shipment route selection utilizing analytic hierarchy process (AHP method

    Directory of Open Access Journals (Sweden)

    Veeris Ammarapala

    2018-02-01

    Full Text Available Becoming a member of ASEAN Economic Community (AEC, Thailand expects a growth of cross-border trade with neighboring countries, especially the agricultural products shipment. To facilitate this, a number of strategies are set, such as the utilization of single check point, the Asian Highway (AH route development, and the truck lane initiation. However, majority of agricultural products traded through the borders are transported using the rural roads, from growing area to the factory, before continuing to the borders using different highways. It is, therefore, necessary for the Department of Rural Roads (DRR to plan for rural road improvement to accommodate the growth of the cross-border trades in the near future. This research, thus, aims to select potential rural roads to support cross-border shipment utilizing the analytic hierarchy process (AHP method. Seven key factors affecting rural roads selection, with references from transport and other related literatures, are extracted. They include:1 cross-border trade value, 2 distance from border to rural road, 3 agriculture and processed agriculture goods transported across the border, 4 compatibility with national strategies, 5 area characteristics around the rural road, 6 truck volume, and 7 number of rural roads in the radius of 50 kilometers from the border. Interviews are conducted with the experts based on seven key factors to collect data for the AHP analysis. The results identify the weight of each factor with an acceptable consistency ratio. It shows that the cross-border trade value is the most important factor as it achieves the highest weight. The distance from border to rural road and the compatibility with national strategies are also found crucial when making rural road selection decision. The Department of Rural Roads could use the results to select suitable roads, and plan for road improvement to support the crossborder shipment when the AEC is fully implemented.

  13. Slovenian System for Protecting Against Radioactive Material in Scrap Metal Shipments

    Energy Technology Data Exchange (ETDEWEB)

    Stritar, A.; Cesarek, J.; Vokal Nemec, B., E-mail: andrej.stritar@gov.si [Slovenian Nuclear Safety Administration, Ljubljana (Slovenia)

    2011-07-15

    The Slovenian experience shows that the majority of detected orphan sources are associated with imports of scrap metal to Slovenia and transits of that material through Slovenia. Such orphan sources originate from past industrial activities and weak regulatory control in the countries of origin. In order to minimise the number of sources outside regulatory control several regulatory and law enforcement measures have been implemented. To prevent illicit trafficking across the border the 'First line of defence' - customs and police - are equipped with radiation detection devices. Since 2002, the Slovenian Nuclear Safety Administration (SNSA) has provided a 24-hour on-duty officer, who gives advice in case of the discovery of an orphan source. The majority of scrap metal collectors and re-cyclers are equipped with portal monitors and/or hand-held radiation detection equipment. Generally, good cooperation has been established between different organizations within Slovenia, with neighbouring countries and with some international organizations. To regulate the scrap metal activities, a new Decree on checking the radioactivity of shipments of metal scrap has been in force since 1 January 2008. This decree requires that every importer has to present a certificate of radiation measurement before any shipment of scrap metal is brought into Slovenia. Such measurements can be performed only by certified organizations. These organizations can obtain certification from the SNSA providing that they have the prescribed measuring devices, adequate training and procedures, and that their capabilities have been checked by a technical support organization. The experience after one year of application of the decree is positive. Awareness, including the adequacy of response, has increased. The paper discusses the general scheme for protection against illicit radioactive material in scrap metal shipments and the Slovenian experience in the last decade. (author)

  14. Advance notification of shipments of nuclear waste and spent fuel: guidance

    International Nuclear Information System (INIS)

    1982-06-01

    U.S. Nuclear Regulatory Commission regulations in 10 CFR 70.5b and 73.37(f) require NRC licensees to notify the governor of a state prior to making a shipment of nuclear waste or spent fuel within or through the state. This guidance document was prepared to assist licensees in carrying out those requirements

  15. Impacts of SNF burnup credit on the shipment capability of the GA-4 cask

    International Nuclear Information System (INIS)

    Mobasheran, A.S.; Lake, W.; Richardson, J.

    1996-01-01

    Scoping analyses were performed to determine the impacts of two different levels of burnup credit and two different spent fuel pickup rates on the shipment capability and the minimum fleet size of the GA-4 cask. The analyses involved developing loading curves for the GA-4 cask based on the actinide-only and principal-isotope burnup credit considerations. The analyses also involved examination of the spent nuclear fuel assembly population at nine reactor sites and categorization of the assemblies in accordance with the loading restrictions imposed. The results revealed that for the nine sites considered, depending on the level of burnup credit and the pickup rate assumed, the total savings in shipment and cask fleet costs (1994 dollars) can range from $55 million to $74 million

  16. Pre-shipment preparations at the Savannah River Site - WSRC's technical basis to support DOE's approval to ship

    International Nuclear Information System (INIS)

    Thomas, Jay E.; Bickley, Donald W.; Conatser, E. Ray

    2000-01-01

    In the first four years of the Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) Return Program following resumption of the SNF return program with the DOE-EIS ROD in May 1996, 13 shipments involving 77 casks with over 2,600 assemblies have been safely received and stored at the Savannah River Site (SRS). Each fuel type has gone through a rigorous pre-shipment preparation process that includes fuel characterization, criticality safety reviews, and operational reviews, culminating in the Department of Energy's (DOE's) authorization to ship. Ideally, the authorization to ship process should begin two years in advance of the fuel receipt with an agreement between the Department of Energy - Head Quarters (DOE-HQ) and the research reactor government on the conditions and protocol for the spent nuclear fuel return, with a target of DOE shipment authorization at least two months before facility loading. A visit by representatives from the Department of Energy - Savannah River (DOE-SR) and Westinghouse Savannah River Company (WSRC), DOE's Management and Operations (M and O) Contractor for the SRS, to the research reactor facility is then scheduled for the purpose of finalizing contractual arrangements (DOE-SR), facility assessments, and initial fuel inspections. An extensive effort is initiated at this time to characterize the fuel in a standard format as identified in the Appendix A attachment to the contract. The Appendix A must be finalized in an accurate and timely manner because it serves as the base reference document for WSRC and other involved stakeholders such as the cask owners and the competent authorities throughout the approval process. With the approval of the Appendix A, criticality safety reviews are initiated to evaluate the unloading and storage configurations. Operational reviews are conducted to allow for necessary adaptation of fuel handling facilities, procedures, and training. WSRC has proceduralized this process, 'Certification to Receive and

  17. Safety evaluation for packaging (Onsite) transport of LSA-II liquids in MC-312 cargo tanks

    International Nuclear Information System (INIS)

    Carlstrom, R.F.

    1996-01-01

    This safety evaluation for packaging authorizes the onsite transfer of bulk LSA-II radioactive liquids in the 222-S Laboratory Cargo Tank and Liquid Effluent Treatment Facility Cargo Tanks (which are U.S. Department of Transportation MC-312 specification cargo tanks) from their operating facilities to tank farm facilities

  18. In-Package atmospheric cold plasma treatment of bulk grape tomatoes for their microbiological safety and preservation

    Science.gov (United States)

    Effects of dielectric barrier discharge atmospheric cold plasma (DACP) treatment on the inactivation of Salmonella and the storability of grape tomato were investigated. Grape tomatoes, with or without inoculation with Salmonella, were packaged in a polyethylene terephthalate (PET) commercial clamsh...

  19. Packaging and transportation risk management and evaluation plan

    International Nuclear Information System (INIS)

    Rhyne, W.R.

    1993-09-01

    Shipments of radioactive materials and hazardous chemicals at the Los Alamos National Laboratory (LANL) are governed by a variety of Federal and state regulations, industrial standards, and LANL processes and procedures. Good judgement is exercised in situations that are not covered by regulations. As a result, the safety record for transporting hazardous materials at LANL has been excellent. However, future decisions should be made such that the decision-making process produces a defensible record of the safety of onsite shipments. This report proposes the development of a risk management tool to meet this need. First, the application of quantitative risk analysis methodology to transportation is presented to provide a framework of understanding. Risk analysis definitions, the basic quantitative risk analysis procedure, quantitative methodologies, transportation data bases, and risk presentation techniques are described. Quantitative risk analysis is frequently complex; but simplified approaches can be used as a management tool to make good decisions. Second, a plan to apply the use of risk management principles to the selection of routes, special administrative controls, and containers for hazardous material transportation at LANL is provided. A risk management tool is proposed that can be used by MAT-2 without substantial support from specialized safety and risk analysis personnel, e.g., HS-3. A workbook approach is proposed that can be automated at a later date. The safety of some types of onsite shipments at LANL is not well documented. Documenting that shipments are safe, i.e., present acceptable risks, will likely require elaborate analyses that should be thoroughly reviewed by safety and risk professionals. These detailed analyses are used as benchmarks and as examples for the use of the proposed tool by MAT-2. Once the benchmarks are established, the workbook can be used by MAT-2 to quantify that safety goals are met by similar shipments

  20. 49 CFR 174.84 - Position in train of loaded placarded rail cars, transport vehicles, freight containers or bulk...

    Science.gov (United States)

    2010-10-01

    ... CARRIAGE BY RAIL Handling of Placarded Rail Cars, Transport Vehicles and Freight Containers § 174.84 Position in train of loaded placarded rail cars, transport vehicles, freight containers or bulk packagings... 49 Transportation 2 2010-10-01 2010-10-01 false Position in train of loaded placarded rail cars...

  1. Full-Scale Cask Testing and Public Acceptance of Spent Nuclear Fuel Shipments - 12254

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge Northridge, CA 91330 (United States)

    2012-07-01

    Laboratories, the 1980's regulatory and demonstration testing of MAGNOX fuel flasks in the United Kingdom (the CEGB 'Operation Smash Hit' tests), and the 1980's regulatory drop and fire tests conducted on the TRUPACT II containers used for transuranic waste shipments to the Waste Isolation Pilot Plant in New Mexico. The primary focus of the paper is a detailed evaluation of the cask testing programs proposed by the NRC in its decision implementing staff recommendations based on the Package Performance Study, and by the State of Nevada recommendations based on previous work by Audin, Resnikoff, Dilger, Halstead, and Greiner. The NRC approach is based on demonstration impact testing (locomotive strike) of a large rail cask, either the TAD cask proposed by DOE for spent fuel shipments to Yucca Mountain, or a similar currently licensed dual-purpose cask. The NRC program might also be expanded to include fire testing of a legal-weight truck cask. The Nevada approach calls for a minimum of two tests: regulatory testing (impact, fire, puncture, immersion) of a rail cask, and extra-regulatory fire testing of a legal-weight truck cask, based on the cask performance modeling work by Greiner. The paper concludes with a discussion of key procedural elements - test costs and funding sources, development of testing protocols, selection of testing facilities, and test peer review - and various methods of communicating the test results to a broad range of stakeholder audiences. (authors)

  2. Safety in transport of radioactive materials - the next 10 years

    International Nuclear Information System (INIS)

    Barker, R.

    1981-01-01

    The number of shipments of radioactive material is increasing steadily - some estimates indicate by about 10 per cent a year. Several million packages are already shipped about the world each year and this number will increase at least for the next 10 years. Part of this increase will come from the expected growth in the number of nuclear power plants which will be shipping irradiated fuel that had previously been stored on-site or in use, and from the associated shipments of nuclear waste. The increase in production and use of nuclear fuel requires increased production (and hence increased shipments) or uranium and thorium ores; and of concentrates, nitrates, fluorides and fresh fuel. Shipments of highly active waste from reprocessing nuclear fuels, already occurring to some extent in Europe, will increase and may begin again in the USA in the next few years. Also in the next 10 years, decommissioning of some reactors will take place requiring special types of shipments. A new type of shipment that may arise within the next 10 years is that of several kilograms (millions of curies) of tritium. A few of these large, easily controlled shipments will be required for the operation of the prototype fusion reactor, a joint project supported through the IAEA by the USSR, USA, and others. The technology for designing such packaging is well established, but it does not appear that any of the existing designs are capable of handling such large amounts of tritium and so new designs will be needed. The medical, industrial, and research uses of radioactivity are expected to continue to grow and the associated shipments of radioactive material to become even more frequent. The Agency is collecting data on shipments in all Member States and will issue an analysis of that data in 1981. For several years to come, however, we can expect the largest number of packages to be exempt shipments (e.g. smoke detectors and luminous watches) and medical isotopes; the greatest volume to be

  3. 16 CFR 1611.39 - Shipments under section 11(c) of the act.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.39 Shipments... commerce for such purpose maintains records which establish (1) that the textile fabric or article of... been completed, as well as records to show the disposition of such textile fabric or article of wearing...

  4. Transportation impact analysis for the shipment of Low Specific Activity Nitric Acid

    International Nuclear Information System (INIS)

    Green, J.R.

    1994-01-01

    This document was written in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes the potential toxicological and radiological risks associated with the transportation of PUREX Facility LSA Nitric Acid from the Hanford Site in Washington State to three Eastern ports

  5. Shipment of LLW by intercoastal maritime service

    International Nuclear Information System (INIS)

    Barbour, D.A.

    1985-01-01

    Transportation costs are a significant element of total waste disposal costs. In 1982, Nuclear Metals, Inc. (NMI) began a series of tests and investigations to examine the feasibility of using alternative modes for its low-level waste (LLW) shipments. NMI's investigations and experience have identified significant problems in transporting LLW by rail. Intercoastal maritime service, however, has been demonstrated as a safe and cost-effective way of transporting LLW from eastern seaboard generation sites to the repository at Beatty, Nevada. Intuition is an unreliable guide in this area. Waste managers need to periodically assess and compare combined transportation and burial costs for all site options to ensure that disposal operations are conducted in the most rational way

  6. Effect of packaging during storage time on retail display shelf life of longissimus muscle from two different beef production systems.

    Science.gov (United States)

    Luzardo, S; Woerner, D R; Geornaras, I; Engle, T E; Delmore, R J; Hess, A M; Belk, K E

    2016-06-01

    Two studies were conducted to evaluate the influence of packaging and production system (PS) on retail display life color (L*, a*, and b*), fatty acid profile (% of total fatty acids), lipid oxidation (thiobarbituric acid reactive substances; mg malondialdehyde/kg of muscle), vitamin E content (µg/g of muscle), and odor (trained panelists) during storage of LM. Four (or 3) different packaging treatments were applied to LM from steers fattened on grazing systems (Uruguayan) or on high-concentrate diets (U.S.). From fabrication to application of treatments, Uruguayan LM were vacuum packaged for air shipment and U.S. LM were also vacuum packaged and kept in a cooler until Uruguayan samples arrived. Treatments were applied 7 d after slaughter. In Exp. 1, treatments were vacuum packaging (VP), low-oxygen (O) modified atmosphere packaging (MAP) with nitrogen (N2) and carbon dioxide (MAP/CO), low-O MAP with N2 plus CO and carbon monoxide (MAP/CO), and VP plus an application of peroxyacetic acid (VP/PAA). In Exp. 2 block 1, treatments were VP, MAP/CO, and VP with ethyl-arginate HCl incorporated into the film as an antimicrobial agent (VP/AM). In Exp. 2 block 2, treatments were VP, MAP/CO, MAP/CO, and VP/AM. After 35 d storage, steaks were evaluated during simulated retail display for up to 6 d. In Exp. 1, Uruguayan steaks under MAP/CO had greater ( packaging treatments on d 6 of display in Exp. 1. Packaging × PS × time interaction was significant ( 0.05) were detected among both VP and MAP/CO in U.S. steaks at this time. No significant ( > 0.05) packaging × PS × time interaction was observed in Exp. 2. Only PS (both experiments) and time (Exp. 1) affected ( Packaging × PS, PS × time, and packaging × PS × time interactions were not significant ( > 0.05) for any of the fatty acids. Beef from Uruguayan had lower ( < 0.05) SFA and MUFA and greater ( < 0.05) PUFA and n-6 and n-3 fatty acid percentages than U.S. beef. Complexity of fresh meat postmortem chemistry

  7. Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report

    International Nuclear Information System (INIS)

    Doerge, D.H.; Miller, R.L.; Scotti, K.S.

    1986-05-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order

  8. 77 FR 3115 - Safety Zone; Grain-Shipment Vessels, Columbia and Snake Rivers

    Science.gov (United States)

    2012-01-23

    ...-AA00 Safety Zone; Grain-Shipment Vessels, Columbia and Snake Rivers AGENCY: Coast Guard, DHS. ACTION... Terminal, Longview, WA, while they are located on the Columbia and Snake Rivers. This safety zone extends... on the Columbia and Snake rivers when vessels begin arriving at EGT, Longview, WA. Under 5 U.S.C. 553...

  9. 7 CFR 905.148 - Reports of special purpose shipments under certificates of privilege.

    Science.gov (United States)

    2010-01-01

    ... (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts... Regulations Non-Regulated Fruit § 905.148 Reports of special purpose shipments under certificates of privilege... name and address of the shipper or shippers; name and address of the certified organic Florida citrus...

  10. Conceptual waste packaging options for deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann -Cherng [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low

  11. Guidelines for selecting preferred highway routes for highway-route-controlled quantity shipments of radioactive materials

    International Nuclear Information System (INIS)

    1989-01-01

    The document presents guidelines for use by State officials in selecting preferred routes for highway route controlled quantity shipments of radioactive materials. A methodology for analyzing and comparing safety factors of alternative routes is described. Technical information on the impacts of radioactive material transportation needed to apply the methodology is also presented. Application of the methodology will identify the route (or set of routes) that minimizes the radiological impacts from shipments of these radioactive materials within a given State. Emphasis in the document is on practical application of the methodology. Some details of the derivation of the methods and data are presented in the appendices. All references in the body of the report can be found listed in the Bibliography (Appendix F)

  12. Selection of highway routes for the shipment of radioactive materials within the Commonwealth of Virginia

    International Nuclear Information System (INIS)

    Hobeika, A.G.; Jamei, B.; Santoso, I.B.

    1986-01-01

    In this study Virginia Electric and Power Company proposed to ship limited quantities of irradiated nuclear fuel from Surry to North Anna in Virginia. Eight routes were considered as candidate routes for shipment. The objectives of this study are: To minimize the accidental-release radiation risk to people and property; and to maximize the community preparedness in terms of emergency response and evacuation capability. To determine the ''Preferred'' route and the alternative route for highway shipments of radioactive material, a conceptual approach was developed, based on the following three principles: Feasibility; Evaluation; and Choice. The feasibility of a candidate route is first established. Then all feasible routes are evaluated under the same criteria, which would lead to the choice of the best feasible route

  13. Authorised radioactive contents of packages: how to maximise simultaneously safety and flexibility?

    Energy Technology Data Exchange (ETDEWEB)

    Malesys, P. [COGEMA Logistics (AREVA Group), Saint-Quentin-en-Yvelines (France); Field, G. [Packaging Technology, Inc. (AREVA Group), Tacoma (United States)

    2004-07-01

    Packages for the transport of radioactive material are required to comply with national and / or international regulations. These regulations are widely based on the requirements set forth by the International Atomic Energy Agency (IAEA) in the ''Regulations for the Safe Transport of Radioactive Material''. ''The objective of these Regulations is to protect persons, property and the environment from the effects of radiation during the transport of radioactive material. This protection is achieved by requiring: (a) containment of the radioactive contents; (b) control of external radiation levels; (c) prevention of criticality; and (d) prevention of damage caused by heat.'' Some of the package designs require an approval by the applicable Competent Authority(ies). The application for package approval includes ''a specification of the authorised radioactive content, including any restrictions on the radioactive contents which might not be obvious from the nature of the packaging''. The required ''specification of the authorised radioactive content'' must include assurance that the material that is actually transported meets the four above-mentioned requirements. For that purpose, the choice of the parameters of the specification is crucial: they should be of such a nature that they can be checked before shipment to allow demonstration of compliance with the above-mentioned requirements. From our experience, it is appropriate to consider parameters that have the most direct influence on the compliance with the requirements. It is worthwhile to consider, for instance and when possible, direct measurement for the assessment of compliance with a requirement. A typical example is measurement of radiation exposure: it can provide a confident level of verification of the external radiation level, regardless of other parameters such as the activity. The paper presents our experience, particularly

  14. Authorised radioactive contents of packages: how to maximise simultaneously safety and flexibility?

    International Nuclear Information System (INIS)

    Malesys, P.; Field, G.

    2004-01-01

    Packages for the transport of radioactive material are required to comply with national and / or international regulations. These regulations are widely based on the requirements set forth by the International Atomic Energy Agency (IAEA) in the ''Regulations for the Safe Transport of Radioactive Material''. ''The objective of these Regulations is to protect persons, property and the environment from the effects of radiation during the transport of radioactive material. This protection is achieved by requiring: (a) containment of the radioactive contents; (b) control of external radiation levels; (c) prevention of criticality; and (d) prevention of damage caused by heat.'' Some of the package designs require an approval by the applicable Competent Authority(ies). The application for package approval includes ''a specification of the authorised radioactive content, including any restrictions on the radioactive contents which might not be obvious from the nature of the packaging''. The required ''specification of the authorised radioactive content'' must include assurance that the material that is actually transported meets the four above-mentioned requirements. For that purpose, the choice of the parameters of the specification is crucial: they should be of such a nature that they can be checked before shipment to allow demonstration of compliance with the above-mentioned requirements. From our experience, it is appropriate to consider parameters that have the most direct influence on the compliance with the requirements. It is worthwhile to consider, for instance and when possible, direct measurement for the assessment of compliance with a requirement. A typical example is measurement of radiation exposure: it can provide a confident level of verification of the external radiation level, regardless of other parameters such as the activity. The paper presents our experience, particularly in France and in the USA, to demonstrate that it is possible to adequately

  15. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 1997 Edition

    International Nuclear Information System (INIS)

    1997-08-01

    This is the eighth annual report being published by the Secretariat of the International Atomic Energy Agency since implementing its database on package approval certificates (PACKTRAM) at the recommendation of the then Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM). The functions of SAGSTRAM were taken over in 1996 by the Transport Safety Standards Advisory Committee (TRANSSAC). The reporting format was established at consecutive meetings of SAGSTRAM, whose membership consisted of national competent authorities responsible for the transport of radioactive material from those Member States who have a nuclear industry and others who showed a keen interest in the IAEA's transport safety programme. TRANSSAC underscores the importance of data collecting activities and recommends the continued publication of this annual report. The 1985 Edition of Safety Series No. 6, the ''Regulations for the Safe Transport of Radioactive Material'', highlights the role of competent authorities in assuring regulatory compliance in their own countries. The issuance of package approval certificates is an important aspects of that function. This document aims to be a useful reference for competent authorities as well as for manufacturers and shippers of radioactive material. 6 tabs

  16. In-package inhibition of E.coli 0157:H7 on bulk romaine lettuce using cold plasma

    Science.gov (United States)

    Dielectric barrier discharge atmospheric cold plasma (DACP) treatment was evaluated for the inactivation of Escherichia coli O157:H7, surface morphology, color, carbon dioxide generation, and weight loss of bulk Romaine lettuce in a commercial plastic clamshell container. The lettuce samples were pa...

  17. 49 CFR 173.340 - Tear gas devices.

    Science.gov (United States)

    2010-10-01

    ... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.340 Tear gas devices. (a) Packagings for...) Tear gas devices may not be assembled with, or packed in the same packaging with, mechanically- or manually-operated firing, igniting, bursting, or other functioning elements unless of a type and design...

  18. Time/motion observations and dose analysis of reactor loading, transportation, and dry unloading of an overweight truck spent fuel shipment

    International Nuclear Information System (INIS)

    Hostick, C.J.; Lavender, J.C.; Wakeman, B.H.

    1992-04-01

    This document presents observed activity durations and radiation dose analyses for an overweight truck shipment of pressurized water reactor (PWR) spent fuel from the Surry Power Station in Virginia to the Idaho National Engineering Laboratory. The shipment consisted of a TN-8L shipping cask carrying three 9-year-old PWR spent fuel assemblies. Handling times and dose analyses for at-reactor activities were completed by Virginia Electric and Power Company (Virginia Power) personnel. Observations of in-transit and unloading activities were made by Pacific Northwest Laboratory (PNL) personnel, who followed the shipment for approximately 2800 miles and observed cask unloading activities. In-transit dose estimates were calculated using dose rate maps provided by Virginia Power for a fully loaded TN-8L shipping cask. The dose analysis for the cask unloading operations is based on the observations of PNL personnel

  19. Special from encapsulation for radioactive material shipments from Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Schaich, R.W.

    1980-01-01

    Special Form encapsulation has been used at Oak Ridge National Laboratory to ship radioactive solids for the past fifteen years. A family of inexpensive stainless steel containers has been developed and tested to meet the USA Department of Transportation (DOT) and the International Atomic Energy Agency (IAEA) regulations concerning radioactive material shipments as Special Form

  20. Argonne National Laboratory, east hazardous waste shipment data validation

    International Nuclear Information System (INIS)

    Casey, C.; Graden, C.; Coveleskie, A.

    1995-09-01

    At the request of EM-331, the Radioactive Waste Technical Support Program (TSP) is conducting an evaluation of data regarding past hazardous waste shipments from DOE sites to commercial TSDFs. The intent of the evaluation is to find out if, from 1984 to 1991, DOE sites could have shipped hazardous waste contaminated with DOE-added radioactivity to commercial TSDFs not licensed to receive radioactive material. A team visited Argonne National Laboratory, East (ANL-E) to find out if any data existed that would help to make such a determination at ANL-E. The team was unable to find any relevant data. The team interviewed personnel who worked in waste management at the time. All stated that ANL-E did not sample and analyze hazardous waste shipments for radioactivity. Waste generators at ANL-E relied on process knowledge to decide that their waste was not radioactive. Also, any item leaving a building where radioisotopes were used was surveyed using hand-held instrumentation. If radioactivity above the criteria in DOE Order 5400.5 was found, the item was considered radioactive. The only documentation still available is the paperwork filled out by the waste generator and initialed by a health physics technician to show no contamination was found. The team concludes that, since all waste shipped offsite was subjected at least once to health physics instrumentation scans, the waste shipped from ANL-E from 1984 to 1991 may be considered clean

  1. Safety Analysis Report - Packages, 9965, 9968, 9972-9975 Packages

    International Nuclear Information System (INIS)

    Blanton, P.

    2000-01-01

    This Safety Analysis Report for Packaging (SARP) documents the analysis and testing performed on four type B Packages: the 9972, 9973, 9974, and 9975 packages. Because all four packages have similar designs with very similar performance characteristics, all of them are presented in a single SARP. The performance evaluation presented in this SARP documents the compliance of the 9975 package with the regulatory safety requirements. Evaluations of the 9972, 9973, and 9974 packages support that of the 9975. To avoid confusion arising from the inclusion of four packages in a single document, the text segregates the data for each package in such a way that the reader interested in only one package can progress from Chapter 1 through Chapter 9. The directory at the beginning of each chapter identifies each section that should be read for a given package. Sections marked ''all'' are generic to all packages

  2. Safety analysis report: packages. GPHS shipping package supplement 2 to the PISA shipping package (packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    Chalfant, G. G.

    1981-06-01

    Safety Analysis Report DPST-78-124-1 is amended to permit shipment of 6 General Purpose Heat Source (GPHS) capsules (max.). Each capsule contains an average of 2330 curies of 238 Pu, and each pair of capsules is contained in a welded stainless steel primary containment vessel, all of which are doubly contained in a flanged secondary containment vessel. This is in addition to the forms discussed in DPST-78-124-1 and Supplement 1

  3. 29 CFR 570.106 - “Ship or deliver for shipment in commerce”.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false âShip or deliver for shipment in commerceâ. 570.106 Section 570.106 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS CHILD LABOR REGULATIONS, ORDERS AND STATEMENTS OF INTERPRETATION General Statements of Interpretation of the Child Labor Provisions of...

  4. Civilian use transport of radioactive substances on public road. Volume 1: Shipment accreditation and approval requests. Guide Nr 7, Revision 2 of 15 February 2016. Volume 2: safety file of package models, European guide 'Package Design Safety Report'. Civilian use transport of radioactive packages or substances on public road. Volume 3: Compliance of package models not subject to accreditation. Guide Nr 7, Revision 7 of the 2015/11/13

    International Nuclear Information System (INIS)

    2016-01-01

    After having recalled the regulatory context and sanctions susceptible to be applied, the first volume presents the accreditation process for a package model: file content, tests programme, safety file, certification studies, documents to be produced, accreditation prorogation request, accreditation extension or package model modifications, instruction delays. Some peculiar cases are described. Models of accreditation certificate are provided, and obligations concerning packaging design, fabrication, use and maintenance are briefly discussed. The second volume is a European technical guide which is intended to assist in the preparation of the Package Design Safety Report (PDSR) to demonstrate compliance of a package design for the transport of radioactive material with the regulatory requirements. It covers package designs requiring competent authority approval, and also covers package designs not requiring competent authority approval. In its first two chapters, this document provides a generic structure and contents of a PDSR which applies to all package types. The contents are described in a comprehensive way to cover all important aspects. Some of these aspects may not be applicable to specific package type and details can be found in the annexes which provide further guidance for the scope of the contents of a PDSR, specifically for each package type. The third volume presents recommendations made by the ASN for all stakeholders to guarantee the compliance to regulation of package models which are 'not submitted to competent authority approval'. After an indication and a comment of the regulatory context, it presents requirements to be applied for the design of those package models, and then describes and comments the structure and content of a safety file for such package models (generalities, authorised contents, packaging description, safety demonstration, receipt, use and maintenance instruction, management system). The last part presents the

  5. Safety Analysis Report for Packaging (SARP): USA/5790/BLF (ERDA-AL) and USA/5791/BLF (ERDA-AL)

    International Nuclear Information System (INIS)

    Griffin, J.F.; Bertram, R.E.; Blauvelt, R.K.; Edling, D.A.; Flanagan, T.M.; Peterson, J.B.; Prosser, D.L.

    1976-01-01

    The Safety Analysis Report for Packaging (SARP) satisfies the request of the U. S. Energy Research and Development Administration for a formal safety analysis of the two insulated drum shipping containers identified as USA/5790/BLF ERDA-AL and USA/5791/BLF ERDA-AL. Discussions of structural integrity, thermal resistance, radiation shielding and radiological safety, nuclear criticality safety, and quality control are included. Much of the information was previously submitted to ERDA/OSD/ALO and the Department of Transportation (DOT) and provided the basis for obtaining special permits DOT-SP-5790 and DOT-SP-5791 as well as the Interim Certificates of Compliance until the SARP could be prepared. Complete physical and technical descriptions of the packages are presented. Each package consists of a modified DOT Specification 2R cylindrical steel inner container centered within an insulated steel drum. The contents may be any radioactive materials which satisfy the requirements established in this SARP. A shipment of Plutonium-238 in the form of a solid oxide is evaluated in this SARP as an example. The results of the nuclear criticality safety analysis show how much of the fissile isotopes may be shipped as Fissile Class I, II, or III for each container. Design and development considerations, the test and evaluations required to prove the ability of the containers to withstand normal transportation conditions, and the sequence of four hypothetical accident conditions (free drop, puncture, thermal, and water immersion) are discussed

  6. Shipments of irradiated DIDO fuel from Risoe National Laboratory to the Savannah River Site - Challenges and achievements

    International Nuclear Information System (INIS)

    Anne, C.; Patterson, J.

    2003-01-01

    On September 28, 2000, the Board of Governors of Risoe National Laboratory decided to shut down the Danish research reactor DR3 due to technical problems (corrosion on the reactor aluminum tank). Shortly thereafter, the Danish Government asked the National Laboratory to empty the reactor and its storage pools containing a total of 255 DIDO irradiated elements and ship them to Savannah River Site in the USA as soon as possible. Risoe National Laboratory had previously contracted with Cogema Logistics to ship DR3 DIDO fuel elements to SRS through the end of the return program. The quantity of fuel was less than originally intended but the schedule was significantly shorter. It was agreed in June 2001 that a combination of Cogema Logistics' and NAC casks would be preferable, as it would allow Risoe to ship all the irradiated fuel in two shipments and complete the shipments by June 2002. Risoe National Laboratory, Cogema Logistics and NAC International had twelve months to perform the shipments including licensing, basket fabrication for the NAC-LWT casks and actual transport. The paper describes the challenging work that was accomplished to meet the date of June 2002. (author)

  7. Overweight truck shipments to nuclear waste repositories: legal, political, administrative and operational considerations

    International Nuclear Information System (INIS)

    1986-03-01

    This report, prepared for the Chicago Operations Office and the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE), identifies and analyzes legal, political, administrative, and operational issues that could affect an OCRWM decision to develop an overweight truck cask fleet for the commercial nuclear waste repository program. It also provides information required by DOE on vehicle size-and-weight administration and regulation, pertinent to nuclear waste shipments. Current legal-weight truck casks have a payload of one pressurized-water reactor spent fuel element or two boiling-water reactor spent fuel elements (1 PWR/2 BWR). For the requirements of the 1960s and 1970s, casks were designed with massive shielding to accommodate 6-month-old spent fuel; the gross vehicle weight was limited to 73,280 pounds. Spent fuel to be moved in the 1990s will have aged five years or more. Gross vehicle weight limitation for the Interstate highway system has been increased to 80,000 pounds. These changes allow the design of 25-ton legal-weight truck casks with payloads of 2 PWR/5 BWR. These changes may also allow the development of a 40-ton overweight truck cask with a payload of 4 PWR/10 BWR. Such overweight casks will result in significantly fewer highway shipments compared with legal-weight casks, with potential reductions in transport-related repository risks and costs. These advantages must be weighed against a number of institutional issues surrounding such overweight shipments before a substantial commitment is made to develop an overweight truck cask fleet. This report discusses these issues in detail and provides recommended actions to DOE

  8. Properties of Bulk Sintered Silver As a Function of Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity

  9. 21 CFR 1271.265 - Receipt, predistribution shipment, and distribution of an HCT/P.

    Science.gov (United States)

    2010-04-01

    ... DRUG ADMINISTRATION HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Current Good Tissue Practice § 1271.265 Receipt, predistribution shipment, and distribution of an HCT/P. (a) Receipt. You must... distribution of an HCT/P. 1271.265 Section 1271.265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...

  10. 7 CFR 932.60 - Reports of acquisitions, sales, uses, shipments and creditable brand advertising.

    Science.gov (United States)

    2010-01-01

    ... creditable brand advertising. 932.60 Section 932.60 Agriculture Regulations of the Department of Agriculture... Reports of acquisitions, sales, uses, shipments and creditable brand advertising. (a) Each handler shall... shall file such reports of creditable brand advertising as recommended by the committee and approved by...

  11. Petrologic and geochemical characterization of the Bullfrog Member of the Crater Flat Tuff: outcrop samples used in waste package experiments

    International Nuclear Information System (INIS)

    Knauss, K.G.

    1983-09-01

    In support of the Waste Package Task within the Nevada Nuclear Waste Storage Investigation (NNWSI), experiments on hydrothermal rock/water interaction, corrosion, thermomechanics, and geochemical modeling calculations are being conducted. All of these activities require characterization of the initial bulk composition, mineralogy, and individual phase geochemistry of the potential repository host rock. This report summarizes the characterization done on samples of the Bullfrog Member of the Crater Flat Tuff (Tcfb) used for Waste Package experimental programs. 11 references, 17 figures, 3 tables

  12. Packaging Solutions : Delivering customer value through Logistical Packaging: A Case Study at Stora Enso Packaging

    OpenAIRE

    Shan, Kun; Julius, Joezer

    2015-01-01

    AbstractBackground;Despite of the significant role of packaging within logistics and supply chain management, packaging is infrequently studied as focal point in supply chain. Most of the previous logistics research studies tend to explain the integration between packaging and logistics through logistical packaging. In very rare cases, the studies mentioned about customer value. Therefore the major disadvantage of these studies is that, they didn’t consider logistical packaging and customer v...

  13. 78 FR 67927 - Foreign Trade Regulations (FTR): Mandatory Automated Export System Filing for All Shipments...

    Science.gov (United States)

    2013-11-13

    ... Internet at [email protected] ). FOR FURTHER INFORMATION CONTACT: Nick Orsini, Chief, Foreign Trade Division... 0607-AA50 Foreign Trade Regulations (FTR): Mandatory Automated Export System Filing for All Shipments... approval of new information collection requirements. [[Page 67928

  14. 7 CFR 322.16 - Packaging of shipments.

    Science.gov (United States)

    2010-01-01

    ...; cages made of processed wood; cellulose materials; excelsior; felt; ground peat (peat moss); paper or paper products; phenolic resin foam; sawdust; sponge rubber; thread waste, twine, or cord; and...

  15. Crashworthy sealed pressure vessel for plutonium transport

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1980-01-01

    A rugged transportation package for the air shipment of radioisotopic materials was recently developed. This package includes a tough, sealed, stainless steel inner containment vessel of 1460 cc capacity. This vessel, intended for a mass load of up to 2 Kg PuO 2 in various isotopic forms (not to exceed 25 watts thermal activity), has a positive closure design consisting of a recessed, shouldered lid fastened to the vessel body by twelve stainless-steel bolts; sealing is accomplished by a ductile copper gasket in conjunction with knife-edge sealing beads on both the body and lid. Follow-on applications of this seal in newer, smaller packages for international air shipments of plutonium safeguards samples, and in newer, more optimized packages for greater payload and improved efficiency and utility, are briefly presented

  16. Shipment of spent research reactor fuel to US-operators experience

    International Nuclear Information System (INIS)

    Krull, W.

    1999-01-01

    To ship 1500 spent fuel elements over more than 30 years to different reprocessing or storage sites a large amount of experience has been gotten. The most important partners for these activities have been US organizations. The development of the US policy for the receipt of foreign spent fuel elements of US origin is described briefly. The experience being made and lessons learned with the on May 13, 1996 renewed receipt program is described in detail, including US organizations, shipment and formal steps. (author)

  17. Packaging fluency

    DEFF Research Database (Denmark)

    Mocanu, Ana; Chrysochou, Polymeros; Bogomolova, Svetlana

    2011-01-01

    Research on packaging stresses the need for packaging design to read easily, presuming fast and accurate processing of product-related information. In this paper we define this property of packaging as “packaging fluency”. Based on the existing marketing and cognitive psychology literature on pac...

  18. Microelectronic packaging

    CERN Document Server

    Datta, M; Schultze, J Walter

    2004-01-01

    Microelectronic Packaging analyzes the massive impact of electrochemical technologies on various levels of microelectronic packaging. Traditionally, interconnections within a chip were considered outside the realm of packaging technologies, but this book emphasizes the importance of chip wiring as a key aspect of microelectronic packaging, and focuses on electrochemical processing as an enabler of advanced chip metallization.Divided into five parts, the book begins by outlining the basics of electrochemical processing, defining the microelectronic packaging hierarchy, and emphasizing the impac

  19. 41 CFR 102-117.105 - What does best value mean when routing a shipment?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What does best value mean when routing a shipment? 102-117.105 Section 102-117.105 Public Contracts and Property Management... 117-TRANSPORTATION MANAGEMENT Business Rules To Consider Before Shipping Freight or Household Goods...

  20. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    International Nuclear Information System (INIS)

    Green, J.R.

    1995-01-01

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ

  1. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.R.

    1995-05-16

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ.

  2. 15 CFR 30.39 - Special exemptions for shipments to the U.S. Armed Services.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Special exemptions for shipments to the U.S. Armed Services. 30.39 Section 30.39 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade BUREAU OF THE CENSUS, DEPARTMENT OF COMMERCE FOREIGN TRADE REGULATIONS...

  3. Semiempirical self-consistent polarization description of bulk water, the liquid-vapor interface, and cubic ice.

    Science.gov (United States)

    Murdachaew, Garold; Mundy, Christopher J; Schenter, Gregory K; Laino, Teodoro; Hutter, Jürg

    2011-06-16

    We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett [ J. Chem. Phys. 2008 , 128 , 164111 ] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K. The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements. © 2011 American Chemical Society

  4. Value Engineering Study for Closing Waste Packages Containing TAD Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Colleen Shelton-Davis

    2005-11-01

    The Office of Civilian Radioactive Waste Management announced their intention to have the commercial utilities package spent nuclear fuel in shielded, transportable, ageable, and disposable containers prior to shipment to the Yucca Mountain repository. This will change the conditions used as a basis for the design of the waste package closure system. The environment is now expected to be a low radiation, low contamination area. A value engineering study was completed to evaluate possible modifications to the existing closure system using the revised requirements. Four alternatives were identified and evaluated against a set of weighted criteria. The alternatives are (1) a radiation-hardened, remote automated system (the current baseline design); (2) a nonradiation-hardened, remote automated system (with personnel intervention if necessary); (3) a nonradiation-hardened, semi-automated system with personnel access for routine manual operations; and (4) a nonradiation-hardened, fully manual system with full-time personnel access. Based on the study, the recommended design is Alternative 2, a nonradiation-hardened, remote automated system. It is less expensive and less complex than the current baseline system, because nonradiation-hardened equipment can be used and some contamination control equipment is no longer needed. In addition, the inclusion of remote automation ensures throughput requirements are met, provides a more reliable process, and provides greater protection for employees from industrial accidents and radiation exposure than the semi-automated or manual systems. Other items addressed during the value engineering study as requested by OCRWM include a comparison to industry canister closure systems and corresponding lessons learned; consideration of closing a transportable, ageable, and disposable canister; and an estimate of the time required to perform a demonstration of the recommended closure system.

  5. Value Engineering Study for Closing Waste Packages Containing TAD Canisters

    International Nuclear Information System (INIS)

    Colleen Shelton-Davis

    2005-01-01

    The Office of Civilian Radioactive Waste Management announced their intention to have the commercial utilities package spent nuclear fuel in shielded, transportable, ageable, and disposable containers prior to shipment to the Yucca Mountain repository. This will change the conditions used as a basis for the design of the waste package closure system. The environment is now expected to be a low radiation, low contamination area. A value engineering study was completed to evaluate possible modifications to the existing closure system using the revised requirements. Four alternatives were identified and evaluated against a set of weighted criteria. The alternatives are (1) a radiation-hardened, remote automated system (the current baseline design); (2) a nonradiation-hardened, remote automated system (with personnel intervention if necessary); (3) a nonradiation-hardened, semi-automated system with personnel access for routine manual operations; and (4) a nonradiation-hardened, fully manual system with full-time personnel access. Based on the study, the recommended design is Alternative 2, a nonradiation-hardened, remote automated system. It is less expensive and less complex than the current baseline system, because nonradiation-hardened equipment can be used and some contamination control equipment is no longer needed. In addition, the inclusion of remote automation ensures throughput requirements are met, provides a more reliable process, and provides greater protection for employees from industrial accidents and radiation exposure than the semi-automated or manual systems. Other items addressed during the value engineering study as requested by OCRWM include a comparison to industry canister closure systems and corresponding lessons learned; consideration of closing a transportable, ageable, and disposable canister; and an estimate of the time required to perform a demonstration of the recommended closure system

  6. Radiation exposures associated with shipments of foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Massey, C.D.; Messick, C.E.; Mustin, T.

    1999-01-01

    In accordance with the Record of Decision on a Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel (ROD) (DOE, 1996a), the U.S. Department of Energy (DOE) is implementing a 13-year program under which DOE accepts foreign research reactor spent nuclear fuel (SNF) containing uranium that was enriched in the United States. The ROD required that DOE take several steps to ensure low environmental and health impacts resulting from the implementation of the program. These efforts mainly focus on transportation related activities that the analysis of potential environmental impacts in the Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel (EIS) (DOE, 1996b) identified as having the potential for exceeding current radiation protection guidelines. Consequently, DOE issued a Mitigation Action Plan to reduce the likelihood of potential adverse environmental impacts associated with the policy established in the ROD. As shown in the EIS, incident-free radiation exposures to members of the ship's crew, port workers, and ground transportation personnel due to shipments of spent nuclear fuel from foreign research reactors are expected to be below the radiation exposure limit of 100 mrem (1 mSv) per year established to protect the general public. However, the analysis in the EIS demonstrated that port and transportation workers could conceivably receive a cumulative radiation dose above the limit established for the general public if, for example, they are involved in multiple shipments within one year or if the radiation levels outside the casks are at the maximum allowable regulatory limit (10 mrem/hr [0.1 mSv/h] at 2 meters from the surface of the cask). With the program successfully underway, DOE has collected information from the shipments in accordance with the Mitigation Action Plan. The information to date has demonstrated that the analysis in

  7. Information management and collection for US DOE's packaging and transportation needs in the '90's

    International Nuclear Information System (INIS)

    Wheeler, T.A.; Luna, R.E.; McClure, J.D.; Quinn, G.

    1992-01-01

    The Transportation Assessment and Integration (TRAIN) Project (US DOE 1992) was established to provide a systematic approach to identify the problems and needs that will affect the capability of the United States Department of Energy (US DOE) to provide itself with cost-effective, efficient, and coordinated transportation services during the 1990s. Eight issue areas were identified to be included in the TRAIN Project, with one principal investigator assigned to each. The eight areas are as follows: (1) Packaging and Transportation Needs (PATN) in the 1990s; (2) Institutional and Outreach Programs; (3) Regulatory Impacts on Transportation Management; (4) Traffic and Packaging Operations; (5) Research and Development Requirements; (6) Training Support; (7) Emergency Preparedness Requirements; and (8) US DOE-EM 561 Roles and Responsibilities. This paper focuses on the results of the PATN activity of TRAIN. The objective of PATN is to prepare the US DOE, in general, and US DOE-EM 561 (Environmental Restoration and Waste Management (EM), Office of Technology Development, Transportation) in particular, to respond to the transportation needs of program elements in the Department. One of the first tasks in evaluating these needs was to formulate the potential for transportation of radioactive materials in the next decade. The US DOE is responsible for a relatively small fraction of the national shipments of radioactive material. Nevertheless, the assessment of its packaging and transportation needs presents a problem of wide scope. Large quantities of material are shipped each year throughout the US DOE establishment as a result of its work in the various field offices, national laboratories, and contractor facilities which carry out its programs

  8. The Packaging Handbook -- A guide to package design

    International Nuclear Information System (INIS)

    Shappert, L.B.

    1995-01-01

    The Packaging Handbook is a compilation of 14 technical chapters and five appendices that address the life cycle of a packaging which is intended to transport radioactive material by any transport mode in normal commerce. Although many topics are discussed in depth, this document focuses on the design aspects of a packaging. The Handbook, which is being prepared under the direction of the US Department of Energy, is intended to provide a wealth of technical guidance that will give designers a better understanding of the regulatory approval process, preferences of regulators in specific aspects of packaging design, and the types of analyses that should be seriously considered when developing the packaging design. Even though the Handbook is concerned with all packagings, most of the emphasis is placed on large packagings that are capable of transporting large radioactive sources that are also fissile (e.g., spent fuel). These are the types of packagings that must address the widest range of technical topics in order to meet domestic and international regulations. Most of the chapters in the Handbook have been drafted and submitted to the Oak Ridge National Laboratory for editing; the majority of these have been edited. This report summarizes the contents

  9. 10 CFR 40.66 - Requirements for advance notice of export shipments of natural uranium.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Requirements for advance notice of export shipments of natural uranium. 40.66 Section 40.66 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE... natural uranium. (a) Each licensee authorized to export natural uranium, other than in the form of ore or...

  10. 49 CFR 1302.43 - Applicable rates on shipments in transit when statute becomes effective.

    Science.gov (United States)

    2010-10-01

    ... AND SERVICE TERMS EXPORT AND IMPORT SHIPMENTS; RAILROADS Charges for Rail Transportation When Water... receipted for by common carriers subject to the provisions of section 6 of the Interstate Commerce Act... receipted for by common carriers subject to the provisions of section 6 of the Interstate Commerce Act (49 U...

  11. Low-level radioactive waste treatment technology. Low-level radioactive waste management handbook series

    International Nuclear Information System (INIS)

    1984-07-01

    Each generator of low-level radioactive waste must consider three sequential questions: (1) can the waste in its as-generated form be packaged and shipped to a disposal facility; (2) will the packaged waste be acceptable for disposal; and (3) if so, is it cost effective to dispose of the waste in its as-generated form. These questions are aimed at determining if the waste form, physical and chemical characteristics, and radionuclide content collectively are suitable for shipment and disposal in a cost-effective manner. If not, the waste management procedures will involve processing operations in addition to collection, segregation, packaging, shipment, and disposal. This handbook addresses methods of treating and conditioning low-level radioactive waste for shipment and disposal. A framework is provided for selection of cost-effective waste-processing options for generic categories of low-level radioactive waste. The handbook is intended as a decision-making guide that identifies types of information required to evaluate options, methods of evaluation, and limitations associated with selection of any of the processing options

  12. 76 FR 67229 - Governors' Designees Receiving Advance Notification of Transportation of Certain Shipments of...

    Science.gov (United States)

    2011-10-31

    ... of Transportation of Certain Shipments of Nuclear Waste and Spent Fuel On January 6, 1982 (47 FR 596 and 47 FR 600), the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register final... Avenue, Fairbanks, AK 99709, (907) 451-2172, 24 hours: (907) 457- 1421, Cell: (907) 347-7779, (907) 451...

  13. 77 FR 38859 - Governors' Designees Receiving Advance Notification of Transportation of Certain Shipments of...

    Science.gov (United States)

    2012-06-29

    ... of Transportation of Certain Shipments of Nuclear Waste and Spent Fuel On January 6, 1982 (47 FR 596 and 47 FR 600), the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register final... Conservation, State of Alaska, 555 Cordova Street, Anchorage, AK 99501, (907) 269- 1099, 24 hours: (907) 457...

  14. Safety Analysis Report for Packaging (SARP) for USA/5790/BLF (DOE-AL) and USA/5791/BLF (DOE-AL)

    International Nuclear Information System (INIS)

    Roome, L.G.; Watkins, R.A.; Bertram, R.E.; Kreider, H.B.

    1980-01-01

    This revised Safety Analysis Report for Packaging (SARP) includes discussions of structural integrity, thermal resistance, radiation shielding and radiological safety, nuclear criticality safety, and quality control of shipping containers. Much of the information was previously submitted to AEC/OSD/ALO and the Department of Transportation (DOT) and provided the basis for obtaining special permits DOT-SP-5790 and DOT-SP-5791 as well as the Interim Certificates of Compliance until the original SARP could be prepared and Certificates of Compliance issued by ERDA. This SARP revision incorporates information on certain design changes, the most significant of which relate to the inner container for the type 5790 package. Complete physical and technical descriptions of the packages are presented. Each package consists of a cylindrical steel inner container centered within an insulating steel drum assembly. The contents may be any radioactive materials which satisfy the requirements established in this SARP. A shipment of plutonium-238 in the form of a solid oxide is evaluated in this SARP as an example. The results of the nuclear criticality safety analysis show how much of the fissile isotopes may be shipped as Fissile Class I, II, or III for each container. Design and development considerations, the tests and evaluations required to prove the ability of the containers to withstand normal transportation conditions, and the sequence of four hypothetical accident conditions (free drop, puncture, thermal, and water immersion) are discussed. Tables, graphs, dimensional sketches, photographs, technical references, loading and shipping procedures, Mound Facility experience in using the containers, and copies of the DOE Certificates of Compliance are included. Internal reviews of the original and revised SARP's have been performed in compliance with the requirement of DOEM 5201-Part V

  15. 7 CFR 800.83 - Sampling provisions by kind of movement.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Sampling provisions by kind of movement. 800.83... REGULATIONS Inspection Methods and Procedures § 800.83 Sampling provisions by kind of movement. (a) Export cargo movements—(1) Bulk grain. Except as may be approved by the Administrator on a shipment-by-shipment...

  16. Joint state of Colorado-US Department of Energy WIPP Shipment Exercise Program: TRANSAX '90

    International Nuclear Information System (INIS)

    1990-01-01

    In July 1990, the United States Secretary of Energy requested the DOE conduct a transportation emergency exercise before the end of CY 1990. The tasking was subsequently directed to the Director of DOE's Office of Environmental Restoration and Waste Management (EM) to plan and conduct an exercise, based on a Waste Isolation Pilot Plant (WIPP) shipment scenario. The state of Colorado was asked to participate. Colorado, in turn, invited the DOE to integrate the exercise into its own series of WIPP-related tabletop and field exercises for which the state had already begun planning. The result was a joint USDOE/Colorado full-scale (orientation) exercise called Transportation Accident Exercise 1990 (TRANSAX '90). The state of Colorado's exercise program was a follow-on to previously conducted classroom training. The program would serve to identify and resolve outstanding issues concerning inspections of the WIPP shipment transporter as it entered and passed through the state on the designated Interstate 25 transportation corridor; criteria for movement under various adverse weather and road conditions; and emergency response to accidents occurring in an urban or rural environment. The USDOE designed its participation in the exercise program to test selected aspects of the DOE Emergency Management System relating to response to and management of DOE off-site transportation emergencies involving assistance to state and local emergency response personnel. While a number of issues remain under study for ultimate resolution, others have been resolved and will become the basis for emergency operations plans, SOPs, mutual aid agreements, and checklist upgrades. Concurrently, the concentrated efforts at local, state, and federal levels in dealing with WIPP- related activities during this exercise program development have given renewed impetus to all parties as the beginning of actual shipments draws nearer. Three tabletop scenarios are discussed in this report

  17. A study to assess the role of bulk density of process load in "6"0Co based food irradiation facility

    International Nuclear Information System (INIS)

    Sanyal, Bhaskar; Prakasan, V.; Chawla, S.P.; Ghosh, Sunil K.

    2017-01-01

    Radiation processing of foods and allied products is one of the important techniques to extend shelf-life. The success of this technology depends on the adequate dose delivery to the food products. The absorbed doses are functions of several irradiation parameters based on the design of the facility. The variable bulk density of the process load is of paramount importance in determining the dose uniformity. Bulk densities of the product in the range of 0.01 to 0.75 gm/cc were prepared and its influence on absorbed dose was studied in a "6"0Co based food package irradiator. The results established that the bulk densities of the process loads would considerably change the absorbed doses and dose uniformity. The data would be useful to the facility operators to take adequate decision in dosimetry procedures. (author)

  18. Improved practices for packaging transuranic waste at Los Alamos National Laboratory (LA-UR-09-03293) - 16280

    International Nuclear Information System (INIS)

    Goyal, Kapil K.; Carson, Peter H.

    2009-01-01

    Transuranic (TRU) waste leaving the Plutonium Facility at Los Alamos National Laboratory (LANL) is packaged using LANL's waste acceptance criteria for onsite storage. Before shipment to the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, each payload container is subject to rigorous characterization to ensure compliance with WIPP waste acceptance criteria and Department of Transportation regulations. Techniques used for waste characterization include nondestructive examination by WIPP-certified real-time radiography (RTR) and nondestructive assay (NDA) of containers, as well as headspace gas sampling to ensure that hydrogen and other flammable gases remain at safe levels during transport. These techniques are performed under a rigorous quality assurance program to confirm that results are accurate and reproducible. If containers are deemed problematic, corrective action is implemented before they are shipped to WIPP. A defensive approach was used for many years to minimize the number of problematic drums. However, based on review of data associated with headspace gas sampling, NDA and RTR results, and enhanced coordination with the entities responsible for waste certification, many changes have been implemented to facilitate packaging of TRU waste drums with higher isotopic loading at the Plutonium Facility at an unprecedented rate while ensuring compliance with waste acceptance criteria. This paper summarizes the details of technical changes and related administrative coordination activities, such as information sharing among the certification entities, generators, waste packagers, and shippers. It discusses the results of all such cumulative changes that have been implemented at the Plutonium Facility and gives readers a preview of what LANL has accomplished to expeditiously certify and dispose of newly generated TRU waste. (authors)

  19. 49 CFR 173.59 - Description of terms for explosives.

    Science.gov (United States)

    2010-10-01

    ...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1... insensitive detonating substances and which demonstrate a negligible probability of accidental initiation or... processes. Charges, propelling. Articles consisting of propellant charge in any physical form, with or...

  20. Bulk oil clauses

    International Nuclear Information System (INIS)

    Gough, N.

    1993-01-01

    The Institute Bulk Oil Clauses produced by the London market and the American SP-13c Clauses are examined in detail in this article. The duration and perils covered are discussed, and exclusions, adjustment clause 15 of the Institute Bulk Oil Clauses, Institute War Clauses (Cargo), and Institute Strikes Clauses (Bulk Oil) are outlined. (UK)